WO2022097746A1 - Negative thermal expansion material and composite material - Google Patents

Negative thermal expansion material and composite material Download PDF

Info

Publication number
WO2022097746A1
WO2022097746A1 PCT/JP2021/041006 JP2021041006W WO2022097746A1 WO 2022097746 A1 WO2022097746 A1 WO 2022097746A1 JP 2021041006 W JP2021041006 W JP 2021041006W WO 2022097746 A1 WO2022097746 A1 WO 2022097746A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal expansion
type zeolite
mer
coefficient
negative thermal
Prior art date
Application number
PCT/JP2021/041006
Other languages
French (fr)
Japanese (ja)
Inventor
敏宏 磯部
佑亮 松野
遥菜 井川
冬 二宮
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2022560837A priority Critical patent/JPWO2022097746A1/ja
Publication of WO2022097746A1 publication Critical patent/WO2022097746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a negative thermal expansion material and a composite material.
  • Patent Document 1 discloses Bi 1-x Sb x NiO 3 (where x is 0.02 ⁇ x ⁇ 0.20) as a material having a negative coefficient of thermal expansion.
  • an object of the present invention is to provide a negative thermal expansion material and a composite material that can realize low cost and low density.
  • the negative thermal expansion material according to one aspect of the present invention has a negative coefficient of thermal expansion including at least one selected from the group consisting of MER-type zeolite, GIS-type zeolite, LTA-type zeolite, and FAU-type zeolite. It is a material.
  • the MER-type zeolite may be M (x- ⁇ ) [Al x Si 32-x O 64 ] ⁇ yH 2 O.
  • M is H, Li, Na, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, At least one selected from the group consisting of Y, Zr, Ti, lanthanoids, and tetraethylammonium ions, x satisfies 6.0 ⁇ x ⁇ 14.0, and ⁇ is determined to satisfy the charge neutrality condition. It is a value, and y is an arbitrary value.
  • the MER-type zeolite may be K x- ⁇ [Al x Si 32-x O 64 ] ⁇ yH 2 O.
  • x is a value that satisfies 6.0 ⁇ x ⁇ 14.0
  • is a value that is determined so as to satisfy the charge neutrality condition
  • y is an arbitrary value.
  • the x may be 6.7 ⁇ x ⁇ 13.5.
  • the volume expansion coefficient at least 60 ° C. or higher and 140 ° C. or lower may be -236 ppmK -1 or higher and -98.6 ppmK -1 or lower.
  • the volume shrinkage associated with the phase transition may be exhibited in the temperature range of 100 ° C. or higher and 200 ° C. or lower.
  • a part of K contained in the MER type zeolite is H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, It may be substituted with at least one selected from the group consisting of Fe, Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoids, and tetraethylammonium ions.
  • the GIS-type zeolite may be Na x- ⁇ [Al x Si 16-x O 32 ] ⁇ yH 2 O.
  • x satisfies 4.5 ⁇ x ⁇ 7.5
  • is a value determined so as to satisfy the charge neutrality condition
  • y is an arbitrary value.
  • the GIS-type zeolite may be Na x- ⁇ [Al x Si 16-x O 32 ] ⁇ yH 2 O.
  • x satisfies 5.0 ⁇ x ⁇ 7.0
  • is a value determined so as to satisfy the charge neutrality condition
  • y is an arbitrary value.
  • the x may be 5.3 ⁇ x ⁇ 6.9.
  • a part of Na contained in the GIS type zeolite is H, Li, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, It may be substituted with at least one selected from the group consisting of Fe, Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, and lanthanoids.
  • the composite material according to one aspect of the present invention includes the above-mentioned negative thermal expansion material and a material having a positive coefficient of thermal expansion.
  • the material having a positive coefficient of thermal expansion may be a resin material.
  • the material having a positive coefficient of thermal expansion may be a metal material.
  • FIG. 1 It is a flowchart which shows an example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention. It is a figure which shows the HT-XRD measurement result (heat temperature rise) of the MER type zeolite. It is a figure which shows the HT-XRD measurement result (lowering temperature) of the MER type zeolite. It is a graph which shows the temperature characteristic of the sample which concerns on Example 1. FIG. It is a graph which shows the temperature characteristic of the sample which concerns on Example 2. FIG. It is a graph which shows the temperature characteristic of the sample which concerns on Example 3. FIG. It is a graph which shows the temperature characteristic of the sample which concerns on Example 4. FIG.
  • FIG. 1 It is a flowchart which shows the other example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention. It is a graph which shows the temperature characteristic of the sample which concerns on Example 5.
  • FIG. It is a graph which shows the temperature characteristic of the sample which concerns on Example 6.
  • FIG. It is a flowchart which shows the other example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention.
  • FIG. 1 shows the manufacturing method of the negative thermal expansion material
  • FIG. 9 It is a figure which shows the HT-XRD measurement result of the sample which concerns on Example 9.
  • FIG. It is a graph which shows the temperature characteristic of the sample which concerns on Example 9.
  • FIG. It is a flowchart which shows the other example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention.
  • MER type negative thermal expansion material
  • the negative thermal expansion material according to this embodiment is selected from the group consisting of MER (Merlinoite) type zeolite, GIS type zeolite, LTA type (A type) zeolite, and FAU type (X type, Y type) zeolite. It is characterized by containing at least one type of zeolite.
  • the MER-type zeolite according to the present embodiment is a MER-type zeolite represented by M (x- ⁇ ) [Al x Si 32-x O 64 ] ⁇ yH 2 O.
  • M is H, Li, Na, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, It is at least one selected from the group consisting of Y, Zr, Ti, lanthanoid, and tetraethylammonium ion, x is determined to satisfy 6.0 ⁇ x ⁇ 14.0, and ⁇ is determined to satisfy the charge neutrality condition. It is a value, and y is an arbitrary value.
  • the MER-type zeolite according to the present embodiment is a MER-type zeolite represented by K x- ⁇ [Al x Si 32-x O 64 ] ⁇ yH 2 O.
  • x is a value that satisfies 6.0 ⁇ x ⁇ 14.0
  • is a value that is determined so as to satisfy the charge neutrality condition
  • y is an arbitrary value.
  • x is preferably 6.7 ⁇ x ⁇ 13.5, and more preferably 9.5 ⁇ x ⁇ 11.7 in the above chemical formula.
  • the volume expansion coefficient of the negative thermal expansion material can be adjusted by changing the value of x.
  • the volume expansion coefficient of the negative thermal expansion material according to the present embodiment changes according to the Si / Al ratio.
  • the larger Si / Al that is, the smaller x
  • the MER-type zeolite according to this embodiment may contain a trace amount of unavoidable impurities (for example, Na) in addition to K, Al, and Si.
  • a part of K contained in the MER-type zeolite is contained in H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe. , Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoids, and tetraethylammonium ions may be substituted with at least one selected from the group.
  • the volume expansion coefficient of the negative thermal expansion material can be adjusted.
  • the volume expansion coefficient at least at 60 ° C. or higher and 140 ° C. or lower is -236 ppmK -1 or higher and -39 ppmK -1 or lower.
  • the negative thermal expansion material according to the present embodiment may exhibit volume shrinkage associated with a phase transition in a temperature range of 100 ° C. or higher and 200 ° C. or lower. By showing the volumetric contraction associated with the phase transition in this way, a huge negative volume expansion coefficient can be realized.
  • the GIS-type zeolite according to the present embodiment is a GIS-type zeolite represented by Na x- ⁇ [Al x Si 16-x O 32 ] ⁇ yH 2 O.
  • x satisfies 4.5 ⁇ x ⁇ 7.5
  • is a value determined so as to satisfy the charge neutrality condition
  • y is an arbitrary value.
  • the GIS-type zeolite according to the present embodiment may be a GIS-type zeolite represented by Na x- ⁇ [Al x Si 16-x O 32 ] ⁇ yH 2 O.
  • x satisfies 5.0 ⁇ x ⁇ 7.0
  • is a value determined so as to satisfy the charge neutrality condition
  • y is an arbitrary value.
  • x may be 5.3 ⁇ x ⁇ 6.9.
  • a part of Na contained in the above-mentioned GIS type zeolite is H, Li, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn. , Pb, Mn, Al, Cr, Y, Zr, Ti, and at least one selected from the group consisting of lanthanoids.
  • the negative thermal expansion material according to the present embodiment is composed of at least one selected from the group consisting of MER type zeolite, GIS type zeolite, LTA type zeolite, and FAU type zeolite. Since these materials are inexpensive and contain relatively light atoms as the main component, it is possible to reduce the cost and density of the negative thermal expansion material.
  • the negative thermal expansion material according to the present embodiment is mixed with a material having a positive coefficient of thermal expansion (positive thermal expansion material), in other words, by dispersing the negative thermal expansion material in the positive thermal expansion material.
  • a material having a positive coefficient of thermal expansion positive thermal expansion material
  • the positive thermal expansion material a resin material or a metal material can be used, but the material is not limited thereto.
  • the coefficient of thermal expansion of the negative thermal expansion material according to the present embodiment changes according to the value of x. That is, the smaller the value of x, the smaller the volume expansion rate (in other words, the larger the absolute value of the negative volume expansion rate).
  • a part of K contained in the MER type zeolite is H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, and
  • the volume expansion coefficient of the negative thermal expansion material can be adjusted by substituting with Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoid, tetraethylammonium ion and the like. can.
  • K by substituting K with Mg, Ca, Na, the volume expansion rate of the negative thermal expansion material, the temperature range indicating the negative volume expansion rate, and the like can be adjusted.
  • the value of x of the negative thermal expansion material and the value of x of the negative thermal expansion material are determined according to the characteristics of the positive thermal expansion material used when forming the composite material, the characteristics of the target composite material, the temperature range in which the composite material is used, and the like.
  • the element that replaces K may be determined.
  • the negative thermal expansion material according to the present embodiment there is a material showing a huge negative volume expansion coefficient in a relatively low temperature region (30 ° C to 80 ° C) (for example, Examples 2, 3 and 4). .. Since such materials have unique properties, they can be suitably used for specific applications.
  • FIG. 1 is a flowchart showing an example of a method for producing a negative thermal expansion material (MER type zeolite) according to the present invention.
  • MER type zeolite a negative thermal expansion material
  • colloidal silica and H2O are put into the beaker A, and these are stirred and mixed (step S1).
  • KOH, Al (OH) 3 and H 2 O are put into a separately prepared beaker B, and these are heated and stirred until they become transparent (step S2).
  • step S3 the solution of beaker A and the solution of beaker B are mixed and stirred.
  • the stirred aqueous solution (mixture) is poured into a container and subjected to hydrothermal treatment (step S4).
  • the stirred aqueous solution (mixture) is poured into a container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S4).
  • the temperature of the hydrothermal treatment can be 150 ° C.
  • the time of the hydrothermal treatment can be 3 days.
  • the conditions for these hydrothermal treatments are examples, and the conditions for hydrothermal treatment may be other than these in the present embodiment.
  • the precipitate in the removed container is washed with pure water (step S5). Then, the washed precipitate is dried (step S6) to obtain a MER-type zeolite.
  • the drying conditions can be, for example, about 110 ° C. for 16 hours. It should be noted that this drying condition is an example, and the drying condition may be other than this in the present embodiment.
  • the composition of MER-type zeolite can be changed by adjusting the composition ratio (charged molar ratio) of each raw material. That is, the composition of the obtained MER-type zeolite can be changed by adjusting the value of SiO 2 : Al (OH) 3 : KOH: H2O .
  • FIG. 8 is a flowchart showing another example of the method for producing a negative thermal expansion material (MER type zeolite) according to the present invention.
  • MER type zeolite negative thermal expansion material
  • the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S13).
  • the precipitate in the removed Teflon container is washed with pure water (step S14). Then, the washed precipitate is dried to obtain a MER-type zeolite (step S15).
  • the production method shown in FIG. 8 differs from the production method shown in FIG. 1 in that phosphorus (H 3 PO 4 ) is added.
  • phosphorus is added to the starting material, but phosphorus is not contained in the finally obtained zeolite.
  • FIG. 12 is a flowchart showing another example of the method for producing a negative thermal expansion material (MER type zeolite) according to the present invention.
  • a negative thermal expansion material MER type zeolite
  • silica, a tetraethylammonium hydroxide (TEAOH) solution, and H2O are added to the beaker A, and these are stirred and mixed (step S21).
  • KOH, Al (OH) 3 and H 2 O are put into the beaker B, and these are heated and stirred (step S22).
  • the solution of beaker A and the solution of beaker B are mixed and stirred (step S23).
  • the stirred aqueous solution (mixture) is put into a Teflon (registered trademark) container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S24). After the hydrothermal treatment, the precipitate in the removed Teflon container is washed with pure water (step S25). Then, the washed precipitate is dried to obtain a MER-type zeolite (step S26).
  • the manufacturing method shown in FIG. 12 differs from the manufacturing method shown in FIG. 1 in that TEAOH is used.
  • a part of K contained in the MER-type zeolite is added to H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn,
  • a method of substituting (ion exchange) with at least one selected from the group consisting of Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoid, and tetraethylammonium ion will be described.
  • the volume expansion coefficient of the negative thermal expansion material can be adjusted by substituting a part of K contained in the MER-type zeolite with these elements.
  • FIG. 20 is a flowchart for explaining an example of an ion exchange method for MER-type zeolite.
  • MNO 3 aq. a 0.1 M aqueous nitric acid solution
  • M is Mg, Ca, or Na.
  • Mg (NO 3 ) 2.6H 2 O can be used as the replacement raw material A.
  • Ca (NO 3 ) 2.4H 2 O can be used as the replacement raw material A.
  • NaNO 3 can be used as the replacement raw material A.
  • the nitric acid aqueous solution of this element can be used as the replacement raw material A.
  • the MER-type zeolite is put into a beaker and stirred at, for example, 80 ° C. for 24 hours (step S42).
  • the stirring conditions may be other than these conditions.
  • the stirred sample is suction-filtered with pure water to wash it with pure water (step S43).
  • the washed sample is put into a 0.1 M aqueous nitric acid solution (MNO 3 aq.) Again and stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing (step S43). Is repeated 7 times in total. Then, by drying at 110 ° C.
  • a MER-type zeolite (M-MER-type zeolite) substituted with M ions can be obtained. It should be noted that this drying condition is an example, and the drying condition may be other than these in the present embodiment.
  • the substitution amount is the concentration of the nitrate aqueous solution prepared in step S41 and the stirring in step S42. It can be adjusted by using the time and temperature, the number of repetitions of steps S42 and S43, and the like. For example, the higher the concentration of the aqueous nitric acid solution prepared in step S41, the longer the stirring time in step S42, the higher the stirring temperature in step S42, and the larger the number of repetitions of steps S42 and S43, the more K The amount of the substituent M that replaces the above can be increased.
  • FIG. 24 is a flowchart showing an example of a method for producing an LTA-type zeolite and a FAU-type zeolite.
  • LTA-type zeolite and the FAU-type zeolite first, NaOH, NaAlO 2 , and H2O are put into a beaker and stirred until they are dissolved (step S51). Then, colloidal silica is put into a beaker and these are stirred for 24 hours (step S52).
  • the stirred aqueous solution (mixture) is transferred to an autoclave and heated in an oven at a temperature of 65 ° C. for 7 days (step S53). Then, it is water-cooled at a temperature of 25 ° C. for 1 hour (step S54), and further cooled in a refrigerator (temperature 8 ° C.) for 30 minutes (step S55). Then, the cooled sample is centrifuged at 13000 rpm for 45 minutes (step S56). Then, the residue formed by centrifugation is mixed with pure water for washing (step S57). These operations (operations of steps S56 and S57) are repeated, for example, three times.
  • step S58 by drying overnight at room temperature (step S58), the LTA-type zeolite and the FAU-type zeolite according to the present embodiment can be obtained.
  • the above conditions temperature, time, and centrifugation conditions are examples, and these conditions can be arbitrarily determined in the present embodiment.
  • the composition of LTA-type zeolite and FAU-type zeolite can be changed by adjusting the composition ratio (charged molar ratio) of each raw material. That is, the composition of the obtained LTA-type zeolite and FAU-type zeolite can be changed by adjusting the values of SiO 2 : Al 2 O 3 : NaOH: H 2 O.
  • FIG. 27 is a flowchart showing an example of a method for producing a GIS-type zeolite.
  • NaAlO 2 , NaOH, and H2O are put into a beaker, and these are stirred and mixed (step S61).
  • colloidal silica is mixed with the beaker and stirred (step S62).
  • the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S63).
  • the precipitate in the removed Teflon container is washed with pure water (step S64). Then, the washed precipitate is dried to obtain a GIS-type zeolite (step S65).
  • the composition of the GIS-type zeolite can be changed by adjusting the composition ratio (charged molar ratio) of each raw material.
  • FIG. 31 is a flowchart for explaining an example of an ion exchange method for a GIS-type zeolite.
  • a 1M aqueous hydrochloric acid solution (MCl aq.) Is prepared in a beaker using the replacement raw material B (step S71).
  • M is Mg, Ca, K, or Li.
  • MgCl 2.6H 2 O can be used as the replacement raw material B.
  • CaCl 2.2H 2 O can be used as the replacement raw material B.
  • KCl can be used as the replacement raw material B.
  • LiCl When a part of Na is replaced with Li, LiCl can be used as the replacement raw material B. Even when a part of Na is replaced with an element other than these, the hydrochloric acid aqueous solution of this element can be used as the replacement raw material B.
  • the GIS-type zeolite is put into a beaker and stirred at, for example, 80 ° C. for 24 hours (step S72).
  • the stirring conditions may be other than these conditions.
  • the stirred sample is filtered and washed with pure water (step S73).
  • step S74 by drying at 110 ° C. for 16 hours (step S74), a GIS-type zeolite (M-GIS-type zeolite) substituted with M ions can be obtained.
  • this drying condition is an example, and the drying condition may be other than these in the present embodiment.
  • FIG. 1 is a flowchart showing a method for producing a MER-type zeolite.
  • colloidal silica concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30
  • H2O colloidal silica
  • KOH, Al (OH) 3 and H 2 O were put into the beaker B, and these were heated and stirred until they became transparent (step S2).
  • the solution of beaker A and the solution of beaker B were mixed and stirred (step S3).
  • the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.) and placed in a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S4). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days.
  • step S6 After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S5). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S6).
  • composition (atomic ratio) of the prepared sample according to Example 1 was analyzed using ICP-OES (Inductivity Coupled Plasma Optical Emission Spectrometry).
  • ICP-OES Inductivity Coupled Plasma Optical Emission Spectrometry
  • ICP-OES Inductivity Coupled Plasma Optical Emission Spectrometry
  • the composition of the sample according to Example 1 was as follows. K 9.2 [Al 9.5 Si 22.5 O 64 ] ⁇ yH 2 O ⁇ ⁇ ⁇ Example 1
  • the coefficient of thermal expansion of the sample according to Example 1 was measured using the following method.
  • a benchtop heating stage (BTS 500, AntonioPaar) was attached to the following powder X-ray diffractometer, and the X-ray diffraction pattern was measured at an arbitrary temperature.
  • a high-speed one-dimensional detector (D / teX Ultra2, Rigaku Co., Ltd.) was used as the detector, and the measurement was performed under the following conditions.
  • Si NIST SRM 640c was used as the internal standard.
  • the obtained X-ray diffraction pattern (HT-XRD measurement result: temperature rise) is shown in FIG.
  • HT-XRD measurement result: temperature drop The obtained X-ray diffraction pattern (HT-XRD measurement result: temperature drop) is shown in FIG.
  • the crystal structure was refined by the Rietveld method, and the lattice constant was calculated.
  • the calculated lattice constant was plotted against the temperature, and the linear thermal expansion coefficient ⁇ l and the volume coefficient of thermal expansion ⁇ v for each crystal axis were calculated using the following equations in a temperature range approximately linearly approximated.
  • FIG. 4 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volume coefficient of thermal expansion of the sample according to Example 1 was -236 (ppmK -1 ) in the temperature range of 30 to 160 ° C.
  • FIG. 5 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 2 was -184 (ppmK -1 ) in the temperature range of 60 to 180 ° C. and -908 (ppmK -1 ) in the temperature range of 40 to 60 ° C.
  • Example 3 when the composition (atomic ratio) of the prepared sample according to Example 3 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 3 was as follows. K 11.6 [Al 11.6 Si 20.4 O 64 ] ⁇ yH 2 O ... Example 3
  • FIG. 6 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 3 was ⁇ 98.6 (ppmK -1 ) in the temperature range of 60 to 160 ° C. and ⁇ 942 (ppmK -1 ) in the temperature range of 40 to 60 ° C.
  • Example 4 when the composition (atomic ratio) of the prepared sample according to Example 4 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 4 was as follows. K 11.7 [Al 11.7 Si 20.3 O 64 ] ⁇ yH 2 O ... Example 4
  • FIG. 7 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 4 was ⁇ 106 (ppmK -1) in the temperature range of 60 to 140 ° C. and ⁇ 925 (ppmK -1 ) in the temperature range of 40 to 60 ° C.
  • FIG. 8 is a flowchart showing a method for producing a MER-type zeolite.
  • KOH, Al (OH) 3 , H 3 PO 4 , and H 2 O were put into a beaker, and these were heated and stirred until they became transparent (step S11).
  • colloidal silica concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30 was mixed with the beaker and stirred (step S12).
  • the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.) and placed in a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S13). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days.
  • step S15 After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S14). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S15).
  • the production method according to Example 5 is different from the production method according to Example 1 in that phosphorus (H 3 PO 4 ) is added.
  • phosphorus was added to the starting material, but phosphorus was not contained in the finally obtained zeolite.
  • HT-XRD was measured to determine the lattice constant from room temperature to 250 ° C. (FIG. 9).
  • the coefficient of thermal expansion is calculated from this result, it is -39 (ppmK -1 ) in the temperature range of 30 to 50 ° C, -76 (ppmK -1 ) in the temperature range of 70 to 130 ° C, and the temperature range of 150 to 230 ° C. It was -187 (ppmK -1 ).
  • HT-XRD was measured to determine the lattice constant from room temperature to 230 ° C. (FIG. 6).
  • the coefficient of thermal expansion is -105 (ppmK -1 ) in the temperature range of 70 to 150 ° C, and -45 (ppmK -1 ) in the temperature range of 170 to 230 ° C. there were.
  • HT-XRD was measured to determine the lattice constant from room temperature to 250 ° C. (FIG. 11).
  • the coefficient of thermal expansion is calculated from this result, it is -186 (ppmK -1) in the temperature range of 30 to 70 ° C, -42.2 (ppmK -1 ) in the temperature range of 90 to 150 ° C, and 170 to 250 ° C. It was -50 (ppmK -1 ) in the temperature range.
  • FIG. 12 is a flowchart showing a method for producing a MER-type zeolite.
  • silica manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • TEAOH tetraethylammonium hydroxide
  • H2O tetraethylammonium hydroxide
  • KOH, Al (OH) 3 and H 2 O were put into the beaker B, and these were heated and stirred (step S22).
  • step S23 the solution of beaker A and the solution of beaker B were mixed and stirred
  • the stirred aqueous solution (mixture) was put into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.), and a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it to. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S24). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days. After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S25). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S26).
  • a Teflon (registered trademark) container HUT-100, San-
  • a single-phase MER-type zeolite could be produced.
  • the manufacturing method according to Example 8 is different from the manufacturing method according to Example 1 in that TEAOH is used.
  • FIG. 13 shows the HT-XRD measurement results of the sample according to Example 8. As shown in FIG. 13, it was found that the sample according to Example 8 did not decompose up to 500 ° C. In addition, the lattice constant was determined from room temperature to 500 ° C. (FIG. 14). From this result, the coefficient of thermal expansion was calculated to be 430 (ppmK -1) in the temperature range of 30 to 230 ° C. and -193 (ppmK -1 ) in the temperature range of 70 to 150 ° C.
  • the HT-XRD measurement result of the sample with y 1.0 (K 6.7 [Al 6.7 Si 25.2 O 64 ], yH 2 O) is shown in FIG.
  • the lattice constant was determined from room temperature of the sample to 270 ° C (FIG. 17). From this result, the coefficient of thermal expansion was calculated to be -121.5 (ppmK -1 ) in the temperature range of 30 to 230 ° C. and -111.4 (ppmK -1 ) in the temperature range of 30 to 270 ° C.
  • FIG. 18 is a flowchart showing a method for producing a MER-type zeolite.
  • silica manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • H2O were put into the beaker A, and these were stirred and mixed (step S31).
  • KOH, Al (OH) 3 and H 2 O were put into the beaker B, and these were heated and stirred (step S32).
  • the solution of beaker A and the solution of beaker B were mixed and stirred (step S33).
  • the stirred aqueous solution (mixture) was put into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.), and a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it to. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S34). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days. After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out.
  • a Teflon (registered trademark) container HUT-100, San-ai Kagaku Co., Ltd.
  • a pressure-resistant stainless steel outer cylinder HUS-100, San-ai Kagaku Co., Ltd.
  • step S35 The precipitate was washed with pure water (step S35). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S36).
  • Example 11 As Example 11, a sample in which a part of K of the MER-type zeolite was replaced with Ca (ion exchange) was prepared. In Example 11, a part of K of the sample according to Example 2 was replaced with Ca.
  • FIG. 20 is a flowchart for explaining an ion exchange method of the MER-type zeolite.
  • the replacement raw material A 5.0 ⁇ 10 -3 mol of Ca (NO 3 ) 2.4H 2 O and 50 ml of H 2 O were used, and a 0.1 M aqueous solution of calcium nitrate (Ca (NO 3 ) 2 aq) was used. ) was prepared in the beaker (step S41).
  • Example 2 as a MER-type zeolite was put into a 3 g beaker and stirred at 80 ° C. for 24 hours (step S42). Then, the sample after stirring was suction-filtered with pure water and washed with pure water (step S43). Then, the washed sample is put into a 0.1 M aqueous calcium nitrate solution (Ca (NO 3 ) 2 aq.) And stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing treatment (step S42). Step S43) was repeated 7 times in total. Then, it was dried at 110 ° C. for 16 hours (step S44) to obtain a MER-type zeolite (Ca-MER type) substituted with Ca ions.
  • Ca-MER type a MER-type zeolite
  • FIG. 21 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volume coefficient of thermal expansion of the sample according to Example 11 was -246 (ppmK -1 ) in the temperature range of 30 to 160 ° C.
  • Example 12 a sample in which a part of K of the MER-type zeolite was replaced with Mg (ion exchange) was prepared. In Example 12, a part of K of the sample according to Example 2 was replaced with Mg.
  • Example 12 similarly to Example 11, ion exchange of the MER-type zeolite was performed by using the method shown in the flowchart of FIG. 20.
  • the replacement raw material A 5.0 ⁇ 10 -3 mol of Mg (NO 3 ) 2.6H 2 O and 50 ml of H 2 O were used, and a 0.1 M magnesium nitrate aqueous solution (Mg (NO 3 ) 2 aq) was used. ) was prepared in the beaker (step S41).
  • Example 2 as a MER-type zeolite was put into a 3 g beaker and stirred at 80 ° C. for 24 hours (step S42). Then, the sample after stirring was suction-filtered with pure water and washed with pure water (step S43). Then, the washed sample is put into a 0.1 M magnesium nitrate aqueous solution (Mg (NO 3 ) 2 aq.) And stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing treatment (step S42). Step S43) was repeated 7 times in total. Then, it was dried at 110 ° C. for 16 hours (step S44) to obtain a MER type zeolite (Mg-MER type) substituted with Mg ions.
  • Mg-MER type magnesium nitrate aqueous solution
  • FIG. 22 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 12 was -427 (ppmK -1 ) in the temperature range of 30 to 80 ° C. and -39.7 (ppmK -1 ) in the temperature range of 80 to 220 ° C.
  • Example 13 As Example 13, a sample in which a part of K of the MER-type zeolite was replaced with Na (ion exchange) was prepared. In Example 13, a part of K of the sample according to Example 2 was replaced with Na.
  • Example 13 similarly to Example 11, ion exchange of the MER-type zeolite was performed by using the method shown in the flowchart of FIG. 20.
  • a 0.1 M sodium nitrate aqueous solution NaNO 3 aq.
  • a beaker using 5.0 ⁇ 10 -3 mol of NaNO 3 and 50 ml of H2 O as the raw material A for substitution (step S41).
  • Example 2 as a MER-type zeolite was put into a 3 g beaker and stirred at 80 ° C. for 24 hours (step S42). Then, the sample after stirring was suction-filtered with pure water and washed with pure water (step S43). Then, the washed sample is put into a 0.1 M magnesium nitrate aqueous solution (NaNO 3 aq.) And stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing treatment (step S43). Was repeated 7 times in total. Then, it was dried at 110 ° C. for 16 hours (step S44) to obtain a MER-type zeolite (Na-MER type) substituted with Na ions.
  • a MER-type zeolite Na-MER type
  • FIG. 23 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 13 was -189 (ppmK -1 ) in the temperature range of 30 to 100 ° C. and -594 (ppmK -1 ) in the temperature range of 120 to 220 ° C.
  • FIG. 24 is a flowchart showing a method for producing an LTA-type zeolite.
  • NaOH, NaAlO 2 , and H2O were put into a beaker and stirred until they were dissolved (step S51).
  • colloidal silica concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30
  • step S52 colloidal silica
  • step S53 the stirred aqueous solution (mixture) was transferred to an autoclave and heated in an oven at a temperature of 65 ° C. for 7 days (step S53). Then, it was water-cooled at a temperature of 25 ° C. for 1 hour (step S54), and further cooled in a refrigerator (temperature 8 ° C.) for 30 minutes (step S55). Then, the cooled sample was centrifuged at 13000 rpm for 45 minutes (step S56). Then, the residue formed by centrifugation was mixed with pure water for washing (step S57). These operations (operations of steps S56 and S57) were repeated three times. Then, it was dried overnight at room temperature (step S58) to obtain the LTA-type zeolite according to Example 14.
  • Example 14 when the composition (atomic ratio) of the prepared sample according to Example 14 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 14 was as follows. Na 12.1 [Al 13.2 Si 10.8 O 48 ] ⁇ yH 2 O ... Example 14
  • FIG. 25 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 14 was ⁇ 160 (ppmK -1 ) in the temperature range of 30 to 80 ° C. and -20.6 (ppmK -1 ) in the temperature range of 250 to 500 ° C.
  • composition (atomic ratio) of the prepared sample according to Example 15 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 15 was as follows. Na 82.1 [Al 87.5 Si 104.5 O 384 ] ⁇ yH 2 O ...
  • FIG. 26 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis.
  • the volumetric coefficient of thermal expansion of the sample according to Example 15 was -69.2 (ppmK -1 ) in the temperature range of 30 to 80 ° C. and -13.6 (ppmK -1 ) in the temperature range of 350 to 500 ° C. rice field.
  • FIG. 27 is a flowchart showing a method for producing a GIS-type zeolite.
  • NaAlO 2 , NaOH and H2O were put into a beaker, and these were stirred and mixed (step S61).
  • colloidal silica concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30 was mixed with the beaker and stirred (step S62).
  • the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.) and placed in a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S63). The temperature of the hydrothermal treatment was 100 ° C., and the time of the hydrothermal treatment was 7 days.
  • HT-XRD was measured to determine the lattice constant from room temperature to 500 ° C. (FIG. 28).
  • the coefficient of thermal expansion is calculated from this result, it is -61 (ppmK -1 ) in the temperature range of 30 to 70 ° C, -101 (ppmK -1 ) in the temperature range of 90 to 140 ° C, and the temperature range of 150 to 350 ° C. It was -126 (ppmK -1 ). In the temperature range of 30 to 350 ° C., it was -552 (ppmK -1 ).
  • Example 17 A GIS-type zeolite was prepared as Example 17.
  • the sample according to Example 17 was also prepared by the same method as in Example 16.
  • HT-XRD was measured to determine the lattice constant from room temperature to 500 ° C. (FIG. 29).
  • the coefficient of thermal expansion is calculated from this result, it is -40 (ppmK -1 ) in the temperature range of 30 to 50 ° C, -98 (ppmK -1 ) in the temperature range of 70 to 90 ° C, and 110 to 140 ° C.
  • It was -53 (ppmK -1 ) and -106 (ppmK -1 ) in the temperature range of 150 to 350 ° C. In the temperature range of 30 to 350 ° C., it was ⁇ 529 (ppmK -1 ).
  • Example 18 A GIS-type zeolite was prepared as Example 18.
  • the sample according to Example 18 was also prepared by the same method as in Example 16.
  • HT-XRD was measured to determine the lattice constant from room temperature to 500 ° C. (FIG. 30).
  • the coefficient of thermal expansion is calculated from this result, it is -74 (ppmK -1 ) in the temperature range of 50 to 70 ° C, -96 (ppmK -1 ) in the temperature range of 90 to 140 ° C, and the temperature range of 150 to 350 ° C. It was -113 (ppmK -1 ). In the temperature range of 30 to 350 ° C., it was -458 (ppmK -1 ).
  • Example 19 As Example 19, a sample was prepared by substituting (ion exchange) a part of Na of the GIS-type zeolite with Mg, Ca, K, or Li. In Example 19, a part of Na in the sample according to Example 16 was replaced with Mg, Ca, K, or Li.
  • FIG. 31 is a flowchart for explaining an ion exchange method of the GIS-type zeolite.
  • 1 M magnesium hydrochloride aqueous solution (MgCl) using 1.5 ⁇ 10 ⁇ 2 mol, H 2 O 15 ml of MgCl 2.6H 2 O, CaCl 2.4H 2 O , KCl , or LiCl. 2 aq.), An aqueous solution of calcium chloride (CaCl 2 aq.), An aqueous solution of potassium chloride (KCl aq.), And an aqueous solution of lithium hydrochloride (LiCl aq.) Were prepared in a beaker (step S71).
  • MgCl magnesium hydrochloride aqueous solution
  • Example 16 as a GIS-type zeolite was put into a 0.5 g beaker and stirred at 80 ° C. for 24 hours (step S72). Then, the stirred sample was filtered and washed with pure water (step S73). Then, the GIS-type zeolite (Mg-GIS type, Ca-GIS type, K-GIS type, or Li-) substituted with Mg, Ca, K, or Li ion by drying at 110 ° C. for 16 hours (step S74). GIS type) was obtained.
  • Example 20 As Example 20, a sample was prepared by substituting (ion exchange) a part of Na of the GIS-type zeolite with Mg, Ca, K, or Li. The sample according to Example 20 was also prepared by the same method as in Example 19. In Example 20, a part of Na in the sample according to Example 17 was replaced with Mg, Ca, K, or Li.
  • composition of the sample according to Example 20 was as follows.
  • Mg-GIS type Na 3.8 Mg 0.7 [Al 5.4 Si 10.6 O 32 ] ⁇ yH 2 O
  • Ca-GIS type Na 0.8 Ca 2.2 [Al 5.4 Si 10.6 O 32 ] ⁇ yH 2 O
  • K-GIS type K 4.5 [Al 5.3 Si 10.7 O 32 ] ⁇ yH 2 O
  • Li-GIS type Na 3.4 Li 1.8 [Al 5.3 Si 10.7 O 32 ] ⁇ yH 2 O
  • ⁇ Summary> 32 to 34 are tables summarizing the charged molar ratio, composition, volume expansion coefficient and the temperature range of the samples according to Examples 1 to 18.
  • the samples according to Examples 1 to 18 show various volume expansion rates depending on the composition. Further, in the samples according to Examples 2, 3, 4, 12, and 13, the values of the coefficient of thermal expansion differ between the high temperature side and the low temperature side. Further, in the samples according to Examples 1 to 4 and 11 to 15, the volume expansion coefficient changes according to the Si / Al ratio. For example, in the temperature region on the high temperature side (60 to 160 ° C.), the absolute value of the negative volume expansion rate tends to increase as Si / Al increases (that is, as x decreases) (Examples 1 to 4). reference). In particular, in Example 1 in which the Si / Al value was the largest, the coefficient of thermal expansion was the lowest in the temperature region (60 to 160 ° C.) on the high temperature side (the absolute value of the negative coefficient of thermal expansion was the largest). ..
  • Example 11 in which a part of K was replaced with Ca, the volume coefficient of thermal expansion was -246 (ppmK -1 ) in the temperature range of 30 to 160 ° C.
  • the characteristics of Example 11 were similar to those of Example 1.
  • Example 13 in which a part of K was replaced with Na the coefficient of thermal expansion was ⁇ 594 (ppmK -1 ) in the temperature range of 120 to 220 ° C., and the coefficient of thermal expansion was the lowest in this temperature range (negative). The absolute value of the volume expansion rate of was the largest).
  • Example 14 LTA-type zeolite
  • Example 15 FAU-type zeolite
  • Examples 16 to 18 GIS-type zeolite
  • negative volume expansion even in a relatively high temperature region for example, 300 ° C. or higher. Shown the rate.
  • the sample according to Example 14 showed a stable negative volume expansion rate at 300 ° C. or higher.
  • the negative thermal expansion materials according to Examples 1 to 18 showed various volume expansion rates depending on the composition, the element to be substituted, and the like. Therefore, by adjusting the composition, the element to be substituted, and the like, a material having a negative volume expansion coefficient according to the intended use can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention provides: a negative thermal expansion material which is reduced in cost and density; and a composite material. A negative thermal expansion material according to one embodiment of the present invention has a negative thermal expansion coefficient, while containing at least one substance which is selected from the group consisting of MER type zeolite, GIS type zeolite, LTA type zeolite and FAU type zeolite. A composite material according to one embodiment of the present invention contains the above-described negative thermal expansion material and a material which has a positive thermal expansion coefficient.

Description

負熱膨張材料、及び複合材料Negative thermal expansion materials and composite materials
 本発明は、負熱膨張材料、及び複合材料に関する。 The present invention relates to a negative thermal expansion material and a composite material.
 電子機器や光学機器、燃料電池やセンサ等、複数の素材を組み合せるデバイスでは、熱膨張による位置ずれが問題になるほか、各素材の熱膨張係数の違いが界面剥離や断線といった深刻な障害に繋がる。このため、様々なニアゼロ熱膨張材料や熱膨張制御技術が研究されている。インバー合金、ガラス、コージェライト等は、単相でニアゼロ熱膨張であることが広く知られ、工業製品や民生製品に応用されている。近年、低熱膨張率のフィラー材との複合化によって、単味で熱膨張率の制御が困難な物質の低熱膨張化が検討されている。特に、低配合比で効果的に熱膨張を相殺できることから、負の熱膨張率を有する材料(以下、負熱膨張材料とも記載する)との複合化が注目されている。 In devices that combine multiple materials such as electronic devices, optical devices, fuel cells, and sensors, misalignment due to thermal expansion becomes a problem, and the difference in the coefficient of thermal expansion of each material causes serious obstacles such as interface peeling and disconnection. Connect. Therefore, various near-zero thermal expansion materials and thermal expansion control techniques are being researched. Invar alloys, glass, cordierite, etc. are widely known to have a single-phase, near-zero thermal expansion, and are applied to industrial products and consumer products. In recent years, it has been studied to reduce the thermal expansion of a substance whose thermal expansion rate is difficult to control by combining it with a filler material having a low coefficient of thermal expansion. In particular, since the thermal expansion can be effectively offset with a low compounding ratio, compounding with a material having a negative coefficient of thermal expansion (hereinafter, also referred to as a negative thermal expansion material) is drawing attention.
 特許文献1には、負の熱膨張率を有する材料として、Bi1-xSbNiO(ただし、xは0.02≦x≦0.20である)が開示されている。 Patent Document 1 discloses Bi 1-x Sb x NiO 3 (where x is 0.02 ≦ x ≦ 0.20) as a material having a negative coefficient of thermal expansion.
特開2017-48071号公報Japanese Unexamined Patent Publication No. 2017-48071
 負の熱膨張率を有する材料として、これまで様々な材料が報告されているが、いずれの材料も貴金属や重金属を主成分とする材料が多いため、低コスト化や低密度化が実現されていないという問題がある。 Various materials have been reported so far as materials with a negative coefficient of thermal expansion, but since most of the materials are mainly composed of precious metals and heavy metals, cost reduction and density reduction have been realized. There is a problem that there is no such thing.
 上記課題に鑑み本発明の目的は、低コスト化や低密度化が実現可能な負熱膨張材料、及び複合材料を提供することである。 In view of the above problems, an object of the present invention is to provide a negative thermal expansion material and a composite material that can realize low cost and low density.
 本発明の一態様にかかる負熱膨張材料は、MER型ゼオライト、GIS型ゼオライト、LTA型ゼオライト、及びFAU型ゼオライトからなる群から選択される少なくとも一種を含む負の熱膨張率を有する負熱膨張材料である。 The negative thermal expansion material according to one aspect of the present invention has a negative coefficient of thermal expansion including at least one selected from the group consisting of MER-type zeolite, GIS-type zeolite, LTA-type zeolite, and FAU-type zeolite. It is a material.
 上述の負熱膨張材料において、前記MER型ゼオライトがM(x-δ)[AlSi32-x64]・yHOであってもよい。ただし、Mは、H、Li、Na、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種であり、xは、6.0≦x≦14.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 In the above-mentioned negative thermal expansion material, the MER-type zeolite may be M (x-δ) [Al x Si 32-x O 64 ] · yH 2 O. However, M is H, Li, Na, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, At least one selected from the group consisting of Y, Zr, Ti, lanthanoids, and tetraethylammonium ions, x satisfies 6.0 ≤ x ≤ 14.0, and δ is determined to satisfy the charge neutrality condition. It is a value, and y is an arbitrary value.
 上述の負熱膨張材料において、前記MER型ゼオライトがKx-δ[AlSi32-x64]・yHOであってもよい。ただし、xは、6.0≦x≦14.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 In the above-mentioned negative thermal expansion material, the MER-type zeolite may be K x-δ [Al x Si 32-x O 64 ] · yH 2 O. However, x is a value that satisfies 6.0 ≦ x ≦ 14.0, δ is a value that is determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
 上述の負熱膨張材料において、前記xが、6.7≦x≦13.5であってもよい。 In the above-mentioned negative thermal expansion material, the x may be 6.7 ≦ x ≦ 13.5.
 上述の負熱膨張材料において、少なくとも60℃以上140℃以下における体積膨張率が、-236ppmK-1以上-98.6ppmK-1以下であってもよい。 In the above-mentioned negative thermal expansion material, the volume expansion coefficient at least 60 ° C. or higher and 140 ° C. or lower may be -236 ppmK -1 or higher and -98.6 ppmK -1 or lower.
 上述の負熱膨張材料において、100℃以上200℃以下の温度範囲において相転移に伴う体積収縮を示してもよい。 In the above-mentioned negative thermal expansion material, the volume shrinkage associated with the phase transition may be exhibited in the temperature range of 100 ° C. or higher and 200 ° C. or lower.
 上述の負熱膨張材料において、前記MER型ゼオライトに含まれるKの一部が、H、Li、Na、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種で置換されていてもよい。 In the above-mentioned negative thermal expansion material, a part of K contained in the MER type zeolite is H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, It may be substituted with at least one selected from the group consisting of Fe, Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoids, and tetraethylammonium ions.
 上述の負熱膨張材料において、前記GIS型ゼオライトがNax-δ[AlSi16-x32]・yHOであってもよい。ただし、xは4.5≦x≦7.5を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 In the above-mentioned negative thermal expansion material, the GIS-type zeolite may be Na x-δ [Al x Si 16-x O 32 ] · yH 2 O. However, x satisfies 4.5 ≦ x ≦ 7.5, δ is a value determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
 上述の負熱膨張材料において、前記GIS型ゼオライトがNax-δ[AlSi16-x32]・yHOであってもよい。ただし、xは5.0≦x≦7.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 In the above-mentioned negative thermal expansion material, the GIS-type zeolite may be Na x-δ [Al x Si 16-x O 32 ] · yH 2 O. However, x satisfies 5.0 ≦ x ≦ 7.0, δ is a value determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
 上述の負熱膨張材料において、前記xが、5.3≦x≦6.9であってもよい。 In the above-mentioned negative thermal expansion material, the x may be 5.3 ≦ x ≦ 6.9.
 上述の負熱膨張材料において、前記GIS型ゼオライトに含まれるNaの一部が、H、Li、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、及びランタノイドからなる群から選択される少なくとも一種で置換されていてもよい。 In the above-mentioned negative thermal expansion material, a part of Na contained in the GIS type zeolite is H, Li, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, It may be substituted with at least one selected from the group consisting of Fe, Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, and lanthanoids.
 本発明の一態様にかかる複合材料は、上述の負熱膨張材料と、正の熱膨張率を有する材料と、を含む。 The composite material according to one aspect of the present invention includes the above-mentioned negative thermal expansion material and a material having a positive coefficient of thermal expansion.
 上述の複合材料において、前記正の熱膨張率を有する材料が樹脂材料であってもよい。 In the above-mentioned composite material, the material having a positive coefficient of thermal expansion may be a resin material.
 上述の複合材料において、前記正の熱膨張率を有する材料が金属材料であってもよい。 In the above-mentioned composite material, the material having a positive coefficient of thermal expansion may be a metal material.
 本発明により、低コスト化や低密度化が実現可能な負熱膨張材料、及び複合材料を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a negative thermal expansion material and a composite material that can realize low cost and low density.
本発明にかかる負熱膨張材料(MER型)の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention. MER型ゼオライトのHT-XRD測定結果(昇温)を示す図である。It is a figure which shows the HT-XRD measurement result (heat temperature rise) of the MER type zeolite. MER型ゼオライトのHT-XRD測定結果(降温)を示す図である。It is a figure which shows the HT-XRD measurement result (lowering temperature) of the MER type zeolite. 実施例1にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 1. FIG. 実施例2にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 2. FIG. 実施例3にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 3. FIG. 実施例4にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 4. FIG. 本発明にかかる負熱膨張材料(MER型)の製造方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention. 実施例5にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 5. FIG. 実施例6にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 6. 実施例7にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 7. FIG. 本発明にかかる負熱膨張材料(MER型)の製造方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention. 実施例8にかかるサンプルのHT-XRD測定結果を示す図である。It is a figure which shows the HT-XRD measurement result of the sample which concerns on Example 8. 実施例8にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 8. 実施例9にかかるサンプルのXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the sample which concerns on Example 9. FIG. 実施例9にかかるサンプルのHT-XRD測定結果を示す図である。It is a figure which shows the HT-XRD measurement result of the sample which concerns on Example 9. FIG. 実施例9にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 9. FIG. 本発明にかかる負熱膨張材料(MER型)の製造方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the manufacturing method of the negative thermal expansion material (MER type) which concerns on this invention. 実施例10にかかるサンプルのXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the sample which concerns on Example 10. MER型ゼオライトのイオン交換方法(M-MER型ゼオライトの製造方法)の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the ion exchange method (method of manufacturing M-MER type zeolite) of MER type zeolite. 実施例11にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 11. 実施例12にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 12. 実施例13にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 13. 本発明にかかる負熱膨張材料(LTA型、FAU型)の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the negative thermal expansion material (LTA type, FAU type) which concerns on this invention. 実施例14にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 14. 実施例15にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 15. FIG. 本発明にかかる負熱膨張材料(GIS型)の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the negative thermal expansion material (GIS type) which concerns on this invention. 実施例16にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 16. 実施例17にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 17. 実施例18にかかるサンプルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the sample which concerns on Example 18. GIS型ゼオライトのイオン交換方法(M-GIS型ゼオライトの製造方法)の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the ion exchange method (method of manufacturing M-GIS type zeolite) of GIS type zeolite. 実施例にかかるサンプルの仕込みモル比、組成、体積膨張率、温度範囲をまとめた表である。It is a table summarizing the charge ratio, composition, volume expansion coefficient, and temperature range of the sample which concerns on Example. 実施例にかかるサンプルの仕込みモル比、組成、体積膨張率、温度範囲をまとめた表である。It is a table summarizing the charge ratio, composition, volume expansion coefficient, and temperature range of the sample which concerns on Example. 実施例にかかるサンプルの仕込みモル比、組成、体積膨張率、温度範囲をまとめた表である。It is a table summarizing the charge ratio, composition, volume expansion coefficient, and temperature range of the sample which concerns on Example.
 以下、本発明の実施の形態について説明する。
 本実施の形態にかかる負熱膨張材料は、MER(Merlinoite:マーリノアイト)型ゼオライト、GIS型ゼオライト、LTA型(A型)ゼオライト、及びFAU型(X型、Y型)ゼオライトからなる群から選択される少なくとも一種を含むことを特徴としている。
Hereinafter, embodiments of the present invention will be described.
The negative thermal expansion material according to this embodiment is selected from the group consisting of MER (Merlinoite) type zeolite, GIS type zeolite, LTA type (A type) zeolite, and FAU type (X type, Y type) zeolite. It is characterized by containing at least one type of zeolite.
 例えば、本実施の形態にかかるMER型ゼオライトは、M(x-δ)[AlSi32-x64]・yHOで表されるMER型ゼオライトである。ただし、Mは、H、Li、Na、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種であり、xは、6.0≦x≦14.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 For example, the MER-type zeolite according to the present embodiment is a MER-type zeolite represented by M (x-δ) [Al x Si 32-x O 64 ] · yH 2 O. However, M is H, Li, Na, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, It is at least one selected from the group consisting of Y, Zr, Ti, lanthanoid, and tetraethylammonium ion, x is determined to satisfy 6.0 ≤ x ≤ 14.0, and δ is determined to satisfy the charge neutrality condition. It is a value, and y is an arbitrary value.
 また、例えば、本実施の形態にかかるMER型ゼオライトは、Kx-δ[AlSi32-x64]・yHOで表されるMER型ゼオライトである。ただし、xは、6.0≦x≦14.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 Further, for example, the MER-type zeolite according to the present embodiment is a MER-type zeolite represented by K x-δ [Al x Si 32-x O 64 ] · yH 2 O. However, x is a value that satisfies 6.0 ≦ x ≦ 14.0, δ is a value that is determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
 特に本実施の形態にかかるMER型ゼオライトは、上記化学式において、xが、6.7≦x≦13.5であることが好ましく、9.5≦x≦11.7であることが更に好ましい。本実施の形態にかかる負熱膨張材料は、xの値を変えることで、負熱膨張材料の体積膨張率を調整することができる。換言すると、本実施の形態にかかる負熱膨張材料は、Si/Al比に応じて体積膨張率が変化する。例えば、Si/Alが大きくなるほど(つまり、xが小さいほど)、負の体積膨張率の絶対値が増加する傾向にある。なお、本実施の形態にかかるMER型ゼオライトは、K、Al、Si以外に、微量の不可避不純物(例えば、Naなど)を含んでいてもよい。 In particular, in the MER-type zeolite according to the present embodiment, x is preferably 6.7 ≦ x ≦ 13.5, and more preferably 9.5 ≦ x ≦ 11.7 in the above chemical formula. In the negative thermal expansion material according to the present embodiment, the volume expansion coefficient of the negative thermal expansion material can be adjusted by changing the value of x. In other words, the volume expansion coefficient of the negative thermal expansion material according to the present embodiment changes according to the Si / Al ratio. For example, the larger Si / Al (that is, the smaller x), the more the absolute value of the negative volume expansion tendency tends to increase. The MER-type zeolite according to this embodiment may contain a trace amount of unavoidable impurities (for example, Na) in addition to K, Al, and Si.
 また、本実施の形態では、MER型ゼオライトに含まれるKの一部を、H、Li、Na、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種で置換してもよい。このように、MER型ゼオライトに含まれるKの一部をこれらの元素で置換することで、負熱膨張材料の体積膨張率を調整することができる。 Further, in the present embodiment, a part of K contained in the MER-type zeolite is contained in H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe. , Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoids, and tetraethylammonium ions may be substituted with at least one selected from the group. In this way, by substituting a part of K contained in the MER-type zeolite with these elements, the volume expansion coefficient of the negative thermal expansion material can be adjusted.
 本実施の形態にかかる負熱膨張材料では、少なくとも60℃以上140℃以下における体積膨張率が、-236ppmK-1以上-39ppmK-1以下である。 In the negative thermal expansion material according to the present embodiment, the volume expansion coefficient at least at 60 ° C. or higher and 140 ° C. or lower is -236 ppmK -1 or higher and -39 ppmK -1 or lower.
 また、本実施の形態にかかる負熱膨張材料は、100℃以上200℃以下の温度範囲において相転移に伴う体積収縮を示してもよい。このように相転移に伴う体積収縮を示すことで、巨大な負の体積膨張率を実現することができる。 Further, the negative thermal expansion material according to the present embodiment may exhibit volume shrinkage associated with a phase transition in a temperature range of 100 ° C. or higher and 200 ° C. or lower. By showing the volumetric contraction associated with the phase transition in this way, a huge negative volume expansion coefficient can be realized.
 また、本実施の形態にかかるGIS型ゼオライトは、Nax-δ[AlSi16-x32]・yHOで表されるGIS型ゼオライトである。ただし、xは4.5≦x≦7.5を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 Further, the GIS-type zeolite according to the present embodiment is a GIS-type zeolite represented by Na x-δ [Al x Si 16-x O 32 ] · yH 2 O. However, x satisfies 4.5 ≦ x ≦ 7.5, δ is a value determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
 また、本実施の形態にかかるGIS型ゼオライトは、Nax-δ[AlSi16-x32]・yHOで表されるGIS型ゼオライトであってもよい。ただし、xは5.0≦x≦7.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 Further, the GIS-type zeolite according to the present embodiment may be a GIS-type zeolite represented by Na x-δ [Al x Si 16-x O 32 ] · yH 2 O. However, x satisfies 5.0 ≦ x ≦ 7.0, δ is a value determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
 上述のGIS型ゼオライトにおいて、xが、5.3≦x≦6.9であってもよい。また、上述のGIS型ゼオライトに含まれるNaの一部が、H、Li、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、及びランタノイドからなる群から選択される少なくとも一種で置換されていてもよい。 In the above-mentioned GIS-type zeolite, x may be 5.3 ≦ x ≦ 6.9. Further, a part of Na contained in the above-mentioned GIS type zeolite is H, Li, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn. , Pb, Mn, Al, Cr, Y, Zr, Ti, and at least one selected from the group consisting of lanthanoids.
 上述のように、本実施の形態にかかる負熱膨張材料は、MER型ゼオライト、GIS型ゼオライト、LTA型ゼオライト、及びFAU型ゼオライトからなる群から選択される少なくとも一種を用いて構成されている。これらの材料は安価でかつ比較的軽い原子を主成分としているので、負熱膨張材料の低コスト化や低密度化を実現することができる。 As described above, the negative thermal expansion material according to the present embodiment is composed of at least one selected from the group consisting of MER type zeolite, GIS type zeolite, LTA type zeolite, and FAU type zeolite. Since these materials are inexpensive and contain relatively light atoms as the main component, it is possible to reduce the cost and density of the negative thermal expansion material.
 本実施の形態にかかる負熱膨張材料は、正の熱膨張率を有する材料(正熱膨張材料)と混合することで、換言すると、正熱膨張材料中に負熱膨張材料を分散させることで、熱膨張率が制御された複合材料を形成することができる。例えば、正熱膨張材料としては、樹脂材料や金属材料を用いることができるがこれらに限定されることはない。このとき混合する負熱膨張材料の密度を小さくすることで、負熱膨張材料を正熱膨張材料中に均一に分散させることができる。 The negative thermal expansion material according to the present embodiment is mixed with a material having a positive coefficient of thermal expansion (positive thermal expansion material), in other words, by dispersing the negative thermal expansion material in the positive thermal expansion material. , It is possible to form a composite material having a controlled coefficient of thermal expansion. For example, as the positive thermal expansion material, a resin material or a metal material can be used, but the material is not limited thereto. By reducing the density of the negative thermal expansion material to be mixed at this time, the negative thermal expansion material can be uniformly dispersed in the positive thermal expansion material.
 また、上述のように、本実施の形態にかかる負熱膨張材料は、xの値に応じて熱膨張率が変化する。すなわち、xの値が小さいほど体積膨張率が小さくなる(換言すると、負の体積膨張率の絶対値が大きくなる)傾向にある。 Further, as described above, the coefficient of thermal expansion of the negative thermal expansion material according to the present embodiment changes according to the value of x. That is, the smaller the value of x, the smaller the volume expansion rate (in other words, the larger the absolute value of the negative volume expansion rate).
 また、本実施の形態にかかる負熱膨張材料は、MER型ゼオライトに含まれるKの一部をH、Li、Na、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンなどで置換することで、負熱膨張材料の体積膨張率を調整することができる。例えば、KをMg、Ca、Naで置換することで、負熱膨張材料の体積膨張率や負の体積膨張率を示す温度範囲等を調整することができる。 Further, in the negative thermal expansion material according to the present embodiment, a part of K contained in the MER type zeolite is H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, and The volume expansion coefficient of the negative thermal expansion material can be adjusted by substituting with Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoid, tetraethylammonium ion and the like. can. For example, by substituting K with Mg, Ca, Na, the volume expansion rate of the negative thermal expansion material, the temperature range indicating the negative volume expansion rate, and the like can be adjusted.
 本実施の形態では、複合材料を形成する際に用いる正熱膨張材料の特性、目的とする複合材料の特性、複合材料を使用する温度領域等に応じて、負熱膨張材料のxの値やKを置換する元素を決定するようにしてもよい。 In this embodiment, the value of x of the negative thermal expansion material and the value of x of the negative thermal expansion material are determined according to the characteristics of the positive thermal expansion material used when forming the composite material, the characteristics of the target composite material, the temperature range in which the composite material is used, and the like. The element that replaces K may be determined.
 また、本実施の形態にかかる負熱膨張材料は、比較的低い温領域(30℃~80℃)で巨大な負の体積膨張率を示す材料がある(例えば、実施例2、3、4)。このような材料は特異な特性を有するため、特定の用途に好適に用いることができる。 Further, as the negative thermal expansion material according to the present embodiment, there is a material showing a huge negative volume expansion coefficient in a relatively low temperature region (30 ° C to 80 ° C) (for example, Examples 2, 3 and 4). .. Since such materials have unique properties, they can be suitably used for specific applications.
 次に、本実施の形態にかかる負熱膨張材料の製造方法について説明する。
 図1は、本発明にかかる負熱膨張材料(MER型ゼオライト)の製造方法の一例を示すフローチャートである。MER型ゼオライトを作製する際は、まず、ビーカーAにコロイダルシリカとHOとを投入し、これらを攪拌して混合する(ステップS1)。また、別に準備したビーカーBにKOHとAl(OH)とHOとを投入し、これらを透明になるまで加熱攪拌する(ステップS2)。その後、ビーカーAの溶液とビーカーBの溶液とを混合し、攪拌する(ステップS3)。
Next, a method for manufacturing a negative thermal expansion material according to the present embodiment will be described.
FIG. 1 is a flowchart showing an example of a method for producing a negative thermal expansion material (MER type zeolite) according to the present invention. When producing the MER-type zeolite, first, colloidal silica and H2O are put into the beaker A, and these are stirred and mixed (step S1). Further, KOH, Al (OH) 3 and H 2 O are put into a separately prepared beaker B, and these are heated and stirred until they become transparent (step S2). Then, the solution of beaker A and the solution of beaker B are mixed and stirred (step S3).
 その後、攪拌した後の水溶液(混合物)を容器に注いで水熱処理を行う(ステップS4)。水熱処理は、例えば、攪拌した後の水溶液(混合物)を容器に注ぎ、耐圧ステンレス製外筒にセットする。そして、この容器を熱風循環オーブンに入れて加熱して水熱処理を行う(ステップS4)。例えば、水熱処理の温度は150℃、水熱処理の時間は3日間とすることができる。なお、これらの水熱処理の条件は一例であり、本実施の形態において水熱処理の条件はこれら以外の条件であってもよい。 After that, the stirred aqueous solution (mixture) is poured into a container and subjected to hydrothermal treatment (step S4). In the hydrothermal treatment, for example, the stirred aqueous solution (mixture) is poured into a container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S4). For example, the temperature of the hydrothermal treatment can be 150 ° C., and the time of the hydrothermal treatment can be 3 days. The conditions for these hydrothermal treatments are examples, and the conditions for hydrothermal treatment may be other than these in the present embodiment.
 水熱処理後、取り出した容器内の沈殿物を純水で洗浄する(ステップS5)。その後、洗浄した沈殿物を乾燥させることで(ステップS6)、MER型ゼオライトを得ることができる。乾燥条件は、例えば約110℃、16時間とすることができる。なお、この乾燥条件は一例であり、本実施の形態において乾燥の条件はこれ以外の条件としてもよい。 After hydrothermal treatment, the precipitate in the removed container is washed with pure water (step S5). Then, the washed precipitate is dried (step S6) to obtain a MER-type zeolite. The drying conditions can be, for example, about 110 ° C. for 16 hours. It should be noted that this drying condition is an example, and the drying condition may be other than this in the present embodiment.
 本実施の形態にかかるMER型ゼオライトの製造方法では、各原料の組成比(仕込みモル比)を調整することで、MER型ゼオライトの組成を変えることができる。つまり、SiO:Al(OH):KOH:HOの値を調整することで、得られるMER型ゼオライトの組成を変えることができる。 In the method for producing MER-type zeolite according to the present embodiment, the composition of MER-type zeolite can be changed by adjusting the composition ratio (charged molar ratio) of each raw material. That is, the composition of the obtained MER-type zeolite can be changed by adjusting the value of SiO 2 : Al (OH) 3 : KOH: H2O .
 図8は、本発明にかかる負熱膨張材料(MER型ゼオライト)の製造方法の他の例を示すフローチャートである。図8に示す製造方法では、まず、ビーカーにKOHとAl(OH)とHPOとHOとを投入し、これらを透明になるまで加熱攪拌する(ステップS11)。その後、ビーカーにコロイダルシリカを混合し攪拌する(ステップS12)。 FIG. 8 is a flowchart showing another example of the method for producing a negative thermal expansion material (MER type zeolite) according to the present invention. In the production method shown in FIG. 8, first, KOH, Al (OH) 3 , H 3 PO 4 , and H 2 O are put into a beaker, and these are heated and stirred until they become transparent (step S11). Then, colloidal silica is mixed with the beaker and stirred (step S12).
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器に注ぎ、耐圧ステンレス製外筒にセットする。そして、この容器を熱風循環オーブンに入れて加熱して水熱処理を行う(ステップS13)。 After that, the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S13).
 水熱処理後、取り出したテフロン容器内にある沈殿物を純水で洗浄する(ステップS14)。その後、洗浄した沈殿物を乾燥させることでMER型ゼオライトを得る(ステップS15)。 After the hydrothermal treatment, the precipitate in the removed Teflon container is washed with pure water (step S14). Then, the washed precipitate is dried to obtain a MER-type zeolite (step S15).
 図8に示す製造方法は、リン(HPO)を添加している点が図1に示した製造方法と異なる。図8に示す製造方法では、出発原料にリンを添加しているが、最終的に得られたゼオライトにはリンが入らない。 The production method shown in FIG. 8 differs from the production method shown in FIG. 1 in that phosphorus (H 3 PO 4 ) is added. In the production method shown in FIG. 8, phosphorus is added to the starting material, but phosphorus is not contained in the finally obtained zeolite.
 図12は、本発明にかかる負熱膨張材料(MER型ゼオライト)の製造方法の他の例を示すフローチャートである。図12に示す製造方法では、まず、ビーカーAにシリカ、テトラエチルアンモニウムヒドロキシド(TEAOH)溶液、HOを投入し、これらを攪拌して混合する(ステップS21)。また、ビーカーBにKOHとAl(OH)とHOとを投入し、これらを加熱攪拌する(ステップS22)。その後、ビーカーAの溶液とビーカーBの溶液とを混合し、攪拌する(ステップS23)。 FIG. 12 is a flowchart showing another example of the method for producing a negative thermal expansion material (MER type zeolite) according to the present invention. In the production method shown in FIG. 12, first, silica, a tetraethylammonium hydroxide (TEAOH) solution, and H2O are added to the beaker A, and these are stirred and mixed (step S21). Further, KOH, Al (OH) 3 and H 2 O are put into the beaker B, and these are heated and stirred (step S22). Then, the solution of beaker A and the solution of beaker B are mixed and stirred (step S23).
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器に投入し、耐圧ステンレス製外筒にセットする。そして、この容器を熱風循環オーブンに入れて加熱して水熱処理を行う(ステップS24)。水熱処理後、取り出したテフロン容器内にある沈殿物を純水で洗浄する(ステップS25)。その後、洗浄した沈殿物を乾燥させてMER型ゼオライトを得る(ステップS26)。図12に示す製造方法は、TEAOHを用いている点が図1に示した製造方法と異なる。 After that, the stirred aqueous solution (mixture) is put into a Teflon (registered trademark) container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S24). After the hydrothermal treatment, the precipitate in the removed Teflon container is washed with pure water (step S25). Then, the washed precipitate is dried to obtain a MER-type zeolite (step S26). The manufacturing method shown in FIG. 12 differs from the manufacturing method shown in FIG. 1 in that TEAOH is used.
 次に、MER型ゼオライトに含まれるKの一部を、H、Li、Na、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種で置換(イオン交換)する方法について説明する。本実施の形態にかかる負熱膨張材料では、MER型ゼオライトに含まれるKの一部をこれらの元素で置換することで、負熱膨張材料の体積膨張率を調整することができる。 Next, a part of K contained in the MER-type zeolite is added to H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, A method of substituting (ion exchange) with at least one selected from the group consisting of Pb, Mn, Al, Cr, Y, Zr, Ti, lanthanoid, and tetraethylammonium ion will be described. In the negative thermal expansion material according to the present embodiment, the volume expansion coefficient of the negative thermal expansion material can be adjusted by substituting a part of K contained in the MER-type zeolite with these elements.
 図20は、MER型ゼオライトのイオン交換方法の一例を説明するためのフローチャートである。まず、置換用原料Aを用いて、0.1Mの硝酸水溶液(MNO aq.)をビーカーに準備する(ステップS41)。ここで、「M」はMg、Ca、またはNaである。例えば、Kの一部を、Mgで置換する場合は、置換用原料AとしてMg(NO・6HOを用いることができる。また、Kの一部を、Caで置換する場合は、置換用原料AとしてCa(NO・4HOを用いることができる。また、Kの一部を、Naで置換する場合は、置換用原料AとしてNaNOを用いることができる。これら以外の元素を用いてKの一部を置換する場合も、この元素の硝酸水溶液を置換用原料Aとして用いることができる。 FIG. 20 is a flowchart for explaining an example of an ion exchange method for MER-type zeolite. First, a 0.1 M aqueous nitric acid solution (MNO 3 aq.) Is prepared in a beaker using the replacement raw material A (step S41). Here, "M" is Mg, Ca, or Na. For example, when a part of K is replaced with Mg, Mg (NO 3 ) 2.6H 2 O can be used as the replacement raw material A. When a part of K is replaced with Ca, Ca (NO 3 ) 2.4H 2 O can be used as the replacement raw material A. When a part of K is replaced with Na, NaNO 3 can be used as the replacement raw material A. When a part of K is replaced with an element other than these, the nitric acid aqueous solution of this element can be used as the replacement raw material A.
 その後、MER型ゼオライトをビーカーに投入し、例えば80℃で24時間攪拌する(ステップS42)。なお、攪拌の条件(温度、時間)はこれらの条件以外であってもよい。次いで、攪拌後のサンプルを、純水で吸引濾過を行って純水洗浄する(ステップS43)。その後、洗浄後のサンプルを再び0.1Mの硝酸水溶液(MNO aq.)に投入し、80℃で24時間攪拌する処理(ステップS42)と吸引濾過・純水洗浄の処理(ステップS43)とを合計で7回繰り返す。その後、110℃で16時間乾燥させることで(ステップS44)、Mイオンで置換したMER型ゼオライト(M-MER型ゼオライト)を得ることができる。なお、この乾燥条件は一例であり、本実施の形態において乾燥の条件はこれら以外の条件であってもよい。 Then, the MER-type zeolite is put into a beaker and stirred at, for example, 80 ° C. for 24 hours (step S42). The stirring conditions (temperature, time) may be other than these conditions. Next, the stirred sample is suction-filtered with pure water to wash it with pure water (step S43). Then, the washed sample is put into a 0.1 M aqueous nitric acid solution (MNO 3 aq.) Again and stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing (step S43). Is repeated 7 times in total. Then, by drying at 110 ° C. for 16 hours (step S44), a MER-type zeolite (M-MER-type zeolite) substituted with M ions can be obtained. It should be noted that this drying condition is an example, and the drying condition may be other than these in the present embodiment.
 MER型ゼオライトに含まれるKの一部を所定の元素Mで置換(イオン交換)する際、この置換量(置換元素Mの量)は、ステップS41で準備する硝酸水溶液の濃度、ステップS42の攪拌時間と温度、ステップS42、S43の繰返し回数等を用いて調整することができる。例えば、ステップS41で準備する硝酸水溶液の濃度を濃くするほど、ステップS42の攪拌時間を長くするほど、ステップS42の攪拌温度を高くするほど、またステップS42、S43の繰返し回数を多くするほど、Kを置換する置換元素Mの量を多くすることができる。 When a part of K contained in the MER-type zeolite is substituted (ion exchange) with a predetermined element M, the substitution amount (amount of the substitution element M) is the concentration of the nitrate aqueous solution prepared in step S41 and the stirring in step S42. It can be adjusted by using the time and temperature, the number of repetitions of steps S42 and S43, and the like. For example, the higher the concentration of the aqueous nitric acid solution prepared in step S41, the longer the stirring time in step S42, the higher the stirring temperature in step S42, and the larger the number of repetitions of steps S42 and S43, the more K The amount of the substituent M that replaces the above can be increased.
 次に、LTA型ゼオライトおよびFAU型ゼオライトの作製方法について説明する。図24は、LTA型ゼオライトおよびFAU型ゼオライトの製造方法の一例を示すフローチャートである。LTA型ゼオライト、FAU型ゼオライトを作製する際は、まず、ビーカーにNaOH、NaAlO、HOを投入し、これらを溶解するまで攪拌する(ステップS51)。その後、コロイダルシリカをビーカーに投入して、これらを24時間攪拌する(ステップS52)。 Next, a method for producing an LTA-type zeolite and a FAU-type zeolite will be described. FIG. 24 is a flowchart showing an example of a method for producing an LTA-type zeolite and a FAU-type zeolite. When producing the LTA-type zeolite and the FAU-type zeolite, first, NaOH, NaAlO 2 , and H2O are put into a beaker and stirred until they are dissolved (step S51). Then, colloidal silica is put into a beaker and these are stirred for 24 hours (step S52).
 その後、攪拌した後の水溶液(混合物)をオートクレーブに移し替え、65℃の温度で7日間、オーブンで加熱する(ステップS53)。その後、25℃の温度で1時間水冷し(ステップS54)、更に冷蔵庫(温度8℃)で30分冷却する(ステップS55)。次いで、冷却後のサンプルを13000rpm、45分の条件で遠心分離する(ステップS56)。そして、遠心分離してできた残渣を純水と混合することで洗浄を行う(ステップS57)。これらの動作(ステップS56とS57の動作)は、例えば3回繰り返す。その後、室温で一晩乾燥することで(ステップS58)、本実施の形態にかかるLTA型ゼオライト、FAU型ゼオライトを得ることができる。なお、上記の各条件(温度、時間、遠心分離の条件)は一例であり、本実施の形態ではこれらの条件は任意に決定することができる。 Then, the stirred aqueous solution (mixture) is transferred to an autoclave and heated in an oven at a temperature of 65 ° C. for 7 days (step S53). Then, it is water-cooled at a temperature of 25 ° C. for 1 hour (step S54), and further cooled in a refrigerator (temperature 8 ° C.) for 30 minutes (step S55). Then, the cooled sample is centrifuged at 13000 rpm for 45 minutes (step S56). Then, the residue formed by centrifugation is mixed with pure water for washing (step S57). These operations (operations of steps S56 and S57) are repeated, for example, three times. Then, by drying overnight at room temperature (step S58), the LTA-type zeolite and the FAU-type zeolite according to the present embodiment can be obtained. The above conditions (temperature, time, and centrifugation conditions) are examples, and these conditions can be arbitrarily determined in the present embodiment.
 本実施の形態にかかるLTA型ゼオライトおよびFAU型ゼオライトの製造方法では、各原料の組成比(仕込みモル比)を調整することで、LTA型ゼオライト、FAU型ゼオライトの組成を変えることができる。つまり、SiO:Al:NaOH:HOの値を調整することで、得られるLTA型ゼオライト、FAU型ゼオライトの組成を変えることができる。 In the method for producing LTA-type zeolite and FAU-type zeolite according to the present embodiment, the composition of LTA-type zeolite and FAU-type zeolite can be changed by adjusting the composition ratio (charged molar ratio) of each raw material. That is, the composition of the obtained LTA-type zeolite and FAU-type zeolite can be changed by adjusting the values of SiO 2 : Al 2 O 3 : NaOH: H 2 O.
 次に、GIS型ゼオライトの作製方法について説明する。図27は、GIS型ゼオライトの製造方法の一例を示すフローチャートである。図27に示す製造方法では、まず、ビーカーにNaAlOとNaOHとHOを投入し、これらを攪拌して混合する(ステップS61)。その後、ビーカーにコロイダルシリカを混合し攪拌する(ステップS62)。その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器に注ぎ、耐圧ステンレス製外筒にセットする。そして、この容器を熱風循環オーブンに入れて加熱して水熱処理を行う(ステップS63)。 Next, a method for producing a GIS-type zeolite will be described. FIG. 27 is a flowchart showing an example of a method for producing a GIS-type zeolite. In the production method shown in FIG. 27, first, NaAlO 2 , NaOH, and H2O are put into a beaker, and these are stirred and mixed (step S61). Then, colloidal silica is mixed with the beaker and stirred (step S62). Then, the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container and set in a pressure-resistant stainless steel outer cylinder. Then, this container is placed in a hot air circulation oven and heated to perform hydroheat treatment (step S63).
 水熱処理後、取り出したテフロン容器内にある沈殿物を純水で洗浄する(ステップS64)。その後、洗浄した沈殿物を乾燥させてGIS型ゼオライトを得る(ステップS65)。 After the hydrothermal treatment, the precipitate in the removed Teflon container is washed with pure water (step S64). Then, the washed precipitate is dried to obtain a GIS-type zeolite (step S65).
 本実施の形態にかかるGIS型ゼオライトの製造方法では、各原料の組成比(仕込みモル比)を調整することで、GIS型ゼオライトの組成を変えることができる。 In the method for producing a GIS-type zeolite according to the present embodiment, the composition of the GIS-type zeolite can be changed by adjusting the composition ratio (charged molar ratio) of each raw material.
 次に、GIS型ゼオライトに含まれるNaの一部を、H、Li、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、及びランタノイドからなる群から選択される少なくとも一種で置換(イオン交換)する方法について説明する。 Next, a part of Na contained in the GIS-type zeolite is added to H, Li, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, A method of substituting (ion exchange) with at least one selected from the group consisting of Pb, Mn, Al, Cr, Y, Zr, Ti, and lanthanoid will be described.
 図31は、GIS型ゼオライトのイオン交換方法の一例を説明するためのフローチャートである。まず、置換用原料Bを用いて、1Mの塩酸水溶液(MCl aq.)をビーカーに準備する(ステップS71)。ここで、「M」はMg、Ca、K、またはLiである。例えば、Naの一部を、Mgで置換する場合は、置換用原料BとしてMgCl・6HOを用いることができる。また、Naの一部を、Caで置換する場合は、置換用原料BとしてCaCl・2HOを用いることができる。また、Naの一部を、Kで置換する場合は、置換用原料BとしてKClを用いることができる。また、Naの一部を、Liで置換する場合は、置換用原料BとしてLiClを用いることができる。これら以外の元素を用いてNaの一部を置換する場合も、この元素の塩酸水溶液を置換用原料Bとして用いることができる。 FIG. 31 is a flowchart for explaining an example of an ion exchange method for a GIS-type zeolite. First, a 1M aqueous hydrochloric acid solution (MCl aq.) Is prepared in a beaker using the replacement raw material B (step S71). Here, "M" is Mg, Ca, K, or Li. For example, when a part of Na is replaced with Mg, MgCl 2.6H 2 O can be used as the replacement raw material B. When a part of Na is replaced with Ca, CaCl 2.2H 2 O can be used as the replacement raw material B. When a part of Na is replaced with K, KCl can be used as the replacement raw material B. When a part of Na is replaced with Li, LiCl can be used as the replacement raw material B. Even when a part of Na is replaced with an element other than these, the hydrochloric acid aqueous solution of this element can be used as the replacement raw material B.
 その後、GIS型ゼオライトをビーカーに投入し、例えば80℃で24時間攪拌する(ステップS72)。なお、攪拌の条件(温度、時間)はこれらの条件以外であってもよい。次いで、攪拌後のサンプルを、濾過を行って純水洗浄する(ステップS73)。その後、110℃で16時間乾燥させることで(ステップS74)、Mイオンで置換したGIS型ゼオライト(M-GIS型ゼオライト)を得ることができる。なお、この乾燥条件は一例であり、本実施の形態において乾燥の条件はこれら以外の条件であってもよい。 After that, the GIS-type zeolite is put into a beaker and stirred at, for example, 80 ° C. for 24 hours (step S72). The stirring conditions (temperature, time) may be other than these conditions. Next, the stirred sample is filtered and washed with pure water (step S73). Then, by drying at 110 ° C. for 16 hours (step S74), a GIS-type zeolite (M-GIS-type zeolite) substituted with M ions can be obtained. It should be noted that this drying condition is an example, and the drying condition may be other than these in the present embodiment.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
<実施例1>
 実施例1としてMER型ゼオライトを作製した。図1は、MER型ゼオライトの製造方法を示すフローチャートである。まず、ビーカーAにコロイダルシリカ(濃度30wt%:日産化学株式会社製、スノーテックスNaタイプST-30)とHOとを投入し、これらを攪拌して混合した(ステップS1)。また、ビーカーBにKOHとAl(OH)とHOとを投入し、これらを透明になるまで加熱攪拌した(ステップS2)。その後、ビーカーAの溶液とビーカーBの溶液とを混合し、攪拌した(ステップS3)。
<Example 1>
As Example 1, a MER-type zeolite was prepared. FIG. 1 is a flowchart showing a method for producing a MER-type zeolite. First, colloidal silica (concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30) and H2O were put into the beaker A, and these were stirred and mixed (step S1). Further, KOH, Al (OH) 3 and H 2 O were put into the beaker B, and these were heated and stirred until they became transparent (step S2). Then, the solution of beaker A and the solution of beaker B were mixed and stirred (step S3).
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に注ぎ、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS4)。水熱処理の温度は150℃、水熱処理の時間は3日間とした。 Then, the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.) and placed in a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S4). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days.
 水熱処理後、取り出したテフロン容器内には沈殿物が生成されていた。この沈殿物を純水で洗浄した(ステップS5)。その後、洗浄した沈殿物を、約110℃の温度で16時間乾燥させて白色固体を得た(ステップS6)。 After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S5). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S6).
 なお、実施例1における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HO=5:1:6:100とした。 The composition ratio (charged molar ratio) of each raw material in Example 1 was SiO 2 : Al (OH) 3 : KOH: H 2 O = 5: 1: 6: 100.
 また、作製した実施例1にかかるサンプルの組成(原子比)をICP-OES(Inductivity Coupled Plasma Optical Emission Spectrometry)を用いて分析した。
[ICP-OES]
・使用したICP-OES装置:5100 VDV ICP-OES(アジレント・テクノロジー)
・ICPイオン化部:Arプラズマ
In addition, the composition (atomic ratio) of the prepared sample according to Example 1 was analyzed using ICP-OES (Inductivity Coupled Plasma Optical Emission Spectrometry).
[ICP-OES]
-ICP-OES equipment used: 5100 VDV ICP-OES (Agilent Technologies)
・ ICP ionization unit: Ar plasma
 組成分析の結果、実施例1にかかるサンプルの組成は下記の通りであった。
 K9.2[Al9.5Si22.564]・yHO ・・・実施例1
As a result of the composition analysis, the composition of the sample according to Example 1 was as follows.
K 9.2 [Al 9.5 Si 22.5 O 64 ] · yH 2 O ・ ・ ・ Example 1
 また、実施例1にかかるサンプルの熱膨張率を以下の方法を用いて測定した。
 下記の粉末X線回折装置にベンチトップ加熱ステージ(BTS 500、AntonPaar)を取り付け、任意の温度でX線回折パターンを測定した。なお、検出器には高速1次元検出器(D/teX Ultra2、(株)リガク)使用し、下記の条件で測定を行った。また、内部標準にSi(NIST SRM 640c)を用いた。
[高温XRD(HT-XRD)]
・使用装置:Mini Flex 600((株)リガク)
・雰囲気:Air
・管電流/管電圧:15mA/40kV
・ターゲット:Cu
・ステップ幅:0.02°
・測定範囲(走査速度):5~75°(4°/min)
・測定温度:30~220℃
In addition, the coefficient of thermal expansion of the sample according to Example 1 was measured using the following method.
A benchtop heating stage (BTS 500, AntonioPaar) was attached to the following powder X-ray diffractometer, and the X-ray diffraction pattern was measured at an arbitrary temperature. A high-speed one-dimensional detector (D / teX Ultra2, Rigaku Co., Ltd.) was used as the detector, and the measurement was performed under the following conditions. In addition, Si (NIST SRM 640c) was used as the internal standard.
[High temperature XRD (HT-XRD)]
-Device used: Mini Flex 600 (Rigaku Co., Ltd.)
・ Atmosphere: Air
・ Tube current / tube voltage: 15mA / 40kV
・ Target: Cu
・ Step width: 0.02 °
-Measurement range (scanning speed): 5 to 75 ° (4 ° / min)
・ Measurement temperature: 30-220 ° C
 得られたX線回折パターン(HT-XRD測定結果:昇温)を図2に示す。また、サンプルを加熱後、降温した際のX線回折パターンも測定した。得られたX線回折パターン(HT-XRD測定結果:降温)を図3に示す。 The obtained X-ray diffraction pattern (HT-XRD measurement result: temperature rise) is shown in FIG. In addition, the X-ray diffraction pattern when the temperature of the sample was lowered after being heated was also measured. The obtained X-ray diffraction pattern (HT-XRD measurement result: temperature drop) is shown in FIG.
 得られたX線回折パターンと解析ソフトウェア(HighScore Plus、PANalytical)を用いて、リートベルト法で結晶構造を精密化し、格子定数を算出した。算出した格子定数を温度に対してプロットし、直線近似した温度範囲で、下記の式を用いて、結晶軸ごとの線熱膨張率αと体積熱膨張率αを算出した。 Using the obtained X-ray diffraction pattern and analysis software (HighScore Plus, PANalytical), the crystal structure was refined by the Rietveld method, and the lattice constant was calculated. The calculated lattice constant was plotted against the temperature, and the linear thermal expansion coefficient α l and the volume coefficient of thermal expansion α v for each crystal axis were calculated using the following equations in a temperature range approximately linearly approximated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図4に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例1にかかるサンプルの体積熱膨張率は、30~160℃の温度範囲で-236(ppmK-1)であった。 FIG. 4 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volume coefficient of thermal expansion of the sample according to Example 1 was -236 (ppmK -1 ) in the temperature range of 30 to 160 ° C.
<実施例2>
 実施例2としてMER型ゼオライトを作製した。実施例2にかかるサンプルも実施例1と同様の方法を用いて作製した。なお、実施例2における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HO=5:2:6:100とした。
<Example 2>
As Example 2, a MER-type zeolite was prepared. The sample according to Example 2 was also prepared by the same method as in Example 1. The composition ratio (charged molar ratio) of each raw material in Example 2 was SiO 2 : Al (OH) 3 : KOH: H 2 O = 5: 2: 6: 100.
 また、作製した実施例2にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例2にかかるサンプルの組成は下記の通りであった。
 K10.3[Al10.6Si21.464]・yHO ・・・実施例2
Moreover, when the composition (atomic ratio) of the prepared sample according to Example 2 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 2 was as follows.
K 10.3 [Al 10.6 Si 21.4 O 64 ] · yH 2 O ・ ・ ・ Example 2
 また、実施例2にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図5に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例2にかかるサンプルの体積熱膨張率は、60~180℃の温度範囲で-184(ppmK-1)、40~60℃の温度範囲で-908(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 2 was measured using the same method as in Example 1. FIG. 5 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 2 was -184 (ppmK -1 ) in the temperature range of 60 to 180 ° C. and -908 (ppmK -1 ) in the temperature range of 40 to 60 ° C.
<実施例3>
 実施例3としてMER型ゼオライトを作製した。実施例3にかかるサンプルも実施例1と同様の方法を用いて作製した。なお、実施例3における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HO=5:3:6:100とした。
<Example 3>
As Example 3, a MER-type zeolite was prepared. The sample according to Example 3 was also prepared by the same method as in Example 1. The composition ratio (charged molar ratio) of each raw material in Example 3 was SiO 2 : Al (OH) 3 : KOH: H 2 O = 5: 3: 6: 100.
 また、作製した実施例3にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例3にかかるサンプルの組成は下記の通りであった。
 K11.6[Al11.6Si20.464]・yHO ・・・実施例3
Moreover, when the composition (atomic ratio) of the prepared sample according to Example 3 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 3 was as follows.
K 11.6 [Al 11.6 Si 20.4 O 64 ] · yH 2 O ... Example 3
 また、実施例3にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図6に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例3にかかるサンプルの体積熱膨張率は、60~160℃の温度範囲で-98.6(ppmK-1)、40~60℃の温度範囲で-942(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 3 was measured by using the same method as in Example 1. FIG. 6 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 3 was −98.6 (ppmK -1 ) in the temperature range of 60 to 160 ° C. and −942 (ppmK -1 ) in the temperature range of 40 to 60 ° C.
<実施例4>
 実施例4としてMER型ゼオライトを作製した。実施例4にかかるサンプルも実施例1と同様の方法を用いて作製した。なお、実施例4における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HO=5:2:12:100とした。
<Example 4>
As Example 4, a MER-type zeolite was prepared. The sample according to Example 4 was also prepared by the same method as in Example 1. The composition ratio (charged molar ratio) of each raw material in Example 4 was SiO 2 : Al (OH) 3 : KOH: H 2 O = 5: 2: 12: 100.
 また、作製した実施例4にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例4にかかるサンプルの組成は下記の通りであった。
 K11.7[Al11.7Si20.364]・yHO ・・・実施例4
Moreover, when the composition (atomic ratio) of the prepared sample according to Example 4 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 4 was as follows.
K 11.7 [Al 11.7 Si 20.3 O 64 ] · yH 2 O ... Example 4
 また、実施例4にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図7に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例4にかかるサンプルの体積熱膨張率は、60~140℃の温度範囲で-106(ppmK-1)、40~60℃の温度範囲で-925(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 4 was measured by the same method as in Example 1. FIG. 7 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 4 was −106 (ppmK -1) in the temperature range of 60 to 140 ° C. and −925 (ppmK -1 ) in the temperature range of 40 to 60 ° C.
<実施例5>
 実施例5としてMER型ゼオライトを作製した。図8は、MER型ゼオライトの製造方法を示すフローチャートである。まず、ビーカーにKOHとAl(OH)とHPOとHOとを投入し、これらを透明になるまで加熱攪拌した(ステップS11)。その後、ビーカーにコロイダルシリカ(濃度30wt%:日産化学株式会社製、スノーテックスNaタイプST-30)を混合し、攪拌した(ステップS12)。
<Example 5>
As Example 5, a MER-type zeolite was prepared. FIG. 8 is a flowchart showing a method for producing a MER-type zeolite. First, KOH, Al (OH) 3 , H 3 PO 4 , and H 2 O were put into a beaker, and these were heated and stirred until they became transparent (step S11). Then, colloidal silica (concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30) was mixed with the beaker and stirred (step S12).
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に注ぎ、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS13)。水熱処理の温度は150℃、水熱処理の時間は3日間とした。 Then, the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.) and placed in a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S13). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days.
 水熱処理後、取り出したテフロン容器内には沈殿物が生成されていた。この沈殿物を純水で洗浄した(ステップS14)。その後、洗浄した沈殿物を、約110℃の温度で16時間乾燥させて白色固体を得た(ステップS15)。 After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S14). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S15).
 なお、実施例5における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HPO:HO=4.25:2.375:6:0.375:100とした。 The composition ratio (charged molar ratio) of each raw material in Example 5 is SiO 2 : Al (OH) 3 : KOH: H 3 PO 4 : H 2 O = 4.25: 2.375: 6: 0. It was set to 375: 100.
 上述の製造方法を用いることで、単相のMER型ゼオライトを作製できた。作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、実施例5にかかるサンプルの組成は下記の通りであった。
 K13.6[Al13.4Si18.664]・yHO ・・・実施例5
By using the above-mentioned production method, a single-phase MER-type zeolite could be produced. When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample according to Example 5 was as follows.
K 13.6 [Al 13.4 Si 18.6 O 64 ] · yH 2 O ... Example 5
 実施例5にかかる製造方法は、リン(HPO)を添加している点が実施例1にかかる製造方法と異なる。実施例5にかかる製造方法では、出発原料にリンを添加しているが、最終的に得られたゼオライトにはリンが入っていなかった。 The production method according to Example 5 is different from the production method according to Example 1 in that phosphorus (H 3 PO 4 ) is added. In the production method according to Example 5, phosphorus was added to the starting material, but phosphorus was not contained in the finally obtained zeolite.
 また、HT-XRDを測定し、室温から250℃までの格子定数を求めた(図9)。本結果から、熱膨張率を算出すると、30~50℃の温度範囲で-39(ppmK-1)、70~130℃の温度範囲で-76(ppmK-1)、150~230℃の温度範囲で-187(ppmK-1)であった。 In addition, HT-XRD was measured to determine the lattice constant from room temperature to 250 ° C. (FIG. 9). When the coefficient of thermal expansion is calculated from this result, it is -39 (ppmK -1 ) in the temperature range of 30 to 50 ° C, -76 (ppmK -1 ) in the temperature range of 70 to 130 ° C, and the temperature range of 150 to 230 ° C. It was -187 (ppmK -1 ).
<実施例6>
 実施例6としてMER型ゼオライトを作製した。実施例6にかかるサンプルも実施例5と同様の方法を用いて作製した。なお、実施例6における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HPO:HO=4.5:2.25:6:0.25:100とした。本実施例においても単相のMER型ゼオライトを作製できた。
<Example 6>
As Example 6, a MER-type zeolite was prepared. The sample according to Example 6 was also prepared by the same method as in Example 5. The composition ratio (charged molar ratio) of each raw material in Example 6 is SiO 2 : Al (OH) 3 : KOH: H 3 PO 4 : H 2 O = 4.5: 2.25: 6: 0. It was set to 25: 100. In this example as well, a single-phase MER-type zeolite could be produced.
 作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、サンプルの組成は下記の通りであった。
 K12.8[Al12.8Si19.264]・yHO ・・・実施例6
When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample was as follows.
K 12.8 [Al 12.8 Si 19.2 O 64 ] · yH 2 O ... Example 6
 また、HT-XRDを測定し、室温から230℃までの格子定数を求めた(図6)。本結果から、熱膨張率を算出すると、熱膨張率を算出すると、70~150℃の温度範囲で-105(ppmK-1)、170~230℃の温度範囲で-45(ppmK-1)であった。 In addition, HT-XRD was measured to determine the lattice constant from room temperature to 230 ° C. (FIG. 6). When the coefficient of thermal expansion is calculated from this result, the coefficient of thermal expansion is -105 (ppmK -1 ) in the temperature range of 70 to 150 ° C, and -45 (ppmK -1 ) in the temperature range of 170 to 230 ° C. there were.
<実施例7>
 実施例7としてMER型ゼオライトを作製した。実施例7にかかるサンプルも実施例5と同様の方法を用いて作製した。なお、実施例7における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HPO:HO=4.75:2.125:6:0.125:100とした。本実施例においても単相のMER型ゼオライトを作製できた。
<Example 7>
As Example 7, a MER-type zeolite was prepared. The sample according to Example 7 was also prepared by the same method as in Example 5. The composition ratio (charged molar ratio) of each raw material in Example 7 is SiO 2 : Al (OH) 3 : KOH: H 3 PO 4 : H 2 O = 4.75: 2.125: 6: 0. It was set to 125: 100. In this example as well, a single-phase MER-type zeolite could be produced.
 作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、サンプルの組成は下記の通りであった。
 K11.5[Al11.5Si20.564]・yHO ・・・実施例7
When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample was as follows.
K 11.5 [Al 11.5 Si 20.5 O 64 ] · yH 2 O ・ ・ ・ Example 7
 また、HT-XRDを測定し、室温から250℃までの格子定数を求めた(図11)。本結果から、熱膨張率を算出すると、30~70℃の温度範囲で-186(ppmK-1)、90~150℃の温度範囲で-42.2(ppmK-1)、170~250℃の温度範囲で-50(ppmK-1)であった。 In addition, HT-XRD was measured to determine the lattice constant from room temperature to 250 ° C. (FIG. 11). When the coefficient of thermal expansion is calculated from this result, it is -186 (ppmK -1) in the temperature range of 30 to 70 ° C, -42.2 (ppmK -1 ) in the temperature range of 90 to 150 ° C, and 170 to 250 ° C. It was -50 (ppmK -1 ) in the temperature range.
<実施例8>
 実施例8としてMER型ゼオライトを作製した。図12は、MER型ゼオライトの製造方法を示すフローチャートである。まず、ビーカーAにシリカ(富士フイルム和光純薬工業製)、35%テトラエチルアンモニウムヒドロキシド(TEAOH)溶液、HOを投入し、これらを攪拌して混合した(ステップS21)。また、ビーカーBにKOHとAl(OH)とHOとを投入し、これらを加熱攪拌した(ステップS22)。その後、ビーカーAの溶液とビーカーBの溶液とを混合し、攪拌した(ステップS23)。
<Example 8>
As Example 8, a MER-type zeolite was prepared. FIG. 12 is a flowchart showing a method for producing a MER-type zeolite. First, silica (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), a 35% tetraethylammonium hydroxide (TEAOH) solution, and H2O were added to the beaker A, and these were stirred and mixed (step S21). Further, KOH, Al (OH) 3 and H 2 O were put into the beaker B, and these were heated and stirred (step S22). Then, the solution of beaker A and the solution of beaker B were mixed and stirred (step S23).
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に投入し、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS24)。水熱処理の温度は150℃、水熱処理の時間は3日間とした。水熱処理後、取り出したテフロン容器内には沈殿物が生成されていた。この沈殿物を純水で洗浄した(ステップS25)。その後、洗浄した沈殿物を、約110℃の温度で16時間乾燥させて白色固体を得た(ステップS26)。 After that, the stirred aqueous solution (mixture) was put into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.), and a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it to. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S24). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days. After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S25). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S26).
 なお、実施例8における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:TEAOH:HO=5:1:3:1:150とした。上述の製造方法を用いることで、単相のMER型ゼオライトを作製できた。実施例8にかかる製造方法は、TEAOHを用いている点が実施例1にかかる製造方法と異なる。 The composition ratio (charged molar ratio) of each raw material in Example 8 was SiO 2 : Al (OH) 3 : KOH: TEAOH: H 2 O = 5: 1: 3: 1: 150. By using the above-mentioned production method, a single-phase MER-type zeolite could be produced. The manufacturing method according to Example 8 is different from the manufacturing method according to Example 1 in that TEAOH is used.
 作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、実施例8にかかるサンプルの組成は下記の通りであった。
 K8.4[Al9.0Si23.064]・yHO ・・・実施例8
When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample according to Example 8 was as follows.
K 8.4 [Al 9.0 Si 23.0 O 64 ] · yH 2 O ・ ・ ・ Example 8
 また、実施例8にかかるサンプルのHT-XRD測定結果を図13に示す。図13に示すように、実施例8にかかるサンプルは、500℃まで分解しないことがわかった。また、室温から500℃まで格子定数を求めた(図14)。本結果から、熱膨張率を算出すると、30~230℃の温度範囲で-430(ppmK-1)、70~150℃の温度範囲で-193(ppmK-1)であった。 Further, FIG. 13 shows the HT-XRD measurement results of the sample according to Example 8. As shown in FIG. 13, it was found that the sample according to Example 8 did not decompose up to 500 ° C. In addition, the lattice constant was determined from room temperature to 500 ° C. (FIG. 14). From this result, the coefficient of thermal expansion was calculated to be 430 (ppmK -1) in the temperature range of 30 to 230 ° C. and -193 (ppmK -1 ) in the temperature range of 70 to 150 ° C.
<実施例9>
 実施例9としてMER型ゼオライトを作製した。実施例9にかかるサンプルも実施例8と同様の方法を用いて作製した。なお、実施例9における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:TEAOH:HO=5:1:1.5:y:150とした。yは、0~9.5とした。また、各原料の組成比(仕込みモル比)を、SiO:Al(OH):KOH:TEAOH:HO=5:1:1.0:9.0:150としたサンプルも作製した。
<Example 9>
As Example 9, a MER-type zeolite was prepared. The sample according to Example 9 was also prepared by the same method as in Example 8. The composition ratio (charged molar ratio) of each raw material in Example 9 was SiO 2 : Al (OH) 3 : KOH: TEAOH: H 2 O = 5: 1: 1.5: y: 150. y was set to 0 to 9.5. In addition, a sample in which the composition ratio (preparation molar ratio) of each raw material was SiO 2 : Al (OH) 3 : KOH: TEAOH: H 2 O = 5: 1: 1.0: 9.0: 150 was also prepared. ..
 このようにして作製したサンプルのXRD測定結果を図15に示す。図15に示す結果から、y=1.0~9.5の範囲で単相のMER型ゼオライトを作製できた。また、これらのサンプルの組成(原子比)をICP-OESを用いて分析したところ、下記のような組成であった。 FIG. 15 shows the XRD measurement results of the sample prepared in this way. From the results shown in FIG. 15, a single-phase MER-type zeolite could be produced in the range of y = 1.0 to 9.5. Moreover, when the composition (atomic ratio) of these samples was analyzed using ICP-OES, the composition was as follows.
 y=1.0: K6.7[Al6.7Si25.264]・yH
 y=2.5: K6.8[Al8.3Si23.764]・yH
 y=5.0: K9.0[Al8.9Si23.164]・yH
 y=7.5: K9.2[Al9.2Si22.864]・yH
 y=9.5: K9.3[Al9.3Si22.764]・yH
 y=1.0: K6.7[Al6.7Si25.264]・yH
y = 1.0: K 6.7 [Al 6.7 Si 25.2 O 64 ] · yH 2 O
y = 2.5: K 6.8 [Al 8.3 Si 23.7 O 64 ] · yH 2 O
y = 5.0: K 9.0 [Al 8.9 Si 23.1 O 64 ] · yH 2 O
y = 7.5: K 9.2 [Al 9.2 Si 22.8 O 64 ] · yH 2 O
y = 9.5: K 9.3 [Al 9.3 Si 22.7 O 64 ] · yH 2 O
y = 1.0: K 6.7 [Al 6.7 Si 25.2 O 64 ] · yH 2 O
 上述のサンプルのうち、y=1.0のサンプル(K6.7[Al6.7Si25.264]・yHO)のHT-XRD測定結果を図16に示す。また、当該サンプルの室温から270℃まで格子定数を求めた(図17)。本結果から、熱膨張率を算出すると、30~230℃の温度範囲で-121.5(ppmK-1)、30~270℃の温度範囲で-111.4(ppmK-1)であった。 Among the above-mentioned samples, the HT-XRD measurement result of the sample with y = 1.0 (K 6.7 [Al 6.7 Si 25.2 O 64 ], yH 2 O) is shown in FIG. In addition, the lattice constant was determined from room temperature of the sample to 270 ° C (FIG. 17). From this result, the coefficient of thermal expansion was calculated to be -121.5 (ppmK -1 ) in the temperature range of 30 to 230 ° C. and -111.4 (ppmK -1 ) in the temperature range of 30 to 270 ° C.
<実施例10>
 実施例10としてMER型ゼオライトを作製した。図18は、MER型ゼオライトの製造方法を示すフローチャートである。まず、ビーカーAにシリカ(富士フイルム和光純薬工業製)、HOを投入し、これらを攪拌して混合した(ステップS31)。また、ビーカーBにKOHとAl(OH)とHOとを投入し、これらを加熱攪拌した(ステップS32)。その後、ビーカーAの溶液とビーカーBの溶液とを混合し、攪拌した(ステップS33)。
<Example 10>
As Example 10, a MER-type zeolite was prepared. FIG. 18 is a flowchart showing a method for producing a MER-type zeolite. First, silica (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and H2O were put into the beaker A, and these were stirred and mixed (step S31). Further, KOH, Al (OH) 3 and H 2 O were put into the beaker B, and these were heated and stirred (step S32). Then, the solution of beaker A and the solution of beaker B were mixed and stirred (step S33).
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に投入し、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS34)。水熱処理の温度は150℃、水熱処理の時間は3日間とした。水熱処理後、取り出したテフロン容器内には沈殿物が生成されていた。この沈殿物を純水で洗浄した(ステップS35)。その後、洗浄した沈殿物を、約110℃の温度で16時間乾燥させて白色固体を得た(ステップS36)。なお、実施例10における各原料の組成比(仕込みモル比)は、SiO:Al(OH):KOH:HO=5:1:z:150とした。zは、1.25~12.0である。 After that, the stirred aqueous solution (mixture) was put into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.), and a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it to. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S34). The temperature of the hydrothermal treatment was 150 ° C., and the time of the hydrothermal treatment was 3 days. After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S35). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S36). The composition ratio (charged molar ratio) of each raw material in Example 10 was SiO 2 : Al (OH) 3 : KOH: H 2 O = 5: 1: z: 150. z is 1.25 to 12.0.
 このようにして作製したサンプルのXRD測定結果を図19に示す。図19に示す結果から、z=2.25~12.0の範囲で単相のMER型ゼオライトを作製できた。また、これらのサンプルの組成(原子比)をICP-OESを用いて分析したところ、下記のような組成であった。 FIG. 19 shows the XRD measurement results of the sample prepared in this way. From the results shown in FIG. 19, a single-phase MER-type zeolite could be produced in the range of z = 2.25 to 12.0. Moreover, when the composition (atomic ratio) of these samples was analyzed using ICP-OES, the composition was as follows.
 z=2.25: K6.7[Al7.0Si25.064]・yH
 z=2.5:  K6.8[Al7.1Si24.964]・yH
 z=3.0:  K7.2[Al7.7Si24.364]・yH
 z=4.0:  K9.3[Al9.5Si22.564]・yH
 z=12.0: K11.2[Al12.8Si19.264]・yH
z = 2.25: K 6.7 [Al 7.0 Si 25.0 O 64 ] · yH 2 O
z = 2.5: K 6.8 [Al 7.1 Si 24.9 O 64 ] · yH 2 O
z = 3.0: K 7.2 [Al 7.7 Si 24.3 O 64 ] · yH 2 O
z = 4.0: K 9.3 [Al 9.5 Si 22.5 O 64 ] · yH 2 O
z = 12.0: K 11.2 [Al 12.8 Si 19.2 O 64 ] · yH 2 O
<実施例11>
 実施例11としてMER型ゼオライトのKの一部をCaで置換(イオン交換)したサンプルを作製した。なお、実施例11では、実施例2にかかるサンプルのKの一部をCaで置換した。
<Example 11>
As Example 11, a sample in which a part of K of the MER-type zeolite was replaced with Ca (ion exchange) was prepared. In Example 11, a part of K of the sample according to Example 2 was replaced with Ca.
 図20は、MER型ゼオライトのイオン交換方法を説明するためのフローチャートである。まず、置換用原料Aとして、Ca(NO・4HOを5.0×10-3mol、HO50mlを用いて、0.1Mの硝酸カルシウム水溶液(Ca(NO aq.)をビーカーに準備した(ステップS41)。 FIG. 20 is a flowchart for explaining an ion exchange method of the MER-type zeolite. First, as the replacement raw material A, 5.0 × 10 -3 mol of Ca (NO 3 ) 2.4H 2 O and 50 ml of H 2 O were used, and a 0.1 M aqueous solution of calcium nitrate (Ca (NO 3 ) 2 aq) was used. ) Was prepared in the beaker (step S41).
 その後、MER型ゼオライトとして実施例2にかかるサンプルを3gビーカーに投入し、80℃で24時間攪拌した(ステップS42)。次いで、攪拌後のサンプルを、純水で吸引濾過を行って純水洗浄した(ステップS43)。その後、洗浄後のサンプルを0.1Mの硝酸カルシウム水溶液(Ca(NO aq.)に投入し、80℃で24時間攪拌する処理(ステップS42)と吸引濾過・純水洗浄の処理(ステップS43)とを合計で7回繰り返した。その後、110℃で16時間乾燥させることで(ステップS44)、Caイオンで置換したMER型ゼオライト(Ca-MER型)を得た。 Then, the sample of Example 2 as a MER-type zeolite was put into a 3 g beaker and stirred at 80 ° C. for 24 hours (step S42). Then, the sample after stirring was suction-filtered with pure water and washed with pure water (step S43). Then, the washed sample is put into a 0.1 M aqueous calcium nitrate solution (Ca (NO 3 ) 2 aq.) And stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing treatment (step S42). Step S43) was repeated 7 times in total. Then, it was dried at 110 ° C. for 16 hours (step S44) to obtain a MER-type zeolite (Ca-MER type) substituted with Ca ions.
 作製した実施例11にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例11にかかるサンプルの組成は下記の通りであった。
 K5.0Ca2.6[Al10.7Si21.364]・yHO ・・・実施例11
When the composition (atomic ratio) of the prepared sample according to Example 11 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 11 was as follows.
K 5.0 Ca 2.6 [Al 10.7 Si 21.3 O 64 ] · yH 2 O ・ ・ ・ Example 11
 また、実施例11にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図21に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例11にかかるサンプルの体積熱膨張率は、30~160℃の温度範囲で-246(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 11 was measured using the same method as in Example 1. FIG. 21 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volume coefficient of thermal expansion of the sample according to Example 11 was -246 (ppmK -1 ) in the temperature range of 30 to 160 ° C.
<実施例12>
 実施例12としてMER型ゼオライトのKの一部をMgで置換(イオン交換)したサンプルを作製した。なお、実施例12では、実施例2にかかるサンプルのKの一部をMgで置換した。
<Example 12>
As Example 12, a sample in which a part of K of the MER-type zeolite was replaced with Mg (ion exchange) was prepared. In Example 12, a part of K of the sample according to Example 2 was replaced with Mg.
 実施例12においても実施例11と同様に、図20のフローチャートに示す方法を用いて、MER型ゼオライトのイオン交換を行った。まず、置換用原料Aとして、Mg(NO・6HOを5.0×10-3mol、HO50mlを用いて、0.1Mの硝酸マグネシウム水溶液(Mg(NO aq.)をビーカーに準備した(ステップS41)。 In Example 12, similarly to Example 11, ion exchange of the MER-type zeolite was performed by using the method shown in the flowchart of FIG. 20. First, as the replacement raw material A, 5.0 × 10 -3 mol of Mg (NO 3 ) 2.6H 2 O and 50 ml of H 2 O were used, and a 0.1 M magnesium nitrate aqueous solution (Mg (NO 3 ) 2 aq) was used. ) Was prepared in the beaker (step S41).
 その後、MER型ゼオライトとして実施例2にかかるサンプルを3gビーカーに投入し、80℃で24時間攪拌した(ステップS42)。次いで、攪拌後のサンプルを、純水で吸引濾過を行って純水洗浄した(ステップS43)。その後、洗浄後のサンプルを0.1Mの硝酸マグネシウム水溶液(Mg(NO aq.)に投入し、80℃で24時間攪拌する処理(ステップS42)と吸引濾過・純水洗浄の処理(ステップS43)とを合計で7回繰り返した。その後、110℃で16時間乾燥させることで(ステップS44)、Mgイオンで置換したMER型ゼオライト(Mg-MER型)を得た。 Then, the sample of Example 2 as a MER-type zeolite was put into a 3 g beaker and stirred at 80 ° C. for 24 hours (step S42). Then, the sample after stirring was suction-filtered with pure water and washed with pure water (step S43). Then, the washed sample is put into a 0.1 M magnesium nitrate aqueous solution (Mg (NO 3 ) 2 aq.) And stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing treatment (step S42). Step S43) was repeated 7 times in total. Then, it was dried at 110 ° C. for 16 hours (step S44) to obtain a MER type zeolite (Mg-MER type) substituted with Mg ions.
 作製した実施例12にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例12にかかるサンプルの組成は下記の通りであった。
 K6.7Mg2.0[Al10.8Si21.264]・yHO ・・・実施例12
When the composition (atomic ratio) of the prepared sample according to Example 12 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 12 was as follows.
K 6.7 Mg 2.0 [Al 10.8 Si 21.2 O 64 ] · yH 2 O ・ ・ ・ Example 12
 また、実施例12にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図22に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例12にかかるサンプルの体積熱膨張率は、30~80℃の温度範囲で-427(ppmK-1)、80~220℃の温度範囲で-39.7(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 12 was measured using the same method as in Example 1. FIG. 22 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 12 was -427 (ppmK -1 ) in the temperature range of 30 to 80 ° C. and -39.7 (ppmK -1 ) in the temperature range of 80 to 220 ° C.
<実施例13>
 実施例13としてMER型ゼオライトのKの一部をNaで置換(イオン交換)したサンプルを作製した。なお、実施例13では、実施例2にかかるサンプルのKの一部をNaで置換した。
<Example 13>
As Example 13, a sample in which a part of K of the MER-type zeolite was replaced with Na (ion exchange) was prepared. In Example 13, a part of K of the sample according to Example 2 was replaced with Na.
 実施例13においても実施例11と同様に、図20のフローチャートに示す方法を用いて、MER型ゼオライトのイオン交換を行った。まず、置換用原料Aとして、NaNOを5.0×10-3mol、HO50mlを用いて、0.1Mの硝酸ナトリウム水溶液(NaNO aq.)をビーカーに準備した(ステップS41)。 In Example 13, similarly to Example 11, ion exchange of the MER-type zeolite was performed by using the method shown in the flowchart of FIG. 20. First, a 0.1 M sodium nitrate aqueous solution (NaNO 3 aq.) Was prepared in a beaker using 5.0 × 10 -3 mol of NaNO 3 and 50 ml of H2 O as the raw material A for substitution (step S41).
 その後、MER型ゼオライトとして実施例2にかかるサンプルを3gビーカーに投入し、80℃で24時間攪拌した(ステップS42)。次いで、攪拌後のサンプルを、純水で吸引濾過を行って純水洗浄した(ステップS43)。その後、洗浄後のサンプルを0.1Mの硝酸マグネシウム水溶液(NaNO aq.)に投入し、80℃で24時間攪拌する処理(ステップS42)と吸引濾過・純水洗浄の処理(ステップS43)とを合計で7回繰り返した。その後、110℃で16時間乾燥させることで(ステップS44)、Naイオンで置換したMER型ゼオライト(Na-MER型)を得た。 Then, the sample of Example 2 as a MER-type zeolite was put into a 3 g beaker and stirred at 80 ° C. for 24 hours (step S42). Then, the sample after stirring was suction-filtered with pure water and washed with pure water (step S43). Then, the washed sample is put into a 0.1 M magnesium nitrate aqueous solution (NaNO 3 aq.) And stirred at 80 ° C. for 24 hours (step S42) and suction filtration / pure water washing treatment (step S43). Was repeated 7 times in total. Then, it was dried at 110 ° C. for 16 hours (step S44) to obtain a MER-type zeolite (Na-MER type) substituted with Na ions.
 作製した実施例13にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例13にかかるサンプルの組成は下記の通りであった。
 K3.9Na6.5[Al10.8Si21.264]・yHO ・・・実施例13
When the composition (atomic ratio) of the prepared sample according to Example 13 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 13 was as follows.
K 3.9 Na 6.5 [Al 10.8 Si 21.2 O 64 ] · yH 2 O ... Example 13
 また、実施例13にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図23に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例13にかかるサンプルの体積熱膨張率は、30~100℃の温度範囲で-189(ppmK-1)、120~220℃の温度範囲で-594(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 13 was measured using the same method as in Example 1. FIG. 23 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 13 was -189 (ppmK -1 ) in the temperature range of 30 to 100 ° C. and -594 (ppmK -1 ) in the temperature range of 120 to 220 ° C.
<実施例14>
 実施例14としてLTA型ゼオライトを作製した。図24は、LTA型ゼオライトの製造方法を示すフローチャートである。まず、ビーカーにNaOH、NaAlO、HOを投入し、これらを溶解するまで攪拌した(ステップS51)。その後、コロイダルシリカ(濃度30wt%:日産化学株式会社製、スノーテックスNaタイプST-30)をビーカーに投入して、これらを24時間攪拌した(ステップS52)。
<Example 14>
An LTA-type zeolite was prepared as Example 14. FIG. 24 is a flowchart showing a method for producing an LTA-type zeolite. First, NaOH, NaAlO 2 , and H2O were put into a beaker and stirred until they were dissolved (step S51). Then, colloidal silica (concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30) was put into a beaker, and these were stirred for 24 hours (step S52).
 その後、攪拌した後の水溶液(混合物)をオートクレーブに移し替え、65℃の温度で7日間、オーブンで加熱した(ステップS53)。その後、25℃の温度で1時間水冷し(ステップS54)、更に冷蔵庫(温度8℃)で30分冷却した(ステップS55)。次いで、冷却後のサンプルを13000rpm、45分の条件で遠心分離した(ステップS56)。そして、遠心分離してできた残渣を純水と混合することで洗浄を行った(ステップS57)。これらの動作(ステップS56とS57の動作)は3回繰り返した。その後、室温で一晩乾燥して(ステップS58)、実施例14にかかるLTA型ゼオライトを得た。 Then, the stirred aqueous solution (mixture) was transferred to an autoclave and heated in an oven at a temperature of 65 ° C. for 7 days (step S53). Then, it was water-cooled at a temperature of 25 ° C. for 1 hour (step S54), and further cooled in a refrigerator (temperature 8 ° C.) for 30 minutes (step S55). Then, the cooled sample was centrifuged at 13000 rpm for 45 minutes (step S56). Then, the residue formed by centrifugation was mixed with pure water for washing (step S57). These operations (operations of steps S56 and S57) were repeated three times. Then, it was dried overnight at room temperature (step S58) to obtain the LTA-type zeolite according to Example 14.
 なお、実施例14における各原料の組成比(仕込みモル比)は、SiO:Al:NaOH:HO=1:1:11:190とした。 The composition ratio (charged molar ratio) of each raw material in Example 14 was SiO 2 : Al 2 O 3 : NaOH: H 2 O = 1: 1: 11: 190.
 また、作製した実施例14にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例14にかかるサンプルの組成は下記の通りであった。
 Na12.1[Al13.2Si10.848]・yHO ・・・実施例14
Moreover, when the composition (atomic ratio) of the prepared sample according to Example 14 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 14 was as follows.
Na 12.1 [Al 13.2 Si 10.8 O 48 ] · yH 2 O ... Example 14
 また、実施例14にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図25に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例14にかかるサンプルの体積熱膨張率は、30~80℃の温度範囲で-160(ppmK-1)、250~500℃の温度範囲で-20.6(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 14 was measured using the same method as in Example 1. FIG. 25 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 14 was −160 (ppmK -1 ) in the temperature range of 30 to 80 ° C. and -20.6 (ppmK -1 ) in the temperature range of 250 to 500 ° C.
<実施例15>
 実施例15としてFAU型ゼオライトを作製した。実施例15にかかるサンプルも実施例14と同様の方法を用いて作製した。なお、実施例15における各原料の組成比(仕込みモル比)は、SiO:Al:NaOH:HO=3:1:11:190とした。
<Example 15>
As Example 15, a FAU-type zeolite was prepared. The sample according to Example 15 was also prepared by the same method as in Example 14. The composition ratio (charged molar ratio) of each raw material in Example 15 was SiO 2 : Al 2 O 3 : NaOH: H 2 O = 3: 1: 11: 190.
 また、作製した実施例15にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例15にかかるサンプルの組成は下記の通りであった。
 Na82.1[Al87.5Si104.5384]・yHO ・・・実施例15
Moreover, when the composition (atomic ratio) of the prepared sample according to Example 15 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 15 was as follows.
Na 82.1 [Al 87.5 Si 104.5 O 384 ] · yH 2 O ... Example 15
 また、実施例15にかかるサンプルの熱膨張率を実施例1と同様の方法を用いて測定した。図26に、体積熱膨張率と結晶軸ごとの線熱膨張率とを示す。実施例15にかかるサンプルの体積熱膨張率は、30~80℃の温度範囲で-69.2(ppmK-1)、350~500℃の温度範囲で-13.6(ppmK-1)であった。 Further, the coefficient of thermal expansion of the sample according to Example 15 was measured using the same method as in Example 1. FIG. 26 shows the volume coefficient of thermal expansion and the coefficient of linear thermal expansion for each crystal axis. The volumetric coefficient of thermal expansion of the sample according to Example 15 was -69.2 (ppmK -1 ) in the temperature range of 30 to 80 ° C. and -13.6 (ppmK -1 ) in the temperature range of 350 to 500 ° C. rice field.
<実施例16>
 実施例16としてGIS型ゼオライトを作製した。図27は、GIS型ゼオライトの製造方法を示すフローチャートである。まず、ビーカーにNaAlOとNaOHとHOを投入し、これらを攪拌して混合した(ステップS61)。その後、ビーカーにコロイダルシリカ(濃度30wt%:日産化学株式会社製、スノーテックスNaタイプST-30)を混合し、攪拌した(ステップS62)。その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に注ぎ、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS63)。水熱処理の温度は100℃、水熱処理の時間は7日間とした。
<Example 16>
A GIS-type zeolite was prepared as Example 16. FIG. 27 is a flowchart showing a method for producing a GIS-type zeolite. First, NaAlO 2 , NaOH and H2O were put into a beaker, and these were stirred and mixed (step S61). Then, colloidal silica (concentration 30 wt%: manufactured by Nissan Chemical Industries, Ltd., Snowtex Na type ST-30) was mixed with the beaker and stirred (step S62). Then, the stirred aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, San-ai Kagaku Co., Ltd.) and placed in a pressure-resistant stainless steel outer cylinder (HUS-100, San-ai Kagaku Co., Ltd.). I set it. Then, this container was placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S63). The temperature of the hydrothermal treatment was 100 ° C., and the time of the hydrothermal treatment was 7 days.
 水熱処理後、取り出したテフロン容器内には沈殿物が生成されていた。この沈殿物を純水で洗浄した(ステップS64)。その後、洗浄した沈殿物を、約110℃の温度で16時間乾燥させて白色固体を得た(ステップS65)。なお、実施例16における各原料の組成比(仕込みモル比)は、SiO:NaAlO:NaOH:HO=3.7:0.41:9.5:173とした。 After the hydrothermal treatment, a precipitate was formed in the Teflon container taken out. The precipitate was washed with pure water (step S64). Then, the washed precipitate was dried at a temperature of about 110 ° C. for 16 hours to obtain a white solid (step S65). The composition ratio (charged molar ratio) of each raw material in Example 16 was SiO 2 : NaAlO 2 : NaOH: H 2 O = 3.7: 0.41: 9.5: 173.
 上述の製造方法を用いることで、単相のGIS型ゼオライトを作製できた。作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、実施例16にかかるサンプルの組成は下記の通りであった。
 Na6.5[Al6.9Si9.232]・yHO ・・・実施例16
By using the above-mentioned production method, a single-phase GIS-type zeolite could be produced. When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample according to Example 16 was as follows.
Na 6.5 [Al 6.9 Si 9.2 O 32 ] · yH 2 O ... Example 16
 また、HT-XRDを測定し、室温から500℃までの格子定数を求めた(図28)。本結果から、熱膨張率を算出すると、30~70℃の温度範囲で-61(ppmK-1)、90~140℃の温度範囲で-101(ppmK-1)、150~350℃の温度範囲で-126(ppmK-1)であった。なお、30~350℃の温度範囲とすると-552(ppmK-1)であった。 In addition, HT-XRD was measured to determine the lattice constant from room temperature to 500 ° C. (FIG. 28). When the coefficient of thermal expansion is calculated from this result, it is -61 (ppmK -1 ) in the temperature range of 30 to 70 ° C, -101 (ppmK -1 ) in the temperature range of 90 to 140 ° C, and the temperature range of 150 to 350 ° C. It was -126 (ppmK -1 ). In the temperature range of 30 to 350 ° C., it was -552 (ppmK -1 ).
<実施例17>
 実施例17としてGIS型ゼオライトを作製した。実施例17にかかるサンプルも実施例16と同様の方法を用いて作製した。なお、実施例17における各原料の組成比(仕込みモル比)は、SiO:NaAlO:NaOH:HO=10:1.11:8.6:173とした。
<Example 17>
A GIS-type zeolite was prepared as Example 17. The sample according to Example 17 was also prepared by the same method as in Example 16. The composition ratio (charged molar ratio) of each raw material in Example 17 was SiO 2 : NaAlO 2 : NaOH: H 2 O = 10: 1.11: 8.6: 173.
 上述の製造方法を用いることで、単相のGIS型ゼオライトを作製できた。作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、実施例17にかかるサンプルの組成は下記の通りであった。
 Na5.2[Al5.3Si10.732]・yHO ・・・実施例17
By using the above-mentioned production method, a single-phase GIS-type zeolite could be produced. When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample according to Example 17 was as follows.
Na 5.2 [Al 5.3 Si 10.7 O 32 ] · yH 2 O ... Example 17
 また、HT-XRDを測定し、室温から500℃までの格子定数を求めた(図29)。本結果から、熱膨張率を算出すると、30~50℃の温度範囲で-40(ppmK-1)、70~90℃の温度範囲で-98(ppmK-1)、110~140℃の温度範囲で-53(ppmK-1)、150~350℃の温度範囲で-106(ppmK-1)であった。なお、30~350℃の温度範囲とすると-529(ppmK-1)であった。 In addition, HT-XRD was measured to determine the lattice constant from room temperature to 500 ° C. (FIG. 29). When the coefficient of thermal expansion is calculated from this result, it is -40 (ppmK -1 ) in the temperature range of 30 to 50 ° C, -98 (ppmK -1 ) in the temperature range of 70 to 90 ° C, and 110 to 140 ° C. It was -53 (ppmK -1 ) and -106 (ppmK -1 ) in the temperature range of 150 to 350 ° C. In the temperature range of 30 to 350 ° C., it was −529 (ppmK -1 ).
<実施例18>
 実施例18としてGIS型ゼオライトを作製した。実施例18にかかるサンプルも実施例16と同様の方法を用いて作製した。なお、実施例18における各原料の組成比(仕込みモル比)は、SiO:NaAlO:NaOH:HO=10:2.5:6.9:173とした。
<Example 18>
A GIS-type zeolite was prepared as Example 18. The sample according to Example 18 was also prepared by the same method as in Example 16. The composition ratio (charged molar ratio) of each raw material in Example 18 was SiO 2 : NaAlO 2 : NaOH: H 2 O = 10: 2.5: 6.9: 173.
 上述の製造方法を用いることで、単相のGIS型ゼオライトを作製できた。作製したサンプルの組成(原子比)をICP-OESを用いて分析したところ、実施例18にかかるサンプルの組成は下記の通りであった。
 Na5.8[Al5.9Si10.132]・yHO ・・・実施例18
By using the above-mentioned production method, a single-phase GIS-type zeolite could be produced. When the composition (atomic ratio) of the prepared sample was analyzed using ICP-OES, the composition of the sample according to Example 18 was as follows.
Na 5.8 [Al 5.9 Si 10.1 O 32 ] · yH 2 O ... Example 18
 また、HT-XRDを測定し、室温から500℃までの格子定数を求めた(図30)。本結果から、熱膨張率を算出すると、50~70℃の温度範囲で-74(ppmK-1)、90~140℃の温度範囲で-96(ppmK-1)、150~350℃の温度範囲で-113(ppmK-1)であった。なお、30~350℃の温度範囲とすると-458(ppmK-1)であった。 In addition, HT-XRD was measured to determine the lattice constant from room temperature to 500 ° C. (FIG. 30). When the coefficient of thermal expansion is calculated from this result, it is -74 (ppmK -1 ) in the temperature range of 50 to 70 ° C, -96 (ppmK -1 ) in the temperature range of 90 to 140 ° C, and the temperature range of 150 to 350 ° C. It was -113 (ppmK -1 ). In the temperature range of 30 to 350 ° C., it was -458 (ppmK -1 ).
<実施例19>
 実施例19としてGIS型ゼオライトのNaの一部をMg、Ca、K、またはLiで置換(イオン交換)したサンプルを作製した。なお、実施例19では、実施例16にかかるサンプルのNaの一部をMg、Ca、K、またはLiで置換した。
<Example 19>
As Example 19, a sample was prepared by substituting (ion exchange) a part of Na of the GIS-type zeolite with Mg, Ca, K, or Li. In Example 19, a part of Na in the sample according to Example 16 was replaced with Mg, Ca, K, or Li.
 図31は、GIS型ゼオライトのイオン交換方法を説明するためのフローチャートである。まず、置換用原料Bとして、MgCl・6HO、CaCl・4HO、KCl、またはLiClを1.5×10-2mol、HO15mlを用いて、1Mの塩酸マグネシウム水溶液(MgCl aq.)、塩酸カルシウム水溶液(CaCl aq.)、塩酸カリウム水溶液(KCl aq.)、塩酸リチウム水溶液(LiCl aq.)をビーカーに準備した(ステップS71)。 FIG. 31 is a flowchart for explaining an ion exchange method of the GIS-type zeolite. First, as the replacement raw material B, 1 M magnesium hydrochloride aqueous solution (MgCl) using 1.5 × 10 −2 mol, H 2 O 15 ml of MgCl 2.6H 2 O, CaCl 2.4H 2 O , KCl , or LiCl. 2 aq.), An aqueous solution of calcium chloride (CaCl 2 aq.), An aqueous solution of potassium chloride (KCl aq.), And an aqueous solution of lithium hydrochloride (LiCl aq.) Were prepared in a beaker (step S71).
 その後、GIS型ゼオライトとして実施例16にかかるサンプルを0.5gビーカーに投入し、80℃で24時間攪拌した(ステップS72)。次いで、攪拌後のサンプルを、濾過を行って純水洗浄した(ステップS73)。その後、110℃で16時間乾燥させることで(ステップS74)、Mg、Ca、K、またはLiイオンで置換したGIS型ゼオライト(Mg-GIS型、Ca-GIS型、K-GIS型、またはLi-GIS型)を得た。 Then, the sample of Example 16 as a GIS-type zeolite was put into a 0.5 g beaker and stirred at 80 ° C. for 24 hours (step S72). Then, the stirred sample was filtered and washed with pure water (step S73). Then, the GIS-type zeolite (Mg-GIS type, Ca-GIS type, K-GIS type, or Li-) substituted with Mg, Ca, K, or Li ion by drying at 110 ° C. for 16 hours (step S74). GIS type) was obtained.
 作製した実施例19にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例19にかかるサンプルの組成は下記の通りであった。
 Mg-GIS型:Na3.9Mg1.2[Al6.1Si9.932]・yH
 Ca-GIS型:Na0.8Ca2.8[Al6.2Si9.832]・yH
 K-GIS型 :K5.3[Al6.0Si10.032]・yH
 Li-GIS型:Na4.0Li2.0[Al6.2Si9.832]・yH
When the composition (atomic ratio) of the prepared sample according to Example 19 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 19 was as follows.
Mg-GIS type: Na 3.9 Mg 1.2 [Al 6.1 Si 9.9 O 32 ] · yH 2 O
Ca-GIS type: Na 0.8 Ca 2.8 [Al 6.2 Si 9.8 O 32 ] · yH 2 O
K-GIS type: K 5.3 [Al 6.0 Si 10.0 O 32 ] · yH 2 O
Li-GIS type: Na 4.0 Li 2.0 [Al 6.2 Si 9.8 O 32 ] · yH 2 O
<実施例20>
 実施例20としてGIS型ゼオライトのNaの一部をMg、Ca、K、またはLiで置換(イオン交換)したサンプルを作製した。実施例20にかかるサンプルも実施例19と同様の方法を用いて作製した。なお、実施例20では、実施例17にかかるサンプルのNaの一部をMg、Ca、K、またはLiで置換した。
<Example 20>
As Example 20, a sample was prepared by substituting (ion exchange) a part of Na of the GIS-type zeolite with Mg, Ca, K, or Li. The sample according to Example 20 was also prepared by the same method as in Example 19. In Example 20, a part of Na in the sample according to Example 17 was replaced with Mg, Ca, K, or Li.
 作製した実施例20にかかるサンプルの組成(原子比)を実施例1と同様にICP-OESを用いて分析したところ、実施例20にかかるサンプルの組成は下記の通りであった。
 Mg-GIS型:Na3.8Mg0.7[Al5.4Si10.632]・yH
 Ca-GIS型:Na0.8Ca2.2[Al5.4Si10.632]・yH
 K-GIS型 :K4.5[Al5.3Si10.732]・yH
 Li-GIS型:Na3.4Li1.8[Al5.3Si10.732]・yH
When the composition (atomic ratio) of the prepared sample according to Example 20 was analyzed using ICP-OES in the same manner as in Example 1, the composition of the sample according to Example 20 was as follows.
Mg-GIS type: Na 3.8 Mg 0.7 [Al 5.4 Si 10.6 O 32 ] · yH 2 O
Ca-GIS type: Na 0.8 Ca 2.2 [Al 5.4 Si 10.6 O 32 ] · yH 2 O
K-GIS type: K 4.5 [Al 5.3 Si 10.7 O 32 ] · yH 2 O
Li-GIS type: Na 3.4 Li 1.8 [Al 5.3 Si 10.7 O 32 ] · yH 2 O
<まとめ>
 図32~図34は、実施例1~18にかかるサンプルの仕込みモル比、組成、体積膨張率とその温度範囲をまとめた表である。実施例1~18にかかるサンプルは、組成に応じて様々な体積膨張率を示す。また、実施例2、3、4、12、13にかかるサンプルでは、高温側と低温側とで体積膨張率の値が異なる。また、実施例1~4、11~15にかかるサンプルは、Si/Al比に応じて体積膨張率が変化する。例えば、高温側の温度領域(60~160℃)では、Si/Alが大きくなるほど(つまり、xが小さいほど)、負の体積膨張率の絶対値が増加する傾向にある(実施例1~4参照)。特に、Si/Alの値が最も大きい実施例1では、高温側の温度領域(60~160℃)において体積膨張率が最も低くなった(負の体積膨張率の絶対値が最も大きくなった)。
<Summary>
32 to 34 are tables summarizing the charged molar ratio, composition, volume expansion coefficient and the temperature range of the samples according to Examples 1 to 18. The samples according to Examples 1 to 18 show various volume expansion rates depending on the composition. Further, in the samples according to Examples 2, 3, 4, 12, and 13, the values of the coefficient of thermal expansion differ between the high temperature side and the low temperature side. Further, in the samples according to Examples 1 to 4 and 11 to 15, the volume expansion coefficient changes according to the Si / Al ratio. For example, in the temperature region on the high temperature side (60 to 160 ° C.), the absolute value of the negative volume expansion rate tends to increase as Si / Al increases (that is, as x decreases) (Examples 1 to 4). reference). In particular, in Example 1 in which the Si / Al value was the largest, the coefficient of thermal expansion was the lowest in the temperature region (60 to 160 ° C.) on the high temperature side (the absolute value of the negative coefficient of thermal expansion was the largest). ..
 また、Kの一部をCaで置換した実施例11では、30~160℃の温度範囲で体積熱膨張率が-246(ppmK-1)であった。実施例11の特性は実施例1と類似していた。Kの一部をNaで置換した実施例13では、120~220℃の温度範囲において体積熱膨張率が-594(ppmK-1)となり、この温度範囲で体積膨張率が最も低くなった(負の体積膨張率の絶対値が最も大きくなった)。 Further, in Example 11 in which a part of K was replaced with Ca, the volume coefficient of thermal expansion was -246 (ppmK -1 ) in the temperature range of 30 to 160 ° C. The characteristics of Example 11 were similar to those of Example 1. In Example 13 in which a part of K was replaced with Na, the coefficient of thermal expansion was −594 (ppmK -1 ) in the temperature range of 120 to 220 ° C., and the coefficient of thermal expansion was the lowest in this temperature range (negative). The absolute value of the volume expansion rate of was the largest).
 また、実施例14(LTA型ゼオライト)、実施例15(FAU型ゼオライト)、実施例16~18(GIS型ゼオライト)では、比較的高温の領域(例えば300℃以上)においても、負の体積膨張率を示した。特に、実施例14にかかるサンプルでは、300℃以上において安定した負の体積膨張率を示した。 Further, in Examples 14 (LTA-type zeolite), Example 15 (FAU-type zeolite), and Examples 16 to 18 (GIS-type zeolite), negative volume expansion even in a relatively high temperature region (for example, 300 ° C. or higher). Shown the rate. In particular, the sample according to Example 14 showed a stable negative volume expansion rate at 300 ° C. or higher.
 以上で説明したように、実施例1~18にかかる負熱膨張材料は、組成や置換する元素等に応じて様々な体積膨張率を示した。したがって、組成や置換する元素等を調整することで、用途に応じた負の体積膨張率を有する材料を作製することができる。 As described above, the negative thermal expansion materials according to Examples 1 to 18 showed various volume expansion rates depending on the composition, the element to be substituted, and the like. Therefore, by adjusting the composition, the element to be substituted, and the like, a material having a negative volume expansion coefficient according to the intended use can be produced.
 以上、本発明を上記実施形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。 Although the present invention has been described above in accordance with the above-described embodiment, the present invention is not limited to the configuration of the above-described embodiment, and those skilled in the art are within the scope of the claimed invention. Of course, it includes various modifications, corrections, and combinations that can be made.
 この出願は、2020年11月9日に出願された日本出願特願2020-186229を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-186229 filed on November 9, 2020, and incorporates all of its disclosures herein.

Claims (14)

  1.  MER型ゼオライト、GIS型ゼオライト、LTA型ゼオライト、及びFAU型ゼオライトからなる群から選択される少なくとも一種を含む負の熱膨張率を有する負熱膨張材料。 A negative thermal expansion material having a negative coefficient of thermal expansion, including at least one selected from the group consisting of MER-type zeolite, GIS-type zeolite, LTA-type zeolite, and FAU-type zeolite.
  2.  前記MER型ゼオライトがM(x-δ)[AlSi32-x64]・yHOである、請求項1に記載の負熱膨張材料。ただし、Mは、H、Li、Na、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種であり、xは、6.0≦x≦14.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 The negative thermal expansion material according to claim 1, wherein the MER-type zeolite is M (x-δ) [Al x Si 32-x O 64 ] · yH 2 O. However, M is H, Li, Na, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, Mn, Al, Cr, It is at least one selected from the group consisting of Y, Zr, Ti, lanthanoid, and tetraethylammonium ion, x is determined to satisfy 6.0 ≤ x ≤ 14.0, and δ is determined to satisfy the charge neutrality condition. It is a value, and y is an arbitrary value.
  3.  前記MER型ゼオライトがKx-δ[AlSi32-x64]・yHOである、請求項1に記載の負熱膨張材料。ただし、xは、6.0≦x≦14.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 The negative thermal expansion material according to claim 1, wherein the MER-type zeolite is K x-δ [Al x Si 32-x O 64 ] · yH 2 O. However, x is a value that satisfies 6.0 ≦ x ≦ 14.0, δ is a value that is determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
  4.  前記xが、6.7≦x≦13.5である、請求項3に記載の負熱膨張材料。 The negative thermal expansion material according to claim 3, wherein x is 6.7 ≦ x ≦ 13.5.
  5.  少なくとも60℃以上140℃以下における体積膨張率が、-236ppmK-1以上-98.6ppmK-1以下である、請求項3または4に記載の負熱膨張材料。 The negative thermal expansion material according to claim 3 or 4, wherein the volume expansion coefficient at least at 60 ° C. or higher and 140 ° C. or lower is -236 ppmK -1 or higher and -98.6 ppmK -1 or lower.
  6.  100℃以上200℃以下の温度範囲において相転移に伴う体積収縮を示すことを特徴とする、請求項2~5のいずれか一項に記載の負熱膨張材料。 The negative thermal expansion material according to any one of claims 2 to 5, characterized in that it exhibits volume shrinkage associated with a phase transition in a temperature range of 100 ° C. or higher and 200 ° C. or lower.
  7.  前記MER型ゼオライトに含まれるKの一部が、H、Li、Na、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、ランタノイド、及びテトラエチルアンモニウムイオンからなる群から選択される少なくとも一種で置換されている、請求項3~6のいずれか一項に記載の負熱膨張材料。 A part of K contained in the MER type zeolite is H, Li, Na, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, The negative thermal expansion material according to any one of claims 3 to 6, wherein the negative thermal expansion material is substituted with at least one selected from the group consisting of Mn, Al, Cr, Y, Zr, Ti, lanthanoid, and tetraethylammonium ion. ..
  8.  前記GIS型ゼオライトがNax-δ[AlSi16-x32]・yHOである、請求項1に記載の負熱膨張材料。ただし、xは4.5≦x≦7.5を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 The negative thermal expansion material according to claim 1, wherein the GIS-type zeolite is Na x-δ [Al x Si 16-x O 32 ] · yH 2 O. However, x satisfies 4.5 ≦ x ≦ 7.5, δ is a value determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
  9.  前記GIS型ゼオライトがNax-δ[AlSi16-x32]・yHOである、請求項1に記載の負熱膨張材料。ただし、xは5.0≦x≦7.0を満たし、δは電荷中性条件を満たすように定まる値であり、yは任意の値である。 The negative thermal expansion material according to claim 1, wherein the GIS-type zeolite is Na x-δ [Al x Si 16-x O 32 ] · yH 2 O. However, x satisfies 5.0 ≦ x ≦ 7.0, δ is a value determined so as to satisfy the charge neutrality condition, and y is an arbitrary value.
  10.  前記xが、5.3≦x≦6.9である、請求項8または9に記載の負熱膨張材料。 The negative thermal expansion material according to claim 8 or 9, wherein x is 5.3 ≦ x ≦ 6.9.
  11.  前記GIS型ゼオライトに含まれるNaの一部が、H、Li、K、Ag、NH、Mg、Ca、Sr、Ba、Cd、Ni、Zn、Cu、Hg、Fe、Co、Sn、Pb、Mn、Al、Cr、Y、Zr、Ti、及びランタノイドからなる群から選択される少なくとも一種で置換されている、請求項8~10のいずれか一項に記載の負熱膨張材料。 A part of Na contained in the GIS type zeolite is H, Li, K, Ag, NH 4 , Mg, Ca, Sr, Ba, Cd, Ni, Zn, Cu, Hg, Fe, Co, Sn, Pb, The negative thermal expansion material according to any one of claims 8 to 10, wherein the negative thermal expansion material is substituted with at least one selected from the group consisting of Mn, Al, Cr, Y, Zr, Ti, and lanthanoid.
  12.  請求項1~11のいずれか一項に記載の負熱膨張材料と、
     正の熱膨張率を有する材料と、を含むことを特徴とする複合材料。
    The negative thermal expansion material according to any one of claims 1 to 11.
    A composite material comprising, and a material having a positive coefficient of thermal expansion.
  13.  前記正の熱膨張率を有する材料が樹脂材料である、請求項12に記載の複合材料。 The composite material according to claim 12, wherein the material having a positive coefficient of thermal expansion is a resin material.
  14.  前記正の熱膨張率を有する材料が金属材料である、請求項12に記載の複合材料。 The composite material according to claim 12, wherein the material having a positive coefficient of thermal expansion is a metallic material.
PCT/JP2021/041006 2020-11-09 2021-11-08 Negative thermal expansion material and composite material WO2022097746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022560837A JPWO2022097746A1 (en) 2020-11-09 2021-11-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020186229 2020-11-09
JP2020-186229 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097746A1 true WO2022097746A1 (en) 2022-05-12

Family

ID=81458358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041006 WO2022097746A1 (en) 2020-11-09 2021-11-08 Negative thermal expansion material and composite material

Country Status (2)

Country Link
JP (1) JPWO2022097746A1 (en)
WO (1) WO2022097746A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313389A (en) * 2006-05-23 2007-12-06 Asahi Kasei Corp Marinoite type zeolite composite membrane and its manufacturing method
JP2019073704A (en) * 2017-10-16 2019-05-16 三菱ケミカル株式会社 Resin composite material and electronic device
WO2019194321A1 (en) * 2018-04-06 2019-10-10 株式会社アドマテックス Filler for resin composition, filler-containing slurry composition, filler-containing resin composition, and method for producing filler for resin composition
WO2019202933A1 (en) * 2018-04-16 2019-10-24 旭化成株式会社 Gis-type zeolite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313389A (en) * 2006-05-23 2007-12-06 Asahi Kasei Corp Marinoite type zeolite composite membrane and its manufacturing method
JP2019073704A (en) * 2017-10-16 2019-05-16 三菱ケミカル株式会社 Resin composite material and electronic device
WO2019194321A1 (en) * 2018-04-06 2019-10-10 株式会社アドマテックス Filler for resin composition, filler-containing slurry composition, filler-containing resin composition, and method for producing filler for resin composition
WO2019202933A1 (en) * 2018-04-16 2019-10-24 旭化成株式会社 Gis-type zeolite

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG HONG, DOVE MARTIN T.: "Pressure-induced softening as a common feature of framework structures with negative thermal expansion", PHYSICAL REVIEW B, AMERICAN PHYSICAL SOCIETY, US, vol. 87, no. 21, 1 June 2013 (2013-06-01), US , pages 214109, XP055927631, ISSN: 1098-0121, DOI: 10.1103/PhysRevB.87.214109 *
OOKAWA, MASASHI ET AL.: "Molecular dynamics simulation studies on thermal expansion behavior of siliceous faujasite", JOURNAL OF COMPUTER CHEMISTRY JAPAN, vol. 14, no. 4, 2015, pages 105 - 110, XP055643935, DOI: 10.2477/jccj.2015-0020 *

Also Published As

Publication number Publication date
JPWO2022097746A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
CN108821291B (en) Novel ternary layered MAX phase material, and preparation method and application thereof
Woodward et al. Order-disorder in A2M3+ M5+ O6 perovskites
JP7017743B2 (en) Methods for manufacturing negative thermal expansion materials, composite materials, and negative thermal expansion materials
JP6962094B2 (en) Method for producing garnet-type ionic conductive oxide and oxide electrolyte sintered body
KR101729824B1 (en) Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
KR102467112B1 (en) Bcc dual phase refractory superalloy with high phase stability and manufacturing method for the same
CN108910884B (en) MAX phase material, preparation method and application thereof
CN110540236A (en) MXene material and preparation method and application thereof
KR20180090186A (en) Method for producing garnet type oxide solid electrolyte
KR20050092392A (en) Material for positive electrode of lithium secondary battery and process for producing the same
JP3062497B1 (en) Method for producing flaky titanate
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
WO2022097746A1 (en) Negative thermal expansion material and composite material
CN113816378B (en) MAX phase layered material containing antimony element at A position, preparation method and application thereof
CN114956085A (en) Method for preparing antioxidant MXene through low-temperature molten salt system
EP4124602A1 (en) Method for producing high nickel lithiated metal oxide for battery
JP3867136B2 (en) Sodium cobalt oxide single crystal and method for producing the same
JP4565160B2 (en) New titanium dioxide and method for producing the same
CN114656255A (en) Magnesium titanate lithium composite microwave dielectric ceramic material and preparation method thereof
JP2014055080A (en) Titanium dioxide composition and method for producing the same, and lithium titanate
JP2011178640A (en) Oxide semiconductor powder and method of manufacturing the same
JP2006321723A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
US20100207075A1 (en) Method for producing metal complex oxide powder
US20220363563A1 (en) Novel Intermediate Material Between Precursor and Cathode Active Material
WO2023095548A1 (en) Transition metal-containing hydroxide, positive electrode active material obtained using transition metal-containing hydroxide as precursor, and method for producing transition metal-containing hydroxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889297

Country of ref document: EP

Kind code of ref document: A1