WO2022099444A1 - 股骨峡部成型多孔钢板系统 - Google Patents
股骨峡部成型多孔钢板系统 Download PDFInfo
- Publication number
- WO2022099444A1 WO2022099444A1 PCT/CN2020/127749 CN2020127749W WO2022099444A1 WO 2022099444 A1 WO2022099444 A1 WO 2022099444A1 CN 2020127749 W CN2020127749 W CN 2020127749W WO 2022099444 A1 WO2022099444 A1 WO 2022099444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel plate
- isthmus
- femoral
- forming
- plate body
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 98
- 239000010959 steel Substances 0.000 title claims abstract description 98
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 62
- 230000001054 cortical effect Effects 0.000 claims abstract description 29
- 238000003825 pressing Methods 0.000 claims description 23
- 230000007423 decrease Effects 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 21
- 230000007774 longterm Effects 0.000 abstract description 12
- 210000000689 upper leg Anatomy 0.000 abstract description 8
- 238000001356 surgical procedure Methods 0.000 abstract description 6
- 210000004394 hip joint Anatomy 0.000 abstract description 4
- 208000010392 Bone Fractures Diseases 0.000 abstract description 3
- 239000002639 bone cement Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 230000008407 joint function Effects 0.000 abstract description 2
- 230000001225 therapeutic effect Effects 0.000 abstract description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 7
- 210000001624 hip Anatomy 0.000 description 6
- 206010017076 Fracture Diseases 0.000 description 4
- 230000002980 postoperative effect Effects 0.000 description 3
- 238000007634 remodeling Methods 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 206010069135 Periprosthetic fracture Diseases 0.000 description 2
- 238000011882 arthroplasty Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011540 hip replacement Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000005541 medical transmission Effects 0.000 description 2
- 208000003076 Osteolysis Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 241000469816 Varus Species 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000003275 diaphysis Anatomy 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000000642 iatrogenic effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000029791 lytic metastatic bone lesion Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000025395 midbrain-hindbrain boundary initiation Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
Definitions
- the invention relates to a device for treating severe femoral defect in artificial hip joint revision surgery, in particular to a femoral isthmus forming porous steel plate system, which belongs to the technical field of medical devices.
- Artificial hip replacement is an effective means of treating various end-stage hip arthritis.
- Revision hip arthroplasty is the treatment for all kinds of failed hip replacements. Severe osteolysis due to loosening or wear, stress shielding, periprosthetic infection, history of multiple surgeries, osteoporosis, iatrogenic bone defects caused by perforation or fenestration when removing the original prosthesis or residual bone cement, etc.
- the femoral side often faces different degrees of bone defects during revision hip arthroplasty.
- the difficulty of reconstruction is that there is often a severe bone defect on the femoral side, and the femur is often combined with proximal anatomical remodeling during revision surgery, such as varus or retroversion remodeling. Therefore, the reconstruction strategy of the femoral lateral bone defect is determined based on the severity of the bone defect, the remaining bone mass and quality, and the changes in anatomical remodeling.
- Proximal femoral allograft-prosthesis complexes have potential risks of disease transmission, graft resorption and nonunion, aseptic loosening, periprosthetic fractures, and infection.
- Proximal femoral replacement has a high dislocation rate and low long-term survival rate, and it is only suitable as an expedient measure for the management of elderly low-activity patients with a large number of severe bone defects.
- the risk of intraoperative fracture and postoperative subsidence of the prosthesis is high, and it has high surgical technical requirements, time-consuming, risk of disease transmission, and bone graft resorption. and other shortcomings. .
- the purpose of the present invention is to provide a femoral isthmus forming porous steel plate system, which is suitable for the reconstruction of severe femoral bone defects, can overcome the disadvantages of the existing traditional reconstruction methods, and improve the prognosis of patients with severe femoral bone defects. therapeutic efficacy.
- a femoral isthmus forming porous steel plate system comprising a steel plate body and an isthmus forming block; a porous structure is formed on the inner surface of the steel plate body in contact with the cortical bone; the isthmus forming The block is protrudingly arranged on the inner side surface of the steel plate main body, the side surface of the isthmus forming block in contact with the cortical bone is formed as a pressing surface with upper and lower sides, and the pressing surface is formed with a porous structure.
- the isthmus forming block is a wedge-shaped protrusion longitudinally disposed on the inner surface of the steel plate body, and the side surface of the wedge-shaped protrusion in contact with the cortical bone is a slope surface with upper and lower heights.
- the isthmus forming blocks are a plurality of first protrusions arranged longitudinally at intervals on the inner side surface of the steel plate body, and the heights of the first protrusions gradually increase from top to bottom.
- the side surfaces of the first protrusions away from the steel plate body together form a pressing surface.
- the side surface of each of the first protrusions away from the steel plate main body is an inclined surface, and the side surfaces of the plurality of first protrusions away from the steel plate main body are all located on the same inclined surface, and the inclined surface is opposite to the steel plate main body.
- the steel plate body is inclined downward.
- a plurality of second protrusions are arranged at intervals along the length direction of the steel plate body on the inner side surface and the pressing surface, and a porous structure is formed on the second protrusions.
- the second protrusion is an arc-shaped strip-shaped protrusion extending along the width direction of the inner side surface or the pressing surface.
- a porous structure is formed on the surface of the isthmus forming block adjacent to the pressing surface.
- the porous structure is a trabecular bone porous structure.
- the cross section of the steel plate body is an arc section, a rectangular section or a trapezoidal section, and the thickness of the steel plate body gradually decreases from the middle to both ends, on the outer side of the steel plate body and A plurality of cable grooves are spaced along its length.
- the steel plate body and the isthmus forming block are integrally formed, the total length of the steel plate body is 6 cm-18 cm, the width of the steel plate body is 1 cm-2 cm, and the thickness of the porous structure of the steel plate body is is 1mm-3mm, the overall thickness of the steel plate body is 3mm-11mm; the length of the isthmus forming block is 2-6cm, the width is 0.5cm-1.5cm, and the height of the largest cross-section on the isthmus forming block is The diameter of the medullary cavity at the same level is minus 12-16mm, preferably 3mm-20mm; the pore diameter of the porous structure is 700 ⁇ m ⁇ 300 ⁇ m.
- the porous steel plate system provided by the present invention includes a steel plate body and an isthmus forming block, a porous structure is formed on the inner surface of the steel plate body in contact with the cortical bone, and the isthmus forming block is protrudingly arranged on the inner surface of the cortical bone.
- the side of the isthmus forming block in contact with the cortical bone is formed as a pressing surface with upper and lower heights.
- the tongue-shaped cortical bone strip deforms the femoral medullary cavity and forms an artificial femoral isthmus in the femoral medullary cavity, so that patients with severe femoral bone defects can obtain the morphological reconstruction of the isthmus, and improve the effective fixation length between the non-cemented femoral stem prosthesis and the femur, To improve the initial and long-term fixation of uncemented femoral stem prosthesis for the treatment of severe femoral bone defects.
- the porous structure can enable the plate system to achieve long-term bone ingrowth and fixation, which can improve the overall strength of the femur-prosthesis, reduce the risk of long-term peri-prosthetic fractures, and improve the short-term and long-term efficacy of hip surgery, allowing patients to obtain Better hip joint function;
- the porous steel plate system of the present invention can be designed according to the specificity of patients, can avoid the use of traditional methods such as allogeneic bone-prosthesis complex, compression bone grafting combined with long cement stem or proximal femoral replacement, etc. Treatment outcomes of hip revision patients with severe femoral bone defect.
- FIG. 1 is a schematic structural diagram of a porous steel plate system provided by an embodiment of the present invention.
- FIG. 2 is a schematic structural diagram of a porous steel plate system provided by another embodiment of the present invention.
- all directional indications (such as proximal end, distal end, front end, rear end, inner side, outer side, upper end, lower end, etc.) in this embodiment are only used to explain the relative positional relationship and movement of patient parts in general medically described and so on, that is, the side close to the patient's head is called the proximal end, and the side far from the patient's head is called the distal end; the front of the patient is the anterior side, and the back is the posterior side; the side close to the patient's midline is the inner side, and the side far from the patient's midline is called the distal end. for the outside.
- the present embodiment provides a femoral isthmus forming porous steel plate system, which includes a steel plate body 100 and an isthmus forming block 200; a porous structure is formed on the inner side surface 101 of the steel plate body 100 in contact with the cortical bone; isthmus forming The block 200 is protrudingly disposed on the inner side surface 101 of the steel plate body 100 .
- the side surface of the isthmus forming block 200 in contact with the cortical bone is formed as a pressing surface 201 with a lower upper and a higher lower, and a porous structure is formed on the pressing surface 201 .
- the steel plate body 100 is fixed on the femur, the isthmus forming block 200 presses the tongue-shaped cortical bone strip formed after the osteotomy inward, and the pressing surface 201 of the isthmus forming block 200 abuts against the cortical bone, so that the femoral marrow
- the cavity is deformed, thereby forming an artificial femoral isthmus in the femoral medullary cavity, which overcomes the formation of a trumpet-shaped structure in the medullary cavity that expands downward due to a large number of bone defects in the prior art, or the femoral medullary cavity expands and expands into a chimney tube.
- the problem of non-diaphyseal isthmus caused by the shape of the femoral stem is used for the fixation of the femoral stem, to realize the reconstruction of the isthmus in the femoral medullary cavity of patients with severe femoral bone defect, and to enhance the fixation of the cementless prosthesis.
- a porous structure is formed on the pressing surface 201 of the block 200, and the porous structure on the pressing surface 201 of the steel plate body 100 and the isthmus forming block 200 is in contact with the cortical bone, and bone ingrowth can be obtained in the long-term, which can improve the femoral-prosthesis performance. Overall strength, can improve short-term and long-term outcomes of hip surgery.
- the isthmus forming block 200 is a wedge-shaped protrusion 200a longitudinally arranged on the inner side surface 101 of the steel plate body 100, and the side surface of the wedge-shaped protrusion 200a in contact with the cortical bone is a sloped surface with an upper and a lower height.
- the sloping surface is the pressing surface 201; when in use, the steel plate body 100 can be fixed on the femur by a titanium cable or a steel wire, and the wedge-shaped bump 200a presses the tongue-shaped cortical bone strip formed after the osteotomy towards the inside of the femoral medullary cavity.
- the ramp surface of the wedge-shaped projection 200a abuts against the cortical bone, so that the femoral medullary cavity is deformed, thereby forming a femoral isthmus in the femoral medullary cavity.
- the isthmus forming blocks 200 are a plurality of first protrusions 200b that are longitudinally spaced on the inner side surface of the steel plate body 100 , and the heights of the first protrusions 200b rise from the top The lower part gradually increases, and the multiple side surfaces of the multiple first protrusions 200b away from the steel plate body 100 together form the extrusion surface 201 .
- each first protrusion 200b away from the steel plate body 100 is an inclined surface, and the side surfaces of the plurality of first protrusions 200 away from the steel plate body 100 are all located on the same inclined surface.
- the steel plate body 100 is inclined downward.
- a plurality of second protrusions 300 are arranged on the inner side surface 101 and the pressing surface 201 at intervals along the length direction of the steel plate body 100 , and the second protrusions 300 are formed with porous structures.
- the contact area between the inner surface 101 and the pressing surface 201 and the cortical bone can be greatly reduced, and the interference to the blood supply of the cortical bone can be reduced.
- the second protrusion 300 is an arc-shaped strip protrusion extending along the width direction of the inner side surface 101 or the pressing surface 201 .
- a plurality of cable grooves 400 are arranged on the outer surface of the steel plate body 100 and at intervals along the length direction thereof, so as to facilitate the fixing of titanium cables or steel wires.
- the surface of the isthmus forming block 200 adjacent to the pressing surface 201 is formed with a porous structure.
- the cross section of the steel plate body 100 can be an arc-shaped section, a rectangular section or a trapezoidal section, and the thickness of the steel plate body 100 gradually decreases from the middle to both ends, so that the structure of the steel plate body 100 is better.
- the main body of the steel plate 100 can be more closely fixed to the outer side of the femur, thereby enhancing the stability of the fixation.
- the porous structure is a trabecular bone porous structure, so that the long-term bone ingrowth and fixation of the steel plate system can improve the overall reconstruction strength of the femur-prosthesis.
- the steel plate body 100 and the isthmus forming block 200 are integrally formed.
- the steel plate body 100 and the isthmus forming block 200 are integrally formed by 3D printing, for example, by electron beam fusion 3D printing.
- the printing material adopts but is not limited to titanium alloy (Ti6Al4V).
- the total length of the steel plate body 100 is 6cm-18cm, preferably 11cm-14cm
- the specific length of the steel plate body 100 can be determined according to the isthmus forming length
- the width of the steel plate body 100 (the width here may be The actual width can also be an arc length, which is determined according to the cross-sectional shape of the steel plate body 100) is 1cm-2cm
- the thickness of the porous structure of the steel plate body 100 is 1mm-3mm
- the overall thickness of the steel plate body 100 is 3mm-11mm.
- the length of the isthmus forming block 200 is 2-6 cm, the width is 0.5 cm-1.5 cm, and the height of the largest cross section on the isthmus forming block 200 is in principle the same level as the pulp cavity diameter minus the diameter of the medullary cavity. Go to 12 ⁇ 16mm.
- the height of the largest cross section on the isthmus forming block 200 is 3 mm ⁇ 20 mm.
- the pore diameter of the porous structure is 700 ⁇ m ⁇ 300 ⁇ m, and the porosity on the isthmus forming block 200 is 50%-80%.
- the present invention also provides an implantation method of the porous steel plate system, which includes the following steps:
- a lingual osteotomy is performed at the distal end of the relatively complete femoral cortical bone fragment at the distal 2cm-3cm, and the distal end of the lingual osteotomy is arc-shaped to avoid intraoperative and postoperative fractures caused by stress concentration.
- the purpose of this is to preserve the relatively intact femoral cortical bone of the proximal 2cm-3cm of the osteotomy, reducing the risk of intraoperative fractures, and to use the relatively intact 2cm-3cm femoral cortical bone combined with the lingual cortical bone for the femoral stem. fixed;
- a third titanium cable can be tied at the distal 2cm-3cm of the first titanium cable or the proximal 2cm-3cm of the second titanium cable.
- the tightness of the titanium cable is suitable for the isthmus forming block 200 to tightly squeeze the tongue-shaped osteotomy block to the surface of the medullary cavity drill, so that the degree of isthmus formation can be well controlled, so that the tongue-shaped cortical bone can just form a tight press fit on the femoral stem.
- the femoral stem is driven into the femoral stem by conventional methods.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Prostheses (AREA)
Abstract
一种股骨峡部成型多孔钢板系统,包括钢板主体(100)和峡部成型块(200);所述钢板主体(100)与皮质骨接触的内侧面(101)上形成有多孔结构;所述峡部成型块(200)凸出设置在所述钢板主体(100)的内侧面(101)上,所述峡部成型块(200)与皮质骨接触的侧面形成为上低下高的挤压面(201),所述挤压面(201)上形成有多孔结构;能够使股骨严重骨缺损患者获得峡部的形态重建,提高非骨水泥股骨柄假体与股骨的有效固定长度,改善非骨水泥股骨柄假体用于治疗股骨严重骨缺损的初始及远期固定效果。多孔结构可使钢板系统获得术后远期骨长入固定,可提高股骨-假体整体强度,减少远期假体周围骨折的风险,改善髋关节手术近期及远期疗效,使得患者获得更好的髋关节功能。
Description
本发明涉及一种用于治疗人工髋关节翻修术中股骨严重缺损的装置,特别涉及一种股骨峡部成型多孔钢板系统,属于医疗器械技术领域。
人工髋关节置换是治疗各种终末期髋关节炎的有效手段。人工髋关节翻修术是治疗各种人工髋关节置换失败的方法。由于松动或磨损导致的严重骨溶解、应力遮挡、假体周围感染、多次手术史、骨质疏松、取出原假体或残留骨水泥时穿孔或开窗造成医源性骨缺损等原因,使得人工髋关节翻修术中股骨侧常面临不同程度的骨缺损。而重建难点就在于股骨侧常存在严重骨缺损,同时翻修术中股骨常合并近端解剖重塑,比如内翻或者后倾重塑。因此,股骨侧骨缺损重建策略是基于骨缺损的严重程度、剩余的骨量和质量及解剖重塑变化情况而确定的。
很多学者都提出了股骨侧骨缺损的分型,其中最广泛使用的分型是Paprosky分型,该分型考虑了骨缺损部位(干骺端或骨干)、近端股骨的剩余骨量及支撑作用、可用于远端固定的骨干峡部长度三个因素。医生根据该分型能客观地评估股骨骨缺损,并根据缺损分型选择合适的重建方法。对于严重的股骨骨缺损,尤其是髓腔形成向下方扩大的喇叭形结构或股骨髓腔扩大膨胀呈烟囱管型(stove-pipe)导致无骨干峡部用于股骨柄固定的骨缺损情况,目前可选择组配锥形带脊钛柄、打压植骨术、近端股骨异体骨-假体复合物和近端股骨置换等传统重建方法。组配锥形带脊钛柄术后早期假体下沉的发生比例较高,术中或术后骨折的风险增加,还可能导致应力集中、应力遮挡、有效固定长度不足和假体固定不牢靠等一系列并发症。近端股骨异体骨-假体复合物存在疾病传播、移植骨吸收和不愈合、无菌性松动、假体周围骨折和感染等潜在风险。近端股骨置换脱位率较高而长期生存率较低,只适合作为处理老年低活动量患者同时合并大量严重骨缺损的一种权宜之计。打压植骨虽然在理论上有重建患者骨量的可能,但是术中骨折、术后假体下沉等风险较高,且有手术技术要求较高、比较耗时、疾病传播风险、植骨吸收等缺点。。
发明内容
针对上述问题,本发明的目的是提供一种股骨峡部成型多孔钢板系统,该系统适用于股骨严重骨缺损重建,能够克服现有传统重建方法的弊端,提高伴有严重股 骨骨缺损髋翻修患者的治疗疗效。
为实现上述目的,本发明采用以下技术方案:一种股骨峡部成型多孔钢板系统,包括钢板主体和峡部成型块;所述钢板主体与皮质骨接触的内侧面上形成有多孔结构;所述峡部成型块凸出设置在所述钢板主体的内侧面上,所述峡部成型块与皮质骨接触的侧面形成为上低下高的挤压面,且所述挤压面上形成有多孔结构。
在一些实施例中,所述峡部成型块为纵向设置在所述钢板主体的内侧面上的楔形凸块,所述楔形凸块与皮质骨接触的侧面为上低下高的斜坡面。
在一些实施例中,所述峡部成型块为纵向间隔设置在所述钢板主体的内侧面上的多个第一凸起,所述第一凸起的高度自上而下逐渐增大,多个所述第一凸起远离钢板主体的侧面共同构成挤压面。
在一些实施例中,每一所述第一凸起远离所述钢板主体的侧面为倾斜面,且多个所述第一凸起远离钢板主体的侧面均位于同一斜面上,所述斜面相对于所述钢板主体呈向下倾斜设置。
在一些实施例中,在所述内侧面和挤压面上沿所述钢板主体的长度方向间隔设置多个第二凸起,所述第二凸起上形成有多孔结构。
在一些实施例中,所述第二凸起为沿所述内侧面或挤压面的宽度方向延伸的弧形条状凸起。
在一些实施例中,所述峡部成型块上与所述挤压面相邻的面上均形成有多孔结构。
在一些实施例中,所述多孔结构为骨小梁多孔结构。
在一些实施例中,所述钢板主体的横截面呈弧形截面、矩形截面或梯形截面,所述钢板主体的厚度自其中部向两端逐渐减小,在所述钢板主体的外侧面上且沿其长度方向间隔设置多个缆索槽。
在一些实施例中,所述钢板主体和峡部成型块一体成型而成,所述钢板主体的总长度为6cm~18cm,所述钢板主体的宽度为1cm~2cm,所述钢板主体的多孔结构厚度为1mm~3mm,所述钢板主体的整体厚度为3mm-11mm;所述峡部成型块的长度为2~6cm,宽度为0.5cm~1.5cm,所述峡部成型块上的最大横截面的高度为与其同水平的髓腔直径减去12~16mm,最好为3mm~20mm;所述多孔结构的孔径为700μm±300μm。
本发明采用以上技术方案,其具有如下优点:本发明提供的多孔钢板系统,包括钢板主体和峡部成型块,钢板主体与皮质骨接触的内侧面上形成有多孔结构,峡部成型块凸出设置在钢板主体的内侧面上,峡部成型块与皮质骨接触的侧面形成为 上低下高的挤压面,钢板主体可通过钛缆或钢丝固定在股骨的外侧,峡部成型块挤压截骨后形成的舌形皮质骨条,使得股骨髓腔发生变形,在股骨髓腔内形成人造股骨峡部,使股骨严重骨缺损患者获得峡部的形态重建,提高非骨水泥股骨柄假体与股骨的有效固定长度,改善非骨水泥股骨柄假体用于治疗股骨严重骨缺损的初始及远期固定效果。同时,多孔结构可使钢板系统获得术后远期骨长入固定,可提高股骨-假体整体强度,减少远期假体周围骨折的风险,改善髋关节手术近期及远期疗效,使得患者获得更好的髋关节功能;本发明的多孔钢板系统可根据患者特异性进行设计,能够避免采用异体骨-假体复合物、打压植骨联合长水泥柄或者近端股骨置换等传统方法,提高伴有严重股骨骨缺损髋翻修患者的治疗疗效。
图1是本发明一实施例提供的多孔钢板系统的结构示意图;
图2是本发明另一实施例提供的多孔钢板系统的结构示意图。
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本实用新型的目的、特点和优点。应理解的是,附图所示的实施例并不是对本实用新型范围的限制,而只是为了说明本实用新型技术方案的实质精神。
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
需要说明,本实施例中所有方向性指示(诸如近端、远端、前端、后端、内侧、外侧、上端、下端等)仅用于解释一般在医学上描述病人部位相对位置关系、运动情况等,即以靠近病人头侧的一侧称为近端,远离病人头侧的一侧称为远端;病人的前方为前侧,后方为后侧;靠近病人中线为内侧,远离病人中线的为外侧。
如图1所示,本实施例提供的一种股骨峡部成型多孔钢板系统,其包括钢板主体100和峡部成型块200;钢板主体100与皮质骨接触的内侧面101上形成有多孔结构;峡部成型块200凸出设置在钢板主体100的内侧面101上,峡部成型块200与皮质骨接触的侧面形成为上低下高的挤压面201,挤压面201上形成有多孔结构。
本发明在使用时,钢板主体100固定在股骨上,峡部成型块200向内侧挤压截骨后形成的舌形皮质骨条,峡部成型块200的挤压面201与皮质骨相抵,使得股骨髓腔发生变形,从而在股骨髓腔内形成上大下小的人造股骨峡部,克服现有技术中 由于大量骨质缺损导致髓腔形成向下方扩大的喇叭形结构或股骨髓腔扩大膨胀呈烟囱管形造成的无骨干峡部用于股骨柄固定的问题,实现股骨严重骨缺损患者的股骨髓腔内峡部形态的重建,能够增强非骨水泥假体的固定,钢板主体100的内侧面101和峡部成型块200的挤压面201上形成有多孔结构,钢板主体100和峡部成型块200的挤压面201上的多孔结构与皮质骨接触,远期可获得骨长入,能够提高股骨-假体的整体强度,能够改善髋关节手术近期及远期疗效。
在上述实施例中,优选地,峡部成型块200为纵向设置在钢板主体100的内侧面101上的楔形凸块200a,楔形凸块200a与皮质骨接触的侧面为上低下高的斜坡面,该斜坡面即为挤压面201;在使用时,钢板主体100可通过钛缆或钢丝固定在股骨上,楔形凸块200a向着股骨髓腔的内部挤压截骨后形成的舌形皮质骨条,楔形凸块200a的斜坡面与皮质骨相抵,使得股骨髓腔发生变形,从而在股骨髓腔内形成股骨峡部。
在上述实施例中,优选地,如图2所示,峡部成型块200为纵向间隔设置在钢板主体100的内侧面上的多个第一凸起200b,第一凸起200b的高度自上而下逐渐增大,多个第一凸起200b远离钢板主体100的多个侧面共同构成挤压面201。
在上述实施例中,优选地,每一第一凸起200b远离钢板主体100的侧面为倾斜面,且多个第一凸起200远离钢板主体100的侧面均位于同一斜面上,该斜面相对于钢板主体100呈向下倾斜设置。
在上述实施例中,优选地,在内侧面101和挤压面201上沿钢板主体100的长度方向间隔设置多个第二凸起300,第二凸起300上形成有多孔结构,第二凸起300与皮质骨接触,能够大大减小内侧面101和挤压面201与皮质骨的接触面积,降低对皮质骨血运的干扰。
在上述实施例中,优选地,第二凸起300为沿内侧面101或挤压面201的宽度方向延伸的弧形条状凸起。
在上述实施例中,优选地,在钢板主体100的外侧面上且沿其长度方向间隔设置多个缆索槽400,以方便固定钛缆或钢丝。
在上述实施例中,优选地,峡部成型块200上与挤压面201相邻的面上均形成有多孔结构。
在上述实施例中,优选地,钢板主体100的横截面可为弧形截面、矩形截面或梯形截面,钢板主体100的厚度自其中部向两端逐渐减小,以使钢板主体100的结构更符合人体解剖学和生物力学,钢板主体100能够更贴伏地固定于股骨的外侧,增强固定的稳定性。
在上述实施例中,优选地,多孔结构为骨小梁多孔结构,以期钢板系统远期骨长入固定,能够提高股骨-假体的整体重建强度。
在上述实施例中,优选地,钢板主体100和峡部成型块200一体成型而成,具体地,钢板主体100和峡部成型块200采用3D打印一体成型而成,例如采用电子束熔融3D打印成型而成,打印材料采用但不局限于钛合金(Ti6Al4V)。
在上述实施例中,优选地,钢板主体100的总长度为6cm~18cm,优选为11cm~14cm,钢板主体100的具体长度可根据峡部成型长度确定,钢板主体100的宽度(这里的宽度可为实际宽度,也可为弧形长度,根据钢板主体100横截面形状而定)为1cm~2cm,钢板主体100的多孔结构厚度为1mm~3mm,钢板主体100的整体厚度为3mm-11mm。
在上述实施例中,优选地,峡部成型块200的长度为2~6cm,宽度为0.5cm~1.5cm,峡部成型块200上的最大横截面的高度原则上为与其同水平的髓腔直径减去12~16mm。
在上述实施例中,优选地,峡部成型块200上的最大横截面的高度为3mm~20mm。
在上述实施例中,优选地,多孔结构的孔径为700μm±300μm,峡部成型块200上的孔隙率为50%-80%。
另外地,基于上述任意实施例中的股骨峡部成型多孔钢板系统,本发明还提供一种多孔钢板系统的植入方法,其包括以下步骤:
1)用髓腔钻锉磨髓腔,直到髓腔钻与皮质骨有紧密接触,然后拔除髓腔钻;
2)在近端相对完整的股骨皮质骨断端以远2cm-3cm外侧做舌形截骨,舌形截骨的远端为弧形,避免应力集中导致术中和术后骨折。这样做的目的是保留截骨近端2cm-3cm相对完整的股骨皮质骨,减少术中骨折的风险,同时利用这2cm-3cm相对完整的股骨皮质骨联合舌形皮质骨条共同用于股骨柄的固定;
3)重新插入髓腔钻直到与皮质骨有紧密接触,将钢板主体100放入舌形截骨块表面,在与峡部成型块对应的钢板主体100的外侧绑上2-3根钛缆;第一根钛缆位于峡部成型块200上的最大横截面的外侧,第二根钛缆位于第一根钛缆的近端2cm-4cm处,根据钢板主体100是否紧密压配到外侧股骨上等情况,可在第一根钛缆的远端2cm-3cm处或第二根钛缆的近端2cm-3cm处绑上第三根钛缆。钛缆的松紧程度以峡部成型块200紧密挤压舌形截骨块至髓腔钻表面为宜,这样可以控制好峡部成型的程度,使舌形皮质骨条刚好可以对股骨柄形成紧密压配。
4)待钛缆捆绑完成后,采用常规方法打入股骨柄。
上述各实施例仅用于说明本实用新型,其中各部件的结构、连接方式和制作工 艺等都是可以有所变化的,凡是在本实用新型技术方案的基础上进行的等同变换和改进,均不应排除在本实用新型的保护范围之外。
Claims (10)
- 一种股骨峡部成型多孔钢板系统,其特征在于:包括钢板主体和峡部成型块;所述钢板主体与皮质骨接触的内侧面上形成有多孔结构;所述峡部成型块凸出设置在所述钢板主体的内侧面上,所述峡部成型块与皮质骨接触的侧面形成为上低下高的挤压面,且所述挤压面上形成有多孔结构。
- 如权利要求1所述的股骨峡部成型多孔钢板系统,其特征在于:所述峡部成型块为纵向设置在所述钢板主体的内侧面上的楔形凸块,所述楔形凸块与皮质骨接触的侧面为上低下高的斜坡面。
- 如权利要求1所述的股骨峡部成型多孔钢板系统,其特征在于:所述峡部成型块为纵向间隔设置在所述钢板主体的内侧面上的多个第一凸起,所述第一凸起的高度自上而下逐渐增大,多个所述第一凸起远离钢板主体的侧面共同构成挤压面。
- 如权利要求3所述的股骨峡部成型多孔钢板系统,其特征在于:每一所述第一凸起远离所述钢板主体的侧面为倾斜面,且多个所述第一凸起远离钢板主体的侧面均位于同一斜面上,所述斜面相对于所述钢板主体呈向下倾斜设置。
- 如权利要求1所述的股骨峡部成型多孔钢板系统,其特征在于:在所述内侧面和挤压面上沿所述钢板主体的长度方向间隔设置多个第二凸起,所述第二凸起上形成有多孔结构。
- 如权利要求5所述的股骨峡部成型多孔钢板系统,其特征在于:所述第二凸起为沿所述内侧面或挤压面的宽度方向延伸的弧形条状凸起。
- 如权利要求1所述的股骨峡部成型多孔钢板系统,其特征在于:所述峡部成型块上与所述挤压面相邻的面上均形成有多孔结构。
- 如权利要求1、5或7所述的股骨峡部成型多孔钢板系统,其特征在于:所述多孔结构为骨小梁多孔结构。
- 如权利要求1所述的股骨峡部成型多孔钢板系统,其特征在于:所述钢板主体的横截面呈弧形截面、矩形截面或梯形截面,所述钢板主体的厚度自其中部向两端逐渐减小,在所述钢板主体的外侧面上且沿其长度方向间隔设置多个缆索槽。
- 如权利要求1所述的股骨峡部成型多孔钢板系统,其特征在于:所述钢板主体和峡部成型块一体成型而成,所述钢板主体的总长度为6cm~18cm,所述钢板主体的宽度为1cm~2cm,所述钢板主体的多孔结构厚度为1mm~3mm,所述钢板主体的整体厚度为3mm-11mm;所述峡部成型块的长度为2~6cm,宽度为0.5cm~1.5cm, 所述峡部成型块上的最大横截面的高度为与其同水平的髓腔直径减去12~16mm;所述多孔结构的孔径为700μm±300μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/127749 WO2022099444A1 (zh) | 2020-11-10 | 2020-11-10 | 股骨峡部成型多孔钢板系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/127749 WO2022099444A1 (zh) | 2020-11-10 | 2020-11-10 | 股骨峡部成型多孔钢板系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022099444A1 true WO2022099444A1 (zh) | 2022-05-19 |
Family
ID=81600713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/127749 WO2022099444A1 (zh) | 2020-11-10 | 2020-11-10 | 股骨峡部成型多孔钢板系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022099444A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2030866U (zh) * | 1987-07-31 | 1989-01-18 | 白求恩医科大学第一临床学院 | 鸟尾钩形自动加压钢板 |
US20140074251A1 (en) * | 2011-07-12 | 2014-03-13 | Biomet Manufacturing, Llc | Implant Sleeve For Orthopedic Implants |
CN204863357U (zh) * | 2015-06-05 | 2015-12-16 | 深圳市博恩医疗器材有限公司 | 股骨髓内定位杆 |
CN206621456U (zh) * | 2016-07-29 | 2017-11-10 | 北京形梦信息技术有限公司 | 一种骨修复支架 |
CN107595442A (zh) * | 2017-10-19 | 2018-01-19 | 北京爱康宜诚医疗器材有限公司 | 人工峡部假体 |
CN111281521A (zh) * | 2020-03-13 | 2020-06-16 | 山东大学齐鲁医院(青岛) | 一种股骨髓腔定位组件 |
-
2020
- 2020-11-10 WO PCT/CN2020/127749 patent/WO2022099444A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2030866U (zh) * | 1987-07-31 | 1989-01-18 | 白求恩医科大学第一临床学院 | 鸟尾钩形自动加压钢板 |
US20140074251A1 (en) * | 2011-07-12 | 2014-03-13 | Biomet Manufacturing, Llc | Implant Sleeve For Orthopedic Implants |
CN204863357U (zh) * | 2015-06-05 | 2015-12-16 | 深圳市博恩医疗器材有限公司 | 股骨髓内定位杆 |
CN206621456U (zh) * | 2016-07-29 | 2017-11-10 | 北京形梦信息技术有限公司 | 一种骨修复支架 |
CN107595442A (zh) * | 2017-10-19 | 2018-01-19 | 北京爱康宜诚医疗器材有限公司 | 人工峡部假体 |
CN111281521A (zh) * | 2020-03-13 | 2020-06-16 | 山东大学齐鲁医院(青岛) | 一种股骨髓腔定位组件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mu et al. | Midterm outcome of cementless total hip arthroplasty in Crowe IV–Hartofilakidis Type III developmental dysplasia of the hip | |
HARRIS et al. | Hybrid total hip arthroplasty. | |
Gie et al. | Impacted cancellous allografts and cement for revision total hip arthroplasty | |
KR100781021B1 (ko) | 견고한 모듈식 시스템 | |
Mirzamurodov et al. | Optimization of total hip arthroplasty for dysplastic coxarthrosis | |
Biezen et al. | Impaction bone-grafting of severely defective femora in revision total hip surgery: 21 hips followed for 41-85 months | |
Haentjens et al. | Proximal femoral replacement prosthesis for salvage of failed hip arthroplasty: complications in a 2–11 year follow-up study in 19 elderly patients | |
Neumann et al. | Management of Vancouver B2 and B3 femoral periprosthetic fractures using a modular cementless stem without allografting | |
US20070088443A1 (en) | Prosthetic implant support structure | |
Necas et al. | Cementless hip arthroplasty and transverse shortening femoral osteotomy with the S-ROM stem for Crowe type IV developmental dysplasia | |
JP2001346819A (ja) | 大腿骨股関節補綴物 | |
Sporer et al. | Biologic fixation and bone ingrowth | |
Cobb et al. | Biaxial long-stemmed multipronged distal components for revision/bone deficit total-wrist arthroplasty | |
Jacquet et al. | Long-term results of custom-made femoral stems | |
Lintner et al. | Reactions of surrounding tissue to the cementless hip implant Ti-6Al-4V after an implantation period of several years: autopsy studies in three cases | |
Carrera et al. | Mid-term outcomes and complications with cementless distal locking hip revision stem with hydroxyapatite coating for proximal bone defects and fractures | |
Flugsrud et al. | Cemented femoral impaction bone grafting for severe osteolysis in revision hip arthroplasty: Good results at 4-year follow-up of 10 patients | |
CN213993858U (zh) | 股骨峡部成型多孔钢板系统 | |
WO2022099444A1 (zh) | 股骨峡部成型多孔钢板系统 | |
Santori et al. | Proximal load transfer with a stemless uncemented femoral implant | |
Huggler | The thrust plate prosthesis: a new experience in hip surgery | |
Suzuki et al. | Minimum 10-Year Survivorship of Uncemented Acetabular Reconstruction With Bulk Femoral Head Autografting in Crowe Type IV Developmental Hip Dysplasia | |
Krupp et al. | Impaction grafting for femoral component revision using a non-polished bead-blasted chrome cobalt stem—average 8 1/2–year follow-up | |
CN112245071A (zh) | 股骨峡部成型多孔钢板系统 | |
JPH05200058A (ja) | 臼蓋形成術用スペーサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20961003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20961003 Country of ref document: EP Kind code of ref document: A1 |