WO2022099702A1 - 一种可穿戴设备及ppg信号的检测方法 - Google Patents

一种可穿戴设备及ppg信号的检测方法 Download PDF

Info

Publication number
WO2022099702A1
WO2022099702A1 PCT/CN2020/129097 CN2020129097W WO2022099702A1 WO 2022099702 A1 WO2022099702 A1 WO 2022099702A1 CN 2020129097 W CN2020129097 W CN 2020129097W WO 2022099702 A1 WO2022099702 A1 WO 2022099702A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
shielding layer
capacitance
conductive shielding
wearing
Prior art date
Application number
PCT/CN2020/129097
Other languages
English (en)
French (fr)
Inventor
杨旺旺
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/129097 priority Critical patent/WO2022099702A1/zh
Publication of WO2022099702A1 publication Critical patent/WO2022099702A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the embodiments of the present application relate to the technical field of electronic devices, and in particular, to a wearable device and a method for detecting a PPG signal.
  • PPG PhotoPlethysmoGraphy, photoplethysmography
  • PPG detection refers to a non-invasive detection technology that detects blood volume changes in living tissue by means of photoelectric means; among them, the photosensitive sensor, as a key device in PPG detection, is used to convert the received light signal transmitted or reflected by the human body into Electrical signal; PPG signal (a digital electrical signal) can be obtained by further processing the electrical signal; through this PPG signal, the physiological parameters such as blood pressure, blood oxygen, brain oxygen, muscle oxygen, blood sugar and heart rate can be obtained. Therefore, the working performance of the photosensitive sensor has a very important influence on the accuracy of PPG detection results.
  • the photosensitive sensor is easily interfered by electromagnetic noise, resulting in a low signal-to-noise ratio of the obtained PPG signal;
  • the capacitive detection electrodes used in the wearing detection scheme are set separately, and their positions need to avoid the photosensitive area of the photosensitive sensor, resulting in a larger space occupied by the overall structure and a more complicated stacking design.
  • embodiments of the present application provide a wearable device and a PPG signal detection method, so as to improve the signal quality of the PPG signal, improve system integration, save design space, and reduce design complexity .
  • an embodiment of the present application provides a wearable device for detecting physiological parameter information of a measured object, including: a first photosensitive sensor, a conductive shielding layer, a capacitance detection device, and a PPG signal detection device;
  • the first photosensor is used to convert the light signal into an electrical signal for output;
  • the first photosensor includes a photosensitive area, and the photosensitive area is used for absorbing the light signal;
  • the conductive shielding layer covers the photosensitive area;
  • the conductive shielding layer is connected to the ground terminal GND, or connected to the capacitance detection device; when the conductive shielding layer is connected to the ground terminal GND, it is used to prevent the first photosensor from being interfered by electromagnetic noise; When the conductive shielding layer is connected to the capacitance detection device, it is used to sense a capacitance detection signal;
  • the capacitance detection device is configured to receive the capacitance detection signal and detect to obtain a capacitance detection result
  • the PPG signal detection device is used for receiving the electrical signal output by the first photosensor and detecting the PPG signal.
  • the conductive shielding layer When the conductive shielding layer is connected to the ground terminal GND, the conductive shielding layer can effectively reduce electromagnetic noise in the electrical signal output by the photosensitive region and coupled to the first photosensitive sensor, thereby improving the PPG signal high signal-to-noise ratio and accuracy of PPG detection results; when the conductive shielding layer is connected to the capacitance detection device, the conductive shielding layer is multiplexed into a capacitance detection electrode layer, which can be used to realize a variety of capacitance-based technology-based Detection, such as wearing detection, pressure detection, proximity detection, human-computer interaction detection and temperature detection, etc.
  • the wearable device further includes: a controller, configured to control the conductive shielding layer to be connected to the ground terminal GND, or to be connected to the capacitance detection device.
  • the wearable device further includes: a first optical wearing detection device, configured to receive an electrical signal output by the first photosensor and detect to obtain a first optical wearing detection result.
  • a first optical wearing detection device configured to receive an electrical signal output by the first photosensor and detect to obtain a first optical wearing detection result.
  • the controller is further configured to, according to the instruction of the measured object or the capacitance detection result, control when the first optical wearing detection device receives the electrical signal output by the first photosensor and detects the obtained result.
  • the first optical wearing detection result is described.
  • the wearable device further comprises: a second photosensitive sensor and a second optical wear detection device;
  • the second photosensor is used for converting the optical signal into an electrical signal for output;
  • the second optical wearing detection device is used for receiving the electrical signal output by the second photosensor and detecting to obtain a second optical wearing detection result.
  • the controller is further configured to, according to the instruction of the measured object or the capacitance detection result, control when the second optical wearing detection device receives the electrical signal output by the second photosensor and detects the obtained result.
  • the second optical wearing detection result is described.
  • the conductive shielding layer is connected to the ground terminal GND through a gate switch, or connected to the capacitance detection device.
  • the controller is further configured to control the gating switch to connect the conductive shielding layer to the ground terminal GND, or to the capacitance detection device.
  • the controller is further configured to control the PPG signal detection device to operate according to the capacitance detection result, the first optical wearing detection result, the second optical wearing detection result or the instruction of the measured object.
  • the controller is further configured to control the PPG signal detection device to operate according to the capacitance detection result, the first optical wearing detection result, the second optical wearing detection result or the instruction of the measured object.
  • the capacitance detection device is used for at least one of the following detections: wearing detection, temperature detection, proximity detection, human-computer interaction detection, and pressure detection.
  • the conductive shielding layer only covers the photosensitive area; or, covers the periphery of the first photosensitive sensor and above the photosensitive area.
  • the conductive shielding layer is an ITO layer, a graphene layer or a metal layer.
  • the conductive shielding layer has a grid-like structure.
  • an embodiment of the present application provides a method for detecting a PPG signal, which is applied to a wearable device, where the wearable device includes a first photosensor, a conductive shielding layer, a capacitance detection device, a PPG signal detection device, and a controller, Wherein the capacitance detection device is at least used for wearing detection, and the method includes:
  • the controller controls the conductive shielding layer to be connected to the capacitance detection device, and the capacitance detection device receives the capacitance detection signal sensed by the conductive shielding layer, and detects a capacitance wearing detection result;
  • the controller controls the conductive shielding layer to be connected to the ground terminal GND, and the PPG signal detection device receives the output of the first photosensor. The electrical signal is detected, and the PPG signal is obtained.
  • the wearing state of the wearable device has a very important impact on the accuracy of the PPG detection result, before the PPG detection is performed, judging the wearing state of the wearable device can avoid blindly performing PPG in the unworn state. detection, resulting in the output of invalid PPG detection results, resulting in unnecessary power consumption and affecting user experience.
  • the functions of anti-interference and capacitance detection can be realized respectively, which is beneficial to improve the system integration, reduce the space occupied by the overall structure, and reduce the complexity of the design.
  • the capacitance detecting device receives a subsequently transmitted capacitive detection signal, and detects a new capacitive wearing detection result.
  • Embodiments of the present application further provide a method for detecting a PPG signal, which is applied to a wearable device.
  • the wearable device includes a first photosensitive sensor, a conductive shielding layer, a capacitance detection device, a PPG signal detection device, and a first optical wear detection device. and a controller, wherein the capacitance detection device is at least used for wearing detection, and the method includes:
  • the controller controls the conductive shielding layer to be connected to the capacitance detection device, and the capacitance detection device receives the capacitance detection signal sensed by the conductive shielding layer, and detects a capacitance wearing detection result;
  • the controller controls the conductive shielding layer to be connected to the ground terminal GND, and the first optical wearing detection device receives the electrical signal output by the first photosensor and detects to obtain a first optical wearing detection result;
  • the controller controls the conductive shielding layer to be connected to the ground terminal GND, and the PPG signal detects The device receives the electrical signal output by the first photosensor, and detects the PPG signal.
  • Combining the optical wearing detection scheme with the capacitive wearing detection scheme is beneficial to improve the accuracy of the wearing detection results; in addition, the conductive shielding layer is used to realize the functions of anti-interference and capacitance detection respectively, which can improve the system integration and save the design space. Reduce design complexity.
  • the method further includes: when the capacitive wearing detection result or the first optical wearing detection result indicates that the wearable device is in an unworn state, the controller controls the conductive shielding layer to connect to the The capacitance detection device receives a capacitance detection signal transmitted subsequently, and detects a new capacitance wearing detection result.
  • An embodiment of the present application further provides a method for detecting a PPG signal, which is applied to a wearable device.
  • the wearable device includes a first photosensor, a second photosensor, a conductive shielding layer, a capacitance detection device, a PPG signal detection device, a Two optical wearing detection devices and a controller, wherein the capacitance detection device is at least used for wearing detection, and the method includes:
  • the controller controls the conductive shielding layer to be connected to the capacitance detection device, and the capacitance detection device receives the capacitance detection signal sensed by the conductive shielding layer, and detects a capacitance wearing detection result;
  • the controller controls the conductive shielding layer to be connected to the ground terminal GND, and the second optical wearing detection device receives the electrical signal output by the second photosensor and detects to obtain a second optical wearing detection result;
  • the controller controls the conductive shielding layer to be connected to the ground terminal GND, and the PPG signal detects The device receives the electrical signal output by the first photosensor, and detects the PPG signal.
  • Combining the optical wearing detection scheme with the capacitive wearing detection scheme is beneficial to improve the accuracy of the wearing detection results; and the difference from the previous PPG signal detection method is that by setting the first photosensitive sensor and the second photosensitive sensor , and the two are used for PPG detection and optical wear detection respectively, so that the first photosensitive sensor and the second photosensitive sensor can be set to receive different types of light sources (such as infrared light sources) according to specific application requirements. light, visible light, laser, etc.) to better realize the PPG detection function and optical wear detection function.
  • using the conductive shielding layer to realize the functions of anti-interference and capacitance detection can improve system integration, save design space, and reduce design complexity.
  • the method further includes: when the capacitive wearing detection result or the second optical wearing detection result indicates that the wearable device is in an unworn state, the controller controls the conductive shielding layer to connect to the The capacitance detection device receives a capacitance detection signal transmitted subsequently, and detects a new capacitance wearing detection result.
  • FIG. 1 is a schematic structural diagram of a wearable device according to an embodiment of the present application
  • FIG. 2A is a schematic cross-sectional structural diagram of a first photosensor with an additional conductive shielding layer provided by an embodiment of the present application;
  • FIG. 2B is a schematic cross-sectional structural diagram of another first photosensor with a conductive shielding layer provided in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of another wearable device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a wearable device provided with an optical wearing detection device provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of another wearable device provided with an optical wearing detection device provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for detecting a PPG signal according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of another method for detecting a PPG signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another method for detecting a PPG signal provided by an embodiment of the present application.
  • first”, “second”, etc. are only used to distinguish similar objects, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second”, etc., may expressly or implicitly include one or more of that feature.
  • each step may be performed in the specified order, substantially concurrently. each step, perform each step in the reverse order, or perform each step in a different order.
  • Embodiments of the present application provide a wearable device, specifically, a device with a PPG detection function, such as a smart watch, a smart bracelet, a smart armband, a smart ring, a Bluetooth headset, a wired headset, a heart rate sticker, and a heart rate belt.
  • a PPG detection function such as a smart watch, a smart bracelet, a smart armband, a smart ring, a Bluetooth headset, a wired headset, a heart rate sticker, and a heart rate belt.
  • a schematic structural diagram of a wearable device includes: a first photosensitive sensor 10, a conductive shielding layer 20, a GND 30, a capacitance detection device 40, a PPG signal detection device 50, and an optional Turn on switch 60.
  • the first photosensor 10 can convert the received optical signal reflected or transmitted by the measured object into an electrical signal for output; specifically, the first photosensor 10 can be a photodiode, a phototransistor, an avalanche photodiode or a photomultiplier tube, etc.
  • a device with a photoelectric conversion function is not limited in this embodiment of the present application.
  • the conductive shielding layer 20 covers the photosensitive area of the first photosensor 10, and the conductive shielding layer 20 can be grounded through the gate switch 60, that is, connected to the GND 30; or, connected to the capacitance detection device 40 through the gate switch 60.
  • the gating switch 60 may be an analog switch or the like.
  • the equivalent capacitance When approaching or touching the wearable device, the equivalent capacitance will change according to the distance or contact degree of the measured object close to the conductive shielding layer 20, thereby forming a capacitance detection signal.
  • the capacitance detection device 40 can receive the conductive shielding layer. Capacitance detection signal sensed by layer 20, and realize functions such as wearing detection, temperature detection, proximity detection, human-computer interaction detection or pressure detection according to the capacitance detection signal; When the function is enabled, the capacitive wear detection result can be output.
  • the PPG signal detection device 50 is connected to the first photosensitive sensor 10, and can receive the electrical signal output by the first photosensitive sensor 10, and detect the PPG signal.
  • the PPG signal detection device 50 may include: an amplifier circuit, a filter circuit and an A/D acquisition circuit.
  • the first photosensor 10 is provided with a metal casing 103, and the upper surface of the metal casing 103 is provided with a light-transmitting cover plate 102 for transmitting light signals, So that the light signal can be transmitted to the photosensitive area 101, the conductive shielding layer 20 covers the photosensitive area 101; specifically, the conductive shielding layer 20 can be arranged on the inner side of the metal casing 103, that is to form an integral body with the first photosensitive sensor 10, for example 2A, the conductive shielding layer 20 is attached to the inner side of the light-transmitting cover plate 102; or, the conductive shielding layer 20 can be arranged on the outer side of the metal casing 103, which is an independent structure, for example, as shown in FIG. 2B The conductive shielding layer 20 is attached to the outside of the transparent cover plate 102 .
  • the conductive shielding layer 20 may cover the periphery of the first photosensor 10 and above the photosensitive area 101 at the same time, that is, a shielding cover is formed; and at this time, the first photosensor 10 may not be provided with metal The casing 103 and the light-transmitting cover plate 102 on the upper surface of the metal casing 103 .
  • the gate switch 60 can be used to connect the conductive shielding layer 20 to the GND 30 or to the capacitance detection device 40, but also can be provided outside the wearable device for realizing the conductive shielding layer 20 and the GND 30.
  • the physical connection pads or interfaces between the capacitance detection devices 40, or the selection of the connection object of the conductive shielding layer 20 is realized by methods such as software control, and is not limited to this.
  • the conductive shielding layer 20 when used for shielding electromagnetic interference, it can also be connected to a DC power supply with a stable voltage value.
  • the following is an example of the conductive shielding layer 20 being connected to different connection objects through the gating switch 60, and the conductive shielding layer 20 being connected to the GND 30 to realize the function of electromagnetic shielding as an example.
  • FIG. 3 it is a schematic structural diagram of another wearable device provided by an embodiment of the present application.
  • the controller 70 can control the gate switch 60 to connect the conductive shielding layer 20 to the capacitance detection device 40 to realize various capacitance detection functions, or control the gate switch 60 to connect the conductive shielding layer 20 to the GND 30 to prevent the first A photosensor 10 is disturbed by electromagnetic noise.
  • the controller 70 can also control when the PPG signal detection device 50 performs PPG detection. For example, when the wearable device receives an instruction from the measured object to turn on the PPG detection function to complete the detection of physiological parameters such as heart rate or blood oxygen, the controller 70 The gate switch 60 can be controlled to connect the conductive shield layer 20 to the GND 30, and the PPG signal detection device 50 can be controlled to perform PPG detection; or, the controller 70 first controls the gate switch 60 to connect the conductive shield layer 20 to the capacitance detection device 40, The capacitance detection device 40 can be used to perform capacitance wear detection and obtain a capacitance wear detection result.
  • the controller 70 controls the gate switch 60 to conduct electricity.
  • the shielding layer 20 is connected to GND 30, and controls the PPG signal detection device 50 to perform PPG detection, so as to avoid PPG detection without determining whether the object under test has worn or correctly worn the wearable device, resulting in the obtained PPG detection result Inaccurate, causing extra power consumption and affecting user experience.
  • FIG. 4 it is a schematic structural diagram of a wearable device provided with an optical wear detection device according to an embodiment of the present application.
  • the first photosensitive sensor 10 can receive the light signal reflected by the measured object, and convert it into an electrical signal for output;
  • the first optical wearing detection device 80 can receive the electrical signal output by the first photosensitive sensor 10, and perform an optical signal.
  • the wearing detection obtains the first optical wearing detection result;
  • the PPG signal detection device 50 may also receive the electrical signal output by the first photosensor 10, and perform PPG detection to obtain the PPG signal.
  • the controller 70 can control the gating state of the gating switch 60, and can also control when the first optical wearing detection device 80 performs optical wearing detection, and when the PPG signal detection device 50 performs PPG detection, for example, when the wearable device receives
  • the controller 70 can control the capacitance detection device 40 and the first optical wearing detection device 80 to perform wearing detection at the same time; or, firstly control the first optical wearing detection device 80 to perform optical wearing detection,
  • the capacitance detection device 40 is controlled to perform capacitance wearing detection; or, the capacitance detection device 40 is first controlled to perform capacitance wearing detection, and when the capacitance wearing detection result indicates the wearable device
  • the first optical wear detection device 80 is controlled to perform optical wear detection; if both the capacitive wear detection result and the first optical wear detection result indicate that the wearable device is in the worn state, the controller 70 controls The PPG
  • the capacitive wearing detection scheme with the optical wearing detection scheme can improve the accuracy of the wearing detection results, and the reliable and accurate judgment of the wearing state is beneficial to ensure the validity of the PPG detection results and improve the accuracy of the PPG detection results.
  • the first photosensitive sensor 10 is used for wearing detection and PPG detection respectively, which can further save design space and cost.
  • FIG. 5 it is a schematic structural diagram of another wearable device provided with an optical wearing detection device according to an embodiment of the present application.
  • the first photosensitive sensor 10 and the second photosensitive sensor 20 can respectively receive the light signal reflected by the measured object and convert it into an electrical signal for output, wherein the second photosensitive sensor 11 can be a photodiode, a phototransistor, an avalanche photodiode or A photomultiplier tube or other device with a photoelectric conversion function, and the type of the second photosensitive sensor 11 and the first photosensitive sensor 10 may be the same or different, which is not limited in this embodiment of the present application; the second optical wearing detection device 81 can receive The electrical signal output by the second photosensor 20 is subjected to optical wearing detection to obtain the second optical wearing detection result; while the PPG signal detection device 50 can receive the electrical signal output from the first photosensor 10 and perform PPG detection to obtain the PPG signal.
  • the second photosensitive sensor 11 can be a photodiode, a phototransistor, an ava
  • the first photosensitive sensor 10 and the second photosensitive sensor 20 are respectively used for PPG detection and optical wear detection, they can be set as photosensitive sensors that receive the same type of light source, or can be set according to specific For example, when using PPG technology to detect heart rate, a green light source is selected to obtain a PPG signal with a high signal-to-noise ratio, and the first photosensitive sensor 10 needs to be set to be able to A photosensitive sensor that receives a green light source; and when a laser light source is selected for optical wearing detection, the second photosensitive sensor 11 needs to be set as a photosensitive sensor capable of receiving a laser light source, so as to achieve high efficiency and low power consumption. Optical wear detection.
  • the first photosensitive sensor 10 and the second photosensitive sensor 20 may also be respectively set as photosensitive sensors capable of receiving light sources such as infrared light or other visible light, which are not limited in this embodiment of the present application.
  • the conductive shielding layer 20 is an ITO (indium tin oxide) layer, a graphene layer or a metal layer; specifically, the metal layer may be a material with good electrical conductivity such as copper and silver.
  • ITO indium tin oxide
  • the metal layer may be a material with good electrical conductivity such as copper and silver.
  • the conductive shielding layer 20 can be either a solid and complete layer structure or a grid-like layer structure; 20 When a metal material with weak light transmittance or no light transmittance is used, a grid-like metal layer structure can be made to ensure that the first photosensitive sensor 10 receives a light signal of sufficient intensity while shielding electromagnetic interference. .
  • the second photosensitive sensor 11 also includes a photosensitive area and a metal casing, and a light-transmitting cover plate is provided on the upper surface of the metal casing;
  • the structure of the photosensor 10 is basically the same.
  • the conductive shielding layer 20 only covers the photosensitive area of the first photosensor 10 ; or, the conductive shielding layer 20 simultaneously covers the photosensitive areas of the first photosensor 10 and the second photosensor 11 .
  • the conductive shielding layer 20 is simultaneously covered on the first photosensor 10 and the metal shell.
  • the conductive shielding layer 20 covers the first photosensor 10 and the second photosensor at the same time.
  • the periphery of the sensor 11 and above the photosensitive area; alternatively, a conductive shielding layer is additionally disposed over the photosensitive area of the second photosensitive sensor 11 to shield electromagnetic interference, for example, as shown in FIG. 2A or 2B .
  • a method for detecting a PPG signal provided by an embodiment of the present application can be applied to the wearable device shown in FIG. 3 , wherein the capacitance detection device 40 can be used for at least wearing detection; specifically, The method may include the following steps:
  • Step S101 the controller 70 controls the conductive shielding layer 20 to be connected to the capacitance detection device 40 , and the capacitance detection device 40 receives the capacitance detection signal sensed by the conductive shielding layer 20 , and detects the capacitance wearing detection result.
  • the conductive shielding layer 20 can be connected to the capacitance detection device 40, that is, the state of the conductive shielding layer 20 as the capacitance detection electrode layer is set as the initial state of the wearable device; when the measured object approaches or contacts the wearable device , because there is an equivalent capacitance between the conductive shielding layer 20 and the ground terminal, and the equivalent capacitance will change according to the distance or contact degree of the measured object close to the conductive shielding layer 20, thereby forming a capacitance detection signal, capacitance detection The device 40 may receive the capacitance detection signal, and determine whether the object under test has worn or is correctly wearing the wearable device according to the capacitance detection signal. Alternatively, it can be set that when the wearable device receives an instruction from the measured object to perform PPG detection, the controller 70 controls the conductive shielding layer to connect to the capacitance detection device 40 and perform capacitance wearing detection.
  • Step S102 Determine whether the capacitive wearing detection result indicates that the wearable device is in a worn state, if yes, go to step S103; if not, go to step S101.
  • Step S103 The controller 70 controls the conductive shielding layer 20 to be connected to the ground terminal GND 30, and the PPG signal detection device 50 receives the electrical signal output by the first photosensor 10, and detects the PPG signal.
  • the wearing detection scheme is used for wearing detection, which has the advantage of low power consumption.
  • FIG. 7 another method for detecting a PPG signal provided by an embodiment of the present application can be applied to the wearable device shown in FIG. 4 , wherein the capacitance detection device 40 can be used for at least wearing detection; , the method may include the following steps:
  • Step S201 the controller 70 controls the conductive shielding layer 20 to be connected to the capacitance detection device 40 , and the capacitance detection device 40 receives the capacitance detection signal sensed by the conductive shielding layer 20 , and detects the capacitance wearing detection result.
  • the state in which the conductive shielding layer 20 is connected to the capacitance detection device 40 can also be set as the initial state of the wearable device; or set as: when receiving an instruction from the measured object to perform PPG detection , the controller 70 controls the conductive shielding layer 20 to be connected to the capacitance detection device 40 .
  • Step S202 Determine whether the capacitive wearing detection result indicates that the wearable device is in a worn state, if yes, go to Step S203; if not, go to Step S201.
  • Step S203 The controller 70 controls the conductive shielding layer 20 to be connected to the ground terminal GND 30, and the first optical wearing detection device 80 receives the electrical signal output by the first photosensor 10 and detects to obtain the first optical wearing detection result.
  • Step S204 Determine whether the first optical wearing detection result indicates that the wearable device is in a worn state, if yes, go to Step S205; if not, go to Step S201.
  • Step S205 the controller 70 controls the PPG signal detection device 50 to receive the electrical signal output by the first photosensor 10 , and to detect the PPG signal.
  • the controller 70 when performing PPG detection, the controller 70 preferably controls the conductive shielding layer 20 to be connected to the ground terminal GND 30.
  • the controller 70 since the controller 70 has already controlled the conductive shielding layer 20 and the ground terminal GND when performing the optical wearing detection 30 is connected, so PPG detection can be performed directly.
  • the wearable device When it is necessary to perform wearing detection on the wearable device, first enable the capacitive wearing detection function, and obtain the capacitive wearing detection result. If the capacitive wearing detection result indicates that the wearable device is in the worn state, the optical wearing detection function is enabled and the process is stopped. Capacitive wear detection, obtain the first optical wear detection result, otherwise continue to perform capacitive wear detection; if the first optical wear detection result indicates that the wearable device is in a worn state, turn on the PPG detection function, otherwise continue to perform capacitive wear detection.
  • optical wearing detection as an auxiliary method can not only solve the problem of high false detection rate when capacitive wearing detection is used alone, but also maintain the advantages of low power consumption of capacitive wearing detection;
  • the PPG detection is performed only when the first optical wearing detection result indicates that the wearable device is in a worn state, which is conducive to further improving the accuracy of the PPG detection result and ensuring the validity of the PPG detection result.
  • the controller 70 may control the first optical wearing detection device 80 to turn off the wearing detection function, And control the PPG signal detection device 50 to turn on the PPG detection function; or, while the PPG signal detection device 50 performs PPG detection, control the first optical wearing detection device 80 to synchronously perform optical wearing detection to monitor the wearing state of the wearable device at any time.
  • the PPG detection is normally performed; and when the first optical wearing detection result indicates that the wearable device is in an unworn state, then Stop the PPG test and prompt the user to wear the wearable device correctly or stably to avoid outputting erroneous or invalid PPG test results.
  • the optical wearing detection function can also be enabled first, and the capacitive wearing detection function can be enabled only when the first optical wearing detection result indicates that the wearable device is in the worn state, or the optical wearing detection function and the capacitive wearing detection function can be enabled at the same time.
  • it can be set that: when the capacitive wearing detection result and the first optical wearing detection result both indicate that the wearable device is in the worn state, the PPG detection is performed, and when the capacitive wearing detection result Or when the first optical wearing detection result indicates that the wearable device is in an unworn state, continue to perform capacitive wearing detection and/or optical wearing detection to ensure the validity of the PPG detection result.
  • FIG. 8 another method for detecting a PPG signal provided by an embodiment of the present application can be applied to the wearable device shown in FIG. 5 , wherein the capacitance detection device 40 can at least be used for wearing detection. , the method includes the following steps:
  • Step S301 the controller 70 controls the conductive shielding layer 20 to connect to the capacitance detection device 40 , and the capacitance detection device 40 receives the capacitance detection signal sensed by the conductive shielding layer 20 , and detects the capacitance wearing detection result.
  • the state in which the conductive shielding layer 20 is connected to the capacitance detection device 40 can also be set as the initial state of the wearable device; or set as: when receiving an instruction from the measured object to perform PPG detection , the controller 70 controls the conductive shielding layer 20 to be connected to the capacitance detection device 40 .
  • Step S302 Determine whether the capacitive wearing detection result indicates that the wearable device is in a worn state, if yes, go to Step S203; if not, go to Step S201.
  • Step S303 The controller 70 controls the conductive shielding layer 20 to be connected to the ground terminal GND 30, and the second optical wearing detection device 81 receives the electrical signal output by the second photosensor 11 and detects to obtain the second optical wearing detection result.
  • Step S304 Determine whether the second optical wearing detection result indicates that the wearable device is in a worn state, if yes, go to step S305; if not, go to step S301.
  • Step S305 the controller 70 controls the PPG signal detection device 50 to receive the electrical signal output by the first photosensor 10 , and detects the PPG signal.
  • the controller 70 since the controller 70 has already controlled the conductive shielding layer 20 to be connected to the ground terminal GND 30 during the optical wear detection, the PPG detection can be directly performed.
  • the wearable device When it is necessary to perform wearing detection on the wearable device, first enable the capacitive wearing detection function, and obtain the capacitive wearing detection result. If the capacitive wearing detection result indicates that the wearable device is in the worn state, the optical wearing detection function is enabled and the process is stopped. Capacitive wear detection, obtain the second optical wear detection result, otherwise continue to perform capacitive wear detection; if the second optical wear detection result indicates that the wearable device is in a worn state, turn on the PPG detection function, otherwise continue to perform capacitive wear detection.
  • the embodiment of the present application uses optical wearing detection as an auxiliary means, which is beneficial to improve the accuracy of the wearing detection result, while maintaining the advantages of low power consumption of capacitive wearing detection.
  • first photosensitive sensor 10 for PPG detection and the second photosensitive sensor 11 for optical wearing detection are respectively provided, which can be adapted to some application scenarios where the first photosensitive sensor 10 and the second photosensitive sensor 11 need to receive different
  • a green light source is selected to obtain a PPG signal with a high signal-to-noise ratio.
  • the photosensitive sensor 10 is set as a photosensitive sensor capable of receiving a green light source; and when a laser light source is selected for optical wearing detection, the second photosensitive sensor 11 needs to be set as a photosensitive sensor capable of receiving a laser light source, so as to achieve high-efficiency, Optical wear detection in a low-power way.
  • the controller 70 may control the second optical wearing detection device 81 to turn off the wearing detection function, And control the PPG signal detection device 50 to open the PPG detection function; or, while the PPG signal detection device 50 performs PPG detection, control the second optical wear detection device 81 to perform optical wear detection, to monitor the wearing state of the wearable device at any time, And it can be set that: when the second optical wearing detection result indicates that the wearable device is in the worn state, the PPG detection is performed normally; and when the second optical wearing detection result indicates that the wearable device is in the unworn state, then the process is stopped. PPG detection, and prompt the user to wear the wearable device correctly or stably to avoid outputting wrong or invalid PPG detection results.
  • the optical wear detection function can also be turned on first, and the capacitive wear detection function can be turned on only when the second optical wear detection result indicates that the wearable device is in a worn state, or the optical wear detection function and the capacitive wear detection function can be turned on at the same time.
  • it can be set: when the capacitive wearing detection result and the second optical wearing detection result both indicate that the wearable device is in a worn state, perform PPG detection, and when the capacitive wearing detection result or When the second optical wearing detection result indicates that the wearable device is in an unworn state, the capacitive wearing detection and/or the optical wearing detection are continued to ensure the validity of the PPG detection result.

Abstract

本申请实施例提供一种可穿戴设备和PPG信号的检测方法,该可穿戴设备包括:第一光敏传感器,该第一光敏传感器的感光区域上方覆盖有导电屏蔽层;导电屏蔽层连接至地端GND,或连接至电容检测装置;电容检测装置用于接收导电屏蔽层感应的电容检测信号并检测得到电容检测结果;以及PPG信号检测装置,用于接收第一光敏传感器输出的电信号并检测得到PPG信号。将导电屏蔽层连接至地端GND,可以防止第一光敏传感器受到电磁噪声的干扰,有利于提升PPG信号的信号质量;将导电屏蔽层连接至电容检测装置,即可作为电容检测电极层,用于实现电容检测功能;通过将导电屏蔽层进行复用,可以提高系统集成度,节约设计空间,降低设计复杂度。

Description

一种可穿戴设备及PPG信号的检测方法 技术领域
本申请实施例涉及电子设备技术领域,尤其涉及一种可穿戴设备及PPG信号的检测方法。
背景技术
现有的可穿戴设备,如智能手表、智能手环、蓝牙耳机等,大多同时具有PPG(PhotoPlethysmoGraphy,光电容积脉搏波)检测功能和佩戴检测功能。
PPG检测是指借助光电手段在活体组织中检测血液容积变化的一种无创检测技术;其中,光敏传感器作为PPG检测中的关键器件,用于将接收到的经人体透射或反射的光信号转换为电信号;对该电信号作进一步处理即可得到PPG信号(一种数字电信号);通过此PPG信号便可以获取被测对象的血压、血氧、脑氧、肌氧、血糖和心率等生理参数信息;因此,光敏传感器的工作性能对于PPG检测结果的准确性有着十分重要的影响。
但是,在实际的检测过程中,光敏传感器容易受到电磁噪声的干扰,导致得到的PPG信号的信噪比较低;并且,随着可穿戴设备朝着小型化、多功能的方向发展,光敏传感器与干扰源(例如,被测对象的皮肤,或可穿戴设备中的其他电路模块)更加靠近,耦合到的噪声强度也更大,影响PPG检测结果的准确性;此外,目前,基于电容技术的佩戴检测方案中所用到的电容检测电极是单独设置的,并且其设置的位置需要避开光敏传感器的感光区域,导致整体结构占用的空间较大,堆叠设计也较为复杂。
发明内容
为了解决上述现有技术存在的问题,本申请实施例提供了一种可穿戴设备及PPG信号的检测方法,以提升PPG信号的信号质量,同时提高系统集成度,节约设计空间,降低设计复杂度。
第一方面,本申请实施例提供一种可穿戴设备,用于检测被测对象的生理参数信息,包括:第一光敏传感器、导电屏蔽层、电容检测装置以及PPG 信号检测装置;
所述第一光敏传感器用于将光信号转换为电信号输出;所述第一光敏传感器包括感光区域,所述感光区域用于吸收光信号;所述导电屏蔽层覆盖于所述感光区域上方;
所述导电屏蔽层连接至地端GND,或连接至所述电容检测装置;当所述导电屏蔽层连接至所述地端GND时,用于防止所述第一光敏传感器受到电磁噪声的干扰;当所述导电屏蔽层连接至所述电容检测装置时,用于感应电容检测信号;
所述电容检测装置用于接收所述电容检测信号并检测得到电容检测结果;
所述PPG信号检测装置用于接收所述第一光敏传感器输出的电信号并检测得到PPG信号。
当所述导电屏蔽层连接至所述地端GND时,所述导电屏蔽层能够有效减少通过所述感光区域并耦合到所述第一光敏传感器输出的电信号中的电磁噪声,从而提高PPG信号的信噪比以及PPG检测结果的准确度;当所述导电屏蔽层连接至所述电容检测装置时,所述导电屏蔽层被复用为电容检测电极层,可用于实现多种基于电容技术的检测,如佩戴检测、压力检测、接近检测、人机交互检测和温度检测等。因此,不需要额外设置电容检测电极层,仅通过切换导电屏蔽层的连接对象,便可以分别实现抗干扰和电容检测的功能,从而提高了系统的集成度,减少了整体结构占用的空间,降低了设计的复杂度。
可选地,所述可穿戴设备进一步包括:控制器,用于控制所述导电屏蔽层连接至所述地端GND,或连接至所述电容检测装置。
可选地,所述可穿戴设备进一步包括:第一光学佩戴检测装置,用于接收所述第一光敏传感器输出的电信号并检测得到第一光学佩戴检测结果。
可选地,所述控制器还用于根据被测对象的指令或所述电容检测结果,控制所述第一光学佩戴检测装置何时接收所述第一光敏传感器输出的电信号并检测得到所述第一光学佩戴检测结果。
可选地,所述可穿戴设备进一步包括:第二光敏传感器和第二光学佩戴检测装置;
所述第二光敏传感器用于将光信号转换为电信号输出;所述第二光学佩戴检测装置用于接收所述第二光敏传感器输出的电信号并检测得到第二光学佩戴检测结果。
可选地,所述控制器还用于根据被测对象的指令或所述电容检测结果,控制所述第二光学佩戴检测装置何时接收所述第二光敏传感器输出的电信号并检测得到所述第二光学佩戴检测结果。
可选地,所述导电屏蔽层通过选通开关连接至所述地端GND,或连接至所述电容检测装置。
可选地,所述控制器还用于控制所述选通开关将所述导电屏蔽层连接至所述地端GND,或连接至所述电容检测装置。
可选地,所述控制器还用于根据所述电容检测结果、所述第一光学佩戴检测结果、所述第二光学佩戴检测结果或被测对象的指令,控制所述PPG信号检测装置何时接收所述第一光敏传感器输出的电信号并检测得到所述PPG信号。
可选地,所述电容检测装置用于以下检测中的至少一项:佩戴检测、温度检测、接近检测、人机交互检测以及压力检测。
可选地,所述导电屏蔽层仅覆盖于所述感光区域上方;或者,覆盖于所述第一光敏传感器的四周以及所述感光区域上方。
可选地,所述导电屏蔽层为ITO层、石墨烯层或金属层。
可选地,所述导电屏蔽层为网格状结构。
第二方面,本申请实施例提供一种PPG信号的检测方法,应用于可穿戴设备,所述可穿戴设备包括第一光敏传感器、导电屏蔽层、电容检测装置、PPG信号检测装置以及控制器,其中所述电容检测装置至少用于进行佩戴检测,所述方法包括:
所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收所述导电屏蔽层感测到的电容检测信号,并检测得到电容佩戴检测结果;
当所述电容佩戴检测结果指示所述可穿戴设备处于已佩戴状态时,所述控制器控制所述导电屏蔽层连接至地端GND,所述PPG信号检测装置接收所述第一光敏传感器输出的电信号,并检测得到PPG信号。
由于所述可穿戴设备的佩戴状态对于PPG检测结果的准确性具有十分重要的影响,所以在进行PPG检测之前,判断所述可穿戴设备的佩戴状态,可以避免在未佩戴状态下盲目地进行PPG检测,导致输出无效的PPG检测结果,造成不必要的功耗,影响用户体验感。此外,通过切换所述导电屏蔽层的连接对象,可以分别实现抗干扰和电容检测的功能,有利于提高系统集成度,减少整体结构占用的空间,降低设计的复杂度。
可选地,当所述电容佩戴检测结果指示所述可穿戴设备处于未佩戴状态时,所述电容检测装置接收后续传输来的电容检测信号,并检测得到新的电容佩戴检测结果。
本申请实施例还提供一种PPG信号的检测方法,应用于可穿戴设备,所述可穿戴设备包括第一光敏传感器、导电屏蔽层、电容检测装置、PPG信号检测装置、第一光学佩戴检测装置以及控制器,其中所述电容检测装置至少用于进行佩戴检测,所述方法包括:
所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收所述导电屏蔽层感测到的电容检测信号,并检测得到电容佩戴检测结果;
所述控制器控制所述导电屏蔽层连接至地端GND,所述第一光学佩戴检测装置接收所述第一光敏传感器输出的电信号并检测得到第一光学佩戴检测结果;
当所述电容佩戴检测结果和所述第一光学佩戴检测结果均指示所述可穿戴设备处于已佩戴状态时,所述控制器控制所述导电屏蔽层连接至地端GND,所述PPG信号检测装置接收所述第一光敏传感器输出的电信号,并检测得到PPG信号。
将光学佩戴检测方案与电容佩戴检测方案结合,有利于提高佩戴检测结果的准确度;并且,将导电屏蔽层分别用于实现抗干扰和电容检测的功能,可以提高系统集成度,节约设计空间,降低设计复杂度。
可选地,所述方法进一步包括:当所述电容佩戴检测结果或所述第一光学佩戴检测结果指示所述可穿戴设备处于未佩戴状态时,所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收后续传输来的电容检测信号,并检测得到新的电容佩戴检测结果。
本申请实施例又提供一种PPG信号的检测方法,应用于可穿戴设备,所述可穿戴设备包括第一光敏传感器、第二光敏传感器、导电屏蔽层、电容检测装置、PPG信号检测装置、第二光学佩戴检测装置以及控制器,其中所述电容检测装置至少用于进行佩戴检测,所述方法包括:
所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收所述导电屏蔽层感测到的电容检测信号,并检测得到电容佩戴检测结果;
所述控制器控制所述导电屏蔽层连接至地端GND,所述第二光学佩戴检测装置接收所述第二光敏传感器输出的电信号并检测得到第二光学佩戴检测结果;
当所述电容佩戴检测结果和所述第二光学佩戴检测结果均指示所述可穿戴设备处于已佩戴状态时,所述控制器控制所述导电屏蔽层连接至地端GND,所述PPG信号检测装置接收所述第一光敏传感器输出的电信号,并检测得到PPG信号。
将光学佩戴检测方案与电容佩戴检测方案结合,有利于提高佩戴检测结果的准确度;而与上一PPG信号的检测方法不同的是,通过设置所述第一光敏传感器和所述第二光敏传感器,并将二者分别用于进行PPG检测和光学佩戴检测,由此可以根据具体的应用需求,将所述第一光敏传感器和所述第二光敏传感器分别设置为可以接收不同类型光源(如红外光、可见光、激光等)的光敏传感器,以更好地实现PPG检测功能和光学佩戴检测功能。同样地,将导电屏蔽层分别用于实现抗干扰和电容检测的功能,可以提高系统集成度,节约设计空间,降低设计复杂度。
可选地,所述方法进一步包括:当所述电容佩戴检测结果或所述第二光学佩戴检测结果指示所述可穿戴设备处于未佩戴状态时,所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收后续传输来的电容检测信号,并检测得到新的电容佩戴检测结果。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元器 件表示为相同或类似的元器件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的一种可穿戴设备的结构示意图;
图2A为本申请实施例提供的一种增设导电屏蔽层的第一光敏传感器的剖面结构示意图;
图2B为本申请实施例提供的另一种增设导电屏蔽层的第一光敏传感器的剖面结构示意图;
图3为本申请实施例提供的另一种可穿戴设备的结构示意图;
图4为本申请实施例提供的一种设有光学佩戴检测装置的可穿戴设备的结构示意图;
图5为本申请实施例提供的另一种设有光学佩戴检测装置的可穿戴设备的结构示意图;
图6为本申请实施例提供的一种PPG信号的检测方法的流程示意图;
图7为本申请实施例提供的另一种PPG信号的检测方法的流程示意图;
图8为本申请实施例提供的又一种PPG信号的检测方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
术语“第一”、“第二”等仅用于区别类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
另外,除非在本申请的上下文中清楚地说明了指定的顺序,否则可与指定的顺序不同地执行在此描述的处理步骤,即,可以以指定的顺序执行每个步骤、基本上同时执行每个步骤、以相反的顺序执行每个步骤或者以不同的顺序执行每个步骤。
本申请实施例提供一种可穿戴设备,具体的,可以为智能手表、智能手环、智能臂带、智能戒指、蓝牙耳机、有线耳机、心率贴、心率带等具有PPG检测功能的设备。
如图1所示,为本申请实施例提供的一种可穿戴设备的结构示意图,包括:第一光敏传感器10、导电屏蔽层20、GND 30、电容检测装置40、PPG信号检测装置50以及选通开关60。
第一光敏传感器10可以将接收到的经被测对象反射或透射的光信号转换为电信号输出;具体的,第一光敏传感器10可以为光电二极管、光电三极管、雪崩光电二极管或光电倍增管等具有光电转换功能的器件,本申请实施例对此不作限定。
导电屏蔽层20覆盖于第一光敏传感器10的感光区域上方,并且导电屏蔽层20可以通过选通开关60接地,即连接至GND 30;或者,通过选通开关60连接至电容检测装置40。具体的,选通开关60可以为二选一的模拟开关等。当导电屏蔽层20接地时,可以防止电磁噪声影响第一光敏传感器10的工作性能,减少第一光敏传感器10输出的电信号中的电磁噪声,从而提高PPG信号的信噪比,以获得较为准确的PPG检测结果;当导电屏蔽层20与电容检测装置40相连时,导电屏蔽层20被复用为电容检测电极层,由于导电屏蔽层20与接地端之间存在等效电容,若被测对象靠近或接触该可穿戴设备,该等效电容则会根据被测对象靠近导电屏蔽层20的距离或接触程度的不同而发生变化,进而形成电容检测信号,此时电容检测装置40可以接收导电屏蔽层20感测到的电容检测信号,并根据该电容检测信号实现佩戴检测、温度检测、接近检测、人机交互检测或压力检测等功能;特别地,当电容检测装置40用于实现电容佩戴检测功能时,可以输出电容佩戴检测结果。
PPG信号检测装置50与第一光敏传感器10相连,可以接收第一光敏传感器10输出的电信号,并检测得到PPG信号。PPG信号检测装置50可以包括:放大电路、滤波电路和A/D采集电路。
在一种可能的实施方式中,如图2A和2B所示,第一光敏传感器10设置有金属外壳103,并且金属外壳103的上表面设置有透光盖板102,用于透过光信号,使得光信号能够传输至感光区域101,导电屏蔽层20覆盖于感 光区域101上方;具体的,可以将导电屏蔽层20设置于金属外壳103的内侧,即与第一光敏传感器10构成一个整体,例如,图2A所示的导电屏蔽层20贴合于透光盖板102的内侧;或者,可以将导电屏蔽层20设置于金属外壳103的外侧,即为一个独立的结构,例如,图2B所示的导电屏蔽层20贴合于透光盖板102的外侧。
在一种可能的实施方式中,导电屏蔽层20可以同时覆盖于第一光敏传感器10的四周以及感光区域101的上方,即构成一个屏蔽罩;并且,此时第一光敏传感器10可以不设置金属外壳103及金属外壳103上表面的透光盖板102。
需要说明的是,不仅可以利用选通开关60来实现将导电屏蔽层20连接至GND 30或连接至电容检测装置40,也可以在可穿戴设备的外部设置用于实现导电屏蔽层20与GND 30或电容检测装置40之间的物理连接的焊盘或接口,或者采用软件控制等方法来实现对于导电屏蔽层20的连接对象的选择,并且不限于此。另外,当导电屏蔽层20用于屏蔽电磁干扰时,也可以将其与电压值稳定的直流电源相连。
为便于理解,下面以导电屏蔽层20通过选通开关60分别连接至不同的连接对象,以及将导电屏蔽层20连接至GND 30以实现电磁屏蔽的功能为例进行说明。
如图3所示,为本申请实施例提供的另一种可穿戴设备的结构示意图。其中,控制器70可以控制选通开关60将导电屏蔽层20连接至电容检测装置40,以实现各种电容检测功能,或者控制选通开关60将导电屏蔽层20连接至GND 30,以防止第一光敏传感器10受到电磁噪声的干扰。
控制器70还可以控制PPG信号检测装置50何时进行PPG检测,例如,当可穿戴设备接收到被测对象的指令需开启PPG检测功能以完成心率或血氧等生理参数检测时,控制器70可以控制选通开关60将导电屏蔽层20连接至GND 30,并控制PPG信号检测装置50进行PPG检测;或者,控制器70先控制选通开关60将导电屏蔽层20连接至电容检测装置40,其中电容检测装置40可用于进行电容佩戴检测并得到电容佩戴检测结果,当电容佩戴检测完成且电容佩戴检测结果指示该可穿戴设备处于已佩戴状态时,控制器70再控制选通开关60将导电屏蔽层20连接至GND 30,并控制PPG信 号检测装置50进行PPG检测,以避免在未确定被测对象是否已佩戴或正确佩戴该可穿戴设备的情况下进行PPG检测,导致获得的PPG检测结果不准确,造成额外的功耗,影响用户体验感。
如图4所示,为本申请实施例提供的一种设有光学佩戴检测装置的可穿戴设备的结构示意图。其中,第一光敏传感器10可以接收经被测对象反射后的光信号,并将其转换为电信号输出;第一光学佩戴检测装置80可以接收第一光敏传感器10输出的电信号,并进行光学佩戴检测得到第一光学佩戴检测结果;PPG信号检测装置50也可以接收第一光敏传感器10输出的电信号,并进行PPG检测得到PPG信号。
控制器70可以控制选通开关60的选通状态,也可以控制第一光学佩戴检测装置80何时进行光学佩戴检测,以及PPG信号检测装置50何时进行PPG检测,例如,当可穿戴设备接收到被测对象的指令需进行PPG检测时,控制器70可以控制电容检测装置40和第一光学佩戴检测装置80同时进行佩戴检测;或者,先控制第一光学佩戴检测装置80进行光学佩戴检测,当第一光学佩戴检测结果指示该可穿戴设备处于已佩戴状态时,控制电容检测装置40进行电容佩戴检测;又或者,先控制电容检测装置40进行电容佩戴检测,当电容佩戴检测结果指示该可穿戴设备处于已佩戴状态时,则控制第一光学佩戴检测装置80进行光学佩戴检测;若电容佩戴检测结果和第一光学佩戴检测结果均指示该可穿戴设备处于已佩戴状态,控制器70则控制PPG信号检测装置50进行PPG检测。
将电容佩戴检测方案与光学佩戴检测方案结合,可以提高佩戴检测结果的准确度,而对佩戴状态进行可靠、准确的判断,有利于确保PPG检测结果的有效性,提高PPG检测结果的准确度。此外,将第一光敏传感器10分别用于进行佩戴检测和PPG检测,可以进一步节约设计空间和成本。
如图5所示,为本申请实施例提供的另一种设有光学佩戴检测装置的可穿戴设备的结构示意图。第一光敏传感器10和第二光敏传感器20可以分别接收经被测对象反射后的光信号,并转换为电信号输出,其中,第二光敏传感器11可以为光电二极管、光电三极管、雪崩光电二极管或光电倍增管等具有光电转换功能的器件,并且第二光敏传感器11与第一光敏传感器10的类型可以相同,也可以不同,本申请实施例对此不作限定;第二光学佩戴检 测装置81可以接收第二光敏传感器20输出的电信号,并进行光学佩戴检测得到第二光学佩戴检测结果;而PPG信号检测装置50可以接收第一光敏传感器10输出的电信号,并进行PPG检测得到PPG信号。
本申请实施例中,由于第一光敏传感器10和第二光敏传感器20分别用于进行PPG检测和光学佩戴检测,因而,既可以将二者设置为接收相同类型光源的光敏传感器,也可以根据具体的应用情况设置为接收不同类型光源的光敏传感器,例如,在利用PPG技术检测心率时选用了绿光光源,以获得信噪比较高的PPG信号,则需要将第一光敏传感器10设置为能够接收绿光光源的光敏传感器;而当进行光学佩戴检测时选用了激光光源,则需要将第二光敏传感器11设置为能够接收激光光源的光敏传感器,从而实现以高效率、低功耗的方式进行光学佩戴检测。此外,也可以将第一光敏传感器10和第二光敏传感器20分别设置为能够接收红外光或其他可见光等光源的光敏传感器,本申请实施例对此不作限定。
在一种可能的实施方式中,导电屏蔽层20为ITO(氧化铟锡)层、石墨烯层或金属层;具体的,金属层可以采用铜、银等导电性能良好的材料。
由于ITO和石墨烯均可用于制成透明电极,所以当导电屏蔽层20采用这两种材料时,既可以为实心完整的层结构,也可以为网格状的层结构;而当导电屏蔽层20采用透光性较弱或不具有透光性的金属材料时,可以制成网格状的金属层结构,以在屏蔽电磁干扰的同时,保证第一光敏传感器10接收到足够强度的光信号。
在一种可能的实施方式中,第二光敏传感器11也包括感光区域和金属外壳,并且其金属外壳的上表面设置有透光盖板;具体的,可以与图2A或2B所示的第一光敏传感器10的结构基本相同。
在一种可能的实施方式中,导电屏蔽层20仅覆盖于第一光敏传感器10的感光区域上方;或者,导电屏蔽层20同时覆盖于第一光敏传感器10和第二光敏传感器11的感光区域上方,例如,当第一光敏传感器10和第二光敏传感器11均设置有金属外壳,且金属外壳的上表面均设置有透光盖板时,使导电屏蔽层20同时覆盖于第一光敏传感器10和第二光敏传感器11的透光盖板外侧,或当第一光敏传感器10和第二光敏传感器11均未设置有金属外壳时,使导电屏蔽层20同时覆盖于第一光敏传感器10和第二光敏传感器 11的四周以及感光区域上方;又或者,另外设置一个导电屏蔽层覆盖于第二光敏传感器11的感光区域上方以屏蔽电磁干扰,例如以图2A或2B所示的方式进行设置。
如图6所示,为本申请实施例提供的一种PPG信号的检测方法,该方法可应用于图3所示的可穿戴设备,其中电容检测装置40至少可用于进行佩戴检测;具体的,该方法可以包括如下步骤:
步骤S101:控制器70控制导电屏蔽层20连接至电容检测装置40,电容检测装置40接收导电屏蔽层20感测到的电容检测信号,并检测得到电容佩戴检测结果。
这里,可以将导电屏蔽层20与电容检测装置40相连,即将导电屏蔽层20作为电容检测电极层这一状态设置为该可穿戴设备的初始状态;当被测对象靠近或接触该可穿戴设备时,由于导电屏蔽层20与接地端之间存在等效电容,并且该等效电容会根据被测对象靠近导电屏蔽层20的距离或接触程度的不同而发生变化,进而形成电容检测信号,电容检测装置40可以接收该电容检测信号,并根据该电容检测信号确定被测对象是否已佩戴或正确佩戴该可穿戴设备。或者,可以设置:当该可穿戴设备接收到被测对象的指令需进行PPG检测时,控制器70控制导电屏蔽层连接至电容检测装置40,并进行电容佩戴检测。
步骤S102:判断电容佩戴检测结果是否指示该可穿戴设备处于已佩戴状态,若是,则执行步骤S103;若否,则执行步骤S101。
步骤S103:控制器70控制导电屏蔽层20连接至地端GND 30,PPG信号检测装置50接收第一光敏传感器10输出的电信号,并检测得到PPG信号。
在进行PPG检测之前,判断被测对象是否已佩戴或正确佩戴该可穿戴设备,有利于确保PPG检测结果的准确性和有效性,同时节约功耗,延长续航时间;并且,采用基于电容技术的佩戴检测方案来进行佩戴检测,具有低功耗的优点。
如图7所示,为本申请实施例提供的另一种PPG信号的检测方法,该方法可应用于图4所示的可穿戴设备,其中电容检测装置40至少可用于进行佩戴检测;具体的,该方法可以包括如下步骤:
步骤S201:控制器70控制导电屏蔽层20连接至电容检测装置40,电容检测装置40接收导电屏蔽层20感测到的电容检测信号,并检测得到电容佩戴检测结果。
本申请实施例中,同样可以将导电屏蔽层20与电容检测装置40相连的这一状态设置为该可穿戴设备的初始状态;或者设置为:当接收到被测对象的指令需进行PPG检测时,控制器70控制导电屏蔽层20连接至电容检测装置40。
步骤S202:判断电容佩戴检测结果是否指示该可穿戴设备处于已佩戴状态,若是,则执行步骤S203;若否,则执行步骤S201。
步骤S203:控制器70控制导电屏蔽层20连接至地端GND 30,第一光学佩戴检测装置80接收第一光敏传感器10输出的电信号并检测得到第一光学佩戴检测结果。
步骤S204:判断第一光学佩戴检测结果是否指示该可穿戴设备处于已佩戴状态,若是,则执行步骤S205;若否,则执行步骤S201。
步骤S205:控制器70控制PPG信号检测装置50接收第一光敏传感器10输出的电信号,并检测得到PPG信号。
需要说明的是,在进行PPG检测时,控制器70最好控制导电屏蔽层20连接至地端GND 30,这里由于在进行光学佩戴检测时,控制器70已经控制导电屏蔽层20与地端GND 30相连,因而可以直接进行PPG检测。
当需要对可穿戴设备进行佩戴检测时,先开启电容佩戴检测功能,并得到电容佩戴检测结果,若该电容佩戴检测结果指示该可穿戴设备处于已佩戴状态,则开启光学佩戴检测功能并停止进行电容佩戴检测,得到第一光学佩戴检测结果,否则继续进行电容佩戴检测;若第一光学佩戴检测结果指示该可穿戴设备处于已佩戴状态,则开启PPG检测功能,否则继续进行电容佩戴检测。由此,将光学佩戴检测作为辅助手段,既可以解决单独采用电容佩戴检测时误检率较高的问题,又可以保持电容佩戴检测低功耗的优点;并且,由于是在电容佩戴检测结果和第一光学佩戴检测结果均指示该可穿戴设备处于已佩戴状态的情况下,才进行PPG检测,有利于进一步提高PPG检测结果的准确度,确保PPG检测结果的有效性。
在一种可能的实施方式中,当电容佩戴检测结果和第一光学佩戴检测结 果均指示该可穿戴设备处于已佩戴状态时,控制器70可以控制第一光学佩戴检测装置80关闭佩戴检测功能,并控制PPG信号检测装置50开启PPG检测功能;或者,在PPG信号检测装置50进行PPG检测的同时,控制第一光学佩戴检测装置80同步进行光学佩戴检测,以随时监测该可穿戴设备的佩戴状态;并且,可以设置:当第一光学佩戴检测结果指示该可穿戴设备处于已佩戴状态时,则正常进行PPG检测;而当第一光学佩戴检测结果指示该可穿戴设备处于未佩戴状态时,则停止进行PPG检测,并提示用户正确佩戴或稳定佩戴该可穿戴设备,以避免输出错误或无效的PPG检测结果。
此外,还可以先开启光学佩戴检测功能,当第一光学佩戴检测结果指示该可穿戴设备处于已佩戴状态时,才开启电容佩戴检测功能,或者,同时开启光学佩戴检测功能和电容佩戴检测功能,以缩短进行佩戴检测所需的时间;并且,可以设置:当电容佩戴检测结果和第一光学佩戴检测结果均指示该可穿戴设备处于已佩戴状态时,才进行PPG检测,而当电容佩戴检测结果或第一光学佩戴检测结果指示该可穿戴设备处于未佩戴状态时,继续进行电容佩戴检测和/或光学佩戴检测,以确保PPG检测结果的有效性。
如图8所示,为本申请实施例提供的又一种PPG信号的检测方法,该方法可应用于图5所示的可穿戴设备,其中电容检测装置40至少可用于进行佩戴检测,具体的,该方法包括以下步骤:
步骤S301:控制器70控制导电屏蔽层20连接至电容检测装置40,电容检测装置40接收导电屏蔽层20感测到的电容检测信号,并检测得到电容佩戴检测结果。
本申请实施例中,也可以将导电屏蔽层20与电容检测装置40相连的这一状态设置为该可穿戴设备的初始状态;或者设置为:当接收到被测对象的指令需进行PPG检测时,控制器70控制导电屏蔽层20连接至电容检测装置40。
步骤S302:判断电容佩戴检测结果是否指示该可穿戴设备处于已佩戴状态,若是,则执行步骤S203;若否,则执行步骤S201。
步骤S303:控制器70控制导电屏蔽层20连接至地端GND 30,第二光学佩戴检测装置81接收第二光敏传感器11输出的电信号并检测得到第二光学佩戴检测结果。
步骤S304:判断第二光学佩戴检测结果是否指示该可穿戴设备处于已佩戴状态,若是,则执行步骤S305;若否,则执行步骤S301。
步骤S305:控制器70控制PPG信号检测装置50接收第一光敏传感器10输出的电信号,并检测得到PPG信号。
这里,由于在进行光学佩戴检测时,控制器70已经控制导电屏蔽层20连接至地端GND 30,因而可以直接进行PPG检测。
当需要对可穿戴设备进行佩戴检测时,先开启电容佩戴检测功能,并得到电容佩戴检测结果,若该电容佩戴检测结果指示该可穿戴设备处于已佩戴状态,则开启光学佩戴检测功能并停止进行电容佩戴检测,得到第二光学佩戴检测结果,否则继续进行电容佩戴检测;若第二光学佩戴检测结果指示该可穿戴设备处于已佩戴状态,则开启PPG检测功能,否则继续进行电容佩戴检测。本申请实施例将光学佩戴检测作为辅助手段,有利于提高佩戴检测结果的准确性,同时保持电容佩戴检测低功耗的优点。
另外,分别设置用于PPG检测的第一光敏传感器10和用于光学佩戴检测的第二光敏传感器11,可以适应在部分应用场景中,第一光敏传感器10和第二光敏传感器11需要分别接收不同类型光源的情况,以更好地实现PPG检测功能和光学佩戴检测功能,例如,在利用PPG技术检测心率时选用了绿光光源,以获得信噪比较高的PPG信号,则需要将第一光敏传感器10设置为能够接收绿光光源的光敏传感器;而在进行光学佩戴检测时选用了激光光源,则需要将第二光敏传感器11设置为能够接收激光光源的光敏传感器,从而实现以高效率、低功耗的方式进行光学佩戴检测。
在一种可能的实施方式中,当电容佩戴检测结果和第二光学佩戴检测结果均指示该可穿戴设备处于已佩戴状态时,控制器70可以控制第二光学佩戴检测装置81关闭佩戴检测功能,并控制PPG信号检测装置50开启PPG检测功能;或者,在PPG信号检测装置50进行PPG检测的同时,控制第二光学佩戴检测装置81进行光学佩戴检测,以随时监测该可穿戴设备的佩戴状态,并且可以设置:当第二光学佩戴检测结果指示该可穿戴设备处于已佩戴状态时,则正常进行PPG检测;而当第二光学佩戴检测结果指示该可穿戴设备处于未佩戴状态时,则停止进行PPG检测,并提示用户正确佩戴或稳定佩戴该可穿戴设备,以避免输出错误或无效的PPG检测结果。
此外,还可以先开启光学佩戴检测功能,当第二光学佩戴检测结果指示该可穿戴设备处于已佩戴状态时,才开启电容佩戴检测功能,或者,同时开启光学佩戴检测功能和电容佩戴检测功能,以缩短进行佩戴检测所需的时间;并且,可以设置:当电容佩戴检测结果和第二光学佩戴检测结果均指示该可穿戴设备处于已佩戴状态时,进行PPG检测,而当电容佩戴检测结果或第二光学佩戴检测结果指示该可穿戴设备处于未佩戴状态时,则继续进行电容佩戴检测和/或光学佩戴检测,以确保PPG检测结果的有效性。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意地相互组合,组合之后得到的技术方案也应落入本申请的保护范围;并且,以上各实施例仅用于说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者,对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种可穿戴设备,用于检测被测对象的生理参数信息,其特征在于,包括:第一光敏传感器、导电屏蔽层、电容检测装置以及PPG信号检测装置;
    所述第一光敏传感器用于将光信号转换为电信号输出;所述第一光敏传感器包括感光区域,所述感光区域用于吸收光信号;所述导电屏蔽层覆盖于所述感光区域上方;
    所述导电屏蔽层连接至地端GND,或连接至所述电容检测装置;当所述导电屏蔽层连接至所述地端GND时,用于防止所述第一光敏传感器受到电磁噪声的干扰;当所述导电屏蔽层连接至所述电容检测装置时,用于感应电容检测信号;
    所述电容检测装置用于接收所述电容检测信号并检测得到电容检测结果;
    所述PPG信号检测装置用于接收所述第一光敏传感器输出的电信号并检测得到PPG信号。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,进一步包括:控制器,用于控制所述导电屏蔽层连接至所述地端GND,或连接至所述电容检测装置。
  3. 根据权利要求1或2所述的可穿戴设备,其特征在于,进一步包括:第一光学佩戴检测装置,用于接收所述第一光敏传感器输出的电信号并检测得到第一光学佩戴检测结果。
  4. 根据权利要求3所述的可穿戴设备,其特征在于,所述控制器还用于根据被测对象的指令或所述电容检测结果,控制所述第一光学佩戴检测装置何时接收所述第一光敏传感器输出的电信号并检测得到所述第一光学佩戴检测结果。
  5. 根据权利要求1或2所述的可穿戴设备,其特征在于,进一步包括:第二光敏传感器和第二光学佩戴检测装置;
    所述第二光敏传感器用于将光信号转换为电信号输出;所述第二光学佩戴检测装置用于接收所述第二光敏传感器输出的电信号并检测得到第二光学佩戴检测结果。
  6. 根据权利要求5所述的可穿戴设备,其特征在于,所述控制器还用于根据被测对象的指令或所述电容检测结果,控制所述第二光学佩戴检测装置何时接收所述第二光敏传感器输出的电信号并检测得到所述第二光学佩戴检测结果。
  7. 根据权利要求1所述的可穿戴设备,其特征在于,所述导电屏蔽层通过选通开关连接至所述地端GND,或连接至所述电容检测装置。
  8. 根据权利要求7所述的可穿戴设备,其特征在于,所述控制器还用于控制所述选通开关将所述导电屏蔽层连接至所述地端GND,或连接至所述电容检测装置。
  9. 根据权利要求2所述的可穿戴设备,其特征在于,所述控制器还用于根据所述电容检测结果、所述第一光学佩戴检测结果、所述第二光学佩戴检测结果或被测对象的指令,控制所述PPG信号检测装置何时接收所述第一光敏传感器输出的电信号并检测得到所述PPG信号。
  10. 根据权利要求1-9任一项所述的可穿戴设备,其特征在于,所述电容检测装置用于以下检测中的至少一项:佩戴检测、温度检测、接近检测、人机交互检测以及压力检测。
  11. 根据权利要求1-9任一项所述的可穿戴设备,其特征在于,所述导电屏蔽层仅覆盖于所述感光区域上方;或者,覆盖于所述第一光敏传感器的四周以及所述感光区域上方。
  12. 根据权利要求1-9任一项所述的可穿戴设备,其特征在于,所述导电屏蔽层为ITO层、石墨烯层或金属层。
  13. 根据权利要求1-9任一项所述的可穿戴设备,其特征在于,所述导电屏蔽层为网格状结构。
  14. 一种PPG信号的检测方法,应用于可穿戴设备,所述可穿戴设备包括第一光敏传感器、导电屏蔽层、电容检测装置、PPG信号检测装置以及控制器,其中所述电容检测装置至少用于进行佩戴检测,其特征在于,所述方法包括:
    所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收所述导电屏蔽层感测到的电容检测信号,并检测得到电容佩戴检测结果;
    当所述电容佩戴检测结果指示所述可穿戴设备处于已佩戴状态时,所述控制器控制所述导电屏蔽层连接至地端GND,所述PPG信号检测装置接收所述第一光敏传感器输出的电信号,并检测得到PPG信号。
  15. 根据权利要求14所述的方法,其特征在于,进一步包括:
    当所述电容佩戴检测结果指示所述可穿戴设备处于未佩戴状态时,所述电容检测装置接收后续传输来的电容检测信号,并检测得到新的电容佩戴检测结果。
  16. 一种PPG信号的检测方法,应用于可穿戴设备,所述可穿戴设备包括第一光敏传感器、导电屏蔽层、电容检测装置、PPG信号检测装置、第一光学佩戴检测装置以及控制器,其中所述电容检测装置至少用于进行佩戴检测,其特征在于,所述方法包括:
    所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收所述导电屏蔽层感测到的电容检测信号,并检测得到电容佩戴检测结果;
    所述控制器控制所述导电屏蔽层连接至地端GND,所述第一光学佩戴检测装置接收所述第一光敏传感器输出的电信号并检测得到第一光学佩戴检测结果;
    当所述电容佩戴检测结果和所述第一光学佩戴检测结果均指示所述可穿戴设备处于已佩戴状态时,所述控制器控制所述导电屏蔽层连接至地端GND,所述PPG信号检测装置接收所述第一光敏传感器输出的电信号,并检测得到PPG信号。
  17. 根据权利要求16所述的方法,其特征在于,进一步包括:
    当所述电容佩戴检测结果或所述第一光学佩戴检测结果指示所述可穿戴设备处于未佩戴状态时,所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收后续传输来的电容检测信号,并检测得到新的电容佩戴检测结果。
  18. 一种PPG信号的检测方法,应用于可穿戴设备,所述可穿戴设备包括第一光敏传感器、第二光敏传感器、导电屏蔽层、电容检测装置、PPG信号检测装置、第二光学佩戴检测装置以及控制器,其中所述电容检测装置至少用于进行佩戴检测,其特征在于,所述方法包括:
    所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收所述导电屏蔽层感测到的电容检测信号,并检测得到电容佩戴检测结果;
    所述控制器控制所述导电屏蔽层连接至地端GND,所述第二光学佩戴检测装置接收所述第二光敏传感器输出的电信号并检测得到第二光学佩戴检测结果;
    当所述电容佩戴检测结果和所述第二光学佩戴检测结果均指示所述可穿戴设备处于已佩戴状态时,所述控制器控制所述导电屏蔽层连接至地端GND,所述PPG信号检测装置接收所述第一光敏传感器输出的电信号,并检测得到PPG信号。
  19. 根据权利要求18所述的方法,其特征在于,进一步包括:
    当所述电容佩戴检测结果或所述第二光学佩戴检测结果指示所述可穿戴设备处于未佩戴状态时,所述控制器控制所述导电屏蔽层连接至所述电容检测装置,所述电容检测装置接收后续传输来的电容检测信号,并检测得到新的电容佩戴检测结果。
PCT/CN2020/129097 2020-11-16 2020-11-16 一种可穿戴设备及ppg信号的检测方法 WO2022099702A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129097 WO2022099702A1 (zh) 2020-11-16 2020-11-16 一种可穿戴设备及ppg信号的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129097 WO2022099702A1 (zh) 2020-11-16 2020-11-16 一种可穿戴设备及ppg信号的检测方法

Publications (1)

Publication Number Publication Date
WO2022099702A1 true WO2022099702A1 (zh) 2022-05-19

Family

ID=81602078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129097 WO2022099702A1 (zh) 2020-11-16 2020-11-16 一种可穿戴设备及ppg信号的检测方法

Country Status (1)

Country Link
WO (1) WO2022099702A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116269391A (zh) * 2023-05-22 2023-06-23 华南理工大学 一种心脑耦合分析评估方法及其系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596492A (zh) * 2011-02-09 2014-02-19 麻省理工学院 耳戴式生命体征监视器
US20160374620A1 (en) * 2013-12-06 2016-12-29 Covidien Lp Capacitance enhanced physiological measurements
CN107025370A (zh) * 2016-02-01 2017-08-08 飞比特公司 可穿戴装置及其操作方法
CN107820410A (zh) * 2017-09-22 2018-03-20 深圳市汇顶科技股份有限公司 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备
CN109938743A (zh) * 2019-03-19 2019-06-28 西安交通大学 一种抗干扰的光检测探头
US20190200889A1 (en) * 2017-04-19 2019-07-04 Medical Design Solutions, Inc. Electrical Activity Monitoring Systems and Methods for Determining Physiological Characteristics with Same
CN110584632A (zh) * 2019-10-21 2019-12-20 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、芯片、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596492A (zh) * 2011-02-09 2014-02-19 麻省理工学院 耳戴式生命体征监视器
US20160374620A1 (en) * 2013-12-06 2016-12-29 Covidien Lp Capacitance enhanced physiological measurements
CN107025370A (zh) * 2016-02-01 2017-08-08 飞比特公司 可穿戴装置及其操作方法
US20190200889A1 (en) * 2017-04-19 2019-07-04 Medical Design Solutions, Inc. Electrical Activity Monitoring Systems and Methods for Determining Physiological Characteristics with Same
CN107820410A (zh) * 2017-09-22 2018-03-20 深圳市汇顶科技股份有限公司 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备
CN109938743A (zh) * 2019-03-19 2019-06-28 西安交通大学 一种抗干扰的光检测探头
CN110584632A (zh) * 2019-10-21 2019-12-20 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、芯片、设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116269391A (zh) * 2023-05-22 2023-06-23 华南理工大学 一种心脑耦合分析评估方法及其系统
CN116269391B (zh) * 2023-05-22 2023-07-18 华南理工大学 一种心脑耦合分析评估方法及其系统

Similar Documents

Publication Publication Date Title
US20220021965A1 (en) Earphone and worn detection device thereof
JP6706465B2 (ja) バイタルセンサモジュール
CN205338960U (zh) 移动终端及移动终端系统
WO2022099702A1 (zh) 一种可穿戴设备及ppg信号的检测方法
WO2019120289A1 (zh) 睡眠监测装置
CN209608795U (zh) 一种无线耳机
CN107874765B (zh) 具有自补偿功能的医疗手环及自补偿方法
CN105167783A (zh) 用于智能移动终端的血氧监护模块
CN112312831A (zh) 生物信息感测装置及其控制方法
CN216257099U (zh) 智能穿戴耳夹式数据采集装置
CN212346513U (zh) 可穿戴设备
CN103876729B (zh) 一种基于光电传感的心电监测系统
CN210673328U (zh) 人体特征采集装置、设备、设备保护壳、系统
CN107506704A (zh) 移动终端及其指纹检测方法
WO2020215730A1 (zh) 一种心率模组以及采集心率的电子设备
CN218074996U (zh) 终端设备
CN110099346A (zh) 一种基于助听器的耳道内心率测量方法
CN202723853U (zh) 一种血氧检测仪及系统
CN215895155U (zh) 一种佩戴舒适的智能穿戴眼镜
CN212729774U (zh) 基于手机的人体多参数监测终端
WO2021098090A1 (zh) 一种基于智能牙齿的定位系统
CN106502435A (zh) 全封闭防水防尘触控护腕脉搏计鼠标
CN210749179U (zh) 一种分布式监护系统
CN202740003U (zh) 一种血氧检测仪
CN209032337U (zh) 一种基于智能设备和穿戴式手环的血压监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961256

Country of ref document: EP

Kind code of ref document: A1