WO2022101997A1 - State estimation system, state estimation method, state estimation device, and state estimation program - Google Patents

State estimation system, state estimation method, state estimation device, and state estimation program Download PDF

Info

Publication number
WO2022101997A1
WO2022101997A1 PCT/JP2020/041956 JP2020041956W WO2022101997A1 WO 2022101997 A1 WO2022101997 A1 WO 2022101997A1 JP 2020041956 W JP2020041956 W JP 2020041956W WO 2022101997 A1 WO2022101997 A1 WO 2022101997A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication terminal
information
channel
state
Prior art date
Application number
PCT/JP2020/041956
Other languages
French (fr)
Japanese (ja)
Inventor
理一 工藤
馨子 高橋
友規 村上
智明 小川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/041956 priority Critical patent/WO2022101997A1/en
Priority to JP2022561738A priority patent/JP7473843B2/en
Publication of WO2022101997A1 publication Critical patent/WO2022101997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to a state estimation system for estimating the state of a wireless communication device and the surrounding environment, a state estimation method, a state estimation device, and a state estimation program.
  • IOT Internet of things
  • Various devices such as automobiles, drones, and construction machinery vehicles are being connected wirelessly.
  • wireless communication standards for wireless LAN (Local Area Network), Bluetooth (registered trademark), cellular communication by LTE and 5G, LPWA (Low Power Wide Area) communication for IOT, and car communication specified by the standardization standard IEEE802.11.
  • Supported wireless communication standards such as ETC (Electronic Toll Collection System), VICS (Vehicle Information and Communication System), and ARIB-STD-T109 used are also developing, and are expected to spread in the future.
  • the above wireless communication equipment has introduced MIMO (Multiple input multiple output) communication technology using multiple antennas in order to achieve high throughput and reliability performance.
  • MIMO communication technology can improve throughput and reliability performance by using channel information that shows how radio waves propagate between the transmitting side and the receiving side.
  • the transmitting side wireless communication device supports a function of transmitting a feedback signal for transmitting channel information to the receiving side wireless communication device (see Non-Patent Document 1).
  • the channel information related to radio wave propagation it was possible to improve the throughput and reliability performance related to the communication of wireless communication equipment.
  • the state of the wireless communication device such as position, posture, movement, type of wireless communication device such as laptop computer, smartphone, and static or dynamic objects existing around the wireless communication device, it is possible to communicate with the communication partner.
  • the radio wave propagation environment changes, it may affect the communication quality and have a great influence on the services and wireless communication systems realized by the wireless communication by the wireless communication device.
  • the higher the frequency used for wireless communication the stronger the straightness of the radio wave, and the more easily it is affected by the communication quality.
  • the present invention focuses on the fact that the channel information not only includes information related to the communication of the wireless communication device but also reflects the state, type, and surrounding environment of the wireless communication device at the time of wireless communication, and the channel information is provided. It is used to estimate the real-world state of the surrounding environment of wireless communication devices and wireless communication terminals.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of estimating the state of the surrounding environment of a wireless communication device or a wireless communication terminal in the real world.
  • the state estimation system of one aspect of the present invention is a state estimation system that estimates the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal, and receives a communication signal transmitted from the wireless communication terminal wirelessly from the communication signal.
  • a wireless communication device that acquires channel information related to radio wave propagation between the wireless communication terminal and itself, a generation device that generates the channel feature amount using the channel information, and the channel feature amount between the wireless communication devices.
  • the wireless communication terminal or wireless communication terminal can be used. It is equipped with a detection device that detects the state of the surrounding environment.
  • the state estimation system of one aspect of the present invention is a state estimation system that estimates the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal, and receives a communication signal transmitted from the wireless communication terminal wirelessly from the communication signal.
  • a wireless communication device that acquires channel information related to radio wave propagation between the wireless communication terminal and itself, a first generation device that generates a channel feature amount using the channel information, and a physical of the wireless communication terminal.
  • a measuring device that measures the state information of any one or more of the state, the type of the wireless communication terminal, and the surrounding environment of the wireless communication terminal, and the wireless that should detect at least one state information of the state information.
  • the target state information that is the state of the communication terminal is used, the information used for detection other than the target state information is used as auxiliary information, the training data is output to the second generator, and the target state information is output using the training data. It is equipped with a third generator that generates a world communication model.
  • the wireless communication device wirelessly receives the communication signal transmitted from the wireless communication terminal.
  • the channel information regarding the radio wave propagation between the wireless communication terminal and itself is acquired from the communication signal
  • the generator generates the channel feature amount using the channel information
  • the detection device generates the channel feature amount. Is input to the real-world communication model modeled by machine learning about the relationship between the channel feature amount related to radio wave propagation between wireless communication devices and the state of the surrounding environment of the wireless communication device or wireless communication terminal. Detects the state of the surrounding environment of the terminal or wireless communication terminal.
  • the state estimation device of one aspect of the present invention is a state estimation device that estimates the state of the surrounding environment of a wireless communication terminal or a wireless communication terminal, and is a channel feature amount related to radio wave propagation between wireless communication devices and the wireless communication device or wireless communication terminal.
  • a storage unit that stores a real-world communication model that models the relationship with the state of the surrounding environment by machine learning, and the wireless communication terminal acquired from a communication signal wirelessly transmitted from the wireless communication terminal and itself.
  • the channel feature amount to the real-world communication model and the generation unit that generates the channel feature amount using the channel information related to the radio wave propagation between the radio communication terminals, the peripheral environment of the wireless communication terminal or the wireless communication terminal can be obtained.
  • a detection unit for detecting a state is provided.
  • the state estimation program of one aspect of the present invention is a state estimation program that causes a computer to function as the state estimation device.
  • the present invention it is possible to provide a technique capable of estimating the state of the surrounding environment of a wireless communication device or a wireless communication terminal in the real world.
  • FIG. 1 is a diagram showing an overall configuration example of a state estimation system.
  • FIG. 2 is a diagram showing an example of generating a real-world communication model.
  • FIG. 3 is a diagram showing an input / output example of a real-world communication model.
  • FIG. 4 is a diagram showing an operation example of the state estimation system.
  • FIG. 5 is a diagram showing an example of an experimental area.
  • FIG. 6 is a diagram showing an example of setting a target position.
  • FIG. 7 is a diagram showing a processing example of deep learning.
  • FIG. 8 is a diagram showing the experimental results.
  • FIG. 9 is a diagram showing the experimental results.
  • FIG. 10 is a diagram showing a hardware configuration example of the state estimation system.
  • the present invention estimates the state information of a wireless communication terminal and its surrounding environment in the real world by using channel information and channel features related to radio wave propagation transmitted by the wireless communication terminal, specifically, from the state information.
  • the purpose is to estimate the selected target state information.
  • Channel information is information indicating how radio waves propagate between the transmitting side and the receiving side. That is, "channel information” is information indicating the state of radio wave propagation between a plurality of antennas provided on the transmitting side and a plurality of antennas provided on the receiving side in MIMO communication technology, and is propagation loss or propagation loss. It is the information obtained from the phase rotation information of the radio wave and the radio wave.
  • the "channel feature amount” is a numerical value obtained from “channel information” or a numerical value obtained by performing various operations described later on “channel information”.
  • the "state information of the wireless communication terminal” is, for example, the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement, and is put in a bag held in the hand.
  • Information about the physical state of wireless communication terminals such as laptop computers, smartphones, connected cars, robots, transport devices, types of wireless communication terminals such as drones, and objects that exist around the wireless communication terminals. ..
  • the “target state information” is the state information to be predicted among the “state information of the wireless terminal”.
  • the present invention is an actual model of the relationship between "channel feature amount” and “target state information”, or “channel feature amount” and “wireless communication terminal state information” and “target state information” by machine learning.
  • the actual wireless communication terminal at the predetermined timing is input.
  • Estimate the state information in the world that is, the target state information).
  • FIG. 1 is a diagram showing an overall configuration example of the state estimation system 1 according to the present embodiment.
  • the state estimation system 1 is a state estimation system or a state estimation device that estimates the state information of the wireless communication terminal 2 and its surrounding environment.
  • the wireless communication terminal 2 will be described.
  • the wireless communication terminal 2 is, for example, an automobile, a drone, or a construction machine vehicle having a wireless communication function.
  • the wireless communication terminal 2 is one or a plurality, and can wirelessly communicate with the state estimation system 1 via the wireless communication network 5.
  • the wireless communication terminal 2 includes a wireless communication unit 21 that performs wireless communication by MIMO communication via a plurality of antennas.
  • One wireless communication terminal 2 may include a plurality of wireless communication units 21.
  • the state estimation system 1 will be described.
  • the state estimation system 1 is, for example, a base station installed in a main place.
  • the state estimation system 1 may be, for example, a wireless communication terminal, a wireless communication device, a wireless communication device, or a wireless communication device capable of communicating with the wireless communication terminal 2.
  • the state estimation system 1 includes, for example, a plurality of wireless communication units 11, an input feature amount generation unit 12, an auxiliary information generation unit 13, a real-world communication model control unit 14, and a real-world.
  • a communication model storage unit 15 and a network network 16 are provided.
  • the wireless communication unit 11 is a communication unit that performs wireless communication by MIMO communication via a plurality of antennas.
  • a plurality of wireless communication units 11 can be provided, and FIG. 1 shows two wireless communication units as an example, the first wireless communication unit 11a and the second wireless communication unit 11b.
  • the wireless communication unit 11 has a function of wirelessly receiving a communication signal transmitted from the wireless communication terminal 2.
  • the wireless communication unit 11 has a function of acquiring channel information related to radio wave propagation between the wireless communication terminal 2 and its own wireless communication unit 11 from the received communication signal.
  • the wireless communication unit 11 has a function of outputting the acquired channel information to the input feature amount generation unit 12 via the network network 16.
  • the wireless communication unit 11 may be configured by a wireless communication device.
  • the "communication signal” is a signal from which channel information transmitted from the wireless communication unit 11 or the wireless communication terminal 2 can be obtained.
  • the communication signal is, for example, a feedback signal including information for feeding back channel information, or a pilot signal.
  • the pilot signal may be any signal known between the devices performing wireless communication.
  • the input feature amount generation unit 12 has a function of generating a channel feature amount related to radio wave propagation between the wireless communication terminal 2 and the state estimation system 1 by using the channel information acquired from the communication signal.
  • the input feature amount generation unit 12 has a function of inputting the generated channel feature amount to the real-world communication model used by the real-world communication model control unit 14.
  • the input feature amount generation unit 12 may be composed of an input feature amount generation device, a generation device, a first generation device, and a generation unit.
  • Channel feature amount is a feature amount obtained by converting channel information into various forms.
  • the channel information can be expressed in a time-direction form, a frequency-direction form, and a coded form, and is converted in various forms for each wireless communication system.
  • the channel information between the transmitting antenna Nt and the receiving antenna Nr can be expressed as a channel matrix H of Mr ⁇ Mt.
  • An example of the "channel feature amount” is a coefficient obtained by performing arithmetic processing on the channel matrix H and the channel matrix H.
  • channel matrix H QR decomposition, singular value decomposition, correlation matrix such as H H H and H H H, QR decomposition / eigenvector decomposition of the correlation matrix, and difference information in their frequency direction or time direction, etc.
  • Vectors, phases, levels, etc. obtained by various linear processes can also be generated.
  • the result of using the arrival direction estimation of the radio wave using multiple antennas or the input information to be used for the arrival direction estimation can be used.
  • compressed information can be used to feed back the channel information.
  • the unitary matrix obtained by singular value decomposition or QR decomposition is compressed into angle information with respect to the channel matrix obtained by receiving a known signal. It is quantized and feeds back to the receiving side corresponding to a plurality of subcarriers (subchannels in which frequencies are finely divided) (see Non-Patent Document 1).
  • features can be generated by using averaging, QR decomposition, and difference information.
  • the auxiliary information generation unit 13 acquires the state information of the wireless communication terminal 2 from the camera 3 and the sensor 4, and the physical state such as the physical position, speed, direction, and acceleration of the wireless communication terminal 2, and the type of the wireless communication terminal 2. , It has a function to measure surrounding environment information such as the position and number of objects around the wireless communication terminal 2.
  • the auxiliary information generation unit 13 is via the network 16 or information that is the state information of the wireless communication terminal 2 and does not become the target state information, the target state information that is the target state information but the corresponding time is different, and the network network 16.
  • Information such as weather, date, time, event, weather, temperature, physical position and movement of people and things, composition, size, classification / model information of wireless communication terminal 2 and its owners and possessions.
  • -It has a function to generate contract information, preference information, operation information, and communication mode information as auxiliary information.
  • auxiliary information is used as input information to the real-world communication model or to select the real-world communication model.
  • the "auxiliary information" may be used as teacher data used when updating various coefficients constituting the real-world communication model when training (learning) the real-world communication model.
  • the auxiliary information can be used as teacher data.
  • the auxiliary information generation unit 13 may be composed of a measuring device such as a camera / sensor and an auxiliary information generation device.
  • the real-world communication model control unit 14 uses machine learning to pre-model the relationship between the channel features between wireless communication devices and the state of the wireless communication device and its surrounding environment from the real-world communication model storage unit 15. By reading out the communication model and inputting the channel feature amount related to the radio wave propagation and the auxiliary information into the real-world communication model, the state of the wireless communication terminal 2 and its surrounding environment in the real world is detected, and the actual state is detected. It has a function to output the state information of the wireless communication terminal 2 and its surrounding environment in the world.
  • the real-world communication model control unit 14 may be composed of a real-world communication model utilization device, a detection device, and a detection unit.
  • the "state information of the wireless communication terminal” is, for example, the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement, and the state of the bag held in the hand.
  • Physical status of wireless communication terminals such as those inside, types of wireless communication terminals such as laptop computers, smartphones, connected cars, robots, transport devices, drones, objects existing around wireless communication terminals, Information about.
  • the target state information of the wireless communication terminal 2 for which at least one of the above state information should be detected was used, and the information other than the channel feature amount used for detecting the target state information was used as auxiliary information.
  • the real-world communication model control unit 14 outputs the target state information by using the training data generation unit 14a for generating the training data for forming the real-world communication model that outputs the target state information and the training data. It includes a real-world communication model generation unit 14b that generates a real-world communication model, and a real-world communication model utilization unit 14c that inputs channel feature quantities and auxiliary information into the real-world communication model and uses the real-world communication model. ..
  • the training data generation unit 14a may be configured by a second generation device.
  • the real-world communication model generation unit 14b may be configured by a third generation device.
  • the real-world communication model storage unit 15 has a function of storing a real-world communication model in which the relationship between the channel features between wireless communication devices and the state of the wireless communication device and its surrounding environment is pre-modeled by machine learning. Be prepared.
  • the real-world communication model includes, for example, a channel feature amount related to radio wave propagation generated by the input feature amount generation unit 12, auxiliary information generated by the auxiliary information generation unit 13, a plurality of wireless communication units 11 and a plurality of wireless communication terminals. It is a learning model generated by using the channel feature amount obtained from at least one radio communication of each radio communication with 2.
  • the real-world communication model storage unit 15 may be composed of a real-world communication model storage device and a storage unit.
  • FIG. 2 is a diagram showing an example of generating a real-world communication model.
  • the machine learning algorithm any algorithm such as a support vector machine, a neural network, a decision tree, a gradient boosting decision tree, a random forest, and a gradient boost can be used.
  • the real-world communication model control unit 14 prepares the channel feature amount obtained from the feedback information or the pilot signal from the wireless communication terminal 2 and the state information (including the target state information) of the wireless communication terminal 2 as training data.
  • training machine learning
  • coefficients such as coefficients, biases, and determination trees are calculated.
  • a real-world communication model capable of outputting the state information (target state information) of the wireless communication terminal 2 from the channel feature amount is generated.
  • information other than the state information of the wireless communication terminal 2 may be used as auxiliary information.
  • the real-world communication model is a model that outputs target state information using channel features or channel features and auxiliary information.
  • the state information of the wireless communication terminal 2 includes the physical state of the wireless communication terminal 2 (position, speed, rotation, direction, height, holding in hand, in the back), and the type of the wireless communication terminal 2 (in the back).
  • the auxiliary information is the state information of the wireless communication terminal 2, which is not the target state information, or the target state information, but the corresponding time is different, and the target state information can be obtained via the network network 16.
  • Information such as weather, date, time, event, weather, temperature, physical position and movement of people and things, composition / size / classification / model information / contract information of wireless communication terminal 2 and its owners and possessions.
  • -Preference information / operation information / communication mode information parameters related to wireless communication, modes such as terminal power consumption, terminal / terminal owner / behavior pattern / preference / mounting position information of the terminal's load, terminal owner's Contract information, appearance or communication recognition information that identifies the terminal / terminal owner / equipment of the terminal, video information from peripheral cameras / sensors, temperature, humidity, light, altitude, tilt, obtained from peripheral sensors, Sensing information such as speed and acceleration can be used.
  • the physical state of the wireless communication terminal 2 as the target state information, of which the position information is output is based on the position positioning by GPS, wireless LAN, Bluetooth, etc., or the camera image of the wireless communication terminal 2.
  • a wireless communication terminal that can acquire the position by self-position estimation using LiDAR (Light Detection and Ringing) technology and extraction processing of position information from surveillance cameras and sensing information, it is combined with the input signal to the real-world communication model.
  • LiDAR Light Detection and Ringing
  • training can be performed by machine learning and the real-world communication model can be calculated.
  • Velocity information can be extracted using the accelerometer of the terminal, time-series data of position information, etc., rotation, rotation speed, and direction can be output from the gyro sensor and video / sensor information of the terminal, and height from the barometer.
  • the target status information to be output is the type of the wireless communication terminal 2
  • the communication information and the status information of various types of terminals are collected in advance and used as training data, so that any type of terminal can be used. You can generate a real-world communication model that outputs what you have.
  • the target state information to be output is the peripheral environment information of the wireless communication terminal 2, the detection result of the peripheral environment by the camera or sensor provided in the wireless communication terminal 2, or the camera 3 or sensor separately installed in the environment.
  • Training data is generated using the detection result of 4, the output result of the position detection device provided by the surrounding object to be detected, or the surrounding environment information generated by human manual judgment, and the information of the surrounding environment is obtained.
  • the teacher data may be collected in advance and then used by generating a real-world communication model, a state information collecting device separately connected to a network, human work, the above-mentioned physical state, type, and surroundings. It is a wireless communication terminal 2 that can collect environmental information in some form, and the teacher data is collected from other wireless communication terminals 2 by permitting the provision of data, and the training data is gradually increased or generated. You may also update the real-world communication model.
  • the target state information one may be selected from the physical state, the type, and the surrounding object information of the wireless communication terminal 2 described above, or a plurality of them may be selected.
  • the real-world communication model control unit 14 has, for example, training data labeled with information on the state of the wireless communication terminal 2, the type of the wireless communication terminal 2, and information on objects located around the wireless communication terminal 2, and wireless communication. It is possible to generate a real-world communication model that learns the relationship between channel features related to radio wave propagation between devices and trains them to output labeled information corresponding to the input channel features.
  • the channel feature amount may be measured from a plurality of channel information received simultaneously by the plurality of wireless communication units 11, may be obtained for a plurality of frequencies, or may be used for sound waves, light, or the like.
  • Channel information may also be used, or communication method, algorithm, modulation method, and error correction code information may be combined and generated.
  • the channel information may be obtained from the received signal received by the first wireless communication unit 11a of the wireless communication terminal 2 or the feedback information included in the received signal.
  • the feedback information does not necessarily have to be transmitted by the wireless communication terminal 2 (here, the first wireless communication terminal 2a shown in FIG. 1) to the first wireless communication unit 11a.
  • the feedback information transmitted by the first wireless communication terminal 2a to the second wireless communication unit 11b may be used.
  • the channel information between the first wireless communication terminal 2a and the first wireless communication unit 11a as well as the channel information between the first wireless communication terminal 2a and the second wireless communication unit 11b are controlled.
  • two radio wave propagation information can be acquired because it can also be acquired.
  • the input feature amount generation unit 12 has a channel output from the second wireless communication unit 11b in addition to the channel information output from the first wireless communication unit 11a and the radio wave propagation information developed from the channel information. Information and radio wave propagation information developed from the channel information can be further used.
  • the detection accuracy for detecting the state of the wireless communication terminal 2 is improved.
  • the wireless communication unit 11 may be an external wireless communication unit that is not connected to the network network 16.
  • the feedback information between the external wireless communication unit and the first wireless communication terminal 2a is received by the first wireless communication unit 11a connected to the network network 16, and the external wireless communication is performed.
  • Channel information between the unit and the first wireless communication terminal 2a can be used.
  • the first wireless communication unit 11a is a network network unconnected wireless communication unit (second wireless communication unit connected to the network network 16) other than the first wireless communication unit 11a from the first wireless communication terminal 2a. 11b), the communication signal including the channel information transmitted to is received.
  • the input feature amount generation unit 12 includes the received power of the communication signal received from the first wireless communication terminal 2a, the first wireless communication terminal 2a included in the communication signal, the wireless communication unit not connected to the network network, and the first.
  • the channel feature amount is generated by using the channel information with and from the wireless communication unit 11b of 2.
  • the wireless communication unit 11 is a wireless communication system such as an orthogonal wave frequency division method that divides into a plurality of frequencies and a channel information corresponding to a plurality of frequencies can be obtained, all of the channel information of each frequency is obtained. You may use it, select frequency channel information with a high reception level, take the sum or average, or perform linear signal processing on the information obtained by the sum or average.
  • the input feature amount generation unit 12 communicates from the first wireless communication terminal 2a received by the second wireless communication unit 11b (which may be the wireless communication unit not connected to the network network) other than the first wireless communication unit 11a. Using the channel information of a plurality of frequency channels acquired from the signal, information obtained by averaging the information obtained by linear calculation from the channel information for different frequencies is generated.
  • FIG. 3 is a diagram showing an input / output example of a real-world communication model.
  • target state information can be output using channel features, channel features, and auxiliary information.
  • the target state information is at least one of the physical state, type, or peripheral object information of the wireless communication terminal 2.
  • FIG. 4 is a diagram showing an operation example of the state estimation system 1.
  • the first wireless communication unit 11a uses the pilot signal of the wireless signal transmitted by the first wireless communication terminal 2a to the first wireless communication unit 11a, or the first wireless communication terminal 2a is the first.
  • the channel information related to the first wireless communication terminal 2a can be obtained. It is a state estimation method when acquiring.
  • Step S1; The first radio communication unit 11a receives a radio signal or a pilot signal including feedback information of channel information transmitted from the first radio communication terminal 2a. From the received feedback information or pilot signal, the first wireless communication unit 11a is between the first wireless communication terminal 2a and itself, or between the first wireless communication terminal 2a and the second wireless communication unit 11b. Acquires channel information related to radio wave propagation in. After that, the first wireless communication unit 11a outputs the acquired channel information to the input feature amount generation unit 12 via the network network 16.
  • the input feature amount generation unit 12 uses the channel information (first channel information) output from the first wireless communication unit 11a between the first wireless communication terminal 2a and the first wireless communication unit 11a. , Or generate a channel feature amount related to radio wave propagation between the first wireless communication terminal 2a and the second wireless communication unit 11b. At this time, the input feature amount generation unit 12 outputs channel information (second channel information) from one or more wireless communication units such as the second wireless communication unit 11b and another wireless communication unit at the same timing. If so, the channel feature amount is generated by using the second channel information together. After that, the input feature amount generation unit 12 inputs the generated channel feature amount to the real-world communication model of the real-world communication model control unit 14.
  • the input feature amount generation unit 12 uses the first channel information as the channel feature amount, and uses the received power calculated from the received signal of the pilot signal, the channel matrix, the correlation matrix of the channel matrix, and a plurality of those matrices. Matrix obtained by acquiring and performing linear calculation corresponding to the frequency of, unitary matrix and diagonal matrix obtained by linear calculation, phase, amplitude, real number component, and imaginary number component of those matrices are generated.
  • the input feature amount generation unit 12 uses the first channel information as the channel feature amount, and the radio communication terminal 2 extracted from the feedback signal notifies the communication partner of the received power, the channel matrix, and the correlation of the channel matrix.
  • Matrix matrix obtained by acquiring those matrices corresponding to multiple frequencies and performing linear calculation, unitary matrix and diagonal matrix obtained by linear operation on those matrices, phase, amplitude, and real component of those matrices.
  • Imaginary component generate transmission mode information to be selected by the sender. If it is a standard for wireless LAN, if it is IEEE802.11, the information of "Beamforming report" described in Non-Patent Document 1 can be used.
  • the input feature amount generation unit 12 uses the second channel information as the channel feature amount, and the received power and channel obtained from the received signal of the radio packet including the feedback information transmitted by the first wireless communication terminal 2a.
  • Matrix, correlation matrix of channel matrix, matrix obtained by acquiring those matrices corresponding to multiple frequencies and performing linear operation, unitary matrix and diagonal matrix obtained by linear operation on those matrices, and of those matrices Generates phase, amplitude, real and imaginary components.
  • the auxiliary information generation unit 13 can also acquire the state information of the first wireless communication terminal 2a, the camera / sensor information that can be collected via the network network 16, the weather, and the like and generate the auxiliary information. After that, the auxiliary information generation unit 13 inputs the generated auxiliary information into the real-world communication model of the real-world communication model control unit 14. Note that step S3 may be executed at a timing prior to or at the same timing as step S2.
  • the real-world communication model control unit 14 reads the real-world communication model from the real-world communication model storage unit 15, and inputs the channel feature amount or the channel feature amount and auxiliary information into the real-world communication model. Outputs the target state information of the wireless communication terminal 2a in the real world.
  • the real-world communication model control unit 14 is housed in a bag, which is held in the hand, and the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement.
  • the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement.
  • Detects information about the physical state of wireless communication terminals such as laptop computers, smartphones, connected cars, robots, transport devices, types of wireless communication terminals such as drones, and objects that exist around the wireless communication terminals.
  • the physical state can be used for management, log acquisition, and tracking of wireless communication terminals, and the type determination can be used for services that change the required quality according to the type of wireless communication terminal.
  • the object determination can be used for a security system such as detection of harmful animals in a field, determination of an intruder, a system for determining the number of communication terminals in a specific area, and a system for determining density and congestion.
  • FIG. 5 is a diagram showing an example of an experimental area.
  • FIG. 6 is a diagram showing an example of setting a target position of a movement destination to which the autonomous traveling robot 6 moves in the experimental area.
  • An IEEE 802.11ac wireless communication terminal 2 was mounted on an autonomous traveling robot 6 capable of accurately measuring its own position, and communicated with the second wireless communication unit 11b in FIG. Further, a wireless communication terminal capable of receiving feedback information was installed as the first wireless communication unit 11a in the laboratory.
  • the autonomous traveling robot 6 keeps moving while randomly selecting eight target positions set in the central area in FIG. This position was predicted from the feedback information obtained by the first wireless communication unit 11a.
  • the angles ⁇ and ⁇ of the compressed beamforming feedback matrix obtained by IEEE802.11ac were used as the phase information. Since the second wireless communication unit 11b has four antennas and the wireless communication terminal 2 has two antennas, the angles ⁇ and ⁇ are set to ⁇ 11, ⁇ 21, ⁇ 31, ⁇ 32, ⁇ 21, ⁇ 31, in the “Beamforming report”. A total of 10 angles of ⁇ 41, ⁇ 22, ⁇ 32, and ⁇ 42 can be obtained. In the frequency direction, data obtained from 52 subcarriers can be used, so that 520 of 52 ⁇ 10 can be obtained as the angle information. As training data, the relationship between the highly accurate robot position and channel information was trained by deep learning shown in FIG.
  • the channel features are composed of time-series data and are input to the GRU (Gated Recurent Unit) of the hidden layer 1 and dimension 35, the output of 35 is input to the fully connected layer, and the first and second stages are respectively. 35 is output, and the element 2 corresponding to the position information is output in the final layer.
  • the outputs of the fully connected layers in the first and second stages were activated by ReLU (Rectified Linear Unit). In the training, the learning rate was 0.0002, and an optimization algorithm by Adam (Adaptive moment estimation) was used.
  • the downlink channel information in the wireless communication terminal is converted into a unitary matrix, and SNR (Signal-to-Noise Ratio) information and a plurality of orthogonal wave frequency divisions are performed by the "Beamforming report" described in Non-Patent Document 1. It is fed back as angle information for the subcarrier of the multiplex method.
  • SNR Signal-to-Noise Ratio
  • the V matrix corresponding to the right singular matrix of the channel matrix can be obtained by performing the matrix operation using the angle information.
  • Mr is the number of receiving antennas, which is 2 in this experiment.
  • the imaginary part of the last element of each column vector of the V matrix is always 0, if the V matrix is obtained as a matrix of Mt ⁇ Mr, the meaningful information is the numerical value of the real part and the imaginary part of each element. Therefore, the numerical value of Mt ⁇ Mr-Mr becomes meaningful information.
  • a 4 ⁇ 1 matrix 7 elements of the real part 4 and the imaginary part 3 are obtained, and in the case of obtaining a 4 ⁇ 2 matrix, a total of 14 elements of the real part 8 and the imaginary part 6 are meaningful information.
  • the imaginary part of the last element in each column is 0, so it does not have to be used.
  • the position estimation accuracy was verified by the following five methods.
  • the first method is to receive two SNR information included in the feedback information to the second wireless communication unit 11b and two antennas 1 when the first wireless communication unit 11a receives a signal including the feedback information.
  • a total of four channel feature quantities, the RSSI information in and 2 are acquired every 200 ms, and the time-series data for 5 seconds is trained to output the position information of the wireless communication terminal by the deep learning in FIG. This is a method when the position of the wireless communication terminal is predicted from the SNR information and RSSI information obtained in.
  • Second method use of power information + angle information sine cosine
  • the sine / cosine information of 10 angle information corresponding to 52 subcarriers is used as the channel feature amount, and a total of 1044 channel feature amounts are acquired every 200 ms, and 5
  • the time-series data per second was trained to output the position information of the wireless communication terminal by the deep learning of FIG. 7, and the position of the wireless communication terminal was predicted by the newly obtained SNR information, RSSI information, and sine cosine information. The method of the case.
  • Third method power information utilization + V matrix element
  • a 4 ⁇ 1 V matrix is calculated from 10 angle information corresponding to 52 subcarriers, and information on the real part and the imaginary part of the V matrix (real part 4).
  • Imaginary part 3 is used as the channel feature amount
  • 4 + 7 ⁇ 52 a total of 368 channel feature amounts are acquired every 200 ms
  • the time-series data for 5 seconds is obtained by deep learning in FIG. 7 to obtain the position information of the wireless communication terminal.
  • This is a method when the position of the wireless communication terminal is predicted by training to output and using the newly obtained SNR information, RSSI information, and V matrix element information.
  • Fourth method power information utilization + average of V matrix elements
  • each element is divided by a constant so that each column vector of the V matrix becomes a unit vector, and the average.
  • This is a method in which the position of the wireless communication terminal is predicted by training to output the position information of the wireless communication terminal and using the newly obtained SNR information, RSSI information, and average V matrix information.
  • the element of 4 + 14 + 14 32, which is obtained by adding the elements of the V matrix (real part 8, imaginary part 6) in the subcarrier of ⁇ 14 from the DC component, is used as the channel feature amount. Acquired every 200 ms and trained to output the position information of the wireless communication terminal by the deep learning of FIG. 7 for 5 seconds, and newly obtained SNR information, RSSI information, and average V matrix information. This is a method when the position of the wireless communication terminal is predicted by the V matrix of two subcarriers.
  • FIG. 8 shows the result of evaluating the deviation between the value of the position information predicted by each method and the measured value estimated by the self-position estimated by the autonomous traveling robot 6 using the LiDAR technique by MAE (Minimum Absolute Error). It is a figure.
  • the position information output by the real-world communication model by deep learning can be predicted by the prepared channel features, and is highly accurate by performing processing such as averaging processing and using a plurality of information. It turns out that it is possible to make it.
  • the spatial position of the wireless communication terminal can be detected with an error accuracy of 1 m or less.
  • the V matrix is averaged, but since the V matrix is preprocessed so that the imaginary part of the last element of each column vector becomes 0, the average of the V matrix is that is, the average of the correlation matrix of the channel matrix. Is equivalent to. Therefore, it is considered that the same effect can be obtained even if the channel matrix obtained from the pilot signal and its correlation matrix are averaged with different subcarriers.
  • FIG. 9 shows a plot of the predicted X-axis and Y-axis positions and the actual position comparison with respect to time.
  • FIG. 9A is a position on the X-axis
  • FIG. 9B is a position on the Y-axis.
  • the solid line is the predicted position
  • the broken line is the measured position.
  • the vertical axis does not match the coordinate system of FIG. As shown in FIG. 9, it can be seen that the positions of the X and Y coordinates of the autonomous traveling robot 6 can be accurately detected by using the channel features.
  • the communication signal transmitted from the wireless communication terminal 2 is wirelessly received, and the communication signal is used as described above.
  • the wireless communication unit 11 that acquires the channel information related to the radio wave propagation between the wireless communication terminal and itself, the input feature amount generation unit 12 that generates the channel feature amount using the channel information, and the channel feature amount.
  • the state estimation system or the state estimation device in the above-described embodiment may be realized by a computer.
  • a state estimation program for realizing each of the components of the state estimation system or the state estimation device is recorded on a computer-readable recording medium, and the state estimation program recorded on the recording medium is stored in the computer system. It may be realized by loading and executing.
  • Computer system includes hardware such as OS and peripheral devices.
  • hardware such as OS and peripheral devices.
  • FIG. 10 it is a general-purpose computer system including a CPU 901, a memory 902, a storage 903, a communication device 904, an input device 905, and an output device 906.
  • Computer readable recording medium refers to a portable medium such as a flexible disk, magneto-optical disk, ROM, CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case.
  • the above program may be for realizing a part of the above-mentioned components, and may be further realized by combining the above-mentioned components with a program already recorded in the computer system. Often, it may be realized by using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array

Abstract

A state estimation system 1 that estimates the state of wireless communication terminals 2 or the peripheral environment of the wireless communication terminals comprises: wireless communication units 11 that wirelessly receive communication signals transmitted by the wireless communication terminals 2, and acquires channel information relating to electromagnetic wave propagation between said units and the wireless communication terminals from the communication signals; an input feature amount generation unit 12 that generates a channel feature amount using the channel information; and a real-world communication model control unit 14 that detects the state of the wireless communication terminals or the peripheral environment of the wireless communication terminals by inputting the channel feature amount into a real-world communication model in which machine learning is used to model the relationship between the channel feature amount relating to electromagnetic wave propagation between the wireless communication devices and the state of the wireless communication devices or the peripheral environment of the wireless communication devices.

Description

状態推定システム、状態推定方法、状態推定装置、および、状態推定プログラムState estimation system, state estimation method, state estimation device, and state estimation program
 本発明は、無線通信機器と周辺環境の状態を推定する状態推定システム、状態推定方法、状態推定装置、および、状態推定プログラムに関する。 The present invention relates to a state estimation system for estimating the state of a wireless communication device and the surrounding environment, a state estimation method, a state estimation device, and a state estimation program.
 様々な機器がインターネットにつながるIOT(Internet of things)の実現が進んでいる。自動車、ドローン、建設機械車両など、様々な機器が無線で接続されつつある。無線通信規格としても、標準化規格IEEE 802.11で規定される無線LAN(Local Area Network)、Bluetooth(登録商標)、LTEや5Gによるセルラー通信、IOT向けのLPWA(Low Power Wide Area)通信、車通信に用いられるETC(Electronic Toll Collection System)、VICS(Vehicle Information and Communication System)、ARIB-STD-T109など、サポートする無線通信規格も発展しており、今後の普及が期待されている。 The realization of IOT (Internet of things), in which various devices are connected to the Internet, is progressing. Various devices such as automobiles, drones, and construction machinery vehicles are being connected wirelessly. As wireless communication standards, for wireless LAN (Local Area Network), Bluetooth (registered trademark), cellular communication by LTE and 5G, LPWA (Low Power Wide Area) communication for IOT, and car communication specified by the standardization standard IEEE802.11. Supported wireless communication standards such as ETC (Electronic Toll Collection System), VICS (Vehicle Information and Communication System), and ARIB-STD-T109 used are also developing, and are expected to spread in the future.
 上記無線通信機器は、高いスループットや信頼性能を達成するため、複数のアンテナを用いたMIMO(Multiple input multiple output)通信技術を導入している。MIMO通信技術は、送信側と受信側との間でどのように電波が伝搬しているかを示すチャネル情報を利用することで、スループットや信頼性能を高めることができる。送信側の無線通信機器には、受信側の無線通信機器に対してチャネル情報を伝えるフィードバック信号の送信機能がサポートされている(非特許文献1参照)。 The above wireless communication equipment has introduced MIMO (Multiple input multiple output) communication technology using multiple antennas in order to achieve high throughput and reliability performance. MIMO communication technology can improve throughput and reliability performance by using channel information that shows how radio waves propagate between the transmitting side and the receiving side. The transmitting side wireless communication device supports a function of transmitting a feedback signal for transmitting channel information to the receiving side wireless communication device (see Non-Patent Document 1).
 電波伝搬に関するチャネル情報を利用することで、無線通信機器の通信に関するスループットや信頼性能を向上可能であった。一方、位置、姿勢、動きなどの無線通信機器の状態、ノートパソコン、スマートフォンなどの無線通信機器の種類、無線通信機器の周辺に存在する静的または動的な物体により、通信相手との間の電波伝搬環境が変化するため、通信品質に影響を与え、当該無線通信機器による無線通信により実現されるサービスや無線通信システムに対して大きな影響を及ぼすことがあった。特に、無線通信に高い周波数を用いるほど、電波の直進性が強く、通信品質に影響を受けやすい。 By using the channel information related to radio wave propagation, it was possible to improve the throughput and reliability performance related to the communication of wireless communication equipment. On the other hand, depending on the state of the wireless communication device such as position, posture, movement, type of wireless communication device such as laptop computer, smartphone, and static or dynamic objects existing around the wireless communication device, it is possible to communicate with the communication partner. Since the radio wave propagation environment changes, it may affect the communication quality and have a great influence on the services and wireless communication systems realized by the wireless communication by the wireless communication device. In particular, the higher the frequency used for wireless communication, the stronger the straightness of the radio wave, and the more easily it is affected by the communication quality.
 そこで、本発明は、チャネル情報が、無線通信機器の通信に関する情報を含むだけではなく、無線通信時における無線通信機器の状態、種類、周辺環境を反映していることに着目し、チャネル情報を用いて無線通信機器や無線通信端末の周辺環境の実世界での状態を推定する。 Therefore, the present invention focuses on the fact that the channel information not only includes information related to the communication of the wireless communication device but also reflects the state, type, and surrounding environment of the wireless communication device at the time of wireless communication, and the channel information is provided. It is used to estimate the real-world state of the surrounding environment of wireless communication devices and wireless communication terminals.
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、無線通信機器または無線通信端末の周辺環境の実世界での状態を推定可能な技術を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of estimating the state of the surrounding environment of a wireless communication device or a wireless communication terminal in the real world.
 本発明の一態様の状態推定システムは、無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定システムにおいて、無線通信端末から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得する無線通信装置と、チャネル情報を用いて、前記チャネル特徴量を生成する生成装置と、前記チャネル特徴量を、無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器または無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルに入力することで、前記無線通信端末または無線通信端末の周辺環境の状態を検出する検出装置と、を備える。 The state estimation system of one aspect of the present invention is a state estimation system that estimates the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal, and receives a communication signal transmitted from the wireless communication terminal wirelessly from the communication signal. A wireless communication device that acquires channel information related to radio wave propagation between the wireless communication terminal and itself, a generation device that generates the channel feature amount using the channel information, and the channel feature amount between the wireless communication devices. By inputting the relationship between the channel feature quantity related to radio wave propagation and the state of the surrounding environment of the wireless communication device or wireless communication terminal into the real-world communication model modeled by machine learning, the wireless communication terminal or wireless communication terminal can be used. It is equipped with a detection device that detects the state of the surrounding environment.
 本発明の一態様の状態推定システムは、無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定システムにおいて、無線通信端末から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得する無線通信装置と、前記チャネル情報を用いて、チャネル特徴量を生成する第1の生成装置と、前記無線通信端末の物理的な状態、前記無線通信端末の種類、前記無線通信端末の周辺環境のうちいずれか1つ以上の状態情報を測定する測定装置と、前記状態情報のうち少なくとも1つの状態情報を検出するべき前記無線通信端末の状態となるターゲット状態情報とし、前記ターゲット状態情報以外で検出に用いる情報を補助情報として、訓練データを第2の生成装置と、前記訓練データを用いて前記ターゲット状態情報を出力する実世界通信モデルを生成する第3の生成装置と、を備える。 The state estimation system of one aspect of the present invention is a state estimation system that estimates the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal, and receives a communication signal transmitted from the wireless communication terminal wirelessly from the communication signal. A wireless communication device that acquires channel information related to radio wave propagation between the wireless communication terminal and itself, a first generation device that generates a channel feature amount using the channel information, and a physical of the wireless communication terminal. A measuring device that measures the state information of any one or more of the state, the type of the wireless communication terminal, and the surrounding environment of the wireless communication terminal, and the wireless that should detect at least one state information of the state information. The target state information that is the state of the communication terminal is used, the information used for detection other than the target state information is used as auxiliary information, the training data is output to the second generator, and the target state information is output using the training data. It is equipped with a third generator that generates a world communication model.
 本発明の一態様の状態推定方法は、無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定方法において、無線通信装置が、無線通信端末から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得し、生成装置が、前記チャネル情報を用いて、チャネル特徴量を生成し、検出装置が、前記チャネル特徴量を、無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器または無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルに入力することで、前記無線通信端末または無線通信端末の周辺環境の状態を検出する。 In the state estimation method of one aspect of the present invention, in the state estimation method of estimating the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal, the wireless communication device wirelessly receives the communication signal transmitted from the wireless communication terminal. , The channel information regarding the radio wave propagation between the wireless communication terminal and itself is acquired from the communication signal, the generator generates the channel feature amount using the channel information, and the detection device generates the channel feature amount. Is input to the real-world communication model modeled by machine learning about the relationship between the channel feature amount related to radio wave propagation between wireless communication devices and the state of the surrounding environment of the wireless communication device or wireless communication terminal. Detects the state of the surrounding environment of the terminal or wireless communication terminal.
 本発明の一態様の状態推定装置は、無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定装置において、無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器または無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルを記憶しておく記憶部と、無線通信端末から無線で送信される通信信号から取得した前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を用いて、チャネル特徴量を生成する生成部と、前記チャネル特徴量を前記実世界通信モデルに入力することで、前記無線通信端末または無線通信端末の周辺環境の状態を検出する検出部と、を備える。 The state estimation device of one aspect of the present invention is a state estimation device that estimates the state of the surrounding environment of a wireless communication terminal or a wireless communication terminal, and is a channel feature amount related to radio wave propagation between wireless communication devices and the wireless communication device or wireless communication terminal. A storage unit that stores a real-world communication model that models the relationship with the state of the surrounding environment by machine learning, and the wireless communication terminal acquired from a communication signal wirelessly transmitted from the wireless communication terminal and itself. By inputting the channel feature amount to the real-world communication model and the generation unit that generates the channel feature amount using the channel information related to the radio wave propagation between the radio communication terminals, the peripheral environment of the wireless communication terminal or the wireless communication terminal can be obtained. A detection unit for detecting a state is provided.
 本発明の一態様の状態推定プログラムは、上記状態推定装置としてコンピュータを機能させる状態推定プログラムである。 The state estimation program of one aspect of the present invention is a state estimation program that causes a computer to function as the state estimation device.
 本発明によれば、無線通信機器または無線通信端末の周辺環境の実世界での状態を推定可能な技術を提供できる。 According to the present invention, it is possible to provide a technique capable of estimating the state of the surrounding environment of a wireless communication device or a wireless communication terminal in the real world.
図1は、状態推定システムの全体構成例を示す図である。FIG. 1 is a diagram showing an overall configuration example of a state estimation system. 図2は、実世界通信モデルの生成例を示す図である。FIG. 2 is a diagram showing an example of generating a real-world communication model. 図3は、実世界通信モデルの入出力例を示す図である。FIG. 3 is a diagram showing an input / output example of a real-world communication model. 図4は、状態推定システムの動作例を示す図である。FIG. 4 is a diagram showing an operation example of the state estimation system. 図5は、実験エリアの例を示す図である。FIG. 5 is a diagram showing an example of an experimental area. 図6は、目標位置の設定例を示す図である。FIG. 6 is a diagram showing an example of setting a target position. 図7は、深層学習の処理例を示す図である。FIG. 7 is a diagram showing a processing example of deep learning. 図8は、実験結果を示す図である。FIG. 8 is a diagram showing the experimental results. 図9は、実験結果を示す図である。FIG. 9 is a diagram showing the experimental results. 図10は、状態推定システムのハードウェア構成例を示す図である。FIG. 10 is a diagram showing a hardware configuration example of the state estimation system.
 以下、図面を参照して、本発明の一実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts are designated by the same reference numerals and the description thereof will be omitted.
 [発明の概要]
 本発明は、無線通信端末が送信する電波伝搬に関するチャネル情報やチャネル特徴量を用いて、実世界での無線通信端末やその周辺環境の状態情報を推定すること、具体的には当該状態情報から選択されたターゲット状態情報を推定することにある。
[Outline of the invention]
The present invention estimates the state information of a wireless communication terminal and its surrounding environment in the real world by using channel information and channel features related to radio wave propagation transmitted by the wireless communication terminal, specifically, from the state information. The purpose is to estimate the selected target state information.
 「チャネル情報」とは、送信側と受信側との間でどのように電波が伝搬しているかを示す情報である。つまり、「チャネル情報」とは、MIMO通信技術において、送信側の備える複数のアンテナと受信側の備える複数のアンテナとの間での電波伝搬の状態を表す情報であり、伝搬ロス、または伝搬ロスと電波の位相回転情報とから得られる情報である。 "Channel information" is information indicating how radio waves propagate between the transmitting side and the receiving side. That is, "channel information" is information indicating the state of radio wave propagation between a plurality of antennas provided on the transmitting side and a plurality of antennas provided on the receiving side in MIMO communication technology, and is propagation loss or propagation loss. It is the information obtained from the phase rotation information of the radio wave and the radio wave.
 「チャネル特徴量」とは、「チャネル情報」から得られる数値、または「チャネル情報」に後述する様々な演算を施して得られる数値である。 The "channel feature amount" is a numerical value obtained from "channel information" or a numerical value obtained by performing various operations described later on "channel information".
 「無線通信端末の状態情報」とは、例えば、位置、姿勢、向き、高さ、速度、加速度、回転、動きなどの無線通信端末の状態、手に把持されている、鞄の中に入れられているなどの無線通信端末の物理状態、ノートパソコン、スマートフォン、コネクテッドカー、ロボット、輸送装置、ドローンなどの無線通信端末の種類、無線通信端末の周辺に存在する物体(オブジェクト)、に関する情報である。 The "state information of the wireless communication terminal" is, for example, the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement, and is put in a bag held in the hand. Information about the physical state of wireless communication terminals such as laptop computers, smartphones, connected cars, robots, transport devices, types of wireless communication terminals such as drones, and objects that exist around the wireless communication terminals. ..
 「ターゲット状態情報」とは、「無線端末の状態情報」のうち、予測を行う対象となる状態情報である。 The "target state information" is the state information to be predicted among the "state information of the wireless terminal".
 本発明は、「チャネル特徴量」と「ターゲット状態情報」、または、「チャネル特徴量」と「無線通信端末の状態情報」と「ターゲット状態情報」との関係性を機械学習によりモデル化した実世界通信モデルを予め生成しておき、所定のタイミングで無線通信端末から送信されたチャネル情報のチャネル特徴量を当該実世界通信モデルに入力することで、当該所定のタイミングでの無線通信端末の実世界での状態情報(つまりターゲット状態情報)を推定する。 The present invention is an actual model of the relationship between "channel feature amount" and "target state information", or "channel feature amount" and "wireless communication terminal state information" and "target state information" by machine learning. By generating a world communication model in advance and inputting the channel feature amount of the channel information transmitted from the wireless communication terminal to the real world communication model at a predetermined timing, the actual wireless communication terminal at the predetermined timing is input. Estimate the state information in the world (that is, the target state information).
 [状態推定システムの構成]
 図1は、本実施形態に係る状態推定システム1の全体構成例を示す図である。状態推定システム1は、無線通信端末2やその周辺環境の状態情報を推定する状態推定システムまたは状態推定装置である。
[Configuration of state estimation system]
FIG. 1 is a diagram showing an overall configuration example of the state estimation system 1 according to the present embodiment. The state estimation system 1 is a state estimation system or a state estimation device that estimates the state information of the wireless communication terminal 2 and its surrounding environment.
 無線通信端末2について説明する。無線通信端末2は、例えば、無線通信機能を備える自動車、ドローン、建設機械車両である。無線通信端末2は、1つまたは複数であり、無線通信網5を介して状態推定システム1と無線通信可能である。無線通信端末2は、複数のアンテナを介してMIMO通信により無線通信を行う無線通信部21を備える。1つの無線通信端末2が複数の無線通信部21を備えてもよい。 The wireless communication terminal 2 will be described. The wireless communication terminal 2 is, for example, an automobile, a drone, or a construction machine vehicle having a wireless communication function. The wireless communication terminal 2 is one or a plurality, and can wirelessly communicate with the state estimation system 1 via the wireless communication network 5. The wireless communication terminal 2 includes a wireless communication unit 21 that performs wireless communication by MIMO communication via a plurality of antennas. One wireless communication terminal 2 may include a plurality of wireless communication units 21.
 状態推定システム1について説明する。状態推定システム1は、例えば、主要場所に設置された基地局である。状態推定システム1は、例えば、無線通信端末2と通信可能な無線通信端末、無線通信装置、無線通信機器、無線通信デバイスでもよい。 The state estimation system 1 will be described. The state estimation system 1 is, for example, a base station installed in a main place. The state estimation system 1 may be, for example, a wireless communication terminal, a wireless communication device, a wireless communication device, or a wireless communication device capable of communicating with the wireless communication terminal 2.
 状態推定システム1は、図1に示したように、例えば、複数の無線通信部11と、入力特徴量生成部12と、補助情報生成部13と、実世界通信モデル制御部14と、実世界通信モデル記憶部15と、ネットワーク網16と、を備える。 As shown in FIG. 1, the state estimation system 1 includes, for example, a plurality of wireless communication units 11, an input feature amount generation unit 12, an auxiliary information generation unit 13, a real-world communication model control unit 14, and a real-world. A communication model storage unit 15 and a network network 16 are provided.
 無線通信部11は、複数のアンテナを介してMIMO通信により無線通信を行う通信部である。無線通信部11は、複数具備することができ、図1は2つの無線通信部を例として示しており、第1の無線通信部11aと、第2の無線通信部11bと、である。無線通信部11は、無線通信端末2から送信される通信信号を無線で受信する機能を備える。無線通信部11は、受信した通信信号から、無線通信端末2と自身の無線通信部11との間の電波伝搬に関するチャネル情報を取得する機能を備える。無線通信部11は、取得したチャネル情報を、ネットワーク網16を介して入力特徴量生成部12へ出力する機能を備える。無線通信部11は、無線通信装置で構成してもよい。 The wireless communication unit 11 is a communication unit that performs wireless communication by MIMO communication via a plurality of antennas. A plurality of wireless communication units 11 can be provided, and FIG. 1 shows two wireless communication units as an example, the first wireless communication unit 11a and the second wireless communication unit 11b. The wireless communication unit 11 has a function of wirelessly receiving a communication signal transmitted from the wireless communication terminal 2. The wireless communication unit 11 has a function of acquiring channel information related to radio wave propagation between the wireless communication terminal 2 and its own wireless communication unit 11 from the received communication signal. The wireless communication unit 11 has a function of outputting the acquired channel information to the input feature amount generation unit 12 via the network network 16. The wireless communication unit 11 may be configured by a wireless communication device.
 「通信信号」とは、無線通信部11や無線通信端末2から送信されるチャネル情報を得ることができる信号である。通信信号は、例えば、チャネル情報をフィードバックするための情報を含むフィードバック信号、またはパイロット信号である。パイロット信号は、無線通信を行う装置の間での既知の信号であればよい。 The "communication signal" is a signal from which channel information transmitted from the wireless communication unit 11 or the wireless communication terminal 2 can be obtained. The communication signal is, for example, a feedback signal including information for feeding back channel information, or a pilot signal. The pilot signal may be any signal known between the devices performing wireless communication.
 入力特徴量生成部12は、通信信号から取得したチャネル情報を用いて、無線通信端末2と状態推定システム1との間の電波伝搬に係るチャネル特徴量を生成する機能を備える。入力特徴量生成部12は、生成したチャネル特徴量を実世界通信モデル制御部14が利用する実世界通信モデルに入力する機能を備える。入力特徴量生成部12は、入力特徴量生成装置、生成装置、第1の生成装置、生成部で構成してもよい。 The input feature amount generation unit 12 has a function of generating a channel feature amount related to radio wave propagation between the wireless communication terminal 2 and the state estimation system 1 by using the channel information acquired from the communication signal. The input feature amount generation unit 12 has a function of inputting the generated channel feature amount to the real-world communication model used by the real-world communication model control unit 14. The input feature amount generation unit 12 may be composed of an input feature amount generation device, a generation device, a first generation device, and a generation unit.
 「チャネル特徴量」とは、チャネル情報を様々な形に変換した特徴量である。チャネル情報は、時間方向の形、周波数方向の形、符号化された形で表現可能であり、無線通信システムごとに、様々な形で変換されたものである。例えば、送信アンテナNtと受信アンテナNrとの間のチャネル情報を、Mr×Mtのチャネル行列Hとして表現することができる。このチャネル行列Hやチャネル行列Hに演算処理を行って得られる係数が「チャネル特徴量」の例である。 "Channel feature amount" is a feature amount obtained by converting channel information into various forms. The channel information can be expressed in a time-direction form, a frequency-direction form, and a coded form, and is converted in various forms for each wireless communication system. For example, the channel information between the transmitting antenna Nt and the receiving antenna Nr can be expressed as a channel matrix H of Mr × Mt. An example of the "channel feature amount" is a coefficient obtained by performing arithmetic processing on the channel matrix H and the channel matrix H.
 このチャネル行列Hに対して、QR分解、特異値分解、HHHやHHHのような相関行列、相関行列のQR分解/固有ベクトル分解や、それらの周波数方向または時間方向での差分情報など、さまざまな線形処理で得られるベクトル、位相、レベルなども生成可能である。 For this channel matrix H, QR decomposition, singular value decomposition, correlation matrix such as H H H and H H H, QR decomposition / eigenvector decomposition of the correlation matrix, and difference information in their frequency direction or time direction, etc. Vectors, phases, levels, etc. obtained by various linear processes can also be generated.
 または、複数アンテナを用いた電波の到来方向推定を用いた結果や、到来方向推定に使うための入力情報を用いることもできる。または、チャネル情報をフィードバックするために圧縮した情報を用いることもできる。例えば、無線LANの場合であれば、チャネル情報を圧縮した情報として、既知信号を受信して得られるチャネル行列に対し、特異値分解やQR分解で得られるユニタリ行列を角度情報に圧縮したものを量子化し、複数のサブキャリア(周波数を細かく区切ったサブチャネル)に対応するものを受信側へフィードバックしている(非特許文献1参照)。このように圧縮された行列情報にさらに、平均化やQR分解や差分情報を用いて特徴量を生成することもできる。 Alternatively, the result of using the arrival direction estimation of the radio wave using multiple antennas or the input information to be used for the arrival direction estimation can be used. Alternatively, compressed information can be used to feed back the channel information. For example, in the case of wireless LAN, as the compressed information of the channel information, the unitary matrix obtained by singular value decomposition or QR decomposition is compressed into angle information with respect to the channel matrix obtained by receiving a known signal. It is quantized and feeds back to the receiving side corresponding to a plurality of subcarriers (subchannels in which frequencies are finely divided) (see Non-Patent Document 1). In addition to the matrix information compressed in this way, features can be generated by using averaging, QR decomposition, and difference information.
 補助情報生成部13は、カメラ3やセンサ4から無線通信端末2の状態情報を取得し、無線通信端末2の物理的な位置、速度、向き、加速度などの物理状態、無線通信端末2の種類、無線通信端末2の周辺のオブジェクトの位置や数などの周辺環境情報を測定する機能を備える。 The auxiliary information generation unit 13 acquires the state information of the wireless communication terminal 2 from the camera 3 and the sensor 4, and the physical state such as the physical position, speed, direction, and acceleration of the wireless communication terminal 2, and the type of the wireless communication terminal 2. , It has a function to measure surrounding environment information such as the position and number of objects around the wireless communication terminal 2.
 また、補助情報生成部13は、無線通信端末2の状態情報であって、ターゲット状態情報とはならない情報や、ターゲット状態情報であるが対応する時間が異なるターゲット状態情報や、ネットワーク網16を介して得られる天気、日付、時間、イベント、天候、気温、人やモノの物理的な位置や動きなどの情報、無線通信端末2やその所有者や所有物の構成・大きさ・分類/型式情報・契約情報・嗜好情報・動作情報・通信モード情報を、補助情報として生成する機能を備える。 Further, the auxiliary information generation unit 13 is via the network 16 or information that is the state information of the wireless communication terminal 2 and does not become the target state information, the target state information that is the target state information but the corresponding time is different, and the network network 16. Information such as weather, date, time, event, weather, temperature, physical position and movement of people and things, composition, size, classification / model information of wireless communication terminal 2 and its owners and possessions. -It has a function to generate contract information, preference information, operation information, and communication mode information as auxiliary information.
 「補助情報」は、実世界通信モデルへの入力情報として用いたり、実世界通信モデルを選択するために用いられる。または、「補助情報」は、実世界通信モデルを訓練(学習)する際において、実世界通信モデルを構成する様々な係数の更新時に用いる教師データとして用いてもよい。例えば実世界通信モデル内部で一度、補助情報を生成してから、ターゲット状態情報の出力に用いる場合に、補助情報は教師データとして用いることができる。補助情報生成部13は、カメラ・センサなどの測定装置、補助情報生成装置で構成してもよい。 "Auxiliary information" is used as input information to the real-world communication model or to select the real-world communication model. Alternatively, the "auxiliary information" may be used as teacher data used when updating various coefficients constituting the real-world communication model when training (learning) the real-world communication model. For example, when auxiliary information is generated once inside the real-world communication model and then used for output of target state information, the auxiliary information can be used as teacher data. The auxiliary information generation unit 13 may be composed of a measuring device such as a camera / sensor and an auxiliary information generation device.
 実世界通信モデル制御部14は、実世界通信モデル記憶部15から、無線通信機器間のチャネル特徴量と無線通信機器やその周辺環境の状態との関係性を機械学習により予めモデル化した実世界通信モデルを読み出し、上記電波伝搬に係るチャネル特徴量、更には上記補助情報を当該実世界通信モデルに入力することで、無線通信端末2やその周辺環境の実世界での状態を検出し、実世界での無線通信端末2やその周辺環境の状態情報を出力する機能を備える。実世界通信モデル制御部14は、実世界通信モデル利用装置、検出装置、検出部で構成してもよい。 The real-world communication model control unit 14 uses machine learning to pre-model the relationship between the channel features between wireless communication devices and the state of the wireless communication device and its surrounding environment from the real-world communication model storage unit 15. By reading out the communication model and inputting the channel feature amount related to the radio wave propagation and the auxiliary information into the real-world communication model, the state of the wireless communication terminal 2 and its surrounding environment in the real world is detected, and the actual state is detected. It has a function to output the state information of the wireless communication terminal 2 and its surrounding environment in the world. The real-world communication model control unit 14 may be composed of a real-world communication model utilization device, a detection device, and a detection unit.
 「無線通信端末の状態情報」とは、上述した通り、例えば、位置、姿勢、向き、高さ、速度、加速度、回転、動きなどの無線通信端末の状態、手に把持されている、鞄の中に入れられているなどの無線通信端末の物理状態、ノートパソコン、スマートフォン、コネクテッドカー、ロボット、輸送装置、ドローンなどの無線通信端末の種類、無線通信端末の周辺に存在する物体(オブジェクト)、に関する情報である。 As described above, the "state information of the wireless communication terminal" is, for example, the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement, and the state of the bag held in the hand. Physical status of wireless communication terminals such as those inside, types of wireless communication terminals such as laptop computers, smartphones, connected cars, robots, transport devices, drones, objects existing around wireless communication terminals, Information about.
 上記状態情報のうち少なくとも1つの状態情報を検出するべき無線通信端末2のターゲット状態情報とし、ターゲット状態情報を検出するために用いる、チャネル特徴量以外の情報を補助情報とした。例えば、実世界通信モデル制御部14は、ターゲット状態情報を出力する実世界通信モデルを形成するための訓練データを生成する訓練データ生成部14aと、訓練データを用いて、ターゲット状態情報を出力する実世界通信モデルを生成する実世界通信モデル生成部14bと、チャネル特徴量や補助情報を実世界通信モデルに入力して当該実世界通信モデルを利用する実世界通信モデル利用部14cと、を備える。訓練データ生成部14aは、第2の生成装置で構成してもよい。実世界通信モデル生成部14bは、第3の生成装置で構成してもよい。 The target state information of the wireless communication terminal 2 for which at least one of the above state information should be detected was used, and the information other than the channel feature amount used for detecting the target state information was used as auxiliary information. For example, the real-world communication model control unit 14 outputs the target state information by using the training data generation unit 14a for generating the training data for forming the real-world communication model that outputs the target state information and the training data. It includes a real-world communication model generation unit 14b that generates a real-world communication model, and a real-world communication model utilization unit 14c that inputs channel feature quantities and auxiliary information into the real-world communication model and uses the real-world communication model. .. The training data generation unit 14a may be configured by a second generation device. The real-world communication model generation unit 14b may be configured by a third generation device.
 実世界通信モデル記憶部15は、無線通信機器間のチャネル特徴量と無線通信機器やその周辺環境の状態との関係性を機械学習により予めモデル化した実世界通信モデルを記憶しておく機能を備える。実世界通信モデルは、例えば、入力特徴量生成部12で生成された電波伝搬に係るチャネル特徴量、補助情報生成部13で生成された補助情報、複数の無線通信部11と複数の無線通信端末2との間の各無線通信のうち少なくとも1つの無線通信から得られるチャネル特徴量を用いて生成された学習モデルである。実世界通信モデル記憶部15は、実世界通信モデル記憶装置、記憶部で構成してもよい。 The real-world communication model storage unit 15 has a function of storing a real-world communication model in which the relationship between the channel features between wireless communication devices and the state of the wireless communication device and its surrounding environment is pre-modeled by machine learning. Be prepared. The real-world communication model includes, for example, a channel feature amount related to radio wave propagation generated by the input feature amount generation unit 12, auxiliary information generated by the auxiliary information generation unit 13, a plurality of wireless communication units 11 and a plurality of wireless communication terminals. It is a learning model generated by using the channel feature amount obtained from at least one radio communication of each radio communication with 2. The real-world communication model storage unit 15 may be composed of a real-world communication model storage device and a storage unit.
 [実世界通信モデルの生成方法]
 図2は、実世界通信モデルの生成例を示す図である。機械学習のアルゴリズムは、例えば、サポートベクタマシン、ニューラルネットワーク、決定木、勾配ブースティング決定木、ランダムフォレスト、勾配ブーストなど、任意のアルゴリズムを用いることができる。
[How to generate a real-world communication model]
FIG. 2 is a diagram showing an example of generating a real-world communication model. As the machine learning algorithm, any algorithm such as a support vector machine, a neural network, a decision tree, a gradient boosting decision tree, a random forest, and a gradient boost can be used.
 実世界通信モデル制御部14は、無線通信端末2からのフィードバック情報またはパイロット信号から得られるチャネル特徴量と、無線通信端末2の状態情報(ターゲット状態情報を含む)と、を訓練データとして用意し、このうち、無線通信端末2の少なくとも1つ以上のパラメータをターゲット状態情報として出力できるよう、所定の機械学習アルゴリズムを用いて訓練(機械学習)を行い、係数、バイアス、決定木などの係数を更新することで、チャネル特徴量から無線通信端末2の状態情報(ターゲット状態情報)を出力可能な実世界通信モデルを生成する。この際に、無線通信端末2の状態情報以外の情報を補助情報として用いてもよい。実世界通信モデルは、チャネル特徴量、またはチャネル特徴量と補助情報とを用いて、ターゲット状態情報を出力するモデルとなる。 The real-world communication model control unit 14 prepares the channel feature amount obtained from the feedback information or the pilot signal from the wireless communication terminal 2 and the state information (including the target state information) of the wireless communication terminal 2 as training data. Of these, training (machine learning) is performed using a predetermined machine learning algorithm so that at least one or more parameters of the wireless communication terminal 2 can be output as target state information, and coefficients such as coefficients, biases, and determination trees are calculated. By updating, a real-world communication model capable of outputting the state information (target state information) of the wireless communication terminal 2 from the channel feature amount is generated. At this time, information other than the state information of the wireless communication terminal 2 may be used as auxiliary information. The real-world communication model is a model that outputs target state information using channel features or channel features and auxiliary information.
 ここで、無線通信端末2の状態情報とは、無線通信端末2の物理状態(位置、速度、回転、向き、高さ、手に持っている、バックの中)、無線通信端末2の種類(ノートPC、スマートフォン、コネクテッドカー、ロボット、ドローン、仮想現実(VR: Virtual Reality)・拡張現実(AR: Augmented Reality)・複合現実(MR: Mixed Reality)・代替現実(SR:Substitutional Reality)などのxR端末)、無線通信端末2の周辺オブジェクトの物理状態である。 Here, the state information of the wireless communication terminal 2 includes the physical state of the wireless communication terminal 2 (position, speed, rotation, direction, height, holding in hand, in the back), and the type of the wireless communication terminal 2 (in the back). XRs for notebook PCs, smartphones, connected cars, robots, drones, virtual reality (VR: Virtual Reality), augmented reality (AR: Augmented Reality), compound reality (MR: Mixed Reality), alternative reality (SR: Substitutional Reality), etc. Terminal), the physical state of peripheral objects of wireless communication terminal 2.
 補助情報とは、無線通信端末2の状態情報であって、ターゲット状態情報とはならない情報や、ターゲット状態情報であるが、対応する時間が異なるターゲット状態情報や、ネットワーク網16を介して得られる天気、日付、時間、イベント、天候、気温、人やモノの物理的な位置や動きなどの情報、無線通信端末2やその所有者や所有物の構成・大きさ・分類/型式情報・契約情報・嗜好情報・動作情報・通信モード情報、無線通信に関するパラメータ、端末の電力消費などのモード、端末/端末の所有者/端末の搭載物の行動パターン/嗜好/搭載位置情報、端末の所有者の契約情報、端末/端末の所有者/端末の搭載物を特定する見た目または通信の認識情報、周辺のカメラ/センサからの映像情報、周辺のセンサから得られる温度、湿度、光、高度、傾き、速度、加速度などのセンシング情報、などを用いることができる。 The auxiliary information is the state information of the wireless communication terminal 2, which is not the target state information, or the target state information, but the corresponding time is different, and the target state information can be obtained via the network network 16. Information such as weather, date, time, event, weather, temperature, physical position and movement of people and things, composition / size / classification / model information / contract information of wireless communication terminal 2 and its owners and possessions. -Preference information / operation information / communication mode information, parameters related to wireless communication, modes such as terminal power consumption, terminal / terminal owner / behavior pattern / preference / mounting position information of the terminal's load, terminal owner's Contract information, appearance or communication recognition information that identifies the terminal / terminal owner / equipment of the terminal, video information from peripheral cameras / sensors, temperature, humidity, light, altitude, tilt, obtained from peripheral sensors, Sensing information such as speed and acceleration can be used.
 実世界通信モデルにおいて、ターゲット状態情報として無線通信端末2の物理状態、そのうち位置情報を出力する場合を例とすると、GPS、無線LAN、Bluetoothなどによる位置測位や、無線通信端末2のカメラ映像によるLiDAR(Light Detection and Ranging)技術を用いた自己位置推定、監視カメラやセンシング情報からの位置情報の抽出処理、により位置を取得可能な無線通信端末を用い、実世界通信モデルへの入力信号と合わせて訓練データとし、実世界通信モデル制御部14へ入力することで、機械学習により訓練を行い、実世界通信モデルを算出できる。 In the real-world communication model, as an example, the physical state of the wireless communication terminal 2 as the target state information, of which the position information is output, is based on the position positioning by GPS, wireless LAN, Bluetooth, etc., or the camera image of the wireless communication terminal 2. Using a wireless communication terminal that can acquire the position by self-position estimation using LiDAR (Light Detection and Ringing) technology and extraction processing of position information from surveillance cameras and sensing information, it is combined with the input signal to the real-world communication model. By inputting the training data to the real-world communication model control unit 14, training can be performed by machine learning and the real-world communication model can be calculated.
 物理状態として、速度、回転、向き、高さなど、を出力する際には、訓練データとして、それらに対する教師データを生成する。端末の加速度センサや、位置情報の時系列データ、などを用いて速度情報を抽出したり、端末のジャイロセンサや映像/センサ情報から回転、回転速度、向きを出力したり、気圧計から高さを推定したり、端末または端末の所有者/所有物を映したカメラやセンサ出力を用いてそれらを出力したりすることができる。手に持っている、バックの中、などの状態は無線通信端末2のカメラ/センサの出力から、例えば光を検出できず、時間が昼であればバックの中であると判断させたり、光検出ができない方向をとることで耳に当てている、手に持っている、などの状態を判断したり、または、端末または端末の所有者/所有物を映したカメラやセンサ情報から、手に持っている、バックの中、などの状態を判別させたり、手動で映像から判断したりすることもできる。 When outputting speed, rotation, orientation, height, etc. as physical states, teacher data for them is generated as training data. Velocity information can be extracted using the accelerometer of the terminal, time-series data of position information, etc., rotation, rotation speed, and direction can be output from the gyro sensor and video / sensor information of the terminal, and height from the barometer. Can be estimated and output using a camera or sensor output that reflects the terminal or the owner / property of the terminal. For example, light cannot be detected from the output of the camera / sensor of the wireless communication terminal 2 in the state of holding it in the hand, in the bag, etc. You can judge the state of touching your ear, holding it in your hand, etc. by taking a direction that cannot be detected, or you can pick it up from the camera or sensor information that shows the terminal or the owner / property of the terminal. You can also determine the state of holding, in the back, etc., or manually judge from the image.
 出力するターゲット状態情報が、無線通信端末2の種類である場合には、あらかじめ様々な種類の端末での通信情報と状態情報を収集し、訓練データとすることで、どのような種類の端末であるかを出力する実世界通信モデルを生成できる。 When the target status information to be output is the type of the wireless communication terminal 2, the communication information and the status information of various types of terminals are collected in advance and used as training data, so that any type of terminal can be used. You can generate a real-world communication model that outputs what you have.
 出力するターゲット状態情報が、無線通信端末2の周辺環境情報である場合には、無線通信端末2に具備するカメラやセンサによる周辺環境の検出結果、または当該環境に別途設置されたカメラ3やセンサ4の検出結果、検出対象となる周辺のオブジェクトが具備する位置検出装置の出力結果、または人が手動で判断して生成した周辺環境情報を用いて、訓練データを生成し、周辺環境の情報を出力する実世界通信モデルを生成できる。例えば、自己位置を測定できるオブジェクトを用い、無線通信端末2の周辺を動き、無線通信端末2の通信情報と合わせて訓練データとして用いることができる。 When the target state information to be output is the peripheral environment information of the wireless communication terminal 2, the detection result of the peripheral environment by the camera or sensor provided in the wireless communication terminal 2, or the camera 3 or sensor separately installed in the environment. Training data is generated using the detection result of 4, the output result of the position detection device provided by the surrounding object to be detected, or the surrounding environment information generated by human manual judgment, and the information of the surrounding environment is obtained. You can generate a real-world communication model to output. For example, an object capable of measuring its own position can be used as training data by moving around the wireless communication terminal 2 and combining it with the communication information of the wireless communication terminal 2.
 教師データは、事前に収集してから実世界通信モデルを生成して用いてもよいし、別途ネットワークに接続された状態情報の収集装置や、人による作業や、前述の物理状態や種類や周辺環境の情報を何らかの形で収集可能な無線通信端末2であって、さらにデータの提供に許諾し他の無線通信端末2から、当該教師データを収集し、徐々に訓練データを増やしたり、生成した実世界通信モデルをアップデートしたりしてもよい。 The teacher data may be collected in advance and then used by generating a real-world communication model, a state information collecting device separately connected to a network, human work, the above-mentioned physical state, type, and surroundings. It is a wireless communication terminal 2 that can collect environmental information in some form, and the teacher data is collected from other wireless communication terminals 2 by permitting the provision of data, and the training data is gradually increased or generated. You may also update the real-world communication model.
 また、ターゲット状態情報は、前述の無線通信端末2の物理状態、種類、周辺のオブジェクト情報のうち、一つを選択してもよいし、複数を選択してもよい。 Further, as the target state information, one may be selected from the physical state, the type, and the surrounding object information of the wireless communication terminal 2 described above, or a plurality of them may be selected.
 それゆえ、実世界通信モデル制御部14は、例えば、無線通信端末2の状態、無線通信端末2の種類、無線通信端末2の周辺に位置するオブジェクトの情報をラベル付けした訓練データと、無線通信機器間の電波伝搬に関するチャネル特徴量と、の関係性を学習し、入力されたチャネル特徴量に対応するラベル付けされた情報を出力するように訓練する実世界通信モデルを生成することができる。 Therefore, the real-world communication model control unit 14 has, for example, training data labeled with information on the state of the wireless communication terminal 2, the type of the wireless communication terminal 2, and information on objects located around the wireless communication terminal 2, and wireless communication. It is possible to generate a real-world communication model that learns the relationship between channel features related to radio wave propagation between devices and trains them to output labeled information corresponding to the input channel features.
 なお、チャネル特徴量については、複数の無線通信部11で同時に受信した複数のチャネル情報より計測してもよし、複数の周波数に対して得られるものを用いてもよいし、音波や光などのチャネル情報をも併せて用いてもよいし、通信方式やアルゴリズムや変調方式や誤り訂正符号情報を合わせて生成してもよい。 The channel feature amount may be measured from a plurality of channel information received simultaneously by the plurality of wireless communication units 11, may be obtained for a plurality of frequencies, or may be used for sound waves, light, or the like. Channel information may also be used, or communication method, algorithm, modulation method, and error correction code information may be combined and generated.
 チャネル情報は、無線通信端末2の第1の無線通信部11aで受信した受信信号や、受信信号に含まれるフィードバック情報から得てもよい。 The channel information may be obtained from the received signal received by the first wireless communication unit 11a of the wireless communication terminal 2 or the feedback information included in the received signal.
 なお、フィードバック情報は、必ずしも無線通信端末2(ここでは、図1に示した第1の無線通信端末2a)が第1の無線通信部11a宛てに送信したものである必要はない。例えば、第1の無線通信端末2aが第2の無線通信部11b宛てに送信したフィードバック情報を用いてもよい。このように制御すると、第1の無線通信端末2aと第1の無線通信部11aとの間のチャネル情報とともに、第1の無線通信端末2aと第2の無線通信部11bとの間のチャネル情報も取得できるので、2つの電波伝搬情報を取得できるメリットがある。 Note that the feedback information does not necessarily have to be transmitted by the wireless communication terminal 2 (here, the first wireless communication terminal 2a shown in FIG. 1) to the first wireless communication unit 11a. For example, the feedback information transmitted by the first wireless communication terminal 2a to the second wireless communication unit 11b may be used. When controlled in this way, the channel information between the first wireless communication terminal 2a and the first wireless communication unit 11a as well as the channel information between the first wireless communication terminal 2a and the second wireless communication unit 11b are controlled. There is a merit that two radio wave propagation information can be acquired because it can also be acquired.
 この場合、入力特徴量生成部12は、第1の無線通信部11aから出力されたチャネル情報や当該チャネル情報から展開される電波伝搬情報に加え、第2の無線通信部11bから出力されたチャネル情報や当該チャネル情報から展開される電波伝搬情報を更に用いることができる。 In this case, the input feature amount generation unit 12 has a channel output from the second wireless communication unit 11b in addition to the channel information output from the first wireless communication unit 11a and the radio wave propagation information developed from the channel information. Information and radio wave propagation information developed from the channel information can be further used.
 その結果、無線通信端末2の状態を検出する検出精度が向上する。 As a result, the detection accuracy for detecting the state of the wireless communication terminal 2 is improved.
 無線通信部11は、ネットワーク網16に接続されない外部の無線通信部であってもよい。この場合、例えば、当該外部の無線通信部と第1の無線通信端末2aとの間のフィードバック情報を、ネットワーク網16に接続された第1の無線通信部11aで受信し、前記外部の無線通信部と第1の無線通信端末2aとの間のチャネル情報を用いることができる。 The wireless communication unit 11 may be an external wireless communication unit that is not connected to the network network 16. In this case, for example, the feedback information between the external wireless communication unit and the first wireless communication terminal 2a is received by the first wireless communication unit 11a connected to the network network 16, and the external wireless communication is performed. Channel information between the unit and the first wireless communication terminal 2a can be used.
 例えば、第1の無線通信部11aは、第1の無線通信端末2aから、第1の無線通信部11a以外のネットワーク網未接続無線通信部(ネットワーク網16に接続された第2の無線通信部11bでもよい)へ送信されたチャネル情報を含む通信信号を受信する。入力特徴量生成部12は、第1の無線通信端末2aから受信した当該通信信号の受信電力と、当該通信信号に含まれる第1の無線通信端末2aと上記ネットワーク網未接続無線通信部や第2の無線通信部11bとの間のチャネル情報とを用いて、チャネル特徴量を生成する。 For example, the first wireless communication unit 11a is a network network unconnected wireless communication unit (second wireless communication unit connected to the network network 16) other than the first wireless communication unit 11a from the first wireless communication terminal 2a. 11b), the communication signal including the channel information transmitted to is received. The input feature amount generation unit 12 includes the received power of the communication signal received from the first wireless communication terminal 2a, the first wireless communication terminal 2a included in the communication signal, the wireless communication unit not connected to the network network, and the first. The channel feature amount is generated by using the channel information with and from the wireless communication unit 11b of 2.
 無線通信部11が、複数の周波数に分割する直交波周波数分割方式のような無線通信システムであり、チャネル情報について複数の周波数に対応するものが得られる場合には、各周波数のチャネル情報のすべて使ったり、受信レベルの高い周波数のチャネル情報を選択したり、総和または平均をとったり、総和または平均により得られる情報に線形信号処理を行ってもよい。 When the wireless communication unit 11 is a wireless communication system such as an orthogonal wave frequency division method that divides into a plurality of frequencies and a channel information corresponding to a plurality of frequencies can be obtained, all of the channel information of each frequency is obtained. You may use it, select frequency channel information with a high reception level, take the sum or average, or perform linear signal processing on the information obtained by the sum or average.
 例えば、入力特徴量生成部12は、第1の無線通信部11a以外の第2の無線通信部11b(ネットワーク網未接続無線通信部でもよい)が受信した第1の無線通信端末2aからの通信信号から取得した複数の周波数チャネルのチャネル情報を用いて、異なる周波数に対するチャネル情報から線形演算して得られる情報を、平均化して得られる情報を生成する。 For example, the input feature amount generation unit 12 communicates from the first wireless communication terminal 2a received by the second wireless communication unit 11b (which may be the wireless communication unit not connected to the network network) other than the first wireless communication unit 11a. Using the channel information of a plurality of frequency channels acquired from the signal, information obtained by averaging the information obtained by linear calculation from the channel information for different frequencies is generated.
 [実世界通信モデルの利用方法]
 図3は、実世界通信モデルの入出力例を示す図である。図2において、実世界通信モデルを構築すれば、チャネル特徴量、またはチャネル特徴量および補助情報を用いて、ターゲット状態情報を出力できる。ターゲット状態情報は、前述のとおり、無線通信端末2の物理状態、種類、または周辺のオブジェクト情報、のうち少なくとも一つの情報となる。
[How to use the real-world communication model]
FIG. 3 is a diagram showing an input / output example of a real-world communication model. In FIG. 2, if a real-world communication model is constructed, target state information can be output using channel features, channel features, and auxiliary information. As described above, the target state information is at least one of the physical state, type, or peripheral object information of the wireless communication terminal 2.
 [状態推定システムの動作]
 図4は、状態推定システム1の動作例を示す図である。この動作例は、第1の無線通信部11aが、第1の無線通信端末2aが第1の無線通信部11aへ送信した無線信号のパイロット信号を用いるか、第1の無線通信端末2aが第1の無線通信部11aまたは他の無線通信部(例えば、第2の無線通信部11b)へ送信した無線信号に含まれるフィードバック信号を用いて、第1の無線通信端末2aに関連するチャネル情報を取得する場合の状態推定方法である。
[Operation of state estimation system]
FIG. 4 is a diagram showing an operation example of the state estimation system 1. In this operation example, the first wireless communication unit 11a uses the pilot signal of the wireless signal transmitted by the first wireless communication terminal 2a to the first wireless communication unit 11a, or the first wireless communication terminal 2a is the first. Using the feedback signal included in the wireless signal transmitted to the wireless communication unit 11a of 1 or another wireless communication unit (for example, the second wireless communication unit 11b), the channel information related to the first wireless communication terminal 2a can be obtained. It is a state estimation method when acquiring.
 ステップS1;
 第1の無線通信部11aは、第1の無線通信端末2aから送信されるチャネル情報のフィードバック情報を含む無線信号またはパイロット信号を受信する。第1の無線通信部11aは、受信したフィードバック情報またはパイロット信号から、第1の無線通信端末2aと自身との間、または第1の無線通信端末2aと第2の無線通信部11bとの間、の電波伝搬に関するチャネル情報を取得する。その後、第1の無線通信部11aは、取得したチャネル情報を、ネットワーク網16を介して入力特徴量生成部12へ出力する。
Step S1;
The first radio communication unit 11a receives a radio signal or a pilot signal including feedback information of channel information transmitted from the first radio communication terminal 2a. From the received feedback information or pilot signal, the first wireless communication unit 11a is between the first wireless communication terminal 2a and itself, or between the first wireless communication terminal 2a and the second wireless communication unit 11b. Acquires channel information related to radio wave propagation in. After that, the first wireless communication unit 11a outputs the acquired channel information to the input feature amount generation unit 12 via the network network 16.
 ステップS2;
 入力特徴量生成部12は、第1の無線通信部11aから出力されたチャネル情報(第1のチャネル情報)を用いて、第1の無線通信端末2aと第1の無線通信部11aとの間、または第1の無線通信端末2aと第2の無線通信部11bとの間、の電波伝搬に係るチャネル特徴量を生成する。このとき、入力特徴量生成部12は、同じタイミングで第2の無線通信部11bや他の無線通信部など、一つ以上の無線通信部からもチャネル情報(第2のチャネル情報)が出力されていれば、その第2のチャネル情報もあわせて用いて、チャネル特徴量を生成する。その後、入力特徴量生成部12は、生成したチャネル特徴量を実世界通信モデル制御部14の実世界通信モデルに入力する。
Step S2;
The input feature amount generation unit 12 uses the channel information (first channel information) output from the first wireless communication unit 11a between the first wireless communication terminal 2a and the first wireless communication unit 11a. , Or generate a channel feature amount related to radio wave propagation between the first wireless communication terminal 2a and the second wireless communication unit 11b. At this time, the input feature amount generation unit 12 outputs channel information (second channel information) from one or more wireless communication units such as the second wireless communication unit 11b and another wireless communication unit at the same timing. If so, the channel feature amount is generated by using the second channel information together. After that, the input feature amount generation unit 12 inputs the generated channel feature amount to the real-world communication model of the real-world communication model control unit 14.
 例えば、入力特徴量生成部12は、チャネル特徴量として、第1のチャネル情報を用いて、パイロット信号の受信信号から算出される受信電力、チャネル行列、チャネル行列の相関行列、それらの行列を複数の周波数に対応して取得して線形演算して得られる行列、それらの行列に線形演算により得られるユニタリ行列および対角行列、それらの行列の位相、振幅、実数成分、虚数成分を生成する。 For example, the input feature amount generation unit 12 uses the first channel information as the channel feature amount, and uses the received power calculated from the received signal of the pilot signal, the channel matrix, the correlation matrix of the channel matrix, and a plurality of those matrices. Matrix obtained by acquiring and performing linear calculation corresponding to the frequency of, unitary matrix and diagonal matrix obtained by linear calculation, phase, amplitude, real number component, and imaginary number component of those matrices are generated.
 例えば、入力特徴量生成部12は、チャネル特徴量として、第1のチャネル情報を用いて、フィードバック信号から抽出される無線通信端末2が通信相手へ通知する受信電力、チャネル行列、チャネル行列の相関行列、それらの行列を複数の周波数に対応して取得して線形演算して得られる行列、それらの行列に線形演算により得られるユニタリ行列および対角行列、それらの行列の位相、振幅、実数成分、虚数成分、送信側で選択するべき送信モード情報を生成する。無線LANの標準化規格であれば、IEEE 802. 11であれば、非特許文献1に記載の「Beamforming report」の情報を用いることができる。 For example, the input feature amount generation unit 12 uses the first channel information as the channel feature amount, and the radio communication terminal 2 extracted from the feedback signal notifies the communication partner of the received power, the channel matrix, and the correlation of the channel matrix. Matrix, matrix obtained by acquiring those matrices corresponding to multiple frequencies and performing linear calculation, unitary matrix and diagonal matrix obtained by linear operation on those matrices, phase, amplitude, and real component of those matrices. , Imaginary component, generate transmission mode information to be selected by the sender. If it is a standard for wireless LAN, if it is IEEE802.11, the information of "Beamforming report" described in Non-Patent Document 1 can be used.
 例えば、入力特徴量生成部12は、チャネル特徴量として、第2のチャネル情報を用いて、第1の無線通信端末2aが送信したフィードバック情報を含む無線パケットの受信信号から得られる受信電力、チャネル行列、チャネル行列の相関行列、それらの行列を複数の周波数に対応して取得して線形演算して得られる行列、それらの行列に線形演算により得られるユニタリ行列および対角行列、それらの行列の位相、振幅、実数成分、虚数成分を生成する。 For example, the input feature amount generation unit 12 uses the second channel information as the channel feature amount, and the received power and channel obtained from the received signal of the radio packet including the feedback information transmitted by the first wireless communication terminal 2a. Matrix, correlation matrix of channel matrix, matrix obtained by acquiring those matrices corresponding to multiple frequencies and performing linear operation, unitary matrix and diagonal matrix obtained by linear operation on those matrices, and of those matrices Generates phase, amplitude, real and imaginary components.
 ステップS3;
 補助情報生成部13は、第1の無線通信端末2aの状態情報や、ネットワーク網16を介して収集できるカメラ/センサの情報、および天候などを取得して補助情報として生成することもできる。その後、補助情報生成部13は、生成した補助情報を実世界通信モデル制御部14の実世界通信モデルに入力する。なお、ステップS3は、ステップS2よりも前のタイミングまたは同じタイミングで実行してもよい。
Step S3;
The auxiliary information generation unit 13 can also acquire the state information of the first wireless communication terminal 2a, the camera / sensor information that can be collected via the network network 16, the weather, and the like and generate the auxiliary information. After that, the auxiliary information generation unit 13 inputs the generated auxiliary information into the real-world communication model of the real-world communication model control unit 14. Note that step S3 may be executed at a timing prior to or at the same timing as step S2.
 ステップS4;
 実世界通信モデル制御部14は、実世界通信モデル記憶部15から実世界通信モデルを読み出し、チャネル特徴量、またはチャネル特徴量及び補助情報を当該実世界通信モデルに入力することで、第1の無線通信端末2aの実世界でのターゲット状態情報を出力する。
Step S4;
The real-world communication model control unit 14 reads the real-world communication model from the real-world communication model storage unit 15, and inputs the channel feature amount or the channel feature amount and auxiliary information into the real-world communication model. Outputs the target state information of the wireless communication terminal 2a in the real world.
 例えば、実世界通信モデル制御部14は、位置、姿勢、向き、高さ、速度、加速度、回転、動きなどの無線通信端末の状態、手に把持されている、鞄の中に入れられているなどの無線通信端末の物理状態、ノートパソコン、スマートフォン、コネクテッドカー、ロボット、輸送装置、ドローンなどの無線通信端末の種類、無線通信端末の周辺に存在する物体(オブジェクト)、に関する情報を検出して利用する。例えば、物理状態は、無線通信端末の管理、ログ取得、追跡に用いることができ、種類の判別は、無線通信端末の種類に応じて要求品質を変更するようなサービスに用いることができ、周辺オブジェクトの判定は、畑における害獣の検出、侵入者の判定などのセキュリティシステム、特定エリアにいる通信端末の数を判定して密度や混雑を判断するシステム、などに用いることができる。 For example, the real-world communication model control unit 14 is housed in a bag, which is held in the hand, and the state of the wireless communication terminal such as position, posture, orientation, height, speed, acceleration, rotation, and movement. Detects information about the physical state of wireless communication terminals such as laptop computers, smartphones, connected cars, robots, transport devices, types of wireless communication terminals such as drones, and objects that exist around the wireless communication terminals. Use. For example, the physical state can be used for management, log acquisition, and tracking of wireless communication terminals, and the type determination can be used for services that change the required quality according to the type of wireless communication terminal. The object determination can be used for a security system such as detection of harmful animals in a field, determination of an intruder, a system for determining the number of communication terminals in a specific area, and a system for determining density and congestion.
 [実験結果]
 本実施形態の効果を実証するために行った実験とその実験結果とを図5から図8に示す。図5は、実験エリアの例を示す図である。図6は、その実験エリアで自律走行ロボット6が移動する移動先の目標位置の設定例を示す図である。自己位置を正確に測定可能な自律走行ロボット6にIEEE 802.11acの無線通信端末2を搭載し、図6の第2の無線通信部11bと通信させた。さらに、実験室内に第1の無線通信部11aとして、フィードバック情報を受信可能な無線通信端末を設置した。自律走行ロボット6は、図6中の中央エリアに設定した8つの目標位置をランダムに選択しながら移動し続ける。この位置を第1の無線通信部11aで得られるフィードバック情報から予測した。
[Experimental result]
The experiments conducted to demonstrate the effect of this embodiment and the results of the experiments are shown in FIGS. 5 to 8. FIG. 5 is a diagram showing an example of an experimental area. FIG. 6 is a diagram showing an example of setting a target position of a movement destination to which the autonomous traveling robot 6 moves in the experimental area. An IEEE 802.11ac wireless communication terminal 2 was mounted on an autonomous traveling robot 6 capable of accurately measuring its own position, and communicated with the second wireless communication unit 11b in FIG. Further, a wireless communication terminal capable of receiving feedback information was installed as the first wireless communication unit 11a in the laboratory. The autonomous traveling robot 6 keeps moving while randomly selecting eight target positions set in the central area in FIG. This position was predicted from the feedback information obtained by the first wireless communication unit 11a.
 フィードバック情報は、IEEE 802.11acで得られる、Compressed beamforming feedback matrixの角度φとψとを位相情報として用いた。第2の無線通信部11bは4つのアンテナを持ち、無線通信端末2は2つのアンテナを持つため、角度φとψは、「Beamforming report」において、φ11, φ21, φ31, φ32, ψ21, ψ31, ψ41, ψ22, ψ32, ψ42の計10つの角度が得られる。周波数方向には、52のサブキャリアから得られるデータを用いることができるため、角度情報は52×10の520が得られる。訓練データとして、高精度のロボット位置とチャネル情報との間の関係性を図7に示す深層学習により訓練し、実世界通信モデルを生成した。チャネル特徴量は、時系列データで構成され、隠れ層1,次元35のGRU(Gated Recurent Unit)に入力され、35の出力は、全結合層に入力され、1段目と2段目はそれぞれ35の出力を行い、最終層で位置情報に対応する要素2の出力を行う構成とした。1段目と2段目の全結合層の出力には、ReLU(Rectified Linear Unit)による活性化を行った。訓練では、学習率0.0002とし、Adam(Adaptive moment estimation)による最適化アルゴリズムを用いた。IEEE 802.11acでは、無線通信端末における下りチャネル情報は、ユニタリ行列に変換され、非特許文献1に記載の「Beamforming report」により、SNR(Signal-to-Noise Ratio)情報と複数の直交波周波数分割多重方式のサブキャリアに対する角度情報としてフィードバックされる。詳細は非特許文献に記載されているが、角度情報を用いて行列演算を行うことで、チャネル行列の右特異行列に対応するV行列を得ることができる。 For the feedback information, the angles φ and ψ of the compressed beamforming feedback matrix obtained by IEEE802.11ac were used as the phase information. Since the second wireless communication unit 11b has four antennas and the wireless communication terminal 2 has two antennas, the angles φ and ψ are set to φ11, φ21, φ31, φ32, ψ21, ψ31, in the “Beamforming report”. A total of 10 angles of ψ41, ψ22, ψ32, and ψ42 can be obtained. In the frequency direction, data obtained from 52 subcarriers can be used, so that 520 of 52 × 10 can be obtained as the angle information. As training data, the relationship between the highly accurate robot position and channel information was trained by deep learning shown in FIG. 7, and a real-world communication model was generated. The channel features are composed of time-series data and are input to the GRU (Gated Recurent Unit) of the hidden layer 1 and dimension 35, the output of 35 is input to the fully connected layer, and the first and second stages are respectively. 35 is output, and the element 2 corresponding to the position information is output in the final layer. The outputs of the fully connected layers in the first and second stages were activated by ReLU (Rectified Linear Unit). In the training, the learning rate was 0.0002, and an optimization algorithm by Adam (Adaptive moment estimation) was used. In IEEE802.11ac, the downlink channel information in the wireless communication terminal is converted into a unitary matrix, and SNR (Signal-to-Noise Ratio) information and a plurality of orthogonal wave frequency divisions are performed by the "Beamforming report" described in Non-Patent Document 1. It is fed back as angle information for the subcarrier of the multiplex method. Although the details are described in the non-patent documents, the V matrix corresponding to the right singular matrix of the channel matrix can be obtained by performing the matrix operation using the angle information.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Mrは受信アンテナの数であり、本実験では2となる。また、V行列の各列ベクトルの最後の要素の虚部は必ず0になるため、意味のある情報はV行列がMt×Mrの行列として得たとすると、各要素の実部と虚部の数値から、Mt×Mr-Mrの数値が意味のある情報となる。4×1の行列とした場合、実部4,虚部3の7つの要素、4×2の行列を得た場合は、実部8,虚部6の計14の要素が意味のある情報であり、各列の最後の要素の虚部は0であるため、用いなくてもよい。 Here, Mr is the number of receiving antennas, which is 2 in this experiment. Also, since the imaginary part of the last element of each column vector of the V matrix is always 0, if the V matrix is obtained as a matrix of Mt × Mr, the meaningful information is the numerical value of the real part and the imaginary part of each element. Therefore, the numerical value of Mt × Mr-Mr becomes meaningful information. In the case of a 4 × 1 matrix, 7 elements of the real part 4 and the imaginary part 3 are obtained, and in the case of obtaining a 4 × 2 matrix, a total of 14 elements of the real part 8 and the imaginary part 6 are meaningful information. Yes, the imaginary part of the last element in each column is 0, so it does not have to be used.
 以下5つの方法で位置推定精度を検証した。 The position estimation accuracy was verified by the following five methods.
 第1の方法(電力情報利用);
 第1の方法は、第2の無線通信部11bへのフィードバック情報に含まれる2つのSNR情報と、第1の無線通信部11aにおいて、フィードバック情報を含む信号を受信した際の、2つのアンテナ1と2におけるRSSI情報、の計4つのチャネル特徴量を、200ms毎に取得し、5秒間の時系列データを図7の深層学習で、無線通信端末の位置情報を出力するように訓練し、新たに得られたSNR情報とRSSI情報で、無線通信端末位置を予測した場合の方法である。
First method (use of power information);
The first method is to receive two SNR information included in the feedback information to the second wireless communication unit 11b and two antennas 1 when the first wireless communication unit 11a receives a signal including the feedback information. A total of four channel feature quantities, the RSSI information in and 2 are acquired every 200 ms, and the time-series data for 5 seconds is trained to output the position information of the wireless communication terminal by the deep learning in FIG. This is a method when the position of the wireless communication terminal is predicted from the SNR information and RSSI information obtained in.
 第2の方法(電力情報利用+角度情報正弦余弦);
 第2の方法は、第1の方法に加え、52のサブキャリアに対応する10の角度情報の正弦・余弦情報をチャネル特徴量とし、計1044つのチャネル特徴量を、200ms毎に取得し、5秒間の時系列データを図7の深層学習で、無線通信端末の位置情報を出力するように訓練し、新たに得られたSNR情報とRSSI情報と正弦余弦情報で、無線通信端末位置を予測した場合の方法である。
Second method (use of power information + angle information sine cosine);
In the second method, in addition to the first method, the sine / cosine information of 10 angle information corresponding to 52 subcarriers is used as the channel feature amount, and a total of 1044 channel feature amounts are acquired every 200 ms, and 5 The time-series data per second was trained to output the position information of the wireless communication terminal by the deep learning of FIG. 7, and the position of the wireless communication terminal was predicted by the newly obtained SNR information, RSSI information, and sine cosine information. The method of the case.
 第3の方法(電力情報利用+V行列要素);
 第3の方法は、第1の方法に加え、52のサブキャリアに対応する10の角度情報から、4×1のV行列を計算し、V行列の実部と虚部の情報(実部4、虚部3)をチャネル特徴量とし、4+7×52=計368のチャネル特徴量を、200ms毎に取得し、5秒間の時系列データを図7の深層学習で、無線通信端末の位置情報を出力するように訓練し、新たに得られたSNR情報とRSSI情報とV行列の要素情報で、無線通信端末位置を予測した場合の方法である。
Third method (power information utilization + V matrix element);
In the third method, in addition to the first method, a 4 × 1 V matrix is calculated from 10 angle information corresponding to 52 subcarriers, and information on the real part and the imaginary part of the V matrix (real part 4). , Imaginary part 3) is used as the channel feature amount, 4 + 7 × 52 = a total of 368 channel feature amounts are acquired every 200 ms, and the time-series data for 5 seconds is obtained by deep learning in FIG. 7 to obtain the position information of the wireless communication terminal. This is a method when the position of the wireless communication terminal is predicted by training to output and using the newly obtained SNR information, RSSI information, and V matrix element information.
 第4の方法(電力情報利用+V行列要素の平均);
 第4の方法は、第1の方法に加え、全てのサブキャリアのV行列の和をとったうえで、V行列の各列ベクトルが単位ベクトルとなるように各要素を定数で割った、平均V行列の実部と虚部(実部8、虚部6)として得られる4+14=18の要素をチャネル特徴量とし、200ms毎に取得し、5秒間の時系列データを図7の深層学習で、無線通信端末の位置情報を出力するように訓練し、新たに得られたSNR情報とRSSI情報と平均V行列情報で、無線通信端末位置を予測した場合の方法である。
Fourth method (power information utilization + average of V matrix elements);
In the fourth method, in addition to the first method, after summing the V matrices of all subcarriers, each element is divided by a constant so that each column vector of the V matrix becomes a unit vector, and the average. The elements of 4 + 14 = 18 obtained as the real part and the imaginary part (real part 8, imaginary part 6) of the V matrix are set as channel feature quantities, acquired every 200 ms, and the time-series data for 5 seconds is obtained by the deep learning in FIG. This is a method in which the position of the wireless communication terminal is predicted by training to output the position information of the wireless communication terminal and using the newly obtained SNR information, RSSI information, and average V matrix information.
 第5の方法(電力情報利用+V行列要素+V行列要素平均);
 第5の方法は、第4の方法に加え、直流成分から±14のサブキャリアにおけるV行列の要素(実部8、虚部6)を加えた、4+14+14=32の要素をチャネル特徴量とし、200ms毎に取得し、5秒間の時系列データを図7の深層学習で、無線通信端末の位置情報を出力するように訓練し、新たに得られたSNR情報とRSSI情報と平均V行列情報と2つのサブキャリアのV行列で、無線通信端末位置を予測した場合の方法である。
Fifth method (power information utilization + V matrix element + V matrix element average);
In the fifth method, in addition to the fourth method, the element of 4 + 14 + 14 = 32, which is obtained by adding the elements of the V matrix (real part 8, imaginary part 6) in the subcarrier of ± 14 from the DC component, is used as the channel feature amount. Acquired every 200 ms and trained to output the position information of the wireless communication terminal by the deep learning of FIG. 7 for 5 seconds, and newly obtained SNR information, RSSI information, and average V matrix information. This is a method when the position of the wireless communication terminal is predicted by the V matrix of two subcarriers.
 図8は、各方法で予測した位置情報の値と、LiDAR技術を用いて自律走行ロボット6が推定した自己位置推定した実測値と、のずれをMAE(Minimum Absolute Error)で評価した結果を示す図である。図6に示した通り、深層学習による実世界通信モデルが出力する位置情報は、用意するチャネル特徴量により予測可能であり、平均化処理や複数の情報を用いるなど、処理を行うことで高精度化することが可能であることがわかる。無線通信端末が送信する無線パケットをモニタするだけで、当該無線通信端末の空間的な位置が1m以下の誤差精度で検出できることを把握できる。ここではV行列を平均化したが、V行列は各列ベクトルの最後の要素の虚部が0となるように前処理されているため、V行列の平均は、すなわちチャネル行列の相関行列の平均と等価である。このため、パイロット信号から求めたチャネル行列やその相関行列に異なるサブキャリアで平均化処理を行っても同様の効果が得られると考えられる。 FIG. 8 shows the result of evaluating the deviation between the value of the position information predicted by each method and the measured value estimated by the self-position estimated by the autonomous traveling robot 6 using the LiDAR technique by MAE (Minimum Absolute Error). It is a figure. As shown in FIG. 6, the position information output by the real-world communication model by deep learning can be predicted by the prepared channel features, and is highly accurate by performing processing such as averaging processing and using a plurality of information. It turns out that it is possible to make it. By simply monitoring the wireless packet transmitted by the wireless communication terminal, it is possible to understand that the spatial position of the wireless communication terminal can be detected with an error accuracy of 1 m or less. Here, the V matrix is averaged, but since the V matrix is preprocessed so that the imaginary part of the last element of each column vector becomes 0, the average of the V matrix is that is, the average of the correlation matrix of the channel matrix. Is equivalent to. Therefore, it is considered that the same effect can be obtained even if the channel matrix obtained from the pilot signal and its correlation matrix are averaged with different subcarriers.
 図9に、予測したX軸、Y軸位置と、実際の位置の比較を時間に対してプロットしたものを示す。図9(a)はX軸上の位置であり、図9(b)はY軸上の位置である。実線は予測位置であり、破線は実測位置である。縦軸は図6の座標系とは一致していない。図9に示されるように、チャネル特徴量を用いることで、自律走行ロボット6のX、Y座標の位置が精度よく検出できていることがわかる。 FIG. 9 shows a plot of the predicted X-axis and Y-axis positions and the actual position comparison with respect to time. FIG. 9A is a position on the X-axis, and FIG. 9B is a position on the Y-axis. The solid line is the predicted position, and the broken line is the measured position. The vertical axis does not match the coordinate system of FIG. As shown in FIG. 9, it can be seen that the positions of the X and Y coordinates of the autonomous traveling robot 6 can be accurately detected by using the channel features.
 [本実施形態の効果]
 本実施形態によれば、無線通信端末2や無線通信端末の周辺環境の状態を推定する状態推定システム1において、無線通信端末2から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得する無線通信部11と、前記チャネル情報を用いて、チャネル特徴量を生成する入力特徴量生成部12と、前記チャネル特徴量を、無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器や無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルに入力することで、前記無線通信端末や無線通信端末の周辺環境の状態を検出する実世界通信モデル制御部14と、を備えるので、無線通信端末2や無線通信端末の周辺環境の実世界での状態を推定できる。
[Effect of this embodiment]
According to the present embodiment, in the state estimation system 1 that estimates the state of the wireless communication terminal 2 and the surrounding environment of the wireless communication terminal, the communication signal transmitted from the wireless communication terminal 2 is wirelessly received, and the communication signal is used as described above. The wireless communication unit 11 that acquires the channel information related to the radio wave propagation between the wireless communication terminal and itself, the input feature amount generation unit 12 that generates the channel feature amount using the channel information, and the channel feature amount. By inputting the relationship between the channel feature amount related to radio wave propagation between wireless communication devices and the state of the surrounding environment of the wireless communication device or wireless communication terminal into a real-world communication model modeled by machine learning, the wireless communication terminal or Since it includes a real-world communication model control unit 14 that detects the state of the peripheral environment of the wireless communication terminal, it is possible to estimate the state of the peripheral environment of the wireless communication terminal 2 and the wireless communication terminal in the real world.
 [その他]
 上述した実施形態における状態推定システムまたは状態推定装置をコンピュータで実現するようにしてもよい。その場合、状態推定システムまたは状態推定装置が備える構成要素のそれぞれを実現するための状態推定プログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録された状態推定プログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。
[others]
The state estimation system or the state estimation device in the above-described embodiment may be realized by a computer. In that case, a state estimation program for realizing each of the components of the state estimation system or the state estimation device is recorded on a computer-readable recording medium, and the state estimation program recorded on the recording medium is stored in the computer system. It may be realized by loading and executing.
 「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含む。例えば、図10に示すように、CPU901と、メモリ902と、ストレージ903と、通信装置904と、入力装置905と、出力装置906と、を備えた汎用的なコンピュータシステムである。 "Computer system" includes hardware such as OS and peripheral devices. For example, as shown in FIG. 10, it is a general-purpose computer system including a CPU 901, a memory 902, a storage 903, a communication device 904, an input device 905, and an output device 906.
 「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した構成要素の一部を実現するためのものであってもよく、更に前述した構成要素をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるものであってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。 "Computer readable recording medium" refers to a portable medium such as a flexible disk, magneto-optical disk, ROM, CD-ROM, or a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned components, and may be further realized by combining the above-mentioned components with a program already recorded in the computer system. Often, it may be realized by using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the design and the like within a range not deviating from the gist of the present invention are also included.
 1:状態推定システム
 11:無線通信部
 12:入力特徴量生成部
 13:補助情報生成部
 14:実世界通信モデル制御部
 14a:訓練データ生成部
 14b:実世界通信モデル生成部
 14c:実世界通信モデル利用部
 15:実世界通信モデル記憶部
 16:ネットワーク網
 2:無線通信端末
 21:無線通信部
 3:カメラ
 4:センサ
 5:無線通信網
 6:自律走行ロボット
 901:CPU
 902:メモリ
 903:ストレージ
 904;通信装置
 905:入力装置
 906:出力装置
1: State estimation system 11: Wireless communication unit 12: Input feature amount generation unit 13: Auxiliary information generation unit 14: Real-world communication model control unit 14a: Training data generation unit 14b: Real-world communication model generation unit 14c: Real-world communication Model utilization unit 15: Real-world communication model storage unit 16: Network network 2: Wireless communication terminal 21: Wireless communication unit 3: Camera 4: Sensor 5: Wireless communication network 6: Autonomous traveling robot 901: CPU
902: Memory 903: Storage 904; Communication device 905: Input device 906: Output device

Claims (9)

  1.  無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定システムにおいて、
     無線通信端末から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得する無線通信装置と、
     前記チャネル情報を用いて、チャネル特徴量を生成する生成装置と、
     前記チャネル特徴量を、無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器または無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルに入力することで、前記無線通信端末または無線通信端末の周辺環境の状態を検出する検出装置と、
     を備える状態推定システム。
    In a state estimation system that estimates the state of a wireless communication terminal or the surrounding environment of a wireless communication terminal
    A wireless communication device that wirelessly receives a communication signal transmitted from a wireless communication terminal and acquires channel information related to radio wave propagation between the wireless communication terminal and itself from the communication signal.
    A generator that generates channel features using the channel information,
    By inputting the channel feature amount into a real-world communication model that models the relationship between the channel feature amount related to radio wave propagation between wireless communication devices and the state of the surrounding environment of the wireless communication device or wireless communication terminal by machine learning. , A detection device that detects the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal, and
    A state estimation system equipped with.
  2.  前記生成装置は、
     前記チャネル特徴量として、受信電力、チャネル行列、前記チャネル行列の相関行列、前記チャネル行列または前記相関行列を複数の周波数に対応付けて線形演算して得られる演算行列、前記チャネル行列または前記相関行列を線形演算して得られるユニタリ行列、前記チャネル行列または前記相関行列を線形演算して得られる対角行列、前記チャネル行列と前記相関行列と前記演算行列と前記ユニタリ行列と前記対角行列とのうちいずれか1つ以上の行列の位相、振幅、実数成分、虚数成分、送信モード情報のうちいずれか1つ以上を生成する請求項1に記載の状態推定システム。
    The generator is
    As the channel feature amount, the received power, the channel matrix, the correlation matrix of the channel matrix, the channel matrix or the arithmetic matrix obtained by linearly performing the correlation matrix in association with a plurality of frequencies, the channel matrix or the correlation matrix. , The channel matrix or the diagonal matrix obtained by linearly calculating the correlation matrix, the channel matrix, the correlation matrix, the arithmetic matrix, the unity matrix, and the diagonal matrix. The state estimation system according to claim 1, wherein any one or more of the phase, amplitude, real number component, imaginary number component, and transmission mode information of one or more of the matrices is generated.
  3.  前記生成装置は、
     前記無線通信装置以外の第2の無線通信装置が受信した前記無線通信端末からの通信信号から取得した複数の周波数チャネルのチャネル情報を用いて、異なる周波数に対するチャネル情報から線形演算して得られる情報を、平均化して得られる情報を生成する請求項1または2に記載の状態推定システム。
    The generator is
    Information obtained by linear calculation from channel information for different frequencies using channel information of a plurality of frequency channels acquired from communication signals from the wireless communication terminal received by a second wireless communication device other than the wireless communication device. The state estimation system according to claim 1 or 2, which generates information obtained by averaging the two.
  4.  前記無線通信装置は、
     前記無線通信端末から、前記無線通信装置以外の第2の無線通信装置へ送信されたチャネル情報を含む通信信号を受信し、
     前記生成装置は、
     前記無線通信端末から受信した当該通信信号の受信電力と、当該通信信号に含まれる前記無線通信端末と前記第2の無線通信装置との間のチャネル情報とを用いて、チャネル特徴量を生成する請求項1ないし3のいずれかに記載の状態推定システム。
    The wireless communication device is
    A communication signal including channel information transmitted from the wireless communication terminal to a second wireless communication device other than the wireless communication device is received.
    The generator is
    A channel feature amount is generated by using the received power of the communication signal received from the wireless communication terminal and the channel information between the wireless communication terminal and the second wireless communication device included in the communication signal. The state estimation system according to any one of claims 1 to 3.
  5.  前記実世界通信モデルは、
     前記無線通信端末の状態、前記無線通信端末の種類、前記無線通信端末の周辺に位置するオブジェクトのうちいずれか1つ以上の情報をラベル付けした訓練データと、無線通信機器間の電波伝搬に関するチャネル特徴量と、の関係性を学習し、入力されたチャネル特徴量に対応するラベル付けされた情報を出力するように訓練するモデルである請求項1ないし4のいずれかに記載の状態推定システム。
    The real-world communication model is
    Training data labeled with information of any one or more of the state of the wireless communication terminal, the type of the wireless communication terminal, and an object located around the wireless communication terminal, and a channel related to radio wave propagation between wireless communication devices. The state estimation system according to any one of claims 1 to 4, which is a model for learning the relationship between the feature amount and the input channel feature amount and training to output the labeled information corresponding to the input channel feature amount.
  6.  無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定システムにおいて、
     無線通信端末から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得する無線通信装置と、
     前記チャネル情報を用いて、チャネル特徴量を生成する第1の生成装置と、
     前記無線通信端末の物理的な状態、前記無線通信端末の種類、前記無線通信端末の周辺環境のうちいずれか1つ以上の状態情報を測定する測定装置と、
     前記状態情報のうち少なくとも1つの状態情報を検出するべき前記無線通信端末の状態となるターゲット状態情報とし、前記ターゲット状態情報以外で検出に用いる情報を補助情報とした、訓練データを生成する第2の生成装置と、
     前記訓練データを用いて、前記ターゲット状態情報を出力する実世界通信モデルを生成する第3の生成装置と、
     を備える状態推定システム。
    In a state estimation system that estimates the state of a wireless communication terminal or the surrounding environment of a wireless communication terminal
    A wireless communication device that wirelessly receives a communication signal transmitted from a wireless communication terminal and acquires channel information related to radio wave propagation between the wireless communication terminal and itself from the communication signal.
    A first generator that generates channel features using the channel information,
    A measuring device that measures the state information of any one or more of the physical state of the wireless communication terminal, the type of the wireless communication terminal, and the surrounding environment of the wireless communication terminal.
    A second generation of training data in which at least one of the state information is the target state information that is the state of the wireless communication terminal to be detected, and information used for detection other than the target state information is used as auxiliary information. Generation device and
    Using the training data, a third generator that generates a real-world communication model that outputs the target state information, and
    A state estimation system equipped with.
  7.  無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定方法において、
     無線通信装置が、無線通信端末から送信される通信信号を無線で受信し、前記通信信号から前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を取得し、
     生成装置が、前記チャネル情報を用いて、チャネル特徴量を生成し、
     検出装置が、前記チャネル特徴量を、無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器または無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルに入力することで、前記無線通信端末または無線通信端末の周辺環境の状態を検出する
     状態推定方法。
    In the state estimation method for estimating the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal,
    The wireless communication device wirelessly receives a communication signal transmitted from the wireless communication terminal, acquires channel information related to radio wave propagation between the wireless communication terminal and itself from the communication signal, and obtains channel information.
    The generator uses the channel information to generate channel features.
    The detection device creates a real-world communication model in which the channel feature amount is modeled by machine learning about the relationship between the channel feature amount related to radio wave propagation between wireless communication devices and the state of the surrounding environment of the wireless communication device or wireless communication terminal. A state estimation method for detecting the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal by inputting.
  8.  無線通信端末または無線通信端末の周辺環境の状態を推定する状態推定装置において、
     無線通信機器間の電波伝搬に関するチャネル特徴量と無線通信機器または無線通信端末の周辺環境の状態との関係性を機械学習によりモデル化した実世界通信モデルを記憶しておく記憶部と、
     無線通信端末から無線で送信される通信信号から取得した前記無線通信端末と自身との間の電波伝搬に関するチャネル情報を用いて、チャネル特徴量を生成する生成部と、
     前記チャネル特徴量を前記実世界通信モデルに入力することで、前記無線通信端末または無線通信端末の周辺環境の状態を検出する検出部と、
     を備える状態推定装置。
    In a state estimation device that estimates the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal
    A storage unit that stores a real-world communication model that models the relationship between the channel features related to radio wave propagation between wireless communication devices and the state of the surrounding environment of the wireless communication device or wireless communication terminal by machine learning.
    A generation unit that generates channel features using channel information related to radio wave propagation between the wireless communication terminal and itself acquired from a communication signal transmitted wirelessly from the wireless communication terminal.
    A detection unit that detects the state of the wireless communication terminal or the surrounding environment of the wireless communication terminal by inputting the channel feature amount into the real-world communication model.
    A state estimator equipped with.
  9.  請求項8に記載の状態推定装置としてコンピュータを機能させる状態推定プログラム。 A state estimation program that causes a computer to function as the state estimation device according to claim 8.
PCT/JP2020/041956 2020-11-10 2020-11-10 State estimation system, state estimation method, state estimation device, and state estimation program WO2022101997A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/041956 WO2022101997A1 (en) 2020-11-10 2020-11-10 State estimation system, state estimation method, state estimation device, and state estimation program
JP2022561738A JP7473843B2 (en) 2020-11-10 2020-11-10 State estimation system, state estimation method, state estimation device, and state estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041956 WO2022101997A1 (en) 2020-11-10 2020-11-10 State estimation system, state estimation method, state estimation device, and state estimation program

Publications (1)

Publication Number Publication Date
WO2022101997A1 true WO2022101997A1 (en) 2022-05-19

Family

ID=81600914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041956 WO2022101997A1 (en) 2020-11-10 2020-11-10 State estimation system, state estimation method, state estimation device, and state estimation program

Country Status (2)

Country Link
JP (1) JP7473843B2 (en)
WO (1) WO2022101997A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140582A (en) * 2018-02-13 2019-08-22 日本電信電話株式会社 Radio communication system, radio communication method, base station, and terminal
JP2020511655A (en) * 2017-03-15 2020-04-16 シグフォックス Method and system for locating terminals in a wireless communication system
JP2020128987A (en) * 2014-07-17 2020-08-27 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Wireless positioning systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204192B2 (en) 2010-10-26 2013-06-05 株式会社東芝 Base station apparatus, terminal movement estimation method and program
US9681332B2 (en) 2014-06-26 2017-06-13 Intel Corporation Compression configuration identification
JP6714279B2 (en) 2017-03-02 2020-06-24 日本電信電話株式会社 Communication control method, communication system, and pre-learning auxiliary device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128987A (en) * 2014-07-17 2020-08-27 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Wireless positioning systems
JP2020511655A (en) * 2017-03-15 2020-04-16 シグフォックス Method and system for locating terminals in a wireless communication system
JP2019140582A (en) * 2018-02-13 2019-08-22 日本電信電話株式会社 Radio communication system, radio communication method, base station, and terminal

Also Published As

Publication number Publication date
JP7473843B2 (en) 2024-04-24
JPWO2022101997A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US10671905B2 (en) Error based locationing of a mobile target on a road network
Xiao et al. Integrated Wi-Fi fingerprinting and inertial sensing for indoor positioning
US9369982B2 (en) Online adaptive fusion framework for mobile device indoor localization
CN111226128A (en) Motion detection by a central controller using beamforming dynamic information
CN105792126A (en) Determination Of Object-to-object Position Using Data Fusion Techniques
CN105282222A (en) Applying mesh network to luggage
US11309921B2 (en) Interference level map of radio frequency signals
EP4323797A1 (en) Passive positioning with radio frequency sensing labels
WO2019118403A1 (en) Window based locationing of mobile targets using complementary position estimates
Jadidi et al. A radio-inertial localization and tracking system with BLE beacons prior maps
US20210255211A1 (en) Method and apparatus for sensor orientation determination
Wang et al. Micnest: Long-range instant acoustic localization of drones in precise landing
US20190049250A1 (en) Information processing apparatus, information processing method, and computer program
WO2022101997A1 (en) State estimation system, state estimation method, state estimation device, and state estimation program
KR102547926B1 (en) Method and apparatus for specifying direction of travel determined from magnetic field measurements
WO2020026513A1 (en) Indoor position estimation apparatus, user terminal, indoor position estimation method, and program
CN108692718A (en) Steady navigation anti-interference method based on blind wave beam and its system
Wang et al. Posture recognition and heading estimation based on machine learning using MEMS sensors
WO2020026514A1 (en) Indoor position estimation apparatus, indoor position estimation method, and program
EP3933711A1 (en) Machine learning techniques for location tracking
WO2023058310A1 (en) Article management system, method and reading device
Lisus et al. Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes
KR102533943B1 (en) Error cancellation method and device for IMU and gyroscope data using linear Kalman filter and GNSS information
US20240103185A1 (en) Geomagnetic-aided passive navigation
KR102542556B1 (en) Method and system for real-time detection of major vegetation in wetland areas and location of vegetation objects using high-resolution drone video and deep learning object recognition technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961525

Country of ref document: EP

Kind code of ref document: A1