WO2022102143A1 - Robot hand - Google Patents

Robot hand Download PDF

Info

Publication number
WO2022102143A1
WO2022102143A1 PCT/JP2021/008079 JP2021008079W WO2022102143A1 WO 2022102143 A1 WO2022102143 A1 WO 2022102143A1 JP 2021008079 W JP2021008079 W JP 2021008079W WO 2022102143 A1 WO2022102143 A1 WO 2022102143A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot hand
component
robot
portions
grip
Prior art date
Application number
PCT/JP2021/008079
Other languages
French (fr)
Japanese (ja)
Inventor
剛也 藤田
有加 山田
隆行 駒谷
寿幸 中村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022102143A1 publication Critical patent/WO2022102143A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members

Definitions

  • the present invention relates to a robot hand used for transporting and assembling parts.
  • robots with robot hands have been widely used in order to automatically produce some products in factories.
  • the robot uses a robot hand to grasp a part to be incorporated in a product, transport it to a designated place, or incorporate it into another part.
  • Patent Document 1 in a robot hand that performs an operation of gripping an object between a plurality of fingers provided so as to be able to change the distance between each other, between the plurality of fingers.
  • a robot hand characterized in that a palm portion that can move along a direction connecting the root side of the plurality of fingers and the tip end side of the plurality of fingers is provided.
  • the conventional robot hand needs a structure to assist the maintenance of the posture of the parts when transporting the parts and to receive the reaction force received by the parts when assembling the parts.
  • a structure is called a holding portion.
  • the palm portion corresponds to the holding portion. Since there are various shapes of parts, it is necessary to prepare a dedicated holding part according to the shape of the target part for the holding part used for transporting or assembling the part. Therefore, as many robot hands as there are types of parts are required. This causes a problem that the design cost, the material cost, and the assembly cost of various robot hands become high.
  • One aspect of the present invention is to realize a robot hand that can grip objects having different shapes by a common structure.
  • the robot hand is a robot hand that grips an object, and includes a plurality of gripping portions that grip the object, the robot hand, and the object. It is provided with at least one holding portion that is movable at least in a first direction connecting the above and a second direction orthogonal to the first direction and that holds the object held by the plurality of grip portions. There is.
  • the robot hand 1 includes grip portions 11 and 12, and holding portions 21 and 22.
  • the gripping portions 11 and 12 are used to grip the component 4 as an example of the object gripped by the robot hand 1 from the side surface thereof.
  • the pressing portions 21 and 22 are used to press the component 4 when gripping the component 4. Since the component 4 is pressed by the pressing portions 21 and 22 when the component 4 is gripped, the robot hand 1 can stably grip the component 4.
  • the pressing portions 21 and 22 can move in the Z direction (first direction) connecting the robot hand 1 and the component 4.
  • the Z direction is, for example, a direction perpendicular to the surface of the component 4 facing the robot hand 1 from the robot hand 1.
  • the pressing portions 21 and 22 can further move in the X direction (second direction) orthogonal to the Z direction and in the Y direction (third direction) orthogonal to both the Z direction and the X direction.
  • the robot hand 1 can freely move the pressing portions 21 and 22 to a desired position facing the component 4, so that the pressing portions 21 and 22 are brought into contact with the appropriate positions on the component 4. Can be done. Therefore, the pressing portions 21 and 22 can be brought into contact with each component 4 at an appropriate contact position according to its shape. Therefore, the robot hand 1 can individually grip a plurality of parts 4 having different shapes by a common structure.
  • FIG. 1 is a diagram showing a configuration of a robot 100 according to an embodiment of the present invention.
  • the robot 100 may be an assembly device mainly used for automatic assembly of products in a factory.
  • the robot 100 includes a robot body 101, a robot arm 102, and a robot hand 1.
  • One end of the robot arm 102 is connected to a predetermined position of the robot body 101.
  • a robot hand 1 is provided at the other end (tip) of the robot arm 102.
  • the robot 100 grips various parts by using the robot hand 1, transports the gripped parts to a predetermined position, and assembles a product using the gripped parts.
  • FIG. 2 is a diagram showing the configuration of the robot hand 1.
  • the robot hand 1 includes a hand body 10, a grip portion 11, a grip portion 12, a holding portion 21, and a holding portion 22.
  • the grip portions 11 and 12 and the pressing portions 21 and 22 are both provided on the surface of the robot hand 1.
  • the surface referred to here means the surface of the robot hand 1 facing the component when the robot hand 1 grips the component 4.
  • the surface does not necessarily have to be flat.
  • the gripping portions 11 and 12 constitute a plurality of gripping portions that grip the parts in the robot hand 1.
  • the grips 11 and 12 are also referred to as mechanical chucks.
  • the grip portions 11 and 12 have an elongated structure having a long axis parallel to the perpendicular direction (hereinafter, Z direction) of the surface of the robot hand 1. Further, the grip portions 11 and 12 can freely move in a direction orthogonal to the stretching direction of the grip portions 11 and 12.
  • the connection points with the grip portions 11 and 12 in the robot hand 1 are provided with a function for allowing the grip portions 11 and 12 to move in the surface direction of the surface of the robot hand 1. ing.
  • the robot hand 1 grips the component 4 by sandwiching the side surface of the component 4 between the grip portions 11 and 12.
  • the pressing portions 21 and 22 are portions that press the parts by pressure in the robot hand 1. Similar to the grip portions 11 and 12, the pressing portions 21 and 22 have a structure that extends away from the robot hand 1 along the perpendicular direction of the surface of the robot hand 1. The pressing portions 21 and 22 are further movable back and forth in the Z direction. That is, the pressing portions 21 and 22 can move in either the direction of approaching the component or the direction of moving away from the component.
  • the pressing portions 21 and 22 can also move in two different directions (hereinafter, X direction and Y direction) in a plane orthogonal to the Z direction.
  • X direction and Y direction are orthogonal to each other.
  • the X and Y directions are also directions parallel to the plane direction of the hand body 10.
  • the pressing portions 21 and 22 have a role of assisting the posture of the parts being conveyed when the parts gripped by the robot hand 1 are conveyed.
  • the pressing portions 21 and 22 also have a role of receiving a reaction force applied to the component 4 from the other component when the component 4 is attached to the other component in the product.
  • FIG. 3 is a diagram illustrating a mechanism for moving the pressing portion 21 in each of the three different directions.
  • FIG. 1010 of FIG. 3 shows the robot hand 1 in a state where the tip of the holding portion 21 or the like is directed toward the upper side in the drawing.
  • 1020 of FIG. 3 shows the detailed structure of the robot hand 1 shown in 1010 of FIG.
  • the robot hand 1 further includes a linear guide 31, a timing belt 32, a linear guide 33, a timing belt 34, and a ball screw mechanism 35.
  • the linear guide 31 and the timing belt 32 are mechanisms for moving the holding portion 21 in the X direction
  • the linear guide 33 and the timing belt 34 are mechanisms for moving the holding portion 21 in the Y direction
  • the ball screw mechanism 35 is the holding portion 21. Is a mechanism for moving the screw in the Z direction.
  • the robot hand 1 moves the pressing portion 21 in the X direction by moving the pressing portion 21 along the linear guide 31 using the timing belt 32. Further, by moving the pressing portion 21 along the linear guide 33 using the timing belt 34, the pressing portion 21 is moved in the Y direction. Further, the holding portion 21 is moved in the Z direction by moving the holding portion 21 along a third linear guide (not shown) using the ball screw mechanism 35.
  • the robot hand 1 also has a mechanism for moving the holding portion 22 in three different directions. These mechanisms are similar to the linear guide 31, timing belt 32, linear guide 33, timing belt 34, and ball screw mechanism 35.
  • FIG. 4 is a diagram showing gripping of the component 4 by the robot hand 1.
  • the robot 100 uses the robot hand 1 to grip the component 4.
  • the component 4 is one of the components constituting the product (not shown) produced by the robot 100.
  • the component 4 has surfaces 41 and 42 arranged in the same plane. In component 4, the surfaces 41 and 42 are located at the same height.
  • the robot 100 grips the component 4 from the side surface using the grip portions 11 and 12 with the surface 41 and the surface 42 of the component 4 facing the hand body 10. Further, the pressing portions 21 and 22 are brought into contact with the component 4 by moving them in the X direction, the Y direction, and the Z direction.
  • the movement amounts of the holding portion 21 in the X direction, the Y direction, and the Z direction when the robot hand 1 grips the component 4 are set in advance. These movement amounts are predetermined values according to the shape of the component 4.
  • the robot 100 moves the pressing portion 21 by a preset amount of movement in each direction to bring the pressing portion 21 into contact with a predetermined position in the component 4. The same applies to the amount of movement of the holding portion 22.
  • the pressing portion 21 is brought into contact with the surface 41 of the component 4, so that the pressing portion 21 presses (up) the component 4 from above. Further, by bringing the pressing portion 22 into contact with the surface 42 of the component 4, another portion of the component 4 is pressed (upper pressed) by the pressing portion 22 from above. This completes the gripping of the component 4.
  • the robot 100 transports the component 4 gripped in this way to a designated place or uses it for assembling a product.
  • FIG. 5 is a diagram showing gripping of the component 4A by the robot hand 1.
  • the robot 100 uses the robot hand 1 to hold a part 4A having a shape different from that of the part 4.
  • the component 4A has a surface 41 and a surface 42 similar to the component 4.
  • the surface 42 of the component 4A is at a higher position than the surface 41. That is, when the component 4A is gripped by the robot hand 1, the surface 42 is closer to the robot hand 1 than the surface 41.
  • the width of the portion having the surface 42 in the component 4A is larger than the width of the portion having the surface 41 in the robot hand 1.
  • the robot 100 grips the component 4A from the side surface using the grip portions 11 and 12 with the surface 41 and the surface 42 of the component 4A facing the hand body 10.
  • the pressing portion 21 is arranged at a desired position facing the surface 41.
  • the pressing portion 21 is brought into contact with the surface 41 of the component 4A.
  • the robot 100 further moves the pressing portion 22 appropriately in the X direction and the Y direction to arrange the pressing portion 22 at a desired position facing the surface 42.
  • the pressing portion 22 in the Z direction the pressing portion 22 is brought into contact with the surface 42 of the component 4A.
  • This contact position is different from the contact position of the holding portion 22 when the robot hand 1 grips the component 4. That is, when the robot hand 1 grips the component 4A, the pressing portion 22 is brought into contact with the appropriate contact position according to the shape of the component 4A.
  • FIG. 6 is a diagram showing gripping of the component 4A by the robot hand 1.
  • the rotation moment center 51 of the component 4A is generated at a position where the grip portion 11 comes into contact with the component 4A.
  • an inertial force 52 is generated in the component 4A due to the acceleration or deceleration of the transport.
  • the component 4A receives a reaction force 53 from the component 5 in contact with the component 4A. Due to these inertial force 52 and reaction force 53, a rotational force centered on the rotational moment center 51 acts on the component 4A. Therefore, if no other force acts on the part 4A, the part 4A will rotate at the time of assembling, and there is a possibility that the part 4A cannot be assembled stably.
  • the robot hand 1 applies a force 54 acting in the direction opposite to the reaction force 53 to the component 4A by pressing the component 4A by the pressing portion 22. Since the reaction force 53 can be canceled by this force 54, the rotation of the component 4A at the time of assembling the component 4A can be prevented. As a result, the assembly of the component 4A can be stabilized.
  • the pressing portion 21 can also apply a force for stabilizing the posture of the component 4A to the component 4A, similar to the force 54 by the pressing portion 22.
  • the robot hand 1 needs to bring the pressing portion 22 into contact with the position where the force 54 acting in the direction of canceling the rotational moment acting on the component 4A can be applied to the component 4A.
  • the position depends on the shape of the component 4A.
  • the robot 100 appropriately moves the holding portion 22 in the X and Y directions orthogonal to the Z direction so that the holding portion 22 in the component 4A is brought into contact with the holding portion 22 at an appropriate position according to the shape of the component 4A. can do.
  • the robot 100 according to the present embodiment can move the holding portions 21 and 22 in any of the Z direction, the X direction, and the Y direction, the parts 4 and 4A having different shapes can be moved by one robot hand 1.
  • the robot 100 can individually convey and assemble parts 4 and 4A having different shapes by using a common robot hand 1.
  • the user of the robot hand 1 does not need to manufacture a dedicated robot hand 1 for each part to be assembled. Therefore, a robot hand other than the robot hand 1 according to the present embodiment becomes unnecessary, and further, peripheral equipment (such as another robot) on which the other robot hand is mounted becomes unnecessary.
  • the equipment cost required for the factory using the robot hand 1 can be reduced, and the space inside the factory can be saved. Further, unlike the conventional technique using a tool changer, it is not necessary to replace the robot hand 1 with another robot hand 1, so that the cost of the robot hand 1 can be reduced and the production capacity of the product can be improved.
  • the robot hand 1 is a general-purpose and shared robot hand 1 that supports parts of various shapes including parts 4 and 4A. Therefore, the production process for automatically assembling various small-quantity products by the robot 100 can be integrated into the robot 100 having a common robot hand 1. That is, it is possible to realize a robot 100 capable of mixed production of different products. As a result, the profitability of the investment funds required for introducing the robot 100 into the factory can be ensured.
  • FIG. 7 is a diagram showing an example in which the holding portion 21 of the robot hand 1 is used as a work rod.
  • the robot 100 attaches the component 6 to the component 7 constituting the product by using the robot hand 1.
  • the component 7 is formed with an insertion hole 71 extending inward from the surface of the component 7.
  • the robot 100 attaches the component 6 to the component 7 by inserting the component 6 into the insertion hole 71 of the component 7 by using the holding portion 21 of the robot hand 1.
  • the robot 100 first holds the robot hand 1 holding the component 6 with which the pressing portion 21 is in contact, so that the component 6 faces the insertion hole 71 of the component 7. Get closer to the surface of.
  • a part of the component 6 is inserted into the insertion hole 71 by bringing the robot hand 1 closer to the component 7.
  • the pressing portion 21 in the Z direction (direction toward the component 7)
  • the component 6 in contact with the pressing portion 21 is moved toward the back of the insertion hole 71. Push in.
  • the component 6 is completely inserted into the component 7, and the component 6 is attached to the component 7.
  • the pressing portion 21 is used not only for pressing the pressing portion 21 during the mounting work of the pressing portion 21, but also for pushing the component 6 into the component 7. Therefore, the robot 100 can also utilize the holding portion 21 of the robot hand 1 as a work rod (tweezers) for assembly adjustment. Although not shown in particular, the holding portion 22 can also be used as a work rod. The robot 100 may utilize the pressing portion 22 as a work rod instead of the pressing portion 21 or together with the pressing portion 21.
  • FIG. 8 is a diagram showing gripping of the cable 8 by the robot hand 1.
  • the robot 100 uses the robot hand 1 to grip the cable 8, which is an example of a component of a product.
  • the robot 100 uses the holding portions 21 and 22 of the robot hand 1 not for holding the cable 8 but for additionally holding the cable 8.
  • the robot 100 grips the cable 8 by sandwiching the cable 8 on the side surface of the cable 8 by using the grip portions 11 and 12.
  • the robot 100 further grips the cable 8 by using the holding portions 21 and 22 so as to sandwich the cable 8 from another side surface different from the gripping position of the cable 8 by the grip portions 11 and 12.
  • the robot 100 grips the cable 8 by the grip portions 11 and 12, and also grips the cable 8 by the holding portions 21 and 22.
  • the gripping portion 11 can be strongly gripped with a high gripping force obtained by adding the gripping force of the gripping portions 11 and 12 and the gripping force of the holding portions 21 and 22. Therefore, even a part such as a cable 8 which is difficult to be stably gripped by only the gripping portions 11 and 12 and which is difficult to be gripped by the pressing portion 21 or 22 can be stably gripped.
  • FIG. 9 is a diagram illustrating a mechanism for moving the holding portion 21 in two different directions.
  • FIG. 1210 of FIG. 9 shows a detailed structure of the robot hand 1 as viewed from a certain angle.
  • 1220 of FIG. 9 shows the detailed structure of the robot hand 1 when viewed from another angle.
  • the robot hand 1 shown in FIG. 9 further includes a linear guide 81, a lever mechanism 82, and a ball screw mechanism 83.
  • the robot hand 1 can move the pressing portions 21 and 22 in two directions, the X direction and the Z direction.
  • the linear guide 81 and the lever mechanism 82 are mechanisms for moving the pressing portion 21 in the X direction
  • the ball screw mechanism 83 is a mechanism for moving the pressing portion 21 in the Z direction.
  • the robot hand 1 moves the pressing portion 21 in the X direction by moving the pressing portion 21 along the linear guide 81 by using the lever mechanism 82.
  • the holding portion 21 is moved in the Z direction by moving the holding portion 21 along the second linear guide (not shown) using the ball screw mechanism 83. Since the robot hand 1 does not have a mechanism for moving the holding portion 21 in the Y direction, the holding portion 21 cannot be moved in the Y direction.
  • the robot hand 1 in FIG. 9 also has a mechanism for moving the holding portion 22 in two different directions. These mechanisms are similar to the linear guide 81, the lever mechanism 82, and the ball screw mechanism 83.
  • FIG. 10 is a diagram showing the configuration of the robot hand 1A according to the second embodiment of the present invention.
  • the robot hand 1A according to the present embodiment similarly includes each member provided in the robot hand 1 of the first embodiment.
  • the robot hand 1A further includes a suction nozzle 91 (suction portion).
  • the suction nozzle 91 is also called a vacuum chuck.
  • the robot hand 1A of the present embodiment is mainly used for gripping a low-rigidity thin plate 9.
  • the thin plate 9 is a thin-shaped component made of a low-rigidity material.
  • the robot 100 including the robot hand 1A of the present embodiment grips the thin plate 9 by using the suction nozzle 91 of the robot hand 1A.
  • FIG. 1320 of FIG. 10 shows a cross section of a suction nozzle 91 provided in the robot hand 1A according to the second embodiment of the present invention.
  • the suction nozzle 91 is an example of an elongated member, and a cavity 92 penetrating the stretching direction of the suction nozzle 91 is formed inside the suction nozzle 91.
  • the robot 100 sucks air from the cavity 92 of the suction nozzle 91 by using a suction machine (not shown) connected to the suction nozzle 91. As a result, the thin plate 9 can be attracted to the tip of the suction nozzle 91.
  • the suction nozzle 91 is arranged at a substantially center position on the surface of the hand body 10 in the robot hand 1A.
  • the robot 100 tries to grip the thin plate 9 by the robot hand 1A, the robot 100 brings the tip of the suction nozzle 91 into contact with the surface of the thin plate 9. Then, air is sucked from the cavity 92 of the suction nozzle 91 to form a vacuum in the cavity 92, so that the thin plate 9 is attracted to the tip of the suction nozzle 91. Further, by appropriately moving the pressing portions 21 and 22 in three different directions, the pressing portions 21 and 22 are brought into contact with the surface of the thin plate 9, respectively.
  • the robot hand 1 can stably grip the thin plate 9 by using the robot hand 1A by the suction force of the suction nozzle 91 and the pressing force of the pressing portions 21 and 22. Therefore, even a thin plate 9 that is difficult to grip in the grip portions 11 and 12 can be transported to a designated place or used for assembling a product.
  • the robot hand 1 may be configured to include only the pressing portion 21 or only the pressing portion 22 instead of both the pressing portions 21 and 22. That is, the robot hand 1 may include at least one holding portion corresponding to the holding portion 21 or 22. Therefore, the robot hand 1 may be provided with three or more different pressing portions. If the number of pressing portions is two or more, different locations of the component 4 can be pressed, so that the robot hand 1 can grip the component 4 more stably.
  • the robot hand 1 holds the component 4 in a state where the component 4 is arranged below the robot hand 1.
  • FIG. 2 merely illustrates an example of the relative positional relationship between the robot hand 1 and the component 4 gripped by the robot hand 1.
  • the robot 100 can also grip the component 4 in a state where the component 4 is arranged at an arbitrary position away from the robot hand 1.
  • the robot hand 1 can also grip the component 4 arranged above the robot hand 1 with the grip portion 11, the holding portion 21, and the like facing upward of the robot hand 1.
  • the robot hand 1 may include a mechanism for detecting the contact of the pressing portion 21 with the component 4.
  • the robot hand 1 stops the movement of the pressing portion 21 along the Z direction.
  • the holding portion 21 can be brought into contact with the component 4 at an appropriate position. Further, it is not necessary to set in advance the amount of movement of the pressing portion 21 in the Z direction according to the shape of the component 4 in the robot 100.
  • the robot hand is a robot hand that grips an object, and has a plurality of gripping portions that grip the object, a first direction connecting the robot hand and the object, and the above. It is provided with at least one holding portion that is movable at least in a second direction orthogonal to the first direction and that holds the object gripped by the plurality of grip portions.
  • the robot hand can move the holding portion in the first direction toward the object and also in the second direction orthogonal to the first direction. Therefore, the contact position of the pressing portion in the object can be appropriately changed by appropriately moving the pressing portion in the second direction before moving the pressing portion in the first direction to bring it into contact with the object. As a result, the holding portion can be brought into contact with an appropriate position according to the shape of the object, so that a plurality of objects having different shapes can be stably and individually gripped by a common structure.
  • the holding portion is further movable in a third direction orthogonal to both the first direction and the second direction.
  • the holding portion can be moved three-dimensionally, the range of positions where the holding portion is brought into contact with the object can be further expanded. Therefore, the shape of the object supported by the robot hand can be expanded to a wider range.
  • the robot hand includes a plurality of different holding portions.
  • the holding portion can be brought into contact with a plurality of different positions on the object, the object can be gripped more stably.
  • the robot hand grips the object by the plurality of gripping portions and the plurality of holding portions.
  • the object can be gripped from four different directions, so that the object can be gripped more stably.
  • the robot hand further includes a suction portion for sucking the object.
  • the object can be adsorbed to the suction portion, even an object (for example, a thin plate) that is difficult to grip with a plurality of grip portions can be stably gripped.
  • the robot hand further moves the holding portion in the first direction while the holding portion is in contact with the object.
  • the holding portion can be used as a work rod for pushing an object into the hole, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot hand that can grasp objects of different shapes using the same structure is achieved. A robot hand (1) comprises a restraining part (21) that can at least move in a Z direction, which is from the robot hand (1) toward a component (4), and an X direction, which is perpendicular to the Z direction.

Description

ロボットハンドRobot hand
 本発明は、部品の搬送および組み立てに用いられるロボットハンドに関する。 The present invention relates to a robot hand used for transporting and assembling parts.
 従来、何らかの生産品を工場において自動的に生産するために、ロボットハンドを有するロボットが広く活用されている。ロボットは、ロボットハンドを用いて、生産品に組み込まれる部品を把持し、これを指定場所まで搬送したり、あるいは他の部品に組み込んだりする。このようなロボットハンドの一例として、特許文献1に、互いの距離を変更可能に設けられた複数の指部の間で対象物を把持する動作を行うロボットハンドにおいて、前記複数の指部の間には、該複数の指部の根元側と該複数の指部の先端側とを結ぶ方向に沿って移動可能な掌部が設けられていることを特徴とするロボットハンドが開示されている。 Conventionally, robots with robot hands have been widely used in order to automatically produce some products in factories. The robot uses a robot hand to grasp a part to be incorporated in a product, transport it to a designated place, or incorporate it into another part. As an example of such a robot hand, in Patent Document 1, in a robot hand that performs an operation of gripping an object between a plurality of fingers provided so as to be able to change the distance between each other, between the plurality of fingers. Discloses a robot hand characterized in that a palm portion that can move along a direction connecting the root side of the plurality of fingers and the tip end side of the plurality of fingers is provided.
日本国公開特許公報「特開2012-139808号公報」Japanese Patent Publication "Japanese Patent Laid-Open No. 2012-139808"
 従来のロボットハンドには、部品を搬送する際の部品の姿勢維持を補助したり、部品の組み立て時に部品が受ける反力を受けたりするための構造が必要になる。このような構造は、押さえ部と呼ばれる。特許文献1のロボットハンドでは、掌部が押さえ部に相当する。部品には様々な形状のものがあるため、部品の搬送または組み立てに用いられる押さえ部を、対象の部品の形状に応じた専用の押さえ部を作製する必要がある。したがって、部品の種類の数だけ、様々なロボットハンドが必要である。これにより、各種ロボットハンドの設計費用、材料費用、および組み立て費用が高額になる問題がある。 The conventional robot hand needs a structure to assist the maintenance of the posture of the parts when transporting the parts and to receive the reaction force received by the parts when assembling the parts. Such a structure is called a holding portion. In the robot hand of Patent Document 1, the palm portion corresponds to the holding portion. Since there are various shapes of parts, it is necessary to prepare a dedicated holding part according to the shape of the target part for the holding part used for transporting or assembling the part. Therefore, as many robot hands as there are types of parts are required. This causes a problem that the design cost, the material cost, and the assembly cost of various robot hands become high.
 さらに、ロボットハンドを取り付けるロボットの台数も増加するため、その費用およびスペースも増加する問題がある。なお、システム台数を節約するために、ある時点で用いられるロボットハンドを適宜切り替える装置、いわゆるツールチェンジャーを用いる工夫も可能である。しかし、このような装置を用いた場合、ロボットハンドを切り替えるたびに一定の切り替え時間が発生するため、完成品の生産速度が低下する問題が生じる。 Furthermore, since the number of robots to which the robot hand is attached increases, there is a problem that the cost and space also increase. In order to save the number of systems, it is possible to devise a device that appropriately switches the robot hand used at a certain point in time, that is, a so-called tool changer. However, when such a device is used, a certain switching time is generated every time the robot hand is switched, so that there is a problem that the production speed of the finished product is lowered.
 本発明の一態様は、異なる形状の対象物を、共通の構造によって把持可能なロボットハンドを実現することを目的とする。 One aspect of the present invention is to realize a robot hand that can grip objects having different shapes by a common structure.
 前記の課題を解決するために、本発明の一態様に係るロボットハンドは、対象物を把持するロボットハンドであって、前記対象物を把持する複数の把持部と、前記ロボットハンドと前記対象物とを結ぶ第1方向と、前記第1方向に直交する第2方向とに少なくとも移動可能であり、かつ前記複数の把持部によって把持された前記対象物を押さえる少なくとも1つの押さえ部とを備えている。 In order to solve the above-mentioned problems, the robot hand according to one aspect of the present invention is a robot hand that grips an object, and includes a plurality of gripping portions that grip the object, the robot hand, and the object. It is provided with at least one holding portion that is movable at least in a first direction connecting the above and a second direction orthogonal to the first direction and that holds the object held by the plurality of grip portions. There is.
 本発明の一態様によれば、異なる形状の対象物を、共通の構造によって把持可能なロボットハンドを実現することができる。 According to one aspect of the present invention, it is possible to realize a robot hand that can grip objects having different shapes by a common structure.
本発明の一実施形態に係るロボットの構成を示す図である。It is a figure which shows the structure of the robot which concerns on one Embodiment of this invention. ロボットハンドの構成を示す図である。It is a figure which shows the structure of a robot hand. 押さえ部を異なる方向にそれぞれ移動させるための機構を説明する図である。It is a figure explaining the mechanism for moving a holding part in different directions. ロボットハンドによる部品の把持を示す図である。It is a figure which shows the gripping of a part by a robot hand. ロボットハンドによる部品の把持を示す図である。It is a figure which shows the gripping of a part by a robot hand. ロボットハンドによる部品の把持を示す図である。It is a figure which shows the gripping of a part by a robot hand. ロボットハンドの押さえ部を作業棒として活用する例を示す図である。It is a figure which shows the example which uses the holding part of a robot hand as a work rod. ロボットハンドによるケーブルの把持を示す図である。It is a figure which shows the gripping of a cable by a robot hand. 押さえ部を異なる方向にそれぞれ移動させるための機構を説明する図である。It is a figure explaining the mechanism for moving a holding part in different directions. 本発明の実施形態2に係るロボットハンドの構成を示す図である。It is a figure which shows the structure of the robot hand which concerns on Embodiment 2 of this invention.
 〔実施形態1〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
[Embodiment 1]
Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
 §1 適用例
 図2を用いて、本発明が適用される場面の一例について説明する。本実施形態に係るロボットハンドは、図2に示すロボットハンド1として実現される。
§1 Application example An example of a situation in which the present invention is applied will be described with reference to FIG. The robot hand according to the present embodiment is realized as the robot hand 1 shown in FIG.
 図2に示すように、ロボットハンド1は、把持部11および12、ならびに押さえ部21および22を備えている。把持部11および12は、ロボットハンド1によって把持される対象物の一例としての部品4を、その側面から把持するために用いられる。押さえ部21および22は、部品4の把持時に部品4を押さえるために用いられる。部品4の把持時に部品4が押さえ部21および22によって押さえられるので、ロボットハンド1は部品4を安定的に把持することができる。 As shown in FIG. 2, the robot hand 1 includes grip portions 11 and 12, and holding portions 21 and 22. The gripping portions 11 and 12 are used to grip the component 4 as an example of the object gripped by the robot hand 1 from the side surface thereof. The pressing portions 21 and 22 are used to press the component 4 when gripping the component 4. Since the component 4 is pressed by the pressing portions 21 and 22 when the component 4 is gripped, the robot hand 1 can stably grip the component 4.
 押さえ部21および22は、ロボットハンド1と部品4とを結ぶZ方向(第1方向)に移動可能である。Z方向は、例えば、部品4におけるロボットハンド1に対向する表面に対してロボットハンド1から垂直に向かう方向である。押さえ部21および22は、さらに、Z方向に直交するX方向(第2方向)と、Z方向およびX方向の双方に直交するY方向(第3方向)にも移動可能である。これにより、ロボットハンド1は、押さえ部21および22を、部品4に対向する所望の位置まで自在に動かすことができるので、部品4上の適切な位置に押さえ部21および22を当接させることができる。そのため、部品4ごとにその形状に応じた適切な当接位置に、押さえ部21および22を当接させることができる。したがって、ロボットハンド1は、共通の構造によって、形状の異なる複数の部品4を個別に把持することができる。 The pressing portions 21 and 22 can move in the Z direction (first direction) connecting the robot hand 1 and the component 4. The Z direction is, for example, a direction perpendicular to the surface of the component 4 facing the robot hand 1 from the robot hand 1. The pressing portions 21 and 22 can further move in the X direction (second direction) orthogonal to the Z direction and in the Y direction (third direction) orthogonal to both the Z direction and the X direction. As a result, the robot hand 1 can freely move the pressing portions 21 and 22 to a desired position facing the component 4, so that the pressing portions 21 and 22 are brought into contact with the appropriate positions on the component 4. Can be done. Therefore, the pressing portions 21 and 22 can be brought into contact with each component 4 at an appropriate contact position according to its shape. Therefore, the robot hand 1 can individually grip a plurality of parts 4 having different shapes by a common structure.
 §2 構成例
 (ロボットハンド1の構成)
 図1は、本発明の一実施形態に係るロボット100の構成を示す図である。ロボット100は、主に工場内で生産品の自動組み立てに用いられる組み立て装置であってよい。図1の例では、ロボット100は、ロボット本体101、ロボットアーム102、およびロボットハンド1を備えている。ロボットアーム102の一端は、ロボット本体101の所定位置に接続されている。ロボットアーム102の他端(先端)に、ロボットハンド1が設けられている。ロボット100は、ロボットハンド1を用いて各種の部品を把持すると共に、把持された部品を所定位置まで搬送したり、把持された部品を用いて生産品を組み立てたりする。
§2 Configuration example (configuration of robot hand 1)
FIG. 1 is a diagram showing a configuration of a robot 100 according to an embodiment of the present invention. The robot 100 may be an assembly device mainly used for automatic assembly of products in a factory. In the example of FIG. 1, the robot 100 includes a robot body 101, a robot arm 102, and a robot hand 1. One end of the robot arm 102 is connected to a predetermined position of the robot body 101. A robot hand 1 is provided at the other end (tip) of the robot arm 102. The robot 100 grips various parts by using the robot hand 1, transports the gripped parts to a predetermined position, and assembles a product using the gripped parts.
 図2は、ロボットハンド1の構成を示す図である。この図に示すように、ロボットハンド1は、ハンド本体10、把持部11、把持部12、押さえ部21、および押さえ部22を備えている。把持部11および12ならびに押さえ部21および22は、いずれもロボットハンド1の表面に設けられている。ここでいう表面とは、ロボットハンド1が部品4を把持する際に、当該部品に対向するロボットハンド1の面を意味する。表面は、必ずしも平面である必要はない。 FIG. 2 is a diagram showing the configuration of the robot hand 1. As shown in this figure, the robot hand 1 includes a hand body 10, a grip portion 11, a grip portion 12, a holding portion 21, and a holding portion 22. The grip portions 11 and 12 and the pressing portions 21 and 22 are both provided on the surface of the robot hand 1. The surface referred to here means the surface of the robot hand 1 facing the component when the robot hand 1 grips the component 4. The surface does not necessarily have to be flat.
 把持部11および12は、ロボットハンド1において部品を把持する複数の把持部を構成する。把持部11および12は、メカニカルチャックとも呼ばれる。把持部11および12は、ロボットハンド1の表面の垂線方向(以下、Z方向)と平行な長軸を持つ細長い構造を有している。また、把持部11および12は、把持部11および12の延伸方向と直交する方向に自在に移動可能である。図2には特に図示しないが、ロボットハンド1における把持部11および12との接続箇所には、把持部11および12をロボットハンド1の表面の面方向に移動可能にするための機能が備えられている。ロボットハンド1は、部品4の側面を把持部11および12によって挟むことによって、部品4を把持する。 The gripping portions 11 and 12 constitute a plurality of gripping portions that grip the parts in the robot hand 1. The grips 11 and 12 are also referred to as mechanical chucks. The grip portions 11 and 12 have an elongated structure having a long axis parallel to the perpendicular direction (hereinafter, Z direction) of the surface of the robot hand 1. Further, the grip portions 11 and 12 can freely move in a direction orthogonal to the stretching direction of the grip portions 11 and 12. Although not particularly shown in FIG. 2, the connection points with the grip portions 11 and 12 in the robot hand 1 are provided with a function for allowing the grip portions 11 and 12 to move in the surface direction of the surface of the robot hand 1. ing. The robot hand 1 grips the component 4 by sandwiching the side surface of the component 4 between the grip portions 11 and 12.
 押さえ部21および22は、ロボットハンド1において部品を圧力によって押さえる部分である。押さえ部21および22は、把持部11および12と同様に、ロボットハンド1の表面の垂線方向に沿ってロボットハンド1から離れるように延伸する構造を有している。押さえ部21および22は、さらに、Z方向の前後に移動可能である。すなわち、押さえ部21および22は、部品に近付く方向と、部品から遠ざかる方向の、いずれにも移動することができる。 The pressing portions 21 and 22 are portions that press the parts by pressure in the robot hand 1. Similar to the grip portions 11 and 12, the pressing portions 21 and 22 have a structure that extends away from the robot hand 1 along the perpendicular direction of the surface of the robot hand 1. The pressing portions 21 and 22 are further movable back and forth in the Z direction. That is, the pressing portions 21 and 22 can move in either the direction of approaching the component or the direction of moving away from the component.
 押さえ部21および22は、さらに、Z方向に直交する平面内の異なる2つの方向(以下、X方向およびY方向)にも移動可能である。図では、X方向およびY方向は互いに直交している。X方向およびY方向は、ハンド本体10の面方向に平行な方向でもある。 The pressing portions 21 and 22 can also move in two different directions (hereinafter, X direction and Y direction) in a plane orthogonal to the Z direction. In the figure, the X and Y directions are orthogonal to each other. The X and Y directions are also directions parallel to the plane direction of the hand body 10.
 押さえ部21および22は、ロボットハンド1によって把持された部品を搬送する際に、搬送中の部品の姿勢を補助する役割を有する。押さえ部21および22は、さらに、部品4を生産品内の他の部品に取り付ける際に、他の部品から部品4に加えられる反力を受ける役割も有する。 The pressing portions 21 and 22 have a role of assisting the posture of the parts being conveyed when the parts gripped by the robot hand 1 are conveyed. The pressing portions 21 and 22 also have a role of receiving a reaction force applied to the component 4 from the other component when the component 4 is attached to the other component in the product.
 図3は、押さえ部21を異なる3方向にそれぞれ移動させるための機構を説明する図である。図3の1010に、押さえ部21等の先端を図中の上側に向けた状態のロボットハンド1を示す。図3の1020に、図3の1010に示すロボットハンド1の詳細な構造を示す。この図に示すように、ロボットハンド1は、リニアガイド31、タイミングベルト32、リニアガイド33、タイミングベルト34、およびボールねじ機構35をさらに備えている。 FIG. 3 is a diagram illustrating a mechanism for moving the pressing portion 21 in each of the three different directions. FIG. 1010 of FIG. 3 shows the robot hand 1 in a state where the tip of the holding portion 21 or the like is directed toward the upper side in the drawing. 1020 of FIG. 3 shows the detailed structure of the robot hand 1 shown in 1010 of FIG. As shown in this figure, the robot hand 1 further includes a linear guide 31, a timing belt 32, a linear guide 33, a timing belt 34, and a ball screw mechanism 35.
 リニアガイド31およびタイミングベルト32は押さえ部21をX方向に移動させる機構であり、リニアガイド33およびタイミングベルト34は押さえ部21をY方向に移動させる機構であり、ボールねじ機構35は押さえ部21をZ方向に移動させる機構である。ロボットハンド1は、タイミングベルト32を用いて押さえ部21をリニアガイド31に沿って移動させることによって、押さえ部21をX方向に移動させる。また、タイミングベルト34を用いて押さえ部21をリニアガイド33に沿って移動させることによって、押さえ部21をY方向に移動させる。また、ボールねじ機構35を用いて押さえ部21を第3のリニアガイド(不図示)に沿って移動させることによって、押さえ部21をZ方向に移動させる。 The linear guide 31 and the timing belt 32 are mechanisms for moving the holding portion 21 in the X direction, the linear guide 33 and the timing belt 34 are mechanisms for moving the holding portion 21 in the Y direction, and the ball screw mechanism 35 is the holding portion 21. Is a mechanism for moving the screw in the Z direction. The robot hand 1 moves the pressing portion 21 in the X direction by moving the pressing portion 21 along the linear guide 31 using the timing belt 32. Further, by moving the pressing portion 21 along the linear guide 33 using the timing belt 34, the pressing portion 21 is moved in the Y direction. Further, the holding portion 21 is moved in the Z direction by moving the holding portion 21 along a third linear guide (not shown) using the ball screw mechanism 35.
 図3では図示を省略しているが、ロボットハンド1は、押さえ部22を異なる3方向に移動させるための機構をも備えている。これらの機構は、リニアガイド31、タイミングベルト32、リニアガイド33、タイミングベルト34、およびボールねじ機構35と同様のものである。 Although not shown in FIG. 3, the robot hand 1 also has a mechanism for moving the holding portion 22 in three different directions. These mechanisms are similar to the linear guide 31, timing belt 32, linear guide 33, timing belt 34, and ball screw mechanism 35.
 (部品4の把持)
 図4は、ロボットハンド1による部品4の把持を示す図である。この図の例では、ロボット100は、ロボットハンド1を用いて部品4を把持している。部品4は、ロボット100によって生産される生産物(不図示)を構成する部品の1つである。部品4は、同一の平面に配置されている表面41および42を有する。部品4において、表面41および42は同じ高さに位置する。
(Gripping of part 4)
FIG. 4 is a diagram showing gripping of the component 4 by the robot hand 1. In the example of this figure, the robot 100 uses the robot hand 1 to grip the component 4. The component 4 is one of the components constituting the product (not shown) produced by the robot 100. The component 4 has surfaces 41 and 42 arranged in the same plane. In component 4, the surfaces 41 and 42 are located at the same height.
 ロボット100は、まず、部品4の表面41および表面42がハンド本体10に向いた状態で、把持部11および12を用いて部品4をその側面から把持する。さらに、押さえ部21および22を、X方向、Y方向、およびZ方向に移動させることによって、部品4に当接させる。ロボット100には、例えば、ロボットハンド1が部品4を把持する際の、押さえ部21のX方向、Y方向、およびZ方向の各移動量が、予め設定されている。これらの移動量は、部品4の形状に応じて予め決定された値である。ロボット100は、予め設定された各方向の移動量で押さえ部21を移動させることによって、部品4における規定位置に押さえ部21を当接させる。押さえ部22の移動量についてもこれも同様である。 First, the robot 100 grips the component 4 from the side surface using the grip portions 11 and 12 with the surface 41 and the surface 42 of the component 4 facing the hand body 10. Further, the pressing portions 21 and 22 are brought into contact with the component 4 by moving them in the X direction, the Y direction, and the Z direction. In the robot 100, for example, the movement amounts of the holding portion 21 in the X direction, the Y direction, and the Z direction when the robot hand 1 grips the component 4 are set in advance. These movement amounts are predetermined values according to the shape of the component 4. The robot 100 moves the pressing portion 21 by a preset amount of movement in each direction to bring the pressing portion 21 into contact with a predetermined position in the component 4. The same applies to the amount of movement of the holding portion 22.
 図4の例では、押さえ部21を部品4の表面41に当接させることによって、押さえ部21によって部品4を上から押さえる(上押さえする)。さらに、押さえ部22を部品4の表面42に当接させることによって、押さえ部22によって部品4の別の箇所を上から押さえる(上押さえする)。これにより、部品4の把持が完了する。ロボット100は、このようにして把持された部品4を、指定場所に搬送したり、生産物の組み立てに用いたりする。 In the example of FIG. 4, the pressing portion 21 is brought into contact with the surface 41 of the component 4, so that the pressing portion 21 presses (up) the component 4 from above. Further, by bringing the pressing portion 22 into contact with the surface 42 of the component 4, another portion of the component 4 is pressed (upper pressed) by the pressing portion 22 from above. This completes the gripping of the component 4. The robot 100 transports the component 4 gripped in this way to a designated place or uses it for assembling a product.
 (部品4Aの把持)
 図5は、ロボットハンド1による部品4Aの把持を示す図である。この図の例では、ロボット100は、ロボットハンド1を用いて、部品4とは形状が異なる部品4Aを把持している。部品4Aは、部品4と同様に表面41および表面42を有する。しかし、部品4Aの表面42は、表面41よりも高い位置にある。すなわち、ロボットハンド1によって部品4Aが把持される際、表面42は表面41よりもロボットハンド1に近い位置にある。また、部品4Aにおける表面42を有する部分の幅は、ロボットハンド1における表面41を有する部分の幅よりも大きい。
(Gripping part 4A)
FIG. 5 is a diagram showing gripping of the component 4A by the robot hand 1. In the example of this figure, the robot 100 uses the robot hand 1 to hold a part 4A having a shape different from that of the part 4. The component 4A has a surface 41 and a surface 42 similar to the component 4. However, the surface 42 of the component 4A is at a higher position than the surface 41. That is, when the component 4A is gripped by the robot hand 1, the surface 42 is closer to the robot hand 1 than the surface 41. Further, the width of the portion having the surface 42 in the component 4A is larger than the width of the portion having the surface 41 in the robot hand 1.
 ロボット100は、まず、部品4Aの表面41および表面42がハンド本体10に向いた状態で、把持部11および12を用いて部品4Aをその側面から把持する。次に、押さえ部21をX方向およびY方向に移動させることによって、押さえ部21を、表面41に対向する所望の位置に配置させる。この後、押さえ部21をZ方向に移動させることによって、部品4Aの表面41に当接させる。ロボット100は、さらに、押さえ部22をX方向およびY方向に適宜移動させることによって、押さえ部22を、表面42に対向する所望の位置に配置させる。この後、押さえ部22をZ方向に移動させることによって、部品4Aの表面42に当接させる。この当接位置は、ロボットハンド1が部品4を把持する際の押さえ部22の当接位置とは異なる。すなわちロボットハンド1は、部品4Aを把持する際、部品4Aの形状に応じた適切な当接位置に、押さえ部22を当接させるのである。 First, the robot 100 grips the component 4A from the side surface using the grip portions 11 and 12 with the surface 41 and the surface 42 of the component 4A facing the hand body 10. Next, by moving the pressing portion 21 in the X direction and the Y direction, the pressing portion 21 is arranged at a desired position facing the surface 41. After that, by moving the pressing portion 21 in the Z direction, the pressing portion 21 is brought into contact with the surface 41 of the component 4A. The robot 100 further moves the pressing portion 22 appropriately in the X direction and the Y direction to arrange the pressing portion 22 at a desired position facing the surface 42. After that, by moving the pressing portion 22 in the Z direction, the pressing portion 22 is brought into contact with the surface 42 of the component 4A. This contact position is different from the contact position of the holding portion 22 when the robot hand 1 grips the component 4. That is, when the robot hand 1 grips the component 4A, the pressing portion 22 is brought into contact with the appropriate contact position according to the shape of the component 4A.
 (押さえ部21の役割)
 図6は、ロボットハンド1による部品4Aの把持を示す図である。ロボットハンド1が部品4Aを把持すると、把持部11が部品4Aに接触する位置に、部品4Aの回転モーメント中心51が生まれる。また、部品4Aの搬送時に、搬送の加速または減速によって、部品4Aに慣性力52が生ずる。さらには、部品4Aを部品5に取り付ける際、部品4Aは、部品4Aに接触した部品5から反力53を受ける。これらの慣性力52および反力53によって、回転モーメント中心51を中心とした回転力が部品4Aに働くことなる。したがって、部品4Aに他の力が働かないと、部品4Aはその組み立て時に回転してしまうので、安定して部品4Aを組み立てることができない恐れがある。
(Role of holding part 21)
FIG. 6 is a diagram showing gripping of the component 4A by the robot hand 1. When the robot hand 1 grips the component 4A, the rotation moment center 51 of the component 4A is generated at a position where the grip portion 11 comes into contact with the component 4A. Further, when the component 4A is transported, an inertial force 52 is generated in the component 4A due to the acceleration or deceleration of the transport. Further, when the component 4A is attached to the component 5, the component 4A receives a reaction force 53 from the component 5 in contact with the component 4A. Due to these inertial force 52 and reaction force 53, a rotational force centered on the rotational moment center 51 acts on the component 4A. Therefore, if no other force acts on the part 4A, the part 4A will rotate at the time of assembling, and there is a possibility that the part 4A cannot be assembled stably.
 そこでロボットハンド1は、部品4Aを押さえ部22によって押さえることによって、反力53と反対方向に働く力54を部品4Aに与える。この力54によって、反力53を打ち消すことができるので、部品4Aの組み立てる時における部品4Aの回転を防ぐことができる。これにより、部品4Aの組み立てを安定化することができる。説明は省略するが、押さえ部21によっても、押さえ部22による力54と同様な、部品4Aの姿勢を安定化させる力を、部品4Aに与えることができる。 Therefore, the robot hand 1 applies a force 54 acting in the direction opposite to the reaction force 53 to the component 4A by pressing the component 4A by the pressing portion 22. Since the reaction force 53 can be canceled by this force 54, the rotation of the component 4A at the time of assembling the component 4A can be prevented. As a result, the assembly of the component 4A can be stabilized. Although the description is omitted, the pressing portion 21 can also apply a force for stabilizing the posture of the component 4A to the component 4A, similar to the force 54 by the pressing portion 22.
 図6に示すように、ロボットハンド1は、部品4Aに働く回転モーメントを打ち消す方向に働く力54を部品4Aに与えることができる位置に、押さえ部22を当接させる必要がある。その位置は、部品4Aの形状に応じて異なる。ロボット100は、押さえ部22を、Z方向に直交するX方向およびY方向に適宜移動させることによって、部品4Aにおける押さえ部22を当接させる位置を、部品4Aの形状に応じた適切な位置にすることができる。押さえ部21についても同様である。 As shown in FIG. 6, the robot hand 1 needs to bring the pressing portion 22 into contact with the position where the force 54 acting in the direction of canceling the rotational moment acting on the component 4A can be applied to the component 4A. The position depends on the shape of the component 4A. The robot 100 appropriately moves the holding portion 22 in the X and Y directions orthogonal to the Z direction so that the holding portion 22 in the component 4A is brought into contact with the holding portion 22 at an appropriate position according to the shape of the component 4A. can do. The same applies to the holding portion 21.
 (主要な作用効果)
 本実施形態に係るロボット100は、押さえ部21および22をZ方向、X方向、およびY方向のいずれにも移動させることができるので、異なる形状の部品4および4Aに、1つのロボットハンド1によって対応することができる。すなわち、ロボット100は、共通のロボットハンド1を用いて、異なる形状の部品4および4Aを、個別に搬送したり組み立てたりすることができる。これにより、ロボットハンド1のユーザは、組み立て対象の部品ごとに専用のロボットハンド1を製作する必要がない。したがって、本実施形態に係るロボットハンド1以外の他のロボットハンドは不要になり、さらには当該他のロボットハンドを搭載する周辺設備(他のロボットなど)も不要になる。この結果、ロボットハンド1を用いる工場に要する設備費用を低減することができ、工場内を省スペース化することもできる。さらには、ツールチェンジャーを用いる従来技術とは異なり、ロボットハンド1を他のロボットハンド1に交換する必要がないため、ロボットハンド1の費用低減と共に、生産品の生産能力を向上させることもできる。
(Main action effect)
Since the robot 100 according to the present embodiment can move the holding portions 21 and 22 in any of the Z direction, the X direction, and the Y direction, the parts 4 and 4A having different shapes can be moved by one robot hand 1. Can be accommodated. That is, the robot 100 can individually convey and assemble parts 4 and 4A having different shapes by using a common robot hand 1. As a result, the user of the robot hand 1 does not need to manufacture a dedicated robot hand 1 for each part to be assembled. Therefore, a robot hand other than the robot hand 1 according to the present embodiment becomes unnecessary, and further, peripheral equipment (such as another robot) on which the other robot hand is mounted becomes unnecessary. As a result, the equipment cost required for the factory using the robot hand 1 can be reduced, and the space inside the factory can be saved. Further, unlike the conventional technique using a tool changer, it is not necessary to replace the robot hand 1 with another robot hand 1, so that the cost of the robot hand 1 can be reduced and the production capacity of the product can be improved.
 ロボットハンド1は、部品4および4Aを含む様々な形状の部品に対応した汎用かつ共用のロボットハンド1である。したがって、各種の少量の生産品をロボット100によって自動的に組み立てる際の生産工程を、共通のロボットハンド1を有するロボット100に集約させることができる。すなわち、異なる生産品を混流生産できるロボット100を実現することができる。これにより、工場へのロボット100導入に必要な投資資金の採算性を確保することができる。 The robot hand 1 is a general-purpose and shared robot hand 1 that supports parts of various shapes including parts 4 and 4A. Therefore, the production process for automatically assembling various small-quantity products by the robot 100 can be integrated into the robot 100 having a common robot hand 1. That is, it is possible to realize a robot 100 capable of mixed production of different products. As a result, the profitability of the investment funds required for introducing the robot 100 into the factory can be ensured.
 (作業棒としての押さえ部21の活用)
 図7は、ロボットハンド1の押さえ部21を作業棒として活用する例を示す図である。本例では、ロボット100は、生産品を構成する部品7に、ロボットハンド1を用いて部品6を取り付ける。部品7には、部品7の表面から内部に向かって延伸する挿入穴71が形成されている。ロボット100は、ロボットハンド1の押さえ部21を用いて、部品6を部品7の挿入穴71に挿入することによって、部品6を部品7に取り付ける。
(Utilization of the holding part 21 as a work rod)
FIG. 7 is a diagram showing an example in which the holding portion 21 of the robot hand 1 is used as a work rod. In this example, the robot 100 attaches the component 6 to the component 7 constituting the product by using the robot hand 1. The component 7 is formed with an insertion hole 71 extending inward from the surface of the component 7. The robot 100 attaches the component 6 to the component 7 by inserting the component 6 into the insertion hole 71 of the component 7 by using the holding portion 21 of the robot hand 1.
 取り付けの具体的な手順を以下に説明する。ロボット100は、まず、図7の1110に示すように、押さえ部21が当接している部品6を把持したロボットハンド1を、部品6が部品7の挿入穴71に対向するように、部品7の表面に近づける。次に、図7の1120に示すように、ロボットハンド1をさらに部品7に近づけることによって、部品6の一部を挿入穴71に挿入する。最後に、図7の1130に示すように、押さえ部21をZ方向(部品7に向かう方向)に移動させることによって、押さえ部21に当接している部品6を、挿入穴71の奥の方まで押し込む。これにより、部品6が部品7の内部に完全に挿入され、部品6が部品7に取り付けられる。 The specific installation procedure is explained below. First, as shown in 1110 of FIG. 7, the robot 100 first holds the robot hand 1 holding the component 6 with which the pressing portion 21 is in contact, so that the component 6 faces the insertion hole 71 of the component 7. Get closer to the surface of. Next, as shown in 1120 of FIG. 7, a part of the component 6 is inserted into the insertion hole 71 by bringing the robot hand 1 closer to the component 7. Finally, as shown in 1130 of FIG. 7, by moving the pressing portion 21 in the Z direction (direction toward the component 7), the component 6 in contact with the pressing portion 21 is moved toward the back of the insertion hole 71. Push in. As a result, the component 6 is completely inserted into the component 7, and the component 6 is attached to the component 7.
 図7の例では、押さえ部21は、押さえ部21の取り付け作業中に押さえ部21を押さえる用途に加えて、部品6を部品7の内部に押し込む用途にも用いられる。したがって、ロボット100は、ロボットハンド1の押さえ部21を、組み立て調整用の作業棒(ピンセット)としても活用することができる。特に図示しないが、押さえ部22も同様に作業棒として活用可能である。ロボット100は、押さえ部21の代わりに、あるいは押さえ部21と共に、押さえ部22を作業棒として活用してもよい。 In the example of FIG. 7, the pressing portion 21 is used not only for pressing the pressing portion 21 during the mounting work of the pressing portion 21, but also for pushing the component 6 into the component 7. Therefore, the robot 100 can also utilize the holding portion 21 of the robot hand 1 as a work rod (tweezers) for assembly adjustment. Although not shown in particular, the holding portion 22 can also be used as a work rod. The robot 100 may utilize the pressing portion 22 as a work rod instead of the pressing portion 21 or together with the pressing portion 21.
 (ケーブル8の把持)
 図8は、ロボットハンド1によるケーブル8の把持を示す図である。本例では、ロボット100は、ロボットハンド1を用いて、生産品の部品の一例であるケーブル8を把持する。ロボット100は、ロボットハンド1の押さえ部21および22を、ケーブル8を押さえる用途ではなく、ケーブル8を追加で把持する用途に用いる。
(Gripping of cable 8)
FIG. 8 is a diagram showing gripping of the cable 8 by the robot hand 1. In this example, the robot 100 uses the robot hand 1 to grip the cable 8, which is an example of a component of a product. The robot 100 uses the holding portions 21 and 22 of the robot hand 1 not for holding the cable 8 but for additionally holding the cable 8.
 図8に示すように、ロボット100は、把持部11および12を用いて、ケーブル8の側面においてケーブル8を挟む形で、ケーブル8を把持する。ロボット100は、さらに、押さえ部21および22を用いて、把持部11および12によるケーブル8の把持位置とは異なる他の側面からケーブル8を挟む形で、ケーブル8を把持する。このようにロボット100は、把持部11および12によってケーブル8を把持すると共に、押さえ部21および22によってもケーブル8を把持する。これにより、把持部11および12の把持力と、押さえ部21および22の把持力とを合算した高い把持力で、把持部11を強力に把持することができる。したがって、ケーブル8のような、把持部11および12のみでは安定して把持し辛く、かつ押さえ部21または22によって押さえることが困難な部品であっても、安定的に把持することができる。 As shown in FIG. 8, the robot 100 grips the cable 8 by sandwiching the cable 8 on the side surface of the cable 8 by using the grip portions 11 and 12. The robot 100 further grips the cable 8 by using the holding portions 21 and 22 so as to sandwich the cable 8 from another side surface different from the gripping position of the cable 8 by the grip portions 11 and 12. In this way, the robot 100 grips the cable 8 by the grip portions 11 and 12, and also grips the cable 8 by the holding portions 21 and 22. As a result, the gripping portion 11 can be strongly gripped with a high gripping force obtained by adding the gripping force of the gripping portions 11 and 12 and the gripping force of the holding portions 21 and 22. Therefore, even a part such as a cable 8 which is difficult to be stably gripped by only the gripping portions 11 and 12 and which is difficult to be gripped by the pressing portion 21 or 22 can be stably gripped.
 (押さえ部21および22の2方向移動機構)
 図9は、押さえ部21を異なる2方向にそれぞれ移動させるための機構を説明する図である。図9の1210に、ある角度から見たロボットハンド1の詳細な構造を示す。図9の1220に、別の角度から見たロボットハンド1の詳細な構造を示す。図9に示すロボットハンド1は、リニアガイド81、レバー機構82、ボールねじ機構83をさらに備えている。
(Two-way moving mechanism of holding portions 21 and 22)
FIG. 9 is a diagram illustrating a mechanism for moving the holding portion 21 in two different directions. FIG. 1210 of FIG. 9 shows a detailed structure of the robot hand 1 as viewed from a certain angle. 1220 of FIG. 9 shows the detailed structure of the robot hand 1 when viewed from another angle. The robot hand 1 shown in FIG. 9 further includes a linear guide 81, a lever mechanism 82, and a ball screw mechanism 83.
 図9の例では、ロボットハンド1は、押さえ部21および22をX方向およびZ方向の2方向に移動させることができる。リニアガイド81およびレバー機構82は押さえ部21をX方向に移動させる機構であり、ボールねじ機構83は押さえ部21をZ方向に移動させる機構である。ロボットハンド1は、レバー機構82を用いて押さえ部21をリニアガイド81に沿って移動させることによって、押さえ部21をX方向に移動させる。また、ボールねじ機構83を用いて押さえ部21を第2のリニアガイド(不図示)に沿って移動させることによって、押さえ部21をZ方向に移動させる。ロボットハンド1は、押さえ部21をY方向に移動させるための機構を有していないので、押さえ部21をY方向に移動させることはできない。 In the example of FIG. 9, the robot hand 1 can move the pressing portions 21 and 22 in two directions, the X direction and the Z direction. The linear guide 81 and the lever mechanism 82 are mechanisms for moving the pressing portion 21 in the X direction, and the ball screw mechanism 83 is a mechanism for moving the pressing portion 21 in the Z direction. The robot hand 1 moves the pressing portion 21 in the X direction by moving the pressing portion 21 along the linear guide 81 by using the lever mechanism 82. Further, the holding portion 21 is moved in the Z direction by moving the holding portion 21 along the second linear guide (not shown) using the ball screw mechanism 83. Since the robot hand 1 does not have a mechanism for moving the holding portion 21 in the Y direction, the holding portion 21 cannot be moved in the Y direction.
 詳細は省略するが、図9のロボットハンド1は、押さえ部22を異なる2方向に移動させるための機構をも備えている。これらの機構は、リニアガイド81、レバー機構82、およびボールねじ機構83と同様のものである。 Although details are omitted, the robot hand 1 in FIG. 9 also has a mechanism for moving the holding portion 22 in two different directions. These mechanisms are similar to the linear guide 81, the lever mechanism 82, and the ball screw mechanism 83.
 〔実施形態2〕
 §2 構成例
 図10は、本発明の実施形態2に係るロボットハンド1Aの構成を示す図である。この図に示すように、本実施形態に係るロボットハンド1Aは、実施形態1のロボットハンド1に備えられる各部材を同様に備えている。これらに加えて、ロボットハンド1Aは、さらに吸引ノズル91(吸着部)を備えている。吸引ノズル91は、バキュームチャックとも呼ばれる。本実施形態のロボットハンド1Aは、主に、低剛性の薄板9を把持するために用いられる。薄板9は、低剛性の材料によって構成される薄い形状の部品である。ロボットハンド1Aの把持部11および12によって薄板9を側面から把持したとしても、薄板9が容易に撓んでしまうので、薄板9を安定的に把持することは難しい。そこで、本実施形態のロボットハンド1Aを備えるロボット100は、ロボットハンド1Aの吸引ノズル91を用いて薄板9を把持する。
[Embodiment 2]
§2 Configuration example FIG. 10 is a diagram showing the configuration of the robot hand 1A according to the second embodiment of the present invention. As shown in this figure, the robot hand 1A according to the present embodiment similarly includes each member provided in the robot hand 1 of the first embodiment. In addition to these, the robot hand 1A further includes a suction nozzle 91 (suction portion). The suction nozzle 91 is also called a vacuum chuck. The robot hand 1A of the present embodiment is mainly used for gripping a low-rigidity thin plate 9. The thin plate 9 is a thin-shaped component made of a low-rigidity material. Even if the thin plate 9 is gripped from the side surface by the grip portions 11 and 12 of the robot hand 1A, the thin plate 9 is easily bent, so that it is difficult to stably grip the thin plate 9. Therefore, the robot 100 including the robot hand 1A of the present embodiment grips the thin plate 9 by using the suction nozzle 91 of the robot hand 1A.
 図10の1320に、本発明の実施形態2に係るロボットハンド1Aに備えられる吸引ノズル91の断面を示す。吸引ノズル91は、細長い形状の部材の一例であり、吸引ノズル91の延伸方向を貫通する空洞92がその内部に形成されている。ロボット100は、吸引ノズル91に接続される吸引機(不図示)を用いて、吸引ノズル91の空洞92から空気を吸引する。これにより、吸引ノズル91の先端に薄板9を吸着させることができる。 1320 of FIG. 10 shows a cross section of a suction nozzle 91 provided in the robot hand 1A according to the second embodiment of the present invention. The suction nozzle 91 is an example of an elongated member, and a cavity 92 penetrating the stretching direction of the suction nozzle 91 is formed inside the suction nozzle 91. The robot 100 sucks air from the cavity 92 of the suction nozzle 91 by using a suction machine (not shown) connected to the suction nozzle 91. As a result, the thin plate 9 can be attracted to the tip of the suction nozzle 91.
 図10の例では、吸引ノズル91は、ロボットハンド1Aにおいて、ハンド本体10の表面の略中心位置に配置されている。ロボット100は、ロボットハンド1Aによって薄板9を把持しようとする際、吸引ノズル91の先端を薄板9の表面に当接させる。そして、吸引ノズル91の空洞92から空気を吸引して空洞92内に真空を形成することによって、薄板9を吸引ノズル91の先端に吸着させる。さらに、押さえ部21および22を異なる3方向に適宜移動させることによって、薄板9の表面にそれぞれ当接させる。このように、ロボットハンド1は、吸引ノズル91による吸着力と、押さえ部21および22による押さえ力とによって、ロボットハンド1Aを用いて薄板9を安定的に把持することができる。したがって、把持部11および12では把持し辛い薄板9であっても、指定場所に搬送したり、生産品の組み立てに用いたりすることができる。 In the example of FIG. 10, the suction nozzle 91 is arranged at a substantially center position on the surface of the hand body 10 in the robot hand 1A. When the robot 100 tries to grip the thin plate 9 by the robot hand 1A, the robot 100 brings the tip of the suction nozzle 91 into contact with the surface of the thin plate 9. Then, air is sucked from the cavity 92 of the suction nozzle 91 to form a vacuum in the cavity 92, so that the thin plate 9 is attracted to the tip of the suction nozzle 91. Further, by appropriately moving the pressing portions 21 and 22 in three different directions, the pressing portions 21 and 22 are brought into contact with the surface of the thin plate 9, respectively. As described above, the robot hand 1 can stably grip the thin plate 9 by using the robot hand 1A by the suction force of the suction nozzle 91 and the pressing force of the pressing portions 21 and 22. Therefore, even a thin plate 9 that is difficult to grip in the grip portions 11 and 12 can be transported to a designated place or used for assembling a product.
 〔変形例〕
 ロボットハンド1は、押さえ部21および22の双方ではなく、押さえ部21のみ、あるいは押さえ部22のみを備える構成であってもよい。すなわちロボットハンド1は、押さえ部21または22に相当する少なくとも1つの押さえ部を備えればよい。したがって、ロボットハンド1は3つ以上の異なる押さえ部を備えていてもよい。押さえ部の数が2つ以上であれば、部品4の異なる場所を押さえることができるので、ロボットハンド1は部品4をより安定的に把持することができる。
[Modification example]
The robot hand 1 may be configured to include only the pressing portion 21 or only the pressing portion 22 instead of both the pressing portions 21 and 22. That is, the robot hand 1 may include at least one holding portion corresponding to the holding portion 21 or 22. Therefore, the robot hand 1 may be provided with three or more different pressing portions. If the number of pressing portions is two or more, different locations of the component 4 can be pressed, so that the robot hand 1 can grip the component 4 more stably.
 図2の例では、ロボットハンド1は、部品4がロボットハンド1よりも下方に配置される状態で、部品4を把持している。しかし、図2は、ロボットハンド1と、ロボットハンド1によって把持される部品4との相対的な位置関係の一例を図示するに過ぎないことを留意すべきである。ロボット100は、ロボットハンド1から離れた任意の位置に部品4が配置される状態で、部品4を把持することもできる。例えば、ロボットハンド1は、ロボットハンド1よりも上方に配置される部品4を、把持部11および押さえ部21等をロボットハンド1の上方に向けた状態で把持することもできる。 In the example of FIG. 2, the robot hand 1 holds the component 4 in a state where the component 4 is arranged below the robot hand 1. However, it should be noted that FIG. 2 merely illustrates an example of the relative positional relationship between the robot hand 1 and the component 4 gripped by the robot hand 1. The robot 100 can also grip the component 4 in a state where the component 4 is arranged at an arbitrary position away from the robot hand 1. For example, the robot hand 1 can also grip the component 4 arranged above the robot hand 1 with the grip portion 11, the holding portion 21, and the like facing upward of the robot hand 1.
 ロボットハンド1は、部品4に対する押さえ部21の当接を検知する機構を備えていてもよい。本例では、ロボットハンド1は、押さえ部21が部品4に当接したことを検出した場合、Z方向に沿った押さえ部21の移動を停止させる。これにより、押さえ部21を適切な位置において部品4に当接させることができる。また、部品4の形状に応じた押さえ部21のZ方向の移動量を、ロボット100に予め設定する必要はない。 The robot hand 1 may include a mechanism for detecting the contact of the pressing portion 21 with the component 4. In this example, when the robot hand 1 detects that the pressing portion 21 has come into contact with the component 4, the robot hand 1 stops the movement of the pressing portion 21 along the Z direction. As a result, the holding portion 21 can be brought into contact with the component 4 at an appropriate position. Further, it is not necessary to set in advance the amount of movement of the pressing portion 21 in the Z direction according to the shape of the component 4 in the robot 100.
 〔まとめ〕
 本発明の一態様に係るロボットハンドは、対象物を把持するロボットハンドであって、前記対象物を把持する複数の把持部と、前記ロボットハンドと前記対象物とを結ぶ第1方向と、前記第1方向に直交する第2方向とに少なくとも移動可能であり、かつ前記複数の把持部によって把持された前記対象物を押さえる少なくとも1つの押さえ部とを備えている。
〔summary〕
The robot hand according to one aspect of the present invention is a robot hand that grips an object, and has a plurality of gripping portions that grip the object, a first direction connecting the robot hand and the object, and the above. It is provided with at least one holding portion that is movable at least in a second direction orthogonal to the first direction and that holds the object gripped by the plurality of grip portions.
 前記構成によれば、ロボットハンドは、押さえ部を、対象物に向かう第1方向に移動させると共に、第1方向に直交する第2方向にも移動させることができる。したがって、押さえ部を、第1方向に移動させて対象物に当接させる前に、第2方向に適宜移動させることによって、対象物における押さえ部の当接位置を適宜変更することができる。これにより、対象物の形状に応じた適切な位置に押さえ部を当接させることができるので、異なる形状の複数の対象物を、共通の構造によって安定的に個別に把持することができる。 According to the above configuration, the robot hand can move the holding portion in the first direction toward the object and also in the second direction orthogonal to the first direction. Therefore, the contact position of the pressing portion in the object can be appropriately changed by appropriately moving the pressing portion in the second direction before moving the pressing portion in the first direction to bring it into contact with the object. As a result, the holding portion can be brought into contact with an appropriate position according to the shape of the object, so that a plurality of objects having different shapes can be stably and individually gripped by a common structure.
 一実施形態において、前記押さえ部は、前記第1方向および前記第2方向の双方に直交する第3方向にさらに移動可能である。 In one embodiment, the holding portion is further movable in a third direction orthogonal to both the first direction and the second direction.
 前記構成によれば、押さえ部を3次元的に移動させることができるので、対象物において押さえ部を当接させる位置の範囲をさらに広げることができる。したがって、ロボットハンドが対応する対象物の形状を、より広い範囲に広げることができる。 According to the above configuration, since the holding portion can be moved three-dimensionally, the range of positions where the holding portion is brought into contact with the object can be further expanded. Therefore, the shape of the object supported by the robot hand can be expanded to a wider range.
 一実施形態において、ロボットハンドは、異なる複数の前記押さえ部を備えている。 In one embodiment, the robot hand includes a plurality of different holding portions.
 前記構成によれば、対象物における複数の異なる位置に押さえ部をそれぞれ当接することができるので、対象物をより安定的に把持することができる。 According to the above configuration, since the holding portion can be brought into contact with a plurality of different positions on the object, the object can be gripped more stably.
 一実施形態において、ロボットハンドは、前記複数の把持部および複数の前記押さえ部によって前記対象物を把持する。 In one embodiment, the robot hand grips the object by the plurality of gripping portions and the plurality of holding portions.
 前記構成によれば、異なる4方向から対象物を把持することができるので、対象物をより安定的に把持することができる。 According to the above configuration, the object can be gripped from four different directions, so that the object can be gripped more stably.
 一実施形態において、ロボットハンドは、前記対象物を吸着する吸着部をさらに備えている。 In one embodiment, the robot hand further includes a suction portion for sucking the object.
 前記構成によれば、対象物を吸着部に吸着させることができるので、複数の把持部では把持し辛い対象物(例えば薄板)であっても安定的に把持することができる。 According to the above configuration, since the object can be adsorbed to the suction portion, even an object (for example, a thin plate) that is difficult to grip with a plurality of grip portions can be stably gripped.
 一実施形態において、ロボットハンドは、前記押さえ部が前記対象物に当接した状態で、前記押さえ部を前記第1方向にさらに移動させる。 In one embodiment, the robot hand further moves the holding portion in the first direction while the holding portion is in contact with the object.
 前記構成によれば、押さえ部を、例えば対象物を穴の奥に押し込むための作業棒として、活用することができる。 According to the above configuration, the holding portion can be used as a work rod for pushing an object into the hole, for example.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1、1A ロボットハンド
4、4A、5、6、7 部品
8 ケーブル
9 薄板
10 ハンド本体
11 把持部
31、32、81 リニアガイド
33、82 機構
41、42 表面
51 回転モーメント中心
52 慣性力
53 反力
71 挿入穴
91 吸引ノズル
92 空洞
100 ロボット
101 ロボット本体
102 ロボットアーム
1, 1A Robot hand 4, 4A, 5, 6, 7 Parts 8 Cable 9 Thin plate 10 Hand body 11 Grip 31, 32, 81 Linear guide 33, 82 Mechanism 41, 42 Surface 51 Rotational moment center 52 Inertial force 53 Reaction force 71 Insertion hole 91 Suction nozzle 92 Cavity 100 Robot 101 Robot body 102 Robot arm

Claims (6)

  1.  対象物を把持するロボットハンドであって、
     前記対象物を把持する複数の把持部と、
     前記ロボットハンドと前記対象物とを結ぶ第1方向と、前記第1方向に直交する第2方向とに少なくとも移動可能であり、かつ前記複数の把持部によって把持された前記対象物を押さえる少なくとも1つの押さえ部とを備えている、ロボットハンド。
    A robot hand that grips an object
    A plurality of gripping portions for gripping the object,
    At least one that is movable at least in a first direction connecting the robot hand and the object and a second direction orthogonal to the first direction, and that holds the object held by the plurality of grips. A robot hand equipped with two holding parts.
  2.  前記押さえ部は、前記第1方向および前記第2方向の双方に直交する第3方向にさらに移動可能である、請求項1に記載のロボットハンド。 The robot hand according to claim 1, wherein the holding portion can be further moved in a third direction orthogonal to both the first direction and the second direction.
  3.  異なる複数の前記押さえ部を備えている、請求項1または2に記載のロボットハンド。 The robot hand according to claim 1 or 2, further comprising a plurality of different holding portions.
  4.  前記複数の把持部および複数の前記押さえ部によって前記対象物を把持する、請求項3に記載のロボットハンド。 The robot hand according to claim 3, wherein the object is gripped by the plurality of gripping portions and the plurality of holding portions.
  5.  前記対象物を吸着する吸着部をさらに備えている、請求項1~4のいずれか1項に記載のロボットハンド。 The robot hand according to any one of claims 1 to 4, further comprising a suction portion for sucking the object.
  6.  前記押さえ部が前記対象物に当接した状態で、前記押さえ部を前記第1方向にさらに移動させる、請求項1~5のいずれか1項に記載のロボットハンド。 The robot hand according to any one of claims 1 to 5, wherein the holding portion is further moved in the first direction while the holding portion is in contact with the object.
PCT/JP2021/008079 2020-11-10 2021-03-03 Robot hand WO2022102143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187604A JP2022076937A (en) 2020-11-10 2020-11-10 Robot hand
JP2020-187604 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102143A1 true WO2022102143A1 (en) 2022-05-19

Family

ID=81602201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008079 WO2022102143A1 (en) 2020-11-10 2021-03-03 Robot hand

Country Status (2)

Country Link
JP (1) JP2022076937A (en)
WO (1) WO2022102143A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336788A (en) * 1995-06-09 1996-12-24 Kubota Corp Robot hand
JPH11198085A (en) * 1998-01-12 1999-07-27 Meidensha Corp Clamp hand
JP2017189861A (en) * 2016-04-15 2017-10-19 ファナック株式会社 Gripping device for robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336788A (en) * 1995-06-09 1996-12-24 Kubota Corp Robot hand
JPH11198085A (en) * 1998-01-12 1999-07-27 Meidensha Corp Clamp hand
JP2017189861A (en) * 2016-04-15 2017-10-19 ファナック株式会社 Gripping device for robot

Also Published As

Publication number Publication date
JP2022076937A (en) 2022-05-20

Similar Documents

Publication Publication Date Title
JP5423441B2 (en) Work system, robot apparatus, and manufacturing method of machine product
JP5423415B2 (en) Production system
EP2396148B1 (en) Dual arm robot
JP5834480B2 (en) Robot hand and robot
KR20180086208A (en) Manufacturing system, method of constructing manufacturing system, end effector, working method of robot and robot
JP6208601B2 (en) Robot hand having workpiece positioning function, robot system, and workpiece positioning and gripping method
JP2012139808A (en) Robot hand
JP6081602B2 (en) System for handling workpieces in the press line
US20220347838A1 (en) Substrate assembling device and substrate assembling method
WO2017203945A1 (en) Workpiece gripping device and workpiece gripping method
JP2013123788A (en) Workpiece work system
US20190344436A1 (en) Transferring system and method of operating the same
JPH09290391A (en) Robot
WO2022102143A1 (en) Robot hand
KR0160965B1 (en) Sheet workpiece manipulating device for a bending press
US20200068719A1 (en) Component mounting device and method of controlling the same
JP3219748U (en) Component gripping device
JP2016032865A (en) Robot hand
JPH05131389A (en) Object handling device
KR101601597B1 (en) Gripping apparatus with automatic alignment feature flat
JPH06320363A (en) Part automatic assembling device
JP6829542B2 (en) Work transfer device
JP2015100884A (en) Robot hand
US20040183320A1 (en) Bi-directional gripping of rectangular devices/components
JP7287338B2 (en) Positioning device and positioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891393

Country of ref document: EP

Kind code of ref document: A1