WO2022097653A1 - Method of producing modified lithium nickel manganese cobalt composite oxide particles - Google Patents

Method of producing modified lithium nickel manganese cobalt composite oxide particles Download PDF

Info

Publication number
WO2022097653A1
WO2022097653A1 PCT/JP2021/040449 JP2021040449W WO2022097653A1 WO 2022097653 A1 WO2022097653 A1 WO 2022097653A1 JP 2021040449 W JP2021040449 W JP 2021040449W WO 2022097653 A1 WO2022097653 A1 WO 2022097653A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
lithium nickel
oxide particles
cobalt composite
manganese cobalt
Prior art date
Application number
PCT/JP2021/040449
Other languages
French (fr)
Japanese (ja)
Inventor
直 渡邉
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021177454A external-priority patent/JP7252298B2/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to KR1020237014914A priority Critical patent/KR20230097043A/en
Priority to CN202180074901.3A priority patent/CN116490997A/en
Publication of WO2022097653A1 publication Critical patent/WO2022097653A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing modified lithium nickel manganese cobalt composite oxide particles.
  • lithium cobalt oxide has been used as the positive electrode active material of a lithium secondary battery.
  • cobalt is a rare metal
  • lithium nickel-manganese-cobalt composite oxides having a low cobalt content have been developed (see, for example, Patent Documents 1 and 2).
  • Lithium-nickel-manganese-cobalt composite oxide-based lithium secondary batteries can be reduced in cost by adjusting the atomic ratios of nickel, manganese, and cobalt contained in the composite oxide. It is known that the capacity is higher than that of lithium cobalt oxide (see, for example, Patent Document 3).
  • the lithium secondary battery using the lithium nickel manganese cobalt composite oxide as the positive electrode active material still has a problem of deterioration of cycle characteristics.
  • Patent Documents 4 and 5 describe an alkoxide monomer or oligomer made of an organic metal compound such as Ti and an alcohol such as 2-propanol. After mixing, a chelating agent such as acetylacetone was added, and water was further added to prepare a dispersion in which a precursor of fine particles containing Ti having an average particle of 1 to 20 nm was dispersed, and the dispersion was used to prepare lithium nickel manganese.
  • a method has been proposed in which the surface of particles of a cobalt composite oxide is coated and then heat-treated.
  • lithium secondary batteries have been studied for use in the automobile field such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles. Therefore, in a lithium secondary battery using a lithium nickel manganese cobalt composite oxide as a positive electrode active material, further improvement of cycle characteristics is required.
  • an object of the present invention is to provide lithium nickel-manganese-cobalt composite oxide particles capable of enhancing cycle characteristics when used as a positive electrode active material of a lithium secondary battery.
  • heat treatment is performed to obtain modified lithium nickel-manganese-cobalt composite oxide particles, and the modified lithium nickel-manganese-cobalt composite oxide particles are used as a positive electrode active material for lithium secondary.
  • the battery has been found to have excellent cycle characteristics, and the present invention has been completed.
  • the present invention (1) has the following general formula (1): Li x Ny Mn z Cot M p O 1 + x (1)
  • M is selected from Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. 1 or more kinds of metal elements are shown.
  • X is 0.98 ⁇ x ⁇ 1.20
  • y is 0.30 ⁇ y ⁇ 1.00
  • z is 0 ⁇ z ⁇ 0.50
  • t is 0.
  • the lithium nickel manganese cobalt composite oxide particles represented by (1) are brought into contact with a surface treatment liquid containing a titanium chelate compound to obtain coated particles having the titanium chelate compound adhered to the particle surface of the lithium nickel manganese cobalt composite oxide particles. Then, the coated particles are heat-treated to obtain modified lithium nickel-manganese cobalt composite oxide particles.
  • the titanium chelate compound has the following general formula (2): Ti (R 1 ) m L n (2)
  • R 1 represents an alkoxy group, a hydroxyl group, a halogen atom, an amino group or phosphines, and when a plurality of them are present, they may be the same or different.
  • L is derived from hydroxycarboxylic acid. When there are a plurality of groups, they may be the same or different.
  • M indicates a number of 0 or more and 3 or less, n indicates a number of 1 or more and 3 or less, and m + n is 3 to 6. be.
  • the present invention provides a method for producing modified lithium nickel-manganese-cobalt composite oxide particles.
  • the present invention (2) provides the method for producing the modified lithium nickel manganese cobalt composite oxide particles of (1), which is characterized in that the temperature of the heat treatment is 400 to 1000 ° C. ..
  • the present invention (3) is characterized in that L in the general formula (2) is a monovalent carboxylic acid, and the modified lithium nickel manganese cobalt composite oxide particles according to (1) or (2). It provides a manufacturing method of.
  • the present invention (4) is a method for producing the modified lithium nickel manganese cobalt composite oxide particles according to (1) or (2), wherein L in the general formula (2) is lactic acid. It is to provide.
  • the present invention (5) provides a method for producing the modified lithium nickel manganese cobalt composite oxide particles according to any one of (1) to (4), wherein the pH of the surface treatment liquid is 7 or more. It is something to do.
  • the amount of the titanium chelate compound adhered to the coated particles is 0 . It is intended to provide the method for producing the modified lithium nickel manganese cobalt composite oxide particles according to any one of (1) to (5), which is 1 to 150 mg.
  • the present invention (7) is characterized in that the amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is 1.2% by mass or less (1).
  • the present invention (8) is characterized in that the amount of residual alkali in the modified lithium nickel manganese cobalt composite oxide particles is 1.2% by mass or less, whichever is (1) to (7). It provides a method for producing modified lithium nickel-manganese-cobalt composite oxide particles.
  • the surface modification liquid was added to the surface modifier with an addition amount such that the Ti content per 1 m 2 of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) was 0.1 to 150 mg in terms of Ti atoms. Add to lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), mix, and dry the whole amount.
  • the present invention provides a method for producing the modified lithium nickel manganese cobalt composite oxide particles according to any one of (1) to (8).
  • a method for producing a positive electrode active material for a lithium secondary battery which comprises a step of mixing small particles having an average particle diameter of 0.5 to 7.5 ⁇ m obtained by the production method according to any one of (1). Is to provide.
  • lithium nickel-manganese-cobalt composite oxide particles capable of enhancing cycle characteristics when used as a positive electrode active material of a lithium secondary battery.
  • the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) are converted into a titanium chelate represented by the general formula (2) or a general method.
  • a surface treatment liquid containing an ammonium salt of a titanium chelate represented by the formula (2) to obtain coated particles to which these titanium chelate compounds are attached to the particle surface of lithium nickel-manganese cobalt-cobalt composite oxide particles, and then to obtain coated particles.
  • It has a modification step of obtaining modified lithium nickel manganese cobalt composite oxide particles by heat-treating the obtained coated particles.
  • the titanium chelate represented by the general formula (2) and the ammonium salt of the titanium chelate represented by the general formula (2) may be generically referred to as “titanium chelate compound”.
  • the method for producing a modified lithium nickel manganese cobalt composite oxide of the present invention basically has the following steps (A) to (B).
  • modified lithium nickel manganese cobalt composite oxide particles (A) and “modified lithium nickel manganese cobalt composite oxide particles (B)” are collectively referred to as “modified lithium nickel manganese cobalt composite oxide particles (B)". It may be described as "object particles”.
  • the coated particles are heat-treated to obtain modified lithium nickel-manganese-cobalt composite oxide particles (A) and modified lithium nickel-manganese-cobalt composite oxide particles (B).
  • the modified lithium nickel manganese cobalt composite oxide particles (A) are present in which an oxide containing Ti adheres to the particle surface of the lithium nickel manganese cobalt composite oxide particles.
  • the presence of the Ti-containing oxide adhering to the particle surface of the lithium nickel-manganese cobalt composite oxide particles means that the particle surface of the modified lithium nickel-manganese cobalt composite oxide particles is 10,000 to 30,000 times larger.
  • the particle surface of the modified lithium nickel-manganese-cobalt composite oxide particles is made of Ti by SEM-EDX at a magnification of 10,000 to 30,000 times.
  • Ti is observed in a uniformly distributed state like Co, Ni, Mn and the like.
  • the present inventors preferentially proceed with the solid-dissolving reaction of Ti in the modified lithium-nickel-manganese-cobalt composite oxide particles (B), and Ti is solid-dissolved and contained in the lithium-nickel-manganese-cobalt composite oxide particles. Therefore, it is presumed that Ti is uniformly distributed on the particle surface of the lithium nickel manganese cobalt composite oxide particles in the same manner as Co, Ni, Mn and the like.
  • the lithium nickel-manganese cobalt composite oxide particles represented by the general formula (1) to be modified are brought into contact with a surface treatment liquid containing a titanium chelate compound according to the present invention, and lithium nickel-nickel manganese cobalt
  • a surface treatment liquid containing a titanium chelate compound according to the present invention lithium nickel-nickel manganese cobalt
  • the titanium chelate compound on the particle surface of the lithium nickel manganese cobalt composite oxide particles may or may be partially coated on the entire particle surface of the lithium nickel manganese cobalt composite oxide particles. There may be. Covering a part of the particle surface means a state in which the particle surface has a portion where the surface of the object to be coated is exposed in addition to the titanium chelate compound.
  • the lithium nickel-manganese-cobalt composite oxide particles to be modified are described by the following general formula (1): Li x Ny Mn z Cot M p O 1 + x (1)
  • M is selected from Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. 1 or more kinds of metal elements are shown.
  • X is 0.98 ⁇ x ⁇ 1.20
  • y 0.30 ⁇ y ⁇ 1.00
  • z is 0 ⁇ z ⁇ 0.50
  • t is 0. ⁇ t ⁇ 0.50
  • p indicates 0 ⁇ p ⁇ 0.05
  • y + z + t + p 1.00.
  • X in the general formula (1) is 0.98 ⁇ x ⁇ 1.20. It is preferable that x is 1.00 ⁇ x ⁇ 1.10 in that the initial capacity becomes high.
  • y in the general formula (1) is 0.30 ⁇ y ⁇ 1.00. y is preferably 0.50 ⁇ y ⁇ 0.95, and particularly preferably 0.60 ⁇ y ⁇ 0.90, in terms of achieving both initial capacitance and cycle characteristics.
  • z in the general formula (1) is 0 ⁇ z ⁇ 0.50. z is preferably 0.025 ⁇ z ⁇ 0.45 in terms of excellent safety.
  • t is 0 ⁇ t ⁇ 0.50. t is preferably 0.025 ⁇ t ⁇ 0.45 in terms of excellent safety.
  • y + z + t + p 1.00.
  • y / z is preferably (y / z)> 1, particularly preferably (y / z) ⁇ 1.5, and more preferably 3 ⁇ (y / z) ⁇ 38.
  • M in the formula is contained in the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), if necessary, for the purpose of improving the battery performance such as cycle characteristics and safety. It is a metal element, and M includes Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. One or more kinds of metal elements selected from the above can be mentioned.
  • p is 0 ⁇ p ⁇ 0.05, preferably 0.0001 ⁇ p ⁇ 0.045.
  • the lithium nickel manganese cobalt composite oxide particles to be modified are granules of the lithium nickel manganese cobalt composite oxide represented by the general formula (1).
  • the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) may be single particles in which primary particles are monodispersed or aggregated particles in which primary particles are aggregated to form secondary particles. good.
  • the average particle size of the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is a particle size (D50) of 50% in terms of volume in the particle size distribution obtained by the laser diffraction / scattering method, and is preferably 1. It is 0 to 30.0 ⁇ m, particularly preferably 3.0 to 25.0 ⁇ m.
  • the BET specific surface area of the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is preferably 0.05 to 2.00 m 2 / g, and particularly preferably 0.15 to 1.00 m 2 / g. g.
  • the average particle size or the BET specific surface area of the lithium nickel-manganese-cobalt composite oxide particles is within the above range, the positive electrode mixture can be easily prepared and coated, and an electrode having a high filling property can be obtained.
  • the amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles of the general formula (1) to be reformed is preferably 1.2% by mass or less, and particularly preferably 1.0% by mass or less.
  • the amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles is within the above range, it is possible to suppress the expansion and deterioration of the battery caused by the generation of gas due to the residual alkali.
  • the residual alkali indicates an alkali component eluted in water when the lithium nickel manganese cobalt composite oxide particles are stirred and dispersed in water at 25 ° C. Then, the residual alkali amount is obtained by weighing 5 g of lithium nickel manganese cobalt composite oxide particles and 100 g of pure water in a beaker, dispersing at 25 ° C. with a magnetic stirrer for 5 minutes, and then filtering this dispersion. It is determined by neutralizing and titrating the amount of alkali present in the filtrate. The amount of residual alkali is a value obtained by measuring the amount of lithium by titration and converting it into lithium carbonate.
  • the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) to be reformed are, for example, mixed with a lithium source, a nickel source, a manganese source, a cobalt source and an M source to be added as necessary. It is produced by performing a raw material mixing step of preparing a raw material mixture and then a baking step of firing the obtained raw material mixture.
  • the lithium source nickel source, manganese source, cobalt source and M source related to the raw material mixing step, for example, these hydroxides, oxides, carbonates, nitrates, sulfates, organic acid salts and the like are used.
  • the average particle size of the lithium source, nickel source, manganese source, cobalt source and M source is 1.0 to 30.0 ⁇ m, preferably 2.0 to 25.0 ⁇ m, as the average particle size obtained by the laser / scattering method. It is preferable to have.
  • the nickel source, manganese source and cobalt source related to the raw material mixing step may be a compound containing a nickel atom, a manganese atom and a cobalt atom.
  • Examples of the compound containing a nickel atom, a manganese atom and a cobalt atom include a composite oxide containing these atoms, a composite hydroxide, a composite oxyhydroxide, a composite carbonate and the like.
  • a known method is used as a method for preparing a compound containing a nickel atom, a manganese atom and a cobalt atom.
  • a composite hydroxide it can be prepared by the coprecipitation method.
  • the composite hydroxide can be coprecipitated by mixing an aqueous solution containing a predetermined amount of nickel atom, cobalt atom and manganese atom, an aqueous solution of a complexing agent and an aqueous solution of an alkali (). See JP-A-10-81521, JP-A-10-81520, JP-A-10-29820, JP-A-2002-201028, etc.).
  • a solution containing nickel ion, manganese ion and cobalt ion (solution A) and a solution containing carbonate ion or hydrogen carbonate ion (solution B) are added to the reaction vessel to carry out the reaction.
  • the method to be carried out Japanese Unexamined Patent Publication No. 2009-179545
  • a solution containing a nickel salt, a manganese salt and a cobalt salt (solution A) and a solution containing a metal carbonate or a metal hydrogen carbonate solution B.
  • Japanese Patent Laid-Open No. 2009-179544 Japanese Patent Laid-Open No. 2009-179544
  • the compound containing a nickel atom, a manganese atom and a cobalt atom may be a commercially available product.
  • the average particle size of the compound containing nickel atom, cobalt atom and manganese atom is 1.0 to 100 ⁇ m, preferably 2.0 to 80.0 ⁇ m, which is the average particle size obtained by the laser / scattering method.
  • a composite hydroxide containing a nickel atom, a cobalt atom and a manganese atom may be used as the nickel source, the manganese source and the cobalt source. , It is preferable in that the reactivity becomes good.
  • the mixing ratio of the lithium source and the nickel source, manganese source, cobalt source and M source added as needed increases the discharge capacity, and Ni in the nickel source, manganese source and cobalt source.
  • the molar ratio of Li atoms (Li / (Ni + Mn + Co + M)) to the total number of moles of atoms, Mn atoms, Co atoms and M atoms (Ni + Mn + Co + M) is 0.98 to 1.20, preferably 1.00 to 1.10. be.
  • the mixing ratio of each raw material of the nickel source, the manganese source, the cobalt source and the M source to be added as needed is the nickel, manganese, cobalt and M represented by the general formula (1). It may be adjusted so as to have an atomic molar ratio of.
  • the production history of the raw materials lithium source, nickel source, manganese source, cobalt source and M source is not limited, but the impurity content is as much as possible in order to produce high-purity lithium nickel-manganese-cobalt composite oxide particles. It is preferable that the amount is small.
  • the means for mixing the lithium source, the nickel source, the manganese source, the cobalt source, and the M source to be added as needed may be either a dry method or a wet method, but the dry method is easy to manufacture. Mixing with is preferable.
  • the mixing device include a high-speed mixer, a super mixer, a turbosphere mixer, an Erich mixer, a Henschel mixer, a Nauter mixer, a ribbon blender, a V-type mixer, a conical blender, a jet mill, a cosmomizer, a paint shaker, and a bead mill. , Ball mill and the like.
  • a home mixer is sufficient.
  • the mixing device In the case of wet mixing, it is preferable to use a media mill as the mixing device because it is possible to prepare a slurry in which each raw material is uniformly dispersed. Further, the slurry after the mixing treatment is preferably spray-dried from the viewpoint of obtaining a raw material mixture having excellent reactivity and uniformly dispersed raw materials.
  • the firing step is a step of obtaining a lithium nickel-manganese-cobalt composite oxide by firing a raw material mixture obtained by performing a raw material mixing step.
  • the firing temperature when the raw material mixture is fired and the raw materials are reacted is 600 to 1000 ° C, preferably 700 to 950 ° C.
  • the reason for this is that if the firing temperature is less than 600 ° C, the reaction is insufficient and a large amount of unreacted lithium tends to remain, while if it exceeds 1000 ° C, the lithium nickel-manganese-cobalt composite oxide once formed will decompose. Because there is a tendency.
  • the firing time in the firing step is 3 hours or more, preferably 5 to 30 hours.
  • the firing atmosphere in the firing step is an oxidizing atmosphere of air and oxygen gas.
  • firing may be performed in a multi-stage system.
  • multi-stage firing modified lithium nickel-manganese-cobalt composite oxide particles having further excellent cycle characteristics can be obtained.
  • firing in multiple stages firing in the range of 650 to 800 ° C. for 1 to 10 hours, then raising the temperature to 800 to 950 ° C. so as to be higher than the firing temperature, and firing as it is for 5 to 30 hours. Is preferable.
  • the lithium nickel manganese cobalt composite oxide thus obtained may be subjected to a plurality of firing steps as needed.
  • the lithium nickel-nickel-manganese composite oxide particles having the residual alkali amount in the above range are the nickel source and the manganese source in the raw material mixing step of the lithium source, the nickel source, the manganese source, the cobalt source and the M source added as needed.
  • the molar ratio of Li atoms (Li / (Ni + Mn + Co + M)) to the total number of moles of Ni atoms, Mn atoms, Co atoms and M atoms in the cobalt source and M source is 0.98 to 1.20. After being subjected to a firing reaction at 700 ° C. or higher, preferably 750 to 1000 ° C.
  • the lithium source, nickel source, manganese source, cobalt source and, if necessary, are sufficiently subjected to the firing reaction. It can be produced by reacting with the added M source.
  • the firing is performed by the above-mentioned multi-stage method, so that lithium nickel-nickel-manganese composite oxide particles having a further reduced amount of residual alkali can be produced.
  • the surface treatment liquid according to the step (A) is a titanium chelate compound, that is, a titanium chelate represented by the general formula (2) or an ammonium salt of the titanium chelate represented by the general formula (2) in water and / or organic. It is dissolved or dispersed in a solvent.
  • the titanium chelate according to the step (A) has the following general formula (2): Ti (R 1 ) m L n (2)
  • R 1 represents an alkoxy group, a hydroxyl group, a halogen atom, an amino group or phosphines, and when a plurality of them are present, they may be the same or different.
  • L is derived from hydroxycarboxylic acid. When there are a plurality of groups, they may be the same or different.
  • M indicates a number of 0 or more and 3 or less, n indicates a number of 1 or more and 3 or less, and m + n is 3 to 6. be.
  • alkoxy group according to R 1 a linear or branched alkoxy group having 1 to 4 carbon atoms is preferable.
  • the halogen atom related to R 1 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the amino group according to R 1 include a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, an isobutylamino group, a tert-butylamino group, a pentylamino group and the like.
  • Examples of the phosphines related to R 1 include trimethylphosphine, triethylphosphine, tributylphosphine, tris-tert-butylphosphine, triphenylphosphine and the like.
  • Examples of the group derived from the hydroxycarboxylic acid according to L include a group in which the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid or the oxygen atom of the carboxyl group in the hydroxycarboxylic acid is coordinated with the titanium atom.
  • Examples of the group derived from the hydroxycarboxylic acid according to L include a group in which the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid and the oxygen atom of the carboxyl group in the hydroxylcarboxylic acid are coordinated with the titanium atom in two loci. Be done.
  • the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid and the oxygen atom of the carboxyl group in the hydroxycarboxylic acid are groups coordinated with the titanium atom in two loci.
  • m + n is preferably 3, and when m is 1 or more and 3 or less, m + n is preferably 4 or 5.
  • a diluted solution is obtained by diluting titanium alkoxide with a solvent, and the diluted solution is mixed with a hydroxycarboxylic acid to obtain a solution containing the titanium chelate (WO2019 / 138989). See the pamphlet).
  • the solution containing the titanium chelate obtained by the above method for producing the titanium chelate can be used as it is as the surface treatment liquid in the step (A).
  • water may be added to the solution containing the titanium chelate and used as a surface treatment liquid.
  • a surface treatment liquid a dispersion liquid or a dissolution liquid of a water-containing solvent of titanium chelate can be obtained.
  • titanium alkoxide examples include tetramethoxytitanium (IV), tetraethoxytitanium (IV), tetra-n-propoxytitanium (IV), tetraisopropoxytitanium (IV), and tetra-n-butoxytitanium (IV). ) And tetraisobutoxytitanium (IV) and the like.
  • hydroxycarboxylic acid examples include monovalent carboxylic acids such as lactic acid, glucolic acid, glyceric acid and hydroxybutyric acid, divalent carboxylic acids such as tartronic acid, malic acid and tartrate acid, citric acid and isocitrate. Examples thereof include trivalent carboxylic acids of the above.
  • lactic acid is preferable from the viewpoint that it easily becomes a solution at room temperature, is easily mixed with the titanium alkoxide diluted solution, and a titanium chelate can be easily produced.
  • alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol, sec-butanol, tert-butanol and n-pentane can be preferably used.
  • a ligand compound may be added.
  • a ligand compound include a halogen atom-containing compound, a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, an isobutylamino group, a t-butylamino group, a pentylamino and the like.
  • Examples thereof include amines having the above functional groups, trimethylphosphine, triethylphosphine, tributylphosphine, tris-tert-butylphosphine, triphenylphosphine and the like.
  • titanium lactate ammonium salt Ti (OH) 2 [(OCH (CH 3 ) COO ⁇ )] 2 (NH 4 + ) 2 ) is preferable.
  • titanium chelate and its ammonium salt are partially commercially available from Matsumoto Fine Chemical Co., Ltd., and commercially available products may be used.
  • the Ti concentration in the surface treatment liquid according to the step (A) is 0.1 to 1500 mmol / L, preferably 0.2 to 1000 mmol / L as Ti atoms, which is the stability and coating of the Ti solution. It is preferable from the viewpoint of facilitating the operability of the process.
  • the pH of the surface treatment liquid according to the step (A) is 7 or more, preferably 8 or more and 11 or less, particularly preferably more than 8 and 10 or less. It is preferable in that the elution of Li from the lithium nickel-manganese cobalt composite oxide particles is suppressed when they come into contact with each other.
  • the pH of the surface treatment liquid can be adjusted by adding an acid or an alkali to the surface treatment liquid so that the pH is within the above range.
  • the method of contacting the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) with the surface treatment liquid containing the titanium chelate compound is not particularly limited, but for example.
  • a method of mixing and treating a surface treatment liquid containing a titanium nickel chelate compound and lithium nickel nickel manganese cobalt composite oxide particles represented by the general formula (1) can be mentioned.
  • the mixture of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing the titanium chelate compound may be in the form of powder, paste or slurry. There may be.
  • the amount of the surface treatment liquid containing the titanium chelate compound to the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) is prepared.
  • Any form can be obtained.
  • a powdery mixture of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing the titanium chelate compound is represented by the general formula (1). It is obtained by adding a surface treatment liquid containing a titanium chelate compound having a small volume of the liquid to the cobalt composite oxide particles, and also with the lithium nickel-manganese manganese cobalt composite oxide particles represented by the general formula (1).
  • the contact between the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the solution containing the titanium chelate compound is the lithium nickel nickel manganese cobalt composite oxide particles represented by the general formula (1).
  • the method of immersing in a solution containing a titanium chelate compound may be used.
  • the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing a titanium chelate compound are used.
  • a titanium chelate compound can be easily adhered to the entire surface of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), and the mixture is in the form of a slurry. preferable.
  • the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) are brought into contact with a surface treatment liquid containing a titanium chelate compound, and then the entire amount of the solvent is dried as it is, whereby the lithium nickel manganese cobalt composite oxide particles are represented by the general formula (1). It is preferable to obtain coated particles in which the particle surface of the lithium nickel manganese cobalt composite oxide particles is coated with a titanium chelate compound.
  • the drying temperature at the time of drying is not particularly limited as long as it is a temperature at which the solvent evaporates, but is preferably 60 to 180 ° C, particularly preferably 90 to 150 ° C.
  • the entire amount may be dried by a spray drying device, a rotary evaporator, a fluidized bed drying coating device, a vibration drying device, or the like.
  • the entire amount of the solvent of the slurry containing the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing the titanium chelate compound is dried by a spray drying device. Is preferable in that it becomes easy to control the coating amount of the titanium chelate compound.
  • the coated particles obtained in the step (A) are heat-treated to obtain a modified lithium nickel-manganese-cobalt composite oxide (A) or a modified lithium nickel-manganese-cobalt composite oxide (B). It is a process.
  • the Ti atom is mainly in the state of an oxide containing Ti without being solid-dissolved in the lithium nickel manganese cobalt composite oxide particles, and the lithium nickel manganese cobalt. It exists on the surface of the composite oxide particles.
  • a small amount of some Ti atoms may be solidly dissolved inside the lithium nickel manganese cobalt cobalt composite oxide particles.
  • the Ti atom mainly exists in a solid-dissolved state inside the particles of the lithium nickel manganese cobalt cobalt composite oxide particles.
  • the particle surface of the modified lithium nickel-manganese cobalt composite oxide particles was analyzed by elemental mapping analysis of Ti with SEM-EDX, Ti became Co. , Ni, Mn, etc., as long as it is observed in a uniformly distributed state, even if Ti atoms are present on the surface of the lithium nickel manganese cobalt composite oxide particles in the state of an oxide containing Ti. good.
  • modified lithium nickel manganese cobalt composite oxide particles (A) or the modified lithium nickel manganese cobalt cobalt composite oxide particles (B) is an element of Ti on the particle surface of the sample particles by SEM-EDX. Confirmed by analysis by mapping analysis. That is, in the case of modified lithium nickel-manganese cobalt composite oxide particles (A), the particle surface of the sample particles is analyzed by elemental mapping analysis of Ti by SEM-EDX at a magnification of 10,000 to 30,000 times. At this time, it is observed that Ti is unevenly distributed and present on the surface of the sample particles such as uneven distribution.
  • modified lithium nickel-manganese cobalt composite oxide particles B
  • the particle surface of the sample particles is analyzed by elemental mapping analysis of Ti by SEM-EDX at a magnification of 10,000 to 30,000 times. When this is done, it is observed that Ti is uniformly distributed and present on the surface of the sample particles.
  • the oxide containing Ti that coats the particle surface of the lithium nickel-manganese cobalt composite oxide particles is one selected from Ti oxide, Ti, and Li, Ni, Mn, Co, and M. Alternatively, it indicates a composite oxide or the like containing two or more kinds.
  • the heat treatment temperature is 400 to 1000 ° C, preferably 450 to 950 ° C.
  • the reason for this is that if the heat treatment temperature is less than 400 ° C, the titanium chelate for coating treatment is not sufficiently decomposed and oxidized to obtain a sufficient effect, while if the heat treatment temperature exceeds 1000 ° C, Ti and lithium are not obtained. Since the solid dissolution reaction with the nickel-manganese-cobalt composite oxide particles progresses too much and the solid dissolution of Ti progresses not only near the particle surface but also to the back, the amount of Ti near the particle surface is insufficient and the modification effect of the present invention is achieved. This is because it becomes difficult to obtain.
  • the heat treatment time is not critical in the present production method, and is usually 1 hour or more, preferably 2 to 10 hours, and the modified lithium nickel manganese cobalt with satisfactory performance.
  • Composite oxide particles can be obtained.
  • the atmosphere of the heat treatment is preferably an oxidizing atmosphere of air, oxygen gas, or the like.
  • the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) are subjected to a surface containing a titanium chelate compound. Since the entire amount of the solvent is dried as it is after contacting with the treatment liquid, the coating amount of the oxide containing Ti on the lithium nickel-nickel-manganese-cobalt composite oxide particles (A) (A). (Adhesion amount) and the solid solubility amount (content) of Ti in the lithium nickel manganese cobalt composite oxide particles in the modified lithium nickel manganese cobalt composite oxide particles (B) are the amount of the lithium nickel manganese cobalt composite oxide particles. It can be expressed as the theoretical coating amount (adhesion amount) and solid solubility amount (content) obtained from the Ti content in the surface treatment liquid containing the titanium chelate compound used.
  • Ti per 1 m 2 of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) is set so as to be within the range of the adhesion amount of the oxide containing Ti described later.
  • the surface modifier is added in an amount of 0.1 to 150 mg, preferably 0.5 to 120 mg in terms of Ti atom, and the lithium nickel manganese cobalt composite oxide represented by the general formula (1) is used. It is preferable to add the particles to the particles, mix them, and dry the whole amount, because it is easy to control the coating amount and the solid dissolution amount of the titanium chelate compound.
  • the amount of the oxide adhering to Ti and the amount of solid solution of Ti (content) in the obtained modified lithium nickel-manganese cobalt composite oxide particles Is 0.1 to 150 mg, preferably 0.5 to 120 mg, in terms of Ti atoms, per 1 m 2 of lithium nickel manganese cobalt composite oxide particles.
  • the modified lithium nickel-manganese cobalt composite oxide particles (constant lithium nickel manganese cobalt composite oxide particles) when the adhesion amount of the oxide containing Ti and the solid dissolution amount (content) of Ti in the modified lithium nickel manganese cobalt composite oxide particles are within the above ranges.
  • the cycle characteristics are further improved, which is preferable. That is, in the method for producing the modified lithium nickel manganese cobalt composite oxide of the present invention, 0.1 to 150 mg, preferably 0.5, in terms of Ti atoms per 1 m 2 of the obtained modified lithium nickel manganese cobalt cobalt composite oxide particles.
  • the residual alkali content in the modified lithium nickel manganese cobalt composite oxide particles obtained by the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention is 1.2% by mass or less, preferably 1. It is preferable that the content is 0% by mass or less because expansion and deterioration of the battery caused by gas generation due to residual alkali can be suppressed.
  • the modified lithium nickel manganese cobalt composite oxide particles obtained by the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention are suitably used as a positive electrode active material for a lithium secondary battery, and the modified lithium nickel manganese manganese cobalt composite oxide particles are suitably used.
  • Quality A lithium secondary battery using lithium nickel manganese cobalt composite oxide particles as a positive electrode active material is a case where lithium nickel manganese cobalt composite oxide particles having the same composition of unmodified Li, Ni, Mn and Co are used. Compared with, the cycle characteristics are higher.
  • the large particles of the modified lithium nickel manganese cobalt composite oxide obtained by the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention and the modified lithium nickel manganese cobalt composite oxide particles of the present invention The capacity per volume can be improved by mixing with small particles of the modified lithium nickel manganese cobalt composite oxide obtained by the production method.
  • the average particle size of the large particles is 7.5 to 30.0 ⁇ m, preferably 8.0 to 25.0 ⁇ m
  • the average particle size of the small particles is 0.5 to 7.5 ⁇ m, preferably 1.0. It is preferably about 7.0 ⁇ m from the viewpoint of improving the capacity per volume.
  • the pressurization density when the mixture is compressed at 0.65 tonf / cm 2 is 2.7 g / cm 3 or more, preferably 2.8 to 3.3 g / cm 3 , the capacity per volume. Is preferable in that the value becomes higher.
  • the modified lithium nickel manganese cobalt composite oxide particles (A) are preferable as the large particles of the modified lithium nickel manganese cobalt composite oxide, and the modified lithium nickel manganese cobalt composite oxide particles (A) are preferred.
  • the small particles of the lithium nickel-manganese-cobalt composite oxide are preferably modified lithium nickel-manganese-cobalt composite oxide particles (B) in that the cycle characteristics are further improved.
  • the oxide containing the chelate compound and its thermal decomposition product Ti is easily highly dispersed without being uniformly bulky on the particle surface of the lithium nickel manganese cobalt composite oxide particles, and the titanium chelate compound adhered to the chelate compound by thermal decomposition.
  • the reactivity of the titanium-containing oxide as a product with the lithium nickel manganese cobalt composite oxide particles is increased on the surface of the lithium nickel manganese cobalt composite oxide particles.
  • the titanium chelate compound and the oxide containing Ti, which is a thermal decomposition product thereof, are more likely to be uniformly and more highly dispersed on the particle surface of the lithium nickel-nickel manganese cobalt composite oxide particles, and the titanium chelate compound adhered to the titanium chelate compound is thermally decomposed.
  • the heat treatment temperature in the step (B) is the same. Even so, the smaller the average particle size of the lithium nickel-manganese cobalt composite oxide particles to which the titanium chelate compound is attached in the step (A), the easier it is for the modified lithium nickel-manganese cobalt composite oxide particles (B) to be produced. Become.
  • the heat treatment temperature in the step (B) when the heat treatment temperature in the step (B) is higher, the reactivity between the oxide containing Ti, which is a thermal decomposition product of the adhered titanium chelate compound, and the lithium nickel manganese cobalt composite oxide particles is lithium nickel manganese. Since it is higher on the surface of the cobalt composite oxide particles, the higher the heat treatment temperature in the step (B), the easier it is for the modified lithium nickel-manganese cobalt composite oxide particles (B) to be produced.
  • the attached titanium chelate compound and the oxide containing Ti, which is a thermal decomposition product thereof, are non-uniformly bulky and easily dispersed on the particle surface of the lithium nickel manganese cobalt composite oxide particles, and the attached titanium chelate compound is bulky.
  • the oxide containing Ti which is a thermal decomposition product, has a low reactivity with the lithium nickel-nickel-manganese-cobalt composite oxide particles on the surface of the lithium-nickel-manganese-cobalt composite oxide particles.
  • the modified lithium nickel manganese cobalt composite oxide particles (A) are produced when the average particle size of the lithium nickel manganese cobalt composite oxide particles to which the titanium chelate compound is attached in the step (A) is larger. It becomes easier to do. Further, as the heat treatment temperature in the step (B) is lower, the reactivity between the adhered titanium chelate compound and the lithium nickel manganese cobalt composite oxide particles becomes lower on the surface of the lithium nickel manganese cobalt composite oxide particles.
  • the lower the heat treatment temperature in the step the easier it is for the modified lithium nickel manganese cobalt composite oxide particles (A) to be produced. Therefore, in the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the average particle size of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) used in the step (A) and (B). )
  • the modified lithium nickel manganese cobalt cobalt composite oxide particles (A) and the modified lithium nickel manganese cobalt cobalt composite oxide particles (B) can be produced separately by appropriately selecting the combination of the heat treatment temperatures in the step). ..
  • the modified lithium nickel-manganese cobalt-cobalt composite oxide particles (A) have an average particle diameter as the lithium nickel-manganese-cobalt composite oxide particles of the general formula (1) in the step (A).
  • the above (B) has a heat treatment temperature of 750 ° C. or higher and 1000 ° C. or lower, preferably 750 ° C. or higher and 900 ° C. or lower, using particles having a thickness of 7.5 to 30.0 ⁇ m, preferably 8.0 to 25.0 ⁇ m. It can be manufactured by performing the steps A) and (B).
  • the modified lithium nickel manganese cobalt composite oxide particles (B) have an average particle diameter of 0.5 to 7.5 ⁇ m as the lithium nickel manganese cobalt composite oxide particles of the general formula (1) in the step (A).
  • Steps (A) and (B) above preferably using particles having a size of 1.0 to 7.0 ⁇ m and setting the heat treatment temperature in step (B) to 750 ° C. or higher and 1000 ° C. or lower, preferably 750 ° C. or higher and 900 ° C. or lower. It can be manufactured by performing.
  • the resulting raw material mixture was then calcined in an alumina pot at 700 ° C. for 2 hours, followed by 850 ° C. for 10 hours in an air atmosphere. After the firing was completed, the fired product was crushed and classified. As a result of measuring the obtained fired product by XRD, it was confirmed that it was a single-phase lithium nickel-manganese-cobalt composite oxide.
  • the obtained particles had an average particle diameter of 10.2 ⁇ m, a BET specific surface area of 0.21 m 2 / g, and secondarily aggregated spherical lithium nickel-manganese-cobalt composite oxide particles (LiNi 0.6 Mn 0 ). It was .2 Co 0.2 O 2 ).
  • the obtained particles had an average particle diameter of 5.4 ⁇ m, a BET specific surface area of 0.69 m 2 / g, and secondarily aggregated spherical lithium nickel-manganese-cobalt composite oxide particles (LiNi 0.6 Mn 0 ). It was .2 Co 0.2 O 2 ).
  • Table 1 shows various physical properties of the lithium nickel manganese cobalt composite oxide sample (LNMC sample) obtained above.
  • the average particle size, residual alkali amount and pressure density of the LNMC sample were measured as follows. ⁇ Average particle size> The average particle size was determined by the laser diffraction / scattering method. ⁇ Measurement of residual alkali amount> Regarding the residual alkalinity of the LNMC sample, 5 g of the sample and 100 g of ultrapure water were weighed in a beaker and dispersed at 25 ° C. for 5 minutes using a magnetic stirrer.
  • this dispersion is filtered, and 70 ml of the filtrate is titrated with 0.1N-HCl by an automatic titrator (model COMITE-2500), and the amount of residual alkali (lithium amount) present in the sample is measured. (Value converted to lithium carbonate) was calculated.
  • Examples 1 to 6 Using the LNMC sample and the surface treatment liquid, the slurry was weighed so as to have the ratio shown in Table 3, and the slurry was prepared so that the solid content concentration was 25% by mass. Next, the slurry was supplied to a spray dryer whose outlet temperature was set to 120 ° C. at a slurry supply rate of 65 g / min to obtain coated particles in which titanium lactate chelate adhered to the particle surface of the LNMC sample. Next, the coated particles were heat-treated at 800 ° C. for 5 hours, and the modified LNMC sample (A) in which the oxide of Ti was attached to the particle surface of the LNMC sample and the modified LNMC sample in which Ti was dissolved and contained.
  • the modified LNMC sample (A) in which the oxide of Ti was attached to the particle surface of the LNMC sample and the modified LNMC sample in which Ti was dissolved and contained.
  • LNMC sample (B) An LNMC sample (B) was obtained. Whether the modified LNMC sample to which the Ti oxide is attached or the modified LNMC sample in which Ti is solid-dissolved and contained in the LNMC sample is determined by SEM on the particle surface of the sample particles at a magnification of 20,000 times. -It was confirmed by performing elemental mapping analysis of Ti with EDX (electron emission scanning electron microscope SU-8220 manufactured by Hitachi High-Technologies Co., Ltd. and energy dispersive X-ray analyzer XFlash5060 FlatQUAD manufactured by BRUKER Co., Ltd.). When LNMC sample 1 was used as the LNMC sample, the surface of the sample particles was analyzed by elemental mapping of Ti using SEM-EDX.
  • the residual alkali amount is determined by the same method as for the LNMC sample. It was measured.
  • the amount of the surface treatment liquid added in Table 3 is a calculated value that gives the Ti content in terms of Ti atoms per 1 m 2 of the LNMC sample when the surface treatment liquid is added, and was calculated by the following formula.
  • k xx (1 / t) k: Ti content (mg) in terms of Ti atoms per 1 m 2 of LNMC sample x: Ti content in terms of Ti atom per 1 g of LNMC sample (mg) t: BET specific surface area of LNMC sample (m 2 / g)
  • the battery performance test was conducted as follows. ⁇ Making a lithium secondary battery 1> 95% by mass of the modified LNMC sample, 2.5% by mass of graphite powder, and 2.5% by mass of polyvinylidene fluoride obtained in the examples were mixed to prepare a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone. To prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried and pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
  • a coin-type lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution.
  • a metallic lithium foil was used for the negative electrode, and 1 liter of a 1: 1 mixed solution of ethylene carbonate and methyl ethyl carbonate was used as the electrolytic solution in which 61 mol of LiPF was dissolved.
  • the performance of the obtained lithium secondary battery was evaluated. The results are shown in Table 4.
  • the modified LCO sample prepared in Reference Example 1 the unmodified LNMC sample 1 (Comparative Example 1), and the LNMC sample 2 (Comparative Example 2)
  • lithium secondary batteries were prepared in the same manner. Evaluation was made. The results are also shown in Table 4.
  • ⁇ Battery performance evaluation 1> The produced coin-type lithium secondary battery was operated at room temperature under the following test conditions, and the following battery performance was evaluated.
  • CCCV charging constant current / constant voltage charging
  • CC discharge constant current discharge
  • a positive electrode active material sample of 95% by mass, graphite powder of 2.5% by mass, and polyvinylidene fluoride 2.5% by mass were mixed to prepare a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. ..
  • the kneaded paste was applied to an aluminum foil, dried and pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
  • a coin-type lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution.
  • a metallic lithium foil was used for the negative electrode, and 1 liter of a 1: 1 mixed solution of ethylene carbonate and methyl ethyl carbonate was used as the electrolytic solution in which 61 mol of LiPF was dissolved.
  • the performance of the obtained lithium secondary battery was evaluated. The results are also shown in Table 6.
  • ⁇ Battery performance evaluation 2> The manufactured coin-type lithium secondary battery was operated at room temperature under the following test conditions, and cycle characteristics were evaluated, initial charge capacity, initial discharge capacity (per active material weight), initial charge capacity, initial discharge capacity (per active material weight), The capacity retention rate and the energy density retention rate were evaluated by the same method as in the performance evaluation 1 of the battery. Further, the discharge capacity per volume was also evaluated, and the results are shown in Table 6. The modified LNMC samples of Examples 2 and 5 were used as positive electrode active material samples, and evaluation was performed by the same method. The results are also shown in Table 6. (6) Discharge capacity per volume The discharge capacity per volume was calculated from the following formula based on the initial discharge capacity and the electrode density.
  • Discharge capacity per volume (mAh / cm 3 ) Discharge capacity (mAh / g) in the first cycle x
  • the positive electrode material is a mixture of 95% by mass of the positive electrode active material sample, 2.5% by mass of graphite powder, and 2.5% by mass of polyvinylidene fluoride, and the press pressure at the time of electrode production is 0.38 ton / cm in linear pressure. And said.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided are modified LiNiMnCo composite oxide particles capable of enhancing cycle characteristics when used as a positive electrode active material of a lithium secondary battery. A method of producing modified LiNiMnCo composite oxide particles, said method comprising a modification step for bringing LiNiMnCo composite oxide particles represented by general formula (1): LixNiyMnzCotMpO1+x [wherein: x satisfies 0.98≤x≤1.20; y satisfies 0.30≤y<1.00; z satisfies 0<z≤0.50; t satisfies 0<t≤0.50; p satisfies 0≤p≤0.05; and y+z+t+p equals to 1.00] into contact with a surface treatment liquid containing a titanium chelate compound to give coated particles, in which the titanium chelate compound adheres to the surface of the lithium nickel manganese cobalt composite oxide particles, and then heating the coated particles to give modified LiNiMnCo composite oxide particles, characterized in that the titanium chelate compound is a titanium chelate represented by general formula (2): Ti(R1)mLn or an ammonium salt thereof.

Description

改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法Method for Producing Modified Lithium Nickel Manganese Cobalt Composite Oxide Particles
 本発明は、改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法に関するものである。 The present invention relates to a method for producing modified lithium nickel manganese cobalt composite oxide particles.
 従来、リチウム二次電池の正極活物質としては、コバルト酸リチウムが用いられてきた。しかし、コバルトは希少金属であるため、コバルトの含有率が低いリチウムニッケルマンガンコバルト複合酸化物が開発されている(例えば、特許文献1~2参照)。 Conventionally, lithium cobalt oxide has been used as the positive electrode active material of a lithium secondary battery. However, since cobalt is a rare metal, lithium nickel-manganese-cobalt composite oxides having a low cobalt content have been developed (see, for example, Patent Documents 1 and 2).
 リチウムニッケルマンガンコバルト複合酸化物を正極活物質として使用するリチウム二次電池は、複合酸化物中に含まれるニッケル、マンガン、コバルトの原子比を調整することで、低コスト化が可能となり、また、コバルト酸リチウムに比べて高容量となることが知られている(例えば、特許文献3参照)。 Lithium-nickel-manganese-cobalt composite oxide-based lithium secondary batteries can be reduced in cost by adjusting the atomic ratios of nickel, manganese, and cobalt contained in the composite oxide. It is known that the capacity is higher than that of lithium cobalt oxide (see, for example, Patent Document 3).
 しかしながら、これらの従来技術の方法であっても、リチウムニッケルマンガンコバルト複合酸化物を正極活物質として用いたリチウム二次電池は、サイクル特性の劣化と言う問題が残されていた。 However, even with these conventional methods, the lithium secondary battery using the lithium nickel manganese cobalt composite oxide as the positive electrode active material still has a problem of deterioration of cycle characteristics.
 リチウムニッケルマンガンコバルト複合酸化物を正極活物質として用いたリチウム二次電池のサイクル特性を改善する方法として、リチウムニッケルマンガンコバルト複合酸化物の粒子表面をTi含有化合物で、被覆する方法が提案されている(例えば、特許文献4、特許文献5等参照)。 As a method for improving the cycle characteristics of a lithium secondary battery using a lithium nickel manganese cobalt composite oxide as a positive electrode active material, a method of coating the particle surface of the lithium nickel manganese cobalt composite oxide with a Ti-containing compound has been proposed. (See, for example, Patent Document 4, Patent Document 5, etc.).
 リチウムニッケルマンガンコバルト複合酸化物の粒子表面をTi含有化合物で、被覆する方法としては、特許文献4、5には、Ti等の有機金属化合物からなるアルコキシドモノマーもしくはオリゴマーと、2-プロパノール等のアルコールを混合した後、アセチルアセトン等のキレート剤を加え、更に、水を加えて、平均粒子が1~20nmのTiを含む微粒子の前駆体が分散した分散液を調製し、該分散液によりリチウムニッケルマンガンコバルト複合酸化物の粒子表面を被覆処理し、次いで熱処理を行う方法が提案されている。 As a method of coating the particle surface of the lithium nickel manganese cobalt composite oxide with a Ti-containing compound, Patent Documents 4 and 5 describe an alkoxide monomer or oligomer made of an organic metal compound such as Ti and an alcohol such as 2-propanol. After mixing, a chelating agent such as acetylacetone was added, and water was further added to prepare a dispersion in which a precursor of fine particles containing Ti having an average particle of 1 to 20 nm was dispersed, and the dispersion was used to prepare lithium nickel manganese. A method has been proposed in which the surface of particles of a cobalt composite oxide is coated and then heat-treated.
国際公開第2004/092073号パンフレットInternational Publication No. 2004/092073 Pamphlet 特開2005-25975号公報Japanese Unexamined Patent Publication No. 2005-25975 特開2011-23120号公報Japanese Unexamined Patent Publication No. 2011-23120 特開2016-24968号公報Japanese Unexamined Patent Publication No. 2016-24968 特開2016-72071号公報Japanese Unexamined Patent Publication No. 2016-72071.
 近年、リチウム二次電池は、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車等の自動車分野での使用が検討されている。このためリチウムニッケルマンガンコバルト複合酸化物を正極活物質とするリチウム二次電池において、サイクル特性のいっそうの向上が求められている。 In recent years, lithium secondary batteries have been studied for use in the automobile field such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles. Therefore, in a lithium secondary battery using a lithium nickel manganese cobalt composite oxide as a positive electrode active material, further improvement of cycle characteristics is required.
 従って、本発明の目的は、リチウム二次電池の正極活物質として用いたときに、サイクル特性を高くすることができるリチウムニッケルマンガンコバルト複合酸化物粒子を提供することにある。 Therefore, an object of the present invention is to provide lithium nickel-manganese-cobalt composite oxide particles capable of enhancing cycle characteristics when used as a positive electrode active material of a lithium secondary battery.
 本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、一般式(1)で表されるリチウムマンガンコバルト複合酸化物粒子を、特定の一般式で表されるチタンキレート又はそのアンモニウム塩を含む表面処理液に接触させた後、加熱処理することにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子が得られ、該改質リチウムニッケルマンガンコバルト複合酸化物粒子を正極活物質とするリチウム二次電池は、サイクル特性に優れることを見出し、本発明を完成するに到った。 As a result of diligent research in view of the above circumstances, the present inventors have obtained lithium manganese cobalt composite oxide particles represented by the general formula (1) as titanium chelate represented by a specific general formula or an ammonium salt thereof. After contacting with the containing surface treatment liquid, heat treatment is performed to obtain modified lithium nickel-manganese-cobalt composite oxide particles, and the modified lithium nickel-manganese-cobalt composite oxide particles are used as a positive electrode active material for lithium secondary. The battery has been found to have excellent cycle characteristics, and the present invention has been completed.
 すなわち、本発明(1)は、下記一般式(1):
  LiNiMnCo1+x    (1)
(式中、Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na及びKから選ばれる1種又は2種以上の金属元素を示す。xは0.98≦x≦1.20、yは0.30≦y<1.00、zは0<z≦0.50、tは0<t≦0.50、pは0≦p≦0.05を示し、y+z+t+p=1.00である。)
で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、チタンキレート化合物を含む表面処理液に接触させて、該リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面にチタンキレート化合物が付着した被覆粒子を得、次いで、該被覆粒子を加熱処理することにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子を得る改質工程を有し、
 前記チタンキレート化合物が、下記一般式(2):
   Ti(R    (2) 
(式中、Rは、アルコキシ基、水酸基、ハロゲン原子、アミノ基又はホスフィン類を示し、複数存在する場合、同一であってもよく、異なっていてもよい。Lはヒドロキシカルボン酸に由来する基を表し、複数存在する場合、同一であってもよく、異なっていてもよい。mは0以上3以下の数を示し、nは1以上3以下の数を示し、m+nは3~6である。)
で表されるチタンキレート又はそのアンモニウム塩であること、
を特徴とする改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。
That is, the present invention (1) has the following general formula (1):
Li x Ny Mn z Cot M p O 1 + x (1)
(In the formula, M is selected from Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. 1 or more kinds of metal elements are shown. X is 0.98 ≦ x ≦ 1.20, y is 0.30 ≦ y <1.00, z is 0 <z ≦ 0.50, and t is 0. <t≤0.50, p indicates 0≤p≤0.05, and y + z + t + p = 1.00.)
The lithium nickel manganese cobalt composite oxide particles represented by (1) are brought into contact with a surface treatment liquid containing a titanium chelate compound to obtain coated particles having the titanium chelate compound adhered to the particle surface of the lithium nickel manganese cobalt composite oxide particles. Then, the coated particles are heat-treated to obtain modified lithium nickel-manganese cobalt composite oxide particles.
The titanium chelate compound has the following general formula (2):
Ti (R 1 ) m L n (2)
(In the formula, R 1 represents an alkoxy group, a hydroxyl group, a halogen atom, an amino group or phosphines, and when a plurality of them are present, they may be the same or different. L is derived from hydroxycarboxylic acid. When there are a plurality of groups, they may be the same or different. M indicates a number of 0 or more and 3 or less, n indicates a number of 1 or more and 3 or less, and m + n is 3 to 6. be.)
Being a titanium chelate represented by or an ammonium salt thereof,
The present invention provides a method for producing modified lithium nickel-manganese-cobalt composite oxide particles.
 また、本発明(2)は、前記加熱処理の温度が、400~1000℃であることを特徴とする(1)の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, the present invention (2) provides the method for producing the modified lithium nickel manganese cobalt composite oxide particles of (1), which is characterized in that the temperature of the heat treatment is 400 to 1000 ° C. ..
 また、本発明(3)は、前記一般式(2)中のLが、1価のカルボン酸であることを特徴とする(1)又は(2)の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, the present invention (3) is characterized in that L in the general formula (2) is a monovalent carboxylic acid, and the modified lithium nickel manganese cobalt composite oxide particles according to (1) or (2). It provides a manufacturing method of.
 また、本発明(4)は、前記一般式(2)中のLが、乳酸であることを特徴とする(1)又は(2)の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, the present invention (4) is a method for producing the modified lithium nickel manganese cobalt composite oxide particles according to (1) or (2), wherein L in the general formula (2) is lactic acid. It is to provide.
 また、本発明(5)は、前記表面処理液のpHが7以上であることを特徴とする(1)~(4)いずれかの改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, the present invention (5) provides a method for producing the modified lithium nickel manganese cobalt composite oxide particles according to any one of (1) to (4), wherein the pH of the surface treatment liquid is 7 or more. It is something to do.
 また、本発明(6)は、前記被覆粒子における前記チタンキレート化合物の付着量が、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子1m当たり、Ti原子換算で0.1~150mgであることを特徴とする(1)~(5)いずれかの改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, in the present invention (6), the amount of the titanium chelate compound adhered to the coated particles is 0 . It is intended to provide the method for producing the modified lithium nickel manganese cobalt composite oxide particles according to any one of (1) to (5), which is 1 to 150 mg.
 また、本発明(7)は、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量が、1.2質量%以下であることを特徴とする(1)~(6)いずれかの改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, the present invention (7) is characterized in that the amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is 1.2% by mass or less (1). (6) Provided is a method for producing any of the modified lithium nickel manganese cobalt composite oxide particles.
 また、本発明(8)は、前記改質リチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量が、1.2質量%以下であることを特徴とする(1)~(7)いずれかの改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。 Further, the present invention (8) is characterized in that the amount of residual alkali in the modified lithium nickel manganese cobalt composite oxide particles is 1.2% by mass or less, whichever is (1) to (7). It provides a method for producing modified lithium nickel-manganese-cobalt composite oxide particles.
 また、本発明(9)は、前記改質工程において、
 前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi含有量が、Ti原子換算で0.1~150mgとなる添加量で、前記表面改質液を、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子に添加して混合し、全量乾燥させること、
を特徴とする(1)~(8)いずれかの改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を提供するものである。
Further, according to the present invention (9), in the reforming step,
The surface modification liquid was added to the surface modifier with an addition amount such that the Ti content per 1 m 2 of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) was 0.1 to 150 mg in terms of Ti atoms. Add to lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), mix, and dry the whole amount.
The present invention provides a method for producing the modified lithium nickel manganese cobalt composite oxide particles according to any one of (1) to (8).
 また、本発明(10)は、(1)~(9)のいずれか1項記載の製造方法により得られる平均粒子径が7.5~30.0μmの大きい粒子と、(1)~(9)のいずれか1項記載の製造方法により得られる平均粒子径が0.5~7.5μmの小さい粒子とを混合する工程を含むことを特徴とするリチウム二次電池用正極活物質の製造方法を提供するものである。 Further, in the present invention (10), large particles having an average particle diameter of 7.5 to 30.0 μm obtained by the production method according to any one of (1) to (9) and (1) to (9). A method for producing a positive electrode active material for a lithium secondary battery, which comprises a step of mixing small particles having an average particle diameter of 0.5 to 7.5 μm obtained by the production method according to any one of (1). Is to provide.
 本発明によれば、リチウム二次電池の正極活物質として用いたときに、サイクル特性を高くすることができるリチウムニッケルマンガンコバルト複合酸化物粒子を提供することができる。 According to the present invention, it is possible to provide lithium nickel-manganese-cobalt composite oxide particles capable of enhancing cycle characteristics when used as a positive electrode active material of a lithium secondary battery.
 以下、本発明を好ましい実施形態に基づいて説明する。
 本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法は、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、一般式(2)で表されるチタンキレート又は一般式(2)で表されるチタンキレートのアンモニウム塩を含む表面処理液に接触させて、リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面に、これらのチタンキレート化合物が付着した被覆粒子を得、次いで、得られた被覆粒子を加熱処理することにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子を得る改質工程を有する。以下、一般式(2)で表されるチタンキレート及び一般式(2)で表されるチタンキレートのアンモニウム塩を総称して、「チタンキレート化合物」ということがある。
Hereinafter, the present invention will be described based on a preferred embodiment.
In the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) are converted into a titanium chelate represented by the general formula (2) or a general method. Contact with a surface treatment liquid containing an ammonium salt of a titanium chelate represented by the formula (2) to obtain coated particles to which these titanium chelate compounds are attached to the particle surface of lithium nickel-manganese cobalt-cobalt composite oxide particles, and then to obtain coated particles. It has a modification step of obtaining modified lithium nickel manganese cobalt composite oxide particles by heat-treating the obtained coated particles. Hereinafter, the titanium chelate represented by the general formula (2) and the ammonium salt of the titanium chelate represented by the general formula (2) may be generically referred to as “titanium chelate compound”.
 本発明の改質リチウムニッケルマンガンコバルト複合酸化物の製造方法は、基本的には下記の(A)工程~(B)工程を有するものである。
(A)工程:一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子、すなわち、改質対象のリチウムニッケルマンガンコバルト複合酸化物を、本発明に係るチタンキレート化合物を含む表面処理液に接触させ、リチウムニッケルマンガンコバルト複合酸化物粒子の表面にチタンキレート化合物が付着した被覆粒子を得る工程。
(B)工程:(A)工程を行い得られた被覆粒子を加熱処理して、後述する改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)、又は改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)を得る工程。
 なお、以下では、「改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)」及び「改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)」を総称して、「改質リチウムニッケルマンガンコバルト複合酸化物粒子」と記載することがある。
The method for producing a modified lithium nickel manganese cobalt composite oxide of the present invention basically has the following steps (A) to (B).
(A) Step: A surface treatment liquid containing a titanium chelate compound according to the present invention, which is a lithium nickel manganese cobalt composite oxide particle represented by the general formula (1), that is, a lithium nickel manganese cobalt composite oxide to be modified. A step of obtaining coated particles in which a titanium chelate compound is adhered to the surface of lithium nickel-nickel-manganese-cobalt composite oxide particles.
Step (B): The coated particles obtained by performing the step (A) are heat-treated to obtain the modified lithium nickel-manganese-cobalt composite oxide particles (A) described later, or the modified lithium nickel-manganese-cobalt composite oxide particles ( B) The process of obtaining.
In the following, "modified lithium nickel manganese cobalt composite oxide particles (A)" and "modified lithium nickel manganese cobalt composite oxide particles (B)" are collectively referred to as "modified lithium nickel manganese cobalt composite oxide particles (B)". It may be described as "object particles".
(B)工程において、被覆粒子を加熱処理することにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)及び改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)が得られる。
 改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)は、Tiを含む酸化物がリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面に付着して存在するものである。該Tiを含む酸化物がリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面に付着して存在することは、改質リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面を、10,000~30,000倍の拡大倍率でSEM-EDXによるTiの元素マッピング分析で分析したときに、リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面にTiが偏在等の不均一に分布した状態で観察されることにより確認される。
 一方、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)では、改質リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面を、10,000~30,000倍の拡大倍率でSEM-EDXによるTiの元素マッピング分析で分析したときに、TiがCo、Ni、Mn等と同様に均一に分布した状態で観察される。本発明者らは、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)はTiの固溶反応が優先的に進行して、リチウムニッケルマンガンコバルト複合酸化物粒子にTiが固溶して含有されるため、Tiがリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面でCo、Ni、Mn等と同様に均一に分布するものと推測している。
In the step (B), the coated particles are heat-treated to obtain modified lithium nickel-manganese-cobalt composite oxide particles (A) and modified lithium nickel-manganese-cobalt composite oxide particles (B).
The modified lithium nickel manganese cobalt composite oxide particles (A) are present in which an oxide containing Ti adheres to the particle surface of the lithium nickel manganese cobalt composite oxide particles. The presence of the Ti-containing oxide adhering to the particle surface of the lithium nickel-manganese cobalt composite oxide particles means that the particle surface of the modified lithium nickel-manganese cobalt composite oxide particles is 10,000 to 30,000 times larger. When analyzed by elemental mapping analysis of Ti with SEM-EDX at the magnification of, it was confirmed by observing Ti in a non-uniformly distributed state such as uneven distribution on the particle surface of lithium nickel manganese cobalt composite oxide particles. To.
On the other hand, in the modified lithium nickel-manganese-cobalt composite oxide particles (B), the particle surface of the modified lithium nickel-manganese-cobalt composite oxide particles is made of Ti by SEM-EDX at a magnification of 10,000 to 30,000 times. When analyzed by element mapping analysis, Ti is observed in a uniformly distributed state like Co, Ni, Mn and the like. The present inventors preferentially proceed with the solid-dissolving reaction of Ti in the modified lithium-nickel-manganese-cobalt composite oxide particles (B), and Ti is solid-dissolved and contained in the lithium-nickel-manganese-cobalt composite oxide particles. Therefore, it is presumed that Ti is uniformly distributed on the particle surface of the lithium nickel manganese cobalt composite oxide particles in the same manner as Co, Ni, Mn and the like.
 (A)工程は、改質対象である一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、本発明に係るチタンキレート化合物を含む表面処理液に接触させ、リチウムニッケルマンガンコバルト複合酸化物粒子の表面にチタンキレート化合物が付着した被覆粒子を得る工程である。なお、リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面のチタンキレート化合物は、リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面の全体を被覆するものであってもよいし又は一部を被覆するものであってもよい。粒子表面の一部を被覆するとは、粒子表面に、チタンキレート化合物以外に被覆対象物の表面が露出する部分を有する状態をいう。 In the step (A), the lithium nickel-manganese cobalt composite oxide particles represented by the general formula (1) to be modified are brought into contact with a surface treatment liquid containing a titanium chelate compound according to the present invention, and lithium nickel-nickel manganese cobalt This is a step of obtaining coated particles in which a titanium chelate compound is attached to the surface of the composite oxide particles. The titanium chelate compound on the particle surface of the lithium nickel manganese cobalt composite oxide particles may or may be partially coated on the entire particle surface of the lithium nickel manganese cobalt composite oxide particles. There may be. Covering a part of the particle surface means a state in which the particle surface has a portion where the surface of the object to be coated is exposed in addition to the titanium chelate compound.
 (A)工程において、改質対象となるリチウムニッケルマンガンコバルト複合酸化物粒子は、下記一般式(1): 
  LiNiMnCo1+x    (1)
(式中、Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na及びKから選ばれる1種又は2種以上の金属元素を示す。xは0.98≦x≦1.20、yは0.30≦y<1.00、zは0<z≦0.50、tは0<t≦0.50、pは0≦p≦0.05を示し、y+z+t+p=1.00である。)
で表されるリチウムニッケルマンガンコバルト複合酸化物粒子である。
In the step (A), the lithium nickel-manganese-cobalt composite oxide particles to be modified are described by the following general formula (1):
Li x Ny Mn z Cot M p O 1 + x (1)
(In the formula, M is selected from Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. 1 or more kinds of metal elements are shown. X is 0.98 ≦ x ≦ 1.20, y is 0.30 ≦ y <1.00, z is 0 <z ≦ 0.50, and t is 0. <t≤0.50, p indicates 0≤p≤0.05, and y + z + t + p = 1.00.)
It is a lithium nickel manganese cobalt composite oxide particle represented by.
 一般式(1)の式中のxは、0.98≦x≦1.20である。xは、初期容量が高くなる点で、1.00≦x≦1.10であることが好ましい。また、一般式(1)の式中のyは、0.30≦y<1.00である。yは、初期容量とサイクル特性を両立できる点で、0.50≦y≦0.95であることが好ましく、0.60≦y≦0.90であることが特に好ましい。また、一般式(1)の式中のzは、0<z≦0.50である。zは、安全性に優れる点で、0.025≦z≦0.45であることが好ましい。また、tは、0<t≦0.50である。tは、安全性に優れる点で、0.025≦t≦0.45であることが好ましい。y+z+t+p=1.00である。y/zは、好ましくは(y/z)>1、特に好ましくは(y/z)≧1.5、より好ましくは3≦(y/z)≦38である。 X in the general formula (1) is 0.98 ≦ x ≦ 1.20. It is preferable that x is 1.00 ≦ x ≦ 1.10 in that the initial capacity becomes high. Further, y in the general formula (1) is 0.30 ≦ y <1.00. y is preferably 0.50 ≦ y ≦ 0.95, and particularly preferably 0.60 ≦ y ≦ 0.90, in terms of achieving both initial capacitance and cycle characteristics. Further, z in the general formula (1) is 0 <z ≦ 0.50. z is preferably 0.025 ≦ z ≦ 0.45 in terms of excellent safety. Further, t is 0 <t ≦ 0.50. t is preferably 0.025 ≦ t ≦ 0.45 in terms of excellent safety. y + z + t + p = 1.00. y / z is preferably (y / z)> 1, particularly preferably (y / z) ≧ 1.5, and more preferably 3 ≦ (y / z) ≦ 38.
 また、式中のMは、サイクル特性、安全性等の電池性能を向上させることを目的として、必要に応じて、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子に含有させる金属元素であり、Mとしては、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na及びKから選ばれる1種又は2種以上の金属元素が挙げられる。一般式(1)の式中のpは、0≦p≦0.05、好ましくは0.0001≦p≦0.045である。 Further, M in the formula is contained in the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), if necessary, for the purpose of improving the battery performance such as cycle characteristics and safety. It is a metal element, and M includes Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. One or more kinds of metal elements selected from the above can be mentioned. In the formula of the general formula (1), p is 0 ≦ p ≦ 0.05, preferably 0.0001 ≦ p ≦ 0.045.
 また、改質対象であるリチウムニッケルマンガンコバルト複合酸化物粒子は、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物の粒状物である。一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子は、一次粒子が単分散した単粒子であっても、一次粒子が集合して二次粒子を形成した凝集粒子であってもよい。一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径は、レーザ回折・散乱法により求められる粒度分布における体積換算50%の粒子径(D50)で、好ましくは1.0~30.0μm、特に好ましくは3.0~25.0μmである。また、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子のBET比表面積は、好ましくは0.05~2.00m/g、特に好ましくは0.15~1.00m/gである。リチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径又はBET比表面積が上記範囲にあることにより、正極合剤の調製や塗工性が容易になり、さらには充填性の高い電極が得られる。 The lithium nickel manganese cobalt composite oxide particles to be modified are granules of the lithium nickel manganese cobalt composite oxide represented by the general formula (1). The lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) may be single particles in which primary particles are monodispersed or aggregated particles in which primary particles are aggregated to form secondary particles. good. The average particle size of the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is a particle size (D50) of 50% in terms of volume in the particle size distribution obtained by the laser diffraction / scattering method, and is preferably 1. It is 0 to 30.0 μm, particularly preferably 3.0 to 25.0 μm. The BET specific surface area of the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is preferably 0.05 to 2.00 m 2 / g, and particularly preferably 0.15 to 1.00 m 2 / g. g. When the average particle size or the BET specific surface area of the lithium nickel-manganese-cobalt composite oxide particles is within the above range, the positive electrode mixture can be easily prepared and coated, and an electrode having a high filling property can be obtained.
 また、改質対象である一般式(1)であるリチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量は、好ましくは1.2質量%以下、特に好ましくは1.0質量%以下である。リチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量が上記範囲にあることにより、残存アルカリに起因するガス発生により生じる電池の膨張や劣化を抑制することができる。 The amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles of the general formula (1) to be reformed is preferably 1.2% by mass or less, and particularly preferably 1.0% by mass or less. When the amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles is within the above range, it is possible to suppress the expansion and deterioration of the battery caused by the generation of gas due to the residual alkali.
 なお、本発明において、残存アルカリは、リチウムニッケルマンガンコバルト複合酸化物粒子を25℃の水に攪拌分散させたときに、水に溶出されるアルカリ成分を示す。そして、残存アルカリ量は、リチウムニッケルマンガンコバルト複合酸化物粒子5g及び純水100gをビーカーに秤取り、25℃で、マグネチックスターラーで5分間分散させ、次いで、この分散液をろ過し、得られるろ液中に存在するアルカリの量を中和滴定することにより求められる。なお、該残存アルカリ量は、滴定によりリチウム量を測定して炭酸リチウムに換算した値である。 In the present invention, the residual alkali indicates an alkali component eluted in water when the lithium nickel manganese cobalt composite oxide particles are stirred and dispersed in water at 25 ° C. Then, the residual alkali amount is obtained by weighing 5 g of lithium nickel manganese cobalt composite oxide particles and 100 g of pure water in a beaker, dispersing at 25 ° C. with a magnetic stirrer for 5 minutes, and then filtering this dispersion. It is determined by neutralizing and titrating the amount of alkali present in the filtrate. The amount of residual alkali is a value obtained by measuring the amount of lithium by titration and converting it into lithium carbonate.
 改質対象である一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子は、例えば、リチウム源、ニッケル源、マンガン源、コバルト源及び必要に応じて添加するM源を混合して原料混合物を調製する原料混合工程と、次いで、得られる原料混合物を焼成する焼成工程と、を行うことにより製造される。 The lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) to be reformed are, for example, mixed with a lithium source, a nickel source, a manganese source, a cobalt source and an M source to be added as necessary. It is produced by performing a raw material mixing step of preparing a raw material mixture and then a baking step of firing the obtained raw material mixture.
 原料混合工程に係るリチウム源、ニッケル源、マンガン源、コバルト源及びM源としては、例えば、これらの水酸化物、酸化物、炭酸塩、硝酸塩、硫酸塩、有機酸塩等が用いられる。リチウム源、ニッケル源、マンガン源、コバルト源及びM源の平均粒子径は、レーザ・散乱法により求められる平均粒子径が、1.0~30.0μm、好ましくは2.0~25.0μmであることが好ましい。 As the lithium source, nickel source, manganese source, cobalt source and M source related to the raw material mixing step, for example, these hydroxides, oxides, carbonates, nitrates, sulfates, organic acid salts and the like are used. The average particle size of the lithium source, nickel source, manganese source, cobalt source and M source is 1.0 to 30.0 μm, preferably 2.0 to 25.0 μm, as the average particle size obtained by the laser / scattering method. It is preferable to have.
 原料混合工程に係るニッケル源、マンガン源及びコバルト源は、ニッケル原子、マンガン原子及びコバルト原子を含有する化合物であってもよい。ニッケル原子、マンガン原子及びコバルト原子を含有する化合物としては、例えば、これらの原子を含有する複合酸化物、複合水酸化物、複合オキシ水酸化物、複合炭酸塩等が挙げられる。 The nickel source, manganese source and cobalt source related to the raw material mixing step may be a compound containing a nickel atom, a manganese atom and a cobalt atom. Examples of the compound containing a nickel atom, a manganese atom and a cobalt atom include a composite oxide containing these atoms, a composite hydroxide, a composite oxyhydroxide, a composite carbonate and the like.
 なお、ニッケル原子、マンガン原子及びコバルト原子を含有する化合物を調製する方法としては、公知の方法が用いられる。例えば、複合水酸化物の場合、共沈法によって調製することができる。具体的には、所定量のニッケル原子、コバルト原子及びマンガン原子を含む水溶液と、錯化剤の水溶液と、アルカリの水溶液とを混合することで、複合水酸化物を共沈させることができる(特開平10-81521号公報、特開平10-81520号公報、特開平10-29820号公報、2002-201028号公報等参照。)。また、複合炭酸塩の場合は、ニッケルイオン、マンガンイオン及びコバルトイオンを含む溶液(A液)と、炭酸イオン又は炭酸水素イオンを含む溶液(B液)とを、反応容器に添加して反応を行う方法(特開2009-179545号公報)、或いはニッケル塩、マンガン塩及びコバルト塩を含む溶液(A液)と、金属炭酸塩又は金属炭酸水素塩を含む溶液(B液)とを、該A液中の該ニッケル塩、該マンガン塩及び該コバルト塩のアニオンと同じアニオンと、該B液中の該金属炭酸塩又は該金属炭酸水素塩のアニオンと同じアニオンと、を含む溶液(C液)に添加して、反応を行う方法(特開2009-179544号公報)等が挙げられる。また、ニッケル原子、マンガン原子及びコバルト原子を含有する化合物は、市販品であってもよい。 A known method is used as a method for preparing a compound containing a nickel atom, a manganese atom and a cobalt atom. For example, in the case of a composite hydroxide, it can be prepared by the coprecipitation method. Specifically, the composite hydroxide can be coprecipitated by mixing an aqueous solution containing a predetermined amount of nickel atom, cobalt atom and manganese atom, an aqueous solution of a complexing agent and an aqueous solution of an alkali (). See JP-A-10-81521, JP-A-10-81520, JP-A-10-29820, JP-A-2002-201028, etc.). In the case of a complex carbonate, a solution containing nickel ion, manganese ion and cobalt ion (solution A) and a solution containing carbonate ion or hydrogen carbonate ion (solution B) are added to the reaction vessel to carry out the reaction. The method to be carried out (Japanese Unexamined Patent Publication No. 2009-179545), or a solution containing a nickel salt, a manganese salt and a cobalt salt (solution A) and a solution containing a metal carbonate or a metal hydrogen carbonate (solution B). A solution (solution C) containing the same anion as the anion of the nickel salt, the manganese salt and the cobalt salt in the liquid, and the same anion as the anion of the metal carbonate or the metal hydrogen carbonate in the liquid B. (Japanese Patent Laid-Open No. 2009-179544) and the like can be mentioned. Further, the compound containing a nickel atom, a manganese atom and a cobalt atom may be a commercially available product.
 ニッケル原子、コバルト原子及びマンガン原子を含有する化合物の平均粒子径は、レーザ・散乱法により求められる平均粒子径が、1.0~100μm、好ましくは2.0~80.0μmである。 The average particle size of the compound containing nickel atom, cobalt atom and manganese atom is 1.0 to 100 μm, preferably 2.0 to 80.0 μm, which is the average particle size obtained by the laser / scattering method.
 一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子の製造において、ニッケル源、マンガン源及びコバルト源として、ニッケル原子、コバルト原子及びマンガン原子を含有する複合水酸化物を用いることが、反応性が良好になる点で好ましい。 In the production of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), a composite hydroxide containing a nickel atom, a cobalt atom and a manganese atom may be used as the nickel source, the manganese source and the cobalt source. , It is preferable in that the reactivity becomes good.
 原料混合工程において、リチウム源と、ニッケル源、マンガン源、コバルト源及び必要に応じて添加するM源の混合割合は、放電容量が高くなる点で、ニッケル源、マンガン源及びコバルト源中のNi原子、Mn原子、Co原子及びM原子の総モル数(Ni+Mn+Co+M)に対するLi原子のモル比(Li/(Ni+Mn+Co+M))は、0.98~1.20、好ましくは1.00~1.10である。 In the raw material mixing step, the mixing ratio of the lithium source and the nickel source, manganese source, cobalt source and M source added as needed increases the discharge capacity, and Ni in the nickel source, manganese source and cobalt source. The molar ratio of Li atoms (Li / (Ni + Mn + Co + M)) to the total number of moles of atoms, Mn atoms, Co atoms and M atoms (Ni + Mn + Co + M) is 0.98 to 1.20, preferably 1.00 to 1.10. be.
 また、原料混合工程において、ニッケル源、マンガン源、コバルト源及び必要に応じて添加するM源の各原料の混合割合については、前記一般式(1)で表されるニッケル、マンガン、コバルト及びMの原子モル比となるよう調整すればよい。 Further, in the raw material mixing step, the mixing ratio of each raw material of the nickel source, the manganese source, the cobalt source and the M source to be added as needed is the nickel, manganese, cobalt and M represented by the general formula (1). It may be adjusted so as to have an atomic molar ratio of.
 なお、原料のリチウム源、ニッケル源、マンガン源、コバルト源及びM源の製造履歴は問われないが、高純度のリチウムニッケルマンガンコバルト複合酸化物粒子を製造するため、可及的に不純物含有量が少ないものであることが好ましい。 The production history of the raw materials lithium source, nickel source, manganese source, cobalt source and M source is not limited, but the impurity content is as much as possible in order to produce high-purity lithium nickel-manganese-cobalt composite oxide particles. It is preferable that the amount is small.
 原料混合工程において、リチウム源、ニッケル源、マンガン源、コバルト源及び必要に応じて添加するM源を混合する手段としては、乾式でも湿式でもいずれの方法でもよいが、製造が容易であるため乾式による混合が好ましい。 In the raw material mixing step, the means for mixing the lithium source, the nickel source, the manganese source, the cobalt source, and the M source to be added as needed may be either a dry method or a wet method, but the dry method is easy to manufacture. Mixing with is preferable.
 乾式混合の場合は、原料が均一に混合するよう機械的手段にて行うことが好ましい。混合装置としては、例えば、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、アイリッヒミキサー、ヘンシェルミキサー、ナウターミキサー、リボンブレンダー、V型混合機、コニカルブレンダー、ジェットミル、コスモマイザー、ペイントシェイカー、ビーズミル、ボールミル等が挙げられる。なお、実験室レベルでは、家庭用ミキサーで十分である。 In the case of dry mixing, it is preferable to perform it by mechanical means so that the raw materials are uniformly mixed. Examples of the mixing device include a high-speed mixer, a super mixer, a turbosphere mixer, an Erich mixer, a Henschel mixer, a Nauter mixer, a ribbon blender, a V-type mixer, a conical blender, a jet mill, a cosmomizer, a paint shaker, and a bead mill. , Ball mill and the like. At the laboratory level, a home mixer is sufficient.
 湿式混合の場合、混合装置としては、メディアミルを用いることが、各原料が均一に分散したスラリーを調製できる点で好ましい。また、混合処理後のスラリーは、反応性に優れ各原料が均一に分散した原料混合物が得られる観点から噴霧乾燥を行うことが好ましい。 In the case of wet mixing, it is preferable to use a media mill as the mixing device because it is possible to prepare a slurry in which each raw material is uniformly dispersed. Further, the slurry after the mixing treatment is preferably spray-dried from the viewpoint of obtaining a raw material mixture having excellent reactivity and uniformly dispersed raw materials.
 焼成工程は、原料混合工程を行い得られる原料混合物を、焼成することにより、リチウムニッケルマンガンコバルト複合酸化物を得る工程である。 The firing step is a step of obtaining a lithium nickel-manganese-cobalt composite oxide by firing a raw material mixture obtained by performing a raw material mixing step.
 焼成工程において、原料混合物を焼成して、原料を反応させる際の焼成温度は、600~1000℃、好ましくは700~950℃である。この理由は焼成温度が600℃未満では反応が不十分で未反応のリチウムが多量に残留する傾向があり、一方、1000℃を超えると一度生成したリチウムニッケルマンガンコバルト複合酸化物が分解してしまう傾向があるからである。 In the firing step, the firing temperature when the raw material mixture is fired and the raw materials are reacted is 600 to 1000 ° C, preferably 700 to 950 ° C. The reason for this is that if the firing temperature is less than 600 ° C, the reaction is insufficient and a large amount of unreacted lithium tends to remain, while if it exceeds 1000 ° C, the lithium nickel-manganese-cobalt composite oxide once formed will decompose. Because there is a tendency.
 焼成工程における焼成時間は、3時間以上、好ましくは5~30時間である。また、焼成工程における焼成雰囲気は、空気、酸素ガスの酸化雰囲気である。 The firing time in the firing step is 3 hours or more, preferably 5 to 30 hours. Further, the firing atmosphere in the firing step is an oxidizing atmosphere of air and oxygen gas.
 また、焼成工程において、焼成は多段式に行ってもよい。多段式に焼成を行うことにより、いっそうサイクル特性が優れた改質リチウムニッケルマンガンコバルト複合酸化物粒子を得ることができる。多段で焼成を行う場合、650~800℃の範囲で1~10時間焼成した後、更に該焼成温度より高い温度となるように800~950℃に昇温し、そのまま5~30時間焼成することが好ましい。 Further, in the firing step, firing may be performed in a multi-stage system. By performing multi-stage firing, modified lithium nickel-manganese-cobalt composite oxide particles having further excellent cycle characteristics can be obtained. When firing in multiple stages, firing in the range of 650 to 800 ° C. for 1 to 10 hours, then raising the temperature to 800 to 950 ° C. so as to be higher than the firing temperature, and firing as it is for 5 to 30 hours. Is preferable.
 このように得られるリチウムニッケルマンガンコバルト複合酸化物を、必要に応じて複数回の焼成工程に付してもよい。 The lithium nickel manganese cobalt composite oxide thus obtained may be subjected to a plurality of firing steps as needed.
 また、残存アルカリ量が上記範囲であるリチウムニッケルマンガン複合酸化物粒子は、リチウム源、ニッケル源、マンガン源、コバルト源及び必要に応じて添加するM源の原料混合工程において、ニッケル源、マンガン源、コバルト源及びM源中のNi原子、Mn原子、Co原子及びM原子の総モル数(Ni+Mn+Co+M)に対するLi原子のモル比(Li/(Ni+Mn+Co+M))が0.98~1.20となる混合割合とし、700℃以上、好ましくは750~1000℃で、3時間以上、好ましくは5~30時間焼成反応に付して、十分にリチウム源、ニッケル源、マンガン源、コバルト源及び必要に応じて添加するM源とを反応させることにより製造することができる。本製造方法において、前記焼成は、前述した多段式で行うことにより、残存アルカリ量がいっそう低減したリチウムニッケルマンガン複合酸化物粒子を製造することができる。 Further, the lithium nickel-nickel-manganese composite oxide particles having the residual alkali amount in the above range are the nickel source and the manganese source in the raw material mixing step of the lithium source, the nickel source, the manganese source, the cobalt source and the M source added as needed. , The molar ratio of Li atoms (Li / (Ni + Mn + Co + M)) to the total number of moles of Ni atoms, Mn atoms, Co atoms and M atoms in the cobalt source and M source is 0.98 to 1.20. After being subjected to a firing reaction at 700 ° C. or higher, preferably 750 to 1000 ° C. for 3 hours or longer, preferably 5 to 30 hours, the lithium source, nickel source, manganese source, cobalt source and, if necessary, are sufficiently subjected to the firing reaction. It can be produced by reacting with the added M source. In the present production method, the firing is performed by the above-mentioned multi-stage method, so that lithium nickel-nickel-manganese composite oxide particles having a further reduced amount of residual alkali can be produced.
 (A)工程に係る表面処理液は、チタンキレート化合物、すなわち、一般式(2)で表されるチタンキレート又は一般式(2)で表されるチタンキレートのアンモニウム塩を、水及び/又は有機溶媒に溶解又は分散させたものである。 The surface treatment liquid according to the step (A) is a titanium chelate compound, that is, a titanium chelate represented by the general formula (2) or an ammonium salt of the titanium chelate represented by the general formula (2) in water and / or organic. It is dissolved or dispersed in a solvent.
 (A)工程に係るチタンキレートは、下記一般式(2):
   Ti(R    (2) 
(式中、Rは、アルコキシ基、水酸基、ハロゲン原子、アミノ基又はホスフィン類を示し、複数存在する場合、同一であってもよく、異なっていてもよい。Lはヒドロキシカルボン酸に由来する基を表し、複数存在する場合、同一であってもよく、異なっていてもよい。mは0以上3以下の数を示し、nは1以上3以下の数を示し、m+nは3~6である。)
で表されるチタンキレートである。
The titanium chelate according to the step (A) has the following general formula (2):
Ti (R 1 ) m L n (2)
(In the formula, R 1 represents an alkoxy group, a hydroxyl group, a halogen atom, an amino group or phosphines, and when a plurality of them are present, they may be the same or different. L is derived from hydroxycarboxylic acid. When there are a plurality of groups, they may be the same or different. M indicates a number of 0 or more and 3 or less, n indicates a number of 1 or more and 3 or less, and m + n is 3 to 6. be.)
It is a titanium chelate represented by.
 Rに係るアルコキシ基としては、炭素数1~4の直鎖状又は分岐状のアルコキシ基が好ましい。Rに係るハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。Rに係るアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基等が挙げられる。Rに係るホスフィン類としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリス-tert-ブチルホスフィン、トリフェニルホスフィン等が挙げられる。 As the alkoxy group according to R 1 , a linear or branched alkoxy group having 1 to 4 carbon atoms is preferable. Examples of the halogen atom related to R 1 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Examples of the amino group according to R 1 include a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, an isobutylamino group, a tert-butylamino group, a pentylamino group and the like. Examples of the phosphines related to R 1 include trimethylphosphine, triethylphosphine, tributylphosphine, tris-tert-butylphosphine, triphenylphosphine and the like.
 Lに係るヒドロキシカルボン酸に由来する基としては、ヒドロキシカルボン酸におけるヒドロキシル基の酸素原子又はヒドロキシカルボン酸におけるカルボキシル基の酸素原子が、チタン原子に配位してなる基が挙げられる。また、Lに係るヒドロキシカルボン酸に由来する基としては、ヒドロキシカルボン酸におけるヒドロキシル基の酸素原子及びヒドロキシルカルボン酸におけるカルボキシル基の酸素原子が、チタン原子に2座で配位してなる基が挙げられる。これらの中、ヒドロキシカルボン酸におけるヒドロキシル基の酸素原子及びヒドロキシカルボン酸におけるカルボキシル基の酸素原子が、チタン原子に2座で配位してなる基であることが好ましい。mが0の場合はm+nは3であることが好ましく、mが1以上3以下の場合はm+nは4又は5であることが好ましい。 Examples of the group derived from the hydroxycarboxylic acid according to L include a group in which the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid or the oxygen atom of the carboxyl group in the hydroxycarboxylic acid is coordinated with the titanium atom. Examples of the group derived from the hydroxycarboxylic acid according to L include a group in which the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid and the oxygen atom of the carboxyl group in the hydroxylcarboxylic acid are coordinated with the titanium atom in two loci. Be done. Among these, it is preferable that the oxygen atom of the hydroxyl group in the hydroxycarboxylic acid and the oxygen atom of the carboxyl group in the hydroxycarboxylic acid are groups coordinated with the titanium atom in two loci. When m is 0, m + n is preferably 3, and when m is 1 or more and 3 or less, m + n is preferably 4 or 5.
 チタンキレートの製造方法であるが、例えば、チタンアルコキシドを溶媒で希釈して希釈液を得、該希釈液とヒドロキシカルボン酸とを混合することにより、チタンキレートを含む溶液が得られる(WO2019/138989号パンフレット参照)。本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法では、上記のチタンキレートの製造方法により得られるチタンキレートを含む溶液を、そのまま(A)工程で表面処理液として用いることができる。また、チタンキレートを含む溶液に水を添加して、表面処理液として用いてもよい。これにより、表面処理液として、チタンキレートの水含有溶媒の分散液又は溶解液を得ることができる。 As a method for producing a titanium chelate, for example, a diluted solution is obtained by diluting titanium alkoxide with a solvent, and the diluted solution is mixed with a hydroxycarboxylic acid to obtain a solution containing the titanium chelate (WO2019 / 138989). See the pamphlet). In the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the solution containing the titanium chelate obtained by the above method for producing the titanium chelate can be used as it is as the surface treatment liquid in the step (A). Further, water may be added to the solution containing the titanium chelate and used as a surface treatment liquid. Thereby, as a surface treatment liquid, a dispersion liquid or a dissolution liquid of a water-containing solvent of titanium chelate can be obtained.
 なお、前記チタンアルコキシドとしては、例えば、テトラメトキシチタン(IV)、テトラエトキシチタン(IV)、テトラ-n-プロポキシチタン(IV)、テトライソプロポキシチタン(IV)、テトラ-n-ブトキシチタン(IV)及びテトライソブトキシチタン(IV)等が挙げられる。 Examples of the titanium alkoxide include tetramethoxytitanium (IV), tetraethoxytitanium (IV), tetra-n-propoxytitanium (IV), tetraisopropoxytitanium (IV), and tetra-n-butoxytitanium (IV). ) And tetraisobutoxytitanium (IV) and the like.
 また、前記ヒドロキシカルボン酸としては、例えば、乳酸、グルコール酸、グリセリン酸、ヒドロキシ酪酸等の1価のカルボン酸、タルトロン酸、リンゴ酸、酒石酸等の2価のカルボン酸、クエン酸、イソクエン酸等の3価のカルボン酸等が挙げられる。これらの中、乳酸が、室温で容易に溶液となり、チタンアルコキシド希釈液と混合しやすく、容易にチタンキレートが製造できる観点から好ましい。 Examples of the hydroxycarboxylic acid include monovalent carboxylic acids such as lactic acid, glucolic acid, glyceric acid and hydroxybutyric acid, divalent carboxylic acids such as tartronic acid, malic acid and tartrate acid, citric acid and isocitrate. Examples thereof include trivalent carboxylic acids of the above. Among these, lactic acid is preferable from the viewpoint that it easily becomes a solution at room temperature, is easily mixed with the titanium alkoxide diluted solution, and a titanium chelate can be easily produced.
 また、希釈液として用いる溶媒としては、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタン等のアルコールを好ましく用いることができる。 Further, as the solvent used as the diluent, alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol, sec-butanol, tert-butanol and n-pentane can be preferably used.
 また、希釈液とヒドロキシカルボン酸とを混合する際、又はチタンキレートを含む溶液に、高い生産性により効率的にチタンキレートを得ることを目的として、ヒドロキシカルボン酸以外に、チタンに配位可能な配位子化合物を添加してもよい。そのような配位子化合物としては、例えば、ハロゲン原子含有化合物、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ等の官能基を有するアミン類、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリス-tert-ブチルホスフィン、トリフェニルホスフィン等のホスフィン類が挙げられる。 Further, when mixing a diluted solution and a hydroxycarboxylic acid, or for the purpose of efficiently obtaining a titanium chelate with high productivity in a solution containing a titanium chelate, it is possible to coordinate with titanium in addition to the hydroxycarboxylic acid. A ligand compound may be added. Examples of such a ligand compound include a halogen atom-containing compound, a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, an isobutylamino group, a t-butylamino group, a pentylamino and the like. Examples thereof include amines having the above functional groups, trimethylphosphine, triethylphosphine, tributylphosphine, tris-tert-butylphosphine, triphenylphosphine and the like.
 チタンキレートのアンモニウム塩としては、チタンラクテートアンモニウム塩(Ti(OH)〔(OCH(CH)COO)〕(NH )が好ましい。 As the ammonium salt of the titanium chelate, a titanium lactate ammonium salt (Ti (OH) 2 [(OCH (CH 3 ) COO )] 2 (NH 4 + ) 2 ) is preferable.
 また、チタンキレート及びそのアンモニウム塩は、マツモトファインケミカル社で一部市販されており、市販品を用いてもよい。 In addition, titanium chelate and its ammonium salt are partially commercially available from Matsumoto Fine Chemical Co., Ltd., and commercially available products may be used.
 また、(A)工程に係る表面処理液中のTi濃度は、Ti原子として、0.1~1500mmol/L、好ましくは0.2~1000mmol/Lであることが、Ti溶液の安定性と被覆処理の操作性が容易になる観点から好ましい。 Further, the Ti concentration in the surface treatment liquid according to the step (A) is 0.1 to 1500 mmol / L, preferably 0.2 to 1000 mmol / L as Ti atoms, which is the stability and coating of the Ti solution. It is preferable from the viewpoint of facilitating the operability of the process.
 (A)工程に係る表面処理液のpHは、7以上、好ましくは8以上11以下、特に好ましくは8より大きく10以下であることが、リチウムニッケルマンガンコバルト複合酸化物粒子と、表面処理液が接触したときに、リチウムニッケルマンガンコバルト複合酸化物粒子からのLiの溶出が抑制される点で、好ましい。なお、表面処理液のpHについては、上記範囲のpHとなるように、表面処理液に酸やアルカリを添加してpHを調整することができる。 The pH of the surface treatment liquid according to the step (A) is 7 or more, preferably 8 or more and 11 or less, particularly preferably more than 8 and 10 or less. It is preferable in that the elution of Li from the lithium nickel-manganese cobalt composite oxide particles is suppressed when they come into contact with each other. The pH of the surface treatment liquid can be adjusted by adding an acid or an alkali to the surface treatment liquid so that the pH is within the above range.
 (A)工程において、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子と、チタンキレート化合物を含む表面処理液とを接触させる方法は、特に制限されるものではないが、例えば、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子とチタンキレート化合物を含む表面処理液とを混合処理する方法等が挙げられる。なお、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子とチタンキレート化合物を含む表面処理液との混合物は、粉末状であっても、ペースト状であっても又はスラリー状であってもよい。該混合物が、粉末状、ペースト状又はスラリー状のものは、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子に対するチタンキレート化合物を含む表面処理液の添加量を調製することで、何れの形態のものも得ることができる。例えば、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子とチタンキレート化合物を含む表面処理液との混合物が粉末状のものは、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子に対して液の体積が少量のチタンキレート化合物を含む表面処理液を添加することにより得られ、また、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子とチタンキレート化合物を含む表面処理液との混合物がスラリー状のものは、液の体積が多量のチタンキレート化合物を含む表面処理液に対して、少量の一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を添加することにより得られる。 In the step (A), the method of contacting the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) with the surface treatment liquid containing the titanium chelate compound is not particularly limited, but for example. , A method of mixing and treating a surface treatment liquid containing a titanium nickel chelate compound and lithium nickel nickel manganese cobalt composite oxide particles represented by the general formula (1) can be mentioned. The mixture of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing the titanium chelate compound may be in the form of powder, paste or slurry. There may be. When the mixture is in the form of powder, paste or slurry, the amount of the surface treatment liquid containing the titanium chelate compound to the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) is prepared. , Any form can be obtained. For example, a powdery mixture of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing the titanium chelate compound is represented by the general formula (1). It is obtained by adding a surface treatment liquid containing a titanium chelate compound having a small volume of the liquid to the cobalt composite oxide particles, and also with the lithium nickel-manganese manganese cobalt composite oxide particles represented by the general formula (1). When the mixture with the surface treatment liquid containing the titanium chelate compound is in the form of a slurry, a small amount of lithium nickel manganese represented by the general formula (1) is used with respect to the surface treatment liquid containing the titanium chelate compound having a large volume of the liquid. Obtained by adding cobalt composite oxide particles.
 また、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子と、チタンキレート化合物を含む溶液との接触は、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、チタンキレート化合物を含む溶液に浸漬する方法であってもよい。 Further, the contact between the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the solution containing the titanium chelate compound is the lithium nickel nickel manganese cobalt composite oxide particles represented by the general formula (1). , The method of immersing in a solution containing a titanium chelate compound may be used.
 これらのうち、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法において、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子と、チタンキレート化合物を含む表面処理液とを接触させる方法としては、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子の表面全体にチタンキレート化合物を容易に付着させることができる点で、混合物がスラリー状となる方法が好ましい。 Among these, in the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing a titanium chelate compound are used. As a method of contacting the titanium, a titanium chelate compound can be easily adhered to the entire surface of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), and the mixture is in the form of a slurry. preferable.
 一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、チタンキレート化合物を含む表面処理液に接触させた後、そのまま溶媒を全量乾燥することにより、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面がチタンキレート化合物で被覆された被覆粒子を得ることが好ましい。乾燥の際の乾燥温度は、溶媒が蒸発する温度であれば、特に制限されないが、好ましくは60~180℃、特に好ましくは90~150℃である。 The lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) are brought into contact with a surface treatment liquid containing a titanium chelate compound, and then the entire amount of the solvent is dried as it is, whereby the lithium nickel manganese cobalt composite oxide particles are represented by the general formula (1). It is preferable to obtain coated particles in which the particle surface of the lithium nickel manganese cobalt composite oxide particles is coated with a titanium chelate compound. The drying temperature at the time of drying is not particularly limited as long as it is a temperature at which the solvent evaporates, but is preferably 60 to 180 ° C, particularly preferably 90 to 150 ° C.
 また、乾燥については、噴霧乾燥装置、ロータリーエバポレーター、流動層乾燥コーティング装置、振動乾燥装置等により全量乾燥を行ってもよい。 As for drying, the entire amount may be dried by a spray drying device, a rotary evaporator, a fluidized bed drying coating device, a vibration drying device, or the like.
 (A)工程において、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子と、チタンキレート化合物を含む表面処理液とを含有するスラリーを、噴霧乾燥装置で溶媒を全量乾燥することがチタンキレート化合物の被覆量をコントロールすることが容易になるという点で、好ましい。 In the step (A), the entire amount of the solvent of the slurry containing the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) and the surface treatment liquid containing the titanium chelate compound is dried by a spray drying device. Is preferable in that it becomes easy to control the coating amount of the titanium chelate compound.
 (B)工程は、(A)工程で得られた被覆粒子を加熱処理することで、改質リチウムニッケルマンガンコバルト複合酸化物(A)あるいは改質リチウムニッケルマンガンコバルト複合酸化物(B)を得る工程である。 In the step (B), the coated particles obtained in the step (A) are heat-treated to obtain a modified lithium nickel-manganese-cobalt composite oxide (A) or a modified lithium nickel-manganese-cobalt composite oxide (B). It is a process.
 改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)において、Ti原子は、主に、リチウムニッケルマンガンコバルト複合酸化物粒子に固溶せずに、Tiを含む酸化物の状態で、リチウムニッケルマンガンコバルト複合酸化物粒子の表面に存在している。なお、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)においては、少量の一部のTi原子が、リチウムニッケルマンガンコバルト複合酸化物粒子の内部に固溶していてもよい。 In the modified lithium nickel manganese cobalt composite oxide particles (A), the Ti atom is mainly in the state of an oxide containing Ti without being solid-dissolved in the lithium nickel manganese cobalt composite oxide particles, and the lithium nickel manganese cobalt. It exists on the surface of the composite oxide particles. In the modified lithium nickel manganese cobalt composite oxide particles (A), a small amount of some Ti atoms may be solidly dissolved inside the lithium nickel manganese cobalt cobalt composite oxide particles.
 改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)において、Ti原子は、主に、リチウムニッケルマンガンコバルト複合酸化物粒子の粒子内部に固溶した状態で存在していると考えられる。なお、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)においては、改質リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面をSEM-EDXでTiの元素マッピング分析で分析したときに、TiがCo、Ni、Mn等と同様に均一に分布した状態で観察される範囲であれば、Ti原子が、リチウムニッケルマンガンコバルト複合酸化物粒子の表面にTiを含む酸化物の状態で存在していてもよい。 In the modified lithium nickel manganese cobalt composite oxide particles (B), it is considered that the Ti atom mainly exists in a solid-dissolved state inside the particles of the lithium nickel manganese cobalt cobalt composite oxide particles. In the modified lithium nickel-manganese cobalt composite oxide particles (B), when the particle surface of the modified lithium nickel-manganese cobalt composite oxide particles was analyzed by elemental mapping analysis of Ti with SEM-EDX, Ti became Co. , Ni, Mn, etc., as long as it is observed in a uniformly distributed state, even if Ti atoms are present on the surface of the lithium nickel manganese cobalt composite oxide particles in the state of an oxide containing Ti. good.
 よって、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)であるか、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)であるかは、SEM-EDXでサンプル粒子の粒子表面をTiの元素マッピング分析で分析することにより確認される。すなわち、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)である場合は、サンプル粒子の粒子表面を、10,000~30,000倍の拡大倍率でSEM-EDXによるTiの元素マッピング分析で分析したときに、サンプル粒子表面にTiが偏在等の不均一に分布して存在することが観察される。また、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)である場合は、サンプル粒子の粒子表面を、10,000~30,000倍の拡大倍率でSEM-EDXによるTiの元素マッピング分析で分析したときに、サンプル粒子表面にTiが均一に分布して存在することが観察される。 Therefore, whether the modified lithium nickel manganese cobalt composite oxide particles (A) or the modified lithium nickel manganese cobalt cobalt composite oxide particles (B) is an element of Ti on the particle surface of the sample particles by SEM-EDX. Confirmed by analysis by mapping analysis. That is, in the case of modified lithium nickel-manganese cobalt composite oxide particles (A), the particle surface of the sample particles is analyzed by elemental mapping analysis of Ti by SEM-EDX at a magnification of 10,000 to 30,000 times. At this time, it is observed that Ti is unevenly distributed and present on the surface of the sample particles such as uneven distribution. In the case of modified lithium nickel-manganese cobalt composite oxide particles (B), the particle surface of the sample particles is analyzed by elemental mapping analysis of Ti by SEM-EDX at a magnification of 10,000 to 30,000 times. When this is done, it is observed that Ti is uniformly distributed and present on the surface of the sample particles.
 なお、本発明において、リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面を被覆するTiを含む酸化物とは、Tiの酸化物、Tiと、Li、Ni、Mn、Co及びMから選ばれる1種又は2種以上を含む複合酸化物等を示すものである。 In the present invention, the oxide containing Ti that coats the particle surface of the lithium nickel-manganese cobalt composite oxide particles is one selected from Ti oxide, Ti, and Li, Ni, Mn, Co, and M. Alternatively, it indicates a composite oxide or the like containing two or more kinds.
 (B)工程に係る加熱処理において、加熱処理温度は、400~1000℃、好ましくは450~950℃である。この理由は、加熱処理温度が400℃未満では被覆処理用のチタンキレートの十分な分解及び酸化反応が行われず十分な効果が得られず、一方、加熱処理温度が1000℃を超えるとTiとリチウムニッケルマンガンコバルト複合酸化物粒子との固溶反応が進行し過ぎて、粒子表面近郊だけでなく奥までTiの固溶が進行するため粒子表面近傍のTi量が不足して本発明の改質効果が得られ難くなるからである。 In the heat treatment according to the step (B), the heat treatment temperature is 400 to 1000 ° C, preferably 450 to 950 ° C. The reason for this is that if the heat treatment temperature is less than 400 ° C, the titanium chelate for coating treatment is not sufficiently decomposed and oxidized to obtain a sufficient effect, while if the heat treatment temperature exceeds 1000 ° C, Ti and lithium are not obtained. Since the solid dissolution reaction with the nickel-manganese-cobalt composite oxide particles progresses too much and the solid dissolution of Ti progresses not only near the particle surface but also to the back, the amount of Ti near the particle surface is insufficient and the modification effect of the present invention is achieved. This is because it becomes difficult to obtain.
 (B)工程に係る加熱処理において、加熱処理の時間は、本製造方法において臨界的ではなく、通常は1時間以上、好ましくは2~10時間で、満足の行く性能の改質リチウムニッケルマンガンコバルト複合酸化物粒子を得ることができる。 In the heat treatment according to the step (B), the heat treatment time is not critical in the present production method, and is usually 1 hour or more, preferably 2 to 10 hours, and the modified lithium nickel manganese cobalt with satisfactory performance. Composite oxide particles can be obtained.
 (B)工程に係る加熱処理において、加熱処理の雰囲気は、空気、酸素ガス等の酸化雰囲気であることが好ましい。 In the heat treatment according to the step (B), the atmosphere of the heat treatment is preferably an oxidizing atmosphere of air, oxygen gas, or the like.
 また、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法において、好ましい実施形態では、一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、チタンキレート化合物を含む表面処理液に接触させた後、そのまま溶媒を全量乾燥することから、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)でのリチウムニッケルマンガンコバルト複合酸化物粒子に対するTiを含む酸化物の被覆量(付着量)及び改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)でのリチウムニッケルマンガンコバルト複合酸化物粒子に対するTiの固溶量(含有量)は、リチウムニッケルマンガンコバルト複合酸化物粒子の量と使用したチタンキレート化合物を含む表面処理液中のTi含有量とから求められる理論上の被覆量(付着量)及び固溶量(含有量)として表すことができる。 Further, in the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, in a preferred embodiment, the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) are subjected to a surface containing a titanium chelate compound. Since the entire amount of the solvent is dried as it is after contacting with the treatment liquid, the coating amount of the oxide containing Ti on the lithium nickel-nickel-manganese-cobalt composite oxide particles (A) (A). (Adhesion amount) and the solid solubility amount (content) of Ti in the lithium nickel manganese cobalt composite oxide particles in the modified lithium nickel manganese cobalt composite oxide particles (B) are the amount of the lithium nickel manganese cobalt composite oxide particles. It can be expressed as the theoretical coating amount (adhesion amount) and solid solubility amount (content) obtained from the Ti content in the surface treatment liquid containing the titanium chelate compound used.
 改質工程の(A)工程では、後述するTiを含む酸化物の付着量の範囲となるように、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi含有量が、Ti原子換算で0.1~150mg、好ましくは0.5~120mgとなる添加量で前記表面改質液を、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子に添加して混合し、全量乾燥させることが、チタンキレート化合物の被覆量及び固溶量をコントロールすることが容易になるという点で、好ましい。 In the step (A) of the reforming step, Ti per 1 m 2 of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) is set so as to be within the range of the adhesion amount of the oxide containing Ti described later. The surface modifier is added in an amount of 0.1 to 150 mg, preferably 0.5 to 120 mg in terms of Ti atom, and the lithium nickel manganese cobalt composite oxide represented by the general formula (1) is used. It is preferable to add the particles to the particles, mix them, and dry the whole amount, because it is easy to control the coating amount and the solid dissolution amount of the titanium chelate compound.
 なお、本発明において「リチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi原子換算のTi含有量」は下記の計算式により求められるものである。
  k=x×(1/t)
k:リチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi原子換算のTi含有量(mg)
x:リチウムニッケルマンガンコバルト複合酸化物1gに対するTi原子換算のTi含有量(mg)
t:リチウムニッケルマンガンコバルト複合酸化物粒子のBET比表面積(m/g)
In the present invention, the "Ti content in terms of Ti atoms per 1 m 2 of lithium nickel manganese cobalt composite oxide particles" is calculated by the following formula.
k = xx (1 / t)
k: Ti content (mg) in terms of Ti atoms per 1 m 2 of lithium nickel manganese cobalt composite oxide particles
x: Ti content (mg) in terms of Ti atom per 1 g of lithium nickel manganese cobalt composite oxide
t: BET specific surface area (m 2 / g) of lithium nickel manganese cobalt composite oxide particles
 本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法において、得られる改質リチウムニッケルマンガンコバルト複合酸化物粒子中のTiを含む酸化物の付着量及びTiの固溶量(含有量)は、リチウムニッケルマンガンコバルト複合酸化物粒子1m当たり、Ti原子換算で0.1~150mg、好ましくは0.5~120mgである。改質リチウムニッケルマンガンコバルト複合酸化物粒子中のTiを含む酸化物の付着量及びTiの固溶量(含有量)が、上記範囲にあることにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)及び/又は改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)をリチウム二次電池の正極活物質として用いたときに、サイクル特性が一層高くなる点で、好ましい。つまり、本発明の改質リチウムニッケルマンガンコバルト複合酸化物の製造方法では、得られる改質リチウムニッケルマンガンコバルト複合酸化物粒子1m当たり、Ti原子換算で0.1~150mg、好ましくは0.5~120mgとなるように、(A)工程において、接触させる一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子の量と、表面処理液の中のチタンキレート化合物の濃度及び表面処理液の量を調製することが好ましい。 In the method for producing the modified lithium nickel-manganese cobalt composite oxide particles of the present invention, the amount of the oxide adhering to Ti and the amount of solid solution of Ti (content) in the obtained modified lithium nickel-manganese cobalt composite oxide particles. Is 0.1 to 150 mg, preferably 0.5 to 120 mg, in terms of Ti atoms, per 1 m 2 of lithium nickel manganese cobalt composite oxide particles. The modified lithium nickel-manganese cobalt composite oxide particles (constant lithium nickel manganese cobalt composite oxide particles) when the adhesion amount of the oxide containing Ti and the solid dissolution amount (content) of Ti in the modified lithium nickel manganese cobalt composite oxide particles are within the above ranges. When A) and / or the modified lithium nickel-manganese cobalt composite oxide particles (B) are used as the positive electrode active material of the lithium secondary battery, the cycle characteristics are further improved, which is preferable. That is, in the method for producing the modified lithium nickel manganese cobalt composite oxide of the present invention, 0.1 to 150 mg, preferably 0.5, in terms of Ti atoms per 1 m 2 of the obtained modified lithium nickel manganese cobalt cobalt composite oxide particles. In the step (A), the amount of the lithium nickel nickel manganese cobalt composite oxide particles represented by the general formula (1) to be contacted, the concentration of the titanium chelate compound in the surface treatment liquid, and the surface treatment so as to be ~ 120 mg. It is preferable to adjust the amount of liquid.
 なお、本発明において「Tiを含む酸化物のリチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi原子換算の付着量」は、下記の計算式により求められるものである。
  k’=x×(1/t)
k’:Tiを含む酸化物のリチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi原子換算の付着量(mg)
x:リチウムニッケルマンガンコバルト複合酸化物1gに対するTi原子換算のTi含有量(mg)
t:リチウムニッケルマンガンコバルト複合酸化物粒子のBET比表面積(m/g)
In the present invention, "the amount of adhesion of an oxide containing Ti in terms of Ti atoms per 1 m 2 of lithium nickel manganese cobalt composite oxide particles" is calculated by the following formula.
k'= xx (1 / t)
k': Ti atom-equivalent adhesion amount per 1 m 2 of lithium nickel-manganesium-cobalt composite oxide particles of an oxide containing Ti (mg)
x: Ti content (mg) in terms of Ti atom per 1 g of lithium nickel manganese cobalt composite oxide
t: BET specific surface area (m 2 / g) of lithium nickel manganese cobalt composite oxide particles
 また、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を行い得られる改質リチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量は、1.2質量%以下、好ましくは1.0質量%以下であることが、残存アルカリに起因するガス発生により生じる電池の膨張や劣化を抑制できる点で好ましい。 Further, the residual alkali content in the modified lithium nickel manganese cobalt composite oxide particles obtained by the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention is 1.2% by mass or less, preferably 1. It is preferable that the content is 0% by mass or less because expansion and deterioration of the battery caused by gas generation due to residual alkali can be suppressed.
 本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を行い得られる改質リチウムニッケルマンガンコバルト複合酸化物粒子は、リチウム二次電池の正極活物質として好適に用いられ、また、該改質リチウムニッケルマンガンコバルト複合酸化物粒子を正極活物質として用いたリチウム二次電池は、改質されていないLi、Ni、Mn及びCoが同組成のリチウムニッケルマンガンコバルト複合酸化物粒子を用いた場合と比べて、サイクル特性が高くなる。 The modified lithium nickel manganese cobalt composite oxide particles obtained by the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention are suitably used as a positive electrode active material for a lithium secondary battery, and the modified lithium nickel manganese manganese cobalt composite oxide particles are suitably used. Quality A lithium secondary battery using lithium nickel manganese cobalt composite oxide particles as a positive electrode active material is a case where lithium nickel manganese cobalt composite oxide particles having the same composition of unmodified Li, Ni, Mn and Co are used. Compared with, the cycle characteristics are higher.
 また、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を行い得られる改質リチウムニッケルマンガンコバルト複合酸化物の大きい粒子と、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法を行い得られる改質リチウムニッケルマンガンコバルト複合酸化物の小さい粒子とを混合することにより、体積当たりの容量を向上させることができる。この場合、大きい粒子の平均粒子径が7.5~30.0μm、好ましくは8.0~25.0μmであり、小さい粒子の平均粒子径が0.5~7.5μm、好ましくは1.0~7.0μmであることが、体積当たりの容量を向上させる観点から好ましい。また、混合物を0.65tonf/cmで圧縮処理した時の加圧密度が、2.7g/cm以上、好ましくは2.8~3.3g/cmであることが、体積当たりの容量が一層高くなる点で好ましい。 Further, the large particles of the modified lithium nickel manganese cobalt composite oxide obtained by the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention and the modified lithium nickel manganese cobalt composite oxide particles of the present invention The capacity per volume can be improved by mixing with small particles of the modified lithium nickel manganese cobalt composite oxide obtained by the production method. In this case, the average particle size of the large particles is 7.5 to 30.0 μm, preferably 8.0 to 25.0 μm, and the average particle size of the small particles is 0.5 to 7.5 μm, preferably 1.0. It is preferably about 7.0 μm from the viewpoint of improving the capacity per volume. Further, the pressurization density when the mixture is compressed at 0.65 tonf / cm 2 is 2.7 g / cm 3 or more, preferably 2.8 to 3.3 g / cm 3 , the capacity per volume. Is preferable in that the value becomes higher.
 本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法において、改質リチウムニッケルマンガンコバルト複合酸化物の大きい粒子は、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)が好ましく、改質リチウムニッケルマンガンコバルト複合酸化物の小さい粒子は、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)であることが、サイクル特性が一層高くなる点で好ましい。 In the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the modified lithium nickel manganese cobalt composite oxide particles (A) are preferable as the large particles of the modified lithium nickel manganese cobalt composite oxide, and the modified lithium nickel manganese cobalt composite oxide particles (A) are preferred. The small particles of the lithium nickel-manganese-cobalt composite oxide are preferably modified lithium nickel-manganese-cobalt composite oxide particles (B) in that the cycle characteristics are further improved.
 本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法においては、(A)工程でチタンキレート化合物を付着させるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径が小さい方が、付着したチタンキレート化合物やその加熱分解生成物であるTiを含む酸化物がリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面に均一に嵩張ることなく高分散し易く、高分散して付着したチタンキレート化合物の加熱分解生成物であるTiを含む酸化物とリチウムニッケルマンガンコバルト複合酸化物粒子との反応性がリチウムニッケルマンガンコバルト複合酸化物粒子表面上で高くなる。そのため、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法においては、(A)工程でチタンキレート化合物を付着させるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径が小さい方が、付着したチタンキレート化合物やその加熱分解生成物であるTiを含む酸化物がリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面に均一に一層高分散し易く、高分散して付着したチタンキレート化合物の加熱分解生成物であるTiを含む酸化物は、リチウムニッケルマンガンコバルト複合酸化物粒子との反応性がリチウムニッケルマンガンコバルト複合酸化物粒子表面上で高くなるので、(B)工程での加熱処理温度が同じであっても、(A)工程でチタンキレート化合物を付着させるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径が小さい方が、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)が生成し易くなる。また、(B)工程での加熱処理温度が高い方が、付着したチタンキレート化合物の加熱分解生成物であるTiを含む酸化物とリチウムニッケルマンガンコバルト複合酸化物粒子との反応性がリチウムニッケルマンガンコバルト複合酸化物粒子表面上で高くなるので、(B)工程での加熱処理温度が高い方が、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)が生成し易くなる。
 言い換えると、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法においては、(A)工程でチタンキレート化合物を付着させるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径が大きい方が、付着したチタンキレート化合物やその加熱分解生成物であるTiを含む酸化物がリチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面に不均一に嵩張って分散し易く、嵩張って付着したチタンキレート化合物の加熱分解生成物であるTiを含む酸化物は、リチウムニッケルマンガンコバルト複合酸化物粒子との反応性がリチウムニッケルマンガンコバルト複合酸化物粒子表面上で低くなるので、(B)工程での加熱処理温度が同じであっても、(A)工程でチタンキレート化合物を付着させるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径が大きい方が、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)が生成し易くなる。また、(B)工程での加熱処理温度が低いほど、付着したチタンキレート化合物とリチウムニッケルマンガンコバルト複合酸化物粒子との反応性がリチウムニッケルマンガンコバルト複合酸化物粒子表面上で低くなるので、(B)工程での加熱処理温度が低いほど、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)が生成し易くなる。
 そのため、本発明の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法では、(A)工程で用いる一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子の平均粒子径と(B)工程での加熱処理温度の組み合わせを、適宜選択することにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)と改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)を造り分けることができる。
In the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the smaller the average particle size of the lithium nickel manganese cobalt composite oxide particles to which the titanium chelate compound is attached in the step (A), the smaller the adhered titanium. The oxide containing the chelate compound and its thermal decomposition product Ti is easily highly dispersed without being uniformly bulky on the particle surface of the lithium nickel manganese cobalt composite oxide particles, and the titanium chelate compound adhered to the chelate compound by thermal decomposition. The reactivity of the titanium-containing oxide as a product with the lithium nickel manganese cobalt composite oxide particles is increased on the surface of the lithium nickel manganese cobalt composite oxide particles. Therefore, in the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the smaller the average particle size of the lithium nickel manganese cobalt cobalt composite oxide particles to which the titanium chelate compound is adhered in the step (A), the more adhered. The titanium chelate compound and the oxide containing Ti, which is a thermal decomposition product thereof, are more likely to be uniformly and more highly dispersed on the particle surface of the lithium nickel-nickel manganese cobalt composite oxide particles, and the titanium chelate compound adhered to the titanium chelate compound is thermally decomposed. Since the oxide containing Ti, which is a product, has a high reactivity with the lithium nickel manganese cobalt composite oxide particles on the surface of the lithium nickel manganese cobalt composite oxide particles, the heat treatment temperature in the step (B) is the same. Even so, the smaller the average particle size of the lithium nickel-manganese cobalt composite oxide particles to which the titanium chelate compound is attached in the step (A), the easier it is for the modified lithium nickel-manganese cobalt composite oxide particles (B) to be produced. Become. Further, when the heat treatment temperature in the step (B) is higher, the reactivity between the oxide containing Ti, which is a thermal decomposition product of the adhered titanium chelate compound, and the lithium nickel manganese cobalt composite oxide particles is lithium nickel manganese. Since it is higher on the surface of the cobalt composite oxide particles, the higher the heat treatment temperature in the step (B), the easier it is for the modified lithium nickel-manganese cobalt composite oxide particles (B) to be produced.
In other words, in the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the larger the average particle size of the lithium nickel manganese cobalt cobalt composite oxide particles to which the titanium chelate compound is attached in the step (A), the larger the average particle size. The attached titanium chelate compound and the oxide containing Ti, which is a thermal decomposition product thereof, are non-uniformly bulky and easily dispersed on the particle surface of the lithium nickel manganese cobalt composite oxide particles, and the attached titanium chelate compound is bulky. The oxide containing Ti, which is a thermal decomposition product, has a low reactivity with the lithium nickel-nickel-manganese-cobalt composite oxide particles on the surface of the lithium-nickel-manganese-cobalt composite oxide particles. The modified lithium nickel manganese cobalt composite oxide particles (A) are produced when the average particle size of the lithium nickel manganese cobalt composite oxide particles to which the titanium chelate compound is attached in the step (A) is larger. It becomes easier to do. Further, as the heat treatment temperature in the step (B) is lower, the reactivity between the adhered titanium chelate compound and the lithium nickel manganese cobalt composite oxide particles becomes lower on the surface of the lithium nickel manganese cobalt composite oxide particles. B) The lower the heat treatment temperature in the step, the easier it is for the modified lithium nickel manganese cobalt composite oxide particles (A) to be produced.
Therefore, in the method for producing the modified lithium nickel manganese cobalt composite oxide particles of the present invention, the average particle size of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) used in the step (A) and (B). ) The modified lithium nickel manganese cobalt cobalt composite oxide particles (A) and the modified lithium nickel manganese cobalt cobalt composite oxide particles (B) can be produced separately by appropriately selecting the combination of the heat treatment temperatures in the step). ..
 例えば、本発明の好ましい実施形態において、改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)は、(A)工程において一般式(1)であるリチウムニッケルマンガンコバルト複合酸化物粒子として、平均粒子径が7.5~30.0μm、好ましくは8.0~25.0μmの粒子を用い、(B)工程の加熱処理温度を750℃以上1000℃以下、好ましくは750℃以上900℃以下として上記(A)工程及び(B)工程を行うことにより製造することができる。
 また、改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)は、(A)工程において一般式(1)であるリチウムニッケルマンガンコバルト複合酸化物粒子として、平均粒子径が0.5~7.5μm、好ましくは1.0~7.0μmの粒子を用い、(B)工程の加熱処理温度を750℃以上1000℃以下、好ましくは750℃以上900℃以下として上記(A)工程及び(B)工程を行うことにより製造することができる。
For example, in a preferred embodiment of the present invention, the modified lithium nickel-manganese cobalt-cobalt composite oxide particles (A) have an average particle diameter as the lithium nickel-manganese-cobalt composite oxide particles of the general formula (1) in the step (A). The above (B) has a heat treatment temperature of 750 ° C. or higher and 1000 ° C. or lower, preferably 750 ° C. or higher and 900 ° C. or lower, using particles having a thickness of 7.5 to 30.0 μm, preferably 8.0 to 25.0 μm. It can be manufactured by performing the steps A) and (B).
Further, the modified lithium nickel manganese cobalt composite oxide particles (B) have an average particle diameter of 0.5 to 7.5 μm as the lithium nickel manganese cobalt composite oxide particles of the general formula (1) in the step (A). Steps (A) and (B) above, preferably using particles having a size of 1.0 to 7.0 μm and setting the heat treatment temperature in step (B) to 750 ° C. or higher and 1000 ° C. or lower, preferably 750 ° C. or higher and 900 ° C. or lower. It can be manufactured by performing.
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
<リチウムニッケルマンガンコバルト複合酸化物粒子(LNMC)試料の調製>
<LNMC試料1>
 炭酸リチウム(平均粒子径5.7μm)及びニッケルマンガンコバルト複合水酸化物(Ni:Mn:Co=6:2:2(モル比)、平均粒子径9.8μm)を秤量し、家庭用ミキサーで十分混合処理し、Li/(Ni+Mn+Co)のモル比が1.01の原料混合物を得た。なお、ニッケルマンガンコバルト複合水酸化物は市販のものを用いた。
 次いで、得られた原料混合物を、アルミナ製の鉢で700℃で2時間、つづいて850℃で10時間、大気雰囲気中で焼成した。焼成終了後、該焼成品を粉砕、分級した。得られた焼成品をXRDで測定した結果、単相のリチウムニッケルマンガンコバルト複合酸化物であることを確認した。また、得られたものは、平均粒子径が10.2μmで、BET比表面積が0.21m/gで、二次凝集した球状のリチウムニッケルマンガンコバルト複合酸化物粒子(LiNi0.6Mn0.2Co0.2)であった。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto.
<Preparation of Lithium Nickel Manganese Cobalt Composite Oxide Particle (LNMC) Sample>
<LNMC sample 1>
Weigh lithium carbonate (average particle size 5.7 μm) and nickel-manganese-cobalt composite hydroxide (Ni: Mn: Co = 6: 2: 2 (molar ratio), average particle size 9.8 μm) with a household mixer. The mixture was sufficiently mixed to obtain a raw material mixture having a molar ratio of Li / (Ni + Mn + Co) of 1.01. A commercially available nickel-manganese-cobalt composite hydroxide was used.
The resulting raw material mixture was then calcined in an alumina pot at 700 ° C. for 2 hours, followed by 850 ° C. for 10 hours in an air atmosphere. After the firing was completed, the fired product was crushed and classified. As a result of measuring the obtained fired product by XRD, it was confirmed that it was a single-phase lithium nickel-manganese-cobalt composite oxide. The obtained particles had an average particle diameter of 10.2 μm, a BET specific surface area of 0.21 m 2 / g, and secondarily aggregated spherical lithium nickel-manganese-cobalt composite oxide particles (LiNi 0.6 Mn 0 ). It was .2 Co 0.2 O 2 ).
<LNMC試料2>
 炭酸リチウム(平均粒子径5.7μm)及びニッケルマンガンコバルト複合水酸化物(Ni:Mn:Co=6:2:2(モル比)、平均粒子径3.7μm)を秤量し、家庭用ミキサーで十分混合処理し、Li/(Ni+Mn+Co)のモル比が1.01の原料混合物を得た。なお、ニッケルマンガンコバルト複合水酸化物は市販のものを用いた。
 次いで、得られた原料混合物を、アルミナ製の鉢で700℃で2時間、つづいて850℃で10時間、大気雰囲気中で焼成した。焼成終了後、該焼成品を粉砕、分級した。得られた焼成品をXRDで測定した結果、単相のリチウムニッケルマンガンコバルト複合酸化物であることを確認した。また、得られたものは、平均粒子径が5.4μmで、BET比表面積が0.69m/gで、二次凝集した球状のリチウムニッケルマンガンコバルト複合酸化物粒子(LiNi0.6Mn0.2Co0.2)であった。
<LNMC sample 2>
Weigh lithium carbonate (average particle size 5.7 μm) and nickel-manganese-cobalt composite hydroxide (Ni: Mn: Co = 6: 2: 2 (molar ratio), average particle size 3.7 μm) with a household mixer. The mixture was sufficiently mixed to obtain a raw material mixture having a molar ratio of Li / (Ni + Mn + Co) of 1.01. A commercially available nickel-manganese-cobalt composite hydroxide was used.
The resulting raw material mixture was then calcined in an alumina pot at 700 ° C. for 2 hours, followed by 850 ° C. for 10 hours in an air atmosphere. After the firing was completed, the fired product was crushed and classified. As a result of measuring the obtained fired product by XRD, it was confirmed that it was a single-phase lithium nickel-manganese-cobalt composite oxide. The obtained particles had an average particle diameter of 5.4 μm, a BET specific surface area of 0.69 m 2 / g, and secondarily aggregated spherical lithium nickel-manganese-cobalt composite oxide particles (LiNi 0.6 Mn 0 ). It was .2 Co 0.2 O 2 ).
 上記で得られたリチウムニッケルマンガンコバルト複合酸化物試料(LNMC試料)の諸物性を表1に示す。
 なお、LNMC試料の平均粒子径、残存アルカリ量及び加圧密度は下記のようにして測定した。
<平均粒子径>
 平均粒子径はレーザ回折・散乱法により求めた。
<残存アルカリ量の測定>
  LNMC試料の残存アルカリ量については、試料5g、超純水100gをビーカーに計り採りマグネチックスターラーを用いて25℃で5分間分散させた。次いで、この分散液をろ過し、そのろ液70mlを自動滴定装置(型式COMTITE-2500)にて0.1N-HClで滴定し、試料中に存在している残存アルカリ量(リチウム量を測定して炭酸リチウムに換算した値)を算出した。
<加圧密度>
 試料2.25gを秤取り直径1.5cmの両軸成形器内に投入し、プレス機を用いて0.65tonf/cmの圧力を1分間加えた状態で、圧縮物の高さを測定し、その高さから計算される圧縮物の見掛け体積と計り採った試料の質量とから、試料の加圧密度を算出した。
Table 1 shows various physical properties of the lithium nickel manganese cobalt composite oxide sample (LNMC sample) obtained above.
The average particle size, residual alkali amount and pressure density of the LNMC sample were measured as follows.
<Average particle size>
The average particle size was determined by the laser diffraction / scattering method.
<Measurement of residual alkali amount>
Regarding the residual alkalinity of the LNMC sample, 5 g of the sample and 100 g of ultrapure water were weighed in a beaker and dispersed at 25 ° C. for 5 minutes using a magnetic stirrer. Next, this dispersion is filtered, and 70 ml of the filtrate is titrated with 0.1N-HCl by an automatic titrator (model COMITE-2500), and the amount of residual alkali (lithium amount) present in the sample is measured. (Value converted to lithium carbonate) was calculated.
<Pressurization density>
2.25 g of the sample was placed in a double-screw molder with a weighing diameter of 1.5 cm, and the height of the compressed product was measured with a pressure of 0.65 tonf / cm 2 applied for 1 minute using a press machine. , The pressure density of the sample was calculated from the apparent volume of the compressed material calculated from the height and the mass of the measured sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<表面処理液の調製>
<乳酸チタンキレート含有表面処理液の調製>
 マツモトファインケミカル社製チタンラクテートアンモニウム塩(Ti(OH)〔(OCH(CH)COO)〕(NH )水溶液(製品名 TC-335、pH 4.4)にアンモニア水を加えてpHを8.5になるように調整して、下記の表2に示す濃度の乳酸チタンキレート含有表面処理液を作成した。
<Preparation of surface treatment liquid>
<Preparation of surface treatment liquid containing titanium lactate chelate>
Titanium lactate ammonium salt manufactured by Matsumoto Fine Chemical Co., Ltd. (Ti (OH) 2 [(OCH (CH 3 ) COO- )] 2 (NH 4 + ) 2 ) Aqueous solution (product name TC-335, pH 4.4) with ammonia water In addition, the pH was adjusted to 8.5 to prepare a surface treatment solution containing a titanium lactate chelate having the concentrations shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1~6)
 LNMC試料及び表面処理液を用い、表3に示す割合となるように秤量し、固形分濃度が25質量%のスラリーとなるように調製した。
 次いで、出口の温度を120℃に設定したスプレードライヤーにスラリーの供給速度が65g/分で供給し、乳酸チタンキレートがLNMC試料の粒子表面に付着した被覆粒子を得た。
 次いで、被覆粒子を800℃で5時間、加熱処理を行いLNMC試料の粒子表面にTiの酸化物が付着した改質LNMC試料(A)及びLNMC試料にTiを固溶させて含有させた改質LNMC試料(B)を得た。
 
 なお、Tiの酸化物が付着した改質LNMC試料及びLNMC試料にTiを固溶させて含有させた改質LNMC試料であるかは、20,000倍の拡大倍率でサンプル粒子の粒子表面をSEM-EDX(日立ハイテクノロジーズ社製電界放出形走査電子顕微鏡SU-8220およびBRUKER社製エネルギー分散型X線分析装置XFlash5060FlatQUAD)でTiの元素マッピング分析を行って確認した。LNMC試料としてLNMC試料1を用いたものはSEM-EDXにより、サンプル粒子の粒子表面をTiの元素マッピング分析した結果、Tiが偏在して不均一に分布しているものであることから改質リチウムニッケルマンガンコバルト複合酸化物粒子(A)であることが確認できた。一方、LNMC試料としてLNMC試料2を用いたものはSEM-EDXにより、サンプル粒子の粒子表面をTiの元素マッピング分析した結果、Co、Ni及びMnと同様にTiが均一に分布しているものであることから改質リチウムニッケルマンガンコバルト複合酸化物粒子(B)であることが確認できた。
 なお、SEM-EDXの測定条件は下記のとおりである。
加速電圧:15kV、拡大倍率:20,000倍、ワーキングディスタンス:9.5~11.5mm、測定時間:6分間
 また、改質LNMC試料についても、LNMC試料と同様な方法で、残存アルカリ量を測定した。
 なお、表3中の表面処理液の添加量は、該表面処理液を添加したときに、LNMC試料1m当たりのTi原子換算のTi含有量になる計算値で、下記計算式により求めた。
 k=x×(1/t)
k:LNMC試料1m当たりのTi原子換算のTi含有量(mg)
x:LNMC試料1gに対するTi原子換算のTi含有量(mg)
t:LNMC試料のBET比表面積(m/g)
(Examples 1 to 6)
Using the LNMC sample and the surface treatment liquid, the slurry was weighed so as to have the ratio shown in Table 3, and the slurry was prepared so that the solid content concentration was 25% by mass.
Next, the slurry was supplied to a spray dryer whose outlet temperature was set to 120 ° C. at a slurry supply rate of 65 g / min to obtain coated particles in which titanium lactate chelate adhered to the particle surface of the LNMC sample.
Next, the coated particles were heat-treated at 800 ° C. for 5 hours, and the modified LNMC sample (A) in which the oxide of Ti was attached to the particle surface of the LNMC sample and the modified LNMC sample in which Ti was dissolved and contained. An LNMC sample (B) was obtained.

Whether the modified LNMC sample to which the Ti oxide is attached or the modified LNMC sample in which Ti is solid-dissolved and contained in the LNMC sample is determined by SEM on the particle surface of the sample particles at a magnification of 20,000 times. -It was confirmed by performing elemental mapping analysis of Ti with EDX (electron emission scanning electron microscope SU-8220 manufactured by Hitachi High-Technologies Co., Ltd. and energy dispersive X-ray analyzer XFlash5060 FlatQUAD manufactured by BRUKER Co., Ltd.). When LNMC sample 1 was used as the LNMC sample, the surface of the sample particles was analyzed by elemental mapping of Ti using SEM-EDX. As a result, Ti was unevenly distributed and unevenly distributed. Therefore, modified lithium was used. It was confirmed that the nickel-manganese-cobalt composite oxide particles (A) were used. On the other hand, in the case of using LNMC sample 2 as the LNMC sample, as a result of elemental mapping analysis of Ti on the particle surface of the sample particles by SEM-EDX, Ti is uniformly distributed like Co, Ni and Mn. It was confirmed that the modified lithium nickel-manganese-cobalt composite oxide particles (B) were present.
The measurement conditions for SEM-EDX are as follows.
Acceleration voltage: 15 kV, magnification: 20,000 times, working distance: 9.5 to 11.5 mm, measurement time: 6 minutes Also, for the modified LNMC sample, the residual alkali amount is determined by the same method as for the LNMC sample. It was measured.
The amount of the surface treatment liquid added in Table 3 is a calculated value that gives the Ti content in terms of Ti atoms per 1 m 2 of the LNMC sample when the surface treatment liquid is added, and was calculated by the following formula.
k = xx (1 / t)
k: Ti content (mg) in terms of Ti atoms per 1 m 2 of LNMC sample
x: Ti content in terms of Ti atom per 1 g of LNMC sample (mg)
t: BET specific surface area of LNMC sample (m 2 / g)
(参考例1)
 市販のコバルト酸リチウム(LiCoO:平均粒子径9.5μm、BET比表面積0.37m/g)を用い、実施例1~3と同様にして、コバルト酸リチウム(LCO)試料の粒子表面にTiの酸化物が付着した改質LCO試料を得た。
 また、改質LCOについても、LNMC試料と同様な方法で、残存アルカリ量を測定した。
 なお、表3中の表面処理液の添加量は、該表面処理液を添加したときに、LCO試料1m当たりのTi原子換算のTi含有量になる計算値で、下記計算式により求めた。
 k’’=x’’×(1/t’’)
k’’:LCO試料1m当たりのTi原子換算のTi含有量(mg)
x’’:LCO試料1gに対するTi原子換算のTi含有量(mg)
t’’:LCO試料のBET比表面積(m/g)
(Reference example 1)
Using commercially available lithium cobalt oxide (LiCoO 2 : average particle diameter 9.5 μm, BET specific surface area 0.37 m 2 / g) on the particle surface of the lithium cobalt oxide (LCO) sample in the same manner as in Examples 1 to 3. A modified LCO sample to which an oxide of Ti was attached was obtained.
For the modified LCO, the amount of residual alkali was measured by the same method as for the LNMC sample.
The amount of the surface treatment liquid added in Table 3 is a calculated value that gives the Ti content in terms of Ti atoms per 1 m 2 of the LCO sample when the surface treatment liquid is added, and was calculated by the following formula.
k''= x'' × (1 / t'')
k'': Ti content (mg) in terms of Ti atoms per 1 m 2 of LCO sample
x'': Ti content in terms of Ti atom per 1 g of LCO sample (mg)
t'': BET specific surface area of LCO sample (m 2 / g)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以下のようにして、電池性能試験を行った。
<リチウム二次電池の作製1>
  実施例で得られた改質LNMC試料95質量%、黒鉛粉末2.5質量%、ポリフッ化ビニリデン2.5質量%を混合して正極剤とし、これをN-メチル-2-ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
The battery performance test was conducted as follows.
<Making a lithium secondary battery 1>
95% by mass of the modified LNMC sample, 2.5% by mass of graphite powder, and 2.5% by mass of polyvinylidene fluoride obtained in the examples were mixed to prepare a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone. To prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried and pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
  この正極板を用いて、セパレータ、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してコイン型リチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混合液1リットルにLiPF1モルを溶解したものを使用した。
  次いで、得られたリチウム二次電池の性能評価を行った。その結果を、表4に示す。なお、参考例1で調製した改質LCO試料、改質を行わないLNMC試料1(比較例1)及びLNMC試料2(比較例2)についても同様な方法でリチウム二次電池を作成し、同様な評価を行った。その結果を、表4に併記した。
Using this positive electrode plate, a coin-type lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Of these, a metallic lithium foil was used for the negative electrode, and 1 liter of a 1: 1 mixed solution of ethylene carbonate and methyl ethyl carbonate was used as the electrolytic solution in which 61 mol of LiPF was dissolved.
Next, the performance of the obtained lithium secondary battery was evaluated. The results are shown in Table 4. For the modified LCO sample prepared in Reference Example 1, the unmodified LNMC sample 1 (Comparative Example 1), and the LNMC sample 2 (Comparative Example 2), lithium secondary batteries were prepared in the same manner. Evaluation was made. The results are also shown in Table 4.
<電池の性能評価1>
  作製したコイン型リチウム二次電池を室温で下記試験条件で作動させ、下記の電池性能を評価した。
(1)サイクル特性評価の試験条件
  先ず、0.5Cにて4.3Vまで2時間かけて充電を行い、更に4.3Vで3時間電圧を保持させる定電流・定電圧充電(CCCV充電)を行った。その後、0.2Cにて2.7Vまで定電流放電(CC放電)させる充放電を行い、これらの操作を1サイクルとして20サイクル繰り返した。
(2)初回充電容量、初回放電容量(活物質重量当たり)
  サイクル特性評価における1サイクル目の充電容量及び放電容量を初回充電容量、初回放電容量とした。
(3)20サイクル目放電容量(活物質重量当たり)
  サイクル特性評価における20サイクル目の放電容量を20サイクル目放電容量とした。
(4)容量維持率
  サイクル特性評価における1サイクル目と20サイクル目のそれぞれの放電容量(活物質重量当たり)から、下記式により容量維持率を算出した。
   容量維持率(%)=(20サイクル目の放電容量/1サイクル目の放電容量)×100
(5)エネルギー密度維持率
 サイクル特性評価における1サイクル目と20サイクル目のそれぞれの放電時のWh容量(活物質重量当たり)から、下記式によりエネルギー密度維持率を算出した。
   エネルギー密度維持率(%)=(20サイクル目の放電Wh容量/1サイクル目の放電Wh容量)×100
<Battery performance evaluation 1>
The produced coin-type lithium secondary battery was operated at room temperature under the following test conditions, and the following battery performance was evaluated.
(1) Test conditions for cycle characteristic evaluation First, constant current / constant voltage charging (CCCV charging) is performed at 0.5C for charging to 4.3V for 2 hours, and then at 4.3V for 3 hours. gone. Then, charge / discharge was performed by constant current discharge (CC discharge) up to 2.7 V at 0.2 C, and these operations were repeated for 20 cycles as one cycle.
(2) Initial charge capacity, initial discharge capacity (per active material weight)
The charge capacity and discharge capacity of the first cycle in the cycle characteristic evaluation were defined as the initial charge capacity and the initial discharge capacity.
(3) 20th cycle discharge capacity (per active material weight)
The discharge capacity at the 20th cycle in the cycle characteristic evaluation was defined as the discharge capacity at the 20th cycle.
(4) Capacity retention rate The capacity retention rate was calculated from the discharge capacities (per active material weight) of the first cycle and the 20th cycle in the cycle characteristic evaluation by the following formula.
Capacity retention rate (%) = (discharge capacity in the 20th cycle / discharge capacity in the 1st cycle) x 100
(5) Energy density maintenance rate The energy density maintenance rate was calculated by the following formula from the Wh capacity (per active material weight) at the time of each discharge in the first cycle and the 20th cycle in the cycle characteristic evaluation.
Energy density maintenance rate (%) = (Discharge Wh capacity in the 20th cycle / Discharge Wh capacity in the 1st cycle) × 100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<リチウム二次電池の作製2>
  実施例1~6で得られた改質LNMC試料及び改質前のLNMC試料を用いて、家庭用ミキサーで十分に混合して表5に示す組成の混合物を調製し、正極活物質試料とした。また、上記LNMC試料と同様にして正極活物質試料の加圧密度を測定し、その結果を表5に併記した。
<Making a lithium secondary battery 2>
Using the modified LNMC sample obtained in Examples 1 to 6 and the LNMC sample before modification, the mixture was sufficiently mixed with a household mixer to prepare a mixture having the composition shown in Table 5 and used as a positive electrode active material sample. .. In addition, the pressurization density of the positive electrode active material sample was measured in the same manner as the above LNMC sample, and the results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 正極活物質試料95質量%、黒鉛粉末2.5質量%、ポリフッ化ビニリデン2.5質量%を混合して正極剤とし、これをN-メチル-2-ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。 A positive electrode active material sample of 95% by mass, graphite powder of 2.5% by mass, and polyvinylidene fluoride 2.5% by mass were mixed to prepare a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. .. The kneaded paste was applied to an aluminum foil, dried and pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
  この正極板を用いて、セパレータ、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してコイン型リチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混合液1リットルにLiPF1モルを溶解したものを使用した。
  次いで、得られたリチウム二次電池の性能評価を行った。その結果を、表6に併記した。
Using this positive electrode plate, a coin-type lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Of these, a metallic lithium foil was used for the negative electrode, and 1 liter of a 1: 1 mixed solution of ethylene carbonate and methyl ethyl carbonate was used as the electrolytic solution in which 61 mol of LiPF was dissolved.
Next, the performance of the obtained lithium secondary battery was evaluated. The results are also shown in Table 6.
<電池の性能評価2>
 作製したコイン型リチウム二次電池を室温で下記試験条件で作動させ、サイクル特性評価、 初回充電容量、初回放電容量(活物質重量当たり)、初回充電容量、初回放電容量(活物質重量当たり)、容量維持率、エネルギー密度維持率を前記電池の性能評価1と同様な方法で評価した。また、更に体積当たりの放電容量も評価し、その結果を表6に示す。なお、実施例2、実施例5の改質LNMC試料を正極活物質試料とし、同様な方法で評価を行った。その結果を、表6に併記した。
(6)体積当たりの放電容量
 体積当たりの放電容量は、初期放電容量と、電極密度により下記計算式から求めた。
   体積当たりの放電容量(mAh/cm)=1サイクル目の放電容量(mAh/g)×電極密度(g/cm)×0.95(正極材中の活物質量の割合)
 なお、電極密度は、測定対象試料から作製した電極の質量と厚みを測定し、ここから、集電体の厚みと質量を差し引いて、正極材の密度として算出した。また、正極材は、正極活物質試料95質量%、黒鉛粉末2.5質量%、ポリフッ化ビニリデン2.5質量%の混合物であり、電極作製時のプレス圧は線圧で0.38ton/cmとした。
<Battery performance evaluation 2>
The manufactured coin-type lithium secondary battery was operated at room temperature under the following test conditions, and cycle characteristics were evaluated, initial charge capacity, initial discharge capacity (per active material weight), initial charge capacity, initial discharge capacity (per active material weight), The capacity retention rate and the energy density retention rate were evaluated by the same method as in the performance evaluation 1 of the battery. Further, the discharge capacity per volume was also evaluated, and the results are shown in Table 6. The modified LNMC samples of Examples 2 and 5 were used as positive electrode active material samples, and evaluation was performed by the same method. The results are also shown in Table 6.
(6) Discharge capacity per volume The discharge capacity per volume was calculated from the following formula based on the initial discharge capacity and the electrode density.
Discharge capacity per volume (mAh / cm 3 ) = Discharge capacity (mAh / g) in the first cycle x Electrode density (g / cm 3 ) x 0.95 (Ratio of active material amount in positive electrode material)
The electrode density was calculated as the density of the positive electrode material by measuring the mass and thickness of the electrode prepared from the sample to be measured and subtracting the thickness and mass of the current collector from this. The positive electrode material is a mixture of 95% by mass of the positive electrode active material sample, 2.5% by mass of graphite powder, and 2.5% by mass of polyvinylidene fluoride, and the press pressure at the time of electrode production is 0.38 ton / cm in linear pressure. And said.
Figure JPOXMLDOC01-appb-T000006
 
 
 
 
 
 
 
 
 
Figure JPOXMLDOC01-appb-T000006
 
 
 
 
 
 
 
 
 

Claims (10)

  1.  下記一般式(1):
      LiNiMnCo1+x    (1)
    (式中、Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na及びKから選ばれる1種又は2種以上の金属元素を示す。xは0.98≦x≦1.20、yは0.30≦y<1.00、zは0<z≦0.50、tは0<t≦0.50、pは0≦p≦0.05を示し、y+z+t+p=1.00である。)
    で表されるリチウムニッケルマンガンコバルト複合酸化物粒子を、チタンキレート化合物を含む表面処理液に接触させて、該リチウムニッケルマンガンコバルト複合酸化物粒子の粒子表面にチタンキレート化合物が付着した被覆粒子を得、次いで、該被覆粒子を加熱処理することにより、改質リチウムニッケルマンガンコバルト複合酸化物粒子を得る改質工程を有し、
     前記チタンキレート化合物が、下記一般式(2):
       Ti(R    (2) 
    (式中、Rは、アルコキシ基、水酸基、ハロゲン原子、アミノ基又はホスフィン類を示し、複数存在する場合、同一であってもよく、異なっていてもよい。Lはヒドロキシカルボン酸に由来する基を表し、複数存在する場合、同一であってもよく、異なっていてもよい。mは0以上3以下の数を示し、nは1以上3以下の数を示し、m+nは3~6である。)
    で表されるチタンキレート又はそのアンモニウム塩であること、
    を特徴とする改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。
    The following general formula (1):
    Li x Ny Mn z Cot M p O 1 + x (1)
    (In the formula, M is selected from Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na and K. 1 or more kinds of metal elements are shown. X is 0.98 ≦ x ≦ 1.20, y is 0.30 ≦ y <1.00, z is 0 <z ≦ 0.50, and t is 0. <t≤0.50, p indicates 0≤p≤0.05, and y + z + t + p = 1.00.)
    The lithium nickel manganese cobalt composite oxide particles represented by (1) are brought into contact with a surface treatment liquid containing a titanium chelate compound to obtain coated particles having the titanium chelate compound adhered to the particle surface of the lithium nickel manganese cobalt composite oxide particles. Then, the coated particles are heat-treated to obtain modified lithium nickel-manganese cobalt composite oxide particles.
    The titanium chelate compound has the following general formula (2):
    Ti (R 1 ) m L n (2)
    (In the formula, R 1 represents an alkoxy group, a hydroxyl group, a halogen atom, an amino group or phosphines, and when a plurality of them are present, they may be the same or different. L is derived from hydroxycarboxylic acid. When there are a plurality of groups, they may be the same or different. M indicates a number of 0 or more and 3 or less, n indicates a number of 1 or more and 3 or less, and m + n is 3 to 6. be.)
    Being a titanium chelate represented by or an ammonium salt thereof,
    A method for producing modified lithium nickel-manganese-cobalt composite oxide particles.
  2.  前記加熱処理の温度が、400~1000℃であることを特徴とする請求項1記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The method for producing modified lithium nickel-manganese-cobalt composite oxide particles according to claim 1, wherein the heat treatment temperature is 400 to 1000 ° C.
  3.  前記一般式(2)中のLが、1価のカルボン酸であることを特徴とする請求項1又は2記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The method for producing modified lithium nickel-manganese-cobalt composite oxide particles according to claim 1 or 2, wherein L in the general formula (2) is a monovalent carboxylic acid.
  4.  前記一般式(2)中のLが、乳酸であることを特徴とする請求項1又は2記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The method for producing modified lithium nickel manganese cobalt composite oxide particles according to claim 1 or 2, wherein L in the general formula (2) is lactic acid.
  5.  前記表面処理液のpHが7以上であることを特徴とする請求項1~4いずれか1項記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The method for producing modified lithium nickel manganese cobalt composite oxide particles according to any one of claims 1 to 4, wherein the surface treatment liquid has a pH of 7 or more.
  6.  前記被覆粒子における前記チタンキレート化合物の付着量が、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子1m当たり、Ti原子換算で0.1~150mgであることを特徴とする請求項1~5いずれか1項記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The amount of the titanium chelate compound adhered to the coated particles is 0.1 to 150 mg in terms of Ti atoms per 1 m 2 of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1). The method for producing a modified lithium nickel manganese cobalt composite oxide particle according to any one of claims 1 to 5.
  7.  前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量が、1.2質量%以下であることを特徴とする請求項1~6いずれか1項記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The amendment according to any one of claims 1 to 6, wherein the amount of residual alkali in the lithium nickel-manganese-cobalt composite oxide particles represented by the general formula (1) is 1.2% by mass or less. Quality Lithium Nickel Manganese Cobalt A method for producing composite oxide particles.
  8.  前記改質リチウムニッケルマンガンコバルト複合酸化物粒子中の残存アルカリ量が、1.2質量%以下であることを特徴とする請求項1~7いずれか1項記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。 The modified lithium nickel manganese cobalt composite oxidation according to any one of claims 1 to 7, wherein the residual alkali content in the modified lithium nickel manganese cobalt composite oxide particles is 1.2% by mass or less. A method for producing particles.
  9.  前記改質工程において、
     前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子1m当たりのTi含有量が、Ti原子換算で0.1~150mgとなる添加量で、前記表面改質液を、前記一般式(1)で表されるリチウムニッケルマンガンコバルト複合酸化物粒子に添加して混合し、全量乾燥させること、
    を特徴とする請求項1~8いずれか1項記載の改質リチウムニッケルマンガンコバルト複合酸化物粒子の製造方法。
    In the reforming step
    The surface modification liquid was added to the surface modifier with an addition amount such that the Ti content per 1 m 2 of the lithium nickel manganese cobalt composite oxide particles represented by the general formula (1) was 0.1 to 150 mg in terms of Ti atoms. Add to lithium nickel manganese cobalt composite oxide particles represented by the general formula (1), mix, and dry the whole amount.
    The method for producing modified lithium nickel-manganese-cobalt composite oxide particles according to any one of claims 1 to 8.
  10.  請求項1~9のいずれか1項記載の製造方法により得られる平均粒子径が7.5~30.0μmの大きい粒子と、請求項1~9のいずれか1項記載の製造方法により得られる平均粒子径が0.5~7.5μmの小さい粒子とを混合する工程を含むことを特徴とするリチウム二次電池用正極活物質の製造方法。
     
     
     
    Large particles having an average particle diameter of 7.5 to 30.0 μm obtained by the production method according to any one of claims 1 to 9 and the production method according to any one of claims 1 to 9 can be obtained. A method for producing a positive electrode active material for a lithium secondary battery, which comprises a step of mixing small particles having an average particle diameter of 0.5 to 7.5 μm.


PCT/JP2021/040449 2020-11-05 2021-11-02 Method of producing modified lithium nickel manganese cobalt composite oxide particles WO2022097653A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237014914A KR20230097043A (en) 2020-11-05 2021-11-02 Method for producing modified lithium nickel manganese cobalt composite oxide particles
CN202180074901.3A CN116490997A (en) 2020-11-05 2021-11-02 Method for producing modified lithium nickel manganese cobalt composite oxide particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-185031 2020-11-05
JP2020185031 2020-11-05
JP2021177454A JP7252298B2 (en) 2020-11-05 2021-10-29 Method for producing modified lithium-nickel-manganese-cobalt composite oxide particles
JP2021-177454 2021-10-29

Publications (1)

Publication Number Publication Date
WO2022097653A1 true WO2022097653A1 (en) 2022-05-12

Family

ID=81457013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040449 WO2022097653A1 (en) 2020-11-05 2021-11-02 Method of producing modified lithium nickel manganese cobalt composite oxide particles

Country Status (2)

Country Link
KR (1) KR20230097043A (en)
WO (1) WO2022097653A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106993A1 (en) * 2004-04-30 2005-11-10 Seimi Chemical Co., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2008013208A1 (en) * 2006-07-26 2008-01-31 Agc Seimi Chemical Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
WO2009057722A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
WO2011071068A1 (en) * 2009-12-10 2011-06-16 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2014075177A (en) * 2011-01-27 2014-04-24 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP2018535520A (en) * 2015-12-10 2018-11-29 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694567B1 (en) 2003-04-17 2007-03-13 세이미 케미칼 가부시끼가이샤 Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4301875B2 (en) 2003-06-30 2009-07-22 三菱化学株式会社 Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP5490457B2 (en) 2009-07-13 2014-05-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6484944B2 (en) 2014-07-22 2019-03-20 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6428109B2 (en) 2014-09-30 2018-11-28 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, dispersion used for production thereof, and production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106993A1 (en) * 2004-04-30 2005-11-10 Seimi Chemical Co., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2008013208A1 (en) * 2006-07-26 2008-01-31 Agc Seimi Chemical Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
WO2009057722A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
WO2011071068A1 (en) * 2009-12-10 2011-06-16 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2014075177A (en) * 2011-01-27 2014-04-24 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP2018535520A (en) * 2015-12-10 2018-11-29 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including the same

Also Published As

Publication number Publication date
KR20230097043A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP4475941B2 (en) Method for producing lithium manganese nickel composite oxide
JP5835540B2 (en) A method for producing ferric phosphate hydrate particles, a method for producing olivine-type lithium iron phosphate particles, and a method for producing a nonaqueous electrolyte secondary battery.
TWI383533B (en) Electrode-active anion-deficient non-stoichiometric lithium iron phosphate, method for preparing the same, and electrochemical device using the same
TWI576312B (en) Manganese-bearing metal phosphates and process for the production thereof
WO2014098238A1 (en) Nickel-cobalt-manganese-based composite oxide, method for producing same, and use of same
JP5758721B2 (en) Method for producing spinel-type lithium manganese nickel-based composite oxide, positive electrode mixture for lithium secondary battery, and lithium secondary battery
JP2009266813A (en) Olivine type composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and secondary battery
TW201341303A (en) Metal phosphates and process for the production thereof
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
JP7397409B2 (en) Li-Ni composite oxide particles and non-aqueous electrolyte secondary battery
JP5634828B2 (en) Manufacturing method and use of spinel type lithium manganese composite oxide particles
JP7252298B2 (en) Method for producing modified lithium-nickel-manganese-cobalt composite oxide particles
WO2015068735A1 (en) Nickel-manganese composite oxide, method for producing same, and use thereof
JP2021048120A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2022097653A1 (en) Method of producing modified lithium nickel manganese cobalt composite oxide particles
CN116490997A (en) Method for producing modified lithium nickel manganese cobalt composite oxide particles
CN114784263A (en) Nickel-based metal oxide, nickel-based active material, method of preparing the same, and lithium secondary battery
CN111162273B (en) Positive electrode active material and lithium ion electrochemical system comprising same
WO2021049309A1 (en) Method for producing modified lithium-cobalt-based composite oxide particles
WO2019235573A1 (en) Lithium-manganese-based composite oxide and method for producing same
JP2023162136A (en) Method for producing positive electrode active material for lithium secondary battery
JP5547223B2 (en) Method for producing lithium nickel manganese cobalt composite oxide
CN114375514B (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2023013490A1 (en) Method for producing positive electrode active material for lithium secondary batteries, and method for producing positive electrode for lithium secondary batteries
JP2022075600A (en) Cathode active material for lithium secondary battery, method of producing the same and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237014914

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180074901.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889206

Country of ref document: EP

Kind code of ref document: A1