WO2022096798A1 - Dispositif d'affichage a empilement technologique hybride - Google Patents

Dispositif d'affichage a empilement technologique hybride Download PDF

Info

Publication number
WO2022096798A1
WO2022096798A1 PCT/FR2021/051860 FR2021051860W WO2022096798A1 WO 2022096798 A1 WO2022096798 A1 WO 2022096798A1 FR 2021051860 W FR2021051860 W FR 2021051860W WO 2022096798 A1 WO2022096798 A1 WO 2022096798A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
light
pixels
display device
pixel
Prior art date
Application number
PCT/FR2021/051860
Other languages
English (en)
Inventor
Tony Maindron
David Vaufrey
Alexandre Lagrange
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2022096798A1 publication Critical patent/WO2022096798A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/70OLEDs integrated with inorganic light-emitting elements, e.g. with inorganic electroluminescent elements

Definitions

  • the field of the invention is that of image displays, in particular microdisplays, which co-integrate two different technologies, namely on the one hand a technology of inorganic light-emitting diodes of the LED ("Light Emitting Diode") type and, on the other hand, a technology of organic diodes (electroluminescent diodes of the OLED type for “Organic Light-Emitting Diode” or photodiodes of the OPD type for “Organic PhotoDetector” for example).
  • LED Light Emitting Diode
  • organic diodes electrostatic diodes of the OLED type for “Organic Light-Emitting Diode” or photodiodes of the OPD type for “Organic PhotoDetector” for example.
  • Inorganic LEDs composed of InGaN/GaN emit efficiently in the blue part of the visible spectrum.
  • the production of LEDs emitting in the green and red part of the spectrum is more complicated. If it is for example theoretically possible to produce red LEDs based on InGaN with a high concentration of indium (In), in practice, obtaining such InGaN alloys rich in indium (In) is difficult due in particular to the low dissociation temperature of InN.
  • OLED diodes capable of emitting blue light at high luminance levels and which have long lifetimes.
  • patent EP 3 529 834 B1 proposes coupling a blue GaN pixel with OLED pixels of another color with a higher wavelength.
  • the GaN and OLED pixels are powered and driven by the same addressing circuit.
  • the aim of the invention is to improve the performance, particularly in terms of consumption, of a hybrid display co-integrating a circuit of inorganic pixels and a circuit of organic pixels.
  • an image display device which comprises a first stage in which a plurality of first pixels are formed, each comprising an inorganic light-emitting diode and a circuit for addressing the first pixels.
  • This device further comprises, superimposed on the first stage, a second stage in which are formed a plurality of second pixels each comprising an organic diode and a circuit for addressing the second pixels.
  • the circuit for addressing the second pixels is transparent.
  • each of the elementary regions comprising a first pixel formed in a light-emitting region of the first stage and a second pixel formed in the second stage so as to be superimposed on said light-emitting region of the first stage;
  • the second pixel formed in the second stage so as to be superimposed on said emissive region of the first stage comprises an organic light-emitting diode
  • the organic light-emitting diode is able to emit simultaneously in two distinct wavelength ranges
  • the first pixel formed in the light-emitting region of the first stage is able to emit simultaneously in two distinct wavelength ranges
  • each of the elementary regions comprising at least a first pixel formed in a light-emitting region of the first stage and a second pixel formed in the second stage so as not to be superimposed on any light-emitting region first floor light;
  • the second pixel addressing circuit has an opening at the level of the light-emitting region of the first stage
  • the second pixel formed in the second stage so as not to be superimposed on any light-emitting region of the first stage comprises an organic light-emitting diode
  • the organic light-emitting diode is capable of emitting in a single range of wavelengths
  • the first pixel formed in a light-emitting region of the first stage is able to emit simultaneously in two distinct wavelength ranges
  • the organic light-emitting diode is able to emit simultaneously in two distinct wavelength ranges
  • the organic light-emitting diode is equipped with a color filter
  • the second pixels comprise organic photodiodes.
  • FIG. 1 is a diagram of a display device of the prior art
  • FIG. 2 is a diagram of a display device according to the invention given for comparison with the diagram of Figure 1;
  • FIG. 3 is a schematic sectional view of a display device according to the invention.
  • FIG. 4 shows a possible embodiment of a display device according to the invention, with superimposed LED and OLED pixels;
  • FIG. 5 shows another possible embodiment of a display device according to the invention, mixing superimposed and non-superimposed LED and OLED pixels;
  • FIG. 6 shows another possible embodiment of a display device according to the invention, with non-overlapping LED and OLED pixels
  • the invention relates to an image display device in which inorganic light-emitting diodes of the LED type and organic diodes are co-integrated, the display device thus comprising a plurality of first inorganic pixels each comprising an inorganic LED diode and a plurality of second organic pixels each comprising an organic diode.
  • the LED diodes are suitable for emitting light in one or more wavelength ranges, for example blue light B (that is to say with a wavelength between 450 and 490 nm).
  • the organic diodes are OLED light-emitting diodes adapted to emit light in one or more ranges of wavelengths distinct from the emission range(s) of the LED diodes.
  • OLED diodes are for example adapted to emit green light V (that is to say with a wavelength between 490 and 560 nm) or red light R (that is to say with a wavelength between 600 and 700 nm) or yellow light J (that is to say with a wavelength between 560 and 590 nm) or simultaneously green light and red light V+ R.
  • the OLED diodes can also be of the QD-LED type (for "Quantum Dots Light Emitting Diodes").
  • the emitting active layer can comprise colloidal nanocrystals for example.
  • the display device forms a color screen, typically a screen consisting of elementary regions of RGB type light emission formed of at least one blue pixel B, one green pixel G and one red pixel R.
  • the organic diodes are OPD type photodiodes.
  • OPD photodiodes can be tailored to absorb light in the visible spectrum. They can also be adapted to absorb light in a spectrum remote from the emission spectra or spectra of the LED diodes, for example in the near infrared. Such a distant spectrum proves to be preferable when a photodiode is arranged so as to be superimposed on an LED diode.
  • OPD photodiodes can for example, but not necessarily, be made from polymer layers comprising colloidal nanocrystals (or "Quantum Dots" in English), when it is sought to detect wavelengths up to 2 pm.
  • the display device constitutes a screen formed by the inorganic LED diodes in which is integrated a light sensor formed by the organic photodiodes OPD.
  • a display device finds application, for example, for carrying out gaze tracking measurements or in the field of visual communication by light (VLC for “Visible Light Communication”).
  • LED diodes In a third embodiment, it is possible to use both LED diodes, OLED diodes and OPD diodes by coming for example to form an elementary light emission region with four pixels consisting of an LED diode emitting in the blue, an OLED diode emitting in the green, an OLED diode emitting in the red and an OPD diode. It is also possible to concentrate the photodiodes of OPD type on a peripheral part of the device or else to arrange them only on part of the surface of the device.
  • organic pixels of the OLED type will be taken, it being understood that this can be immediately generalized to any type of organic pixels and in particular to organic pixels of the OPD type.
  • Figure 1 a diagram of a possible embodiment of the device proposed by patent EP 3 529 834 B1.
  • a blue LED pixel B a green OLED pixel V and an OLED pixel red R.
  • This stage further comprises an addressing and power supply circuit C common to the blue, green and red pixels.
  • the invention differs from this architecture in particular in that the LED pixels and the OLED pixels are not addressed by a common circuit.
  • the display device according to the invention comprises (as represented schematically in FIG. 2 which illustrates an elementary light-emitting region thereof) a first stage El in which the LED pixels are formed (in this case a pixel blue B) and a circuit for addressing the LED pixels CLED and, superimposed on the first stage El, a second stage E2 in which the OLED pixels are formed (in this case a red pixel R and a green pixel G) and a circuit addressing OLED COLED pixels.
  • the superposition of the two stages E1 and E2 makes it possible to create two independent addressing circuits CLED and COLED.
  • Each of these circuits advantageously has performance ranges (current, voltage) dedicated to each of the technologies.
  • the addressing circuit CLED supplies a current adapted to the LED pixels
  • the addressing circuit COLED driving and supplying the OLED pixels is adapted to deliver lower current ranges, suitable for supplying the OLED pixels. This results in a significant drop in consumption.
  • this hybrid stack of different technologies is feasible because the first stage El is sufficiently stable in temperature and with respect to the micro-fabrication chemistries implemented in the construction of the second stage E2.
  • FIG. 3 a schematic sectional view of a possible embodiment of the display device according to the invention.
  • This display device comprises a first stage El formed on a semiconductor substrate 1, for example a silicon substrate.
  • the first stage E1 comprises an addressing circuit CLED for LED pixels and, attached to the addressing circuit CLED, a first light-emitting layer 2 comprising a plurality of LED pixels.
  • Each LED pixel comprises an LED diode which takes the form of a vertical stack comprising, for example, in order from the addressing circuit CLED, a layer of p-type doped III-V material, an emissive layer and a layer of n-type doped III-V material.
  • the emissive layer is for example constituted by a stack of one or more emissive layers each forming a quantum well, for example based on GaN, InN, InGaN, AlGaN, AIN, AlInGaN , GaP, AIGaP, AlInGaP or a combination of one or more of these materials.
  • a person skilled in the art is perfectly capable of selecting the stack of doped layers and of emissive layer adapted to the emission wavelength considered.
  • the display device also comprises a second stage E2 which is added or developed on the first stage E1.
  • the second stage E2 is thus superimposed on the first stage E1.
  • the second stage E2 comprises an OLED COLED pixel addressing circuit and , attached to the addressing circuit COLED, a second light-emitting layer 3 comprising a plurality of OLED pixels each comprising one or more organic semiconductor layers.
  • Each OLED pixel comprises an OLED diode which in this case can be adapted to simultaneously emit green light and red light G+R or even emit green light G, red light R or yellow light J.
  • the organic semiconductor layer or layers are deposited through openings in the deposition stencils, in the vacuum evaporation system, which correspond most of the time to the size of the micro-display.
  • the organic semiconductor layer or layers cannot therefore be formed individually for each OLED pixel and are, on the contrary, collective for all of the OLED pixels.
  • the second light-emitting layer 3 comprises active areas (those marked with addressing, ie opposite positive and negative electrodes) and non-active zones (those which are not opposite the positive and negative electrodes).
  • each OLED pixel comprises an OLED diode suitable for simultaneously emitting green light and red light, G+R.
  • the COLED addressing circuit of the OLED pixels can be made in an amorphous or polycrystalline silicon substrate as is usually done in commercial OLED displays. In this case however, it is difficult to produce a level of transparent OLED addressing as required by the invention, the materials used, amorphous Si or polycrystalline Si, and the electrode materials (metals) are opaque in the visible range.
  • a transparent COLED addressing circuit which makes it possible to have more degrees of freedom in the arrangement of the LED pixel - OLED pixel couple.
  • the LED-OLED pixels not being constructed in the same plane, these pixels can be superposed and no longer simply juxtaposed as is usually done in standard display technologies. If the emissions of the different colors are superimposed, it is then preferable for the OLED pixel (the OLED diode and its addressing circuit) to be as transparent as possible in the visible range, in particular in the blue range, in order to to let out the light emitted by the OLED pixel located below.
  • the transparency of the OLED pixel is mainly limited by the construction of the addressing circuit.
  • the organic semiconductor layer or layers of the OLED diode are formed of transparent materials and it is also possible to opt for a transparent material in the visible range to manufacture the electrodes (for example a transparent conductive oxide such as ZnO , AZO, SnO2 and ITO) or for a thin layer of semi-transparent metal (such as Ag, Al or Au).
  • a transparent material in the visible range to manufacture the electrodes (for example a transparent conductive oxide such as ZnO , AZO, SnO2 and ITO) or for a thin layer of semi-transparent metal (such as Ag, Al or Au).
  • the production of a transparent OLED addressing circuit can be obtained by integrating transparent semiconductor materials such as IGZO in the transistors of the addressing circuit. Transparency values of the second stage E2 of the order of 50% can thus be achieved.
  • the display device also comprises an encapsulation layer 4 superimposed on the second stage E2, for example a layer of aluminum oxide Al2O3.
  • the display device further comprises a layer of color filters 5 on the encapsulation layer 4.
  • the layer of color filters 5 may be made necessary as will be detailed later so that each of the elementary regions of the light emission of the device is subdivided into sub-regions of different colors (typically three or four colors including blue, green and red) which cooperate so that the corresponding elementary light emission region emits a luminous point of color wanted.
  • the display device may also comprise a planarization layer 6 interposed between the first stage El and the second stage E2.
  • This planarization layer 6 makes it possible to ensure a sufficiently low roughness at the starting surface on which the second stage E2 is formed and thus to guarantee the quality of this second stage.
  • the planarization layer 6 can be a layer of SiO 2 deposited for example by PECVD (for “Plasma-Enhanced Chemical Vapor Deposition” designating plasma-assisted chemical vapor deposition) and subjected to mechanical-chemical polishing CMP (for “Chemical Mechanical Polishing”).
  • the planarization layer 6 can be formed by spin coating of a polymer stable at the construction temperatures of the second stage E2, typically a polymer having a glass transition temperature greater than 300° C., for example an optical grade polyimide ( similar index SiO2) used in flexible screen technologies.
  • a polymer stable at the construction temperatures of the second stage E2 typically a polymer having a glass transition temperature greater than 300° C., for example an optical grade polyimide ( similar index SiO2) used in flexible screen technologies.
  • the monolithic construction of the second floor on top of the first floor has been described above.
  • the invention however also extends to the independent manufacture of the two stages then to their assembly by transfer of the second stage E2 onto the first stage El.
  • the second stage can be manufactured on a flexible substrate before lamination on the first floor.
  • the stacking of the two stages El and E2 proposed by the invention offers the possibility of designing different diagrams of displays according to the arrangement of the LED and OLED pixels, in particular depending on whether they emit in a superimposed or non-superimposed manner.
  • the CLED and COLED addressing circuits being moreover developed differently, the invention also offers the possibility of designing LED and OLED pixels having different geometries, with for example a blue LED pixel surrounded by OLED pixels of larger surface area to increase luminance in the red and green wavelength ranges.
  • each of the elementary light-emitting regions of the display device comprises a first pixel (LED pixel) formed in a light-emitting region of the first stage and a second pixel formed in the second stage so as to be superposed on said first-stage light-emitting region.
  • the second pixel is arranged facing the first pixel in the stack constituting the display device, this arrangement contributing to a cumulative emission of light from the first and the second pixel in an emission direction of the light.
  • each of the elementary light-emitting regions of the display device comprises at least one first pixel (LED pixel) formed in a light-emitting region of the first stage and at least one second pixel formed in the second stage so as not to be superimposed on any light-emitting region of the first stage.
  • LED pixel first pixel
  • Each of the elementary light-emitting regions of the display device can thus comprise at least two first pixels (LED pixels) each formed in a light-emitting region of the first stage and two second pixels formed in the second stage, one of the two second pixels being superimposed on the light-emitting region of one of the at least two first pixels and the other of the two second pixels not being superimposed on any of the light-emitting regions of the at least two first pixels.
  • LED pixels first pixels
  • the second pixel formed in the second stage may include an organic light emitting diode.
  • the organic light-emitting diode can be capable of emitting simultaneously in two distinct wavelength ranges or on the contrary in a single wavelength range.
  • the organic light-emitting diode can be equipped with a color filter.
  • the first pixel formed in the light-emitting region of the first stage can be able to emit simultaneously in two distinct wavelength ranges or on the contrary in a single wavelength range.
  • the addressing circuit for the second pixels is transparent, the addressing circuit also possibly having an opening at the level of at least one light-emitting region of the first stage. According to a variant not covered by the invention, the addressing circuit may not be transparent and may have an opening at the level of at least one light-emitting region of the first stage.
  • FIG. 4 illustrates an elementary light-emitting region consisting of four sub-regions arranged in 2*2 matrix form where each sub-region comprises an OLED POLED pixel superimposed on an LED PLED pixel.
  • each sub-region comprises an OLED POLED pixel superimposed on an LED PLED pixel.
  • the diodes of the OLED pixels are here able to emit simultaneously in two distinct wavelength ranges, for example in red and green (we then speak of R+G diodes) when the diodes of the LED pixels emit in the blue.
  • the emission of each sub-region is therefore a white emission denoted W (B+G+R) in FIG. 4.
  • the primary colors are then obtained by means of colored filters deposited on the sub-regions and suitable each to transmit part of the spectrum of the light emitted by the superposition of the LED and OLED pixels, namely at least one filter capable of transmitting only green light (called green filter hereafter), a filter capable of transmitting only light red (called red filter hereafter) and a filter capable of transmitting only blue light (called blue filter hereafter).
  • green filter a filter capable of transmitting only green light
  • red filter a filter capable of transmitting only light red
  • blue filter a filter capable of transmitting only blue light
  • a sub-region can be devoid of colored filter and thus emit white light in such a way as to increase the luminance and efficiency of the display device.
  • provision can be made for two sub-regions to be provided with the same type of colored filter to emit the same color, for example to both emit red.
  • OLED diodes emit in a single wavelength range, for example yellow.
  • the white obtained by superimposing the blue emission from the LED pixels and the yellow emission from the OLED pixels is a broadband white which has a level of luminance higher than that observed with R+G OLED pixels.
  • FIG. 5 illustrates a variant in which the number of LED pixels in the elementary light-emitting region is reduced in order to reduce the electrical consumption of the display device.
  • the OLED pixel diodes here emit simultaneously in red and green and the LED pixel diodes emit in blue.
  • the elementary light-emitting region comprises a sub-region emitting in the blue B via the PLEDI pixel, a sub-region emitting light white W (B+G+R) via the superposition of the PoLED2 pixel with the PLED2 pixel, a sub-region emitting in the red R (R+G+CFR) via the superposition of the POLEDI pixel with the PLEDI pixel and the presence of the red filter CFR and a sub-region emitting in the green V (R+G+CFv) via the superposition of the POLEDS pixel with the PLEDS pixel and the presence of the green filter CF V .
  • Two embodiments of this variant can be distinguished depending on whether the display device forms a macro-display or a micro-display.
  • the organic semiconductor layers For a macro-display, it is possible to deposit the organic semiconductor layers individually without them covering the underlying LED pixels.
  • the OLED pixels thus formed can also emit exclusively green or red. It thus proves possible not to have recourse to colored filters and thus to greatly increase the luminance of the macro-display.
  • the deposition of the organic semiconductor layers is carried out over the entire surface but the different active zones are only identified at the place addressing the OLED diodes by means of an OLED diode addressing circuit having in the example an opening at the level of the LEDI pixel.
  • the OLED diodes are also of the R+G simultaneous emission type, which requires the use of colored filters.
  • the elementary light-emitting surface comprises four LED diodes emitting in the blue B in the first stage and R+G OLED diodes which are arranged in the second stage in a manner complementary to the LED diodes (i.e. not superimposed ).
  • Red and green filters make it possible to define the green G (R+G+CFv) and red R (R+G+CFR) emissive sub-regions.
  • the surface of the OLED diodes is modulated by the size of the LED diodes.
  • FIG. 6 it is possible to provide LED diodes of very small dimensions, for example of the order of 1 ⁇ m on a side in an elementary surface of 5 or 10 ⁇ m on a side, which offers a large surface of emission for the OLED diodes and increases their respective luminances accordingly.
  • the example of monocolor LED pixels typically blue
  • the invention however extends to a device which comprises two-color LED pixels in the first stage (for example red and blue or green and blue) and single-color OLED pixels in the second stage (respectively green or red).
  • the person skilled in the art is able to choose the materials making up the superimposed pixels, in particular according to their forbidden energy bands, so that the pixels of the second stage absorb little or no light emitted by the pixels of the first floor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

L'invention porte sur un dispositif d'affichage d'images comprenant une pluralité de premiers pixels comportant chacun une diode électroluminescente inorganique. Ce dispositif comprend un premier étage (E1) dans lequel sont formés les premiers pixels et un circuit d'adressage des premiers pixels (CLED) et, superposé au premier étage (E1), un deuxième étage (E2) dans lequel est formé un circuit électronique organique. Le circuit électronique organique peut comprendre une pluralité de deuxièmes pixels comportant chacun une diode organique, par exemple une diode OLED, et un circuit d'adressage des deuxièmes pixels (COLED).

Description

DISPOSITIF D'AFFICHAGE A EMPILEMENT TECHNOLOGIQUE HYBRIDE
DESCRIPTION
DOMAINE TECHNIQUE
Le domaine de l'invention est celui des afficheurs d'images, notamment des microafficheurs, qui co-intègrent deux technologies différentes, à savoir d'une part une technologie de diodes électroluminescentes inorganiques de type LED (« Light Emitting Diode ») et, d'autre part, une technologique de diodes organiques (diodes électroluminescentes de type OLED pour « Organic Light-Emitting Diode » ou photodiodes de type OPD pour « Organic PhotoDetector » par exemple).
TECHNIQUE ANTÉRIEURE
Les LEDs inorganiques composées de InGaN/GaN émettent efficacement dans la partie bleue du spectre visible. La réalisation de LEDs émettant dans la partie verte et rouge du spectre s'avère plus compliquée. S'il est par exemple théoriquement possible de réaliser des LEDs rouge à base d'InGaN à forte concentration en indium (In), en pratique, l'obtention de tels alliages InGaN riche en indium (In) est difficile en raison notamment de la basse température de dissociation de l'InN.
Ces problèmes de réalisation de LEDs verte et rouge efficaces se présentent déjà lorsque le mesa de cristal semi-conducteur constituant la LED possède une taille quasi millimétrique (typiquement les grosses LEDs utilisées en l'éclairage). Ces problèmes sont exacerbés lorsque l'on cherche à produire des pixels en semi-conducteurs lll-V, en particulier en (In)GaN, de dimensions très réduites telles que celles requises pour la réalisation de macro-afficheurs (taille du pixel de l'ordre quelques dizaines de pm) et surtout de micro-afficheurs (taille du pixel typiquement inférieure à 10 pm). En effet, lors de la structuration du mesa de cristal semi-conducteur, par exemple lors des étapes de photolithographie/gravure, des défauts en périphérie du mesa se forment irrémédiablement. Dans les OLEDs, ces phénomènes liés au dimensionnement ne se présentent pas car les semi-conducteurs organiques n'ont pas une structure de bandes délocalisée sur l'ensemble du mesa du semi-conducteur mais seulement des niveaux localisés au sein d'une molécule organique semi-conductrice.
Il s'avère toutefois difficile d'obtenir des diodes OLEDs aptes à émettre de la lumière bleue à des niveaux de luminance élevée et qui présentent des durées de vie importantes.
Un constat comparatif des technologies GaN et OLED conduit ainsi à imaginer que l'association des pixels bleus profonds du GaN et des pixels OLED rouge et vert pourrait pallier aux inconvénients respectifs de chacune de ces technologies et permettre ainsi de reproduire efficacement plus de 75% de l'espace colorimétrique HDR (« High Dynamic Range »).
Partant de ce constat, le brevet EP 3 529 834 B1 propose de coupler un pixel bleu GaN avec des pixels OLED d'une autre couleur de longueur d'onde supérieure. Dans ce brevet, les pixels GaN et OLED sont alimentés et pilotés par un même circuit d'adressage.
EXPOSÉ DE L'INVENTION
L'invention a pour objectif d'améliorer les performances, notamment en matière de consommation, d'un afficheur hybride co-intégrant un circuit de pixels inorganiques et un circuit de pixels organiques. Elle propose à cet effet un dispositif d'affichage d'images qui comprend un premier étage dans lequel sont formés une pluralité de premiers pixels comportant chacun une diode électroluminescente inorganique et un circuit d'adressage des premiers pixels. Ce dispositif comporte en outre, superposé au premier étage, un deuxième étage dans lequel sont formés une pluralité de deuxièmes pixels comportant chacun une diode organique et un circuit d'adressage des deuxièmes pixels.
Dans le cadre de la présente invention, le circuit d'adressage des deuxièmes pixels (COLED) est transparent.
Certains aspects préférés mais non limitatifs de ce dispositif sont les suivants :
- il comprend une pluralité de régions élémentaires, chacune des régions élémentaires comprenant un premier pixel formé dans une région émettrice de lumière du premier étage et un deuxième pixel formé dans le deuxième étage de manière à être superposé à ladite région émettrice de lumière du premier étage ;
- le deuxième pixel formé dans le deuxième étage de manière à être superposé à ladite région émissive du premier étage comprend une diode électroluminescente organique ;
- la diode électroluminescente organique est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes ;
- le premier pixel formé dans la région émettrice de lumière du premier étage est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes ;
- il comprend une pluralité de régions élémentaires, chacune des régions élémentaires comprenant au moins un premier pixel formé dans une région émettrice de lumière du premier étage et un deuxième pixel formé dans le deuxième étage de manière à n'être superposé à aucune région émettrice de lumière du premier étage ;
- le circuit d'adressage des deuxièmes pixels présente une ouverture au niveau de la région émettrice de lumière du premier étage ;
- le deuxième pixel formé dans le deuxième étage de manière à n'être superposé à aucune région émettrice de lumière du premier étage comprend une diode électroluminescente organique ;
- la diode électroluminescente organique est apte à émettre dans une seule gamme de longueurs d'ondes ;
- le premier pixel formé dans une région émettrice de lumière du premier étage est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes ;
- la diode électroluminescente organique est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes ;
- la diode électroluminescente organique est dotée d'un filtre couleur ;
- il comprend une couche de planarisation intercalée entre le premier étage et le deuxième étage ;
- les deuxièmes pixels comprennent des photodiodes organiques. BRÈVE DESCRIPTION DES DESSINS
D'autres aspects, buts, avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la figure 1 est un schéma d'un dispositif d'affichage de l'art antérieur ;
- la figure 2 est un schéma d'un dispositif d'affichage selon l'invention donné à titre comparatif avec le schéma de la figure 1 ;
- la figure 3 est une vue en coupe schématique d'un dispositif d'affichage selon l'invention ;
- la figure 4 représente une réalisation possible d'un dispositif d'affichage selon l'invention, à pixels LED et OLED superposés ;
- la figure 5 représente une autre réalisation possible d'un dispositif d'affichage selon l'invention, mixant pixels LED et OLED superposés et non-superposés ;
- la figure 6 représente une autre réalisation possible d'un dispositif d'affichage selon l'invention, à pixels LED et OLED non-superposés ;
- la figure 7 illustre une réduction possible de la taille des pixels LED du dispositif de la figure 6.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L'invention concerne un dispositif d'affichage d'images dans lequel sont co-intégrés des diodes électroluminescentes inorganiques de type LED et des diodes organiques, le dispositif d'affichage comprenant ainsi une pluralité de premiers pixels inorganiques comportant chacun une diode LED inorganique et une pluralité de deuxièmes pixels organiques comportant chacun une diode organique.
Les diodes LED sont adaptées à émettre de la lumière dans une ou plusieurs gammes de longueurs d'ondes, par exemple de la lumière bleue B (c'est-à-dire de longueur d'onde comprise entre 450 et 490 nm).
Dans un premier mode de réalisation, les diodes organiques sont des diodes électroluminescentes OLED adaptées à émettre de la lumière dans une ou plusieurs gammes de longueurs d'ondes distinctes de la ou les gammes d'émission des diodes LED. Les diodes OLED sont par exemple adaptées à émettre de la lumière verte V (c'est-à-dire de longueur d'onde comprise entre 490 et 560 nm) ou de la lumière rouge R (c'est-à-dire de longueur d'onde comprise entre 600 et 700 nm) ou de la lumière jaune J (c'est-à-dire de longueur d'onde comprise entre 560 et 590 nm) ou encore simultanément de la lumière verte et de la lumière rouge V+R. Les diodes OLEDs peuvent également être de type Q.D- LEDs (pour « Quantum Dots Light Emitting Diodes » en langue anglaise). Dans ce cas, la couche active émettrice peut comprendre des nanocristaux colloïdaux par exemple.
Dans ce premier mode de réalisation, le dispositif d'affichage forme un écran couleur, typiquement un écran constitué de régions élémentaires d'émission de lumière de type RVB formées d'au moins un pixel bleu B, un pixel vert V et un pixel rouge R.
Dans un deuxième mode de réalisation, les diodes organiques sont des photodiodes de type OPD. Les photodiodes OPD peuvent être adaptées à absorber la lumière dans le spectre visible. Elles peuvent également être adaptées à absorber la lumière dans un spectre éloigné du ou des spectres d'émission des diodes LED, par exemple dans le proche infra-rouge. Un tel spectre éloigné s'avère préférable lorsqu'une photodiode est agencée de manière à être superposée à une diode LED.
Les photodiodes OPD peuvent par exemple, mais pas nécessairement, être réalisées à partir de couches polymères comprenant des nanocristaux (ou « Quantum Dots » en langue anglaise) colloïdaux, lorsque l'on cherche à détecter des longueurs d'onde allant jusqu'à 2 pm.
Dans ce deuxième mode de réalisation, le dispositif d'affichage constitue un écran formé par les diodes LED inorganiques auquel est intégré un capteur de lumière formé par les photodiodes organiques OPD. Un tel dispositif d'affichage trouve par exemple application pour la réalisation de mesures de suivi de regard ou dans le domaine de la communication visuelle par la lumière (VLC pour « Visible Light Communication »).
Dans un troisième mode de réalisation, il est possible d'utiliser à la fois des diodes LED, des diodes OLED et des diodes OPD en venant par exemple former une région élémentaire d'émission de lumière à quatre pixels constitués d'une diode LED émettant dans le bleu, d'une diode OLED émettant dans le vert, d'une diode OLED émettant dans le rouge et d'une diode OPD. Il est également possible de venir concentrer les photodiodes de type OPD sur une partie périphérique du dispositif ou encore de ne les disposer que sur une partie de la surface du dispositif.
Dans la description qui suit, on prendra l'exemple de pixels organiques de type OLED, étant entendu que celui-ci est immédiatement généralisable à tout type de pixels organiques et notamment aux pixels organiques de type OPD.
On a représenté sur la figure 1 un schéma d'une réalisation possible du dispositif proposé par le brevet EP 3 529 834 Bl. On y retrouve dans un même étage du dispositif un pixel LED bleu B, un pixel OLED vert V et un pixel OLED rouge R. Cet étage comprend en outre un circuit d'adressage et d'alimentation C commun aux pixels bleu, vert et rouge.
L'invention se distingue de cette architecture notamment en ce que les pixels LED et les pixels OLED ne sont pas adressés par un circuit commun. Le dispositif d'affichage selon l'invention comprend (comme représenté de manière schématique sur la figure 2 qui en illustre une région élémentaire d'émission de lumière) un premier étage El dans lequel sont formés les pixels LED (en l'occurrence un pixel bleu B) et un circuit d'adressage des pixels LED CLED et, superposé au premier étage El, un deuxième étage E2 dans lequel sont formés les pixels OLED (en l'occurrence un pixel rouge R et un pixel vert V) et un circuit d'adressage des pixels OLED COLED.
La superposition des deux étages El et E2 permet de créer deux circuits d'adressage indépendants CLED et COLED. Chacun de ces circuits présente avantageusement des gammes de performances (courant, tension) dédiées à chacune des technologies. Ainsi, le circuit d'adressage CLED fournit un courant adapté aux pixels LED, tandis que le circuit d'adressage COLED pilotant et alimentant les pixels OLED est adapté pour délivrer des gammes de courant inférieures, adaptées à l'alimentation des pixels OLED. Il en découle une baisse de consommation significative. On relèvera que cet empilement hybride de technologies différentes est réalisable car le premier étage El est suffisamment stable en température et vis-à-vis des chimies de micro-fabrication mises en œuvre dans la construction du deuxième étage E2.
On a représenté sur la figure 3 une vue en coupe schématique d'un mode de réalisation possible du dispositif d'affichage selon l'invention. Ce dispositif d'affichage comprend un premier étage El formé sur un substrat semiconducteur 1, par exemple un substrat de silicium. Le premier étage El comprend un circuit d'adressage CLED de pixels LED et, rapportée sur le circuit d'adressage CLED, une première couche d'émission de lumière 2 comprenant une pluralité de pixels LED. Chaque pixel LED comprend une diode LED qui prend la forme d'un empilement vertical comprenant, par exemple, dans l'ordre depuis le circuit d'adressage CLED, une couche de matériau lll-V dopé de type P, une couche émissive et une couche de matériau lll-V dopé de type N. La couche émissive est par exemple constituée par un empilement d'une ou plusieurs couches émissives formant chacune un puit quantique, par exemple à base de GaN, InN, InGaN, AIGaN, AIN, AlInGaN, GaP, AIGaP, AlInGaP ou d'une combinaison d'un ou plusieurs de ces matériaux. Bien entendu, l'homme du métier est parfaitement à même de sélectionner l'empilement de couches dopées et de couche émissive adapté à la longueur d'onde d'émission considérée.
Le dispositif d'affichage comprend par ailleurs un deuxième étage E2 qui est rapporté ou élaboré sur le premier étage El. Le deuxième étage E2 est ainsi superposé au premier étage El. Le deuxième étage E2 comprend un circuit d'adressage de pixels OLED COLED et, rapportée sur le circuit d'adressage COLED, une deuxième couche d'émission de lumière 3 comprenant une pluralité de pixels OLED comprenant chacun une ou plusieurs couches semiconductrices organiques.
Lorsque le dispositif d'affichage prend la forme d'un macro-afficheur, il s'avère possible de réaliser le dépôt de la ou des couches semiconductrices organiques de manière individuelle pour chaque pixel OLED. Chaque pixel OLED comprend une diode OLED qui dans ce cas de figure peut être adaptée pour émettre simultanément de la lumière verte et de la lumière rouge V+R ou encore émettre de la lumière verte V, de la lumière rouge R ou de la lumière jaune J.
En revanche, lorsque le dispositif d'affichage prend la forme d'un micro-afficheur, la ou les couches semiconductrices organiques sont déposées par le biais d'ouvertures dans les pochoirs de dépôt, dans le système d'évaporation sous vide, qui correspondent la plupart du temps à la taille du micro-afficheur. La ou les couches semiconductrices organiques ne peuvent donc être formées de manière individuelle pour chaque pixel OLED et sont au contraire collectives à l'ensemble des pixels OLED. Ceci implique que la deuxième couche d'émission de lumière 3 comprend des zones actives (celles repérées par l'adressage, i.e. en vis-à-vis d'électrodes positive et négative) et des zones non actives (celles qui ne sont pas en vis-à-vis des électrodes positive et négative). Dans ce cas de figure, chaque pixel OLED comprend une diode OLED adaptée pour émettre simultanément de la lumière verte et de la lumière rouge, V+R.
Dans un mode de réalisation non préférentielle de l'invention, le circuit d'adressage COLED des pixels OLED peut être réalisé dans un substrat en silicium amorphe ou polycristallin comme cela se fait habituellement dans les afficheurs OLED commerciaux. Dans ce cas cependant, il est difficile de produire un niveau d'adressage OLED transparent comme requis par l'invention, les matériaux utilisés, Si amorphe ou Si polycristallin, et les matériaux d'électrodes (métaux) sont opaques dans le domaine visible.
Selon l'invention, on prévoit un circuit d'adressage COLED transparent qui permet de disposer de plus de degrés de liberté dans l'agencement du couple pixel LED - pixel OLED
En effet, les pixels LED-OLED n'étant pas construits dans le même plan, ces pixels peuvent être superposés et non plus simplement juxtaposés comme cela se fait habituellement dans les technologies d'afficheurs standards. Si les émissions des différentes couleurs viennent à être superposées, il est alors préférable que le pixel OLED (la diode OLED et son circuit d'adressage) soit le plus possible transparent dans le domaine du visible, en particulier dans la gamme du bleu, afin de laisser sortir la lumière émise par le pixel OLED situé en-dessous. La transparence du pixel OLED est surtout limitée par la construction du circuit d'adressage. En effet, la ou les couches semiconductrices organiques de la diode OLED sont formées en matériaux transparents et il est par ailleurs possible d'opter pour un matériau transparent dans le domaine visible pour en fabriquer les électrodes (par exemple un oxyde conducteur transparent tel que ZnO, AZO, SnO2 et ITO) ou pour une fine couche de métal semi-transparent (tel que Ag, Al ou Au).
Selon une variante préférentielle de l'invention, la réalisation d'un circuit d'adressage OLED transparent peut être obtenu en venant intégrer des matériaux semi-conducteurs transparents comme l'IGZO dans les transistors du circuit d'adressage. Des valeurs de transparence du deuxième étage E2 de l'ordre de 50% peuvent ainsi être atteintes.
On notera que, selon une possibilité non couverte par l'invention, on peut également opter pour un circuit d'adressage de pixels OLED COLED qui ne soit pas transparent mais qui présentent des ouvertures au niveau des pixels LED, ces ouvertures étant surmontées par des zones non actives de la deuxième couche d'émission de lumière 3.
Revenant à la figure 3, le dispositif d'affichage comprend également une couche d'encapsulation 4 superposée au deuxième étage E2, par exemple une couche d'oxyde d'aluminium AI2O3. Le cas échéant, le dispositif d'affichage comprend en outre une couche de filtres colorés 5 sur la couche d'encapsulation 4. La couche de filtres colorés 5 peut être rendue nécessaire comme cela sera détaillé par la suite pour que chacune des régions élémentaires d'émission de lumière du dispositif soit subdivisée en sous-régions de différentes couleurs (typiquement trois ou quatre couleurs dont le bleu, le vert et le rouge) qui coopèrent pour que la région élémentaire d'émission de lumière correspondante émette un point lumineux de couleur voulue.
Le dispositif d'affichage peut par ailleurs comporter une couche de planarisation 6 intercalée entre le premier étage El et le deuxième étage E2. Cette couche de planarisation 6 permet d'assurer une rugosité suffisamment faible à la surface de départ sur laquelle est formé le deuxième étage E2 et ainsi de garantir la qualité de ce deuxième étage. La couche de planarisation 6 peut être une couche de SiÛ2 déposée par exemple par PECVD (pour « Plasma-Enhanced Chemical Vapor Deposition » désignant un dépôt chimique en phase vapeur assisté par plasma) et soumise à un polissage mécano-chimique CMP (pour « Chemical Mechanical Polishing »). Alternativement, la couche de planarisation 6 peut être formée par enduction centrifuge d'un polymère stable aux températures de construction du deuxième étage E2, typiquement un polymère présentant une température de transition vitreuse supérieure à 300°C, par exemple un polyimide de grade optique (indice similaire SiO2) utilisé dans les technologies des écrans flexibles.
On a décrit dans ce qui précède la construction monolithique du deuxième étage sur le premier étage. L'invention s'étend toutefois également à la fabrication indépendante des deux étages puis à leur assemblage par report du deuxième étage E2 sur le premier étage El. Dans ce cas de figure, le deuxième étage peut être fabriqué sur un substrat souple avant laminage sur le premier étage.
L'empilement des deux étages El et E2 proposé par l'invention offre la possibilité de concevoir différents schémas d'afficheurs selon l'agencement des pixels LED et OLED, notamment selon qu'ils émettent de manière superposée ou non-superposée. Les circuits d'adressage CLED et COLED étant par ailleurs élaborés différemment, l'invention offre également la possibilité de concevoir des pixels LED et OLED présentant des géométries différentes, avec par exemple un pixel LED bleu entouré de pixels OLED de surface plus importante pour augmenter la luminance dans les gammes de longueur d'ondes du rouge et du vert.
Des exemples d'agencements des pixels LED et OLED rendus possibles par l'invention sont détaillés ci-après.
Selon une réalisation possible de l'invention, chacune des régions élémentaires d'émission de lumière du dispositif d'affichage comprend un premier pixel (pixel LED) formé dans une région émettrice de lumière du premier étage et un deuxième pixel formé dans le deuxième étage de manière à être superposé à ladite région émettrice de lumière du premier étage.
Par superposé, on entend que le deuxième pixel est agencé en regard du premier pixel dans l'empilement constituant le dispositif d'affichage, cet agencement concourant à une émission de lumière cumulée du premier et du deuxième pixel dans une direction d'émission de la lumière.
Selon une autre réalisation possible de l'invention, chacune des régions élémentaires d'émission de lumière du dispositif d'affichage comprend au moins un premier pixel (pixel LED) formé dans une région émettrice de lumière du premier étage et au moins un deuxième pixel formé dans le deuxième étage de manière à n'être superposé à aucune région émettrice de lumière du premier étage.
Ces deux réalisations possibles ne sont pas exclusives l'une de l'autre et peuvent ainsi être combinées comme en attestent les exemples suivants. Chacune des régions élémentaires d'émission de lumière du dispositif d'affichage peut ainsi comprendre au moins deux premiers pixels (pixels LED) chacun formé dans une région émettrice de lumière du premier étage et deux deuxièmes pixels formés dans le deuxième étage, l'un des deux deuxièmes pixels étant superposé à la région émettrice de lumière de l'un des au moins deux premiers pixels et l'autre des deux deuxièmes pixels n'étant superposé à aucune des régions émettrice de lumière des au moins deux premiers pixels. D'une manière générale, les dispositions suivantes peuvent être adoptées seules ou, lorsque techniquement possible, en combinaison. Le deuxième pixel formé dans le deuxième étage peut comprendre une diode électroluminescente organique. La diode électroluminescente organique peut être apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes ou au contraire dans une seule gamme de longueurs d'ondes. La diode électroluminescente organique peut être dotée d'un filtre couleur. Le premier pixel formé dans la région émettrice de lumière du premier étage peut être apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes ou au contraire dans une seule gamme de longueurs d'ondes. Le circuit d'adressage des deuxièmes pixels est transparent, le circuit d'adressage pouvant également présenter une ouverture au niveau d'au moins une région émettrice de lumière du premier étage. Selon une variante non couverte par l'invention le circuit d'adressage peut ne pas être transparent et présenter une ouverture au niveau d'au moins une région émettrice de lumière du premier étage
La figure 4 illustre une région élémentaire d'émission de lumière constituée de quatre sous-régions arrangées sous forme matricielle 2*2 où chaque sous-région comprend un pixel OLED POLED superposé à un pixel LED PLED. Alternativement, on peut prévoir une région élémentaire d'émission de lumière constituée de trois sous-régions arrangées sous la forme d'une bande où chaque sous-région comprend un pixel OLED superposé à un pixel LED. Les diodes des pixels OLED sont ici aptes à émettre simultanément dans deux gammes de longueurs d'ondes distinctes, par exemple dans le rouge et le vert (on parle alors de diodes R+V) lorsque les diodes des pixels LED émettent dans le bleu. L'émission de chaque sous-région est donc une émission blanche notée W (B+V+R) sur la figure 4. L'obtention des couleurs primaires est alors obtenue par le biais de filtres colorés déposés sur les sous- régions et aptes chacun à transmettre une partie du spectre de la lumière émise par la superposition des pixels LED et OLED, à savoir au moins un filtre apte à transmettre uniquement la lumière verte (dit filtre vert par la suite), un filtre apte à transmettre uniquement la lumière rouge (dit filtre rouge par la suite) et un filtre apte à transmettre uniquement la lumière bleue (dit filtre bleu par la suite). On notera qu'une sous-région peut être dénuée de filtre coloré et ainsi émettre de la lumière blanche de manière à augmenter la luminance et l'efficacité du dispositif d'affichage. Alternativement on peut prévoir que deux sous-régions soient dotées du même type de filtre coloré pour émettre la même couleur, par exemple pour émettre toutes les deux du rouge.
Dans une alternative, les diodes OLED émettent dans une seule gamme de longueur d'ondes, par exemple le jaune. Le blanc obtenu par la superposition de l'émission bleue des pixels LED et de l'émission jaune des pixels OLED est un blanc large bande qui présente un niveau de luminance supérieur à celui observé avec des pixels OLED R+V.
La figure 5 illustre une variante dans laquelle le nombre de pixels LED dans la région élémentaire d'émission de lumière est réduit afin de diminuer la consommation électrique du dispositif d'affichage. Dans cet exemple, on retrouve deux pixels LED PLEDI et PiED2 et trois pixels OLED dont l'un POLED2 est superposé à l'un des pixels LED et dont les deux autres POLEDI et POLED3 ne sont superposés avec aucun des pixels LED.
Les diodes des pixels OLED émettent ici simultanément dans le rouge et le vert et les diodes des pixels LED émettent dans le bleu. En dotant respectivement les pixels POLEDI et POLED3 d'un filtre rouge et d'un filtre vert, la région élémentaire d'émission de lumière comprend une sous-région émettant dans le bleu B via le pixel PLEDI, une sous-région émettant une lumière blanche W (B+V+R) via la superposition du pixel PoLED2 avec le pixel PLED2, une sous-région émettant dans le rouge R (R+V+CFR) via la superposition du pixel POLEDI avec le pixel PLEDI et la présence du filtre rouge CFRet une sous-région émettant dans le vert V (R+V+CFv) via la superposition du pixel POLEDS avec le pixel PLEDS et la présence du filtre vert CFV.
Deux exemples de réalisation de cette variante peuvent être distingués selon que le dispositif d'affichage forme un macro-afficheur ou un micro-afficheur.
Pour un macro-afficheur, il est possible de réaliser le dépôt des couches semiconductrices organiques de manière individuelle sans qu'elles ne recouvrent les pixels LED sous-jacents. Les pixels OLED ainsi formés peuvent en outre émettre exclusivement du vert ou du rouge. Il s'avère ainsi possible de ne pas avoir recours à des filtres colorés et ainsi de fortement augmenter la luminance du macro-afficheur.
Pour un micro-afficheur, le dépôt des couches semiconductrices organiques est réalisé sur toute la surface mais les différentes zones actives ne sont repérées qu'à l'endroit de l'adressage des diodes OLED au moyen d'un circuit d'adressage des diodes OLED présentant dans l'exemple une ouverture au niveau du pixel LEDI. Les diodes OLED sont par ailleurs du type à émission simultanée R+V ce qui nécessite d'avoir recours à des filtres colorés.
Selon d'autres exemples de réalisation de l'invention illustrés par les figures 6 et 7 , aucune des diodes OLED du deuxième étage n'est superposée à une diode LED du premier étage. Dans ces exemples, la surface élémentaire d'émission de lumière comprend quatre diodes LED émettant dans le bleu B dans le premier étage et des diodes OLED R+V qui sont agencées dans le deuxième étage de manière complémentaire aux diodes LED (i.e. non- superposées). Des filtres rouge et vert permettent de définir les sous-régions émissives verte V (R+V+CFv) et rouge R (R+V+CFR).
Dans ces exemples, la surface des diodes OLED est modulée par la taille des diodes LED. Comme représenté sur la figure 6, il est possible de prévoir des diodes LED de très petites dimensions, par exemple de l'ordre de 1 pm de côté dans une surface élémentaire de 5 ou 10 pm de côté, ce qui offre une grande surface d'émission pour les diodes OLED et augmente d'autant leurs luminances respectives.
Dans ces exemples, il est possible de prévoir un nombre plus réduit de pixels LED, par exemple un seul, afin de diminuer la consommation électrique.
Dans ce qui précède, on a pris l'exemple de pixels LED monocouleur, typiquement bleus. L'invention s'étend toutefois à un dispositif qui comprend des pixels LED bicouleur dans le premier étage (par exemple rouge et bleu ou vert et bleu) et des pixels OLED monocouleur dans le deuxième étage (respectivement vert ou rouge).
D'une manière générale, il est également à noter que l'homme du métier est à même de choisir les matériaux composant les pixels superposés, notamment en fonction de leurs bandes d'énergies interdites, de façon à ce que les pixels du deuxième étage n'absorbent pas ou peu la lumière émise par les pixels du premier étage.

Claims

REVENDICATIONS
1. Dispositif d'affichage d'images comprenant une pluralité de premiers pixels comportant chacun une diode électroluminescente inorganique, caractérisé en ce qu'il comprend un premier étage (El) dans lequel sont formés les premiers pixels et un circuit d'adressage des premiers pixels (CLED) et, superposé au premier étage (El), un deuxième étage (E2) dans lequel sont formés une pluralité de deuxièmes pixels comportant chacun une diode organique et un circuit d'adressage des deuxièmes pixels (COLED), dans lequel le circuit d'adressage des deuxièmes pixels (COLED) est transparent.
2. Dispositif d'affichage d'images selon la revendication 1, comprenant une pluralité de régions élémentaires, chacune des régions élémentaires comprenant un premier pixel (PLED) formé dans une région émettrice de lumière du premier étage et un deuxième pixel (POLED) formé dans le deuxième étage de manière à être superposé à ladite région émettrice de lumière du premier étage.
3. Dispositif d'affichage d'images selon la revendication 2, dans lequel le deuxième pixel formé dans le deuxième étage de manière à être superposé à ladite région émissive du premier étage comprend une diode électroluminescente organique.
4. Dispositif d'affichage d'images selon la revendication 3, dans lequel la diode électroluminescente organique est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes.
5. Dispositif d'affichage d'images selon la revendication 3, dans lequel le premier pixel formé dans la région émettrice de lumière du premier étage est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes.
6. Dispositif d'affichage d'images selon la revendication 1, comprenant une pluralité de régions élémentaires, chacune des régions élémentaires comprenant au moins un premier pixel (PLEDI, PLED2) formé dans une région émettrice de lumière du premier étage (El) et un deuxième pixel (POLEDI, POLEDS) formé dans le deuxième étage (E2) de manière à n'être superposé à aucune région émettrice de lumière du premier étage.
7. Dispositif d'affichage d'images selon la revendication 6, dans lequel le circuit d'adressage des deuxièmes pixels (COLED) présente une ouverture au niveau de la région émettrice de lumière du premier étage.
8. Dispositif d'affichage d'images selon l'une des revendications 6 et 7 , dans lequel le deuxième pixel formé dans le deuxième étage de manière à n'être superposé à aucune région émettrice de lumière du premier étage comprend une diode électroluminescente organique.
9. Dispositif d'affichage d'images selon la revendication 8, dans lequel la diode électroluminescente organique est apte à émettre dans une seule gamme de longueurs d'ondes.
10. Dispositif d'affichage d'images selon la revendication 9, dans lequel le premier pixel formé dans une région émettrice de lumière du premier étage est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes.
11. Dispositif d'affichage d'images selon la revendication 8, dans lequel la diode électroluminescente organique est apte à émettre simultanément dans deux gammes de longueurs d'ondes distinctes.
12. Dispositif d'affichage d'images selon l'une des revendications 4, 5, 10 et 11, dans lequel la diode électroluminescente organique est dotée d'un filtre couleur.
13. Dispositif d'affichage d'images selon l'une des revendications 1, 2, 6 et 7 dans lequel les deuxièmes pixels comprennent des photodiodes organiques. 16
14. Dispositif d'affichage d'images selon l'une des revendications 1 à 13, comprenant une couche de planarisation (6) intercalée entre le premier étage (El) et le deuxième étage
PCT/FR2021/051860 2020-11-03 2021-10-22 Dispositif d'affichage a empilement technologique hybride WO2022096798A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011266A FR3115917A1 (fr) 2020-11-03 2020-11-03 Dispositif d’affichage à empilement technologique hybride
FRFR2011266 2020-11-03

Publications (1)

Publication Number Publication Date
WO2022096798A1 true WO2022096798A1 (fr) 2022-05-12

Family

ID=74668947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051860 WO2022096798A1 (fr) 2020-11-03 2021-10-22 Dispositif d'affichage a empilement technologique hybride

Country Status (2)

Country Link
FR (1) FR3115917A1 (fr)
WO (1) WO2022096798A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823133A1 (fr) * 1995-04-18 1998-02-11 Cambridge Display Technology Limited Dispositifs organiques emetteurs de lumiere
EP2151877A1 (fr) * 2008-08-04 2010-02-10 General Electric Company Dispositif et article luminescent
US20140264405A1 (en) * 2013-03-15 2014-09-18 Thomas J. Brindisi Volumetric three-dimensional display with evenly-spaced elements
EP2858064A2 (fr) * 2013-10-02 2015-04-08 Samsung Electronics Co., Ltd Dispositif d'affichage
WO2020073573A1 (fr) * 2018-10-11 2020-04-16 Boe Technology Group Co., Ltd. Substrat d'affichage, son procédé de fabrication, et appareil d'affichage
US20200168673A1 (en) * 2018-10-23 2020-05-28 Nanosys, Inc. Display devices with different light sources in pixel structures
EP3529834B1 (fr) 2016-10-21 2020-09-16 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif d'affichage et procede de fabrication d'un tel dispositif
US20200319731A1 (en) * 2019-04-05 2020-10-08 Apple Inc. Sensing System for Detection of Light Incident to a Light Emitting Layer of an Electronic Device Display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823133A1 (fr) * 1995-04-18 1998-02-11 Cambridge Display Technology Limited Dispositifs organiques emetteurs de lumiere
EP2151877A1 (fr) * 2008-08-04 2010-02-10 General Electric Company Dispositif et article luminescent
US20140264405A1 (en) * 2013-03-15 2014-09-18 Thomas J. Brindisi Volumetric three-dimensional display with evenly-spaced elements
EP2858064A2 (fr) * 2013-10-02 2015-04-08 Samsung Electronics Co., Ltd Dispositif d'affichage
EP3529834B1 (fr) 2016-10-21 2020-09-16 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif d'affichage et procede de fabrication d'un tel dispositif
WO2020073573A1 (fr) * 2018-10-11 2020-04-16 Boe Technology Group Co., Ltd. Substrat d'affichage, son procédé de fabrication, et appareil d'affichage
US20200168673A1 (en) * 2018-10-23 2020-05-28 Nanosys, Inc. Display devices with different light sources in pixel structures
US20200319731A1 (en) * 2019-04-05 2020-10-08 Apple Inc. Sensing System for Detection of Light Incident to a Light Emitting Layer of an Electronic Device Display

Also Published As

Publication number Publication date
FR3115917A1 (fr) 2022-05-06

Similar Documents

Publication Publication Date Title
EP3127159B1 (fr) Pixel semiconducteur, matrice de tels pixels, structure semiconductrice pour la réalisation de tels pixels et leurs procédés de fabrication
EP3529834B1 (fr) Dispositif d'affichage et procede de fabrication d'un tel dispositif
US8941566B2 (en) Array of luminescent elements
US8058663B2 (en) Micro-emitter array based full-color micro-display
US8860302B2 (en) Light-emitting apparatus, illumination apparatus, and display apparatus
FR2870044A1 (fr) Dispositif a electroluminiscence organique et procede de fabrication de ce dernier
FR2868210A1 (fr) Dispositif electroluminescent organique et procede de fabrication de celui-ci
FR2849959A1 (fr) Dispositif electroluminescent organique du type a panneau double et son procede de fabrication
TWI488296B (zh) 有機電激發光顯示面板及其製造方法
FR2849535A1 (fr) Dispositif electroluminescent a matrice organique et son procede de fabrication
EP3815139B1 (fr) Dispositif optoelectronique a diodes electroluminescentes
FR2849534A1 (fr) Dispositif d'affichage electroluminescent organique a matrice active et son procede de fabrication
EP2311093A2 (fr) Dispositif d'affichage electronique polychrome a ecran electroluminescent
WO2019193290A1 (fr) Dispositif électroluminescent à résolution et fiabilité améliorées
FR2903225A1 (fr) Dispositif d'affichage par electroluminescence organique et son procede de fabrication
US20230023304A1 (en) Light emitting diode display device
WO2022096798A1 (fr) Dispositif d'affichage a empilement technologique hybride
FR3091022A1 (fr) Procede de fabrication de structures optoelectroniques pourvues de diodes electroluminescentes coplanaires
EP3921871B1 (fr) Dispositif d'affichage electroluminescent
FR2953968A1 (fr) Afficheur oled a commande passive et procede de fabrication
EP4167282A1 (fr) Procédé de fabrication d'un dispositif optoélectronique
FR3122038A1 (fr) Dispositif optoélectronique comportant un empilement à puits quantiques multiples
WO2021122710A1 (fr) Dispositif d'affichage couleur comportant une mosaique de paves de micro-diodes electroluminescentes
FR2848730A1 (fr) Dispositif d'affichage electroluminescent organique de type a panneau double et son procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21810664

Country of ref document: EP

Kind code of ref document: A1