WO2022100112A1 - 一种并联燃料电池动力系统功率分配方法及系统 - Google Patents

一种并联燃料电池动力系统功率分配方法及系统 Download PDF

Info

Publication number
WO2022100112A1
WO2022100112A1 PCT/CN2021/104419 CN2021104419W WO2022100112A1 WO 2022100112 A1 WO2022100112 A1 WO 2022100112A1 CN 2021104419 W CN2021104419 W CN 2021104419W WO 2022100112 A1 WO2022100112 A1 WO 2022100112A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
cell system
value
stack fuel
Prior art date
Application number
PCT/CN2021/104419
Other languages
English (en)
French (fr)
Inventor
李林
江志强
黄志华
赵凯
肖黎亚
江大发
孙双成
方昕
Original Assignee
株洲国创轨道科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲国创轨道科技有限公司 filed Critical 株洲国创轨道科技有限公司
Priority to EP21890643.6A priority Critical patent/EP4228113A4/en
Publication of WO2022100112A1 publication Critical patent/WO2022100112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention mainly relates to the technical field of fuel cells, in particular to a power distribution method and system for a parallel fuel cell power system.
  • fuel cells have been widely used in various fields.
  • a single fuel cell system can meet the power requirements, with simple control and strong reliability.
  • the output power of a single fuel cell cannot meet the overall load. Power requirements, and as the output power level increases, the configuration of the entire fuel cell power system is relatively complex. Once a fault occurs, the overall reliability of the system cannot be guaranteed.
  • multiple fuel cells are currently used in parallel to achieve high-power current output to ensure load power requirements, but how to distribute power among multiple stacks of fuel cells has become the key to parallel fuel cell control systems.
  • the power distribution of the parallel fuel cell system mainly adopts the average distribution strategy and the step-by-step distribution strategy.
  • the average distribution strategy is mainly to achieve an average distribution of the load demand power for a fixed number of fuel cell modules to ensure that the power output of each fuel cell module is consistent.
  • the step-by-step allocation strategy is mainly to achieve the maximum power output of a certain fuel cell. When the output power cannot meet the required power, the next-stage fuel cell is started until the required power is reached.
  • the above two methods have obvious defects in the low power range, which is easy to cause waste of fuel.
  • the technical problem to be solved by the present invention is: in view of the technical problems existing in the prior art, the present invention provides a power distribution method and system for a parallel fuel cell power system that ensures the optimal overall system efficiency.
  • the technical scheme proposed by the present invention is:
  • a power distribution method for a parallel fuel cell power system comprising the steps of:
  • step 1) the optimal power value at the maximum efficiency of the single stack fuel cell system is found by using the adaptive disturbance observation method.
  • the power value is selected near the maximum efficiency value of the function as the initialization data of the adaptive disturbance observation method.
  • the variation of the efficiency is used to form the disturbance signal, thereby forming the disturbance of variable step size.
  • a PI controller is used to proportionally-integrate the error value between the corresponding efficiency values of adjacent powers to generate an adaptive disturbance power value. Finally, a single stack fuel cell power command value is generated through the disturbance observation principle, and the corresponding reference current is obtained. command value;
  • the actual output current of the single-stack fuel cell system tracks the reference current command value, and the duty cycle d required by the DC-DC converter is generated by the error between the output current reference value and the actual value of the single-stack fuel cell system, thereby controlling the single-stack fuel cell system The actual output power of the system.
  • step 2) when the total output power of the multi-stack fuel cell system cannot meet the load power, the load power is evenly distributed to each single-stack fuel cell system.
  • Each single stack fuel cell system is connected in parallel and independently directly on the DC bus of the power system.
  • the least squares fitting formula is as follows:
  • f(p) is a single-stack fuel cell efficiency-power curve fitting function
  • a, b, c, and d are fitting parameters.
  • the invention also discloses a power distribution system of a parallel fuel cell power system, comprising:
  • the first module is used to obtain the optimal power value of each single stack fuel cell system at the maximum efficiency
  • the second module is used to turn on each single-stack fuel cell system step by step during power distribution until the total output power of the multi-stack fuel cell system meets the load power; the actual output power of each single-stack fuel cell system corresponds to the optimal power value.
  • the present invention further discloses a computer-readable storage medium on which a computer program is stored, and when the computer program is run by a processor, executes the steps of the power distribution method for a parallel fuel cell power system as described above.
  • the present invention also discloses a computer device, comprising a memory and a processor, the memory stores a computer program, and the computer program executes the steps of the above-mentioned power distribution method for a parallel fuel cell power system when run by the processor .
  • the invention takes the overall power system comprehensive efficiency as the goal, finds the output power value when each single stack fuel cell system has the optimal efficiency (ie, the maximum efficiency), and uses the power value to realize the stack power distribution step by step , to ensure that the overall system is in the best operating state and to ensure that the overall system efficiency is optimized.
  • the present invention selects the power value near the optimal efficiency point of the fitting function, thereby improving the search efficiency, responding to the load demand power in time, and can respond to the load power or the fuel cell air intake according to the load power or the fuel cell air intake. It automatically adjusts the perturbation step size according to the change of factors such as quantity, and has strong anti-interference ability, easy implementation, low cost, and its core algorithm has universal applicability and does not depend on any preset constants.
  • FIG. 1 is a flow chart of the method of the present invention in an embodiment.
  • FIG. 2 is a topology diagram of a multi-stack fuel cell power system in the present invention.
  • FIG. 3 is a graph showing the variation of the efficiency of the single stack fuel cell system with the load power in the present invention.
  • FIG. 4 is a control block diagram of the adaptive disturbance observation method in the present invention.
  • the power distribution method for a parallel fuel cell power system in this embodiment includes the steps:
  • the multi-stack fuel cell power system of the present invention seeks the output power value at the optimal efficiency (that is, the maximum efficiency) according to the power value of the load demand and the overall power system overall efficiency, and realizes the stack power step by step with the power value. distribution to ensure that the overall system is in an optimal operating state.
  • the multi-stack fuel cell power system topology includes a single-stack fuel cell system, a central controller, a DC bus, and a high-power load. Multiple single-stack fuel cell systems are connected in parallel on the DC bus, and the power is transmitted through the DC bus to load. Under the condition that the busbar voltage remains unchanged, the total output current of the busbar is increased to improve the power level of the overall power system.
  • the single-stack fuel cell system consists of a single fuel cell and a unidirectional DC-DC boost converter. The two are connected to the DC bus in a cascaded manner, and the single-stack fuel cell is realized by controlling the duty cycle of the DC-DC converter. Independent control of output power.
  • step 1) the optimal power value at the maximum efficiency of the single stack fuel cell system is found by using the adaptive disturbance observation method.
  • the efficiency of the single-stack fuel cell system increases with the load power, and has a trend of first increasing and then decreasing. It can be seen that the single-stack fuel cell system has soft output characteristics, low stability and durability, and system efficiency. Low and limited output power.
  • the formula for calculating the efficiency of a single stack fuel cell system is as follows:
  • f(stack n ) is the output efficiency of the nth fuel cell system; is the conversion efficiency of the nth fuel cell stack; ⁇ E is the electrical efficiency after considering the auxiliary system; ⁇ DC is the electrical efficiency through the DC-DC converter;
  • P outn is the output power of the nth stack unit
  • P aux is the auxiliary power required by the entire fuel cell power generation system.
  • the adaptive disturbance observation method is used to find the maximum efficiency point of each stack to allocate the power step by step to realize the power superposition of the power system, and establish the overall efficiency equation of the multi-stack fuel power system, the load demand power constraint and the single stack fuel cell power constraint relationship
  • the formula is as follows:
  • f(all) is the overall fuel stack power system efficiency
  • P1, P2, ..., Pn are the output power of each fuel cell stack
  • f(P 1 ), f(P 2 ), ..., f(P n ) is the efficiency corresponding to the real-time power of each fuel cell stack
  • P load is the load demand power
  • P nmin and P nmax are the actual output minimum power and maximum power of the nth single-stack fuel cell.
  • the curve of the actual single-stack fuel cell system efficiency versus output power is drawn, and the least squares method is used to fit the efficiency-power function.
  • the multiplicative fitting formula is as follows:
  • f(p) is the single-stack fuel cell efficiency-power curve fitting function
  • a, b, c, and d are the fitting parameters
  • the power value is selected near the maximum efficiency value of the function as the initialization data of the adaptive disturbance observation method.
  • the initial stage of the disturbance observation method there is a certain gap between the selected initial power point and the optimal efficiency power point, resulting in the initial disturbance value. is larger, the change of the disturbance value will continue to decrease when it is approaching the optimal efficiency point, so the change of the efficiency is used to form the disturbance signal, thereby forming the disturbance of variable step size;
  • a PI controller is used to proportionally-integrate the error value ⁇ between the corresponding efficiency values of adjacent power points to generate an adaptive disturbance power value. ⁇ p, and finally generate the power command value of the single stack fuel cell system through the principle of disturbance observation Then the actual output current command value of the single stack fuel cell system can be obtained from the following formula: Among them, U bus is the bus voltage value.
  • the actual output current of the single stack fuel cell system needs to be prepared to track the reference current command value, which can be realized by the inner loop current controller.
  • the error between the output current reference value and the actual value of the fuel cell system generates the duty cycle required by the DC-DC converter. ratio d, thereby controlling the actual output power of the fuel cell.
  • the invention selects the initial value of the output power of the single-stack fuel cell control system according to the efficiency-power curve fitting function, uses the adaptive disturbance observation method to find the optimal efficiency point, and uses the PI controller to scale the efficiency error of adjacent power points - Integral amplification, and then generate single stack fuel cell output power command by perturbation observation of basic principles Then, the duty cycle signal d required by the DC-DC converter is generated by the inner loop PI controller, so as to control the output power of the single stack fuel cell.
  • the present invention selects the power value near the optimal efficiency point of the fitting function, thereby improving the search efficiency, responding to the load demand power in time, and can respond to the load power or the fuel cell air intake according to the load power or the fuel cell air intake. It automatically adjusts the perturbation step size according to the change of factors such as quantity, and has strong anti-interference ability, easy implementation, low cost, and its core algorithm has universal applicability and does not depend on any preset constants.
  • the invention also discloses a power distribution system of a parallel fuel cell power system, comprising:
  • the first module is used to obtain the optimal power value of each single stack fuel cell system at the maximum efficiency
  • the second module is used to turn on each single-stack fuel cell system step by step during power distribution until the total output power of the multi-stack fuel cell system meets the load power; the actual output power of each single-stack fuel cell system corresponds to the optimal power value.
  • the dispensing system of the present invention for implementing the dispensing method as described above, also has the advantages described above for the dispensing method.
  • the present invention further discloses a computer-readable storage medium on which a computer program is stored, and when the computer program is run by a processor, executes the steps of the power distribution method for a parallel fuel cell power system as described above.
  • the present invention also discloses a computer device, comprising a memory and a processor, the memory stores a computer program, and the computer program executes the steps of the above-mentioned power distribution method for a parallel fuel cell power system when run by the processor .
  • the present invention implements all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and when the computer program is executed by the processor, The steps of the above-mentioned various method embodiments can be implemented.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate forms, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • the present invention implements all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and when the computer program is executed by the processor, The steps of the above-mentioned various method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate forms, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种并联燃料电池动力系统功率分配方法及系统,此方法包括步骤:1)获取各单堆燃料电池系统最大效率时的最优功率值;2)在进行功率分配时,逐个开启各单堆燃料电池系统,直至各单堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率值。本发明具有保证整体系统处于最佳运行状态、保证整体系统效率最优化、抗干扰能力强、易于实现、成本低等优点。

Description

一种并联燃料电池动力系统功率分配方法及系统
相关申请的交叉引用
本申请以申请日为“2020-11-13”、申请号为“202011270368.1”、发明创造名称为“一种并联燃料电池动力系统功率分配方法及系统”的中国专利申请为基础,并主张其优先权,该中国专利申请的全文在此引用至本申请中,以作为本申请的一部分。
【技术领域】
本发明主要涉及燃料电池技术领域,具体涉及一种并联燃料电池动力系统功率分配方法及系统。
【背景技术】
燃料电池作为一种高效、环保的新型发电装置,在各个领域都得到了广泛的运用。对于小功率应用场合,单套燃料电池系统能够满足功率需求,控制简单、可靠性比较强,但是在面对有轨电车、重型船舶等大功率场合时,单台燃料电池输出功率不能满足整体负载功率需求,而且随着输出功率等级升高,整套燃料电池动力系统配置也相对复杂,一旦发生故障,系统整体的可靠性得不到保证。针对此类情况,目前采用多个燃料电池并联实现大功率电流输出,保证负载功率需求,但是如何在多堆燃料电池之间分配功率成为并联燃料电池控制系统的关键。
目前,并联燃料电池系统功率分配主要采用平均分配策略和逐级分配策略。平均分配策略主要是对固定数量的燃料电池模块实现负载需求功率平均分配,保证每个燃料电池模块功率输出一致。逐级分配策略主要是实现某个燃料电池的最大功率输出,当输出功率不能满足需求功率时,启动下一级燃料电池,直至达到需求功率。以上两种方法在低功率区间均有明显的缺陷,容易造成燃料的浪费。
【发明内容】
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种保证整体系统效率最优的并联燃料电池动力系统功率分配方法及系统。
为解决上述技术问题,本发明提出的技术方案为:
一种并联燃料电池动力系统功率分配方法,包括步骤:
1)获取各单堆燃料电池系统最大效率时的最优功率值;
2)在进行功率分配时,逐个开启各单堆燃料电池系统,直至各单堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率 值。
作为上述技术方案的进一步改进:
在步骤1)中,通过利用自适应扰动观察法寻找单堆燃料电池系统最大效率时的最优功率值。
根据单堆燃料电池系统实际测试数据,绘出实际单堆燃料电池系统效率随输出功率变化曲线;采用最小二乘法对效率-功率实现函数拟合,得到拟合函数;
在该函数最大效率值附近选取功率值作为自适应扰动观察法的初始化数据,在进行扰动观察法初始阶段时,采用效率的变化量来形成扰动信号,从而形成变步长的扰动。
采用一个PI控制器对相邻功率对应效率值之间的误差值进行比例-积分放大,产生自适应的扰动功率值,最后通过扰动观察原理产生单堆燃料电池功率指令值,得到对应的参考电流指令值;
单堆燃料电池系统实际输出电流跟踪该参考电流指令值,由单堆燃料电池系统输出电流参考值和实际值的误差产生DC-DC变换器所需要的占空比d,从而控制单堆燃料电池系统实际输出功率大小。
在步骤2)中,当多堆燃料电池系统的总输出功率不能满足负载功率,则将负载功率平均分配至各单堆燃料电池系统。
各单堆燃料电池系统并联且独立直挂于动力系统的直流母线上。
最小二乘法拟合公式如下:
f(p)=a*e (b*p)+c*e (d*p)
其中,f(p)为单堆燃料电池效率-功率曲线拟合函数式,a、b、c、d为拟合参数。
本发明还公开了一种并联燃料电池动力系统功率分配系统,包括:
第一模块,用于获取各单堆燃料电池系统最大效率时的最优功率值;
第二模块,用于在进行功率分配时,逐级开启各单堆燃料电池系统,直至多堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率值。
本发明进一步公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器运行时执行如上所述的并联燃料电池动力系统功率分配方法的步骤。
本发明还公开了一种计算机设备,包括存储器和处理器,所述存储器上存储有计算机程序,所述计算机程序在被处理器运行时执行如上所述的并联燃料电池动力系统功率分配方法的步骤。
与现有技术相比,本发明的优点在于:
本发明根据负载需求功率值,以整体动力系统综合效率为目标,寻找各单堆燃料电池系统最优效率(即最大效率)时的输出功率值,并以该功率值实现电堆功率逐级分配,保证整体系统处于最佳运行状态,保证整体系统效率最优化。
本发明在对单堆燃料电池采用自适应扰动观察法时,选取拟合函数最优效率点附近的功率值,以此提高搜寻效率,及时响应负载需求功率,能够根据负载功率或燃料电池进气量等因素变化自动调整扰动步长,抗干扰能力强、易于实现、成本低、且其核心算法具有普遍适用性,不依赖于任何预置的常数。
【附图说明】
图1为本发明的方法在实施例的流程图。
图2为本发明中的多堆燃料电池动力系统拓扑图。
图3为本发明中的单堆燃料电池系统效率随负载功率变化曲线图。
图4为本发明中的自适应扰动观察法控制框图。
【具体实施方式】
以下结合说明书附图和具体实施例对本发明作进一步描述。
如图1所示,本实施例的并联燃料电池动力系统功率分配方法,包括步骤:
1)获取各单堆燃料电池系统最大效率时的最优功率值;
2)在进行功率分配时,逐级开启各单堆燃料电池系统,直至多堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率值。
本发明的多堆燃料电池动力系统根据负载需求功率值,以整体动力系统综合效率为目标,寻找最优效率(即最大效率)时的输出功率值,并以该功率值实现电堆功率逐级分配,保证整体系统处于最优运行状态。
如图4所示,多堆燃料电池动力系统拓扑包括单堆燃料电池系统、中央控制器、直流母线和大功率负载,多个单堆燃料电池系统并联于直流母线上,通过直流母线传输功率至负载。在保证母线电压不变的情况下,增大母线输出总电流来提高整体动力系统功率等级。其中单堆燃料电池系统由单个燃料电池和单向DC-DC升压变换器组成,两者采用级联的方式与直流母线相连,通过控制DC-DC变换器占空比来实现单堆燃料电池输出功率的独立控制。
在一具体实施例中,如图4所示,在步骤1)中,通过利用自适应扰动观察法寻找单堆燃料电池系统最大效率时的最优功率值。如图3所示,单堆燃料电池系统效率随负载功率增加,具有先变大后变小的趋势,由此可见单堆燃料电池系统具有输出特性偏软、稳定 性耐久性较低、系统效率较低、输出功率有限等特点。其中单堆燃料电池系统效率计算公式如下:
Figure PCTCN2021104419-appb-000001
其中,f(stack n)为第n个燃料电池系统的输出效率;
Figure PCTCN2021104419-appb-000002
为第n个燃料电池电堆转化效率;η E为考虑辅机系统后的电效率;η DC为经过DC-DC变换器的电效率;
电效率η E的计算公式如下:
Figure PCTCN2021104419-appb-000003
其中,P outn为第n个电堆单体输出功率,P aux为燃料电池发电系统整体所需的辅机功率。
具体地,利用自适应扰动观察法寻找各电堆最大效率点对功率逐级分配实现动力系统功率叠加,建立多堆燃料动力系统整体效率等式、负载需求功率约束及单堆燃料电池功率约束关系如下式:
Figure PCTCN2021104419-appb-000004
其中,f(all)为整体燃料电堆动力系统效率,P1、P2、…、Pn为各个燃料电池电堆的输出功率,f(P 1)、f(P 2)、…、f(P n)为各个燃料电池电堆实时功率对应的效率,P load为负载需求功率;P nmin、P nmax为第n套单堆燃料电池实际输出最小功率和最大功率。
进一步地,在自适应扰动观察法中,根据单堆燃料电池实际测试数据,绘出实际单堆燃料电池系统效率随输出功率变化曲线,采用最小二乘法对效率-功率实现函数拟合,最小二乘法拟合公式如下:
f(p)=a*e (b*p)+c*e (d*p)
其中,f(p)为单堆燃料电池效率-功率曲线拟合函数式,a、b、c、d为拟合参数;
在该函数最大效率值附近选取功率值作为自适应扰动观察法的初始化数据,在进行扰动观察法初始阶段时,由于选取的初始功率点与最佳效率时功率点存在一定差距,导致初始扰动值较大,在不断靠近最佳效率点时,扰动值变化会不断减小,因此采用效率的变化量来形成扰动信号,从而形成变步长的扰动;
在上述控制中需要使该扰动值在稳定运行时尽可能变小,采用一个PI控制器对相邻功 率点对应效率值之间的误差值Δη进行比例-积分放大,产生自适应的扰动功率值Δp,最后通过扰动观察原理产生单堆燃料电池系统功率指令值
Figure PCTCN2021104419-appb-000005
则单堆燃料电池系统实际输出电流指令值可由下式得出:
Figure PCTCN2021104419-appb-000006
其中,U bus为母线电压值。
单堆燃料电池系统实际输出电流需要准备跟踪该参考电流指令值,可以通过内环电流控制器实现,由燃料电池系统输出电流参考值和实际值的误差产生DC-DC变换器所需要的占空比d,从而控制燃料电池实际输出功率大小。
本发明根据效率-功率曲线拟合函数选定单堆燃料电池控制系统的输出功率初始值,采用自适应扰动观察法寻找最优效率点,采用PI控制器对相邻功率点的效率误差进行比例-积分放大,然后通过扰动观察基本原理产生单堆燃料电池输出功率指令
Figure PCTCN2021104419-appb-000007
再通过内环PI控制器产生DC-DC变换器所需要的占空比信号d,从而控制单堆燃料电池输出功率。
本发明在对单堆燃料电池采用自适应扰动观察法时,选取拟合函数最优效率点附近的功率值,以此提高搜寻效率,及时响应负载需求功率,能够根据负载功率或燃料电池进气量等因素变化自动调整扰动步长,抗干扰能力强、易于实现、成本低、且其核心算法具有普遍适用性,不依赖于任何预置的常数。
如图2所示,以4个电堆子系统为例进行说明,随着负载功率需求的增加,选择第一套子系统利用自适应扰动观察法寻找最优效率点η 1,确认输出功率是否达到负载功率;若没有达到,继续启动第二套子系统,寻找最优效率点η 2;以此类推,逐级分配功率至最后一套子系统,若所需功率小于最优效率点功率,则按照负载实际需求功率进行输出;若整套系统最优效率点的输出功率总和达不到负载需求功率,则采用平均分配方法将负载需求功率均分至各个电堆。
本发明还公开了一种并联燃料电池动力系统功率分配系统,包括:
第一模块,用于获取各单堆燃料电池系统最大效率时的最优功率值;
第二模块,用于在进行功率分配时,逐级开启各单堆燃料电池系统,直至多堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率值。
本发明的分配系统,用于执行如上所述的分配方法,同样具有如上分配方法所述的优点。
本发明进一步公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器运行时执行如上所述的并联燃料电池动力系统功率分配方法的步骤。本发明还公开了一种计算机设备,包括存储器和处理器,所述存储器上存储有计算机程序,所 述计算机程序在被处理器运行时执行如上所述的并联燃料电池动力系统功率分配方法的步骤。本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一个计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一个计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (10)

  1. 一种并联燃料电池动力系统功率分配方法,其特征在于,包括步骤:
    1)获取各单堆燃料电池系统最大效率时的最优功率值;
    2)在进行功率分配时,逐个开启各单堆燃料电池系统,直至各单堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率值。
  2. 根据权利要求1所述的并联燃料电池动力系统功率分配方法,其特征在于,在步骤1)中,通过利用自适应扰动观察法寻找单堆燃料电池系统最大效率时的最优功率值。
  3. 根据权利要求2所述的并联燃料电池动力系统功率分配方法,其特征在于,根据单堆燃料电池系统实际测试数据,绘出实际单堆燃料电池系统效率随输出功率变化曲线;采用最小二乘法对效率-功率实现函数拟合,得到拟合函数;
    在该函数最大效率值附近选取功率值作为自适应扰动观察法的初始化数据,在进行扰动观察法初始阶段时,采用效率的变化量来形成扰动信号,从而形成变步长的扰动。
  4. 根据权利要求3所述的并联燃料电池动力系统功率分配方法,其特征在于,采用一个PI控制器对相邻功率对应效率值之间的误差值进行比例-积分放大,产生自适应的扰动功率值,最后通过扰动观察原理产生单堆燃料电池功率指令值,得到对应的参考电流指令值;
    单堆燃料电池系统实际输出电流跟踪该参考电流指令值,由单堆燃料电池系统输出电流参考值和实际值的误差产生DC-DC变换器所需要的占空比d,从而控制单堆燃料电池系统实际输出功率大小。
  5. 根据权利要求1~4中任意一项所述的并联燃料电池动力系统功率分配方法,其特征在于,在步骤2)中,当多堆燃料电池系统的总输出功率不能满足负载功率,则将负载功率平均分配至各单堆燃料电池系统。
  6. 根据权利要求1~4中任意一项所述的并联燃料电池动力系统功率分配方法,其特征在于,各单堆燃料电池系统并联且独立直挂于动力系统的直流母线上。
  7. 根据权利要求3或4所述的并联燃料电池动力系统功率分配方法,其特征在于,最小二乘法拟合公式如下:
    f(p)=a*e (b*p)+c*e (d*p)
    其中,f(p)为单堆燃料电池效率-功率曲线拟合函数式,a、b、c、d为拟合参数。
  8. 一种并联燃料电池动力系统功率分配系统,其特征在于,包括:
    第一模块,用于获取各单堆燃料电池系统最大效率时的最优功率值;
    第二模块,用于在进行功率分配时,逐级开启各单堆燃料电池系统,直至多堆燃料电池系统的总输出功率满足负载功率;其中各单堆燃料电池系统的实际输出功率均为对应的最优功率值。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序在被处理器运行时执行如权利要求1-7中任意一项所述的并联燃料电池动力系统功率分配方法的步骤。
  10. 一种计算机设备,包括存储器和处理器,所述存储器上存储有计算机程序,其特征在于,所述计算机程序在被处理器运行时执行如权利要求1-7中任意一项所述的并联燃料电池动力系统功率分配方法的步骤。
PCT/CN2021/104419 2020-11-13 2021-07-05 一种并联燃料电池动力系统功率分配方法及系统 WO2022100112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21890643.6A EP4228113A4 (en) 2020-11-13 2021-07-05 POWER DISTRIBUTION METHOD AND SYSTEM FOR PARALLEL FUEL CELL POWER SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011270368.1A CN112366678B (zh) 2020-11-13 2020-11-13 一种并联燃料电池动力系统功率分配方法及系统
CN202011270368.1 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022100112A1 true WO2022100112A1 (zh) 2022-05-19

Family

ID=74514742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104419 WO2022100112A1 (zh) 2020-11-13 2021-07-05 一种并联燃料电池动力系统功率分配方法及系统

Country Status (3)

Country Link
EP (1) EP4228113A4 (zh)
CN (1) CN112366678B (zh)
WO (1) WO2022100112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763908A (zh) * 2022-11-29 2023-03-07 合肥工业大学 一种多堆燃料电池系统效率优化的分布式控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366678B (zh) * 2020-11-13 2022-10-11 株洲国创轨道科技有限公司 一种并联燃料电池动力系统功率分配方法及系统
CN113113938B (zh) * 2021-04-15 2023-12-12 上海恒劲动力科技有限公司 一种多模块燃料电池系统均功率控制方法及系统
CN113459902B (zh) * 2021-07-16 2023-02-21 西南交通大学 一种实现燃料电池阵列最大效率运行的功率分配方法
CN113733938B (zh) * 2021-09-17 2023-08-04 中车青岛四方机车车辆股份有限公司 动力电池充电方法、充电系统、混合动力系统及列车
CN113884928B (zh) * 2021-09-23 2022-06-21 西南交通大学 一种基于燃料电池健康度校正的多堆分布式控制方法
CN115995585B (zh) * 2023-03-22 2023-08-01 长安新能源南京研究院有限公司 一种燃料电池发动机净功率控制方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987770A (zh) * 2018-07-18 2018-12-11 西南交通大学 一种多堆燃料电池发电系统的协调优化控制方法
JP2020053288A (ja) * 2018-09-27 2020-04-02 株式会社Subaru 燃料電池システム
CN112366678A (zh) * 2020-11-13 2021-02-12 株洲国创轨道科技有限公司 一种并联燃料电池动力系统功率分配方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITSA20090004A1 (it) * 2009-02-20 2010-08-21 Univ Degli Studi Salerno Metodo di controllo di un sistema di generazione di potenza elettrica basato su sorgenti di energia, in particolare sorgenti di energia rinnovabile, e relativo dispositivo controllore.
CN102809980B (zh) * 2012-07-31 2014-01-22 东南大学 基于高效自适应扰动观察法的最大功率跟踪方法
CN107689459B (zh) * 2017-08-22 2019-11-08 西南交通大学 一种有轨电车用燃料电池阵列系统的效率优化控制方法
CN111755718B (zh) * 2020-05-15 2021-11-30 广东鸿力氢动科技有限公司 一种燃料电池系统集群的功率分配方法及装置
CN113733938B (zh) * 2021-09-17 2023-08-04 中车青岛四方机车车辆股份有限公司 动力电池充电方法、充电系统、混合动力系统及列车

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987770A (zh) * 2018-07-18 2018-12-11 西南交通大学 一种多堆燃料电池发电系统的协调优化控制方法
JP2020053288A (ja) * 2018-09-27 2020-04-02 株式会社Subaru 燃料電池システム
CN112366678A (zh) * 2020-11-13 2021-02-12 株洲国创轨道科技有限公司 一种并联燃料电池动力系统功率分配方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEOL-SOON KWON ; WON-KYUN CHOI ; FEEL-SOON KANG: "Maximum efficiency point tracking algorithm for photovoltaic power generating system", CIRCUITS,COMMUNICATIONS AND SYSTEM (PACCS), 2010 SECOND PACIFIC-ASIA CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 1 August 2010 (2010-08-01), Piscataway, NJ, USA , pages 71 - 74, XP031794363, ISBN: 978-1-4244-7969-6, DOI: 10.1109/PACCS.2010.5627020 *
See also references of EP4228113A4
WANG TIANHONG, QI LI, LIANGZHEN YIN, BO SU, WENQIANG HUANG, WEIRONG CHEN: "Fuel Cell System Online Identification and Real-time Maximum Efficiency Sliding Mode Control Method", PROCEEDINGS OF THE CSEE, vol. 39, no. 17, 5 September 2019 (2019-09-05), CN , pages 5118 - 5128 + 5292, XP055930476, ISSN: 0258-8013, DOI: 10.13334/j.0258-8013.pcsee.181559 *
ZHU YANAN, QI LI, WENQIANG HUANG, WEILIN SHANG, WEIRONG CHEN, YI DING: "Efficiency Coordination and Optimization Control Method of Multi-stack Fuel Cell Systems Based on Power Adaptive Allocation", PROCEEDINGS OF THE CSEE, vol. 39, 20 March 2019 (2019-03-20), XP055930479, DOI: 10.13334/j.0258-8013.pcsee.181122 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763908A (zh) * 2022-11-29 2023-03-07 合肥工业大学 一种多堆燃料电池系统效率优化的分布式控制方法
CN115763908B (zh) * 2022-11-29 2024-03-01 合肥工业大学 一种多堆燃料电池系统效率优化的分布式控制方法

Also Published As

Publication number Publication date
CN112366678A (zh) 2021-02-12
EP4228113A1 (en) 2023-08-16
CN112366678B (zh) 2022-10-11
EP4228113A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2022100112A1 (zh) 一种并联燃料电池动力系统功率分配方法及系统
CN108987770B (zh) 一种多堆燃料电池发电系统的协调优化控制方法
JP3657582B2 (ja) 燃料電池制御システム
JP5146599B2 (ja) 燃料電池システムおよびその電力制御方法
CN111152690B (zh) 一种燃料电池车辆多电源时变特性的能量控制方法及系统
Ziaeinejad et al. Fuel cell-based auxiliary power unit: EMS, sizing, and current estimator-based controller
US20090289589A1 (en) Power supply system
US7829229B1 (en) Power control for hybrid fuel cell systems
WO2022165914A1 (zh) 分布式电压源变流器协同控制方法及交直流混联微电网
JPWO2004055929A1 (ja) 2次電池を有する燃料電池システム
CN113452061B (zh) 一种海上风电直流输电系统及其控制方法
US10305410B2 (en) Fuel cell system control method and fuel cell vehicle
CN105518962A (zh) 燃料电池单元
CN113173108A (zh) 多堆燃料电池控制方法、控制装置、系统及车辆
CN108365632A (zh) 一种基于储能电池的电力系统及运行方法
Liang et al. Downgrade power allocation for multi-fuel cell system (MFCS) based on minimum hydrogen consumption
JP2017011883A (ja) 燃料電池自動車
CN114079284B (zh) 计及燃料电池效率特性的分布式发电系统能量管理与优化控制方法
CN113733938B (zh) 动力电池充电方法、充电系统、混合动力系统及列车
JP6774011B2 (ja) 燃料電池システム
CN107845824B (zh) 一种实现燃料电池阵列最优效率区间的控制方法及系统
JP3453375B2 (ja) 電力生成制御システム
CN114824370A (zh) 一种双堆燃料电池系统整车能量控制方法
Wang et al. A two-layer control strategy for hydrogen-battery hybrid system considering the efficiency characteristics of MS-PEMFC
Gole et al. Reinforcement Learning Based Energy Management in Hybrid Electric Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021890643

Country of ref document: EP

Effective date: 20230512

NENP Non-entry into the national phase

Ref country code: DE