WO2022098678A1 - Appareil respirateur - Google Patents

Appareil respirateur Download PDF

Info

Publication number
WO2022098678A1
WO2022098678A1 PCT/US2021/057783 US2021057783W WO2022098678A1 WO 2022098678 A1 WO2022098678 A1 WO 2022098678A1 US 2021057783 W US2021057783 W US 2021057783W WO 2022098678 A1 WO2022098678 A1 WO 2022098678A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
air channel
ducted
face
user
Prior art date
Application number
PCT/US2021/057783
Other languages
English (en)
Inventor
Mark MILLARD
Original Assignee
Millard Mark
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/515,582 external-priority patent/US11491355B1/en
Application filed by Millard Mark filed Critical Millard Mark
Priority to US18/251,376 priority Critical patent/US20230405367A1/en
Publication of WO2022098678A1 publication Critical patent/WO2022098678A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • A62B18/025Halfmasks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/06Mouthpieces; Nose-clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • A61M16/049Mouthpieces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/1065Filters in a path in the expiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves

Definitions

  • the present disclosure relates to the field of respirators and face masks.
  • Face masks and respirators are employed to filter the air inhaled by a user in conditions warranting protection including environments such as medical settings, hazardous industrial areas, or in-door and outdoor spaces shared with other occupants during infectious pathogen outbreaks.
  • Respirators include a face mask which covers the nose and mouth of the user, and optionally the eyes and ears. Designs for face masks vary from the simple cloth covering to those having multiple inlet and outlet valves working in conjunction with filter elements for filtering air when the user inhales and exhales. Generally, masks block contaminants from the outside air, with some masks including filtration devices with better capabilities for blocking the undesirable contaminants.
  • a ducted breathing apparatus may include a face cover for sealing at least a portion of a user's face.
  • the ducted breathing apparatus may include a ducted air channel element for providing direct air flow from a user's mouth within the mask to an environment outside the mask cavity.
  • the ducted breathing apparatus may include a coupling element for providing a sealed mating connection between the ducted air channel element and the face cover.
  • One concept of the disclosure may be to have the option of exhaled respiration to be ducted through a breathing cavity and dispersed to the outside environment while minimizing cross contamination between inhaled and exhaled respiration from mouth or nose or both mouth and nose thus improving many facets of the current technology.
  • Another concept may be designing a unit that can be recyclable and reusable to limit costs and waste to current technology.
  • a method for assembling a ducted breathing apparatus may include providing a face cover for sealing at least a portion of a user's face.
  • the method may include attaching a coupling element to the face cover, the coupling element configured to receive a ducted air channel element.
  • the method may include attaching the ducted air channel element to the coupling element.
  • a method for breathing through a ducted breathing apparatus may include one of inhaling or exhaling through a ducted air channel element that is attached to a coupling element mated to a face cover, the coupling element having one of a friction surface connection, screw threads fusion, or adhesives.
  • a ducted breathing apparatus is provided.
  • the ducted breathing apparatus includes a face cover for sealing at least a portion of a user's face.
  • the ducted breathing apparatus includes a ducted air channel element for providing one-way direct air flow out from the user's mouth within the mask to the outside environment.
  • the ducted breathing apparatus includes a coupling element for providing a sealed mating connection between the ducted air channel element and the face cover.
  • the ducted breathing apparatus includes a heat shield to reduce heat transfer from an exhalation pathway defined by the oneway direct airflow directing exhalation heat away from the user, wherein the ducted air channel element in conjunction with the heat shield isolates the effects of exhalation on inhalation air supply.
  • FIG. 1 is an exploded view of an example mask apparatus, illustrating upstream filtration with no downstream filtration, according to an embodiment of the disclosure
  • FIG. 2 is an exploded view of an example mask apparatus, illustrating a retrofit kit option for use with upstream filtration and no downstream filtration, according to an embodiment of the disclosure
  • FIG. 3 is an interior view of an example mask apparatus utilizing a reusable respirator with replaceable filter elements, for use with upstream filtration and no downstream filtration, according to an embodiment of the disclosure (Method 1).
  • FIG. 4 is another exploded view of an example mask apparatus illustrating upstream filtration and downstream filtration utilizing a filter element for the downstream not sealed to the heat shield ducting, according to an embodiment of the disclosure
  • FIG. 5 is another exploded view of an example mask apparatus illustrating upstream filtration and downstream filtration, utilizing a filter element for the downstream filtration, which is sealed to the heat shield ducting, according to an embodiment of the disclosure
  • FIG. 6 is another exploded view of an example mask apparatus illustrating upstream filtration and downstream filtration utilizing an upstream filter element which requires a duct support frame and a filter element for the downstream not sealed to the heat shield ducting, according to an embodiment of the disclosure.
  • FIG. 7 is another exploded view of an example mask apparatus illustrating upstream filtration and downstream filtration utilizing an upstream filter element which attaches to and is supported by the duct support frame and a filter element for the downstream not sealed to the heat shield ducting, according to an embodiment of the disclosure.
  • FIG. 8 is an exploded view of an example mask apparatus, illustrating a retrofit kit option for use with upstream filtration and downstream filtration, utilizing a filter element for the downstream not sealed to the heat shield ducting, according to an embodiment of the disclosure.
  • FIG. 9 is another exploded view of an example mask apparatus illustrating the use of a ducted breathing apparatus incorporating a duct support frame to support the ducted air channel element which provides a direct air flow from a user's mouth within the mask/barrier/shield to an environment outside the mask/barrier/shield, according to an embodiment of the disclosure.
  • FIG. lO is another exploded view of an example mask apparatus illustrating the use of a ducted breathing apparatus incorporating a duct support frame to support the ducted air channel element which provides a direct air flow from a user's mouth within the mask/barrier/shield to remote environment some distance outside the mask/barrier/shield, according to an embodiment of the disclosure.
  • FIG. ll is another exploded view of an example mask apparatus illustrating the use of a ducted breathing apparatus incorporating a duct support frame to support a ducted inspiration channel for supply from a remote environment some distance outside the mask/barrier/shield and also the ducted air channel element which provides a direct air flow from a user's mouth within the mask/barrier/shield to remote environment some distance outside the mask, according to an embodiment of the disclosure.
  • Fig. 12 is another exploded view of an example mask apparatus illustrating the use of a ducted breathing apparatus incorporating a duct support frame to support the ducted air channel element and heat shield ducting which provides a direct air flow from a user's mouth within the mask/barrier/shield to an environment outside the mask/barrier/shield, according to an embodiment of the disclosure.
  • Fig. 13 is an exploded view of an example mask apparatus, illustrating no upstream filtration but has downstream filtration, according to an embodiment of the disclosure.
  • Fig. 14 is an exemplary flow diagram illustrating methods for assembling the breathing apparatus, such as those of Figs. 1-13.
  • One concept of infection control is to prevent, slow, or stop the spread of infections within a population by reducing exposure to pathogens. By preventing passage of viral particles into the body through the eyes, nose, and mouth, infections may be reduced.
  • masks have been one important component in combating the spread of infectious and contagious pathogens.
  • masks are used in environments with contaminants that may infect, contaminate, or irritate the user.
  • a user breathing direct air flow inward, outward, or both through an enclosed air channel via a filter may be preferred to address these and other limitations of some mask designs.
  • Direct air flow provides numerous benefits including reducing stagnant air, and aiding comfortable breathing due to non-heated humid air.
  • Another advantage may include ensuring air is passed directly through the filter rather than through unfiltered side openings.
  • a baffle element such as the baffle changed in shape or form is placed downstream or outside the exhalation valve orifice on the mask exterior so that particles in the exhale flow stream are collected by the baffle element after passing through the exhalation valve but before reaching the atmospheric air or exterior gas space.
  • the baffle may configure to also be placed downstream to the exhalation valve so that any air passing through the exhalation valve subsequently impacts the impactor element and is diverted.
  • the baffle element is constructed and arranged to obstruct the view of the valve orifice from the exterior to reduce the opportunity for splash fluids to pass through the valve.
  • the baffle element may cover not only the valve and or valve cover but may also cover larger portions of the mask body to provide increased deflection of the exhale flow stream and particles and contaminants and increased obstruction to external contaminants.
  • Apparatus improves the aerosol transmissible disease and airborne infection isolation Al IR airborne infection isolation room for both patient utilizing one of the apparatuses and the health care professional utilizing another form of the apparatus thus reducing the overall virus or infection rate of the room for aerosol transmission to others.
  • Apparatus utilizing the fourth method allows the infected patient to exhale transmissible disease pathogens through the apparatus filtering system therefore reducing the overall transmissible disease in the room.
  • High-efficiency (HE) or high- efficiency particulate air (HEPA) filter National Institute for Occupational Safety and Health (NIOSH) classification for a filter that is at least 99.97% efficient in removing particles and is used in powered air-purifying respirators (PAPRs).
  • PAPRs powered air-purifying respirators
  • N100, R100, or P100 filters may be used.
  • Hood the portion of a respirator that completely covers the head and neck, and may also cover portions of the shoulders and torso, and through which clean air is distributed to the breathing zone.
  • Loose-fitting facepiece the portion of a respirator that forms a partial seal with the face but leaves the back of the neck exposed, is designed to form a partial seal with the face, and through which clean air is distributed to the breathing zone.
  • N95 filter a type of NIOSH-approved filter or filter material, which captures at least 95% of airborne particles.
  • N95 respirator a generally used term for a disposable air-purifying filtering facepiece respirator with NIOSH approved N95 particulate filter material. Elastomeric full face or half face air-purifying respirator in a reusable form with NIOSH approved N95 particulate filters or filter material (i.e., includes N95 filtering facepiece respirator or equivalent protection).
  • Negative-pressure respirator a tight-fitting respirator in which air is inhaled through an air-purifying filter, cartridge, or canister during inhalational efforts. generating negative pressure inside the facepiece relative to ambient air pressure outside the respirator.
  • Fig. 1 is an exploded view of an example mask apparatus, according to an embodiment of the disclosure.
  • the mask apparatus may include a cover (or shield) that provides physical coverage for isolating the wearer's face, nose, and mouth from the outside environment.
  • the face cover 107 may be a one-size-fits-all that is suitable for most or all people. In some embodiments, the face cover 107may be specially design for each wearer. In other embodiments, the face cover 107may be a filtered cup type respirator used to support the air channel. In other embodiments, the face cover 107may take various forms and shapes. For example, some may optionally cover and isolate the eyes and ears. Mask, cover, and shield may be used interchangeable in the disclosure.
  • Mask may refer to the entire assembly, or to the face cover/shield.
  • 'Device' may refer to the entire assembly of the face mask including the components to add the ducting, heat shield ducting or air channel functionality, or 'device' may refer to the components to add the ducting, heat shield ducting or air channel functionality without the face mask.
  • the manner of providing air isolation to the nose, mouth (and optionally the eyes) may take various forms, and example embodiments are provided by way of example and not for limiting the applications of the disclosure.
  • the face cover 107 may include any suitable material, may include any suitable shape including partial or full-face masks including any size from smaller masks that wrap around only the nose and mouth to larger designs that cover the entire face or head.
  • the embodiments may be used for retrofitting existing designs or masks purchased off-the-shelf. Other embodiments may be used with specially design covering and filters that maximize the utility of the design. Any suitable type of mask may be used, including medical masks, nonmedical masks, gas masks, masks with or without filters, with multiple filters, those with special inlet/outlet sections, those including eye covering, without eye covering, cloth providing permeable or impermeable surfaces, etc. The benefits and advantages presented in the disclosure may apply to any suitable mask design.
  • the mask apparatus may include an enclosed air channell04 and air channel mouthpiece 106 (or ducted air channel) that provides a conduit for direct expiration (or exhalation) gas flow through the mask cavity.
  • Fig. 1 incorporates an air channel mouthpiece 106 that is adjustable in length and direction which holds position due to friction on the wall of the duct, created by an intersecting rolled convolution of the duct.
  • the air channel mouthpiece 106 will better maintain its adjustment when left in the same position for an extended period of time due to elastic creep effect.
  • the air channel mouthpiece 106 is made out of a soft silicone material with a contoured mouthpiece for a comfortable interface between the air channel and the user.
  • the air channel mouthpiece 106 is designed with a venturi expander to provide efficient flow and reduce noise.
  • the device is designed to minimize pressure drop from the inlet of the mouthpiece through the final expulsion of gas to the outside environment.
  • This low-pressure differential allows one to take advantage of the low pressure created when the high velocity expiration from the user is directed through the air channel mouthpiece 106. Due to the low-pressure differential and the low pressure created from the high velocity expiration, the pressure in the mask cavity will typically be higher than the pressure in the high velocity expiration gas stream. If the user interface does not create an airtight seal to the air channel mouthpiece 106 this will cause the added benefit of entraining additional gas from the mask cavity into the lower pressure high velocity expiration gas stream.
  • the example of Fig. 1 also incorporates air channel 104 which allows room for the convolution of the air channel mouthpiece 106 to move.
  • valve 1 also incorporates a one-way valve assembly consisting of vent shield 101 which shields and holds in place the valve diaphragm 102, which is a flexible diaphragm that creates the one-way restriction and seals against the valve diaphragm support connector seal ring.
  • the valve diaphragm support connector seal ring 103 which supports the valve diaphragm 102 and also creates a connection or seal with a mask or support feature.
  • the one-way valve constrains the gas flow through the air channel 104 and the air channel mouthpiece 106 to one direction.
  • the one-way valve including vent shield 101, valve diaphragm 102 and valve diaphragm support connector seal ring 103 restricts exhaled gas and any gas located outside the mask cavity from reentering the mask cavity through the air channel 104 and the air channel mouthpiece 106.
  • the air channel 104 and the air channel mouthpiece 106 in the example of Fig. 1 have the properties indicated, the disclosure is not so limited.
  • the expiration tube 123, the inspiration tube 124, or air channel 104 and the air channel mouthpiece 106 may be long or short, may be fixed or adjustable in length and/or direction may be flexible or rigid, may have a flattened or contoured mouthpiece to more easily allow the user to use continuously without discomfort.
  • the hose or air channel 104 and the air channel mouthpiece 106 may allow flow of gas in, out, or both to the wearer.
  • Any of the components may be generally designed or custom-designed for a particular user to minimize leakage of air, reduce or eliminate cross contamination of inhalation and exhalation and isolate the effects of exhalation on inhalation and maximize the comfort of the device.
  • the example in Fig. 1 is illustrated with a two-piece air channel.
  • the air channel mouthpiece 106 attaches to the second piece air channel 104 through the use of the compression nut seal ring 105.
  • the air channel 104, compression nut seal ring 105 and the air channel mouthpiece 106 are secured to face cover 107 through the use of a threaded pinch connection and seal rings between the compression nut seal ring 105 and the valve diaphragm support connector seal ring 103.
  • the air channel may be implemented using any number of elements from one and up.
  • the air channel maybe one piece that both attaches to the face cover 107 and provides the air channel.
  • the air channel may be provided in multiple pieces.
  • the mask may include a valve diaphragm support connector seal ring 103 for attaching the air channel to the face cover 107.
  • the valve diaphragm support connector seal ringl03 may be designed to minimize air leakage between the air channel 104 and the air channel mouthpiece 106 and the exterior of the face cover 107. Mechanisms to minimize air leakage may include use of various materials and processes.
  • the face of the valve diaphragm support connector seal ring 103 may be covered in adhesive to both mate to the face cover 107 (e.g., to a body component of an air filter). The adhesive may allow the valve diaphragm support connector seal ring 103 to completely seal out any air.
  • valve diaphragm support connector seal ring 103 may mate to the face cover 107 at various locations and use various methods. In some examples where the air leakage is not a priority (e.g., but where comfort is a priority), the valve diaphragm support connector seal ring 103 may use hook and loops or barbs or a latching mechanism to securely attach to the face cover 107. While the disclosure provides the example of the valve diaphragm support connector seal ring 103, those skilled in the art will recognize that the valve diaphragm support connector seal ring 103 or coupling plate are merely illustrative examples. Any type of component or method may be used to attach the air channel 104 and the air channel mouthpiece 106 to the mask.
  • the device e.g., any combination of vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103, air channel 104, compression nut seal ring 105 and the air channel mouthpiece 106) may be a one-time use device.
  • the device may be a re-usable device so that the device can be removed and attached to face cover 107.
  • the attachment mechanism may be selected from a suitable choice.
  • a filter may be optional. When the filter is optional, the face cover 107 itself may provide the filtering.
  • the air channel 104 and the air channel mouthpiece 106 and the valve diaphragm support connector seal ring 103 may be a monolithic component.
  • the various components may be mated together using any of a variety of methods.
  • the pieces may merely snap into each other (e.g., grooves or friction may be used to hold the components together, in the case of friction may be design with increasing diameter to increase linear friction).
  • the components may include various air-proof or moisture-proof coatings. When such coatings are applied, the components, in some cases, may be more suitable for one-time usage type devices. In some examples, screw-type threaded mating surfaces may be used. In examples where existing mask designs are applied or retrofitted, adhesives and other bonding agents may be suitable for the device.
  • the mask may be assembled in any operative order.
  • the air channels 104, 106 and compression nut seal ring 105 may be mated first, with the assembly then mated to the face cover 107 through the use of the valve diaphragm support connector seal ring 103.
  • the embodiments may be used for inhaled (upstream) or exhaled (downstream) or both.
  • the user may breathe through the air channels 104, 106 (downstream) and breathe out the rest of the mask.
  • the user may breathe out through the air channel 104 and the air channel mouthpiece 106 (downstream) and breathe in through the rest of the face cover 107.
  • the user may breathe in through the air channel 104 and the air channel mouthpiece 106 (upstream) and breathe out through the air channel 104 and the air channel mouthpiece 106 (downstream).
  • the user may alternate upstream and downstream usage of the air channel 104 and the air channel mouthpiece 106 during breathing.
  • the user may generally breathe in any manner based on user preference or mask design.
  • the user may prefer larger diameter air channels so that they may easily breathe using the air channel 104 and the air channel mouthpiece 106 or breathe without using the air channel 104 and the air channel mouthpiece 106.
  • the design of the air channel size, shape, length, etc. may be dictated by user preference.
  • Fig. 2 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask with exhalation valve (or cover, shield, etc.) 108 may be a similar embodiment to Fig. 1.
  • the mask with exhalation valve 108 shows the coupling plate 109 and replaceable mouthpiece 110 mated to the mask with exhalation valve 108.
  • the coupling plate 109 may use an adhesive.
  • the mask may include a mask with exhalation valve 108 that provides physical coverage for isolating the wearer's face, nose, and mouth from the outside environment.
  • the mask with exhalation valve 108 may be a one-size-fits-all component that is suitable for most or all people.
  • the mask with exhalation valve 108 may be specially design for each wearer.
  • the mask with exhalation valve 108 may take various forms and shapes.
  • the embodiments may be used for retrofitting existing designs or masks purchased off-the-shelf which incorporate a one-way exhalation valve.
  • Other embodiments may be used with specially design covering and filters that maximize the utility of the design.
  • the example of Fig. 2 includes an inner coupling plate 109, that may also be part of an air channel.
  • the pieces may be mated with additional mechanisms in addition to those discussed above with respect to Fig. 1.
  • the coupling plate 109 may be designed as complementary components to the mask with exhalation valve 108 e.g., screwed together.
  • the coupling plate 109 may also use the same mechanisms as Fig. 1, such as adhesives, bonding agents, etc., or snap together using friction.
  • the coupling plate 109 may be airtight connection with the mask with exhalation valve 108.
  • the method to assemble the device may be similar to that described above with respect to Fig. 1. The similar steps are omitted for brevity. In the embodiments with a screw type connection, the method may be adjusted according to the screw design.
  • Fig. 3 is an interior view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 2. Descriptions of the shared components from Fig. 2 are omitted for brevity.
  • the mask shows an embodiment using a respirator with a rubber or flexible snug cover 111 and may include replaceable filter elements.
  • the replaceable mouthpiece 110 and the coupling plate for flexible snug cover 112 in this example may have a large diameter to provide more air and freer breathing.
  • the filter (not visible) may be suitably designed to match the air channel design (e.g., larger filter for larger air channel).
  • Fig. 4 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 1 with the addition of filtration part (or filtration element) 113 for source control and a heat shield duct 114 to shield the user from the heat generated from the exhaled respiration and divert and direct the exhaled respiration gas away from the user.
  • filtration part 113 can consist of a reusable or disposable mask filter medium which can be fitted over the heat shield duct for effective source control.
  • the one-way valve including vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103 increases the efficiency of reducing cross contamination between inhalation and exhalation gas but a one-way valve is not always required to be effective in this configuration.
  • Fig. 5 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 4 with the addition of an exhalation filter 115 that is sealed to the perimeter of the heat shield duct 114.
  • This increases the efficiency of source control and better directs the exhalation away from the users face.
  • Descriptions of the shared components from Fig. 4 are omitted for brevity.
  • the one-way valve including vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103 increases the efficiency of reducing cross contamination between inhalation and exhalation gas but a one-way valve is not always required to be effective in this configuration.
  • Fig. 6 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 5 except mask/cover with air channel hole 117 and duct support frame 118 replaces mask/face cover 107.
  • Duct support frame 118 allows the user to utilize non cup type mask/cover with air channel holell7 for the inhalation filter medium.
  • the one-way valve including vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103 increases the efficiency of reducing cross contamination between inhalation and exhalation gas but a one-way valve is not always required to be effective in this configuration.
  • Fig. 7 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 6 except mask/cover with air channel hole 117 is replaced by duct support frame filter cover 119.
  • Duct support frame filter cover 119 is a reusable or disposable inhalation filter element that is supported by and or attached to duct support framell8.
  • the one-way valve consisting of vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103 increases the efficiency of reducing cross contamination between inhalation and exhalation gas but a one-way valve is not always required to be effective in this configuration.
  • Fig. 8 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 2 with the addition of filtration part 113 for source control and a retrofit heat shield duct 120 to shield the user from the heat generated from the exhaled respiration and divert and direct the exhaled respiration gas away from the user.
  • Descriptions of the shared components from Fig. 2 are omitted for brevity.
  • the filtration part 113 can consist of a reusable or disposable mask filter medium which can be fitted over the heat shield duct for effective source control.
  • the one-way valve consisting of vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103 increases the efficiency of reducing cross contamination between inhalation and exhalation gas but a one-way valve is not always required to be effective in this configuration.
  • Fig. 9 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 6 except mask/cover with air channel hole 117 is replaced by shield 121, which has hole to accept ducting and filtration part 113 and heat shield duct 114 are removed.
  • Shield 121 can be a barrier, shield, garment (such as a ski mask), costume face covering or safety gear but not limited to only these items.
  • Shield 121 may or may not be part of an enclosed environment. This configuration is typically used for but not limited to use in severe environmental conditions such as high wind, cold or heat.
  • Shield 121 can be made of permeable or impermeable material and must incorporate a passageway to mate with the valve diaphragm support connector seal ring 103, air channel 104 and compression nut seal ring 105.
  • Duct support frame 118 supports and holds in position the ducted air channel elements of the valve diaphragm support connector seal ring 103, air channel 104, compression nut seal ring 105, and the air channel mouthpiece 106.
  • the one-way valve including vent shield 101, valve diaphragm 102, valve diaphragm support connector seal ring 103 increases the efficiency of reducing cross contamination between inhalation and exhalation gas and reduces the infiltration of gas from the outside environment.
  • a one-way valve does increase the efficiency but is not always required to be effective in this configuration. In some applications a duct support framell8 is not always required.
  • Fig. 10 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 9 with the addition of an expiration tube 123 and by replacing vent shield 101 with vent shield tube connector 127.
  • Vent shield tube connector 127 allows for the connection of a respiration tube to the apparatus.
  • the expiration tube 123 allows the user to direct the exhaled gas to a remote environment. In some applications a duct support frame 118 is not always required.
  • Fig. 11 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 10 with the addition of an inspiration tube 124, valve diaphragm support connector seal ring tube connector 128 (which adds a respiration tube connector to the diaphragm support), and valve diaphragm 102 for the inhalation one way valve along with the vent shield tube connector 127 to connect the inhalation tube to the with an impermeable duct support frame 126 that creates a seal to the users face and has an additional feature which allows for the connection of an inhalation duct and also a valve diaphragm 102.
  • the inspiration tube 124 allows the user source gas for inspiration from a remote environment.
  • Fig. 12 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 9 with the removal of shield 121 and the addition of a heat shield duct 114and barrier 122.
  • Barrier 122 is similar to shield 121 but does not incorporate a passageway to mate with the valve diaphragm support connector seal ringl03, air channel 104 and compression nut seal ring 105 and typically is made of permeable material.
  • the heat shield duct 114 is used to shield the user from the heat, humidity and other undesirable constituents generated from the exhaled respiration and directs the exhalation away from the user through a permeable barrierl22.
  • FIG. 13 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 5 by replacing face coverl07 with the permeable duct support frame 125. This configuration allows for source control when there is no need to condition the air in the breathing environment.
  • a one-way valve does increase the efficiency but is not always required to be effective in this configuration.
  • Fig. 14 is an exploded view of another example mask apparatus, according to an embodiment of the disclosure.
  • the mask may be a similar embodiment to Fig. 13 by replacing the permeable duct support framel25 with an impermeable duct support frame 126 that creates a seal to the users face and has an additional feature which allows for the connection of an inhalation duct.
  • the valve diaphragm 102, inspiration tube 124, vent shield tube connector 127, and valve diaphragm support connector seal ring tube connectorl28 are added to connect the inspiration tube with the one-way valve.
  • the impermeable duct support frame 126 is designed for the attachment of the valve diaphragm support connector seal ring 103, air channel 104, compression nut seal ring 105 and the air channel mouthpiece 106 and inspiration tube 124. Inspiration is supplied through the inspiration tube 124.
  • This configuration allows for a more consistent dosing of medications since the supply is not diluted with residual exhalation gas trapped in the mask cavity.
  • This configuration also allows for source control when the user requires respiration from a remote source for the inhalation of medications, use of a nebulizer or requires specialized conditioning of the user's breathing environment. Source control is provided to prevent contamination of the environment near the user if the exhalation from the user may cause a toxic environment to others.
  • a respiration flow-directed breathing apparatus used in conjunction with one or more aspects of the disclosure may be used with or without filtration utilizing any of or all following examples: respirator, respiration device, industrial safety equipment, filtering facepiece respirator, full or half face respirator, mask, shield, helmet, fabric covering, inspiration supply tube, expulsion tube, example but not limited film, entertainment, art, characters in costumes at theme parks, movie sets, mascot but not limited to where user requires a more effective comfort and increased overall performance of breathing device, example but not limited to headdress, tunic, turbans, burka, head scarf, hijab, face veil, keffiyeh, hattah, other devices utilizing a wide range materials, where expiration can be directed from a user's mouth; nose; or the combination of mouth and nose, dispersed to the outside environment to reduce or eliminate cross contamination between inhaled respiration and exhaled respiration.
  • This new apparatus may include any combination or lack of the following but not limited to: mouthpiece, ducting, shielding, baffling, filtering, diffuser, gasket, flange, adhesive, hook & loop, screw, nut, bolt, fastener, one way valve, vent, extended vent, wide range of connection methods and materials.
  • the apparatus improves one or more of the following: safety, effectiveness, efficiency, comfort, reduction of negative physiological effects, reduction of nuisance internal and external condensation.
  • the apparatus can be used in the following areas but not limited to:
  • the apparatus improves equipment within the health industry, professional, commercial, government and consumer purposes.
  • the apparatus improves equipment within the sporting/health professional, health industry, professional, commercial, government and consumer for purposes in high, low, standard altitudes.
  • the apparatus improves equipment within the aquatic/health professional, industry, professional, commercial, government and consumer for purposes in water.
  • the apparatus improves equipment within the winter gear professional, industry, professional, commercial, government and consumer for purposes in cold temperatures.
  • the apparatus improves equipment within the healthcare professional, industry, professional, commercial, government and consumer for purposes in therapies or treatments to ease or fight against health-related concern.
  • the apparatus improves equipment within the life-saving professional, industry, professional, commercial, government and consumer for purposes in uses to help with life-saving equipment and processes.
  • the apparatus directs the fog or moisture created by exhalation away from external devices reducing nuisance condensation which would otherwise obscure vision on but not limited to glasses, goggles, face shield, helmet, full-face respirator. Elimination of condensation greatly improves visibility and optical clarity on glasses, googles, and other eye equipment that would be affixed to the apparatus or not affixed but worn in place separately on user.
  • the apparatus can be used with supplied air technology.
  • This device can be used to eliminate the presence of residual used air in the mask cavity.
  • This device allows for a compact designed respirator through the use of ducting and shielding to reduce the negative effects and cross contamination that expiration has on inspiration gas quality.
  • This device can maintain a constant supply of fresh air to the user without the use of internally or externally powered air supply devices.
  • the apparatus extends the useful life of filter mediums.
  • High heat and humidity can affect the structural integrity of a filtering facepiece respirator.
  • Many filtering facepiece respirators employ an electrostatic mechanism to attract and intercept foreign particles. Filtering facepiece respirator of this type undergo significant electrostatic degradation when open to the surroundings and is exacerbated by the warm humid environment created by respiration during use.
  • this apparatus in conjunction with a filtering facepiece respirator, the amount of heat and humidity the filter medium is subjected to, internally in the mask cavity and externally is greatly diminished therefore maintaining a higher level of effectiveness and structural integrity when the respirator must be utilized for extended periods of time.
  • the apparatus reduces cross contamination between inhaled and exhaled air. With proper use of the apparatus, a significant reduction in re-breathed infectious virus aerosols or small airborne particles produced during coughing, speaking, sneezing, and breathing is realized.
  • the reduction of cross contamination effectively reduces the viral load of a virus infected individual, by reducing the re-inhalation of contaminated exhaled gas and droplets.
  • Exhaled gas from the virus infected individual is passed through the mask cavity and therefore does not remain a component of the mask cavity and is not available for re-inhalation. Direct expulsion of expiration through the mask cavity significantly reduces the buildup of undesirable constituents found in expiration.
  • Reusable kit will reduce waste. This reduces waste as example in the health field-one disposable respirator can be worn for a longer period of time due to the dryer nature of the inside of the cavity not breaking down the effectiveness of the fibers for the protection of the user.
  • Apparatus can be designed to be a retro-fit conversion kit for many or all current face coverings that are manufactured in the past, currently, or in the future thus saving costs and waste allowing end user to utilize available face covering of choice or necessity to utilize the advantages of a respiration flow apparatus by attaching to its current unit.
  • Apparatus can be a add on feature of a variety of components that is secured onto existing product that completed a manufactured process or can be added into a complete unit during production for distribution as a final product.
  • Apparatus may be manufactured or designed utilizing a method that ensures the ability easily dismantle and enable the ability for the user to effectively recycle the parts and improving the impact to the environment.
  • Apparatus may be manufactured or designed utilizing a method that allows the user to easily assemble and dismantle to efficiently sanitize and reuse for purposes of limiting the increased waste and cost associated with one-time use products.
  • the apparatus may be manufactured or designed utilizing a method that can be attached to disposable face protection and then removed, cleaned, sanitized using standards of method of care, sanitized using standards within the medical community, sanitized using standards of care utilizing autoclave procedures and ensuring the long-term strength and effectiveness of the equipment to be in a material that will ensure this possibility.
  • Respirators equipped with one-way breathing valves can expose the user to environmental contaminants when the valve malfunctions or does not create an airtight seal. This apparatus maintains all the advantages of a one-way valve without the risk of exposure due to malfunctioning valve. When configured as indicated in the various embodiments such as Fig. 5, any gas that may flow back through the one-way valve is either residual air from expiration or filtered.
  • a ducted breathing apparatus that minimizes cross contamination between inhalation and exhalation respiration and minimizes the effects such as heat cold radiation conduction convection radiation from one to the other.
  • Various embodiments may include application of the techniques and designs of the disclosure to commercial, industrial, medical, governmental respirators such as full face, half face, speech diaphragm or sound device, welding helmet, within a full-face mask, half face mask and typical commercial full-face mask, welding mask, helmet for sports or recreation, helmet for motor sports, helmet for other necessities and the like.
  • respirators such as full face, half face, speech diaphragm or sound device, welding helmet, within a full-face mask, half face mask and typical commercial full-face mask, welding mask, helmet for sports or recreation, helmet for motor sports, helmet for other necessities and the like.
  • Upstream filtration may utilize a pocket mask or typical multi-layer mask by cutting a slice of the inside mask to convert mask to pocket mask and attaching ducted apparatus with baffle to either side of the front layer.
  • Examples of air flow not requiring second mask and the mask can be disposable surgical mask if it is multi-layered.
  • the vent in some examples is not seen on the outside of the multi-layered mask (pocket-mask). If the mask has no pocket -slice the first layer towards the face to have a slit to allow the duct apparatus to be attached between the first layer and the other layer or layers.
  • the duct apparatus attaches from the front layer with the baffle and the vent being on the inside of the mask and positioned together to create a bond. Therefore, the vent cannot be seen on the outside layer which is viewable to others.
  • the techniques and designs of the disclosure may easily be retrofitted to attach to components of other embodiments, whether new or preexisting.
  • the embodiments can be put on and not damage the material requiring no opening in the various components as air will pass through the material or others need an opening to allow the embodiments to be incorporated from the outside of the components to the inside of the components as the material will not accommodate the passage of air through to the external side of the environment.
  • Some embodiments may be applied to underwater scuba gear to improve the current technology of standards available at the present time.
  • Some embodiments may be applied to underwater snorkeling gear to improve the current technology of standards available at the present time. [0086] Some embodiments may be applied to extreme weather gear to be improve the designs by encompassing the entire head and viewing face from the elements with the exhalation tube being utilized in an unconventional manner such as but not limited to release above head or behind the outer layer coat.
  • Some embodiments may be attached to various tube elements allowing for inhalation of air, such as oxygen but not limited to, and or not attached another tube for exhalation of air to be transported to a further location to enter a filtration device or not but allow the possibility of infected area to not remain in the users current location.
  • a respiration flow directed breathing apparatus used in conjunction with one or more but not limited to examples of the following: inspiration supply: respirator, respiration device, industrial safety equipment, mask, shield, helmet, fabric covering, inspiration supply tube, expulsion tube, other devices utilizing a wide range materials, where expiration can be directed from a user's mouth: nose: or the combination of mouth and nose, dispersed to the outside environment to reduce or eliminate cross contamination between inhaled respiration and exhaled respiration.
  • This new apparatus may include any combination or lack of the following but not limited to mouthpiece, ducting, shielding, baffling, diffuser, gasket, flange, adhesive, hook & loop, screw, nut, bolt, fastener, one-way valve, vent extended vent, wide range of connection methods and materials. Apparatus can be made to utilize the following four methods:
  • Exhaled air can be directed for providing direct air flow from a user's mouth within the air supply through the and dispersed to the outside environment (environment can be breathable or not breathable— with additional mechanism to further disperse the flow till it reaches breathable air) to reduce or eliminate cross contamination between inhaled respiration and exhaled respiration.
  • Device is utilized to reduce cross contamination from inhaled respiration and exhaled respiration from mouth or nose or both mouth and nose.
  • Device can be made to utilize upstream filtration, downstream filtration or both upstream and downstream filtration or no filtration.
  • the apparatus reduces cross contamination between inhaled and exhaled air which may include, but not limited to; the following four methods, which improves either or both an overall performance of the respirator, outcomes desired by the user.
  • Tests of some embodiments exhibit heat results in a heat index test.
  • a mask cavity heat index was measured for different mask configurations and ambient conditions.
  • Test 1 took place at an ambient condition of 68°F and 43% relative humidity (RH).
  • Test 2 took place at an ambient condition of 77°F and 34%RH.
  • Test 3 took place at an ambient condition of 80°F and 43% RH.
  • Anatomical dead air space (“dead space”) is that part of the respiratory tract not involved with gas exchange: the nasal pharyngeal area, trachea, and bronchi, which serve to conduct air.
  • ANSI Z88.2 standard in 2015 discusses why the increased dead air space added by wearing respirators lowers oxygen intake during inhalation.
  • Wearing a respirator increases the total dead air space because some exhaled air is held inside the respirator, effectively increasing dead air space within the respiratory tract.
  • Respirator dead space varies from one respirator to another, but in general a filtering face-piece respirator or a half-face reusable mask adds about 260 cc of dead air space to the respiratory system and a full-facepiece respirator adds 815 cc dead air space.
  • CO2 carbon dioxide
  • a filtering face-piece respirator or a half-face reusable mask adds about 260 cc of dead air space to the respiratory system and a full-facepiece respirator adds 815 cc dead air space.
  • CO2 carbon dioxide
  • CO2 CO2 ranges in concentration from 2% to 5%.
  • CO2 in normal fresh air is 0.04%.
  • Increased CO2 concentration stimulates breathing more than the lack of 02, at least initially for controlling respiration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

L'invention concerne un appareil respiratoire caréné et des procédés d'assemblage et d'utilisation d'un tel appareil respiratoire caréné. L'appareil respiratoire caréné peut comprendre un couvre-visage pour sceller au moins une partie du visage d'un utilisateur. L'appareil respiratoire caréné peut comprendre un élément de conduit d'air caréné pour fournir un écoulement d'air direct à partir de la bouche d'un utilisateur à l'intérieur du masque vers l'environnement extérieur. L'appareil respiratoire caréné peut comprendre un élément de couplage pour fournir une connexion d'accouplement étanche entre l'élément de conduit d'air caréné et le couvre-visage.
PCT/US2021/057783 2020-11-03 2021-11-02 Appareil respirateur WO2022098678A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/251,376 US20230405367A1 (en) 2020-11-03 2021-11-02 Respiration flow apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063109126P 2020-11-03 2020-11-03
US63/109,126 2020-11-03
US17/515,582 2021-11-01
US17/515,582 US11491355B1 (en) 2021-11-01 2021-11-01 Respiration flow apparatus

Publications (1)

Publication Number Publication Date
WO2022098678A1 true WO2022098678A1 (fr) 2022-05-12

Family

ID=81457399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/057783 WO2022098678A1 (fr) 2020-11-03 2021-11-02 Appareil respirateur

Country Status (1)

Country Link
WO (1) WO2022098678A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084905B2 (en) * 2008-09-24 2015-07-21 Cecil E. Campbell Air filtration apparatus and method
KR200480161Y1 (ko) * 2016-01-28 2016-04-19 김춘택 복식호흡 구조를 갖는 패션형 마스크
US9833645B2 (en) * 2012-05-26 2017-12-05 Faith K. Jones Personal air filter
US20190374797A1 (en) * 2018-06-12 2019-12-12 Faith Jones Filter Tube Respirator
CN211751661U (zh) * 2019-12-04 2020-10-27 郑州大学第一附属医院 口含式吸氧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084905B2 (en) * 2008-09-24 2015-07-21 Cecil E. Campbell Air filtration apparatus and method
US9833645B2 (en) * 2012-05-26 2017-12-05 Faith K. Jones Personal air filter
KR200480161Y1 (ko) * 2016-01-28 2016-04-19 김춘택 복식호흡 구조를 갖는 패션형 마스크
US20190374797A1 (en) * 2018-06-12 2019-12-12 Faith Jones Filter Tube Respirator
CN211751661U (zh) * 2019-12-04 2020-10-27 郑州大学第一附属医院 口含式吸氧装置

Similar Documents

Publication Publication Date Title
AU703897B2 (en) Disposable mask and suction catheter
US20060081249A1 (en) Personal respirator
US9084905B2 (en) Air filtration apparatus and method
US20070272244A1 (en) Fluidic barrier
CN211935225U (zh) 防护头罩
US20200061399A1 (en) Venus Flu Trap
US6957653B2 (en) Flushed-seal respirator
WO2021236955A1 (fr) Masque respiratoire pour utilisation à long terme
US20230181943A1 (en) Respirator mask for long-term use
CN212369433U (zh) 呼吸分道过滤外置式空气净化器
US11491355B1 (en) Respiration flow apparatus
US20230405367A1 (en) Respiration flow apparatus
WO2022098678A1 (fr) Appareil respirateur
US20220096880A1 (en) Air Filter Mask
CN212548005U (zh) 一种过滤式防毒面具
US11998777B2 (en) Serviceable respirator system with configurable components
US20220023674A1 (en) Serviceable respirator system with configurable components
US20230381555A1 (en) Air filter
CN113209507B (zh) 一种呼吸面罩
CN214854498U (zh) 呼吸系统传染病防护器
Germonpre et al. Evaluation of protection level and safety of commercially available snorkel masks as personal protection devices against aerosolized contaminants and SARS-CoV2
US20220023680A1 (en) Face shield
US20210387029A1 (en) Dual Clappet Mask
US20230390594A1 (en) A Bi-Valve Air Filter Mask
WO2021256998A1 (fr) Masque facial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889933

Country of ref document: EP

Kind code of ref document: A1