WO2022102059A1 - 需要予測装置、需要予測方法及びプログラム - Google Patents

需要予測装置、需要予測方法及びプログラム Download PDF

Info

Publication number
WO2022102059A1
WO2022102059A1 PCT/JP2020/042294 JP2020042294W WO2022102059A1 WO 2022102059 A1 WO2022102059 A1 WO 2022102059A1 JP 2020042294 W JP2020042294 W JP 2020042294W WO 2022102059 A1 WO2022102059 A1 WO 2022102059A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand
power
schedule
building
unit
Prior art date
Application number
PCT/JP2020/042294
Other languages
English (en)
French (fr)
Inventor
憲光 田中
美帆 岩本
将樹 香西
裕也 南
徹 田中
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/042294 priority Critical patent/WO2022102059A1/ja
Publication of WO2022102059A1 publication Critical patent/WO2022102059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a demand forecasting device, a demand forecasting method and a program.
  • VRE Variable Renewable Energy
  • solar power generation and wind power generation have increased the burden on the electric power system, which has been a detriment to the spread of variable renewable energy.
  • DR Demand Response
  • VPP Virtual Power Plant
  • DR and VPP In DR and VPP, it is used to stabilize the power system by controlling the power load of power consumers who are not originally power system equipment and the input / output power of storage batteries, regular power generation equipment, etc. Therefore, if the drastic fluctuations in power demand that are difficult to absorb in power system equipment such as power plants can be suppressed by DR and VPP, it is expected that social costs such as power generation equipment and power transmission and distribution equipment can be significantly reduced.
  • VPP Virtual Power Plant
  • DR Demand Spawns
  • DR is a mechanism to achieve the amount of reduction contracted in advance for the predicted power demand called "baseline” that is set in advance, and when the power demand on the day is far from the baseline. , The reduction amount cannot be achieved and a penalty is incurred. Therefore, in order to avoid the occurrence of penalties and secure incentives for DR, it is important to accurately predict power demand.
  • One embodiment of the present invention has been made in view of the above points, and an object thereof is to accurately predict power demand.
  • the demand forecasting device is a demand forecasting device for predicting the power consumption of the building, and the schedule data registered in the scheduler by the user of the building is used.
  • An operation plan for the power utilization equipment installed in each area according to the specific unit that specifies the planned number of people to use each area in the building in each time zone of the forecast target day of power demand and the planned number of people to use.
  • the power consumption in each time zone of the forecast target day is used as the forecast value of the power demand by using the determination unit for determining It has a calculation unit for calculating.
  • an office building is targeted as an example of a building having various facilities using electric power (for example, air conditioning, lighting, office equipment (projector, video conference system, PC, compound machine, etc.), etc.), and this office.
  • a demand prediction device 10 for accurately predicting the power demand of an office building will be described using schedule data of employees working in the building.
  • the person or organization that manages this office building (for example, the company to which the employees working in the office building belong) corresponds to the electric power consumer.
  • schedule data is data related to the action schedule registered in the scheduler operating on a PC, a smartphone, a tablet terminal, a cloud service, or the like.
  • schedule data is data related to various action schedules such as daily work schedules, meeting schedules, business trip schedules, and outing schedules of individual employees (or organizations or groups).
  • the office building is an example, and the present embodiment can be similarly applied to various buildings having various facilities using electric power (for example, factories, schools, event halls, conference spaces, shopping malls, etc.).
  • equipment that uses electricity for example, air conditioning, lighting, office equipment, etc. are examples, and various equipment or facilities that use electricity according to the type of building (for example, various production equipment and EV (Electric Vehicle)). ) Chargers, etc.) can be targeted.
  • FIG. 1 is a diagram showing an example of a hardware configuration of the demand forecasting device 10 according to the first embodiment.
  • the demand forecasting device 10 is realized by a hardware configuration of a general computer or computer system, and includes an input device 11, a display device 12, an external I / F 13, and a communication I. It has / F14, a processor 15, and a memory device 16. Each of these hardware is connected so as to be communicable via the bus 17.
  • the input device 11 is, for example, a keyboard, a mouse, a touch panel, or the like.
  • the display device 12 is, for example, a display or the like.
  • the demand forecasting device 10 may not have, for example, at least one of the input device 11 and the display device 12.
  • the external I / F 13 is an interface with an external device such as a recording medium 13a.
  • the demand forecasting device 10 can read and write the recording medium 13a via the external I / F 13.
  • Examples of the recording medium 13a include a CD (Compact Disc), a DVD (Digital Versatile Disk), an SD memory card (Secure Digital memory card), a USB (Universal Serial Bus) memory card, and the like.
  • the communication I / F 14 is an interface for connecting the demand forecasting device 10 to the communication network.
  • the processor 15 is, for example, various arithmetic units such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the memory device 16 is, for example, various storage devices such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), and a flash memory.
  • the demand forecasting device 10 can realize the demand forecasting process described later.
  • the hardware configuration shown in FIG. 1 is an example, and the demand forecasting device 10 may have another hardware configuration.
  • the demand forecasting device 10 may have a plurality of processors 15 or a plurality of memory devices 16.
  • FIG. 2 is a diagram showing an example of the functional configuration of the demand forecasting device 10 according to the first embodiment.
  • the demand forecasting device 10 includes a characteristic model creating unit 101, a usage schedule specifying unit 102, an operation schedule creating unit 103, and a demand forecasting unit 104. Each of these parts is realized by a process of causing the processor 15 to execute one or more programs installed in the demand forecasting device 10.
  • the characteristic model creation unit 101 creates a characteristic model of the power consumption of each facility using the power consumption data of each facility in the building and the power demand data of the building.
  • the power consumption data is data representing the actual value of the power consumption for each unit time of each facility.
  • the power demand data is data representing the actual value of the power demand (that is, the power consumption of the entire building) for each unit time of the entire building.
  • the power consumption characteristic model is, for example, data showing the relationship between the output (load) of equipment and the power consumption under a certain operating condition.
  • the power demand data may be, for example, data representing the power demand for each unit time of the floor unit of the building, or any other unit (for example, a tenant unit occupying the building, a predetermined device group). It may be data representing the power demand for each unit time (unit, etc.).
  • the power consumption data and the power demand data are collected in advance and stored in the memory device 16 or the like. Further, the characteristic model of the power consumption of each facility is also stored in the memory device 16 or the like.
  • the usage schedule specifying unit 102 uses the schedule data of the building user (for example, an employee, etc.) and the affiliation data representing the department to which the building user belongs, and each area such as an office area or a conference room in the building and each area and the meeting room. Create a usage schedule table that represents the usage schedule of specific equipment installed in the area. A specific example of the usage schedule table will be described later.
  • the schedule data is data related to the action schedule registered in the scheduler by the building user, and includes, for example, information indicating the business schedule, meeting schedule, business trip schedule, outing schedule, etc. of the building user.
  • the area where the conference is held for example, a conference room, etc.
  • the scheduled start time for example, the scheduled end time
  • specific equipment installed or brought into the area for example, a projector or the like. It contains information indicating whether or not a video conference system is used.
  • a business schedule information indicating, for example, an area where the business is performed (for example, an office area, etc.), a scheduled start time, a scheduled end time, whether or not a specific facility is used, and the like are included.
  • a business trip schedule and an outing schedule for example, information indicating a scheduled departure time to a business trip destination / a destination, a scheduled time to return from a business trip destination / a destination, and the like is included.
  • the affiliation data is data representing the affiliation department of a building user (employee working in an office building), and includes, for example, the affiliation department, work place, and the like.
  • the work place is information representing a place where the building user usually works, and is typically information representing an area where the person's seat is located (for example, "working area A" or the like).
  • the information indicating the area where the seat is located may be expressed by a combination of the floor and the area, for example, "3rd floor office area A".
  • schedule data and belonging data may be collected from a scheduler or the like and stored in a memory device 16 or the like, or may be available for reference in cooperation with a system or the like that provides the scheduler.
  • the operation schedule creation unit 103 uses the usage schedule table created by the usage schedule identification unit 102 to perform an operation plan for each unit time of each equipment (that is, whether or not to operate the equipment, and when operating the equipment, which). Create an operation schedule table that shows whether to operate with about the output. A specific example of the operation schedule table will be described later.
  • the demand forecast unit 104 creates a demand forecast value table representing the predicted value of the power demand for each unit time by using the operation schedule table created by the operation schedule creation unit 103 and the characteristic model of the power consumption of each facility. do. A specific example of the demand forecast value table will be described later.
  • FIG. 3 is a flowchart showing an example of the demand forecast processing according to the first embodiment.
  • step S101 in FIG. 3 is a pre-processing and is executed before steps S102 to S104.
  • steps S102 to S104 are processes for predicting power demand from schedule data and the like, and are executed at each demand forecast timing.
  • the demand forecast timing can be set arbitrarily, and for example, it may be set to a predetermined time or the like.
  • the characteristic model creation unit 101 creates a characteristic model of the power consumption of each facility by using the power consumption data of each facility in the building and the power demand data of the building (step S101).
  • the characteristic model creation unit 101 may create a characteristic model of the power consumption of each facility by any known method. For example, the power consumption data and the operating conditions of each facility when the power consumption data is obtained. Using operation data including information such as (for example, outside temperature) and output, and power demand data, a characteristic model so that the relationship between the output and power consumption of each facility matches the power demand of the building. Is conceivable to create.
  • the characteristic model creation unit 101 uses, for example, power consumption data and power demand data to simulate the operation of each facility by a simulator so that the power consumption of each facility matches the power demand of the building.
  • a characteristic model may be created.
  • the equipment is an air conditioner (for example, an air conditioner or the like)
  • the usage schedule specifying unit 102 creates a usage schedule table showing the usage schedule of each area and the specific equipment installed in the area by using the schedule data and the affiliation data of the building user (for example, an employee). (Step S102).
  • the usage schedule specifying unit 102 may create a usage schedule table by, for example, Step 11 to Step 12 below.
  • Step 11 First, the usage schedule specifying unit 102 extracts from the schedule data and the affiliation data the number of people in each area for each predetermined time zone and whether or not the specific equipment installed in the area is used.
  • a predetermined time zone is set as an hourly time zone such as "9: 00-10: 00", “10: 00-11: 00", “12: 00-13: 00", etc.
  • the usage schedule specifying unit 102 extracts the action schedule included in the schedule data of each building user for each of these time zones, thereby specifying the number of people in each area in each time zone and the identification installed in that area. Calculate whether or not the equipment is used. Specifically, for example, when the schedule data of employee A and the schedule data of employee B include an action schedule such as "April 1, 2021 9: 00-10: 00, conference room C, projector used". The number of people in the "Meeting Room C" area in the time zone "April 1, 2021 9:00 to 10:00" is calculated as "2 people” and "projector used”.
  • the usage schedule specifying unit 102 extracts the work place included in the data to which the building user belongs. , Calculate the number of people in each area representing these work locations. For example, if the schedule data of employee C to employee E does not include the action schedule of "April 1, 2021 9:00 to 10:00", these employee C to employee E are included in the affiliation data. You are considered to be at work. Therefore, for example, if the work place included in the affiliation data of employee C and D is "working area B" and the work place included in the affiliation data of employee E is "working area C", "April 2021". The number of people in the "working area B" area is calculated as “2 people” and the number of people in the "working area C” area is calculated as "1 person” in "Sunday 9: 00-10: 00".
  • Step 12 the usage schedule specifying unit 102 creates a usage schedule table based on the number of people in each area extracted in the above Step 11 and whether or not specific equipment installed in the area is used.
  • the usage schedule table is a data table in which the number of users in each area and the presence / absence of use of specific equipment installed in the area are stored for each time zone of the power demand forecast target day. ..
  • information such as "projector is used" is stored only when a specific facility is used.
  • the usage schedule table is created from the action schedule of the employees working in the office building, but in order to further improve the accuracy of the power demand forecast, the usage schedule table is created in consideration of the number of visitors. Is preferable. In this case, for example, if the number of visitors can be extracted from the schedule data, it may be reflected in the usage schedule table. Alternatively, if there is a database for managing the visitor schedule, the number of visitors may be extracted from this database.
  • the usage schedule table was created in the time zone of every hour, but every hour is an example, and it is used in the time zone of any time width (for example, every 15 minutes, every 30 minutes, etc.). You may create an appointment table.
  • the operation schedule creation unit 103 creates an operation schedule table using the usage schedule table created in step S103 above (step S103).
  • the operation schedule creation unit 103 considers, for example, the minimum power consumption and predetermined comfort based on the number of users in each time zone included in the usage schedule table and whether or not a specific facility is used.
  • the operation plan is a plan showing whether or not the equipment is operated in each time zone, and when the equipment is operated, how much output is used.
  • the comfort means, for example, the set temperature of the air conditioner according to the season, the amount of light of the lighting according to the time zone, and the like.
  • the operation plan is determined so as to minimize the power consumption by considering the outside air temperature for each time zone of the day by using the set temperature range according to the season.
  • the operation plan is determined so as to minimize the power consumption by considering the weather of each time zone of the day by using the light amount range according to the season.
  • the operation schedule table is installed in the equipment (air conditioning, lighting, and the area) of each area for each time zone of the power demand forecast target day. It is a data table in which the operation plan of the air-conditioned projector, etc.) is stored. For example, when a PC or the like used by each building user is installed in the office area, the operation plan of the PC or the like installed in the office area is included in the operation schedule table. The operation plans for other office equipment are also included in the operation schedule table.
  • the demand forecast unit 104 creates a demand forecast value table using the operation schedule table created in step S103 above and the characteristic model of the power consumption of each facility (step S104).
  • the demand forecasting unit 104 calculates the power consumption for each facility by the characteristic model of the power consumption of the facility in each time zone, and calculates the sum of the power consumption of all the facilities, thereby consuming the power in each time zone (that is,).
  • Create a demand forecast value table that represents the forecast value of (power consumption in each time zone).
  • the power consumption of each time zone of the shared equipment in the building for example, lighting and air conditioning of the passage connecting the areas, lighting and air conditioning of other areas such as toilets and smoking areas
  • the power consumption of each time zone of the shared equipment in the building for example, lighting and air conditioning of the passage connecting the areas, lighting and air conditioning of other areas such as toilets and smoking areas
  • the demand forecast value table is a data table in which the predicted value of the power demand (power consumption) of the entire building is stored for each time zone of the power demand forecast target day.
  • the demand forecasting device 10 can predict the power demand for each time zone of the entire building by using the schedule data of the building user.
  • the demand forecasting device 10 according to the present embodiment can accurately predict the electric power demand in consideration of the demand fluctuation caused by the human behavior by using the schedule data of the building user. That is, considering various action schedules that can be registered in the scheduler (for example, daily work schedules, telecommuting schedules, meeting schedules, outing / business trip schedules, visitor schedules, vacation schedules, internal events, etc.), these action schedules It is possible to clarify the causal relationship with and accurately predict the power demand.
  • the schedule data can be acquired from the existing scheduler, it is possible to forecast the power demand without incurring new additional costs. Further, by using the schedule data, it becomes possible to grasp the schedule change of the building user through the scheduler, and it is possible to predict the power demand in consideration of such the schedule change.
  • the difference between each forecast value included in the demand forecast value table created in step S104 above and the target value of the electric power demand is absorbed by, for example, planning the charging / discharging of the storage battery or the like owned by the electric power consumer. do it. Alternatively, for example, it may be absorbed by controlling equipment having a high tolerance for changes in the environment such as shared equipment.
  • the usage schedule table is created using the schedule data, but the building user may not act according to the action schedule registered in the schedule data.
  • the schedule data contains an action schedule with "April 1, 2021 9: 00-10: 00 Meeting Room C"
  • the meeting is not actually held and the work is done in the office area. It is a case such as doing. Therefore, in the present embodiment, after creating correction data showing the probability (probability) that each action schedule is executed as scheduled, when the usage schedule table is created, the number of users is corrected by the correction data. explain. This makes it possible to predict the power demand more accurately.
  • the second embodiment mainly describes the differences from the first embodiment, and the description of the same components as the first embodiment will be omitted.
  • FIG. 7 is a diagram showing an example of the functional configuration of the demand forecasting device 10 according to the second embodiment.
  • the demand forecasting device 10 has a usage schedule correction unit 105 in addition to the units described in the first embodiment.
  • the usage schedule correction unit 105 is realized by a process of causing the processor 15 to execute one or more programs installed in the demand forecasting device 10.
  • the usage schedule correction unit 105 creates correction data using sensor data generated by a motion sensor or a camera installed in the building, email data of emails sent and received by building users, schedule data, and the like.
  • the sensor data is collected from, for example, a building management system and stored in a memory device 16 or the like.
  • the mail data is collected from, for example, a mail server or the like and stored in the memory device 16 or the like.
  • FIG. 8 is a flowchart showing an example of the demand forecast processing according to the second embodiment. Note that step S201 in FIG. 8 is the same as step S101 in FIG. 3, and steps S204 to S205 are the same as steps S103 to S104 in FIG. 3, so the description thereof will be omitted.
  • the usage schedule correction unit 105 creates correction data using sensor data, mail data, schedule data, and the like (step S202).
  • the correction data arbitrary data representing the probability (probability) that each action schedule is executed as scheduled may be created. For example, data satisfying the following (1) and (2) is created. Can be considered.
  • Probability is high for "building users who behave as planned”, and probability is low for "building users who do not behave as planned”
  • Probability varies depending on the event type do. For example, if the event is a meeting, the internal meeting is more likely to be canceled than the external meeting. Therefore, the probability is low for internal meetings and high for external meetings.
  • the data satisfying the above (1) and (2) may be created by any method.
  • a machine learning model in which the relationship between the sensor data, the mail data, the schedule data, etc. and the correction data is learned is created in advance.
  • this building user uses the history of sensor data, the history of mail data, the history of schedule data of building users (or the text data extracted from the action schedule included in this history by text analysis, etc.), first, this building user. Extract whether or not you have attended past meetings (that is, actual action results). Whether or not a person has attended a past meeting is determined by, for example, identifying the meeting attendee from the sensor data of the area where the meeting was held (for example, the sensor data of the human sensor, the shooting data of the camera, etc.). It is sufficient to judge whether or not the building user is present.
  • a machine learning model is learned using teacher data whose explanatory variables are the employee number of the building user and the type of meeting, and the objective variable is whether or not the meeting is attended.
  • a machine learning model that outputs correction data representing the attendance probability of the building user according to the type of meeting can be obtained.
  • explanatory variables and objective variables are examples, and various other explanatory variables and objective variables can be adopted.
  • the usage schedule specifying unit 102 creates a usage schedule table using the correction data, schedule data, and affiliation data created in step S203 above (step S203). At this time, the usage schedule specifying unit 102 corrects the number of people by the correction data when calculating the number of people in Step 11.
  • the schedule data of employee A and the schedule data of employee B include an action schedule such as "April 1, 2021 9:00 to 10:00 Meeting room C projector is used", and the correction data of employee A is included.
  • the probability to be represented is p A and the probability represented by the correction data of employee B is p B
  • the number of people in the "meeting room C" area in the time zone "April 1, 2021 9: 00-10: 00" is 1. Let xp A + 1 x p B.
  • the presence / absence of the equipment "projector” of the conference room C may be set to "q".
  • ON / OFF of the equipment may be stochastically determined (typically, ON when q ⁇ 0.5). , Other than that, turn it off, etc.).
  • the demand forecasting device 10 uses the probability (probability) that each action schedule is executed as scheduled, and the number of people in each area (that is, the equipment installed in that area, etc.). The number of users) and whether or not each facility is used are corrected. As a result, it is possible to consider the case where each action schedule is not actually executed although it is registered in the schedule data, and it is possible to predict the power demand more accurately.
  • the above probability may be a factor for determining, for example, the capacity of the storage battery or the like possessed by the electric power consumer (that is, how much the error of the predicted value of the electric power demand can be absorbed).
  • the above probabilities take into consideration that inconsistencies occur between the action schedule and the actual operation of each equipment due to not acting according to the action schedule included in the schedule data. Therefore, for example, the concentration of equipment A management system or the like may be used to prevent inconsistencies between the action schedule and the actual operation of each facility.
  • the action schedule included in the schedule data and the actual usage status of the equipment are monitored in real time, and when the equipment is not used, the power of the equipment is turned on as scheduled. be. Or, for example, the power of the equipment of the entire conference room is turned off so that the equipment of the conference room is not turned on unless the action schedule of the conference is registered on the scheduler.
  • the third embodiment mainly describes the differences from the first embodiment, and the description of the same components as the first embodiment will be omitted.
  • FIG. 9 is a diagram showing an example of the functional configuration of the demand forecasting device 10 according to the third embodiment.
  • the demand forecasting device 10 has a proposal creating unit 106 in addition to the units described in the first embodiment.
  • the proposal creation unit 106 is realized by a process of causing the processor 15 to execute one or more programs installed in the demand forecasting device 10.
  • the proposal creation unit 106 determines whether or not to create an action proposal using the preset demand target and the demand forecast value table created by the demand forecast unit 104. Then, the proposal creation unit 106 presents this action proposal to each building user at a timely timing.
  • the demand target is a target value of electric power demand.
  • the action proposal is a proposal that encourages actions to bring the predicted value of electric power demand closer to the target value.
  • another target value such as a reduction target value of electric power demand or a value target value in the electric power market may be used instead of the demand target.
  • FIG. 10 is a flowchart showing an example of the demand forecast processing according to the third embodiment. Since steps S301 to S304 in FIG. 10 are the same as steps S101 to S104 in FIG. 3, the description thereof will be omitted.
  • the proposal creation unit 106 determines whether or not it is necessary to propose an action for bringing the predicted value of power demand closer to the target value to each building user (step S305).
  • the proposal creation unit 106 determines whether or not it is necessary to propose an action for bringing the predicted value of power demand closer to the target value to each building user (step S305).
  • the proposal creation unit 106 for example, when the peak power is exceeded, it is difficult to adjust with the baseline of the DR. In that case (that is, for example, when the difference between the predicted value and the target value is larger than a predetermined threshold and cannot be absorbed by charging / discharging of the storage battery, etc.), it is determined that it is necessary to propose an action.
  • step S305 If it is determined in step S305 above that it is not necessary to propose an action, the process ends. On the other hand, if it is determined in step S305 above that it is necessary to propose an action, the proposal creation unit 106 creates an action proposal (step S306).
  • examples of the content of the action proposal created by the proposal creation unit 106 include the following proposal content 1 and proposal content 2.
  • Proposal content 1 In order to reduce the output of equipment such as air conditioning, we propose to use the area on the same floor as a conference room as much as possible. Alternatively, we propose to use different floors as much as possible in order to increase the output of equipment such as air conditioning.
  • Proposal 2 In order to reduce the output of equipment such as air conditioning, in consideration of the action schedule of other building users, the relevant time zone before or after the other building users use the conference room. Suggest to use the meeting room. Alternatively, in order to increase the output of the air-conditioning equipment, it is proposed not to use the conference room before or after the other building users use the conference room.
  • step S306 The action proposal created in step S306 above is proposed to the building user at a timely timing, but for example, it is conceivable to propose at the following timing 1 or timing 2.
  • Timing 1 Electric power demand is predicted on a regular basis, and when each building user registers an action schedule in the scheduler after the prediction, it is conceivable to make an action proposal before the registration. Specifically, for example, the power demand for the next day is predicted in the middle of the night after working hours, and the action proposal is made in the morning of the next working day.
  • Timing 2 When the power demand is predicted each time the action schedule is registered in the scheduler by the building user, it is conceivable to make an action proposal before or after the registration. In this case, although the processing load related to demand forecast will be high, it is expected that the forecast value of power demand can be brought closer to the target value with higher accuracy because the change in the action schedule is immediately reflected in the forecast result. Will be done.
  • the demand forecasting device 10 sets the predicted value of the power demand as the target value, for example, when the peak power is exceeded or when it is difficult to coordinate with the baseline of the DR. Propose actions to the building users to get closer to. As a result, it is possible to encourage each building user to change their behavior, and it is expected that the possibility of achieving the power demand that achieves the target will increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一実施形態に係る需要予測装置は、建物が消費する電力需要を予測する需要予測装置であって、前記建物の利用者がスケジューラに登録したスケジュールデータを用いて、前記電力需要の予測対象日の各時間帯における前記建物内の各エリアの利用予定人数を特定する特定部と、前記利用予定人数に応じて、前記各エリアに設置されている電力利用設備の運転計画を決定する決定部と、前記電力利用設備の消費電力の特性モデルと、前記電力利用設備の運転計画とを用いて、前記予測対象日の各時間帯における消費電力を前記電力需要の予測値として算出する算出部と、を有する。

Description

需要予測装置、需要予測方法及びプログラム
 本発明は、需要予測装置、需要予測方法及びプログラムに関する。
 近年、太陽光発電や風力発電等のような変動性再生可能エネルギー(VRE(Variable Renewable Energy))の普及による電力系統への負担が増大しており、変動性再生可能エネルギー普及の弊害となっている。このような変動性再生可能エネルギーによる電力系統への負担を軽減するために、ディマンドレスポンス(DR:Demand Response)やバーチャルパワープラント(VPP:Virtual Power Plant)と呼ばれる、電力需要制御及び分散電源を活用した発電の仕組みの導入が進められている(例えば、非特許文献1)。
 DRやVPPでは、本来は電力系統設備ではない電力需要家の電力負荷や蓄電池、常用発電設備等の入出力電力を制御することで、電力系統の安定化に利用する。このため、発電所等の電力系統設備での吸収が難しい急峻な電力需要の変動をDRやVPPで抑制できれば、発電設備や送配電設備等の社会コストを大きく低減できることが期待されている。
"バーチャルパワープラント(VPP)・ディマンドリスポンス(DR)とは",インターネット<URL:https://www.enecho.meti.go.jp/category/saving_and_new/advanced_systems/vpp_dr/about.html>
 しかしながら、実際のDRやVPPの運用は難しく、電力需要家側の電力削減量が予定より僅かでも増減してしまうとペナルティが発生する。より具体的には、DRは事前に設定された「ベースライン」と呼ばれる予測電力需要に対して、予め契約した削減量を達成させる仕組みであり、当日の電力需要がベースラインから大きくかけ離れると、その削減量が達成できずペナルティが発生する。このため、ペナルティの発生を回避し、DRによるインセンティブを確保するためには、電力需要を精度良く予測することが重要となる。
 本発明の一実施形態は、上記の点に鑑みてなされたもので、電力需要を精度良く予測することを目的とする。
 上記目的を達成するため、一実施形態に係る需要予測装置は、建物が消費する電力需要を予測する需要予測装置であって、前記建物の利用者がスケジューラに登録したスケジュールデータを用いて、前記電力需要の予測対象日の各時間帯における前記建物内の各エリアの利用予定人数を特定する特定部と、前記利用予定人数に応じて、前記各エリアに設置されている電力利用設備の運転計画を決定する決定部と、前記電力利用設備の消費電力の特性モデルと、前記電力利用設備の運転計画とを用いて、前記予測対象日の各時間帯における消費電力を前記電力需要の予測値として算出する算出部と、を有する。
 電力需要を精度良く予測することができる。
第一の実施形態に係る需要予測装置のハードウェア構成の一例を示す図である。 第一の実施形態に係る需要予測装置の機能構成の一例を示す図である。 第一の実施形態に係る需要予測処理の一例を示すフローチャートである。 利用予定テーブルの一例を示す図である。 運転スケジュールテーブルの一例を示す図である。 需要予測値テーブルの一例を示す図である。 第二の実施形態に係る需要予測装置の機能構成の一例を示す図である。 第二の実施形態に係る需要予測処理の一例を示すフローチャートである。 第三の実施形態に係る需要予測装置の機能構成の一例を示す図である。 第三の実施形態に係る需要予測処理の一例を示すフローチャートである。
 以下、本発明の一実施形態について説明する。
 [第一の実施形態]
 まず、第一の実施形態について説明する。本実施形態では、電力を利用する種々の設備(例えば、空調や照明、オフィス機器(プロジェクタ、テレビ会議システム、PC、複合機等)等)を有する建物の一例としてオフィスビルを対象とし、このオフィスビルで勤務する社員のスケジュールデータを用いて、そのオフィスビルの電力需要を精度良く予測する需要予測装置10について説明する。なお、このオフィスビルを管理する者又は組織(例えば、オフィスビルで勤務する社員が属する会社等)が電力需要家に相当する。
 ここで、スケジュールデータとは、PCやスマートフォン、タブレット端末、クラウドサービス上等で動作するスケジューラに登録された行動予定に関するデータのことである。例えば、スケジュールデータは、社員個人(又は組織やグループ)の日々の業務予定、会議予定、出張予定、外出予定等の各種行動予定に関するデータのことである。
 なお、オフィスビルは一例であって、本実施形態は、電力を利用する種々の設備を有する各種建物(例えば、工場、学校、イベントホール、会議スペース、ショッピングモール等)を対象として同様に適用可能である。また、電力を利用する設備に関しても、空調や照明、オフィス機器等は一例であって、建物の種類等に応じて電力を利用する様々な設備又は施設(例えば、各種生産設備やEV(Electric Vehicle)充電器等)を対象とすることが可能である。
 <ハードウェア構成>
 第一の実施形態に係る需要予測装置10のハードウェア構成について、図1を参照しながら説明する。図1は、第一の実施形態に係る需要予測装置10のハードウェア構成の一例を示す図である。
 図1に示すように、本実施形態に係る需要予測装置10は一般的なコンピュータ又はコンピュータシステムのハードウェア構成で実現され、入力装置11と、表示装置12と、外部I/F13と、通信I/F14と、プロセッサ15と、メモリ装置16とを有する。これら各ハードウェアは、それぞれがバス17を介して通信可能に接続されている。
 入力装置11は、例えば、キーボードやマウス、タッチパネル等である。表示装置12は、例えば、ディスプレイ等である。なお、需要予測装置10は、例えば、入力装置11及び表示装置12のうちの少なくとも一方を有していなくてもよい。
 外部I/F13は、記録媒体13a等の外部装置とのインタフェースである。需要予測装置10は、外部I/F13を介して、記録媒体13aの読み取りや書き込み等を行うことができる。なお、記録媒体13aとしては、例えば、CD(Compact Disc)、DVD(Digital Versatile Disk)、SDメモリカード(Secure Digital memory card)、USB(Universal Serial Bus)メモリカード等が挙げられる。
 通信I/F14は、需要予測装置10を通信ネットワークに接続するためのインタフェースである。プロセッサ15は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の各種演算装置である。メモリ装置16は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の各種記憶装置である。
 本実施形態に係る需要予測装置10は、図1に示すハードウェア構成を有することにより、後述する需要予測処理を実現することができる。なお、図1に示すハードウェア構成は一例であって、需要予測装置10は、他のハードウェア構成を有していてもよい。例えば、需要予測装置10は、複数のプロセッサ15を有していてもよいし、複数のメモリ装置16を有していてもよい。
 <機能構成>
 第一の実施形態に係る需要予測装置10の機能構成について、図2を参照しながら説明する。図2は、第一の実施形態に係る需要予測装置10の機能構成の一例を示す図である。
 図2に示すように、本実施形態に係る需要予測装置10は、特性モデル作成部101と、利用予定特定部102と、運転スケジュール作成部103と、需要予測部104とを有する。これら各部は、需要予測装置10にインストールされた1以上のプログラムがプロセッサ15に実行させる処理により実現される。
 特性モデル作成部101は、建物内の各設備の消費電力データと、当該建物の電力需要データとを用いて、これら各設備の消費電力の特性モデルを作成する。ここで、消費電力データとは各設備の単位時間毎の消費電力の実績値を表すデータである。電力需要データとは建物全体の単位時間毎の電力需要(つまり、建物全体の消費電力)の実績値を表すデータである。消費電力の特性モデルとは、例えば、或る運転条件下における設備の出力(負荷)と消費電力との関係を表すデータである。ただし、電力需要データは、例えば、建物のフロア単位の単位時間毎の電力需要を表すデータであってもよいし、その他の任意の単位(例えば、建物に入居するテナント単位、ある所定の装置群単位等)の単位時間毎の電力需要を表すデータであってもよい。
 なお、消費電力データと電力需要データは予め収集され、メモリ装置16等に保存されているものとする。また、各設備の消費電力の特性モデルもメモリ装置16等に保存される。
 利用予定特定部102は、建物利用者(例えば、社員等)のスケジュールデータと、当該建物利用者の所属部署を表す所属データとを用いて、建物内の執務エリアや会議室等の各エリア及びそのエリアに設置されている特定の設備の利用予定を表す利用予定テーブルを作成する。なお、利用予定テーブルの具体例について後述する。
 ここで、スケジュールデータとは建物利用者がスケジューラに登録した行動予定に関するデータのことであり、例えば、当該建物利用者の業務予定や会議予定、出張予定、外出予定等を表す情報が含まれる。具体的には、例えば、会議予定の場合、会議が開催されるエリア(例えば、会議室等)、開始予定時刻、終了予定時刻、そのエリアに設置又は持ち込みされる特定の設備(例えば、プロジェクタやテレビ会議システム等)の使用有無等を表す情報が含まれる。業務予定の場合も同様に、例えば、当該業務を行うエリア(例えば、執務エリア等)、開始予定時刻、終了予定時刻、特定の設備の使用有無等を表す情報が含まれる。出張予定及び外出予定の場合は、例えば、出張先・外出先に出発する予定時刻、出張先・外出先から戻る予定時刻等を表す情報が含まれる。
 また、所属データとは建物利用者(オフィスビルで勤務する社員)の所属部署を表すデータであり、例えば、所属部署、勤務場所等が含まれる。勤務場所は、当該建物利用者が普段勤務を行う場所を表す情報であり、典型的には、自席があるエリアを表す情報(例えば、「執務エリアA」等)である。なお、自席があるエリアを表す情報は、例えば、「3階執務エリアA」等といったように階とエリアの組み合わせで表現されていてもよい。
 なお、スケジュールデータ及び所属データはスケジューラ等から収集され、メモリ装置16等に保存されていてもよいし、スケジューラを提供するシステム等と連携して参照可能となっていてもよい。
 運転スケジュール作成部103は、利用予定特定部102によって作成された利用予定テーブルを用いて、各設備の単位時間毎の運転計画(つまり、設備を稼働させるか否か、設備を稼働させる場合はどの程度の出力で稼働させるか等)を表す運転スケジュールテーブルを作成する。なお、運転スケジュールテーブルの具体例について後述する。
 需要予測部104は、運転スケジュール作成部103によって作成された運転スケジュールテーブルと、各設備の消費電力の特性モデルとを用いて、単位時間毎の電力需要の予測値を表す需要予測値テーブルを作成する。なお、需要予測値テーブルの具体例については後述する。
 <需要予測処理>
 第一の実施形態に係る需要予測処理について、図3を参照しながら説明する。図3は、第一の実施形態に係る需要予測処理の一例を示すフローチャートである。なお、図3のステップS101は事前処理であり、ステップS102~ステップS104よりも前に実行される。一方で、ステップS102~ステップS104はスケジュールデータ等から電力需要を予測する処理であり、需要予測タイミング毎に実行される。需要予測タイミングは任意に設定され得るが、例えば、予め決められた時刻等とすることが挙げられる。
 まず、特性モデル作成部101は、建物内の各設備の消費電力データと、当該建物の電力需要データとを用いて、各設備の消費電力の特性モデルを作成する(ステップS101)。特性モデル作成部101は、既知の任意の手法により各設備の消費電力の特性モデルを作成すればよいが、例えば、消費電力データと、この消費電力データが得られた時の各設備の運転条件(例えば、外気温等)や出力等の情報が含まれる運転データと、電力需要データとを用いて、各設備の出力と消費電力との関係が、建物の電力需要に整合するように特性モデルを作成することが考えられる。又は、特性モデル作成部101は、例えば、消費電力データと電力需要データとを用いて、各設備の消費電力が建物の電力需要に整合するようにシミュレータにより各設備の運転をシミュレーションすることで、特性モデルが作成されてもよい。なお、例えば、設備が空調(例えば、エアコン等)である場合には、起動時の電流カーブも考慮した応動特性を含む特性モデルが作成されることが好ましい。
 利用予定特定部102は、建物利用者(例えば、社員)のスケジュールデータと所属データとを用いて、各エリア及びそのエリアに設置されている特定の設備の利用予定を表す利用予定テーブルを作成する(ステップS102)。利用予定特定部102は、例えば、以下のStep11~Step12により利用予定テーブルを作成すればよい。
 Step11:まず、利用予定特定部102は、スケジュールデータ及び所属データから、予め決められた時間帯毎の各エリアの人数及びそのエリアに設置等される特定の設備の利用有無を抽出する。
 すなわち、例えば、予め決められた時間帯を「9:00-10:00」、「10:00-11:00」、「12:00-13:00」等といった1時間毎の時間帯とした場合、利用予定特定部102は、これらの時間帯毎に各建物利用者のスケジュールデータに含まれる行動予定を抽出することで、各時間帯における各エリアの人数及びそのエリアに設置等される特定の設備の利用有無を算出する。具体的には、例えば、社員Aのスケジュールデータと社員Bのスケジュールデータに「2021年4月1日 9:00-10:00 会議室C プロジェクタ使用有」といった行動予定が含まれている場合、時間帯「2021年4月1日 9:00-10:00」における「会議室C」エリアの人数は「2人」、「プロジェクタ使用有」と算出される。
 また、利用予定特定部102は、ある時間帯においてある建物利用者の行動予定がスケジュールデータに含まれていない場合については、これらの建物利用者の所属データに含まれる勤務場所を抽出することで、これらの勤務場所を表す各エリアの人数を算出する。例えば、社員C~社員Eのスケジュールデータに「2021年4月1日 9:00-10:00」の行動予定が含まれていない場合、これらの社員C~社員Eは、所属データに含まれる勤務場所にいるとみなされる。したがって、例えば、社員C及び社員Dの所属データに含まれる勤務場所が「執務エリアB」、社員Eの所属データに含まれる勤務場所が「執務エリアC」である場合、「2021年4月1日 9:00-10:00」における「執務エリアB」エリアの人数は「2人」、「執務エリアC」エリアの人数は「1人」と算出される。
 Step12:そして、利用予定特定部102は、上記のStep11で抽出した時間帯毎の各エリアの人数及びそのエリアに設置等される特定の設備の利用有無から利用予定テーブルを作成する。ここで、利用予定テーブルの一例を図4に示す。図4に示すように、利用予定テーブルは、電力需要の予測対象日の時間帯毎に各エリアの利用人数及びそのエリアに設置等される特定の設備の利用有無が格納されたデータテーブルである。なお、図4に示す例では、特定の設備が利用される場合のみ「プロジェクタ使用有」等といった情報が格納されている。
 なお、本実施形態では、オフィスビルに勤務する社員の行動予定から利用予定テーブルを作成したが、電力需要予測の精度をより向上させるためには、来客者数も考慮した利用予定テーブルを作成することが好ましい。この場合、例えば、スケジュールデータから来客者数を抽出可能であれば利用予定テーブルに反映すればよい。又は、来客予定を管理するデータベース等があれば、このデータベースから来客者数を抽出してもよい。
 また、上記では1時間毎の時間帯で利用予定テーブルを作成したが、1時間毎は一例であって、任意の時間幅毎(例えば、15分毎や30分毎等)の時間帯で利用予定テーブルを作成してもよい。
 次に、運転スケジュール作成部103は、上記のステップS103で作成された利用予定テーブルを用いて、運転スケジュールテーブルを作成する(ステップS103)。運転スケジュール作成部103は、利用予定テーブルに含まれる各時間帯の利用人数及び特定の設備の利用有無に基づいて、例えば、最小の電力消費となり、かつ、予め決められた快適性を考慮して各設備(例えば、空調や照明等)の運転計画を表す運転スケジュールテーブルを作成する。運転計画とは、各時間帯で設備を稼働させるか否か、また設備を稼働させる場合はどの程度の出力で稼働させるかを示す計画のことである。快適性とは、例えば、季節等に応じた空調の設定温度、時間帯に応じた照明の光量等のことである。したがって、例えば、空調の場合、季節に応じた設定温度幅を用いて、その日の時間帯毎の外気温を考慮して最小の電力消費となるように運転計画を決定する。同様に、照明の場合、季節に応じた光量幅を用いて、その日の時間帯毎の天候を考慮して最小の電力消費となるように運転計画を決定する。
 ここで、運転スケジュールテーブルの一例を図5に示す、図5に示すように、運転スケジュールテーブルは、電力需要の予測対象日の時間帯毎に各エリアの設備(空調や照明、そのエリアに設置等されているプロジェクタ等)の運転計画が格納されたデータテーブルである。なお、例えば、執務エリアに各建物利用者が使用するPC等が設置されている場合等には、当該執務エリアに設置されたPC等の運転計画が運転スケジュールテーブルに含まれている。また、その他のオフィス機器の運転計画も同様に運転スケジュールテーブルに含まれている。
 なお、図5に示す例で空調の「強」や「弱」等は出力の強さを表すが、これは一例であって、例えば、設定温度「〇〇℃」や出力の強さを最大出力に対する百分率で表した「〇〇%」等であってもよい。同様に、照明についても「強」、「弱」等で表されていてもよい。
 そして、需要予測部104は、上記のステップS103で作成された運転スケジュールテーブルと、各設備の消費電力の特性モデルとを用いて、需要予測値テーブルを作成する(ステップS104)。需要予測部104は、各時間帯で設備毎にその設備の消費電力の特性モデルにより消費電力を算出し、全ての設備の消費電力の和を算出することで、各時間帯の消費電力(つまり、各時間帯の電力需要)の予測値を表す需要予測値テーブルを作成する。また、このとき、建物内の共有設備(例えば、エリア間を繋ぐ通路の照明や空調、トイレや喫煙エリア等のその他のエリアの照明や空調等)の各時間帯の消費電力も算出し、需要予測値テーブルに含まれる予測値に加算する。なお、共有設備の各時間帯の消費電力は、建物利用者の行動予定に関わらずほぼ一定であることが多いため、過去の実績値の平均等が用いられてもよい。ここで、需要予測値テーブルの一例を図6に示す。図6に示すように、需要予測値テーブルは、電力需要の予測対象日の時間帯毎に建物全体の電力需要(消費電力)の予測値が格納されたデータテーブルである。
 以上のように、本実施形態に係る需要予測装置10は、建物利用者のスケジュールデータを用いて、建物全体の時間帯毎の電力需要を予測することができる。このとき、本実施形態に係る需要予測装置10では、建物利用者のスケジュールデータを用いることで、人間の行動に起因する需要変動を考慮して電力需要を精度良く予測することが可能となる。すなわち、スケジューラに登録され得る様々な行動予定(例えば、日々の業務予定、在宅勤務予定、会議予定、外出・出張予定、来客予定、休暇予定、社内行事等)を考慮して、これらの行動予定との因果関係を明確にして精度良く電力需要を予測することが可能となる。また、この際、既存のスケジューラからスケジュールデータを取得することが可能であるため、新たな追加コスト等も発生せずに、電力需要の予測が可能となる。更に、スケジュールデータを用いることで、建物利用者の予定変更もスケジューラを通して把握することが可能になり、このような予定変更も考慮して電力需要を予測することが可能となる。
 なお、上記のステップS104で作成された需要予測値テーブルに含まれる各予測値と、電力需要の目標値との差分は、例えば、電力需要家が持つ蓄電池等の充放電を計画することで吸収すればよい。又は、例えば、共有設備等の環境の変化に対する許容度が高い設備を制御することで吸収してもよい。
 [第二の実施形態]
 次に、第二の実施形態について説明する。第一の実施形態では、スケジュールデータを用いて利用予定テーブルを作成したが、建物利用者が、スケジュールデータに登録された行動予定通りに行動しない場合もあり得る。例えば、スケジュールデータには「2021年4月1日 9:00-10:00 会議室C」との行動予定が登録されているにも関わらず、実際には会議を行わず、執務エリアで業務を行っている、というような場合である。そこで、本実施形態では、各行動予定が予定通りに実行される確度(確率)を表す補正データを作成した上で、利用予定テーブルを作成する際に補正データによって利用人数等を補正する場合について説明する。これにより、電力需要をより精度良く予測することが可能となる。
 なお、第二の実施形態は、主に、第一の実施形態との相違点について説明し、第一の実施形態と同一の構成要素についてはその説明を省略する。
 <機能構成>
 第二の実施形態に係る需要予測装置10の機能構成について、図7を参照しながら説明する。図7は、第二の実施形態に係る需要予測装置10の機能構成の一例を示す図である。
 図7に示すように、本実施形態に係る需要予測装置10は、第一の実施形態で説明した各部に加えて、利用予定補正部105を有する。利用予定補正部105は、需要予測装置10にインストールされた1以上のプログラムがプロセッサ15に実行させる処理により実現される。
 利用予定補正部105は、建物内に設置された人感センサやカメラ等で生成されたセンサデータや建物利用者が送受信したメールのメールデータ、スケジュールデータ等を用いて、補正データを作成する。
 なお、センサデータは、例えば、建物の管理システム等から収集され、メモリ装置16等に保存される。また、メールデータは、例えば、メールサーバ等から収集され、メモリ装置16等に保存される。
 <需要予測処理>
 第二の実施形態に係る需要予測処理について、図8を参照しながら説明する。図8は、第二の実施形態に係る需要予測処理の一例を示すフローチャートである。なお、図8のステップS201は図3のステップS101と同様であり、ステップS204~ステップS205は図3のステップS103~ステップS104と同様であるため、その説明を省略する。
 利用予定補正部105は、センサデータやメールデータ、スケジュールデータ等を用いて、補正データを作成する(ステップS202)。ここで、補正データとしては各行動予定が予定通りに実行される確度(確率)を表す任意のデータを作成すればよいが、例えば、以下の(1)及び(2)を満たすデータを作成することが考えられる。
 (1)「予定通りに行動する建物利用者」に対しては確率が高く、「予定通りに行動しない建物利用者」に対しては確率が低くなる
 (2)イベント種別に応じて確率が変動する。例えば、イベントが会議である場合、社内会議は社外会議よりも中止され易いという事情がある。このため、社内会議に対しては確率が低く、社外会議に対しては確率が高くなる。
 上記(1)及び(2)を満たすデータは任意の方法で作成すればよいが、例えば、センサデータやメールデータ、スケジュールデータ等と補正データとの関係性を学習した機械学習モデルを予め作成した上で、この機械学習モデルにより補正データを得ることが考えられる。
 例えば、センサデータの履歴、メールデータの履歴、建物利用者のスケジュールデータの履歴(又は、この履歴に含まれる行動予定からテキスト解析等により抽出したテキストデータ)を用いて、まず、この建物利用者の過去の会議への出席有無(つまり、実際の行動結果)を抽出する。なお、過去の会議への出席有無は、例えば、当該会議が開催されたエリアのセンサデータ(例えば、人感センサのセンサデータやカメラの撮影データ等)から会議出席者を識別することで、当該建物利用者の出席有無を判断すればよい。これ以外にも、例えば、メールデータの履歴を解析して会議の出席有無を判断してもよいし、会議が開催されたエリアに入退室用のゲート等がある場合には入退室データから会議の出席有無を判断してもよいし、業務記録等から会議の出席有無を判断してもよい。
 そして、例えば、当該建物利用者の社員番号と、会議の種別とを説明変数、会議の出席有無を目的変数とする教師データを用いて、機械学習モデルを学習する。これにより、会議の種別に応じた当該建物利用者の出席確率を表す補正データを出力する機械学習モデルが得られる。
 なお、上記の説明変数及び目的変数は一例であって、他にも種々の説明変数及び目的変数を採用することが可能である。例えば、説明変数としてスケジュールデータの履歴から抽出された特定の装置の使用予定、目的変数として当該特定の装置の使用有無を採用することも可能である。
 ステップS203に続いて、利用予定特定部102は、上記のステップS203で作成された補正データと、スケジュールデータと、所属データとを用いて、利用予定テーブルを作成する(ステップS203)。このとき、利用予定特定部102は、上記のStep11で人数を算出する際に、補正データにより人数を補正する。例えば、社員Aのスケジュールデータと社員Bのスケジュールデータに「2021年4月1日 9:00-10:00 会議室C プロジェクタ使用有」といった行動予定が含まれており、社員Aの補正データが表す確率をp、社員Bの補正データが表す確率をpとした場合、時間帯「2021年4月1日 9:00-10:00」における「会議室C」エリアの人数を、1×p+1×pとする。
 また、このとき、会議室Cの設備「プロジェクタ」の補正データが存在し、その確率がqである場合、会議室Cの設備「プロジェクタ」の使用有無を「q」としてもよい。この場合、運転スケジュール作成部103が当該設備の運転計画を作成する際は、例えば、確率的に当該設備のON/OFFを決定すればよい(典型的にはq≧0.5の場合はON、それ以外はOFFとする等)。
 以上のように、本実施形態に係る需要予測装置10は、各行動予定が予定通りに実行される確度(確率)を用いて、各エリアの人数(つまり、そのエリアに設置等されている設備の利用人数)や各設備の利用有無等を補正する。これにより、スケジュールデータには登録されているものの各行動予定が実際には実行されない場合も考慮することが可能となり、より精度良く電力需要を予測することができる。
 なお、上記の確率は、例えば、電力需要家が持つ蓄電池等の容量(つまり、電力需要の予測値の誤差をどの程度吸収可能か)を決定する際の一要素としてもよい。
 また、上記の確率はスケジュールデータに含まれる行動予定通りに行動しないことにより行動予定と各設備の実際の運転との間に不整合が生じることを考慮したものであるため、例えば、設備の集中管理システム等により、行動予定と各設備の実際の運転とで不整合が生じないようにしてもよい。具体的には、例えば、スケジュールデータに含まれる行動予定と設備の実際の利用状況とをリアルタイムで監視し、設備が利用されていない場合には、行動予定通りに設備の電源を入れる、等である。又は、例えば、会議室全体の設備の電源を切っておき、スケジューラ上で会議の行動予定が登録されない限り、会議室の設備の電源は入らないようにする、等である。
 [第三の実施形態]
 次に、第三の実施形態について説明する。第三の実施形態では、電力需要の予測値が目標値と大きな乖離がある場合等に、電力需要の予測値を目標値に近付けるための行動を提案する場合について説明する。これにより、例えば、電力需要家が持つ蓄電池の充放電等では吸収しきれないと予測される場合等であっても、電力需要の目標を達成できるようになることが期待できる。
 なお、第三の実施形態は、主に、第一の実施形態との相違点について説明し、第一の実施形態と同一の構成要素についてはその説明を省略する。
 <機能構成>
 第三の実施形態に係る需要予測装置10の機能構成について、図9を参照しながら説明する。図9は、第三の実施形態に係る需要予測装置10の機能構成の一例を示す図である。
 図9に示すように、本実施形態に係る需要予測装置10は、第一の実施形態で説明した各部に加えて、提案作成部106を有する。提案作成部106は、需要予測装置10にインストールされた1以上のプログラムがプロセッサ15に実行させる処理により実現される。
 提案作成部106は、予め設定された需要目標と、需要予測部104によって作成された需要予測値テーブルとを用いて、行動提案を作成するか否かを判定する。そして、提案作成部106は、この行動提案を、適時のタイミングで各建物利用者に提示する。ここで、需要目標とは、電力需要の目標値である。また、行動提案とは、電力需要の予測値を目標値に近付けるための行動を促す提案である。なお、需要目標の代わりに、例えば、電力需要の削減目標値や電力市場における価値目標値等の他の目標値が用いられてもよい。
 <需要予測処理>
 第三の実施形態に係る需要予測処理について、図10を参照しながら説明する。図10は、第三の実施形態に係る需要予測処理の一例を示すフローチャートである。なお、図10のステップS301~ステップS304は、図3のステップS101~ステップS104と同様であるため、その説明を省略する。
 ステップS304に続いて、提案作成部106は、各建物利用者に対して電力需要の予測値を目標値に近付けるための行動を提案する必要があるか否かを判定する(ステップS305)。ここで、提案作成部106は、需要目標値と需要予測値テーブルに含まれる予測値とを比較した結果、例えば、ピーク電力が超過している場合、DRのベースラインとの調整が困難である場合(つまり、例えば、予測値と目標値の乖離が所定の閾値以上大きく蓄電池の充放電等で吸収しきれない場合等)等に、行動を提案する必要があると判定する。
 上記のステップS305で行動を提案する必要がないと判定された場合は処理を終了する。一方で、上記のステップS305で行動を提案する必要があると判定された場合、提案作成部106は、行動提案を作成する(ステップS306)。ここで、提案作成部106によって作成する行動提案の内容としては、例えば、以下の提案内容1や提案内容2等が挙げられる。
 提案内容1:空調等の設備の出力を下げるために、極力同一フロア内のエリアを会議室として利用するように提案する。又は、空調等の設備の出力を上げるために、極力異なるフロアを利用するように提案する。
 提案内容2:空調等の設備の出力を下げるために、他の建物利用者の行動予定を鑑みた上で、他の建物利用者が会議室を利用する前又は利用した後の時間帯に当該会議室を利用するように提案する。又は、空調当の設備の出力を上げるために、他の建物利用者が会議室を利用する前又は利用した後の時間帯で当該会議室を利用しないように提案する。
 上記のステップS306で作成された行動提案は適時のタイミングで建物利用者に提案されるが、例えば、以下のタイミング1やタイミング2で提案することが考えられる。
 タイミング1:定期的に電力需要の予測が行われており、その予測後に各建物利用者がスケジューラに行動予定を登録する場合、その登録前に行動提案を行うことが考えられる。具体的には、例えば、就業時間後の夜中に翌日の電力需要の予測が行われ、翌就業日の朝等に行動提案が行われるような場合である。
 タイミング2:建物利用者によって行動予定がスケジューラに登録される都度、電力需要が予測される場合、その登録前又は後に行動提案を行うことが考えられる。この場合、需要予測に関する処理負荷は高くなるものの、行動予定の変更が予測結果に即座に反映されるため、電力需要の予測値をより高い精度で目標値に近付けることが可能になることが期待される。
 以上のように、本実施形態に係る需要予測装置10は、例えば、ピーク電力が超過している場合やDRのベースラインとの調整が困難である場合等に、電力需要の予測値を目標値に近付けるための行動を建物利用者に提案する。これにより、各建物利用者に対してその行動の変容を促すことが可能となり、目標を達成するような電力需要を実現できる可能性が高まることが期待される。
 本発明は、具体的に開示された上記の実施形態に限定されるものではなく、請求の範囲の記載から逸脱することなく、種々の変形や変更、既知の技術との組み合わせ等が可能である。また、相互に矛盾のない限り、上記の各実施形態を任意に組み合わせることが可能である。例えば、第二の実施形態と第三の実施形態とを組み合わせて、利用予定テーブルの補正と行動提案の作成の両方が行われてもよい。
 10    需要予測装置
 11    入力装置
 12    表示装置
 13    外部I/F
 13a   記録媒体
 14    通信I/F
 15    プロセッサ
 16    メモリ装置
 17    バス
 101   特性モデル作成部
 102   利用予定特定部
 103   運転スケジュール作成部
 104   需要予測部
 105   利用予定補正部
 106   提案作成部

Claims (8)

  1.  建物が消費する電力需要を予測する需要予測装置であって、
     前記建物の利用者がスケジューラに登録したスケジュールデータを用いて、前記電力需要の予測対象日の各時間帯における前記建物内の各エリアの利用予定人数を特定する特定部と、
     前記利用予定人数に応じて、前記各エリアに設置されている電力利用設備の運転計画を決定する決定部と、
     前記電力利用設備の消費電力の特性モデルと、前記電力利用設備の運転計画とを用いて、前記予測対象日の各時間帯における消費電力を前記電力需要の予測値として算出する算出部と、
     を有する需要予測装置。
  2.  前記特定部は、
     前記利用者が普段勤務を行うエリアを表す情報が含まれるデータと、来客予定を表す情報が含まれるデータとの少なくとも一方を更に用いて、前記各エリアの利用予定人数を特定する、請求項1に記載の需要予測装置。
  3.  予め学習済みの機械学習モデルを用いて、前記利用者が前記スケジュールデータに含まれる行動予定通りに行動する確度を表す情報を算出する確度算出部を有し、
     前記特定部は、
     前記各エリアの利用予定人数を、前記確度を表す情報で補正する、請求項1又は2に記載の需要予測装置。
  4.  前記機械学習モデルは、過去のスケジュールデータと、前記過去のスケジュールデータに含まれる行動予定に対する実際の行動結果とを少なくとも用いて学習される、請求項3に記載の需要予測装置。
  5.  前記電力需要の予測値と、前記電力需要の目標値とを用いて、前記予測値を前記目標値に近付けるための行動を前記利用者に提案する必要があるか否かを判定する判定部と、
     前記提案が必要であると判定された場合、所定のタイミングで、前記予測値を前記目標値に近付けるための行動を前記利用者に提案する提案部と、
     を有する請求項1乃至4の何れか一項に記載の需要予測装置。
  6.  前記判定部は、
     前記予測値と前記目標値との乖離が所定の閾値以上である場合、又は、前記予測値のピークが前記目標値を超過している場合、前記予測値を前記目標値に近付けるための行動を前記利用者に提案する必要があると判定する、請求項5に記載の需要予測装置。
  7.  建物が消費する電力需要を予測する需要予測方法であって、
     前記建物の利用者がスケジューラに登録したスケジュールデータを用いて、前記電力需要の予測対象日の各時間帯における前記建物内の各エリアの利用予定人数を特定する特定手順と、
     前記利用予定人数に応じて、前記各エリアに設置されている電力利用設備の運転計画を決定する決定手順と、
     前記電力利用設備の消費電力の特性モデルと、前記電力利用設備の運転計画とを用いて、前記予測対象日の各時間帯における消費電力を前記電力需要の予測値として算出する算出手順と、
     をコンピュータが実行する需要予測方法。
  8.  コンピュータを、請求項1乃至6の何れか一項に記載の需要予測装置として機能させるプログラム。
PCT/JP2020/042294 2020-11-12 2020-11-12 需要予測装置、需要予測方法及びプログラム WO2022102059A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042294 WO2022102059A1 (ja) 2020-11-12 2020-11-12 需要予測装置、需要予測方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042294 WO2022102059A1 (ja) 2020-11-12 2020-11-12 需要予測装置、需要予測方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022102059A1 true WO2022102059A1 (ja) 2022-05-19

Family

ID=81600973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042294 WO2022102059A1 (ja) 2020-11-12 2020-11-12 需要予測装置、需要予測方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2022102059A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085497A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 機器制御システム、機器制御コントローラ、および機器制御プログラム
JP2013089208A (ja) * 2011-10-24 2013-05-13 Mitsubishi Electric Building Techno Service Co Ltd 空調システム及び空調制御プログラム
JP2014017542A (ja) * 2012-07-05 2014-01-30 Panasonic Corp 機器制御装置、機器制御システム、プログラム
JP2018026028A (ja) * 2016-08-12 2018-02-15 三菱電機ビルテクノサービス株式会社 所在人数予測装置、設備管理システム、所在人数予測方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085497A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 機器制御システム、機器制御コントローラ、および機器制御プログラム
JP2013089208A (ja) * 2011-10-24 2013-05-13 Mitsubishi Electric Building Techno Service Co Ltd 空調システム及び空調制御プログラム
JP2014017542A (ja) * 2012-07-05 2014-01-30 Panasonic Corp 機器制御装置、機器制御システム、プログラム
JP2018026028A (ja) * 2016-08-12 2018-02-15 三菱電機ビルテクノサービス株式会社 所在人数予測装置、設備管理システム、所在人数予測方法及びプログラム

Similar Documents

Publication Publication Date Title
Amasyali et al. A review of data-driven building energy consumption prediction studies
Wang et al. A novel approach for building occupancy simulation
Siano et al. Designing and testing decision support and energy management systems for smart homes
JP6109631B2 (ja) 情報処理システム
Chou et al. Hybrid machine learning system to forecast electricity consumption of smart grid-based air conditioners
Kim et al. Sequence-to-sequence deep learning model for building energy consumption prediction with dynamic simulation modeling
Fan et al. Development of a cooling load prediction model for air-conditioning system control of office buildings
Ding et al. An occupancy-based model for building electricity consumption prediction: A case study of three campus buildings in Tianjin
Schlund et al. Flexability-modeling and maximizing the bidirectional flexibility availability of unidirectional charging of large pools of electric vehicles
Ghofrani et al. Distributed air conditioning control in commercial buildings based on a physical-statistical approach
Bucking et al. On modelling of resiliency events using building performance simulation: a multi-objective approach
Luo et al. Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling
Voss et al. Generalized additive modeling of building inertia thermal energy storage for integration into smart grid control
Farzan et al. Operational planning for multi-building portfolio in an uncertain energy market
Krejci et al. A hybrid simulation model for urban weatherization programs
Misaghian et al. Assessment of carbon-aware flexibility measures from data centres using machine learning
Zheng et al. Short-term energy consumption prediction of electric vehicle charging station using attentional feature engineering and multi-sequence stacked Gated Recurrent Unit
WO2022102059A1 (ja) 需要予測装置、需要予測方法及びプログラム
Robillart et al. Derivation of simplified control rules from an optimal strategy for electric heating in a residential building
Crețu et al. Modelling and evaluation of the baseline energy consumption and the key performance indicators in technical university of Cluj‐Napoca buildings within a demand response programme: A case study
Chandra et al. Transactive control of air-conditioning systems in buildings for demand response
Chang et al. The use of the peak-clipping method for energy management in households with energy storage equipment
Sarmas et al. Monitoring the impact of energy conservation measures with Artificial Neural Networks
Uppal et al. Weather biased optimal delta model for short‐term load forecast
US20200361336A1 (en) Management apparatus, apparatus, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP