WO2022098130A1 - 무선 송수신 장치 및 그의 빔 형성 방법 - Google Patents

무선 송수신 장치 및 그의 빔 형성 방법 Download PDF

Info

Publication number
WO2022098130A1
WO2022098130A1 PCT/KR2021/015936 KR2021015936W WO2022098130A1 WO 2022098130 A1 WO2022098130 A1 WO 2022098130A1 KR 2021015936 W KR2021015936 W KR 2021015936W WO 2022098130 A1 WO2022098130 A1 WO 2022098130A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
signal
unit
orthogonal polarization
pair
Prior art date
Application number
PCT/KR2021/015936
Other languages
English (en)
French (fr)
Inventor
김덕용
문영찬
심준형
윤민선
오태열
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to JP2023527052A priority Critical patent/JP2023548192A/ja
Priority to EP21889595.1A priority patent/EP4243294A4/en
Priority to CN202180074659.XA priority patent/CN116803020A/zh
Priority claimed from KR1020210150724A external-priority patent/KR102593249B1/ko
Publication of WO2022098130A1 publication Critical patent/WO2022098130A1/ko
Priority to US18/143,058 priority patent/US20230275623A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0096Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges where a full band is frequency converted into another full band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a radio transceiver and method (RADIO TRANSMISSION AND RECEPTION APPARATUS AND BEAM FORMING METHOD THREROF), and more particularly, to a radio transceiver and method having multiple beams intersected by heterogeneous orthogonal polarization pairs.
  • a multiple-input multiple-output (MIMO) antenna module of mobile communication reduces the effect of fading due to multipath and performs a polarization diversity function.
  • antenna module array
  • Fading refers to a phenomenon in which the intensity of radio waves changes with time
  • diversity refers to a method of reducing the effect of fading by synthesizing several received signals with different electric field strength or signal output to noise output ratio to obtain a single signal.
  • the beams radiated from the double polarization antenna have a wide beam shape, and the wide beam type beam has a limitation in that it is difficult to transmit a signal to a distant point because a signal to noise ratio (SNR) is lowered by the surrounding environment.
  • SNR signal to noise ratio
  • this method may have a problem in that an antenna size may be increased because an antenna module for each of the polarized waves to be used must be separately configured.
  • the present invention has been devised to solve the above technical problem, and provides an orthogonal polarization pair to each of multiple beams formed in a cell or sector, but a heterogeneous orthogonal polarization pair between adjacent beams rather than the same type of polarization pair
  • An object of the present invention is to provide a wireless transceiver device and a beam forming method thereof, which minimize interference between beams to increase antenna efficiency and cell capacity by providing .
  • another object of the present invention is to extend coverage by separating fixed beams in one cell or sector to have different directions, and to improve the gain of an antenna by emitting a narrow beam, wireless transmission and reception To provide an apparatus and a method for forming a beam thereof.
  • a wireless transceiver apparatus provides an array antenna for transmitting and receiving signals through the multiple beams by forming multiple beams having different directions, and synthesizing an orthogonal polarization pair to form the multiple beams. It characterized in that it comprises a digital unit for generating a multi-beam signal for beam forming, and an RF unit for frequency-converting the multi-beam signal and outputting each to the array antenna.
  • the digital unit allocates heterogeneous orthogonal polarization pairs to neighboring beams among the multiple beams, and sets the phases of the orthogonal polarization pairs allocated to each beam differently.
  • the multi-beam is characterized in that each beam has different directivity in vertical and horizontal directions.
  • the digital unit may include a polarization synthesizing unit for synthesizing orthogonal polarization pairs from heterogeneous polarization signals, a polarization allocator for allocating the orthogonal polarization pairs to each beam, and an orthogonal polarization pair assigned to each beam based on the and a multi-beam forming unit that generates a beam signal for multi-beam forming in the array antenna.
  • the polarization synthesizer may convert the polarized wave of the input signal into a first orthogonal polarization pair and a second orthogonal polarization pair.
  • the first orthogonal polarization pair is characterized in that it is either a ⁇ 45 degree orthogonal polarization pair or a vertical/horizontal orthogonal polarization pair.
  • the second orthogonal polarization pair is characterized in that it is the other one of a ⁇ 45 degree orthogonal polarization pair or a vertical/horizontal orthogonal polarization pair.
  • the polarization allocator may allocate the synthesized first orthogonal polarization pair or the second orthogonal polarization pair to each beam.
  • the polarization allocator may allocate a first orthogonal polarization pair to a first beam among the respective beams and allocate the second orthogonal polarization pair to a second beam adjacent to the first beam.
  • the digital unit may further include a polarization assignment controller that generates a polarization assignment control signal for each beam according to the number of beams and a polarization component of a reference beam and provides the generated polarization assignment control signal to the polarization assignment unit.
  • a polarization assignment controller that generates a polarization assignment control signal for each beam according to the number of beams and a polarization component of a reference beam and provides the generated polarization assignment control signal to the polarization assignment unit.
  • the digital unit may further include a phase correction unit for correcting a magnitude and a phase of an orthogonal polarization pair allocated to the beam signal.
  • the digital unit determines the size and phase correction by comparing the size and phase of the orthogonal polarization pair assigned to the beam signal and the size and phase of the RF chain at the time of polarization synthesis of the RF unit, and sends the correction signal to the phase correction unit. It characterized in that it further comprises a polarization synthesis calibration unit to output.
  • the digital unit may include a multi-beam forming unit for generating a beam signal for forming multiple beams in the array antenna, a polarization combining unit for synthesizing heterogeneous orthogonal polarization pairs with the beam signal, and any one synthesized from the beam signal. and a polarization allocator for allocating orthogonal polarization pairs to each beam signal.
  • a wireless transceiver for achieving the above object, an array antenna for transmitting and receiving signals through the multiple beams by forming multiple beams having different directions, and an orthogonal polarization pair to an input signal
  • a digital unit for synthesizing and assigning any one orthogonal polarization pair to each beam, but assigning heterogeneous orthogonal polarization pairs to neighboring beams, and a polarized signal of the orthogonal polarization pair assigned to each beam and an RF unit for converting and outputting a beam signal to the array antenna by setting the phase of each polarized signal.
  • the RF unit is characterized in that it includes a plurality of RF chains for converting the frequency of each polarized signal, and a multi-beam forming unit for generating an analog multi-beam signal by setting the phases of each of the frequency-converted polarized signals differently.
  • the multi-beam is characterized in that different orthogonal polarization pairs are allocated to neighboring beams, and phases of orthogonal polarization pairs allocated to each beam are set differently.
  • an orthogonal polarization pair is provided to each of multiple beams formed in a cell or a sector, but a heterogeneous orthogonal polarization pair is not a homogeneous polarization pair between adjacent beams. Inter-beam interference can be minimized by giving , thereby increasing antenna efficiency and cell capacity.
  • coverage can be extended by separating fixed beams in one cell or sector to have different directions, and the gain of an antenna can be improved by radiating a narrow beam.
  • FIG. 1 is a diagram illustrating the configuration of a wireless transceiver according to a first embodiment of the present invention.
  • FIGS. 2 and 3 are diagrams illustrating an embodiment referenced to explain the operation of the polarization synthesizer according to an embodiment of the present invention.
  • 4A, 4B, and 5 are diagrams illustrating an embodiment referenced to describe an operation of a polarization allocator according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an embodiment referenced to explain the operation of a multi-beam former according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an embodiment referenced to describe an operation of a magnitude/phase corrector according to an embodiment of the present invention.
  • FIG 8, 9A, and 9B are diagrams illustrating an embodiment referenced to describe a beam forming operation according to an embodiment of the present invention.
  • FIG 10, 11A, and 11B are diagrams illustrating an embodiment referenced to describe a reception operation of a digital unit according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating the configuration of a wireless transceiver according to a second embodiment of the present invention.
  • 13 and 14 are diagrams illustrating an embodiment referenced to explain the operation of the digital unit according to the second embodiment of the present invention.
  • 15 is a diagram illustrating the configuration of a wireless transceiver according to a third embodiment of the present invention.
  • 16A and 16B are diagrams illustrating an embodiment referenced to explain the operational effects of a wireless transceiver according to an embodiment of the present invention.
  • 17 is a diagram illustrating an operation flow of a beamforming method of a wireless transceiver according to the first embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an operation flow of a beamforming method of a wireless transceiver according to a second embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an operation flow of a beamforming method of a wireless transceiver according to a third embodiment of the present invention.
  • the present invention relates to a wireless transceiver and method, and the wireless transceiver according to the present invention can be applied to a massive multiple-input and multiple-output (MIMO) system using multiple beams.
  • MIMO massive multiple-input and multiple-output
  • FIG. 1 is a diagram illustrating a configuration of a wireless transceiver according to an embodiment of the present invention.
  • the wireless transceiver 10 may include an array antenna 100 , an RF unit 200 , and a digital unit 300 .
  • the array antenna 100 includes a plurality of antenna modules 110 .
  • the array antenna 100 arranges a plurality of antenna modules 110 at a predetermined position according to a predetermined pattern, respectively, and adjusts the phase and size according to the arrangement position of each antenna module 110 to direct the beam in a predetermined direction. radiating antenna.
  • the array antenna 100 may form multiple beams according to the beam forming control signal generated by the RF unit 200 or the digital unit 300 .
  • Each antenna module 110 may form multiple beams having different directivity in a vertical or horizontal direction within cell coverage. Accordingly, each antenna module 110 may be dynamically configured to perform transmission or reception for a specific beam direction.
  • Each antenna module 110 may be composed of two or more radiating elements having different polarization directions.
  • the antenna module 110 may be a double polarization antenna module including two radiating elements having orthogonal polarization directions.
  • the double polarization antenna module comprises a first radiating element having a polarization direction of +45 degrees and a second radiating element having a polarization direction of -45 degrees orthogonal to (or perpendicular) to the polarization direction of the first radiating element.
  • the double polarization antenna module includes a third radiating element having a vertical polarization direction and a fourth radiating element having a horizontal polarization direction orthogonal (or perpendicular) to the polarization direction of the third radiating element. can be configured.
  • the antenna module 110 may be a quadruple polarization antenna module (or a quad polarization antenna module) including four radiating elements having orthogonal polarization directions.
  • the quadruple polarization antenna module includes a first radiating element having a polarization direction of +45 degrees, a second radiating element having a polarization direction of -45 degrees perpendicular to (or perpendicular) to the polarization direction of the first radiating element, vertical (vertical) ) may be configured to include a third radiating element having a polarization direction and a fourth radiating element having a horizontal (Horizontal) polarization direction perpendicular to (or perpendicular to) the polarization direction of the third radiating element.
  • the third radiating element and/or the fourth radiating element may have a polarization direction difference of ⁇ 45 degrees from the first radiating element and/or the second radiating element.
  • Beams radiated through the quadruple polarization antenna module may have a narrow beam shape, and among these beams, adjacent beams may have different orthogonal polarization directions.
  • 'orthogonal' or 'vertical' may include both a case in which the polarization direction of the radiating elements has an angular difference of exactly 90 degrees and a case where the polarization direction of the radiating elements has an angular difference of 90 ⁇ .
  • may vary depending on an error in the manufacturing process of the antenna module 110 , the degree of correlation with other antenna modules, the need to adjust the beam forming direction, and the like.
  • Radiating elements constituting the antenna module 110 may be disposed in various forms within the constituting region of the antenna module 110 .
  • radiating elements constituting the antenna module 110 may be disposed to be spaced apart from each other.
  • the radiating elements constituting the antenna module 110 may be arranged such that the centers of some or all of the radiating elements cross each other. In this case, the area occupied by the radiating elements in the antenna module 110 is reduced, so that the area efficiency of the entire antenna module can be increased.
  • the increase in the area efficiency of the antenna module 110 may lead to improved convenience according to the manufacture, installation, maintenance, etc. of the antenna.
  • a beam formed by each antenna module 110 is formed by at least two orthogonal polarization pairs that are orthogonal to each other, and orthogonal polarization pairs of neighboring beams may be formed of orthogonal polarization waves of different types (directions).
  • a first beam among the plurality of beams may be formed as a first type orthogonal polarization pair.
  • the first type orthogonal polarization pair may be a polarization pair consisting of a +45 degree polarization signal and a -45 degree polarization signal.
  • At least one second beam adjacent to the first beam may be formed as a second type orthogonal polarization pair.
  • the second type orthogonal polarization pair may be a polarization pair including a vertical polarization signal and a horizontal polarization signal.
  • the present invention in forming a multi-beam, by applying different types (heterogeneous) orthogonal polarization pairs to neighboring beams, correlation between neighboring beams is reduced, thereby improving communication quality.
  • different types of orthogonal polarization pairs may be applied to neighboring beams not only in the horizontal direction but also in the beams neighboring in the vertical direction.
  • the orthogonality of the radio channel is improved by applying the orthogonal polarization pair, the channel capacity of the radio transmission/reception system may be increased.
  • antenna modules forming a beam within the same sector form one beam for each module, and each beam has the same polarization or one polarization component.
  • a method of forming can be considered.
  • each antenna module forming a beam within the same sector transmits a pair of orthogonal polarized signals (eg, ⁇ 45 degrees orthogonal polarization) for each module. signal) to form a pair of beams. That is, one antenna module generates two beams for two polarized signals (eg, a 45 degree orthogonal polarization signal), one of the two beams is a +45 degree polarized signal, and the other is a -45 degree polarized signal. signal is assigned.
  • the pair of polarized signals are set to have different phases as described above, the beams are spatially separated, so that interference between the beams is minimized.
  • the antenna module adjacent to the antenna module forming a pair of beams having the pair of ⁇ 45 degrees orthogonally polarized signals is another pair of polarized signals (V/ Since a pair of beams having an H orthogonal polarization signal) is formed, interference between beams of neighboring antenna modules can also be minimized.
  • a beam having a pair of 45 degree orthogonal polarization signals and a beam having another pair of same type beams having a 45 degree orthogonal polarization signal can be spatially completely separated, so that beams having homopolarization Interference is also minimized.
  • the RF unit 200 may include a plurality of RF chains 210 .
  • the RF chain 210 may include a filter, a power amplifier (PA), a low noise amplifier (LNA), and an RFIC.
  • the RFIC may include a digital to analog converter (DAC)/analog to digital converter (ADC), a mixer, and the like.
  • the RF chain 210 modulates a signal into a signal suitable for transmission using a radio frequency antenna or converts a signal received through the array antenna 100 into a signal suitable for sampling and baseband processing.
  • the RF unit 200 may include an analog multi-beam former. If the RF unit 200 includes an analog multi-beam former, the multi-beam former of the digital unit 300 may be omitted. For a detailed description thereof, reference will be made to the embodiment of FIG. 15, which will be described later.
  • the multi-beam forming of the present invention basically uses a digital beam forming technique.
  • analog beam forming an analog signal on which digital signal processing has been completed is divided into multiple paths, and a beam is formed by setting a phase shift (PS) and power amplifier (PA) in each path.
  • PS phase shift
  • PA power amplifier
  • a manner of forming it consists of a transmit and receive system structure consisting of a plurality of phase shifters and signal attenuators together with one RF chain.
  • Analog beamforming is a method of forming the direction and shape of a beam by changing the phase shift and the phase and amplitude values of the signal attenuator connected to each antenna, respectively.
  • This analog beamforming technique is weak in terms of system performance and economic feasibility due to the limited resolution characteristics of phase shift and expensive component price, and is structurally incompatible with the spatial multiplexing transmission technique for high capacity.
  • digital beamforming is a technique of forming a beam at a digital stage using baseband processing of a base station in order to maximize diversity and multiplexing gain.
  • an RF chain is connected for each individual antenna, and RF circuits such as phase shift or signal attenuator are not used. Instead of changing it, the phase and amplitude of the signal are changed through digital signal processing in the baseband.
  • the multi-beam forming of the present invention is characterized in that digital beam forming is implemented in a radio unit (RU) rather than a digital unit (DU) of the antenna system, and a detailed description thereof will be described later. do it with
  • the array antenna 100 may be implemented in a form included in the RF unit 200 .
  • the digital unit 300 includes an interface unit 310 , a polarization synthesis unit 320 , 360 , a polarization assignment unit 330 , 370 , a multi-beam forming unit 340 , a magnitude/phase correction unit 350 , and a polarization assignment control unit. 380 , and a polarization synthesis calibration unit 390 may be included.
  • the digital unit 300 may be a digital front end (DFE) of a radio unit (RU) or may be implemented in the form of some unit included therein.
  • DFE digital front end
  • the wireless transceiver 100 In contrast to conventional digital beamforming, all operations related to beamforming are performed in the digital device (DU) of the antenna system, the wireless transceiver 100 according to the present invention not only performs beamforming in the digital device of the antenna system, but also, It is characterized in that operations such as polarization synthesis and allocation are performed in a radio unit (RU).
  • RU radio unit
  • the radio unit cannot distinguish users, it does not form a different beam for each user, but forms the same beam for all users in a sector.
  • the digital unit 300 may be configured to have different positions of the multi-beam forming unit 340 as shown in [Embodiment 1] of FIG. 1 or [Embodiment 2] of FIG. 12 .
  • the interface unit 310 serves to receive a signal from a device connected to the wireless transceiver 10 or output (transmit) a signal to the device.
  • the interface unit 310 may be a fronthaul interface that connects the wireless transceiver 10 to a digital unit (DU) of the base station.
  • the fronthaul interface may correspond to Common Public Radio Interface (CPRI), enhanced CPRI (eCPRI), or the like.
  • CPRI Common Public Radio Interface
  • eCPRI enhanced CPRI
  • the polarization synthesizer 320 and the polarization allocator 330 may arrange a unit for processing a transmission signal and a unit for processing a reception signal, respectively. In this case, the arrangement position and order of the transmission signal processing unit and the hand signal processing unit may be different.
  • the beamforming operation will be described based on the operation of processing the transmission signal.
  • the polarization synthesis unit 320 performs polarization synthesis by extracting four orthogonal polarization components based on the input signal.
  • the polarization synthesizer 320 may synthesize the orthogonal polarization pair and apply the synthesized orthogonal polarization pair to the polarization allocator 330 .
  • each antenna module 110 of the array antenna 100 is a double polarization antenna module.
  • the polarization synthesizer 320 when two signals, that is, a first input signal and a second input signal are input, the polarization synthesizer 320 generates first and second polarized waves orthogonal to the first and second input signals. ingredients can be extracted.
  • the polarization synthesizer 320 may extract third and fourth polarization components that are orthogonal to each other by converting the first and second polarization components.
  • the polarization synthesizer 320 may extract four polarization components based on the input signal using the matrix of Equation 1 below.
  • a and b represent the first and second polarization components
  • Wow denotes the third and fourth polarization components, respectively.
  • first and second polarization components may form one orthogonal first polarization pair.
  • first and second polarization components may be any one of a ⁇ 45 degree polarization component or a vertical/horizontal polarization component.
  • the third and fourth polarization components may form another orthogonal second polarization pair.
  • the third and fourth polarization components may be the other one of a ⁇ 45 degree polarization component or a vertical/horizontal polarization component.
  • the polarization synthesis unit 320 extracts four polarization components based on the input signal using the matrix of Equation 1 above, and through this, different types of polarization pairs intersect multiple beams. can be formed
  • a fixed beam in one cell (or sector) is divided into a plurality of beams having different phases using a matrix, and an orthogonal polarization pair is applied to each divided beam.
  • Multiple beams can be formed in such a way that each of the polarization components of
  • the polarization component of the input signal may be determined according to the characteristics of the array antenna 100 .
  • each antenna module 110 of the array antenna 100 is a ⁇ 45 degree polarization antenna module
  • the first and second polarization components are ⁇ 45 degree polarization components
  • the third and fourth polarization components are vertical/ It can be a vertical/horizontal polarization component.
  • FIG. 3 For an embodiment thereof, refer to FIG. 3 .
  • the polarization components a and b of the first input signal and the second input signal are determined according to the characteristics of the array antenna 100 . Accordingly, when the polarization components a and b are determined, the polarization synthesis unit 320 extracts the first and second polarization components a and b.
  • the polarization synthesis unit 320 uses the matrix of [Equation 1] to calculate the polarization components a and b to extract the third polarization component, and the polarization components a and b to extract the fourth polarization component.
  • the first polarization component is +45 degree polarized
  • the second polarized component is -45 degree polarized
  • the third polarized component is vertically polarized
  • the fourth polarized component is horizontally polarized. It is not limited.
  • the polarization synthesis unit 320 synthesizes the polarization components of the orthogonal polarization pair using the extracted first to fourth polarization components, and outputs the synthesized signal of the orthogonal polarization pair to the polarization allocator 330 .
  • the polarization allocator 330 is an orthogonal polarization pair synthesized by the polarization combining unit 320, that is, any one orthogonal for beam forming among a ⁇ 45 degree orthogonal polarization pair and a vertical/horizontal (V/H) orthogonal polarization pair. Select polarization pairs and assign each to multiple beams. In this case, the physical polarization synthesis of the orthogonal polarization pair allocated to the multi-beam is performed at the array antenna 100 stage.
  • the polarization allocator 330 may allocate orthogonal polarization pairs applied to each beam based on the number of beams formed by the array antenna 100 , the polarization of a reference beam, and the like.
  • the polarization allocator 330 may directly receive the number of beams and polarization information of the reference beam.
  • the polarization allocation unit 330 may allocate an orthogonal polarization pair applied to each beam according to the received polarization allocation control signal.
  • the polarization allocator 330 allocates any one orthogonal polarization pair to a reference beam among multiple beams, and cross-allocates different types of orthogonal polarization pairs to neighboring beams based on the orthogonal polarization pair of the reference beam.
  • the polarization allocator 330 allocates the first orthogonal polarization pair of the first and second polarization components to the first beam serving as a reference, and the third and fourth polarizations to the second beam adjacent to the first beam.
  • a second orthogonal polarization pair of components may be assigned.
  • the polarization allocator 330 may intersect and allocate the first orthogonal polarization pair to the third beam adjacent to the second beam.
  • FIGS. 4A and 4B For a detailed description of an operation of allocating an orthogonal polarization pair to each beam by the polarization allocator 330, refer to FIGS. 4A and 4B.
  • the polarization allocator 330 is a ⁇ 45 composed of four polarization components of +45 degrees, -45 degrees, V, and H extracted based on the input signals S 1 and S 2 .
  • An orthogonal polarization pair or a V/H orthogonal polarization pair may be allocated to multiple beams, respectively.
  • S 1 is a +45 polarization signal
  • S 2 is a -45 degree polarization signal.
  • the polarization allocator 330 may allocate a ⁇ 45 degree orthogonal polarization pair to any one of the multiple beams as shown in FIG. 4A .
  • the array antenna 100 may form the first beam using the +45 degree polarization signal and the -45 degree polarization signal.
  • the polarization allocator 330 may allocate a V/H orthogonal polarization pair to at least one or more second beams adjacent to the first beam.
  • the array antenna 100 may form a second beam using a vertical (V) polarized signal and a horizontal (H) polarized signal.
  • the polarization allocator 330 may allocate a 45 degree orthogonal polarization pair to at least one or more beams adjacent to the second beam.
  • the polarization allocator 330 may cross-assign a 45 degree orthogonal polarization pair or a V/H orthogonal polarization pair to multiple beams.
  • the array antenna 100 forms a multi-beam, since neighboring beams have heterogeneous, that is, different types of polarization components, the correlation between neighboring beams is lowered, thereby improving signal transmission/reception efficiency. can bring
  • the polarization combining unit 320 and the polarization allocating unit 330 are configured as a single piece, but as shown in FIG. 5 , the polarization combining unit 320 and the polarization allocating unit 330 may be configured in plurality. may be
  • the polarization allocation control unit 380 may control the operation of the plurality of polarization allocation units 330 .
  • the polarization allocation control unit 380 may generate a polarization allocation control signal corresponding to each beam in response to the input number of beams.
  • the polarization allocation control signal may include information on a target beam to which an orthogonal polarization pair is to be allocated, and information on an orthogonal polarization pair allocated to the target beam.
  • the polarization allocation control unit 380 may transmit a polarization allocation control signal generated corresponding to each beam to the plurality of polarization allocation units 330 , respectively.
  • the polarization assignment controller 380 may determine a polarization assignment unit 330 corresponding to each beam to be formed, and transmit a polarization assignment control signal to each polarization assignment unit 330 .
  • each polarization allocation unit 330 may allocate an orthogonal polarization pair to the target beam based on the polarization allocation control signal received from the polarization allocation control unit 380 .
  • the polarization allocator 330 may output information on the orthogonal polarization pair allocated to each beam to the multi-beam former 340 .
  • the multi-beam forming unit 340 divides a fixed beam in a cell (or sector) into a plurality of beams having different phases by using a matrix, and provides a polarization component of an orthogonal polarization pair to each of the divided beams. .
  • the multi-beam former 340 uses information on the orthogonal polarization pair allocated to each beam to multi-beam.
  • Each beam signal is generated for
  • the multi-beam former 340 may set the phase of each beam signal differently.
  • the respective beam signals have different phases, beams having different directions may be formed when forming the beam by the array antenna 100 .
  • the multi-beam forming unit 340 outputs each of the generated beam signals to each antenna module 110 of the array antenna 100 through the RF chain 210 of the RF unit 200 .
  • each beam signal may include a signal of an orthogonal polarization pair allocated to a target beam.
  • the multi-beam former 340 may generate a beam signal corresponding to a polarization signal for the orthogonal polarization pair allocated to each beam.
  • the multi-beam former 340 is input signals S 1 , S 2 , ... , S M may be multiplied by a weight vector to generate each beam signal.
  • the direction and shape of each beam signal may vary according to a weight vector value multiplied by the input signal.
  • Each beam signal generated by the multi-beam forming unit 340 may be output through each antenna module 110 of the array antenna 100 through the RF unit 200 .
  • each of the RF chains 211 to 219 of the RF unit 200 performs frequency conversion of the input beam signal, that is, the polarized signal allocated to the beam, and then transmits it through the corresponding antenna module 110 .
  • the digital unit 300 determines the magnitude and phase of the beam signal by the magnitude/phase correction unit 350 and the polarization synthesis calibration unit 390 . correct the
  • the polarization components synthesized by the polarization combining unit 320 are substantially polarized on the array antenna 100 side. At this time, if the amplitude and phase at the time of polarization synthesis are not the same as the amplitude and phase of the RF chain 210, the direction of the polarization is changed so that the magnitude and phase are the same. A correction process is required.
  • the polarization synthesis calibration unit 390 generates a correction signal by comparing the magnitude and phase of the orthogonal polarization pair assigned to the beam and the signal magnitude and phase of the RF chain 210 during polarization synthesis, and generates a correction signal. may be transmitted to the magnitude/phase corrector 350 .
  • the magnitude/phase correction unit 350 corrects the polarization magnitude and phase of the beam signal based on the correction signal transmitted from the polarization synthesis calibrator 390 . At this time, the magnitude/phase correction unit 350 corrects the polarization magnitude and phase of the polarization synthesized beam signal to be the same as the signal magnitude and phase of the RF chain 210 .
  • the polarization synthesis calibration unit 390 generates a correction signal only for the signal for which the polarization synthesis occurs and transmits it to the magnitude/phase correction unit 350, in which case the magnitude/phase correction unit 350 operates only with respect to the beam signal to be corrected. Correct the polarization magnitude and phase.
  • the magnitude/phase corrector 350 may correct the magnitude and phase of the polarization signal only when V/H polarization synthesis is performed.
  • the magnitude/phase corrector 350 may be implemented as many as the number of RF chains 210 , correct the polarization magnitude and phase of the beam signal, and output the corrected beam signal to the corresponding RF chain 210 . .
  • the plurality of RF chains 211 to 219 correspond to the plurality of antenna modules 111 to 119, respectively, and the size/phase correction units 351 to 359 are the plurality of RF chains 2111 to 219) and may be connected to correspond to a plurality of RF chains 2111 to 219, respectively.
  • the first magnitude/phase corrector 351 corrects the magnitude and phase of the polarization synthesized beam signal to be the same as the magnitude and phase of the first RF chain 211 , and applies the corrected beam signal to the first RF chain. It may be output to the first antenna module 111 through 211 .
  • the first antenna module forms a beam corresponding to the corrected magnitude and phase.
  • the magnitude/phase corrector 350 may ensure channel reversibility by correcting the magnitude and phase change of a signal generated during polarization synthesis, and may form a beam in an accurate direction in the array antenna. Accordingly, each antenna module 110 forms a multi-beam according to each input beam signal.
  • each beam formed by each antenna module 110 not only has different directions, but also has heterogeneous polarization characteristics between neighboring beams.
  • the first antenna module receiving the beam signal for the input signals S 1 and S 2 outputs a ⁇ 45 degree orthogonal polarization signal.
  • the beam A is formed in the array antenna 100 in the first direction by the outputted 45 degree orthogonal polarization signal.
  • the second antenna module receiving the beam signal for the input signals S 3 and S 4 outputs a V/H orthogonal polarization signal of a different type from the neighboring beam A.
  • a beam B is formed in the array antenna 100 in the second direction by the output V/H orthogonal polarization signal.
  • the third antenna module receiving the beam signals for the input signals S 5 and S 6 outputs a 45 degree orthogonal polarization signal of a different type from the neighboring beam B.
  • a beam C is formed in the array antenna 100 in the third direction by the outputted 45 degree orthogonal polarization signal.
  • the fourth antenna module receiving the beam signal for the input signals S 7 and S 8 outputs a V/H orthogonal polarization signal of a different type from that of the neighboring beam C.
  • a beam D is formed in the array antenna 100 in the fourth direction by the output V/H orthogonal polarization signal.
  • the multi-beam formed by the array antenna 100 is formed such that each beam faces in different directions, and adjacent beams are formed of heterogeneous orthogonal polarization pairs.
  • the multiple beams formed by the array antenna 100 not only have different directions and orthogonal polarization pairs between beams adjacent to each other in the horizontal direction as shown in FIG. 9A, but also have different directions and orthogonal polarization pairs, as shown in FIG. For each beam of , the direction and orthogonal polarization pair are different between neighboring beams.
  • the multiple beams formed through the array antenna 100 are separated in space according to a set phase and radiated in the form of a plurality of beams.
  • each beam is radiated in a state in which it has a polarization direction of the radiated radiation element, two beams adjacent to each other in space may have different polarizations.
  • the polarization between adjacent beams is different, so that the correlation problem between signals can be solved.
  • the beam forming process has been mainly described with respect to the configuration and operation in the case of transmitting a signal.
  • FIGS. 11A and 11B An embodiment of the detailed operation of the polarization combining units 361 to 369 and the polarization allocating units 371 to 379 when receiving a signal will be described with reference to FIGS. 11A and 11B .
  • the polarization synthesis units 361 to 369 have four polarization components based on ⁇ 45, which is the polarization component of the reception beam, that is, Extract +45 degrees, -45 degrees, V, H.
  • the polarization synthesis units 361 to 369 extract the first polarization component a and the second polarization component b based on the polarization component of the reception beam.
  • the polarization synthesis units 361 to 369 combine the polarization components a and b using the matrix of [Equation 1]. to extract the third polarization component, and the polarization components a and b to extract the fourth polarization component.
  • the first polarization component (a) is +45 degree polarized
  • the second polarization component (b) is -45 degree polarized
  • the third polarization component ( ) is the vertical polarization
  • the polarization allocator 371 to 379 allocates a 45 degree orthogonal polarization pair or a V/H orthogonal polarization pair consisting of four polarization components extracted based on the polarization component of the reception beam to the output signal, respectively.
  • the polarization allocator 371 may allocate a 45 degree orthogonal polarization pair to the first signal converted into a digital signal corresponding to the reception beam.
  • the polarization allocator 379 may allocate a V/H orthogonal polarization pair to the second signal as shown in FIG. 11B .
  • the multi-beam forming unit 340 is disposed between the polarization combining unit 320 / allocating unit 330 and the magnitude/phase correcting unit 350 , but according to the embodiment, the multi-beam forming unit 340 is described.
  • the arrangement position of the part 340 may vary.
  • the multi-beam forming unit may be disposed between the interface and the polarization combining unit/polarization allocating unit.
  • input signals S 1 , S 2 , ... , SM may generate a multi-beam signal having different phases, and output the generated multi-beam signal to the polarization synthesizer.
  • the polarization synthesizing unit synthesizes polarization components of an orthogonal polarization pair for each beam signal generated by the multi-beam forming unit, and the polarization allocator selects any one orthogonal polarization pair from among heterogeneous orthogonal polarization pairs. can be assigned to a beam signal of
  • the operation is performed according to the reverse order of the case of transmitting the signal, but the positions of the polarization combining unit and the polarization allocating unit may be changed as shown in FIG. 14 .
  • the polarization synthesizing unit and the polarization allocating unit in the case of receiving a signal can be described with the operations of FIGS. 11A and 11B . Therefore, a redundant description thereof will be omitted.
  • the multi-beam-former may be disposed in the analog terminal as shown in FIG. 15 .
  • the multi-beam forming unit 400 may be disposed between the RF chain of the RF unit 200 and the array antenna 100 .
  • the multi-beam former 400 in this embodiment may generate beam signals in different directions having directivity through analog beamforming. Specifically, the multi-beam former 400 may generate beam signals in different directions by adjusting the phase of the analog signal on which digital signal processing has been completed to correspond to each of the array antennas 100 . As described above, as the phase of each beam signal is adjusted, the phase between the reference antenna and the array antenna 100 is adjusted.
  • the multi-beam former 400 may be implemented in the form of a phase setting module that shifts the phase of the signal output by the RF chain and outputs it to the array antenna 100 .
  • the phase setting module may set different phases between transmission signals or reception signals so that beams radiated through the antenna module are separated in space.
  • the phase setting module may be implemented using a phase shifter or the like.
  • analog beamforming uses a weight vector having a predetermined direction of a beam, there is no need for a separate algorithm for calculating the weight vector, so it is easy to implement.
  • the wireless transceiver 10 uses heterogeneous polarization rather than homogeneous polarization between adjacent beams among multiple beams formed in a cell or sector, thereby increasing the correlation between adjacent beams. can be reduced to maximize antenna efficiency.
  • heterogeneous polarization pairs such as ⁇ 45 degree orthogonal polarization and V/H orthogonal polarization are allocated to the beam, but any kind of polarization orthogonal to each other such as left circular polarization/right circular polarization is heterogeneous polarization can be used as
  • 16A and 16B are diagrams illustrating an embodiment referenced to explain the operational effects of a wireless transceiver according to an embodiment of the present invention.
  • a wireless transceiver provides an orthogonal polarization pair to each of multiple beams formed in a cell or a sector, but provides a heterogeneous orthogonal polarization pair between adjacent beams rather than the same type of polarization pair. . For this reason, the wireless transceiver according to the present invention can reduce the correlation between adjacent beams with respect to multiple beams formed by the array antenna.
  • FIG. 16A is a graph illustrating a change in ergodic capacity according to a location of a user terminal (UE) in a MIMO system having an array antenna having a 4X4 structure.
  • the ergodic capacity indicates the cell (or sector) capacity of the antenna system, and means that the performance of the antenna increases as the cell (or sector) capacity increases.
  • reference numeral 1610 is a graph showing the change in ergodic capacity of a system using a conventional sector antenna
  • reference numeral 1620 is a graph showing the change in ergodic capacity of a system in which a beam is divided into two directions using a sector antenna.
  • 1630 is a graph showing the change in ergodic capacity of a system using the antenna of the wireless transceiver according to the present invention.
  • the simulation result for the ergodic capacity change of FIG. 16A is a wireless unit including an array antenna having four transmit (Tx) antennas and four receive (Rx) antennas with a carrier frequency of 3.5 GHz.
  • Tx transmit
  • Rx receive
  • the tilt angle of the RU is adjusted in a range of about 10 degrees
  • the location of the user terminal (UE) is -60 degrees at a distance of about 160m from the RU. It is calculated based on the data measured under the conditions arranged at intervals of 10 degrees between 60 degrees.
  • the ergodic capacitance 1610 in a system using a conventional sector antenna varies within a range of about 8 bps/Hz to 11 bps/Hz, and one sector is divided into two beams (homogeneous polarization).
  • the ergodic capacity of the system 1620 divided by ? varies within a range of about 8 bps/Hz to 12 bps/Hz.
  • the ergodic capacity 1630 of the wireless transceiver according to the present invention varies within the range of about 9 bps/Hz to 16 bps/Hz.
  • the change in the ergodic capacity of the wireless transceiver according to the present invention is increased compared to a system in which a beam is divided into two directions using a conventional sector antenna or a sector antenna.
  • FIG. 16B shows a comparison of average and maximum doses for ergodic doses in the graph of FIG. 16A .
  • the average capacity for the ergodic capacity is about 10 bps/Hz and the maximum capacity is about 11 bps/Hz.
  • the average capacity for ergodic capacity in a system in which one sector is divided into two beams is about 11 bps/Hz and the maximum capacity is about 12 bps/Hz.
  • the average capacity of the ergodic capacity of the radio transceiver according to the present invention is about 13 bps/Hz, and the maximum capacity is about 16 bps/Hz, and the average capacity and the maximum capacity of the radio transceiver according to the present invention are sector antennas. It can be seen that the average capacity and the maximum capacity of the system to which it is applied increased by about 30%.
  • the wireless transceiver according to the present invention has the effect of increasing antenna performance and cell (or sector) capacity as much as the ergodic capacity increases compared to the prior art.
  • digital beamforming is processed by the digital unit (DU) of the antenna system, and in this case, beamforming, polarization synthesis, and assignment of each signal going to all antennas through digital signal processing in the baseband are individually performed. Controlled.
  • the load of the digital device DU and the capacity of the front hall increase.
  • beamforming is performed by multiplying an input signal by a weight vector.
  • the load of the digital device DU increases due to digital beamforming.
  • an increase in the load of the digital device DU or an increase in the capacity of the front hall requires improvement from the viewpoint of the 5G communication system.
  • the wireless transceiver 100 performs operations such as polarization synthesis and allocation as well as beamforming performed by the digital unit (DU) of the antenna system in the radio unit (RU). .
  • the wireless transceiver 100 by distributing the processing operation in the digital device (DU) to the radio unit (RU), the load of the digital device (DU) can be reduced and the capacity of the front hall can be reduced.
  • 17 is a diagram illustrating an operation flow of a beamforming method of a wireless transceiver according to the first embodiment of the present invention.
  • the wireless transceiver 10 includes a multi-beam forming unit between the polarization allocator 330 and the magnitude/phase corrector 350 in the digital unit 300 as shown in FIG. 1 . It is an arranged structure.
  • the polarization synthesizing unit 320 of the wireless transceiver 10 synthesizes an orthogonal polarization pair with the stream for the input signal (S110).
  • the wireless transceiver 10 may synthesize two orthogonal polarization signals into one orthogonal polarization pair.
  • the wireless transceiver 10 extracts four polarization components, that is, a ⁇ 45 degree polarization component and a vertical/horizontal polarization component, using a predefined matrix based on the input signal, and extracts Among the polarized components, the orthogonal ⁇ 45 degree polarization component is synthesized as one orthogonal polarization pair, and the V/H polarization component is synthesized with the other orthogonal polarization pair.
  • the polarization allocator 330 of the wireless transceiver 10 allocates the two orthogonal polarization pairs synthesized in the process 'S110' to the multi-beams, respectively (S120). In this case, the polarization allocator 330 allocates one orthogonal polarization pair to the reference beam according to the number of beams and the polarization component of the reference beam, and allocates another orthogonal polarization pair to beams adjacent to the reference beam.
  • the polarization synthesizer 320 of the wireless transceiver 10 generates a multi-beam signal based on signals of an orthogonal polarization pair allocated to each beam in step 'S120' (S130).
  • the multi-beams generated in the process 'S130' may be generated so that each beam has a different phase.
  • the RF unit 200 of the wireless transceiver 10 frequency-converts each beam signal through a plurality of RF chains 210 ( S140), beams having different directions are formed through each antenna module 110 of the array antenna 100 (S150).
  • the wireless transceiver 10 transmits/receives a signal through the beam formed through the above processes. At this time, since the respective beams not only have different directivity, but also have different polarization components between neighboring beams, the correlation between the neighboring beams is lowered, so that the signal transmission/reception efficiency of the array antenna 100 can be increased.
  • the magnitude and phase of the multi-beam signal generated in the process 'S130' before the process 'S140' are RF
  • a correction operation may be additionally performed according to the signal magnitude and phase of the chain 210 .
  • the beam can be formed in the correct direction by preventing the direction of the polarized wave from being changed during polarization synthesis.
  • FIG. 18 is a diagram illustrating a beamforming method of a wireless transceiver according to a second embodiment of the present invention.
  • a multi-beam forming unit is provided between the interface in the digital unit 300 and the polarization synthesizer 320/polarization allocator 330 . It is an arranged structure.
  • the multi-beam forming unit of the wireless transceiver 10 generates a multi-beam signal corresponding to the input signal (S210).
  • the multi-beam former may set the phase of each beam signal differently.
  • the polarization synthesizing unit 320 of the wireless transceiver 10 synthesizes an orthogonal polarization pair with the multi-beam signal generated in the process 'S210' (S220).
  • the wireless transceiver 10 may synthesize two orthogonal polarization signals into one orthogonal polarization pair.
  • the wireless transceiver 10 extracts four polarization components, that is, a ⁇ 45 degree polarization component and a vertical/horizontal polarization component, using a predefined matrix based on the input signal, and extracts Among the polarized components, the orthogonal ⁇ 45 degree polarization component is synthesized as one orthogonal polarization pair, and the V/H polarization component is synthesized with the other orthogonal polarization pair.
  • the polarization allocator 330 of the wireless transceiver 10 allocates the two orthogonal polarization pairs synthesized in the process 'S220' to the multi-beam signal, respectively (S230). In this case, the polarization allocator 330 allocates any one orthogonal polarization pair to the reference beam signal according to the number of beams and the polarization component of the reference beam, and the other orthogonal polarization pair to the beam signals adjacent to the reference beam signal. to allocate
  • the RF unit 200 of the wireless transceiver device 10 frequency-converts each beam signal through a plurality of RF chains 210 (S240), and through each antenna module 110 of the array antenna 100 Beams having different directions are formed (S250).
  • the wireless transceiver 10 transmits/receives a signal through the beam formed through the above processes. At this time, since the respective beams not only have different directivity, but also have different polarization components between neighboring beams, the correlation between the neighboring beams is lowered, so that the signal transmission/reception efficiency of the array antenna 100 can be increased.
  • the magnitude and phase of the multi-beam signal 'before the process 'S240' are measured in the RF chain 210 signal.
  • An operation of correcting according to magnitude and phase may be additionally performed.
  • the beam can be formed in the correct direction by preventing the direction of the polarized wave from being changed during polarization synthesis.
  • FIG. 19 is a diagram illustrating a beam forming method of a wireless transceiver according to a third embodiment of the present invention.
  • the wireless transceiver 10 has a structure in which a multi-beam forming unit is disposed at the analog end of the RF unit 200 as shown in FIG. 15 .
  • the polarization synthesizing unit 320 of the wireless transceiver 10 synthesizes an orthogonal polarization pair in the stream for the input signal (S310).
  • the wireless transceiver 10 may synthesize two orthogonal polarization signals into one orthogonal polarization pair.
  • the wireless transceiver 10 extracts four polarization components, that is, a ⁇ 45 degree polarization component and a vertical/horizontal polarization component, using a predefined matrix based on the input signal, and extracts Among the polarized components, the orthogonal ⁇ 45 degree polarization component is synthesized as one orthogonal polarization pair, and the V/H polarization component is synthesized with the other orthogonal polarization pair.
  • the polarization allocator 330 of the wireless transceiver 10 allocates the two orthogonal polarization pairs synthesized in the process 'S310' to the multi-beams, respectively (S320). In this case, the polarization allocator 330 allocates one orthogonal polarization pair to the reference beam according to the number of beams and the polarization component of the reference beam, and allocates another orthogonal polarization pair to beams adjacent to the reference beam.
  • the RF unit 200 of the wireless transceiver 10 frequency-converts a polarized signal for each beam to which an orthogonal polarization pair is allocated through a plurality of RF chains 210 ( S330 ).
  • the multi-beam forming unit of the wireless transceiver 10 generates an analog multi-beam signal by differently setting the phases of the orthogonally polarized pair signals frequency-converted in the process 'S330' (S340), and the array antenna 100 Beams having different directions are formed through each of the antenna modules 110 ( S350 ).
  • the wireless transceiver 10 transmits/receives a signal through the beam formed through the above processes. At this time, since the respective beams not only have different directivity, but also have different polarization components between neighboring beams, the correlation between the neighboring beams is lowered, so that the signal transmission/reception efficiency of the array antenna 100 can be increased.
  • the magnitude and phase of the polarized signal before the process 'S330' are determined by the signal magnitude and the phase of the RF chain 210
  • An operation of correcting according to the phase may be additionally performed.
  • the beam can be formed in the correct direction by preventing the direction of the polarized wave from being changed during polarization synthesis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

본 발명은 무선 송수신 장치 및 그의 빔 형성 방법에 관한 것으로서, 본 발명에 따른 장치는, 서로 다른 방향성을 갖는 다중 빔을 형성하여 상기 다중 빔을 통해 신호를 송수신하는 배열 안테나, 직교 편파 쌍을 합성하여 상기 다중 빔 형성을 위한 다중 빔 신호를 생성하는 디지털부, 및 상기 다중 빔 신호를 주파수 변환하여 상기 배열 안테나로 각각 출력하는 RF부를 포함한다.

Description

무선 송수신 장치 및 그의 빔 형성 방법
본 발명은 무선 송수신 장치 및 방법(RADIO TRANSMISSION AND RECEPTION APPARATUS AND BEAM FORMING METHOD THREROF)에 관한 것으로, 보다 상세하게는 이종(異種) 직교 편파 쌍이 교차하는 다중 빔을 갖는 무선 송수신 장치 및 방법에 관한 것이다.
이동통신의 MIMO(multiple-input multiple-output) 안테나 모듈은 다중 경로에 의한 페이딩(fading) 영향을 감소시키고 편파 다이버시티(diversity) 기능을 수행하기 위해, 복수 개의 2중 편파 안테나 모듈(2중 편파 안테나 모듈 어레이)로 설계되는 것이 일반적이다.
페이딩이란 전파의 강도가 시간에 따라 변화하는 현상을 의미하며, 다이버시티란 전기장 세기 또는 신호 출력 대 노이즈 출력의 비가 서로 다른 여러 개의 수신신호들을 합성하여 단일의 신호를 얻음으로써 페이딩의 영향을 감소시키는 방식을 의미한다.
2중 편파 안테나로부터 방사되는 빔들은 wide 빔 형태를 가지며, wide 빔 형태의 빔은 주변 환경에 의해 SNR(signal to noise ratio)이 저하되어 먼 지점까지 신호를 전송하기 어려운 한계를 가지고 있다.
이러한 문제를 해결하기 위해 종래에는 2중 편파 안테나 모듈 어레이 내 방사소자들을 커플링하여(신호 경로를 공유하여) 동일 주파수의 신호(동일 편파의 신호)에 대해 공간(섹터)을 분리함으로써, 이러한 문제를 해결하고자 하였다.
그러나, 이와 같은 방법은 서로 같은 편파를 가지는 빔들이 인접한 위치에 배치되므로 각 빔들 간의 상관관계가 높아져 통신 품질이 저하되는 문제점을 발생시킬 수 있다.
이와 같이, 다중 빔을 사용하는 Massive MIMO(multiple-input and multiple-output) 시스템에서는 서로 인접하는 빔들 간 간섭으로 인하여 무선 채널의 상관 계수가 높아져 안테나의 신호 송수신 효율이 저하되는 문제가 발생한다. 더욱이, 빔 간의 간섭에 의한 영향으로 셀의 용량이 제한되는 문제를 가지고 있다.
최근에는 서로 다른 편파를 가지는 안테나 모듈들을 Massive MIMO 시스템에 채용하여 인접하는 빔들이 서로 다른 편파를 사용하도록 구성함으로써, 인접하는 빔들 간의 간섭을 감소시키고 있다. 그러나, 이 방법은 사용하고자 하는 편파들 각각에 대한 안테나 모듈을 별도로 구성해야 하므로, 제작 공정이 복잡해지기 때문에 많은 시간과 비용이 소요되는 문제점을 가진다.
또한, 이 방법은 사용하고자 하는 편파들 각각에 대한 안테나 모듈을 별도로 구성해야 하므로, 안테나 사이즈를 증가시킬 수 있는 문제점도 가질 수 있다.
본 발명은 상기한 기술적 과제를 해결하기 위하여 안출된 것으로서, 셀 또는 섹터 내에 형성되는 다중 빔 각각에 대해 직교 편파 쌍을 부여하되, 인접하는 빔들 간에는 동종의 편파 쌍이 아닌 이종(異種)의 직교 편파 쌍을 부여함으로써 빔 간의 간섭을 최소화하여 안테나 효율 및 셀 용량을 증가시키도록 한, 무선 송수신 장치 및 그의 빔 형성 방법을 제공하는데 그 목적이 있다.
또한, 본 발명의 다른 목적은, 하나의 셀 또는 섹터 내에서 고정된 빔을 서로 다른 방향을 갖도록 분리함으로써 커버리지를 확장시킬 수 있고, narrow 빔을 방사함으로써 안테나의 이득을 향상시키도록 한, 무선 송수신 장치 및 그의 빔 형성 방법을 제공함에 있다.
본 발명의 기술적 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위한 본 발명의 일 실시예에 따른 무선 송수신 장치는, 서로 다른 방향성을 갖는 다중 빔을 형성하여 상기 다중 빔을 통해 신호를 송수신하는 배열 안테나, 직교 편파 쌍을 합성하여 상기 다중 빔 형성을 위한 다중 빔 신호를 생성하는 디지털부, 및 상기 다중 빔 신호를 주파수 변환하여 상기 배열 안테나로 각각 출력하는 RF부를 포함하는 것을 특징으로 한다.
상기 디지털부는, 상기 다중 빔 중 서로 이웃한 빔들에 이종의 직교 편파 쌍을 할당하고, 각각의 빔에 할당된 직교 편파 쌍의 위상을 각각 다르게 설정하는 것을 특징으로 한다.
상기 다중 빔은, 각각의 빔이 수직 및 수평 방향으로 다른 방향성을 갖는 것을 특징으로 한다.
상기 디지털부는, 이종의 편파 신호들로부터 직교 편파 쌍을 합성하는 편파 합성부, 상기 직교 편파 쌍을 각각의 빔에 할당하는 편파 할당부, 및 상기 각각의 빔에 할당된 직교 편파 쌍에 기초하여 상기 배열 안테나에서의 다중 빔 형성을 위한 빔 신호를 생성하는 다중 빔 형성부를 포함하는 것을 특징으로 한다.
상기 편파 합성부는, 입력 신호의 편파를 제1 직교 편파 쌍 및 제2 직교 편파 쌍으로 변환하는 것을 특징으로 한다.
상기 제1 직교 편파 쌍은, ±45도 직교 편파 쌍 또는 수직/수평(vertical/horizontal) 직교 편파 쌍 중 어느 하나인 것을 특징으로 한다.
상기 제2 직교 편파 쌍은, ±45도 직교 편파 쌍 또는 수직/수평(vertical/horizontal) 직교 편파 쌍 중 다른 하나인 것을 특징으로 한다.
상기 편파 할당부는, 각각의 빔에 상기 합성된 제1 직교 편파 쌍 또는 제2 직교 편파 쌍을 할당하는 것을 특징으로 한다.
상기 편파 할당부는, 각각의 빔들 중 제1 빔에 제1 직교 편파 쌍을 할당하고, 상기 제1 빔에 이웃한 제2 빔에 상기 제2 직교 편파 쌍을 할당하는 것을 특징으로 한다.
상기 디지털부는, 빔의 개수 및 기준 빔의 편파 성분에 따라 각각의 빔에 대한 편파 할당 제어 신호를 생성하여 상기 편파 할당부로 제공하는 편파 할당 제어부를 더 포함하는 것을 특징으로 한다.
상기 디지털부는, 상기 빔 신호에 할당된 직교 편파 쌍의 크기 및 위상을 보정하는 위상 보정부를 더 포함하는 것을 특징으로 한다.
상기 디지털부는, 상기 빔 신호에 할당된 직교 편파 쌍의 편파 합성 시의 크기 및 위상과 상기 RF부의 RF 체인의 크기 및 위상을 비교하여 크기 및 위상의 보정을 결정하고 상기 위상 보정부로 보정 신호를 출력하는 편파 합성 캘리브레이션부를 더 포함하는 것을 특징으로 한다.
상기 디지털부는, 상기 배열 안테나에서의 다중 빔 형성을 위한 빔 신호를 생성하는 다중 빔 형성부, 상기 빔 신호에 이종의 직교 편파 쌍을 합성하는 편파 합성부, 및 상기 빔 신호에 합성된 어느 하나의 직교 편파 쌍들을 각각의 빔 신호에 할당하는 편파 할당부를 포함하는 것을 특징으로 한다.
또한, 상기의 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 무선 송수신 장치는, 서로 다른 방향성을 갖는 다중 빔을 형성하여 상기 다중 빔을 통해 신호를 송수신하는 배열 안테나, 입력 신호에 직교 편파 쌍을 합성하고, 각각의 빔에 어느 하나의 직교 편파 쌍을 할당하되, 서로 이웃한 빔들에 이종의 직교 편파 쌍을 할당하는 디지털부, 및 상기 각각의 빔에 할당된 직교 편파 쌍의 편파 신호를 주파수 변환하고, 각 편파 신호의 위상을 설정하여 상기 배열 안테나로 빔 신호를 출력하는 RF부를 포함하는 것을 특징으로 한다.
상기 RF부는, 각각의 편파 신호의 주파수를 변환하는 복수의 RF 체인, 및 상기 주파수 변환된 각 편파 신호의 위상을 다르게 설정하여 아날로그 다중 빔 신호를 생성하는 다중 빔 형성부를 포함하는 것을 특징으로 한다.
한편, 상기의 목적을 달성하기 위한 본 발명의 일 실시예에 따른 무선 송수신 장치의 빔 형성 방법은, 직교 편파 쌍을 합성하여 상기 다중 빔 형성을 위한 다중 빔 신호를 생성하는 단계, RF 체인을 통해 상기 다중 빔 신호를 주파수 변환하여 배열 안테나로 각각 출력하는 단계, 상기 배열 안테나에서 상기 다중 빔 신호로부터 서로 다른 방향성을 갖는 다중 빔을 형성하는 단계를 포함하는 것을 특징으로 한다.
상기 다중 빔은, 서로 이웃한 빔들에 이종의 직교 편파 쌍이 할당되고, 각각의 빔에 할당된 직교 편파 쌍의 위상이 각각 다르게 설정된 것을 특징으로 한다.
본 발명에 따른 무선 송수신 장치 및 그의 빔 형성 방법에 따르면, 셀 또는 섹터 내에 형성되는 다중 빔 각각에 대해 직교 편파 쌍을 부여하되, 인접하는 빔들 간에는 동종의 편파 쌍이 아닌 이종(異種)의 직교 편파 쌍을 부여함으로써 빔 간의 간섭을 최소화할 수 있으며, 그로 인하여 안테나 효율 및 셀 용량을 증가시키는 효과가 있다.
또한, 본 발명은, 하나의 셀 또는 섹터 내에서 고정된 빔을 서로 다른 방향을 갖도록 분리함으로써 커버리지를 확장시킬 수 있고, narrow 빔을 방사함으로써 안테나의 이득을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 무선 송수신 장치의 구성을 도시한 도면이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 편파 합성부의 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 4a, 4b 및 5는 본 발명의 일 실시예에 따른 편파 할당부의 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 다중 빔 형성부의 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 크기/위상 보정부의 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 8, 9a 및 9b는 본 발명의 일 실시예에 따른 빔 형성 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 10, 11a 및 11b는 본 발명의 일 실시예에 따른 디지털부의 수신 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 12는 본 발명의 제2 실시예에 따른 무선 송수신 장치의 구성을 도시한 도면이다.
도 13 및 도 14는 본 발명의 제2 실시예에 따른 디지털부의 동작을 설명하는데 참조되는 실시예를 도시한 도면이다.
도 15는 본 발명의 제3 실시예에 따른 무선 송수신 장치의 구성을 도시한 도면이다.
도 16a 및 16b는 본 발명의 실시예에 따른 무선 송수신 장치의 동작 효과를 설명하는데 참조되는 실시예를 도시한 도면이다.
도 17은 본 발명의 제1 실시예에 따른 무선 송수신 장치의 빔 형성 방법에 대한 동작 흐름을 도시한 도면이다.
도 18은 본 발명의 제2 실시예에 따른 무선 송수신 장치의 빔 형성 방법에 대한 동작 흐름을 도시한 도면이다.
도 19는 본 발명의 제3 실시예에 따른 무선 송수신 장치의 빔 형성 방법에 대한 동작 흐름을 도시한 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명은 무선 송수신 장치 및 방법에 관한 것으로서, 본 발명에 따른 무선 송수신 장치는 다중 빔을 사용하는 Massive MIMO(multiple-input and multiple-output) 시스템에 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 송수신 장치의 구성을 도시한 도면이다.
도 1을 참조하면, 무선 송수신 장치(10)는 배열 안테나(100), RF부(200) 및 디지털부(300)를 포함할 수 있다.
배열 안테나(100)는 복수의 안테나 모듈(antenna module)(110)로 구성된다. 여기서, 배열 안테나(100)는 복수의 안테나 모듈(110)을 일정 패턴에 따라 정해진 위치에 각각 배열하고, 각 안테나 모듈(110)의 배열 위치에 따라 위상 및 크기 등을 조절하여 소정 방향으로 빔을 방사하는 안테나를 의미한다. 이때, 배열 안테나(100)는 RF부(200) 또는 디지털부(300)에서 생성된 빔 형성 제어신호에 따라 다중 빔을 형성할 수 있다.
각각의 안테나 모듈(110)은 셀 커버리지 내에서 수직 또는 수평 방향으로 서로 다른 방향성을 갖는 다중 빔을 형성할 수 있다. 따라서, 각각의 안테나 모듈(110)은 특정 빔 방향에 대한 송신 또는 수신을 수행하도록 동적으로 구성될 수 있다.
각각의 안테나 모듈(110)은 서로 다른 편파 방향을 갖는 두 개 또는 그 이상의 방사소자들로 구성될 수 있다.
일 예로, 안테나 모듈(110)은 직교하는 편파 방향을 갖는 두 개의 방사소자들로 구성된 2중 편파 안테나 모듈일 수 있다.
여기서, 2중 편파 안테나 모듈은 +45도 편파 방향을 갖는 제1 방사소자 및 상기 제1 방사소자의 편파 방향과 직교(또는 수직)하는 -45도의 편파 방향을 갖는 제2 방사소자를 포함하여 구성될 수 있다.
한편, 2중 편파 안테나 모듈은 수직(vertical) 편파 방향을 갖는 제3 방사소자 및 상기 제3 방사 소자의 편파 방향과 직교(또는 수직)하는 수평(Horizontal) 편파 방향을 갖는 제4 방사소자를 포함하여 구성될 수 있다.
다른 예로, 안테나 모듈(110)은 직교하는 편파 방향을 갖는 네 개의 방사소자들로 구성된 4중 편파 안테나 모듈(또는 쿼드 편파 안테나 모듈)일 수도 있다.
여기서, 4중 편파 안테나 모듈은 +45도 편파 방향을 갖는 제1 방사소자, 상기 제1 방사 소자의 편파 방향과 직교(또는 수직)하는 -45도 편파 방향을 갖는 제2 방사소자, 수직(vertical) 편파 방향을 갖는 제3 방사소자 및 상기 제3 방사 소자의 편파 방향과 직교(또는 수직)하는 수평(Horizontal) 편파 방향을 갖는 제4 방사소자를 포함하여 구성될 수 있다. 이때, 제3 방사소자 및/또는 제4 방사소자는 제1 방사소자 및/또는 제2 방사소자와 ±45도의 편파 방향 차이를 가질 수 있다.
4중 편파 안테나 모듈을 통해 방사되는 빔들은 narrow 빔 형태를 가질 수 있으며, 이 빔들 중에서 서로 인접하는 빔들은 서로 다른 직교 편파 방향을 가질 수 있다.
여기서 '직교' 또는 '수직'이란 방사소자들의 편파 방향이 정확하게 90도의 각도 차를 가지는 경우와, 90±θ의 각도 차를 가지는 경우를 모두 포함할 수 있다. θ는 안테나 모듈(110)의 제작 공정에서의 오차, 다른 안테나 모듈과의 상관관계(correlation) 정도, 빔 형성 방향의 조절 필요성 등에 따라 가변 될 수 있다.
안테나 모듈(110)을 구성하는 방사소자들은 안테나 모듈(110)의 구성 영역 내에서 다양한 형태로 배치될 수 있다.
일 예로, 안테나 모듈(110)을 구성하는 방사소자들은 서로 이격되도록 배치될 수 있다.
다른 예로, 안테나 모듈(110)을 구성하는 방사소자들은 일부 또는 전체 방사소자들의 중심이 서로 교차하도록 배치될 수 있다. 이 경우, 안테나 모듈(110)에서 방사소자들이 점유하는 면적이 감소하게 되어 안테나 모듈 전체의 면적 효율성이 증대될 수 있다.
이와 같이, 안테나 모듈(110)의 면적 효율성의 증대는 안테나의 제작, 설치, 유지 보수 등에 따른 편의성 향상으로 이어질 수 있다.
각각의 안테나 모듈(110)에 의해 형성되는 빔은 직교하는 적어도 두 개의 직교 편파 쌍에 의해 형성되며, 서로 이웃하는 빔의 직교 편파 쌍은 서로 다른 타입(방향)의 직교 편파들로 이루어질 수 있다.
일 예로, 복수의 빔 중 제1 빔은 제1 타입의 직교 편파 쌍으로 형성될 수 있다. 여기서, 제1 타입의 직교 편파 쌍은 +45도 편파 신호 및 -45도 편파 신호로 이루어진 편파 쌍일 수 있다.
한편, 제1 빔에 이웃한 적어도 하나의 제2 빔은 제2 타입의 직교 편파 쌍으로 형성될 수 있다. 여기서, 제2 타입의 직교 편파 쌍은 수직(vertical) 편파 신호 및 수평(Horizontal) 편파 신호로 이루어진 편파 쌍일 수 있다.
이와 같이, 본 발명은 다중 빔을 형성함에 있어서, 서로 이웃한 빔에 대해 다른 타입(이종)의 직교 편파 쌍을 적용함으로써 이웃한 빔들 간의 상관도를 감소시켜 통신 품질을 향상시킬 수 있게 된다. 여기서, 서로 이웃한 빔은 수평 방향으로 이웃한 빔뿐만 아니라 수직 방향으로 이웃한 빔에 대해서도 서로 다른 타입의 직교 편파 쌍을 적용할 수 있다. 이와 같이, 직교 편파 쌍을 적용함으로써 무선 채널의 직교성이 향상됨에 따라 무선 송수신 시스템의 채널 용량이 증대될 수 있다.
가령, 다중 편파를 이용하여 빔을 형성하는 안테나 시스템으로서, 동일한 섹터 내에서 빔을 형성하는 안테나 모듈들이 각 모듈 별로 하나의 빔을 형성하고, 각각의 빔은 동일 편파 또는 하나의 편파 성분을 갖도록 빔을 형성하는 방식이 고려될 수 있다.
이에 비해, 본 발명은 이종 편파를 갖는 다중 빔을 형성함에 있어서, 동일한 섹터 내에서 빔을 형성하는 각각의 안테나 모듈은 각 모듈 별로 서로 직교하는 한 쌍의 편파 신호들(가령, 士45도 직교 편파 신호)을 갖는 한 쌍의 빔을 형성한다. 즉, 하나의 안테나 모듈은 2개의 편파 신호(가령, 士45도 직교 편파 신호)에 대한 2개의 빔을 생성하고, 상기 2개의 빔 중 하나에는 +45도 편파 신호, 다른 하나에는 -45도 편파 신호가 할당된다. 이와 같이 한 쌍의 편파 신호들은 서로 다른 위상을 갖도록 설정됨에 따라 빔들이 공간적으로 분리되기 때문에 빔들 간 간섭이 최소화된다.
뿐만 아니라, 상기 한 쌍의 士45도 직교 편파 신호를 갖는 한 쌍의 빔을 형성하는 안테나 모듈에 이웃하는 안테나 모듈은 상기 士45도 직교 편파 신호와 간섭되지 않는 다른 한 쌍의 편파 신호(V/H 직교 편파 신호)를 갖는 한 쌍의 빔을 형성하기 때문에, 이웃하는 안테나 모듈들의 빔들 간 간섭도 최소화할 수 있다.
또한, 도 1을 참조하면, 한 쌍의 士45도 직교 편파 신호를 갖는 빔과, 동종의 다른 한 쌍의 士45도 직교 편파 신호를 갖는 빔이 공간적으로 완전히 분리될 수 있어 동종 편파를 갖는 빔들 간 간섭도 최소화되는 이점이 있다.
RF부(200)는 복수의 RF 체인(210)을 포함할 수 있다. 이때, RF 체인(210)은 필터(Filter), 전력 증폭기(Power Amplifier, PA), 저잡음 증폭기(Low Noise Amplifier, LNA) 및 RFIC 등을 포함하여 구성될 수 있다. RFIC는 DAC(digital to analog converter)/ADC(analog to digital converter), 믹서(mixer) 등을 포함하여 구성될 수 있다.
RF 체인(210)은 무선 주파수 안테나를 사용하여 전송하기에 적합한 신호로 신호를 조정하거나 배열 안테나(100)를 통해 수신된 신호를 샘플링 및 기저 대역 처리에 적합한 신호로 변환한다.
도 1에는 도시되지 않았으나, RF부(200)는 아날로그형 다중 빔 형성부를 포함할 수 있다. 만일, RF부(200)에 아날로그형 다중 빔 형성부가 포함되는 경우, 디지털부(300)의 다중 빔 형성부가 생략될 수 있다. 이에 대한 구체적인 설명은 후술하는 도 15의 실시예를 참조하도록 한다.
여기서, 본 발명의 다중 빔 형성은 기본적으로 디지털 빔 포밍(Digital Beam forming) 기법을 이용한다.
아날로그 빔 포밍(Analog Beam forming)은 디지털 신호 처리가 완료된 아날로그 신호를 다수의 경로로 분기하고, 각 경로에서의 위상 쉬프트(PS; phase shift)와 전력 증폭(PA; power amplifier) 설정을 통하여 빔을 형성하는 방식으로, 1개의 RF 체인과 함께 다수의 위상 쉬프트 및 신호 감쇠기로 구성되는 송신 및 수신 시스템 구조로 이루어진다. 아날로그 빔 포밍은 개별 안테나마다 연결되어 있는 위상 쉬프트와 신호 감쇠기의 위상 및 진폭 값을 각각 변화시켜 빔의 방향과 모양을 형성하는 방식이다. 이러한 아날로그 빔 포밍 기법은 위상 쉬프트의 제한적인 해상도 특성과 비싼 부품 가격 문제로 인해 시스템 성능과 경제성 측면에서 취약하며, 고용량을 위한 공간 멀티플렉싱 전송 기법과 구조적으로 어울리지 않는 형태이다.
이에 비해, 디지털 빔 포밍은 다이버시티와 다중화 이득을 최대화하기 위해 기지국의 기저대역(Baseband) 처리를 이용하여 디지털 단에서 빔을 형성하는 기법이다. 또한, 디지털 빔 포밍은 개별 안테나마다 RF 체인이 연결되고, 위상 쉬프트 또는 신호 감쇠기와 같은 RF 회로들이 사용되지 않으며, 이러한 시스템 구조를 기반으로 하는 디지털 빔 포밍 기법은 RF 단에서 신호의 위상과 진폭을 변화시키는 것이 아니라 기저대역(Baseband)에서 디지털 신호처리를 통해 신호의 위상 및 진폭을 변화시키게 된다.
여기서, 본 발명의 다중 빔 형성은 디지털 빔 포밍(Digital Beam forming)이 안테나 시스템의 디지털 장치(DU)가 아닌 무선 유닛(Radio Unit, RU)에서 구현되는 것을 특징으로 하며 이에 관한 자세한 설명은 후술하기로 한다.
한편, 도 1의 실시예에서는 RF부(200) 및 배열 안테나(100)를 각각 도시하였으나, 배열 안테나(100)가 RF부(200)에 포함된 형태로 구현될 수도 있다.
디지털부(300)는 인터페이스부(310), 편파 합성부(320, 360), 편파 할당부(330, 370), 다중 빔 형성부(340), 크기/위상 보정부(350), 편파 할당 제어부(380), 및 편파 합성 캘리브레이션부(390)를 포함할 수 있다. 여기서, 디지털부(300)는 무선 유닛(Radio Unit, RU)의 디지털 프론트 엔드(Digital Front End, DFE)이거나, 혹은 그에 포함된 일부 유닛 형태로 구현될 수 있다.
통상의 디지털 빔 포밍은 안테나 시스템의 디지털 장치(DU)에서 빔 포밍과 관련된 동작을 모두 수행함에 비해, 본 발명에 따른 무선 송수신 장치(100)는 안테나 시스템의 디지털 장치에서 수행하던 빔 포밍 뿐만 아니라, 편파 합성 및 할당 등의 동작을 무선 유닛(Radio Unit, RU)에서 수행하는 것을 특징으로 한다.
여기서, 상기 무선 유닛(Radio Unit, RU)은 사용자를 구분할 수 없기 때문에 사용자마다 다른 빔을 형성하지 않고, 섹터 내 모든 사용자에게 동일한 빔을 형성하는 것을 특징으로 한다. 한편, 디지털부(300)는 도 1의 [실시예 1] 또는 도 12의 [실시예 2]와 같이 다중 빔 형성부(340)의 위치가 다르게 구성될 수 있다.
[실시예 1]
도 1의 실시예에 따르면, 인터페이스부(310)는 무선 송수신 장치(10)와 연결된 장치로부터 신호를 입력 받거나, 혹은 장치로 신호를 출력(전달)하는 역할을 한다. 여기서, 인터페이스부(310)는 무선 송수신 장치(10)를 기지국의 디지털 장치(Digital Unit, DU)에 연결하는 프론트홀 인터페이스(Fronthaul Interface)일 수 있다.
일 예로, 프론트홀 인터페이스는 CPRI(Common Public Radio Interface), eCPRI(enhanced CPRI) 등이 해당될 수 있다.
편파 합성부(320) 및 편파 할당부(330)는 송신 신호를 처리하는 유닛과, 수신 신호를 처리하는 유닛을 각각 배치할 수 있다. 이 경우, 송신 신호 처리 유닛과 수신호 처리 유닛은 배치 위치 및 순서가 달라질 수 있다.
송신 신호를 처리하는 동작을 기준으로 빔 형성 동작을 설명하면 다음과 같다.
편파 합성부(320)는 입력 신호를 기준으로 4개의 직교 편파 성분을 추출하여 편파 합성을 수행한다. 이때, 편파 합성부(320)는 직교 편파 쌍을 합성하고, 합성된 직교 편파 쌍을 편파 할당부(330)로 인가할 수 있다.
편파 합성부(320)에서 4개의 직교 편파 성분을 추출하는 동작에 대한 구체적인 설명은 도 2 및 도 3의 실시예를 참조하도록 한다. 여기서, 도 2 및 도 3의 실시예는 배열 안테나(100)의 각 안테나 모듈(110)이 2중 편파 안테나 모듈인 것으로 가정하여 설명한다.
먼저, 도 2를 참조하면, 편파 합성부(320)는 2개의 신호, 즉, 제1 입력신호 및 제2 입력신호가 입력되면, 제1 및 제2 입력신호로부터 직교하는 제1 및 제2 편파 성분을 추출할 수 있다.
또한, 편파 합성부(320)는 제1 및 제2 편파 성분을 변환하여 직교하는 제3 및 제4 편파 성분을 추출할 수 있다.
이때, 편파 합성부(320)는 아래 [수학식 1]의 Matrix를 이용하여 입력 신호를 기준으로 4개의 편파 성분을 추출할 수 있다.
Figure PCTKR2021015936-appb-M000001
상기 [수학식 1]에서, a와 b는 제1 및 제2 편파 성분을 나타내며,
Figure PCTKR2021015936-appb-I000001
Figure PCTKR2021015936-appb-I000002
는 각각 제3 및 제4 편파 성분을 나타낸다.
여기서, 제1 및 제2 편파 성분은 직교하는 하나의 제1 편파 쌍을 이룰 수 있다. 일 예로, 제1 및 제2 편파 성분은 ±45도 편파 성분 또는 수직/수평(vertical/horizontal) 편파 성분 중에서 어느 하나일 수 있다.
또한, 제3 및 제4 편파 성분은 직교하는 다른 하나의 제2 편파 쌍을 이룰 수 있다. 일 예로, 제3 및 제4 편파 성분은 ±45도 편파 성분 또는 수직/수평(vertical/horizontal) 편파 성분 중에서 다른 하나일 수 있다.
이와 같이, 편파 합성부(320)는 상기 [수학식 1]의 Matrix를 이용하여 입력 신호를 기준으로 4개의 편파 성분을 추출하고, 이를 통해 서로 다른 이종(異種)의 편파 쌍이 교차하는 다중 빔을 형성할 수 있다.
즉, 본 발명의 일 실시예에 따른 무선 송수신 장치는 하나의 셀(또는 섹터) 내의 고정된 빔을 Matrix를 이용하여 서로 다른 위상을 갖는 복수의 빔으로 분할하고, 분할된 각 빔에 직교 편파 쌍의 편파 성분을 각각 부여하는 방식으로 다중 빔을 형성할 수 있다.
여기서, 입력신호의 편파 성분은 배열 안테나(100)의 특성에 따라 결정될 수 있다.
일 예로, 배열 안테나(100)의 각 안테나 모듈(110)이 ±45도 편파 안테나 모듈인 경우, 제1 및 제2 편파 성분은 ±45도 편파 성분이고, 제3 및 제4 편파 성분은 수직/수평(vertical/horizontal) 편파 성분이 될 수 있다.
이에 대한 실시예는 도 3을 참조하도록 한다.
도 3을 참조하면, 제1 입력신호 및 제2 입력신호의 편파 성분 a, b는 배열 안테나(100)의 특성에 따라 결정된다. 이에, 편파 합성부(320)는 편파 성분 a, b가 결정되면, 제1 및 제2 편파 성분 a, b를 추출한다.
또한, 편파 합성부(320)는 [수학식 1]의 Matrix를 이용하여 편파 성분 a, b를
Figure PCTKR2021015936-appb-I000003
로 합성하여 제3 편파 성분을 추출하고, 편파 성분 a, b를
Figure PCTKR2021015936-appb-I000004
로 합성하여 제4 편파 성분을 추출한다.
이하의 실시예에서는 제1 편파 성분이 +45도 편파, 제2 편파 성분이 -45도 편파, 제3 편파 성분이 수직 편파, 그리고 제4 편파 성분이 수평 편파로 이루어진 것으로 가정하여 설명하나, 이에 한정되는 것은 아니다.
이에, 편파 합성부(320)는 추출된 제1 내지 제4 편파 성분을 이용하여 직교 편파 쌍의 편파 성분을 합성하고, 직교 편파 쌍이 합성된 신호를 편파 할당부(330)로 출력한다.
편파 할당부(330)는 편파 합성부(320)에 의해 합성된 직교 편파 쌍, 즉, ±45도 직교 편파 쌍 및 수직/수평(V/H) 직교 편파 쌍 중 빔 형성을 위한 어느 하나의 직교 편파 쌍을 선택하여 다중 빔에 각각 할당한다. 이때, 다중 빔에 할당된 직교 편파 쌍의 물리적 편파 합성은 배열 안테나(100) 단에서 이루어지게 된다.
편파 할당부(330)는 배열 안테나(100)에 의해 형성되는 빔의 개수, 기준 빔의 편파 등을 기준으로 각 빔에 적용되는 직교 편파 쌍을 할당할 수 있다.
여기서, 편파 할당부(330)는 빔의 개수 및 기준 빔의 편파 정보 등을 직접 입력받을 수 있다.
한편, 편파 할당부(330)는 편파 할당 제어부(380)로부터 편파 할당 제어 신호를 수신하면, 수신된 편파 할당 제어 신호에 따라 각각의 빔에 적용되는 직교 편파 쌍을 할당할 수도 있다.
이때, 편파 할당부(330)는 다중 빔 중 기준 빔에 어느 하나의 직교 편파 쌍을 할당하고, 기준 빔의 직교 편파 쌍을 기준으로 이웃한 빔에 서로 다른 타입의 직교 편파 쌍을 교차 할당한다.
다시 말해, 편파 할당부(330)는 기준이 되는 제1 빔에 제1 및 제2 편파 성분의 제1 직교 편파 쌍을 할당하고, 제1 빔에 이웃한 제2 빔에는 제3 및 제4 편파 성분의 제2 직교 편파 쌍을 할당할 수 있다. 또한, 편파 할당부(330)는 제2 빔에 이웃한 제3 빔에 다시 제1 직교 편파 쌍을 교차하여 할당할 수 있다.
편파 할당부(330)에서 각각의 빔에 직교 편파 쌍을 할당하는 동작에 대한 구체적인 설명은 도 4a 및 도 4b를 참조하도록 한다.
편파 할당부(330)는 도 4a 및 도 4b에 도시된 바와 같이, 입력신호 S1, S2를 기준으로 추출된 +45도, -45도, V, H의 4개 편파 성분으로 이루어진 士45도 직교 편파 쌍 또는 V/H 직교 편파 쌍을 다중 빔들에 각각 할당할 수 있다. 여기서, S1은 +45 편파 신호이고, S2는 -45도 편파 신호인 것으로 가정한다.
이때, 편파 할당부(330)는 도 4a와 같이, 다중 빔 중 어느 하나의 제1 빔에 士45도 직교 편파 쌍을 할당할 수 있다. 이 경우, 배열 안테나(100)는 +45도 편파 신호 및 -45도 편파 신호를 이용하여 제1 빔을 형성할 수 있다.
한편, 편파 할당부(330)는 도 4b와 같이, 제1 빔에 이웃한 적어도 하나 이상의 제2 빔에 V/H 직교 편파 쌍을 할당할 수 있다. 이 경우, 배열 안테나(100)는 수직(V) 편파 신호 및 수평(H) 편파 신호를 이용하여 제2 빔을 형성할 수 있다. 물론, 편파 할당부(330)는 제2 빔에 이웃한 적어도 하나 이상의 빔들에 다시 士45도 직교 편파 쌍을 할당할 수 있다.
이와 같이, 편파 할당부(330)는 다중 빔들에 士45도 직교 편파 쌍 또는 V/H 직교 편파 쌍을 교차 할당할 수 있다. 이 경우, 배열 안테나(100)에서 다중 빔을 형성할 때, 서로 이웃한 빔끼리 이종, 즉, 서로 다른 타입의 편파 성분을 가지게 되므로 이웃한 빔 간의 상관도가 낮아져 신호 송수신 효율이 향상되는 효과를 가져올 수 있다.
도 1에서는 편파 합성부(320) 및 편파 할당부(330)가 단일 개로 구성된 것을 도시하였으나, 도 5에 도시된 바와 같이, 편파 합성부(320) 및 편파 할당부(330)는 복수 개로 구성될 수도 있다.
이때, 편파 할당 제어부(380)는 복수 개의 편파 할당부(330)의 동작을 제어할 수 있다.
편파 할당 제어부(380)는 형성할 빔의 개수 및 기준 빔의 편파 정보가 입력되면, 입력된 빔의 개수에 대응하여 각각의 빔에 대응되는 편파 할당 제어 신호를 생성할 수 있다. 여기서, 편파 할당 제어 신호는 직교 편파 쌍을 할당할 대상 빔의 정보, 및 대상 빔에 대해 할당되는 직교 편파 쌍의 정보를 포함할 수 있다.
편파 할당 제어부(380)는 각각의 빔에 대응하여 생성된 편파 할당 제어 신호를 복수 개의 편파 할당부(330)로 각각 전송할 수 있다.
여기서, 편파 할당 제어부(380)는 형성할 빔별로 대응되는 편파 할당부(330)를 결정하고, 각 편파 할당부(330)로 편파 할당 제어 신호를 전송할 수 있다. 이 경우, 각각의 편파 할당부(330)는 편파 할당 제어부(380)로부터 수신된 편파 할당 제어 신호에 기초하여 대상 빔에 대한 직교 편파 쌍을 할당할 수 있다.
편파 할당부(330)는 각각의 빔에 대한 직교 편파 쌍이 할당되면, 각각의 빔에 할당된 직교 편파 쌍의 정보를 다중 빔 형성부(340)로 출력할 수 있다.
여기서, 다중 빔 형성부(340)는 셀(또는 섹터) 내의 고정된 빔을 Matrix를 이용하여 서로 다른 위상을 갖는 복수의 빔으로 분할하되, 분할된 각 빔에 직교 편파 쌍의 편파 성분을 부여한다.
이에, 다중 빔 형성부(340)는 편파 할당부(330)로부터 각각의 빔에 대해 할당된 직교 편파 쌍의 정보가 입력되면, 각각의 빔에 대해 할당된 직교 편파 쌍의 정보를 이용하여 다중 빔에 대한 각각의 빔 신호를 생성한다.
이때, 다중 빔 형성부(340)는 각각의 빔 신호의 위상을 각각 다르게 설정할 수 있다. 여기서, 각각의 빔 신호는 서로 다른 위상을 가지게 되므로 배열 안테나(100)에 의해 빔 형성 시 서로 다른 방향성을 갖는 빔이 형성될 수 있다.
다중 빔 형성부(340)는 생성된 각각의 빔 신호를 RF부(200)의 RF 체인(210)을 거쳐 배열 안테나(100)의 각 안테나 모듈(110)로 출력한다. 여기서, 각각의 빔 신호는 대상 빔에 할당된 직교 편파 쌍의 신호를 포함할 수 있다.
다중 빔 형성부(340)의 빔 신호 생성 동작에 대한 구체적인 설명은 도 6의 실시예를 참조하도록 한다.
도 6을 참조하면, 복수 개의 편파 합성부(320) 및 편파 할당부(330)를 통해 입력신호 S1, S2, …, SM 에 대응하여 각각의 빔에 대한 직교 편파 쌍이 할당되면, 다중 빔 형성부(340)는 각각의 빔에 할당된 직교 편파 쌍에 대한 편파 신호에 대응되는 빔 신호를 생성할 수 있다.
여기서, 다중 빔 형성부(340)는 입력 신호 S1, S2, …, SM 에 가중 벡터(weight vector)를 곱하여 각각의 빔 신호를 생성할 수 있다. 이때, 각각의 빔 신호는 입력 신호에 곱해지는 가중 벡터 값에 따라 빔의 방향 및 모양이 달라질 수 있다.
다중 빔 형성부(340)에 의해 생성된 각각의 빔 신호는 RF부(200)를 거쳐 배열 안테나(100)의 각각의 안테나 모듈(110)을 통해 출력될 수 있다.
이때, RF부(200)의 각각의 RF 체인(211~219)은 입력된 빔 신호, 즉, 빔에 할당된 편파 신호의 주파수 변환을 수행한 후에 대응되는 안테나 모듈(110)을 통해 송신한다.
여기서, 디지털부(300)는 각각의 RF 체인(211~219)으로 빔 신호를 출력하기 전에, 크기/위상 보정부(350)와, 편파 합성 캘리브레이션부(390)에 의해 빔 신호의 크기 및 위상을 보정한다.
편파 합성부(320)에서 합성된 편파 성분은 배열 안테나(100) 측에서 실질적으로 편파 합성이 이루어지게 된다. 이때, 편파 합성 시의 크기(Amplitude) 및 위상(Phase)이 RF 체인(210)의 크기(Amplitude) 및 위상(Phase)과 동일하지 않게 되면, 편파의 방향이 틀어지기 때문에 크기 및 위상을 동일하게 보정하는 과정이 필요하다.
이에, 편파 합성 캘리브레이션부(390)는 빔에 할당된 직교 편파 쌍의 편파 합성 시의 크기 및 위상과 RF 체인(210)의 신호 크기 및 위상을 비교하여 보정 신호를 생성하고, 생성된 보정 신호를 크기/위상 보정부(350)로 전달할 수 있다.
따라서, 크기/위상 보정부(350)는 편파 합성 캘리브레이션부(390)로부터 전달된 보정 신호에 기초하여 빔 신호의 편파 크기 및 위상을 보정한다. 이때, 크기/위상 보정부(350)는 편파 합성된 빔 신호의 편파 크기 및 위상이 RF 체인(210)의 신호 크기 및 위상과 동일하게 보정한다.
단, 편파 합성 캘리브레이션부(390)는 편파 합성이 일어나는 신호에 대해서만 보정 신호를 생성하여 크기/위상 보정부(350)로 전달하고, 이때 크기 /위상 보정부(350)는 보정 대상 빔 신호에 대해서만 편파 크기 및 위상을 보정하도록 한다.
일 예로, 안테나의 편파 성분이 -45도 편파라 가정했을 때, 크기/위상 보정부(350)는 V/H 편파 합성이 이루어지는 경우에만 편파 신호의 크기 및 위상을 보정할 수 있다.
여기서, 크기/위상 보정부(350)는 RF 체인(210)의 수만큼 구현되어, 빔 신호의 편파 크기 및 위상을 보정하고, 보정된 빔 신호를 대응되는 RF 체인(210)으로 출력할 수 있다.
이에 대한 실시예는 도 7을 참조하도록 한다.
도 7에 도시된 바와 같이, 복수 개의 RF 체인(211~219)은 복수 개의 안테나 모듈(111~119)에 각각 대응되며, 크기/위상 보정부(351~359)는 복수 개의 RF 체인(2111~219)의 수만큼 구현되어 복수 개의 RF 체인(2111~219)에 각각 대응되도록 연결될 수 있다.
일 예로, 제1 크기/위상 보정부(351)은 편파 합성된 빔 신호의 크기 및 위상을 제1 RF 체인(211)의 크기 및 위상과 동일하게 보정하고, 보정된 빔 신호를 제1 RF 체인(211)을 거쳐 제1 안테나 모듈(111)로 출력할 수 있다.
따라서, 제1 안테나 모듈은 보정된 크기 및 위상에 해당하는 빔을 형성하게 된다.
이와 같이, 크기/위상 보정부(350)는 편파 합성 시 발생하는 신호의 크기 및 위상 변화를 보정함으로써 채널 가역성을 확보하고, 배열 안테나에서 정확한 방향으로 빔을 형성할 수 있다. 이에, 각각의 안테나 모듈(110)은 입력된 각각의 빔 신호에 따라 다중 빔을 형성하게 된다.
이때, 각각의 안테나 모듈(110)에 의해 형성되는 각각의 빔은 방향이 서로 다를 뿐만 아니라, 이웃한 빔 간에 이종의 편파 특성을 갖는다.
빔 신호에 기초하여 배열 안테나(100)에서 빔이 형성되는 동작에 대한 실시예는 도 8을 참조하도록 한다.
도 8에 도시된 바와 같이, 입력신호 S1, S2에 대한 빔 신호를 수신한 제1 안테나 모듈은 士45도 직교 편파 신호를 출력한다. 이때, 출력되는 士45도 직교 편파 신호에 의해 배열 안테나(100)에는 제1 방향으로 빔 A가 형성된다.
또한, 입력신호 S3, S4에 대한 빔 신호를 수신한 제2 안테나 모듈은 이웃한 빔A와는 다른 타입의 V/H 직교 편파 신호를 출력한다. 이때, 출력되는 V/H 직교 편파 신호에 의해 배열 안테나(100)에는 제2 방향으로 빔 B가 형성된다.
또한, 입력신호 S5, S6에 대한 빔 신호를 수신한 제3 안테나 모듈은 이웃한 빔B와는 다른 타입의 士45도 직교 편파 신호를 출력한다. 이때, 출력되는 士45도 직교 편파 신호에 의해 배열 안테나(100)에는 제3 방향으로 빔 C가 형성된다.
또한, 입력신호 S7, S8에 대한 빔 신호를 수신한 제4 안테나 모듈은 이웃한 빔C와는 다른 타입의 V/H 직교 편파 신호를 출력한다. 이때, 출력되는 V/H 직교 편파 신호에 의해 배열 안테나(100)에는 제4 방향으로 빔 D가 형성된다.
도 8에서 설명한 것과 같이, 배열 안테나(100)에 의해 형성되는 다중 빔은 각각의 빔이 서로 다른 방향을 향하도록 형성되되, 이웃한 빔끼리는 이종의 직교 편파 쌍으로 이루어진다.
여기서, 배열 안테나(100)에 의해 형성되는 다중 빔은 도 9a에 도시된 바와 같이, 수평 방향으로 서로 이웃한 빔끼리 방향 및 직교 편파 쌍이 상이할 뿐만 아니라, 도 9b에 도시된 바와 같이, 수직 방향의 각 빔에 대해서도 이웃한 빔끼리 방향 및 직교 편파 쌍이 상이하다.
이와 같이, 배열 안테나(100)를 통해 형성되는 다중 빔은 설정된 위상에 따라 공간 상에서 분리되어 복수의 빔 형태로 방사되게 된다. 이 때, 각각의 빔들은 자신이 방사된 방사소자의 편파 방향을 가진 상태로 방사되므로, 공간 상에서 서로 인접하는 두 개의 빔들은 서로 다른 편파를 가질 수 있다.
본 발명의 무선 송수신 장치에 의해 방사되는 빔들 간에도 오버랩(overlap)되는 영역이 존재하나, 인접한 빔들 간의 편파가 서로 다르므로 신호들 간의 상관관계 문제가 해소될 수 있다.
이상에서는 빔 형성 과정을 신호를 송신하는 경우의 구성 및 동작을 중심으로 설명하였다.
한편, 신호를 수신하는 경우에도 신호를 송신할 때와 동작 순서만 역순으로 이루어질 뿐 세부 동작은 크게 다르지 않다. 다만, 디지털부(300)의 세부 동작을 살펴보면, 도 10과 같이, 신호를 수신하는 과정에서는 신호를 송신할 때와 달리 편파 합성부(361~369) 및 편파 할당부(371~379)의 배치 위치가 변경될 수 있다.
신호를 수신하는 경우에 편파 합성부(361~369) 및 편파 할당부(371~379)의 세부 동작에 대한 실시예는 도 11a 및 도 11b를 참조하도록 한다.
도 11a 및 도 11b를 참조하면, 편파 합성부(361~369)는 수신 빔의 편파 성분이 士45도라 가정했을 때, 수신 빔의 편파 성분인 士45도를 기준으로 4개의 편파 성분, 즉, +45도, -45도, V, H를 추출한다.
여기서, 편파 합성부(361~369)는 수신 빔의 편파 성분에 근거하여 제1 편파 성분 a 및 제2 편파 성분 b를 추출한다. 또한, 편파 합성부(361~369)는 [수학식 1]의 Matrix를 이용하여 편파 성분 a, b를
Figure PCTKR2021015936-appb-I000005
로 합성하여 제3 편파 성분을 추출하고, 편파 성분 a, b를
Figure PCTKR2021015936-appb-I000006
로 합성하여 제4 편파 성분을 추출한다.
여기서, 제1 편파 성분(a)이 +45도 편파, 제2 편파 성분(b)이 -45도 편파, 제3 편파 성분(
Figure PCTKR2021015936-appb-I000007
)이 수직 편파, 그리고 제4 편파 성분(
Figure PCTKR2021015936-appb-I000008
)인 것으로 가정하여 설명하나, 이에 한정되는 것은 아니다.
편파 할당부(371~379)는 수신 빔의 편파 성분을 기준으로 추출된 4개의 편파 성분으로 이루어진 士45도 직교 편파 쌍 또는 V/H 직교 편파 쌍을 출력신호에 각각 할당한다.
예를 들어, 편파 할당부(371)는 도 11a와 같이, 수신 빔에 대응하여 디지털 신호로 변환된 제1 신호에 士45도 직교 편파 쌍을 할당할 수 있다.
한편, 편파 할당부(379)는 도 11b와 같이, 제2 신호에 V/H 직교 편파 쌍을 할당할 수 있다.
도 1의 실시예에서는 다중 빔 형성부(340)가 편파 합성부(320)/할당부(330)와 크기/위상 보정부(350) 사이에 배치된 것을 설명하였으나, 실시 형태에 따라 다중 빔 형성부(340)의 배치 위치가 달라질 수 있다.
[실시예 2]
도 12는 다중 빔 형성부의 위치가 변경된 실시예를 나타낸 것이다.
도 12에 도시된 바와 같이, 다중 빔 형성부는 인터페이스와 편파 합성부/편파 할당부 사이에 배치될 수도 있다.
도 12의 실시예에서 신호를 송신하는 경우, 다중 빔 형성부는 도 12와 같이, 입력신호 S1, S2, …, SM 에 대해 서로 다른 위상을 갖는 다중 빔 신호를 생성하고, 생성된 다중 빔 신호를 편파 합성부로 출력할 수 있다. 이 경우, 편파 합성부는 다중 빔 형성부에 의해 생성된 각각의 빔 신호에 대한 직교 편파 쌍의 편파 성분을 합성하고, 편파 할당부에서 이종의 직교 편파 쌍 중 어느 하나의 직교 편파 쌍을 선택하여 각각의 빔 신호에 할당할 수 있다.
도 12의 실시예에서 신호를 수신하는 경우에도 신호를 송신하는 경우의 역순서에 따라 동작하며, 다만 도 14와 같이 편파 합성부 및 편파 할당부의 위치는 변경될 수 있다. 여기서, 신호를 수신하는 경우의 편파 합성부 및 편파 할당부는 도 11a 및 11b의 동작으로 설명 가능하다. 따라서, 이에 대한 중복 설명은 생략하도록 한다.
다중 빔 형성부의 위치가 도 12와 같이 변경되더라도, 편파 합성부 및 편파 할당부의 일부 동작을 제외하고, 그 외의 각 구성에 대한 기능 및 동작은 도 1에 도시된 실시예의 구성과 동일하므로 중복 설명은 생략하도록 한다.
[실시예 3]
도 1 및 도 12의 실시예에서는 다중 빔 형성부가 디지털부(300) 내에 배치될 실시예를 도시하였으나, 다중 빔 형성부는 도 15와 같이 아날로그단에 배치될 수도 있다.
도 15에 도시된 바와 같이, 다중 빔 형성부(400)는 RF부(200)의 RF 체인 및 배열 안테나(100) 사이에 배치될 수 있다.
본 실시예에서의 다중 빔 형성부(400)는 전술한 도 1 및 도 12의 실시예와는 달리, 아날로그 빔 포밍을 통하여 지향성을 가지는 서로 다른 방향의 빔 신호를 생성할 수 있다. 구체적으로, 다중 빔 형성부(400)는 디지털 신호 처리가 완료된 아날로그 신호의 위상을 각 배열 안테나(100)에 대응하여 조절하여 서로 다른 방향의 빔 신호를 생성할 수 있다. 이와 같이, 각 빔 신호의 위상이 조절됨에 따라, 기준 안테나 대비 배열 안테나(100) 간 위상이 조절된다.
이 경우, 다중 빔 형성부(400)는 RF 체인에 의해 출력된 신호의 위상을 천이(phase shift)하여 배열 안테나(100)로 출력하는 위상 설정 모듈 형태로 구현될 수 있다. 상기 위상 설정 모듈은 안테나 모듈을 통해 방사되는 빔들이 공간 상에서 분리되도록, 송신 신호들 또는 수신 신호들 사이의 위상을 서로 다르게 설정할 수 있다. 일 예로, 위상 설정 모듈은 위상 천이기(phase shifter) 등을 이용하여 구현될 수 있다.
여기서, 아날로그 빔 포밍은 빔의 방향이 미리 정해진 가중 벡터를 이용하기 때문에 가중 벡터를 계산하기 위한 별도의 알고리즘이 없어도 되므로, 구현이 용이한 이점이 있다.
뿐만 아니라, 일반적인 디지털 빔 포밍의 경우 baseband 단에서 빔 포밍을 수행하는데 반해, 본 발명에 따른 아날로그 빔 포밍의 경우 baseband 단이 아닌 아날로그 영역에서 위상 천이를 통해 빔 포밍을 수행하기 때문에 디지털 빔 포밍에 비해 구현이 용이하다.
도 15의 실시예는 다중 빔 형성부의 배치 위치 및 구현 모듈만 상이할 뿐, 그 외의 구성에 대한 기능 및 동작은 동일하게 이루어질 수 있으므로, 이에 대한 중복 설명은 생략하도록 한다.
이상에서와 같이, 본 발명에 따른 무선 송수신 장치(10)는 셀 또는 섹터 내에 형성되는 다중 빔 중 인접하는 빔들 간에는 동종의 편파를 사용하는 것이 아닌 이종 편파를 사용함으로써, 인접하는 빔들 간에 상관도를 감소시켜 안테나 효율을 극대화시킬 수 있다.
또한, 본 발명의 실시예에서는 士45도 직교 편파, V/H 직교 편파 와 같은 이종 편파 쌍을 빔에 할당하는 것으로 설명하였으나, 좌원편파/우원편파 등과 같이 서로 직교하는 어떠한 종류의 편파도 이종 편파로 사용될 수 있다.
도 16a 및 도 16b는 본 발명의 실시예에 따른 무선 송수신 장치의 동작 효과를 설명하는데 참조되는 실시예를 도시한 도면이다.
본 발명의 일 실시예에 따른 무선 송수신 장치는 셀 또는 섹터 내에 형성되는 다중 빔 각각에 대해 직교 편파 쌍을 부여하되, 인접하는 빔들 간에는 동종의 편파 쌍이 아닌 이종(異種)의 직교 편파 쌍을 부여한다. 이로 인해, 본 발명에 따른 무선 송수신 장치는 배열 안테나에 의해 형성되는 다중 빔들에 대해 인접한 빔들 간에 상관도를 감소시킬 수 있다.
또한, 인접한 빔들 간에 이종의 직교 편파 쌍을 부여하기 때문에, 인접한 빔들을 중첩시키더라도 빔 간섭을 최소화할 수 있을 뿐만 아니라, 빔 중첩으로 인해 안테나 효율 및 셀 용량을 증가시키는 효과를 가져온다.
이는 도 16a 및 도 16b의 그래프를 통해서도 확인할 수 있다.
먼저, 도 16a는 4X4 구조의 배열 안테나를 갖는 MIMO 시스템에서 사용자 단말(UE)의 위치에 따른 에르고딕 용량(ergodic capacity)의 변화를 나타낸 그래프이다. 여기서, 에르고딕 용량은 안테나 시스템의 셀(또는 섹터) 용량을 나타내며, 셀(또는 섹터) 용량이 증가할수록 안테나의 성능이 증가함을 의미한다. 도 16a를 참조하면, 1610은 종래의 섹터 안테나를 이용한 시스템의 에르고딕 용량 변화를 나타낸 그래프이고, 1620은 섹터 안테나를 이용하여 빔을 두 방향으로 나눈 시스템의 에르고딕 용량 변화를 나타낸 그래프이다. 또한, 1630은 본 발명에 따른 무선 송수신 장치의 안테나를 이용한 시스템의 에르고딕 용량 변화를 나타낸 그래프이다.
일 예로, 도 16a의 에르고딕 용량 변화에 대한 시뮬레이션 결과는 캐리어 주파수(Carrier Frequency)를 3.5GHz로 하여, 송신(Tx) 안테나 4개와 수신(Rx) 안테나 4개를 갖는 배열 안테나를 포함하는 무선 유닛(Radio Unit, RU)을 이용하여 산출한 것으로, 상기 RU의 틸트 각도(Tilt angle)는 약 10도 범위에서 조정되며, 사용자 단말(UE)의 위치는 RU로부터 약 160m 정도 떨어진 거리에서 -60도 내지 60도 사이에 10도 간격으로 배치된 조건에서 측정된 데이터를 기초로 산출된 것이다.
도 16a에서와 같이, 종래의 섹터 안테나를 이용한 시스템에서의 에르고딕 용량(1610)은 약 8bps/Hz 내지 11bps/Hz 범위 내에서 변화하고, 하나의 섹터를 두 개의 빔(동종(同種) 편파)으로 나눈 시스템(1620)의 에르고딕 용량은 약 8bps/Hz 내지 12bps/Hz 범위 내에서 변화한다. 이에 비해, 본 발명에 따른 무선 송수신 장치의 에르고딕 용량(1630)은 약 9bps/Hz 내지 16bps/Hz 범위 내에서 변화함을 확인할 수 있다.
이와 같이, 본 발명에 따른 무선 송수신 장치의 에르고딕 용량 변화는 종래의 섹터 안테나 혹은 섹터 안테나를 이용하여 빔을 두 방향으로 나눈 시스템에 비해 에르고딕 용량이 증가한 것을 확인할 수 있다.
도 16b는 도 16a의 그래프에서의 에르고딕 용량에 대한 평균 용량 및 최대 용량을 비교하여 나타낸 것이다.
도 16b를 참조하면, 섹터 안테나를 이용한 시스템에서 에르고딕 용량에 대한 평균 용량은 약 10bps/Hz이고 최대 용량은 11bps/Hz 정도이다. 또한, 하나의 섹터를 두 개의 빔(동종 편파)으로 나눈 시스템에서의 에르고딕 용량에 대한 평균 용량도 11bps/Hz 정도이고 최대 용량은 12bps/Hz 정도이다. 이때, 이 시스템은 빔을 두 방향으로 나누는 기술을 적용하긴 하지만, 각 빔에 대해 동일 편파를 갖도록 형성되기 때문에, 본 발명과 같이 서로 다른 편파를 갖는 빔의 쌍을 형성하는 기술에 비해 섹터 용량이 적게 형성된다.
이에 비해, 본 발명에 따른 무선 송수신 장치의 에르고딕 용량에 대한 평균 용량은 약 13bps/Hz이고, 최대 용량은 약 16bps/Hz 로서, 본 발명에 따른 무선 송수신 장치의 평균 용량 및 최대 용량은 섹터 안테나를 적용한 시스템의 평균 용량 및 최대 용량에 비해 약 30% 정도 증가하였음을 확인할 수 있다.
도 16a 및 도 16b에서 살펴본 것과 같이, 본 발명에 따른 무선 송수신 장치는 종래에 비해 에르고딕 용량이 증가한 만큼 안테나 성능 및 셀(또는 섹터) 용량을 증가시키는 효과를 가져온다.
그 외에도, 일반적으로 빔 포밍은 안테나 시스템의 디지털 장치(DU)에서 관련 동작을 모두 수행하였기 때문에 프론트 홀의 용량이 증가하였다.
다시 말해, 종래에는 디지털 빔 포밍을 안테나 시스템의 디지털 장치(DU)에서 처리하며, 이때 기저대역에서 디지털 신호 처리를 통해 모든 안테나로 가는 각 신호들에 대한 빔 포밍, 편파 합성 및 할당 등을 개별적으로 제어하였다. 이와 같이, 각 개별 안테나로 가는 각 신호들을 동시에 처리함에 따라 디지털 장치(DU)의 부하 및 프론트 홀의 용량이 증가하게 되는 문제가 있다.
특히, 디지털 빔 포밍의 경우 입력 신호에 가중 벡터를 곱하여 빔 포밍을 수행하는데, 이때 가중 벡터를 계산하기 위한 복잡한 알고리즘을 실행해야 하기 때문에 디지털 빔 포밍으로 인해 디지털 장치(DU)의 부하가 증가하게 된다.
이와 같이, 디지털 장치(DU)의 부하가 증가하거나, 프론트 홀의 용량이 증가하는 것은 5세대 통신 시스템의 관점에서 개선이 필요하다.
이를 위해, 본 발명에 따른 무선 송수신 장치(100)는 안테나 시스템의 디지털 장치(DU)에서 수행하던 빔 포밍 뿐만 아니라, 편파 합성 및 할당 등의 동작을 무선 유닛(Radio Unit, RU)에서 수행하도록 한다. 본 발명에 따르면 디지털 장치(DU)에서의 처리 동작을 무선 유닛(Radio Unit, RU)으로 분산시킴으로써 디지털 장치(DU)의 부하를 감소시키고 프론트 홀의 용량을 감소시킬 수 있는 효과를 가져오게 된다.
상기와 같이 구성되는 본 발명에 따른 무선 송수신 장치의 동작 흐름을 보다 상세히 설명하면 다음과 같다.
도 17은 본 발명의 제1 실시예에 따른 무선 송수신 장치의 빔 형성 방법에 대한 동작 흐름을 도시한 도면이다.
도 17을 참조하면, 제1 실시예에 따른 무선 송수신 장치(10)는 도 1과 같이 디지털부(300) 내의 편파 할당부(330)와 크기/위상 보정부(350) 사이에 다중 빔 형성부가 배치되는 구조이다.
이에, 제1 실시예에 따른 무선 송수신 장치(10)의 편파 합성부(320)는 입력 신호에 대한 스트림에 직교 편파 쌍을 합성한다(S110). 이때, 무선 송수신 장치(10)는 직교하는 두 개의 편파 신호를 하나의 직교 편파 쌍으로 합성할 수 있다.
일 예로, 무선 송수신 장치(10)는 입력 신호를 기준으로 기 정의된 Matrix를 이용하여 4개의 편파 성분, 즉, ±45도 편파 성분 및 수직/수평(vertical/horizontal) 편파 성분을 추출하고, 추출된 편파 성분 중 직교하는 ±45도 편파 성분을 하나의 직교 편파 쌍으로 합성하고, V/H 편파 성분을 다른 하나의 직교 편파 쌍으로 합성한다.
이후, 무선 송수신 장치(10)의 편파 할당부(330)는 'S110' 과정에서 합성된 두 개의 직교 편파 쌍을 다중 빔에 각각 할당한다(S120). 이때, 편파 할당부(330)는 빔의 개수 및 기준 빔의 편파 성분에 따라 기준 빔에 어느 하나의 직교 편파 쌍을 할당하고, 기준 빔에 이웃한 빔들에 다른 하나의 직교 편파 쌍을 할당한다.
무선 송수신 장치(10)의 편파 합성부(320)는 'S120' 과정에서 각각의 빔에 할당된 직교 편파 쌍의 신호에 기초하여 다중 빔 신호를 생성한다(S130). 이때, 'S130' 과정에서 생성된 다중 빔은 각각의 빔이 서로 다른 위상을 갖도록 생성될 수 있다.
편파 합성부(320)에 의해 서로 다른 위상의 다중 빔 신호가 생성되면, 무선 송수신 장치(10)의 RF부(200)는 복수의 RF 체인(210)을 통해 각각의 빔 신호를 주파수 변환하고(S140), 배열 안테나(100)의 각 안테나 모듈(110)을 통해 서로 다른 방향성을 갖는 빔을 형성한다(S150).
무선 송수신 장치(10)는 상기의 과정들을 통해 형성된 빔을 통해 신호를 송수신하게 된다. 이때, 각각의 빔들은 서로 다른 방향성을 가질 뿐만 아니라, 서로 이웃한 빔끼리 이종의 편파 성분을 가지기 때문에, 이웃한 빔 간의 상관도가 낮아져 배열 안테나(100)의 신호 송수신 효율이 증대될 수 있다.
도 17에는 도시하지 않았으나, 'S120' 과정에서 할당된 직교 편파 쌍의 편파 성분에 대해 편파 합성이 이루어지는 경우, 'S140' 과정 이전에 'S130' 과정에서 생성된 다중 빔 신호의 크기 및 위상을 RF 체인(210)의 신호 크기 및 위상에 따라 보정하는 동작을 추가로 수행할 수 있다. 이 경우, 편파 합성 시 편파의 방향이 틀어지는 것을 방지함으로써 빔을 정확한 방향으로 형성할 수 있게 된다.
도 18은 본 발명의 제2 실시예에 따른 무선 송수신 장치의 빔 형성 방법을 도시한 도면이다.
도 18을 참조하면, 제2 실시예에 따른 무선 송수신 장치(10)는 도 11과 같이 디지털부(300) 내의 인터페이스와 편파 합성부(320)/편파 할당부(330) 사이에 다중 빔 형성부가 배치되는 구조이다.
이에, 제2 실시예에 따른 무선 송수신 장치(10)의 다중 빔 형성부는 입력 신호에 대응되는 다중 빔 신호를 생성한다(S210). 이때, 다중 빔 형성부는 각각의 빔 신호의 위상을 다르게 설정할 수 있다.
이후, 무선 송수신 장치(10)의 편파 합성부(320)는 'S210' 과정에서 생성된 다중 빔 신호에 직교 편파 쌍을 합성한다(S220). 이때, 무선 송수신 장치(10)는 직교하는 두 개의 편파 신호를 하나의 직교 편파 쌍으로 합성할 수 있다.
일 예로, 무선 송수신 장치(10)는 입력 신호를 기준으로 기 정의된 Matrix를 이용하여 4개의 편파 성분, 즉, ±45도 편파 성분 및 수직/수평(vertical/horizontal) 편파 성분을 추출하고, 추출된 편파 성분 중 직교하는 ±45도 편파 성분을 하나의 직교 편파 쌍으로 합성하고, V/H 편파 성분을 다른 하나의 직교 편파 쌍으로 합성한다.
이후, 무선 송수신 장치(10)의 편파 할당부(330)는 'S220' 과정에서 합성된 두 개의 직교 편파 쌍을 다중 빔 신호에 각각 할당한다(S230). 이때, 편파 할당부(330)는 빔의 개수 및 기준 빔의 편파 성분에 따라 기준 빔 신호에 어느 하나의 직교 편파 쌍을 할당하고, 기준 빔 신호에 이웃한 빔 신호들에 다른 하나의 직교 편파 쌍을 할당한다.
이후, 무선 송수신 장치(10)의 RF부(200)는 복수의 RF 체인(210)을 통해 각각의 빔 신호를 주파수 변환하고(S240), 배열 안테나(100)의 각 안테나 모듈(110)을 통해 서로 다른 방향성을 갖는 빔을 형성한다(S250).
무선 송수신 장치(10)는 상기의 과정들을 통해 형성된 빔을 통해 신호를 송수신하게 된다. 이때, 각각의 빔들은 서로 다른 방향성을 가질 뿐만 아니라, 서로 이웃한 빔끼리 이종의 편파 성분을 가지기 때문에, 이웃한 빔 간의 상관도가 낮아져 배열 안테나(100)의 신호 송수신 효율이 증대될 수 있다.
도 18에는 도시하지 않았으나, 'S230' 과정에서 할당된 직교 편파 쌍의 편파 성분에 대해 편파 합성이 이루어지는 경우, 'S240' 과정 이전에'다중 빔 신호의 크기 및 위상을 RF 체인(210)의 신호 크기 및 위상에 따라 보정하는 동작을 추가로 수행할 수 있다. 이 경우, 편파 합성 시 편파의 방향이 틀어지는 것을 방지함으로써 빔을 정확한 방향으로 형성할 수 있게 된다.
도 19는 본 발명의 제3 실시예에 따른 무선 송수신 장치의 빔 형성 방법을 도시한 도면이다.
도 19를 참조하면, 제3 실시예에 따른 무선 송수신 장치(10)는 도 15와 같이 RF부(200)의 아날로그 단에 다중 빔 형성부가 배치되는 구조이다.
이에, 제3 실시예에 따른 무선 송수신 장치(10)의 편파 합성부(320)는 입력 신호에 대한 스트림에 직교 편파 쌍을 합성한다(S310). 이때, 무선 송수신 장치(10)는 직교하는 두 개의 편파 신호를 하나의 직교 편파 쌍으로 합성할 수 있다.
일 예로, 무선 송수신 장치(10)는 입력 신호를 기준으로 기 정의된 Matrix를 이용하여 4개의 편파 성분, 즉, ±45도 편파 성분 및 수직/수평(vertical/horizontal) 편파 성분을 추출하고, 추출된 편파 성분 중 직교하는 ±45도 편파 성분을 하나의 직교 편파 쌍으로 합성하고, V/H 편파 성분을 다른 하나의 직교 편파 쌍으로 합성한다.
이후, 무선 송수신 장치(10)의 편파 할당부(330)는 'S310' 과정에서 합성된 두 개의 직교 편파 쌍을 다중 빔에 각각 할당한다(S320). 이때, 편파 할당부(330)는 빔의 개수 및 기준 빔의 편파 성분에 따라 기준 빔에 어느 하나의 직교 편파 쌍을 할당하고, 기준 빔에 이웃한 빔들에 다른 하나의 직교 편파 쌍을 할당한다.
무선 송수신 장치(10)의 RF부(200)는 복수의 RF 체인(210)을 통해 직교 편파 쌍이 할당된 각각의 빔에 대한 편파 신호를 주파수 변환한다(S330).
이후, 무선 송수신 장치(10)의 다중 빔 형성부는 'S330' 과정에서 주파수 변환된 직교 편파 쌍의 신호의 위상을 각각 다르게 설정함으로써 아날로그 다중 빔 신호를 생성하고(S340)하고, 배열 안테나(100)의 각 안테나 모듈(110)을 통해 서로 다른 방향성을 갖는 빔을 형성한다(S350).
무선 송수신 장치(10)는 상기의 과정들을 통해 형성된 빔을 통해 신호를 송수신하게 된다. 이때, 각각의 빔들은 서로 다른 방향성을 가질 뿐만 아니라, 서로 이웃한 빔끼리 이종의 편파 성분을 가지기 때문에, 이웃한 빔 간의 상관도가 낮아져 배열 안테나(100)의 신호 송수신 효율이 증대될 수 있다.
도 19에는 도시하지 않았으나, 'S320' 과정에서 할당된 직교 편파 쌍의 편파 성분에 대해 편파 합성이 이루어지는 경우, 'S330' 과정 이전에 편파 신호의 크기 및 위상을 RF 체인(210)의 신호 크기 및 위상에 따라 보정하는 동작을 추가로 수행할 수 있다. 이 경우, 편파 합성 시 편파의 방향이 틀어지는 것을 방지함으로써 빔을 정확한 방향으로 형성할 수 있게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 서로 다른 방향성을 갖는 다중 빔을 형성하여 상기 다중 빔을 통해 신호를 송수신하는 배열 안테나;
    직교 편파 쌍을 합성하여 상기 다중 빔 형성을 위한 다중 빔 신호를 생성하는 디지털부; 및
    상기 다중 빔 신호를 주파수 변환하여 상기 배열 안테나로 각각 출력하는 RF부를 포함하고,
    상기 디지털부는,
    상기 다중 빔 중 서로 이웃한 빔들에 이종의 직교 편파 쌍을 할당하고, 각각의 빔에 할당된 직교 편파 쌍의 위상을 각각 다르게 설정하는 것을 특징으로 하는 무선 송수신 장치.
  2. 청구항 1에 있어서,
    상기 다중 빔은, 각각의 빔이 수직 및 수평 방향으로 다른 방향성을 갖는 것을 특징으로 하는 무선 송수신 장치.
  3. 청구항 1에 있어서,
    상기 디지털부는,
    이종의 편파 신호들로부터 직교 편파 쌍을 합성하는 편파 합성부; 및
    상기 직교 편파 쌍을 각각의 빔에 할당하는 편파 할당부; 및
    상기 각각의 빔에 할당된 직교 편파 쌍에 기초하여 상기 배열 안테나에서의 다중 빔 형성을 위한 빔 신호를 생성하는 다중 빔 형성부를 포함하는 것을 특징으로 하는 무선 송수신 장치.
  4. 청구항 3에 있어서,
    상기 편파 합성부는,
    입력 신호의 편파를 제1 직교 편파 쌍 및 제2 직교 편파 쌍으로 변환하는 것을 특징으로 하는 무선 송수신 장치.
  5. 청구항 4에 있어서,
    상기 제1 직교 편파 쌍은,
    ±45도 직교 편파 쌍 또는 수직/수평(vertical/horizontal) 직교 편파 쌍 중 어느 하나인 것을 특징으로 하는 무선 송수신 장치.
  6. 청구항 4에 있어서,
    상기 제2 직교 편파 쌍은,
    ±45도 직교 편파 쌍 또는 수직/수평(vertical/horizontal) 직교 편파 쌍 중 다른 하나인 것을 특징으로 하는 무선 송수신 장치.
  7. 청구항 4에 있어서,
    상기 편파 할당부는,
    각각의 빔에 상기 합성된 제1 직교 편파 쌍 또는 제2 직교 편파 쌍을 할당하는 것을 특징으로 하는 무선 송수신 장치.
  8. 청구항 7에 있어서,
    상기 편파 할당부는,
    각각의 빔들 중 제1 빔에 제1 직교 편파 쌍을 할당하고, 상기 제1 빔에 이웃한 제2 빔에 상기 제2 직교 편파 쌍을 할당하는 것을 특징으로 하는 무선 송수신 장치.
  9. 청구항 3에 있어서,
    상기 디지털부는,
    빔의 개수 및 기준 빔의 편파 성분에 따라 각각의 빔에 대한 편파 할당 제어 신호를 생성하여 상기 편파 할당부로 제공하는 편파 할당 제어부를 더 포함하는 것을 특징으로 하는 무선 송수신 장치.
  10. 청구항 3에 있어서,
    상기 디지털부는,
    상기 빔 신호에 할당된 직교 편파 쌍의 크기 및 위상을 보정하는 크기/위상 보정부를 더 포함하는 것을 특징으로 하는 무선 송수신 장치.
  11. 청구항 10에 있어서,
    상기 디지털부는,
    상기 빔 신호에 할당된 직교 편파 쌍의 편파 합성 시의 크기 및 위상과 상기 RF부의 RF 체인의 크기 및 위상을 비교하여 크기 및 위상의 보정을 결정하고 상기 크기/위상 보정부로 보정 신호를 출력하는 편파 합성 캘리브레이션부를 더 포함하는 것을 특징으로 하는 무선 송수신 장치.
  12. 청구항 1에 있어서,
    상기 디지털부는,
    상기 배열 안테나에서의 다중 빔 형성을 위한 빔 신호를 생성하는 다중 빔 형성부;
    상기 빔 신호에 이종의 직교 편파 쌍을 합성하는 편파 합성부; 및
    상기 빔 신호에 합성된 어느 하나의 직교 편파 쌍들을 각각의 빔 신호에 할당하는 편파 할당부를 포함하는 것을 특징으로 하는 무선 송수신 장치.
  13. 서로 다른 방향성을 갖는 다중 빔을 형성하여 상기 다중 빔을 통해 신호를 송수신하는 배열 안테나;
    입력 신호에 직교 편파 쌍을 합성하고, 각각의 빔에 어느 하나의 직교 편파 쌍을 할당하되, 서로 이웃한 빔들에 이종의 직교 편파 쌍을 할당하는 디지털부; 및
    상기 각각의 빔에 할당된 직교 편파 쌍의 편파 신호를 주파수 변환하고, 각 편파 신호의 위상을 설정하여 상기 배열 안테나로 빔 신호를 출력하는 RF부를 포함하고,
    상기 RF부는,
    각각의 편파 신호의 주파수를 변환하는 복수의 RF 체인, 및 상기 주파수 변환된 각 편파 신호의 위상을 다르게 설정하여 아날로그 다중 빔 신호를 생성하는 다중 빔 형성부를 포함하는 것을 특징으로 하는 무선 송수신 장치.
  14. 직교 편파 쌍을 합성하여 상기 다중 빔 형성을 위한 다중 빔 신호를 생성하는 단계;
    RF 체인을 통해 상기 다중 빔 신호를 주파수 변환하여 배열 안테나로 각각 출력하는 단계;
    상기 배열 안테나에서 상기 다중 빔 신호로부터 서로 다른 방향성을 갖는 다중 빔을 형성하는 단계를 포함하고,
    상기 다중 빔은,
    서로 이웃한 빔들에 이종의 직교 편파 쌍이 할당되고, 각각의 빔에 할당된 직교 편파 쌍의 위상이 각각 다르게 설정된 것을 특징으로 하는 무선 송수신 장치의 빔 형성 방법.
PCT/KR2021/015936 2020-11-04 2021-11-04 무선 송수신 장치 및 그의 빔 형성 방법 WO2022098130A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023527052A JP2023548192A (ja) 2020-11-04 2021-11-04 無線送受信装置およびそのビーム形成方法
EP21889595.1A EP4243294A4 (en) 2020-11-04 2021-11-04 RADIO TRANSMITTING OR RECEIVING APPARATUS AND BEAM FORMING METHOD THEREOF
CN202180074659.XA CN116803020A (zh) 2020-11-04 2021-11-04 无线收发装置及其波束成形方法
US18/143,058 US20230275623A1 (en) 2020-11-04 2023-05-03 Radio transmission or reception apparatus and beam forming method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200145980 2020-11-04
KR10-2020-0145980 2020-11-04
KR1020210150724A KR102593249B1 (ko) 2020-11-04 2021-11-04 무선 송수신 장치 및 그의 빔 형성 방법
KR10-2021-0150724 2021-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/143,058 Continuation US20230275623A1 (en) 2020-11-04 2023-05-03 Radio transmission or reception apparatus and beam forming method thereof

Publications (1)

Publication Number Publication Date
WO2022098130A1 true WO2022098130A1 (ko) 2022-05-12

Family

ID=81457219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015936 WO2022098130A1 (ko) 2020-11-04 2021-11-04 무선 송수신 장치 및 그의 빔 형성 방법

Country Status (4)

Country Link
US (1) US20230275623A1 (ko)
JP (1) JP2023548192A (ko)
KR (1) KR20230149782A (ko)
WO (1) WO2022098130A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117517847A (zh) * 2024-01-04 2024-02-06 南京纳特通信电子有限公司 一种小型化可移动k波段宽带辐射测试系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022078588A1 (en) * 2020-10-14 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Orientation-robust operation of tri-polarized antenna array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130053797A (ko) * 2011-11-16 2013-05-24 삼성전자주식회사 다중 안테나 통신 시스템에서 신호 송수신 방법 및 장치
KR20160032144A (ko) * 2013-09-11 2016-03-23 인텔 코포레이션 다수의 사용을 위한 모듈형 페이즈드 어레이 아키텍처의 동적 분할
KR20170041115A (ko) * 2015-10-06 2017-04-14 한국과학기술원 매시브 안테나 기반의 패턴/편파 빔 분할 다중 접속 방법 및 이를 수행하는 장치
WO2018226764A1 (en) * 2017-06-05 2018-12-13 Everest Networks, Inc. Antenna systems for multi-radio communications

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784845B1 (en) * 2002-05-20 2004-08-31 Sprint Communications Company L.P. Antenna system for receiving and/or transmitting signals of multiple polarizations
WO2015088419A1 (en) * 2013-12-13 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
US11089595B1 (en) * 2018-04-26 2021-08-10 Everest Networks, Inc. Interface matrix arrangement for multi-beam, multi-port antenna
US10971815B1 (en) * 2018-09-28 2021-04-06 Rockwell Collins, Inc. Element level polarization synthesis network for electronically scanned arrays
EP3952130A4 (en) * 2019-12-05 2022-12-28 KMW Inc. METHOD AND DEVICE FOR SPATIAL MULTIPLEXIZATION BY POLARIZED WAVE IN A MULTIBEAM SYSTEM
EP3862771A1 (en) * 2020-02-04 2021-08-11 Aptiv Technologies Limited Radar device
WO2021228376A1 (en) * 2020-05-12 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Antenna beam virtualization for wide beam wireless communication
US11956027B2 (en) * 2020-08-28 2024-04-09 Isco International, Llc Method and system for mitigating interference by displacing antenna structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130053797A (ko) * 2011-11-16 2013-05-24 삼성전자주식회사 다중 안테나 통신 시스템에서 신호 송수신 방법 및 장치
KR20160032144A (ko) * 2013-09-11 2016-03-23 인텔 코포레이션 다수의 사용을 위한 모듈형 페이즈드 어레이 아키텍처의 동적 분할
KR20170041115A (ko) * 2015-10-06 2017-04-14 한국과학기술원 매시브 안테나 기반의 패턴/편파 빔 분할 다중 접속 방법 및 이를 수행하는 장치
WO2018226764A1 (en) * 2017-06-05 2018-12-13 Everest Networks, Inc. Antenna systems for multi-radio communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAEHYUN PARK; BRUNO CLERCKX: "Multi-user Linear Precoding for Multi-polarized Massive MIMO System under Imperfect CSIT", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, vol. 14, no. 5, 15 February 2014 (2014-02-15), 201 Olin Library Cornell University Ithaca, NY 14853 , pages 2532 - 2547, XP080005864, DOI: 10.1109/TWC.2014.2388207 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117517847A (zh) * 2024-01-04 2024-02-06 南京纳特通信电子有限公司 一种小型化可移动k波段宽带辐射测试系统及方法
CN117517847B (zh) * 2024-01-04 2024-04-09 南京纳特通信电子有限公司 一种小型化可移动k波段宽带辐射测试系统及方法

Also Published As

Publication number Publication date
JP2023548192A (ja) 2023-11-15
KR20230149782A (ko) 2023-10-27
US20230275623A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
WO2022098130A1 (ko) 무선 송수신 장치 및 그의 빔 형성 방법
WO2016204480A1 (en) Apparatus and method for performing beamforming by using antenna array in wireless communication system
WO2016028111A1 (ko) 하이브리드 빔포밍을 지원하는 무선접속시스템에서 아날로그 빔을 추정하기 위한 트레이닝 심볼 전송 방법 및 장치
US6351237B1 (en) Polarization and angular diversity among antenna beams
WO2014081257A1 (en) Apparatus and method for beamforming gain difference compensation according to change of transmitting and receiving beam pattern in beamforming based wireless communication system
WO2016195346A1 (ko) 랜덤 액세스 처리 방법 및 그 장치
WO2013025070A2 (en) Apparatus and method for supporting multi-antenna transmission in beamformed wireless communication system
WO2020231129A1 (en) Low-complexity beam steering in array apertures
WO2015126159A1 (en) Method and apparatus for processing feedback information in wireless communication system supporting beamforming
WO2013169036A1 (en) Methods and apparatus for uplink timing alignment in system with large number of antennas
EP2995013A1 (en) Method and apparatus for miniaturization of mimo systems via tightly coupled antenna array
WO2017082632A1 (ko) 빔포밍이 적용되는 통신 시스템에서 복수 개의 기지국들에 의한 협력 통신 제공 방법 및 장치
WO2016032294A1 (en) Method and apparatus for obtaining channel direction information
EP1552578A2 (en) Mobile radio base station
WO2019039671A1 (ko) 위상 배열 안테나를 캘리브레이션하기 위한 장치 및 방법
WO2021141434A1 (ko) 위상 배열 안테나를 캘리브레이션하기 위한 방법 및 장치
WO2016024788A1 (ko) 무선접속시스템에서 하이브리드 빔포밍 기반의 방송채널 전송 방법 및 장치
WO2021132976A1 (en) Apparatus and method for phase shifting
WO2021230419A1 (ko) 다채널 빔포밍 시스템에서 채널 간 위상 및 이득을 보상하는 보정 회로, 이를 포함하는 다채널 빔포밍 시스템 및 이를 이용한 채널 보정 방법
WO2022025407A1 (ko) 다중 빔 송신을 위한 송신 전력 제어 방법 및 전자 장치
WO2012165823A2 (en) Repeater
WO2019103454A1 (ko) 피드백 정보를 전송하는 방법 및 이를 위한 단말
WO2015069035A1 (ko) 무선 통신 시스템에서 다중 빔을 이용하여 신호를 송수신하기 위한 방법 및 장치
WO2022098117A1 (ko) 편파 빔들의 시간적/공간적 분리와 채널 비-가역성 보정을 위한 방법 및 이를 이용한 다중 빔 안테나 장치
WO2023008619A1 (ko) 안테나를 구비하는 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889595

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527052

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180074659.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889595

Country of ref document: EP

Effective date: 20230605