WO2022099338A1 - Method and measuring system for continuously non-invasively determining the arterial blood pressure - Google Patents

Method and measuring system for continuously non-invasively determining the arterial blood pressure Download PDF

Info

Publication number
WO2022099338A1
WO2022099338A1 PCT/AT2021/060421 AT2021060421W WO2022099338A1 WO 2022099338 A1 WO2022099338 A1 WO 2022099338A1 AT 2021060421 W AT2021060421 W AT 2021060421W WO 2022099338 A1 WO2022099338 A1 WO 2022099338A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
measuring system
housing
incompressible fluid
actuator
Prior art date
Application number
PCT/AT2021/060421
Other languages
German (de)
French (fr)
Inventor
Jürgen FORTIN
Original Assignee
Cnsystems Medizintechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cnsystems Medizintechnik Gmbh filed Critical Cnsystems Medizintechnik Gmbh
Publication of WO2022099338A1 publication Critical patent/WO2022099338A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • A61B5/02241Occluders specially adapted therefor of small dimensions, e.g. adapted to fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02422Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation within occluders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0497Screw mechanisms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/209Arrangements for driving the actuator using worm gears

Definitions

  • the invention relates to a method and a measuring system for the continuous, non-invasive determination of the arterial blood pressure on an extremity that contains an artery, with a housing or housing part that can be attached to the extremity and is suitable for at least partially enclosing the extremity, as well as with a housing supporting, limb-acting, flexible bladder filled with a fluid.
  • the continuous, non-invasive measurement of blood pressure still poses a major challenge for measurement technology.
  • the simplest method for continuously recording blood pressure is what is known as tonometry.
  • a pressure sensor is brought into contact with an area containing an artery, the pressure measured thereby only inadequately corresponding to the pressure in the artery.
  • the method of coupling the pressure sensor to the artery is essential.
  • a small pressure sensor is usually attached directly to the skin over a superficial artery (e.g. radial artery in the wrist or temporal artery in the temple) and then pressed against the underlying bone.
  • the Vascular Unloading Technique requires a pressure generation system that can fully follow the continuous blood pressure. This means that pressure changes of more than 1500 mmHg/sec must be achieved with an upper frequency limit of around 40 Hz.
  • EP 1 179 991 B1 shows such a pressure generation system with the help of separate inlet and outlet valves. In addition to these inlet and outlet valves, an air pressure pump, an air reservoir and numerous electronic components are required for the pressure generation system.
  • EP 2 493 370 describes a form of the vascular unloading technique in which a digital volume signal is generated using a so-called "light-to-frequency converter". The information about the current blood volume in the finger is contained in the output frequency of the converter. “Light-to-frequency converters” can be implemented as integrated circuits, with a photodiode already on the chip acting as the light signal detector.
  • EP 2 854 626 B1 now describes a new method and a device that only applies a very slowly changing contact pressure to the extremity (usually fingers) in order to follow the mean arterial blood pressure.
  • WO 2016/110781 A1 describes various measurement modes and additional elements that are also advantageous for use as a portable device.
  • EP 2 854 626 B1 or WO 2016/110781 A1 cause an average change in the contact pressure of 1.4 mmHg per heartbeat or 1.3 mmHg/sec need, the maximum values are 24.4 mmHg per heartbeat or 25 mmHg/sec.
  • no actuators or devices for applying/generating pressure are described.
  • Both EP 2 854 626 and WO 2016/110781 A1 use complex photoplethysmographic systems for measuring the blood volume in the artery, which have at least one light source (LED) and one light detector (photodiode).
  • a measuring system for the continuous determination of blood pressure has become known from EP 3 419 515 B1, which has the external shape of a computer mouse, on the surface of which a double-finger sensor is designed to record two fingers of one hand.
  • the finger sensors have inflatable cuffs, the pressure of which tracks the intra-arterial blood pressure in the finger with the help of a photoplethysmographic system. This requires real-time controlled valves at the entrance to the cuffs that supply pressure from a compressed air source.
  • the pressure generation system together with the pump and an air reservoir can be arranged in the body of the computer mouse.
  • WO 2020/176214 A1 describes a finger sensor for measuring blood pressure, which has a bladder that can be pressed against the finger with constant pressure and is filled with an incompressible fluid. A pressure sensor is arranged in the bladder, with which the arterial blood pressure can be measured in the finger.
  • the aim of the invention is to develop a measuring system and a method for the continuous, non-invasive determination of the arterial blood pressure in an extremity in such a way that a compact system consisting of few individual parts and inexpensive to produce is realized, which can also be made into a portable unit can be integrated.
  • This object is achieved by a measuring system according to claim 1 and a measuring method according to claim 9.
  • Advantageous embodiment variants are disclosed in the dependent claims.
  • the present application discloses various design variants of a measuring system that can operate simultaneously as an actuator and as a volume signal pickup, with the components of a photoplethysmographic system mentioned at the outset, such as light sources (LEDs) and light detectors (photodiodes), being omitted.
  • LEDs light sources
  • photodiodes photodiodes
  • the invention uses an incompressible fluid-filled (e.g., liquid-filled), flexible bladder that is directly coupled to the limb (e.g., the finger).
  • An actuator acts on this bladder (for example a piston, a ram, a clamp, etc., with a corresponding drive device), which can increase and decrease the pressure in the bladder.
  • This pressure in turn acts on the extremity and thus on the artery.
  • a pressure sensor is provided which, in addition to the absolute pressure generated by the actuator, can also record pressure pulsations and thus the volume signal, which are caused by the movement of blood in the artery.
  • the pressure signal consisting of the absolute pressure and the pressure pulsations is fed to a controller that controls the actuator for pressurizing the flexible bladder.
  • the present invention also describes a new "Vascular Control Technique” method (VCT method) for continuous blood pressure measurement.
  • VCT method Vascular Control Technique
  • the blood pressure can also be determined intermittently using the known oscillometric method.
  • FIG. 1a shows a non-invasive blood pressure measuring system (“wearable”);
  • FIG. 1b shows an enlarged view of the wearable according to FIG. 1a
  • FIG. 2 shows the front view, side view, top view and bottom view of the wearable according to FIG. 1b;
  • FIG. 3 shows a section according to line A-A in FIG. 2 through the wearable with a first position of the actuator for generating pressure
  • FIG. 4 shows the wearable according to FIG. 3 with a second position of the actuator for generating pressure
  • FIG. 5 shows a schematic representation of the mode of operation of the measuring system according to the invention together with the regulator (controller);
  • FIG. 6 shows a second embodiment variant of the measuring system in a sectional illustration according to FIG. 3;
  • Fig. 8 Diagrams of oscillometric signals in the search phase.
  • the present application describes different embodiment variants of a measuring system, as well as a method of how these measuring systems can measure the arterial blood pressure.
  • the blood pressure can be measured both discontinuously and continuously - i.e. for each heartbeat.
  • the measuring system consists of at least one actuator (device for generating pressure) and a flexible bladder filled with an incompressible fluid.
  • the e.g. fluid-filled bladder acts on an extremity in which at least one artery is located.
  • the finger of one hand is used, but applications on other parts of the body are also possible, such as the wrist, the temple and also the tail of an animal in veterinary applications.
  • a portable measuring system 301 (wearable) is shown in the form of a finger ring including a ring attachment for use on a finger of one hand.
  • the corresponding device for generating pressure (or actuator) is integrated into the wearable in order to exert a predeterminable, variable pressure on the finger.
  • FIG. 2 also shows the finger ring in front view, side view, top view and bottom view.
  • FIG. 3 shows a section through the measurement system or wearable 301, in whose housing 300 the elements of the actuator are located.
  • the actuator is driven by a motor whose stator 302 is mounted on a printed circuit board under the flat surface. surface of the ring attachment is attached.
  • the rotor 303 which is rotatably attached to the stator 302 by a spring 304 .
  • a possible variant of this motor is a low-energy, piezoelectric motor for use on electronic printed circuit boards (see eg www.pcbmotor.com).
  • an actuator is present in the measuring system 301, which consists, for example, of a piston 307, a plunger or another element and its drive unit 302, 303.
  • the piston or plunger is moved in one direction (see arrow 313) and thus generates pressure in a fluid-filled bladder 309.
  • the actuator and thus the piston 307 could also be driven differently than shown in FIG are also located outside of the blood pressure monitor shown.
  • the rotor 303 drives a transmission element 305 which in turn drives a rotatable piston 307 via a gear element 306 .
  • the transmission element 305 is fixed directly to the rotor 303, while the piston 307 can move in the direction of the finger. This movement of the piston 307 is made possible by the gear element 306 shown schematically.
  • the piston 307 is guided in a cylinder 308 in the housing 300 . Together they form the gear element 306.
  • the gear element 306 can be realized by a simple thread, with the piston 307 being equipped with an external thread and the cylinder 308 with an internal thread.
  • the illustrated thread 306 is only one possible embodiment. It is important that the friction losses are kept as low as possible. Other mechanical or hydraulic transmission elements are also possible.
  • the movement of the rotor 303 now pushes the piston 307 in the direction of the finger.
  • the piston 307 then presses on a bladder 309 filled with an incompressible fluid, for example a liquid or a gel.
  • an incompressible fluid for example a liquid or a gel.
  • the pressure in the liquid is thereby increased and now acts on the finger (not shown in FIG is in the measuring system 301.
  • the fluid-filled bladder 309 has a rigid outer wall and a largely flexible inner wall that abuts the extremity (e.g., fingers).
  • the liquid should be incompressible or sufficiently incompressible. This will require all gases to be removed prior to application.
  • the liquid must be biocompatible for use in medical products.
  • gels or creams are also considered liquids in this context.
  • the piston 307 presses directly onto the liquid.
  • the transmission element 306 must also function as a seal at the same time. The advantage of this is that the liquid can also serve as a lubricant for the gear element 306, which reduces friction overall.
  • the piston 307 presses on the outer wall of the liquid-filled bladder 309, which then has to be made flexible at this point.
  • the bladder 309 can be designed to be replaced after a few uses, making it disposable.
  • Figure 4 shows the situation when the piston 307 has moved towards the finger.
  • the transmission element 305 has rotated and thus displaced the piston 307 .
  • the pressure in the liquid-filled bladder 309 was thereby increased.
  • the pressure in the liquid-filled bladder 309 is measured by means of a pressure sensor 310, small piezoelectric pressure sensors being preferably suitable.
  • This pressure sensor 310 is also used at the same time as a sensor for the arterial pulses or pulsatile pressure fluctuations. These pulsatile pressure fluctuations are caused by the blood movements that occur in the arteries depending on the heartbeat.
  • the pressure sensor 310 must have sufficient resolution and be able to detect pressure changes of at least 0.01 mmHg (0.013 mbar) at an upper limit frequency of at least 40 Hz.
  • the pressure sensor 310 thus measures, on the one hand, the absolute pressure that occurs in the liquid-filled bladder 309 and thus acts on the finger. On the other hand, this pressure sensor also measures the pressure pulsations and thus a so-called “plethysmographic” volume signal, without a light sensor system consisting of a light source and a light sensor being present for this purpose (“photoplethysmography”).
  • FIG. 5 shows how the pressure signal is fed to a controller 315 which in turn controls the actuator of the measuring system 301 .
  • the actuator consists of a motor, which in turn consists of a stator 302 and a rotor 303 .
  • the rotor 303 can adjust a piston 307 as a result of its rotational movement, so that the pressure in the liquid-filled bladder 309 is changed and the pressure signal is generated with the aid of a pressure sensor 310 .
  • the controller operates in real time to adjust the pressure in the flexible, fluid-filled bladder 309 as precisely as necessary to subsequently determine blood pressure.
  • FIG. 5 schematically shows the mode of operation of the controller 315 in question and is described in detail below.
  • This controller 315 is preferably constructed as an electronic circuit. As shown in FIG. 6, the electronic components 320 of the controller are preferably located on the same electronic circuit board as the stator 302 of the motor. This embodiment variant of the measuring system 301 subsequently shows batteries 321 for the power supply and optionally a display 322 which is located on the upper side of the ring attachment of the finger ring shown here.
  • the controller 315 can also be implemented as a digital electronic circuit.
  • the following elements are preferably required for this: microcomputer, memory for the program code, main memory, analog-to-digital converter, digital-to-analog converter, components for voltage generation, etc.
  • a microcontroller can be used that already provides most of the functions integrated in one component .
  • the controller can also be built using other methods, such as using analog circuits.
  • the controller 315 is initially able to measure and process the absolute pressure pc(t) in the liquid-filled bladder 309 . Furthermore, the controller 315 is able to measure and process the arterial pulsations and thus the volume signal. Seen electronically, the absolute values correspond to the direct component (DC component) and the pulsations to the alternating component (AC component) of the pressure signal pc(t), as shown in FIG.
  • Controller 315 may have multiple control loops that have different functions. On the one hand, a control loop that controls the absolute pressure p c (t) can prove to be advantageous. The actuator of the measuring system is adjusted until the measured absolute pressure p c (t) corresponds to a target value pr(t).
  • the target value pr(t) can be specified by another control loop - the so-called "Vascular Control Technique" control loop (VCT controller).
  • VCT controller the so-called "Vascular Control Technique" control loop
  • the desired value (target value) pr(t) can be the mean arterial blood pressure (mBP). This is reached when the amplitudes of the pulsations have reached a maximum value.
  • mBP mean arterial blood pressure
  • the pulse amplitude is at its maximum.
  • the absolute values of the pulsations are unimportant here, the relative maximum is important. This is not the case with a tonometric method - the measured pulses would also correspond to the continuous blood pressure signal. Since this absolute pulse signal depends on many disturbing factors (such as the coupling factor, vascular stiffness, etc.), the clinical accuracy and thus the suitability of these tonometric methods suffer.
  • the VCT controller cannot tell from the pulse amplitude alone whether the mBP has become smaller or larger. As can be seen in FIG. 7, the pulse amplitudes become smaller both when the pressure is too low and when the pressure is too high.
  • the VCT controller can recognize from the pulse waveform whether the pressure pc(t) in the liquid-filled bladder 309 is too small or too large. If the pressure is too low, the pulse is wide or "thick" (see Fig. 7, B: pulse at 103 mmHg") compared to the "normal” pulse (see Fig. 7, A: pulse at 115 mmHg"), the pulse at too high a pressure is "spike” (see Fig. 7, C: pulse at 141 mmHg"). The VCT controller is now set to follow the pulse waveform of the optimal pulse with maximum amplitude.
  • This VCT mechanism now adjusts the setpoint p-r(t) and subsequently pc(t) in the liquid-filled bladder 309 such that pc(t) follows the actual mBP occurring in the artery of the limb.
  • pc(t) tracks the true intra-arterial pressure mBP with reasonable clinical accuracy.
  • the VCT controller receives a starting value for mBP and a template for the "normal" pulse waveform.
  • a search phase can be carried out before the start of the measurement.
  • Figure 8 shows how this search phase works.
  • the setpoint pr(t) and then pc(t) are increased continuously and the pulsations are registered.
  • These so-called "Oscillometric Waves” (OMW) are filtered and an envelope of the OMW is generated.
  • This envelope corresponds to the amplitudes of the pulsations.
  • the absolute value of the pc(t) at which the maximum amplitude was registered corresponds to the starting value for mBP, the pulse registered is the template for the "normal" pulse waveform.
  • This search phase works according to the oscillometric principle and also allows the determination of the systolic and diastolic blood pressure. The present measuring system can thus also determine the blood pressure intermittently.
  • This search phase can be repeated automatically at any time in order to increase the accuracy of the measurement - this option is not so easily possible with a pure tonometric measurement.
  • the systolic and diastolic blood pressure and thus the pulse pressure can be determined from the oscillometric envelope. This can be helpful when determining an amplification factor for a so-called transfer function.

Abstract

The invention relates to a method and a measuring system for continuously non-invasively determining the arterial blood pressure at an extremity containing an artery, the measuring system comprising a housing (300) or housing piece that can be attached to the extremity and is suited to at least partly surround the extremity, and comprising a flexible bubble (309) which is supported on the housing (300), acts on the extremity and is filled with a fluid. According to the invention, the flexible bubble (309) is filled with an incompressible fluid, e.g. a liquid or gel, and an actuator which comes in contact with the incompressible fluid or the flexible bubble (309) and is suited to vary the pressure in the incompressible fluid is placed in or on the housing (300). Furthermore, the flexible bubble (309) includes a pressure sensor (310) which is is fluidic contact with the incompressible fluid and which is suited to continuously measure the pressure applied to the incompressible fluid by the actuator and to generate a pressure signal pc and additionally capture a pulsatile signal that is coupled from the artery into the incompressible fluid.

Description

Verfahren und Messsystem zur kontinuierlichen, nicht-invasiven Bestimmung des arteriellen Blutdrucks Method and measuring system for the continuous, non-invasive determination of arterial blood pressure
Die Erfindung betrifft ein Verfahren und ein Messsystem zur kontinuierlichen, nicht-invasiven Bestimmung des arteriellen Blutdrucks an einer Extremität, die eine Arterie enthält, mit einem Gehäuse oder Gehäuseteil, das an der Extremität anbringbar ist und geeignet ist die Extremität zumindest teilweise zu umfassen, sowie mit einer sich am Gehäuse abstützenden, auf die Extremität wirkenden, flexiblen Blase, die mit einem Fluid gefüllt ist. The invention relates to a method and a measuring system for the continuous, non-invasive determination of the arterial blood pressure on an extremity that contains an artery, with a housing or housing part that can be attached to the extremity and is suitable for at least partially enclosing the extremity, as well as with a housing supporting, limb-acting, flexible bladder filled with a fluid.
Die kontinuierliche nicht-invasive Messung des Blutdruckes stellt bis heute eine große Herausforderung an die Messtechnik dar. Die einfachste Methode für die kontinuierliche Erfassung des Blutdruckes ist dabei die sogenannte Tonometrie. Dabei wird ein Drucksensor in Kontakt mit einem Bereich, der eine Arterie enthält, gebracht, wobei der dabei gemessene Druck nur unzureichend dem Druck in der Arterie entspricht. Essentiell dabei ist das Ankoppelungsverfahren des Drucksensors an die Arterie. Meist wird dabei ein kleiner Drucksensor direkt an der Haut über einer oberflächlichen Arterie (z.B. A. radialis am Handgelenk oder A. temporalis an der Schläfe) angebracht und dann gegen den darunter liegenden Knochen gedrückt. The continuous, non-invasive measurement of blood pressure still poses a major challenge for measurement technology. The simplest method for continuously recording blood pressure is what is known as tonometry. In this case, a pressure sensor is brought into contact with an area containing an artery, the pressure measured thereby only inadequately corresponding to the pressure in the artery. The method of coupling the pressure sensor to the artery is essential. A small pressure sensor is usually attached directly to the skin over a superficial artery (e.g. radial artery in the wrist or temporal artery in the temple) and then pressed against the underlying bone.
Bei der sogenannten "Vascular Unloading Technique", die auf eine Publikation von Pe äz (Digest of the 10th International Conference on Medical and Biological Engineering 1973 Dresden) zurückgeht, wird ein Finger durchleuchtet und durch eine Servoregelung und einem dadurch geregelten Druck auf den Finger der registrierte Fluss konstant gehalten. In the so-called "Vascular Unloading Technique", which goes back to a publication by Pe äz (Digest of the 10th International Conference on Medical and Biological Engineering 1973 Dresden), a finger is X-rayed and the registered flow kept constant.
Die Vascular Unloading Technique benötigt ein Druckerzeugungssystem, das dem kontinuierlichen Blutdruck zur Gänze folgen kann. Das bedeutet, dass Druckänderungen von mehr als 1500 mmHg/sec bei einer oberen Grenzfrequenz von etwa 40 Hz erzielt werden müssen. Die EP 1 179 991 Bl zeigt ein solches Druckerzeugungssystem mit der Hilfe von separaten Ein- sowie Auslassventilen. Neben diesen Ein- bzw. Auslassventilen sind eine Luftdruckpumpe, ein Luftreservoir sowie zahlreiche elektronische Bauteile für das Druckerzeugungssystem notwendig. The Vascular Unloading Technique requires a pressure generation system that can fully follow the continuous blood pressure. This means that pressure changes of more than 1500 mmHg/sec must be achieved with an upper frequency limit of around 40 Hz. EP 1 179 991 B1 shows such a pressure generation system with the help of separate inlet and outlet valves. In addition to these inlet and outlet valves, an air pressure pump, an air reservoir and numerous electronic components are required for the pressure generation system.
Die EP 2 493 370 beschreibt eine Form der Vascular Unloading Technique, bei der mit einem sogenannten "Light-to-Frequency Converter" ein digitales Volumenssignal erzeugt wird. Die Information über das aktuelle Blutvolumen im Finger steckt in der Ausgangsfrequenz des Converters. "Light-to-Frequency Converter" können als integrierte Schaltkreise realisiert sein, wobei als Lichtsignaldetektor eine Photodiode fungiert, die sich bereits auf dem Chip befindet. Die EP 2 854 626 Bl beschreibt nun ein neuartiges Verfahren bzw. eine Vorrichtung die nur einen sehr langsam veränderlichen Anpressdruck an die Extremität (meist Finger) aufbringt, um so dem mittleren arteriellen Blutdruck zu folgen. Die WO 2016/110781 Al beschreibt verschiedene Messmodi und ergänzende Elemente, die auch für eine Verwendung als tragbares Gerät vorteilhaft sind. EP 2 493 370 describes a form of the vascular unloading technique in which a digital volume signal is generated using a so-called "light-to-frequency converter". The information about the current blood volume in the finger is contained in the output frequency of the converter. “Light-to-frequency converters” can be implemented as integrated circuits, with a photodiode already on the chip acting as the light signal detector. EP 2 854 626 B1 now describes a new method and a device that only applies a very slowly changing contact pressure to the extremity (usually fingers) in order to follow the mean arterial blood pressure. WO 2016/110781 A1 describes various measurement modes and additional elements that are also advantageous for use as a portable device.
Aus bereits erfolgten klinischen Studien weiß man, dass die beispielsweise in der EP 2 854 626 Bl oder auch der WO 2016/110781 Al beschriebenen Verfahren bzw. Vorrichtungen eine durchschnittliche Veränderung des Anpressdruckes von 1,4 mmHg per Herzschlag oder 1,3 mmHg/sec benötigen, die Maximalwerte betragen 24.4 mmHg per Herzschlag oder 25 mmHg/sec. Es werden allerdings keine Aktoren bzw. Vorrichtungen zur Druckaufbringung/Druckerzeugung beschrieben. Sowohl in der EP 2 854 626 als auch in der WO 2016/110781 Al werden komplexe photoplethysmographische Systeme zur Vermessung des Blutvolumens in der Arterie verwendet, die zumindest eine Lichtquelle (LED) und einen Lichtdetektor (Fotodiode) aufweisen. It is known from clinical studies that have already been carried out that the methods and devices described, for example, in EP 2 854 626 B1 or WO 2016/110781 A1 cause an average change in the contact pressure of 1.4 mmHg per heartbeat or 1.3 mmHg/sec need, the maximum values are 24.4 mmHg per heartbeat or 25 mmHg/sec. However, no actuators or devices for applying/generating pressure are described. Both EP 2 854 626 and WO 2016/110781 A1 use complex photoplethysmographic systems for measuring the blood volume in the artery, which have at least one light source (LED) and one light detector (photodiode).
Aus der EP 3 419 515 Bl ist ein Messsystem zur kontinuierlichen Bestimmung des Blutdrucks bekannt geworden, welches die äußere Form einer Computer-Mouse aufweist, an deren Oberfläche ein Doppelfingersensor zur Aufnahme von zwei Fingern einer Hand ausgebildet ist. Die Fingersensoren weisen aufblasbare Manschetten auf, deren Druck mit Hilfe eines photoplethysmographischen Systems dem intra-arteriellen Blutdruck im Finger nachgeführt wird. Dazu sind in Echtzeit geregelte Ventile am Eingang der Manschetten erforderlich, die den Druck aus einer Druckluftquelle zuführen. Gemäß einer Ausführungsvariante kann das Druckerzeugungssystem samt Pumpe und einem Luftreservoir im Körper der Computer-Mouse angeordnet sein. A measuring system for the continuous determination of blood pressure has become known from EP 3 419 515 B1, which has the external shape of a computer mouse, on the surface of which a double-finger sensor is designed to record two fingers of one hand. The finger sensors have inflatable cuffs, the pressure of which tracks the intra-arterial blood pressure in the finger with the help of a photoplethysmographic system. This requires real-time controlled valves at the entrance to the cuffs that supply pressure from a compressed air source. According to one embodiment variant, the pressure generation system together with the pump and an air reservoir can be arranged in the body of the computer mouse.
Schließlich wird in der WO 2020/176214 Al ein Fingersensor für die Blutdruckmessung beschrieben, welcher eine an den Finger mit konstantem Druck anpressbare Blase aufweist, die mit einem inkompressiblen Fluid gefüllt ist. In der Blase ist ein Drucksensor angeordnet, mit welchem der arterielle Blutdruck im Finger gemessen werden kann. Finally, WO 2020/176214 A1 describes a finger sensor for measuring blood pressure, which has a bladder that can be pressed against the finger with constant pressure and is filled with an incompressible fluid. A pressure sensor is arranged in the bladder, with which the arterial blood pressure can be measured in the finger.
Ziel der Erfindung ist es ein Messsystem bzw. ein Verfahren zur kontinuierlichen, nicht-invasiven Bestimmung des arteriellen Blutdrucks an einer Extremität, derart weiter zu bilden, dass ein kompaktes, aus wenigen Einzelteilen bestehendes und kostengünstig herstellbares System verwirklicht wird, das auch in eine tragbare Einheit integrierbar ist. Diese Aufgabe wird durch ein Messsystem gemäß Anspruch 1 und ein Messverfahren gemäß Anspruch 9 erfüllt. Vorteilhafte Ausführungsvarianten werden in den abhängigen Ansprüchen offenbart. The aim of the invention is to develop a measuring system and a method for the continuous, non-invasive determination of the arterial blood pressure in an extremity in such a way that a compact system consisting of few individual parts and inexpensive to produce is realized, which can also be made into a portable unit can be integrated. This object is achieved by a measuring system according to claim 1 and a measuring method according to claim 9. Advantageous embodiment variants are disclosed in the dependent claims.
In der gegenständlichen Anmeldung werden verschiedene Ausführungsvarianten eines Messsystems offengelegt, das gleichzeitig als Aktor sowie auch als Volumenssignal-Aufnehmer operieren kann, wobei die eingangs erwähnten Komponenten eines photoplethysmographischen Systems, wie Lichtquellen (LEDs) und Lichtdetektoren (Fotodioden) entfallen können. The present application discloses various design variants of a measuring system that can operate simultaneously as an actuator and as a volume signal pickup, with the components of a photoplethysmographic system mentioned at the outset, such as light sources (LEDs) and light detectors (photodiodes), being omitted.
Bei der Erfindung wird eine mit einem inkompressiblen Fluid gefüllte (beispielsweise flüssigkeitsgefüllte), flexible Blase verwendet, die direkt an der Extremität (z.B. am Finger) angekoppelt ist. Auf diese Blase wirkt ein Aktor (beispielsweise ein Kolben, ein Stößel, eine Klemme, etc., mit einer entsprechenden Antriebsvorrichtung), der den Druck in der Blase erhöhen und verringern kann. Dieser Druck wirkt wiederum auf die Extremität und somit auf die Arterie. Weiters ist ein Drucksensor vorgesehen, der neben dem Absolutdruck, der durch den Aktor erzeugt wird, auch Druckpulsationen und somit das Volumenssignal aufzeichnen kann, die durch die Blutbewegung in der Arterie entstehen. Das Drucksignal bestehend aus dem Absolutdruck und den Druckpulsationen wird einem Regler zugeführt, der den Aktor zur Druckbeaufschlagung der flexiblen Blase ansteuert. The invention uses an incompressible fluid-filled (e.g., liquid-filled), flexible bladder that is directly coupled to the limb (e.g., the finger). An actuator acts on this bladder (for example a piston, a ram, a clamp, etc., with a corresponding drive device), which can increase and decrease the pressure in the bladder. This pressure in turn acts on the extremity and thus on the artery. Furthermore, a pressure sensor is provided which, in addition to the absolute pressure generated by the actuator, can also record pressure pulsations and thus the volume signal, which are caused by the movement of blood in the artery. The pressure signal consisting of the absolute pressure and the pressure pulsations is fed to a controller that controls the actuator for pressurizing the flexible bladder.
Mit der Hilfe dieses Messsystems kann somit der in der Arterie wirkende Blutdruck kontinuierlich gemessen werden. Die vorliegende Erfindung beschreibt dabei auch eine neue "Vascular Control Technique" Methode (VCT-Methode) für die kontinuierliche Blutdruckmessung. With the help of this measuring system, the blood pressure acting in the artery can be continuously measured. The present invention also describes a new "Vascular Control Technique" method (VCT method) for continuous blood pressure measurement.
Im Gegensatz zur eingangs beschriebenen, klassischen Vascular Unloading Technique sind hier keine Lichtelemente, wie LEDs oder Fotodioden, der Photoplethysmographie für die Erfassung des Volumenssignals erforderlich. In contrast to the classic vascular unloading technique described at the outset, no light elements such as LEDs or photodiodes are required in photoplethysmography to record the volume signal.
Darüber hinaus kann der Blutdruck auch intermittierend mit dem bekannten oszillometrischen Verfahren bestimmt werden. In addition, the blood pressure can also be determined intermittently using the known oscillometric method.
Die Erfindung wird im Folgenden anhand von schematischen Darstellungen und Diagrammen näher erläutert: The invention is explained in more detail below using schematic representations and diagrams:
Fig. la ein erfindungsgemäßes, am Finger einer Hand tragbares, nicht-invasives Blutdruck-Messsystem ("Wearable"); 1a shows a non-invasive blood pressure measuring system (“wearable”);
Fig. lb eine vergrößerte Ansicht des Wearables gemäß Fig. la; Fig. 2 die Vorderansicht, die Seitenansicht, die Draufsicht sowie die Untersicht des Wearables gemäß Fig. lb; FIG. 1b shows an enlarged view of the wearable according to FIG. 1a; FIG. 2 shows the front view, side view, top view and bottom view of the wearable according to FIG. 1b;
Fig. 3 einen Schnitt gemäß Linie A-A in Fig. 2 durch das Wearable mit einer ersten Stellung des Aktors zur Druckerzeugung; 3 shows a section according to line A-A in FIG. 2 through the wearable with a first position of the actuator for generating pressure;
Fig. 4 das Wearable gemäß Fig. 3 mit einer zweiten Stellung des Aktors zur Druckerzeugung; FIG. 4 shows the wearable according to FIG. 3 with a second position of the actuator for generating pressure;
Fig. 5 eine schematische Darstellung der Funktionsweise des erfindungsgemäßem Messsystems samt Regler (Controller); 5 shows a schematic representation of the mode of operation of the measuring system according to the invention together with the regulator (controller);
Fig. 6 eine zweite Ausführungsvariante des Messsystems in einer Schnittdarstellung gemäß Fig. 3; FIG. 6 shows a second embodiment variant of the measuring system in a sectional illustration according to FIG. 3;
Fig. 7 eine Detaildarstellung der oszillometrischen Signale; sowie 7 shows a detailed representation of the oscillometric signals; such as
Fig. 8 Diagramme oszillometrischer Signale in der Suchphase. Fig. 8 Diagrams of oscillometric signals in the search phase.
Die vorliegende Anmeldung beschreibt verschiedene Ausführungsvarianten eines Messsystems, sowie eine Methode wie diese Messsysteme den arteriellen Blutdruck messen können. Die Messung des Blutdruckes kann dabei sowohl diskontinuierlich als auch kontinuierlich - d.h. für jeden Herzschlag - erfolgen. Das Messsystem besteht dabei zumindest aus einem Aktor (Vorrichtung zur Druckerzeugung) sowie einer mit einem inkompressiblen Fluid gefüllten, flexiblen Blase. Die z.B. flüssigkeitsgefüllte Blase wirkt auf eine Extremität, in der sich zumindest eine Arterie befindet. In den beschriebenen Ausführungsvarianten wird der Finger einer Hand verwendet, es sind aber auch Anwendungen an anderen Körperstellen, wie z.B. das Handgelenk, die Schläfe sowie auch bei veterinären Anwendungen der Schwanz eines Tieres möglich. The present application describes different embodiment variants of a measuring system, as well as a method of how these measuring systems can measure the arterial blood pressure. The blood pressure can be measured both discontinuously and continuously - i.e. for each heartbeat. The measuring system consists of at least one actuator (device for generating pressure) and a flexible bladder filled with an incompressible fluid. The e.g. fluid-filled bladder acts on an extremity in which at least one artery is located. In the described embodiment variants, the finger of one hand is used, but applications on other parts of the body are also possible, such as the wrist, the temple and also the tail of an animal in veterinary applications.
In Fig. la bzw. im Detail gemäß Fig. lb wird ein tragbares Messsystem 301 (Wearable) in Form eines Fingerringes samt Ringaufsatz für die Anwendung an einem Finger einer Hand gezeigt. Die entsprechende Vorrichtung zur Druckerzeugung (bzw. Aktor) ist in das Wearable integriert, um einen vorgebbaren, variablen Druck auf den Finger auszuüben. In FIG. 1a and in detail according to FIG. 1b, a portable measuring system 301 (wearable) is shown in the form of a finger ring including a ring attachment for use on a finger of one hand. The corresponding device for generating pressure (or actuator) is integrated into the wearable in order to exert a predeterminable, variable pressure on the finger.
Fig. 2 zeigt ebenfalls den Fingerring in Vorderansicht, Seitenansicht, Draufsicht sowie Untersicht. 2 also shows the finger ring in front view, side view, top view and bottom view.
Fig. 3 zeigt einen Schnitt durch das Messsystem bzw. Wearable 301, in dessen Gehäuse 300 sich die Elemente des Aktors befinden. Der Aktor wird von einem Motor angetrieben, dessen Stator 302 auf einer Printplatte unter der ebenen Ober- fläche des Ringaufsatzes angebracht ist. Darunter befindet sich der Rotor 303, der mit einer Feder 304 drehbar am Stator 302 befestigt ist. Eine mögliche Variante dieses Motors ist ein energiearmer, piezoelektrischer Motor für die Anwendung auf elektronischen Printplatten (siehe z.B. www.pcbmotor.com). FIG. 3 shows a section through the measurement system or wearable 301, in whose housing 300 the elements of the actuator are located. The actuator is driven by a motor whose stator 302 is mounted on a printed circuit board under the flat surface. surface of the ring attachment is attached. Below is the rotor 303 which is rotatably attached to the stator 302 by a spring 304 . A possible variant of this motor is a low-energy, piezoelectric motor for use on electronic printed circuit boards (see eg www.pcbmotor.com).
Grundsätzlich ist im Messsystem 301 ein Aktor vorhanden, der beispielsweise aus einem Kolben 307, Stößel oder einem anderen Element und dessen Antriebseinheit 302, 303 besteht. Der Kolben oder Stößel wird in eine Richtung (siehe Pfeil 313) bewegt und erzeugt so einen Druck in einer mit Flüssigkeit gefüllten Blase 309. Der Antrieb des Aktors und somit des Kolbens 307 könnte auch anders erfolgen, als in Fig. 3 dargestellt, oder sich auch außerhalb des dargestellten Blutdruckmessgerätes befinden. In principle, an actuator is present in the measuring system 301, which consists, for example, of a piston 307, a plunger or another element and its drive unit 302, 303. The piston or plunger is moved in one direction (see arrow 313) and thus generates pressure in a fluid-filled bladder 309. The actuator and thus the piston 307 could also be driven differently than shown in FIG are also located outside of the blood pressure monitor shown.
In Fig. 3 treibt der Rotor 303 ein Übertragungselement 305, das wiederum über ein Getriebeelement 306 einen drehbaren Kolben 307 antreibt. Das Übertragungselement 305 ist dabei direkt am Rotor 303 fixiert, während sich der Kolben 307 in Richtung des Fingers bewegen kann. Diese Bewegung des Kolbens 307 wird durch das schematisch dargestellte Getriebeelement 306 ermöglicht. In FIG. 3 the rotor 303 drives a transmission element 305 which in turn drives a rotatable piston 307 via a gear element 306 . The transmission element 305 is fixed directly to the rotor 303, while the piston 307 can move in the direction of the finger. This movement of the piston 307 is made possible by the gear element 306 shown schematically.
Der Kolben 307 wird in einem Zylinder 308 im Gehäuse 300 geführt. Gemeinsam bilden diese das Getriebeelement 306. Beispielseise kann das Getriebeelement 306 durch ein einfaches Gewinde realisiert werden, wobei der Kolben 307 mit einem Außengewinde und der Zylinder 308 mit einem Innengewinde ausgestattet ist. Das dargestellt Gewinde 306 ist dabei nur eine mögliche Ausführungsform. Wichtig ist, dass die Reibungsverluste so gering als möglich gehalten sind. So sind auch andere mechanische oder hydraulische Getriebeelemente möglich. The piston 307 is guided in a cylinder 308 in the housing 300 . Together they form the gear element 306. For example, the gear element 306 can be realized by a simple thread, with the piston 307 being equipped with an external thread and the cylinder 308 with an internal thread. The illustrated thread 306 is only one possible embodiment. It is important that the friction losses are kept as low as possible. Other mechanical or hydraulic transmission elements are also possible.
Durch die Bewegung des Rotors 303 wird nun der Kolben 307 in Richtung des Fingers gedrückt. Der Kolben 307 drückt nun in weiterer Folge auf eine mit einem inkompressiblen Fluid, beispielsweise einer Flüssigkeit oder einem Gel, gefüllte Blase 309. Der Druck in der Flüssigkeit wird dadurch erhöht und wirkt nun auf den Finger (in Fig. 3 nicht dargestellt), der sich im Messsystem 301 befindet. The movement of the rotor 303 now pushes the piston 307 in the direction of the finger. The piston 307 then presses on a bladder 309 filled with an incompressible fluid, for example a liquid or a gel. The pressure in the liquid is thereby increased and now acts on the finger (not shown in FIG is in the measuring system 301.
Die flüssigkeitsgefüllte Blase 309 weist eine starre Außenwand sowie eine großteils flexible Innenwand auf, welche an der Extremität (z.B. Finger) anliegt. The fluid-filled bladder 309 has a rigid outer wall and a largely flexible inner wall that abuts the extremity (e.g., fingers).
Die Flüssigkeit sollte insbesondere inkompressibel bzw. hinreichend inkompressi- bel sein. Dazu wird es notwendig sein, dass vor der Anwendung alle Gase entfernt wurden. Weiters muss die Flüssigkeit für die Anwendung in medizinischen Produkten biokompatibel sein. Als Flüssigkeit in diesem Zusammenhang gelten natürlich auch Gele oder Cremen. Bei der Kopplung des Kolbens 307 an die flüssigkeitsgefüllte Blase 309 ergeben sich zwei unterschiedliche Varianten. Bei der ersten Variante presst der Kolben 307 direkt auf die Flüssigkeit. Dabei muss das Getriebeelement 306 auch gleichzeitig als Dichtung fungieren. Der Vorteil dabei ist, dass die Flüssigkeit auch als Schmiermittel für das Getriebeelement 306 dienen kann, was insgesamt die Reibung reduziert. In particular, the liquid should be incompressible or sufficiently incompressible. This will require all gases to be removed prior to application. Furthermore, the liquid must be biocompatible for use in medical products. Of course, gels or creams are also considered liquids in this context. When coupling the piston 307 to the liquid-filled bladder 309, there are two different variants. In the first variant, the piston 307 presses directly onto the liquid. In this case, the transmission element 306 must also function as a seal at the same time. The advantage of this is that the liquid can also serve as a lubricant for the gear element 306, which reduces friction overall.
In einer zweiten Variante drückt der Kolben 307 auf die Außenwand der flüssigkeitsgefüllten Blase 309, die dann an dieser Stelle flexibel gestaltet werden muss. Das hat den Vorteil, dass die Dichtheit der Blase leichter sichergestellt werden kann. In bestimmten Ausführungsvarianten kann die Blase 309 so designt sein, dass sie nach einigen Anwendungen ausgetauscht werden kann und so ein Wegwerfteil ("Disposable") entsteht. In a second variant, the piston 307 presses on the outer wall of the liquid-filled bladder 309, which then has to be made flexible at this point. This has the advantage that the tightness of the bladder can be more easily ensured. In certain implementations, the bladder 309 can be designed to be replaced after a few uses, making it disposable.
Die Fig. 4 zeigt die Situation, wenn sich der Kolben 307 in Richtung des Fingers bewegt hat. Dazu hat sich das Übertragungselement 305 gedreht und so den Kolben 307 verstellt. Der Druck in der flüssigkeitsgefüllten Blase 309 wurde dadurch erhöht. Figure 4 shows the situation when the piston 307 has moved towards the finger. For this purpose, the transmission element 305 has rotated and thus displaced the piston 307 . The pressure in the liquid-filled bladder 309 was thereby increased.
Der Druck in der flüssigkeitsgefüllten Blase 309 wird mittels Drucksensor 310 gemessen, wobei sich vorzugsweise kleine, piezoelektrische Drucksensoren eignen. Dieser Drucksensor 310 wird gleichzeitig auch als Sensor für die arteriellen Pulse bzw. pulsatilen Druckschwankungen verwendet. Diese pulsatilen Druckschwankungen entstehen durch die Blutbewegungen, die abhängig vom Herzschlag in den Arterien auftreten. Dazu muss der Drucksensor 310 eine hinreichende Auflösung haben und Druckänderungen von mindestens 0,01 mmHg (0,013 mbar) bei einer oberen Grenzfrequenz von mindestens 40 Hz erfassen können. The pressure in the liquid-filled bladder 309 is measured by means of a pressure sensor 310, small piezoelectric pressure sensors being preferably suitable. This pressure sensor 310 is also used at the same time as a sensor for the arterial pulses or pulsatile pressure fluctuations. These pulsatile pressure fluctuations are caused by the blood movements that occur in the arteries depending on the heartbeat. For this purpose, the pressure sensor 310 must have sufficient resolution and be able to detect pressure changes of at least 0.01 mmHg (0.013 mbar) at an upper limit frequency of at least 40 Hz.
Der Drucksensor 310 misst somit einerseits den absoluten Druck, der in der flüssigkeitsgefüllten Blase 309 auftritt und somit auf den Finger wirkt. Andererseits misst dieser Drucksensor auch die Druckpulsationen und somit ein sogenanntes "plethysmographisches" Volumenssignal, ohne dass dafür ein Lichtsensorensystem bestehend aus Lichtquelle und Lichtsensor vorhanden ist ("Photoplethysmographie"). The pressure sensor 310 thus measures, on the one hand, the absolute pressure that occurs in the liquid-filled bladder 309 and thus acts on the finger. On the other hand, this pressure sensor also measures the pressure pulsations and thus a so-called “plethysmographic” volume signal, without a light sensor system consisting of a light source and a light sensor being present for this purpose (“photoplethysmography”).
In Fig. 5 wird gezeigt, wie das Drucksignal einem Regler 315 zugeführt wird, der wiederum den Aktor des Messsystems 301 regelt. In Fig. 5 besteht der Aktor aus einem Motor, der wiederum aus einem Stator 302 sowie einem Rotor 303 besteht. Der Rotor 303 kann durch seine Drehbewegung einen Kolben 307 verstellen, so dass der Druck in der flüssigkeitsgefüllten Blase 309 verändert wird und mit der Hilfe eines Drucksensor 310 das Drucksignal erzeugt wird. Vorzugsweise arbeitet der Regler in Echtzeit, um den Druck in der flexiblen, flüssigkeitsgefüllten Blase 309 so genau als notwendig einzustellen, um daraus in weiterer Folge den Blutdruck zu bestimmen. Fig. 5 zeigt schematisch die Funktionsweise des gegenständlichen Reglers 315 und wird in weiterer Folge in Detail beschrieben. FIG. 5 shows how the pressure signal is fed to a controller 315 which in turn controls the actuator of the measuring system 301 . In FIG. 5 the actuator consists of a motor, which in turn consists of a stator 302 and a rotor 303 . The rotor 303 can adjust a piston 307 as a result of its rotational movement, so that the pressure in the liquid-filled bladder 309 is changed and the pressure signal is generated with the aid of a pressure sensor 310 . Preferably, the controller operates in real time to adjust the pressure in the flexible, fluid-filled bladder 309 as precisely as necessary to subsequently determine blood pressure. FIG. 5 schematically shows the mode of operation of the controller 315 in question and is described in detail below.
Dieser Regler 315 wird vorzugsweise als elektronische Schaltung aufgebaut. In Fig. 6 wird gezeigt, dass sich die elektronischen Bauelemente 320 des Reglers vorzugsweise auf derselben elektronischen Printplatte befinden, wie der Stator 302 des Motors. Diese Ausführungsvariante des Messsystems 301 zeigt in weiterer Folge Batterien 321 zur Spannungsversorgung sowie optional ein Display 322, das sich an der Oberseite des Ringaufsatzes des hier dargestellten Fingerrings befindet. This controller 315 is preferably constructed as an electronic circuit. As shown in FIG. 6, the electronic components 320 of the controller are preferably located on the same electronic circuit board as the stator 302 of the motor. This embodiment variant of the measuring system 301 subsequently shows batteries 321 for the power supply and optionally a display 322 which is located on the upper side of the ring attachment of the finger ring shown here.
Weiters kann der Regler 315 auch als digitale elektronische Schaltung realisiert sein. Dazu sind vorzugsweise die folgenden Elemente notwendig: Microcomputer, Speicher für den Programmcode, Arbeitsspeicher, Analog-Digitalwandler, Digital- Analogwandler, Bauelemente zur Spannungserzeugung, etc. Beispielsweise kann ein Microcontroller verwendet werden, der bereits die meisten Funktionen in einem Bauteil integriert zur Verfügung stellt. Der Regler kann aber auch mit anderen Methoden aufgebaut werden, wie z.B. anhand von analogen Schaltungen. Furthermore, the controller 315 can also be implemented as a digital electronic circuit. The following elements are preferably required for this: microcomputer, memory for the program code, main memory, analog-to-digital converter, digital-to-analog converter, components for voltage generation, etc. For example, a microcontroller can be used that already provides most of the functions integrated in one component . However, the controller can also be built using other methods, such as using analog circuits.
Der Regler 315 ist zunächst in der Lage, den Absolutdruck pc(t) in der flüssigkeitsgefüllten Blase 309 zu messen und zu verarbeiten. Weiters ist der Regler 315 in der Lage, die arteriellen Pulsationen und somit das Volumenssignal zu messen und zu verarbeiten. Elektronisch gesehen entsprechen die Absolutwerte dem Gleichanteil (DC-Component) und die Pulsationen dem Wechselanteil (AC-Component) des Drucksignales pc(t), wie in Fig. 5 dargestellt. The controller 315 is initially able to measure and process the absolute pressure pc(t) in the liquid-filled bladder 309 . Furthermore, the controller 315 is able to measure and process the arterial pulsations and thus the volume signal. Seen electronically, the absolute values correspond to the direct component (DC component) and the pulsations to the alternating component (AC component) of the pressure signal pc(t), as shown in FIG.
Der Regler 315 kann mehrere Regelkreise aufweisen, die unterschiedliche Funktionen haben. Zum einen kann sich ein Regelkreis als vorteilhaft erweisen, der den Absolutdruck pc(t) regelt. Dabei wird der Aktor des Messsystems so lange verstellt, bis der gemessene Absolutdruck pc(t) einem Sollwert p-r(t) entspricht. Controller 315 may have multiple control loops that have different functions. On the one hand, a control loop that controls the absolute pressure p c (t) can prove to be advantageous. The actuator of the measuring system is adjusted until the measured absolute pressure p c (t) corresponds to a target value pr(t).
Der Sollwert p-r(t) kann von einem anderen Regelkreis - dem sogenannten "Vascular Control Technique" Regelkreis (VCT-Regler) - vorgegeben werden. Der Sollwert (Target Value) p-r(t) kann dabei der mittlere arterielle Blutdruck (mBP) sein. Dieser ist dann erreicht, wenn die Amplituden der Pulsationen einen Maximalwert erreicht haben. In Fig. 7 wird ein typischer Amplitudenverlauf dargestellt, wobei hier der mittlere arterielle Blutdruck bei einem pc(t) von 115 mmHg auftritt. Die Pulsamplitude ist maximal. Nota bene: die Absolutwerte der Pulsationen sind hier unwichtig, wichtig ist das relative Maximum. Bei einem tonometrischen Verfahren ist dies nicht der Fall - die gemessenen Pulse würden auch dem kontinuierlichen Blutdrucksignal entsprechen. Da dieses absolute Pulssignal von vielen Störfaktoren abhängt (wie z.B. Ankoppelungsfaktor, Gefäßsteifigkeit, etc.), leidet die klinische Genauigkeit und somit Tauglichkeit dieser tonometrischen Verfahren. The target value pr(t) can be specified by another control loop - the so-called "Vascular Control Technique" control loop (VCT controller). The desired value (target value) pr(t) can be the mean arterial blood pressure (mBP). This is reached when the amplitudes of the pulsations have reached a maximum value. A typical amplitude profile is shown in FIG. 7, the mean arterial blood pressure occurring here at a pc(t) of 115 mmHg. The pulse amplitude is at its maximum. Nota bene: the absolute values of the pulsations are unimportant here, the relative maximum is important. This is not the case with a tonometric method - the measured pulses would also correspond to the continuous blood pressure signal. Since this absolute pulse signal depends on many disturbing factors (such as the coupling factor, vascular stiffness, etc.), the clinical accuracy and thus the suitability of these tonometric methods suffer.
Wenn sich nun der mittlere arterielle Blutdruck verändert, dann ist die Bedingung der maximalen Pulsamplitude nicht mehr gegeben. Aus der Pulsamplitude alleine kann allerdings der VCT-Regler nicht erkennen, ob der mBP kleiner oder größer geworden ist. Wie in Fig. 7 ersichtlich, werden die Pulsamplituden sowohl bei zu geringem Druck als auch bei zu hohem Druck kleiner. If the mean arterial blood pressure now changes, then the condition of the maximum pulse amplitude is no longer met. However, the VCT controller cannot tell from the pulse amplitude alone whether the mBP has become smaller or larger. As can be seen in FIG. 7, the pulse amplitudes become smaller both when the pressure is too low and when the pressure is too high.
Der VCT-Regler kann aus der Pulskurvenform erkennen, ob der Druck pc(t) in der flüssigkeitsgefüllten Blase 309 zu klein oder zu groß ist. So ist der Puls bei einem zu geringen Druck breit bzw. "dick" (siehe Fig. 7, B: Puls bei 103 mmHg") gegenüber dem "normalen" Puls (siehe Fig. 7, A: Puls bei 115 mmHg"), der Puls bei einem zu hohen Druck ist "spitz" (siehe Fig. 7, C: Puls bei 141 mmHg"). Der VCT- Regler ist nun so eingestellt, dass er der Pulswellenform des optimalen Pulses mit maximaler Amplitude nachfährt. Wird aufgrund einer Änderung des tatsächlichen mittleren arteriellen Blutdrucks mBP der Puls "dick", dann wird der Sollwert p-r(t) und in weiterer Folge pc(t) in der flüssigkeitsgefüllten Blase 309 so lange erhöht, bis die Kurvenform wieder "normal" wird. Umgekehrt gilt, dass p-r(t) und in weiterer Folge pc(t) verringert wird, wenn der Puls "spitz" wird. The VCT controller can recognize from the pulse waveform whether the pressure pc(t) in the liquid-filled bladder 309 is too small or too large. If the pressure is too low, the pulse is wide or "thick" (see Fig. 7, B: pulse at 103 mmHg") compared to the "normal" pulse (see Fig. 7, A: pulse at 115 mmHg"), the pulse at too high a pressure is "spike" (see Fig. 7, C: pulse at 141 mmHg"). The VCT controller is now set to follow the pulse waveform of the optimal pulse with maximum amplitude. If due to a If the actual mean arterial blood pressure mBP changes, the pulse is "thick", then the target value p-r(t) and subsequently pc(t) in the liquid-filled bladder 309 are increased until the curve shape becomes "normal" again. Conversely, that p-r(t) and subsequently pc(t) is reduced when the pulse becomes "spiky".
Dieser VCT-Mechanismus stellt nun den Sollwert p-r(t) und in weiterer Folge pc(t) in der flüssigkeitsgefüllten Blase 309 so ein, dass pc(t) dem tatsächlichen mBP, der in der Arterie der Extremität auftritt folgt. Studien bei Patienten, die während chirurgischer Eingriffe mit einen intra-arteriellen Katheder zur Blutdruckmessung ausgestattet wurden, haben gezeigt, dass pc(t) in hinreichender klinischer Genauigkeit dem wahren intra-arteriellen Druck mBP folgt. Dazu ist es von Vorteil, wenn der VCT-Regler einen Startwert für mBP sowie eine Vorlage für die "normale" Pulswellenform erhält. This VCT mechanism now adjusts the setpoint p-r(t) and subsequently pc(t) in the liquid-filled bladder 309 such that pc(t) follows the actual mBP occurring in the artery of the limb. Studies in patients fitted with an intra-arterial catheter for blood pressure measurement during surgical procedures have shown that pc(t) tracks the true intra-arterial pressure mBP with reasonable clinical accuracy. For this it is advantageous if the VCT controller receives a starting value for mBP and a template for the "normal" pulse waveform.
Dazu kann erfindungsgemäß eine Suchphase vor Beginn der Messung durchgeführt werden. In Fig. 8 wird beispielsweise gezeigt, wie diese Suchphase funktioniert. Der Sollwert p-r(t) und in weiterer Folge pc(t) werden kontinuierlich erhöht und die Pulsationen werden registriert. Diese sogenannten "Oscillometric Waves" (OMW) werden gefiltert und eine Einhüllende der OMW wird erzeugt. Diese Einhüllende entspricht den Amplituden der Pulsationen. Der Absolutwert des pc(t), an dem die maximale Amplitude registriert wurde entspricht dem Startwert für mBP, der dabei registrierte Puls ist die Vorlage für die "normale" Pulswellenform. Diese Suchphase funktioniert nach dem oszillometrischen Prinzip und erlaubt auch die Bestimmung des systolischen und diastolischen Blutdrucks. Das vorliegende Messsystem kann somit auch intermittierend den Blutdruck bestimmen. For this purpose, according to the invention, a search phase can be carried out before the start of the measurement. For example, Figure 8 shows how this search phase works. The setpoint pr(t) and then pc(t) are increased continuously and the pulsations are registered. These so-called "Oscillometric Waves" (OMW) are filtered and an envelope of the OMW is generated. This envelope corresponds to the amplitudes of the pulsations. The absolute value of the pc(t) at which the maximum amplitude was registered corresponds to the starting value for mBP, the pulse registered is the template for the "normal" pulse waveform. This search phase works according to the oscillometric principle and also allows the determination of the systolic and diastolic blood pressure. The present measuring system can thus also determine the blood pressure intermittently.
Nach dieser Suchphase am Beginn jeder Messung kann die eigentliche Messung des kontinuierlichen Blutdrucks beginnen. Diese Suchphase kann automatisiert jederzeit wiederholt werden, um so die Genauigkeit der Messung zu erhöhen - diese Möglichkeit ist bei einer reinen tonometrischen Messung nicht so einfach möglich.After this search phase at the beginning of each measurement, the actual measurement of the continuous blood pressure can begin. This search phase can be repeated automatically at any time in order to increase the accuracy of the measurement - this option is not so easily possible with a pure tonometric measurement.
Man kann in der Suchphase den systolischen sowie diastolischen Blutdruck und somit den Pulsdruck aus der oszillometrischen Einhüllenden bestimmen. Dies kann bei der Bestimmung eines Verstärkungsfaktors für eine sogenannte Transferfunktion hilfreich sein. Eine einfache Transferfunktion für die Bestimmung des kontinuierlichen Blutdrucks kann z.B. so aussehen: bp(t) = pDC(t) + /c * PAc(t) wobei bp(t) das kontinuierliche Blutdrucksignal ist, poc(t) ist der Absolutwert des Druckes in der flüssigkeitsgefüllten Blase 309, PAc(t) sind die Pulsationen des Druckes in der flüssigkeitsgefüllten Blase 309 und k ist der Verstärkungsfaktor, der aus dem Pulsdruck in der Suchphase berechnet wird. In the search phase, the systolic and diastolic blood pressure and thus the pulse pressure can be determined from the oscillometric envelope. This can be helpful when determining an amplification factor for a so-called transfer function. A simple transfer function for determining the continuous blood pressure can look like this: bp(t) = p DC (t) + /c * PAc(t) where bp(t) is the continuous blood pressure signal, poc(t) is the absolute value of the pressure in the liquid-filled bladder 309, PAc(t) are the pulsations of the pressure in the liquid-filled bladder 309, and k is the gain factor calculated from the pulse pressure in the search phase.

Claims

P A T E N T A N S P R Ü C H E Messsytem zur kontinuierlichen, nicht-invasiven Bestimmung des arteriellen Blutdrucks an einer Extremität, die eine Arterie enthält, mit einem Gehäuse (300) oder Gehäuseteil, das an der Extremität anbringbar ist und geeignet ist die Extremität zumindest teilweise zu umfassen, mit einer sich am Gehäuse (300) abstützenden, auf die Extremität wirkenden, flexiblen Blase (309), die mit einem Fluid gefüllt ist, dadurch gekennzeichnet, dass die flexible Blase (309) mit einem inkompressiblen Fluid, beispielsweise mit einer Flüssigkeit oder einem Gel, gefüllt ist, dass im oder am Gehäuse (300) ein Aktor angeordnet ist, der das inkompres- sible Fluid oder die flexible Blase (309) kontaktiert und geeignet ist, den Druck in dem inkompressiblen Fluid zu variieren, dass die flexible Blase (309) einen Drucksensor (310) in Fluidkontakt mit dem inkompressiblen Fluid aufweist, wobei der Drucksensor (310) geeignet ist, den durch den Aktor auf das inkompressible Fluid aufgebrachten Druck kontinuierlich zu messen und ein Drucksignal pc(t) zu generieren, sowie dass der Drucksensor (310) geeignet ist, zusätzlich ein von der Arterie in das inkompressible Fluid eingekoppeltes, pulsatiles Signal zu messen. Messsystem nach Anspruch 1, dadurch gekennzeichnet, dass das Messsystem einen Regler (315) aufweist, an dessen Eingang das Drucksignal pc(t) des Drucksensors (310) anliegt, wobei der Ausgang des Reglers (315) mit einer Antriebsvorrichtung (302, 303) des Aktors verbunden ist. Messsystem nach Anspruch 2, dadurch gekennzeichnet, dass der Regler (315) zumindest einen ersten Regelkreis aufweist, der geeignet ist den Druck Pc(t) in der flexiblen Blase (309) basierend auf einem Sollwert p-r(t) einzustellen. Messsystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Regler (315) analog aus elektronischen Bauteilen (320) aufgebaut ist. Messsystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Regler (315) digital aufgebaut ist und zumindest eine Rechnereinheit samt Programmcode aufweist. Messsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Aktor als Elektromotor mit einem im Gehäuse (300) angeordneten Stator (302) und einem auf einen Stößel oder Kolben (307) wirkenden Rotor (303) ausgebildet ist. Messsystem nach Anspruch 6, dadurch gekennzeichnet, dass der Kolben (307) in einem Zylinder (308) geführt ist, wobei zwischen dem Rotor (303) und dem Kolben (307) Getriebeelemente (305, 306) vorgesehen sind, die geeignet sind die rotatorische Bewegung des Rotors (303) in eine Auf- und Abbewegung des Kolbens (307) umzusetzen. Messsystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gehäuse (300) in Form und Abmessung als Fingerring samt Ringaufsatz ausgebildet ist, wobei an der Innenseite des Fingerrings die flexible Blase (309) angeordnet ist und der Ringaufsatz eine Steuerplatine mit einem Regler (315), den Aktor zur Druckänderung und Mittel zur Energieversorgung (321) aufweist. Verfahren zur kontinuierlichen, nicht-invasiven Bestimmung des arteriellen Blutdrucks an einer Extremität, die eine Arterie enthält, wobei die Extremität von einer flexiblen, mit einem inkompressiblen Fluid gefüllten Blase (309) - angeordnet in einem Gehäuse (300) oder Gehäuseteil - zumindest teilweise umfasst wird, und wobei ein Drucksensor (310) in der Blase (309) angeordnet ist, der ein Drucksignal pc(t) generiert, dadurch gekennzeichnet, dass der Druck in der flexiblen Blase (309) mit Hilfe eines auf das inkompressible Fluid oder die flexible Blase (309) wirkenden, im oder am Gehäuse (300) angeordneten Aktors verändert wird. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Drucksignal pc(t) des Drucksensors (310) einem Regler (315) zugeführt wird, dessen Regelsignal dem Aktor zugeführt wird und den Druck in der flexiblen Blase (309) steuert. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Regler (315) zumindest einen Regelkreis aufweist, der den Druck pc(t) in der flexiblen Blase (309) basierend auf einem Sollwert p-r(t) einstellt, wobei der Soll- wert p-r(t) aus dem pulsatilen Anteil des Drucksignals pc(t) des Drucksensors (310) berechnet wird. PATENT CLAIMS Measuring system for the continuous, non-invasive determination of arterial blood pressure on a limb containing an artery, with a housing (300) or housing part that can be attached to the limb and is suitable for at least partially enclosing the limb, with a a flexible limb-acting bladder (309) supported on the housing (300) and filled with a fluid, characterized in that the flexible bladder (309) is filled with an incompressible fluid, for example a liquid or a gel is that an actuator is arranged in or on the housing (300), which contacts the incompressible fluid or the flexible bladder (309) and is suitable for varying the pressure in the incompressible fluid that the flexible bladder (309) one Pressure sensor (310) having in fluid contact with the incompressible fluid, wherein the pressure sensor (310) is adapted to the pressure applied by the actuator to the incompressible fluid to measure continuously and to generate a pressure signal p c (t), and that the pressure sensor (310) is suitable for additionally measuring a pulsatile signal coupled from the artery into the incompressible fluid. Measuring system according to Claim 1, characterized in that the measuring system has a controller (315), at the input of which the pressure signal p c (t) of the pressure sensor (310) is present, the output of the controller (315) being connected to a drive device (302, 303 ) of the actuator is connected. Measuring system according to Claim 2, characterized in that the controller (315) has at least a first control loop which is suitable for setting the pressure Pc(t) in the flexible bladder (309) based on a setpoint value pr(t). Measuring system according to Claim 2 or 3, characterized in that the controller (315) is constructed analogously from electronic components (320). Measuring system according to Claim 2 or 3, characterized in that the controller (315) is constructed digitally and has at least one computer unit including program code. Measuring system according to one of Claims 1 to 5, characterized in that the actuator is designed as an electric motor with a stator (302) arranged in the housing (300) and a rotor (303) acting on a tappet or piston (307). Measuring system according to Claim 6, characterized in that the piston (307) is guided in a cylinder (308), with gear elements (305, 306) being provided between the rotor (303) and the piston (307) which are suitable for the rotary Convert movement of the rotor (303) into an up and down movement of the piston (307). Measuring system according to one of Claims 1 to 7, characterized in that the housing (300) is designed in shape and dimensions as a finger ring including a ring attachment, the flexible bladder (309) being arranged on the inside of the finger ring and the ring attachment being a control circuit board with a Controller (315) having the actuator for changing the pressure and means for supplying energy (321). A method for the continuous, non-invasive determination of arterial blood pressure in a limb containing an artery, the limb being at least partially surrounded by a flexible bladder (309) filled with an incompressible fluid and arranged in a housing (300) or housing part is, and wherein a pressure sensor (310) in the bladder (309) is arranged, which generates a pressure signal p c (t), characterized in that the pressure in the flexible bladder (309) with the aid of the incompressible fluid or the flexible bladder (309) acting, in or on the housing (300) arranged actuator is changed. Method according to Claim 9, characterized in that the pressure signal p c (t) from the pressure sensor (310) is fed to a controller (315), the control signal of which is fed to the actuator and controls the pressure in the flexible bladder (309). Method according to claim 10, characterized in that the controller (315) has at least one control loop which adjusts the pressure pc(t) in the flexible bladder (309) based on a setpoint pr(t), the setpoint value pr(t) is calculated from the pulsatile component of the pressure signal p c (t) of the pressure sensor (310).
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass für die Bestimmung des Sollwerts p-r(t) die Pulswellenform des pulsatilen Anteils des Drucksignals pc(t) des Drucksensors (310) herangezogen wird. 12. The method as claimed in claim 11, characterized in that the pulse waveform of the pulsatile component of the pressure signal p c (t) of the pressure sensor (310) is used to determine the desired value pr(t).
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Anfangswert des Sollwerts p-r(t) der Regelung in einer Suchphase bestimmt wird. 13. The method according to claim 11 or 12, characterized in that the initial value of the target value p-r(t) of the regulation is determined in a search phase.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Amplituden des pulsatilen Anteils des Drucksignals pc(t) des Drucksensors (310) bestimmt werden und dass daraus der mittlere, der systolische und diastolische Blutdruck bestimmt wird. 14. The method according to claim 13, characterized in that the amplitudes of the pulsatile component of the pressure signal p c (t) of the pressure sensor (310) are determined and that the mean, systolic and diastolic blood pressure is determined therefrom.
15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Pulswellenformen bei unterschiedlichen Drücken pc(t) in der flüssigkeitsgefüllten Blase (309) registriert werden. 15. The method according to claim 12, characterized in that the pulse waveforms are registered at different pressures pc(t) in the liquid-filled bladder (309).
2021 11 09 2021 11 09
LU LU
PCT/AT2021/060421 2020-11-12 2021-11-09 Method and measuring system for continuously non-invasively determining the arterial blood pressure WO2022099338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50984/2020 2020-11-12
ATA50984/2020A AT524039B1 (en) 2020-11-12 2020-11-12 METHOD AND MEASURING SYSTEM FOR CONTINUOUS, NON-INVASIVE DETERMINATION OF ARTERIAL BLOOD PRESSURE

Publications (1)

Publication Number Publication Date
WO2022099338A1 true WO2022099338A1 (en) 2022-05-19

Family

ID=78621573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2021/060421 WO2022099338A1 (en) 2020-11-12 2021-11-09 Method and measuring system for continuously non-invasively determining the arterial blood pressure

Country Status (2)

Country Link
AT (1) AT524039B1 (en)
WO (1) WO2022099338A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179991B1 (en) 1999-03-30 2006-05-10 CNSystems Medizintechnik GmbH Continuous non-invasive sphygmomanometer
EP2493370A1 (en) 2009-10-29 2012-09-05 CNSystems Medizintechnik AG Digital control method for measuring blood pressure
US20120245471A1 (en) * 2009-10-15 2012-09-27 Finapres Medical Systems B.V. Device for controlling the pressure in an inflatable pressure pad
US20130060152A1 (en) * 2010-04-28 2013-03-07 Cardiostar, Inc. Apparatus and method for continuous oscillometric blood pressure measurement
EP2854626A1 (en) 2012-05-31 2015-04-08 Cnsystems Medizintechnik Gmbh Method and device for continuous, non-invasive determination of blood pressure
WO2016110781A1 (en) 2015-01-08 2016-07-14 Cnsystems Medizintechnik Ag Wearable hemodynamic sensor
US20180289271A1 (en) * 2017-04-11 2018-10-11 Edwards Lifesciences Corporation Blood pressure measurement device wearable by a patient
EP3419515B1 (en) 2016-02-22 2020-07-22 CNSystems Medizintechnik AG Method and measuring system for continuously determining the intra-arterial blood pressure
WO2020176214A1 (en) 2019-02-26 2020-09-03 Edwards Lifesciences Corporation Finger cuff device with non-volume clamp, non-plethysmography pressure measurement method for continuous non-invasive blood pressure measurement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156325A (en) * 1983-02-25 1984-09-05 株式会社 ウエダ製作所 Indirect blood pressure measuring apparatus
US5640964A (en) * 1995-02-16 1997-06-24 Medwave, Inc. Wrist mounted blood pressure sensor
AT412702B (en) * 2003-10-21 2005-06-27 Cnsystems Medizintechnik Gmbh DEVICE AND METHOD FOR CONTROLLING THE PRESSURE IN AN INFLATABLE CUFF OF A BLOOD PRESSURE METER
US20070287923A1 (en) * 2006-05-15 2007-12-13 Charles Adkins Wrist plethysmograph
ATE516746T1 (en) * 2006-12-11 2011-08-15 Cnsystems Medizintechnik Gmbh DEVICE FOR CONTINUOUS, NON-INVASIVE MEASUREMENT OF ARTERIAL BLOOD PRESSURE AND USE THEREOF
US20180338694A1 (en) * 2017-05-23 2018-11-29 Edwards Lifesciences Corporation Method for correcting cuff pressure in a non-invasive blood pressure measurement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179991B1 (en) 1999-03-30 2006-05-10 CNSystems Medizintechnik GmbH Continuous non-invasive sphygmomanometer
US20120245471A1 (en) * 2009-10-15 2012-09-27 Finapres Medical Systems B.V. Device for controlling the pressure in an inflatable pressure pad
EP2493370A1 (en) 2009-10-29 2012-09-05 CNSystems Medizintechnik AG Digital control method for measuring blood pressure
US20130060152A1 (en) * 2010-04-28 2013-03-07 Cardiostar, Inc. Apparatus and method for continuous oscillometric blood pressure measurement
EP2854626A1 (en) 2012-05-31 2015-04-08 Cnsystems Medizintechnik Gmbh Method and device for continuous, non-invasive determination of blood pressure
EP2854626B1 (en) 2012-05-31 2020-06-03 CNSystems Medizintechnik AG Method and device for continuous, non-invasive determination of blood pressure
WO2016110781A1 (en) 2015-01-08 2016-07-14 Cnsystems Medizintechnik Ag Wearable hemodynamic sensor
US20160198955A1 (en) * 2015-01-08 2016-07-14 Cnsystems Medizintechnik Ag Wearable hemodynamic sensor
EP3419515B1 (en) 2016-02-22 2020-07-22 CNSystems Medizintechnik AG Method and measuring system for continuously determining the intra-arterial blood pressure
US20180289271A1 (en) * 2017-04-11 2018-10-11 Edwards Lifesciences Corporation Blood pressure measurement device wearable by a patient
WO2020176214A1 (en) 2019-02-26 2020-09-03 Edwards Lifesciences Corporation Finger cuff device with non-volume clamp, non-plethysmography pressure measurement method for continuous non-invasive blood pressure measurement

Also Published As

Publication number Publication date
AT524039A4 (en) 2022-02-15
AT524039B1 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
EP1608261B1 (en) Device for the continuous non-invasive measurement of blood pressure
EP2240072B1 (en) Manometer, particularly blood pressure manometer, method for determining pressure values, method for calibrating a manometer and computer program fro implementing these methods
AT512304B1 (en) Method and device for continuous, non-invasive determination of blood pressure
DE60035470T2 (en) Method and device for determining cardiac output or total peripheral resistance
EP0467853B1 (en) Device and method for the measurement of blood pressure
EP0284095B1 (en) Method and apparatus for automatic non-invasive blood pressure measurement
DE69630932T2 (en) Method and device for determining arterial blood pressure waveform of an arm based on bloodless measurements of a finger blood pressure waveform
EP1860999B1 (en) Mobile diagnosis device
DE10209027A1 (en) Amount of blood measurement used in medical facility involves computing amount of pumped blood based on presumed systolic pressure value measured sequentially during shrinkage and extended period
DE2436692A1 (en) DEVICE FOR MEASURING BLOOD PRESSURE OD. DGL. IN A HUMAN BODY PART
DE102006047491A1 (en) Non-invasive blood pressure monitor operation improving method for use in e.g. intensive care unit, involves displaying systolic pressure and diastolic pressure, where target inflated pressure is specified little above systolic pressure
EP1675507A1 (en) Device and method for regulating the pressure in an inflatable cuff of a blood pressure manometer
EP3125743B1 (en) Method for determining blood pressure in a blood vessel and device for carrying out said method
WO2009100927A1 (en) Method and device for the non-invasive measurement of dynamic cardiopulmonary interaction parameters
WO2018167082A1 (en) Method and device for the time-resolved measurement of characteristic variables of the cardiac function
AT524039B1 (en) METHOD AND MEASURING SYSTEM FOR CONTINUOUS, NON-INVASIVE DETERMINATION OF ARTERIAL BLOOD PRESSURE
DE102010061580A1 (en) Use of the frequency spectrum of an artifact in oscillometry
AT524038B1 (en) PORTABLE DEVICE FOR GENERATION OF VARIABLE PRESSURE ON A LIMB
EP3796834B1 (en) Method and device for validating a blood pressure measurement system
AT524040B1 (en) METHOD AND MEASURING DEVICE FOR THE CONTINUOUS, NON-INVASIVE DETERMINATION OF AT LEAST ONE CARDIAC CIRCULATORY PARAMETER
DE102019008320B4 (en) DEVICE FOR MEASURING VITAL PARAMETERS WITH ADVANTAGEOUS SEAL ARRANGEMENT
DE102022120596B3 (en) Method and device for non-invasive blood pressure measurement
EP3574822A1 (en) Method for measuring a pulse wave, method for receiving medical image data, measuring device and medical imaging device
AT504569B1 (en) SIGNAL PROCESSING DEVICE AND DEVICE FOR THE CONTINUOUS, NON-INVASIVE MEASUREMENT OF THE ARTERIAL BLOOD PRESSURE
WO1991014396A1 (en) Process and device for continuous, indirect measurement of blood pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21806957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21806957

Country of ref document: EP

Kind code of ref document: A1