WO2022096287A2 - Membrane contactor for transferring water vapor between two gas flows - Google Patents
Membrane contactor for transferring water vapor between two gas flows Download PDFInfo
- Publication number
- WO2022096287A2 WO2022096287A2 PCT/EP2021/079314 EP2021079314W WO2022096287A2 WO 2022096287 A2 WO2022096287 A2 WO 2022096287A2 EP 2021079314 W EP2021079314 W EP 2021079314W WO 2022096287 A2 WO2022096287 A2 WO 2022096287A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- gas
- pockets
- flow
- contactor
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 209
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 239000000446 fuel Substances 0.000 claims abstract description 18
- 238000004378 air conditioning Methods 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 description 82
- 238000004519 manufacturing process Methods 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000012510 hollow fiber Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000306 component Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/082—Flat membrane modules comprising a stack of flat membranes
- B01D63/084—Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/082—Flat membrane modules comprising a stack of flat membranes
- B01D63/084—Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes
- B01D63/085—Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes specially adapted for two fluids in mass exchange flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04126—Humidifying
- H01M8/04149—Humidifying by diffusion, e.g. making use of membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/04—Specific sealing means
- B01D2313/041—Gaskets or O-rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/13—Specific connectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/22—Membrane contactor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/1435—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- Membrane contactor for transferring water vapor between two gas streams
- the invention relates to a membrane contactor for transferring water vapor between two gas streams.
- the membrane contactor can in particular be part of an air conditioning system or fuel cell.
- gas flows have to be humidified or dehumidified in a controlled manner.
- An example is air conditioning in stationary or mobile rooms.
- humid outside air is cooled down to 15° C, for example, in warm seasons in order to reduce the humidity to a desired value.
- the excess moisture condenses as liquid water.
- the resulting condensation heat increases the energy required for cooling. If the excess moisture is reduced before the airflow is cooled, the air conditioning requires significantly less energy. This task can be solved advantageously with the help of a membrane contactor.
- the heart of the contactor is a membrane that is ideally only permeable to water vapor but not to oxygen, nitrogen and other components such as odorous substances.
- the humid outside air flows over one side of the membrane and is dried in the process, since water vapor permeates through the membrane due to a partial pressure drop.
- the partial pressure drop is maintained by directing the drier room air as exhaust air in counter- or cross-flow across the back of the membrane.
- the dry, cold outside air is humidified by the moist, warm flow of exhaust air from the interior.
- heat is exchanged via the thin membrane, which further reduces the energy consumption. This procedure is known in principle.
- the manufacturing effort, the manufacturing time, the costs and the size of conventional flat membrane contactors for humidification and dehumidification are high.
- Fuel cells which are used, for example, to power motor vehicles used use an electrochemical reaction between hydrogen and oxygen to generate electrical energy.
- the heart of the fuel cell is a polymer membrane, which has a high conductivity for protons; the membrane should be impermeable to hydrogen and oxygen. Likewise, the membrane must be an electrical insulator.
- Hydrogen is supplied to the fuel cell on the anode side, and a catalyst splits it into protons and electrons. The protons migrate through the membrane to the cathode side, where they react with the oxygen supplied to form water.
- the electrons required for this are supplied from the anode side via an external line. They generate an electric current that can be used to drive a motor vehicle, for example.
- the polymer electrolyte membranes known today require moisture to ensure high proton conductivity.
- the exhaust air stream on the cathode side contains large amounts of water vapor generated by the reaction of hydrogen and oxygen. Now, this exhaust air flow containing water vapor cannot simply be mixed with the dry supply air flow for the purpose of humidification, because the exhaust air flow from the fuel cell is greatly depleted in its oxygen content. A way must therefore be found to transfer only the water vapor from the exhaust air flow to the supply air flow without reducing the oxygen content of the supply air. This is exactly the task of the fuel cell humidifier.
- the core of the contactor is a membrane that ideally is only permeable to water vapor but not to oxygen and nitrogen. If moist air flows over one side of the membrane and dry air flows over the other side, preferably in countercurrent, water vapor flows from the moist gas flow to the dry gas flow. This occurs even though the compressed dry air stream is normally at a higher pressure than the moist exhaust air stream from the fuel cell. The water vapor partial pressure difference is decisive for the water transport.
- membrane contactors have long been known as humidifiers for fuel cells. Suitable membranes can be thin hollow Tubes (hollow thread membranes) or as flat membranes.
- hollow-fiber membranes In the case of hollow-fiber membranes, it is relatively easy to implement a counterflow, for example moist gas on the outside, dry gas in the tube, but the manufacture of the hollow-fiber modules is complex.
- the strands, combined into bundles, are potted at the ends, usually with a polyurethane or epoxy resin.
- the process is labor and time intensive.
- large bonding blocks are difficult to produce due to the heat of reaction of the curing adhesive components, which is difficult to dissipate - heating up to the point of damage to the hollow fibers is possible.
- the present invention deals exclusively with the use of flat membranes.
- Flat membrane contactors for humidifying fuel cells are known. Admittedly, bonding is used to a large extent in most constructions. This means high production costs, the humidifier cannot be dismantled without being destroyed and, as a result, it is not possible to replace defective membranes or other components.
- the few contactor concepts for humidifiers that largely do without adhesives use a large number of seals.
- a known membrane contactor for humidifying or dehumidifying gas flows is described in DE102009034095 A1, for example.
- a large number of membranes lying one on top of the other are combined to form a stack.
- Flow channels and sealing elements for the dry or moist gas are located alternately between each 2 membranes.
- the flow channels for the moist or the dry gas are arranged at right angles to one another.
- the array consists of a large number of planar elements held together by bonding.
- DE102016224475 A1 also describes a membrane humidifier which comprises a plurality of stacked units placed one on top of the other.
- Each individual stacking unit consists of a flow plate and a diffusion unit.
- the diffusion unit consists of one or 2 diffusion layers and a water vapor permeable membrane.
- Each diffusion unit also has two opposing receiving elements.
- the diffusion layer and membrane are folded at the edges in such a way that a groove is formed into which the flow plate is inserted.
- DE102012008197 A1 describes an exchange system for exchanging substances between two fluids, with a first space through which a first fluid can flow.
- a channel labyrinth forms a second space, which extends at least partially through the first space and is designed so that a second fluid can flow through it.
- the channel labyrinth is formed from a first permeable membrane and a membrane counterpart, the same being connected at predetermined lines or areas so that the channel labyrinth is formed between the first membrane and the membrane counterpart.
- the flat membrane contactor for the transfer of water vapor between two gas streams according to claim 1 eliminates or at least reduces the disadvantages of the prior art.
- the flat membrane contactor comprises: a) a stack of membrane pockets arranged in a housing, each membrane pocket having two membranes which are welded gas-tight at their edges and are selectively permeable to water vapor; b) guiding structures for a first gas flow through the flat membrane contactor, which are in flow communication with the interior of the membrane pockets via openings in the membrane pockets; and c) guiding structures for a second gas stream through the flat membrane contactor, which are designed to guide the second gas stream past the outside of the membrane pockets.
- the membrane pockets are arranged in the stack in such a way that their openings are on top of each other.
- the openings of the membrane pockets are provided with gas rings and the first gas flow is in flow communication with the interior of the membrane pockets via the gas rings.
- a further aspect of the invention relates to an air conditioning system or a fuel cell with such a flat membrane contactor.
- FIG. 1 shows an exemplary embodiment of a flat membrane contactor according to the invention in a partially exploded view.
- FIG. 2 shows a membrane pocket that can be installed in the flat membrane contactor according to FIG.
- FIG. 3 shows a distributor plate which can be located inside the membrane pocket from FIG.
- FIG. 4 shows a distributor plate which, according to a further embodiment of the flat membrane contactor, is arranged between the individual membrane pockets.
- the flat membrane contactor according to the invention for transferring water vapor between two gas streams comprises: a) a stack of membrane pockets arranged in a housing, each membrane pocket having two membranes welded at their edges which are selectively permeable to water vapor; b) guiding structures for a first gas flow through the flat membrane contactor, which are in flow communication with the interior of the membrane pockets via openings in the membrane pockets; and c) guiding structures for a second gas stream through the flat membrane contactor, which are designed to guide the second gas stream past the outside of the membrane pockets.
- the membrane pockets are arranged in the stack in such a way that their openings are on top of each other.
- the openings of the membrane pockets are provided with gas rings and the first gas flow is in flow communication with the interior of the gas rings membrane pockets.
- the flat membrane contactor has a stack of membrane pockets as a core component.
- a first gas flows through the membrane pockets on the inside, while the second gas flows along the membranes of the membrane pocket on the outside, preferably in countercurrent.
- the desired water vapor exchange is made possible by the selective water vapor permeable membranes.
- the flat membrane contactor includes the guide structures required to guide the two gas streams through the stack of membrane pockets.
- a first guide structure guides a first gas through a flow path that runs through the interior of the membrane pockets.
- the second gas follows a flow path that is predetermined by the second guide structure and runs along the outside of the membrane pockets.
- the membranes of adjacent membrane pockets are not directly adjacent to one another, but allow the second gas to pass through.
- the resulting, very compact structure consisting of few components reduces the manufacturing effort and the manufacturing time considerably.
- gluing can be completely or largely dispensed with.
- the process parameters volume flow, pressure, pressure loss over the process section, overflow speed of the membrane, selectivity and permeability of the membrane can be adapted.
- the individual membrane pockets can be flown in parallel, in series or in a defined stack formation.
- the membranes can be flown through one after the other in a meandering shape.
- the individual compartments of a stack formation can be equipped with a different number of membrane pockets. In this way, for example, a uniform overflow of the membrane surface can also be achieved, for example as a function of the decrease in volume flow caused by the membrane permeability.
- the water vapor-selective membrane used to produce the membrane pockets is preferably a multi-layer membrane.
- the membrane can consist, for example, of a polymer fleece such as polyester or polyphenylene sulfide and in the second layer of a porous polymer such as polysulfone or polyimide.
- the typically 10 to 100 pm thick polymer layer may have pores that decrease in pore diameter from side to side, with the smaller pore diameters being at the top of the membrane.
- the water vapor permeable membrane can also consist of three or more layers. In this case, there is a macroporous polymer layer on the fleece, for example made of polysulfone, which is provided with a further, largely non-porous layer. This pore-free layer can consist of one or a composite of several polymer layers.
- the membrane pockets are made by welding two membrane cutouts at the edges. This welding can be done thermally, by ultrasound or with the help of laser beams.
- the membrane fleece can be on the inside of the bag or, if desired, on the outside. In the case of a two-layer membrane consisting of a nonwoven and a nanoporous membrane, the preferred configuration is an outer nonwoven.
- the welding of the membranes be it thermal, using ultrasound or laser beams, is gas-tight. The welding process can be easily automated, is fast, and therefore suitable for mass production. In many cases it takes less than 30 seconds to seal a bag.
- the membrane pockets are arranged in the stack in such a way that their openings are on top of each other. In this way, the necessary conducting structures for the first gas can be implemented in a particularly simple manner.
- the openings in the individual membrane pockets are spaced as far as possible from one another in such a way that the gas can be guided over the entire width and length of the membrane pocket. As a rule, the openings for the entry and exit of the gas are therefore on opposite edges of the membrane pocket.
- the openings of the membrane pockets are provided with gas rings and the first gas flow is in flow communication with the interior of the membrane pockets via the gas rings.
- the openings for the entry and exit of the gas in the membrane pocket have an annular structure that encloses and runs around the edge of the opening and has flow channels through which the gas can flow in the radial direction.
- a height of the gas rings lying one above the other preferably specifies a distance between the membrane pockets. In this way, a stack with a defined distance between the individual membrane pockets can be produced in a particularly simple manner.
- the individual membrane pockets only have to be stacked one on top of the other with their gas rings and braced.
- the gas rings lying one on top of the other preferably form distribution channels which represent the part of the guide structure for the first gas flow in the stack which establishes the flow connection with the interior of the membrane pockets.
- the gas rings of the inlet and outlet openings of the stacked membrane pockets thus result in a distribution channel through which the first gas is supplied and discharged.
- the gas rings are gas-tight against each other so that the first gas cannot escape laterally.
- the distribution channels of the first conductive structure usually open into connection points that are accommodated in a cover of the housing.
- the aforementioned distribution channels are open continuously or the flow path of the first gas stream through the membrane pockets is specified by deflection plates in the distribution channels.
- all membrane pockets are flown through in parallel, which enables a very simple realization of the flat membrane contactor.
- the second alternative provides for the gas flow to be deflected so that all membrane pockets are flown through in series, for example.
- the deflection structures can also be designed in such a way that individual blocks are formed from a plurality of membrane pockets, which are admittedly flowed on in parallel, but within which the membrane pockets are traversed in series.
- a further preferred embodiment provides for a distributor plate to be present inside the membrane pockets, and for this distributor plate to have webs on its upper and lower side, which define a flow path for the first gas stream.
- the inner distributor plate not only serves to mechanically stabilize the membrane pocket. Rather, the webs on the surface serve to distribute the gas flow more evenly inside the membrane pocket and to create turbulence. The latter leads to a reduction in the boundary layer on the membrane, which is created by laminar flow and impedes the exchange of water vapor.
- spacer and flow-influencing elements such as polymer spacers, for example net-like spacers made of polypropylene, can be present in the membrane pocket.
- the guiding structures for the second gas stream comprise distributor plates which are arranged in the stack alternately with the membrane pockets.
- Each distributor plate has webs, in particular on the upper and lower side, which define a flow path for the second gas stream via the distributor plate.
- the distributor plates are located between the membrane pockets, and the second gas flow is conducted via the upper and lower sides of these plates. This further increases the mechanical stability of the stack.
- the distributor plates enable a more even distribution of the gas flow over the outside of the membrane pockets, so that the water vapor exchange is promoted.
- the separation result of a membrane unit also depends on the laminar boundary layer between the gas flow and the membrane surface being kept low when the membrane surface is flown over.
- spacer and flow-influencing elements such as polymer spacers, for example net-like spacers made of polypropylene, can be present between the membrane pockets.
- a cover plate of the housing advantageously has the connections for the guide structures of the first gas stream and the connections for the guide structures of the second gas stream, so that the manufacturing process is greatly simplified and a flat membrane contactor that is particularly compact in terms of installation space is provided.
- the stack is introduced into the housing in such a way that two separate spaces result, which are only connected by the free spaces existing between the membrane pockets.
- a connection for the second gas flow is provided in the cover plate above one space, whereas a corresponding outlet is integrated in the cover plate above the second space.
- FIG. 1 shows an exemplary embodiment in a partially exploded view a flat membrane contactor 100.
- the flat membrane contactor 100 comprises a module housing 10 which is closed with a cover plate 20.
- a stack 40 of individual membrane pockets 50 is accommodated inside the housing 10 .
- a membrane pocket 50 is shown in more detail in FIG.
- the membrane pocket 50 has a hexagonally elongated basic shape, the width being selected such that the stack 40 bears largely sealingly against the side walls of the housing 10 .
- the membrane pocket 50 comprises two membranes 52 which are welded to one another at the edges 54 .
- the membranes 52 are selectively permeable to water vapor.
- Each membrane pocket 50 has two openings 56, 58 which allow the inlet and outlet of a gas flow.
- the inlet and outlet openings 56, 58 are provided with seals 60 and gas rings 62 which define the distance to adjacent membrane pockets 50, whereby the seals 60 and gas rings 62 can also be made as one piece.
- the gas can get into the interior of the membrane pockets 50 through a large number of radial bores 64 in the gas rings 62 .
- the gas rings 62 can be formed of metal or hard plastic.
- a distributor plate 70 for example made of metal, can be embedded in the interior of the membrane pocket 50.
- the surface of the inner distributor plate 70 is structured on both sides by a number of webs 72 .
- the webs 72 serve to evenly distribute the gas flow inside the membrane pocket 50 and are intended at the same time to generate turbulence which counteracts the formation of a laminar boundary film on the membranes 52 and thus facilitates the exchange of water vapor through the membrane 52 .
- a large number of membrane pockets 50 are stacked one on top of the other, with the openings 56, 58 lying one on top of the other.
- the inlet and outlet openings 56, 58 thereby form an inlet and outlet distribution channel for either the first gas or the second gas.
- the stack 40 constructed in this way is located in the module housing 10 with the cover plate 20.
- the membrane stack 40 is held in the distributor channels by two diagonally offset tie rods each comprising a rod 90 and an end piece 92.
- the cover plate 20 has a circumferential seal and can also be reinforced with snap fasteners. It is equipped with an inlet opening 21 and an outlet opening 22 for the second gas and an inlet port 23 and an outlet port 24 for the first gas.
- a first guide structure for a first gas flow therefore comprises the two inlet and outlet openings 23, 24 in the cover plate 20, the continuous distribution channels resulting from the openings 56, 58 of the membrane pockets 50 lying one above the other, and the inner paths in the individual membrane pockets 50.
- a second guide structure for the second gas flow comprises the two inlet and outlet openings 21, 22 in the cover plate 20 and the adjoining spaces inside the module housing 10, which in the example are limited by walls of the module housing 10 and the stack 40 are. Furthermore, these spaces are in flow connection with one another via the stack 40, ie the second gas stream entering through the opening 21 is passed between the module pockets 50 along the membranes 52 through the stack 40. Accordingly, water vapor can be exchanged between the two gas streams.
- the gas containing a lot of water vapor flows through the interior of the membrane pockets 50.
- the flow path for the moist gas thus follows the first guiding structure.
- gas containing little or no water vapor follows a flow path in counterflow, which is predetermined by the second guide structure.
- the dry gas flows past the outside of the membranes 52 of the membrane pockets 50 and absorbs moisture.
- operation is also conceivable in which the dry gas flows through the interior of the membrane pockets 50 and the moist gas flows countercurrently between the membrane pockets 50 .
- a distributor plate 80 can be arranged between each of the membrane pockets 50 of the stack 40 .
- the distributor plate 80 serves to distribute the gas stream flowing along the membranes 52 of the membrane pockets 50 more evenly.
- the top and bottom of the distributor plate 80 have a multiplicity of webs 82 which define channels for the gas flow.
- the channels increase the turbulence and thus keep the extent of the concentration polarization at the membranes 52 small, so that the exchange of water vapor is improved.
- an edge seal 84 (on both sides) is provided, which prevents potential losses due to an edge flow.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Fuel Cell (AREA)
Abstract
The invention relates to a membrane contactor for transferring water vapor between two gas flows. The membrane contactor can, in particular, be part of an air-conditioning system or a fuel cell. The flat membrane contactor comprises: a) a stack of membrane pockets disposed in a housing, each membrane pocket having two membranes which are welded gas tight at their edges and which are selectively permeable to water vapor; b) guide structures for a first gas flow through the flat membrane contactor, which guide structures are fluidically connected to the interior of the membrane pockets by means of openings in the membrane pockets; and c) guide structures for a second gas flow through the flat membrane contactor, which guide structures are designed to guide the second gas flow past the outside of the membrane pockets. The membrane pockets are arranged in the stack in such a way that their openings lie one above the other. The openings of the membrane pockets are provided with gas rings, and the first gas flow is fluidically connected to the interior of the membrane pockets by means of the gas rings.
Description
Membrankontaktor zur Übertragung von Wasserdampf zwischen zwei Gasströmen Membrane contactor for transferring water vapor between two gas streams
Die Erfindung betrifft einen Membrankontaktor zur Übertragung von Wasserdampf zwischen zwei Gasströmen. Der Membrankontaktor kann insbesondere Teil einer Klimaanlage oder Brennstoffzelle sein. The invention relates to a membrane contactor for transferring water vapor between two gas streams. The membrane contactor can in particular be part of an air conditioning system or fuel cell.
Technologischer Hintergrund Technological background
In einer Vielzahl von technischen Prozessen müssen Gasströme kontrolliert be- oder entfeuchtet werden. In a large number of technical processes, gas flows have to be humidified or dehumidified in a controlled manner.
Ein Beispiel ist die Luftklimatisierung in stationären oder mobilen Räumen. In konventionellen Klimaanlagen wird in warmen Jahreszeiten feuchte Außenluft zum Beispiel auf 15° C abgekühlt, um die Feuchtigkeit auf einen gewünschten Wert zu reduzieren. Die überschüssige Feuchtigkeit kondensiert dabei als flüssiges Wasser. Die dabei entstehende Kondensationswärme erhöht den für die Kühlung notwendigen Energiebedarf. Wird die überschüssige Feuchtigkeit reduziert bevor der Luftstrom gekühlt wird, erfordert die Klimatisierung deutlich weniger Energie. Diese Aufgabe kann vorteilhaft mit Hilfe eines Membrankontaktors gelöst werden. An example is air conditioning in stationary or mobile rooms. In conventional air conditioning systems, humid outside air is cooled down to 15° C, for example, in warm seasons in order to reduce the humidity to a desired value. The excess moisture condenses as liquid water. The resulting condensation heat increases the energy required for cooling. If the excess moisture is reduced before the airflow is cooled, the air conditioning requires significantly less energy. This task can be solved advantageously with the help of a membrane contactor.
Herzstück des Kontaktors ist eine Membran, die idealerweise nur für Wasserdampf, nicht aber für Sauerstoff, Stickstoff und weiteren Komponenten wie zum Beispiel Geruchsstoffen durchlässig ist. Die feuchte Außenluft überströmt eine Seite der Membran und wird dabei getrocknet, da Wasserdampf aufgrund eines Partialdruckgefälles durch die Membran permeiert. Das Partialdruckgefälle wird aufrechterhalten, indem die trockenere Raumluft als Abluft im Gegen- oder Kreuzstrom über die Rückseite der Membran geleitet wird. In den kalten Jahreszeiten wird hingegen die trockene, kalte Außenluft durch den feuchten, warmen Abluftstrom aus den Innenräumen befeuchtet. Über die dünne Membran findet gleichzeitig ein Wärmeaustausch statt, was weiter den Energieaufwand reduziert. Diese Verfahrensweise ist im Prinzip bekannt. Der Fertigungsaufwand, die Fertigungszeit, die Kosten und die Baugröße für konventionelle Flachmembrankontaktoren für die Be- und Entfeuchtung sind allerdings hoch. The heart of the contactor is a membrane that is ideally only permeable to water vapor but not to oxygen, nitrogen and other components such as odorous substances. The humid outside air flows over one side of the membrane and is dried in the process, since water vapor permeates through the membrane due to a partial pressure drop. The partial pressure drop is maintained by directing the drier room air as exhaust air in counter- or cross-flow across the back of the membrane. In the cold season, on the other hand, the dry, cold outside air is humidified by the moist, warm flow of exhaust air from the interior. At the same time, heat is exchanged via the thin membrane, which further reduces the energy consumption. This procedure is known in principle. However, the manufacturing effort, the manufacturing time, the costs and the size of conventional flat membrane contactors for humidification and dehumidification are high.
Ein weiteres Anwendungsgebiet für Membrankontaktoren sind Polymerelektrolyt- Brennstoffzellen. Brennstoffzellen, die zum Beispiel zum Antrieb von Kraftfahrzeugen
verwendet werden, nutzen eine elektrochemische Reaktion zwischen Wasserstoff und Sauerstoff zur Erzeugung von elektrischer Energie. Herzstück der Brennstoffzelle ist eine Polymermembran, welche eine hohe Leitfähigkeit für Protonen hat; für Wasserstoff und Sauerstoff soll die Membran aber undurchlässig sein. Ebenso muss die Membran ein elektrischer Isolator sein. Auf der Anodenseite wird der Brennstoffzelle Wasserstoff zugeführt, ein Katalysator bewirkt die Aufspaltung in Protonen und Elektronen. Die Protonen wandern durch die Membran zur Kathodenseite und reagieren dort mit zugeführtem Sauerstoff zu Wasser. Die dafür erforderlichen Elektronen werden von der Anodenseite über eine externe Leitung zugeführt. Sie erzeugen so einen elektrischen Strom, der zum Beispiel zum Antrieb eines Kraftfahrzeuges genutzt werden kann. Another area of application for membrane contactors are polymer electrolyte fuel cells. Fuel cells, which are used, for example, to power motor vehicles used use an electrochemical reaction between hydrogen and oxygen to generate electrical energy. The heart of the fuel cell is a polymer membrane, which has a high conductivity for protons; the membrane should be impermeable to hydrogen and oxygen. Likewise, the membrane must be an electrical insulator. Hydrogen is supplied to the fuel cell on the anode side, and a catalyst splits it into protons and electrons. The protons migrate through the membrane to the cathode side, where they react with the oxygen supplied to form water. The electrons required for this are supplied from the anode side via an external line. They generate an electric current that can be used to drive a motor vehicle, for example.
Die heute bekannten Polymerelektrolytmembranen benötigen Feuchtigkeit, um eine hohe Protonenleitfähigkeit zu gewährleisten. Der auf 2 bis 3 bar komprimierte Luftstrom, der der Kathodenseite der Brennstoffzelle zugeführt wird, enthält nur geringe Feuchtigkeit und führt zum Austrocknen der Membran, was einen starken Leistungsabfall der Brennstoffzelle zur Folge hätte. Daher muss dieser Zuluftstrom nach der Kompression und vor Eintritt in die Brennstoffzelle befeuchtet werden. The polymer electrolyte membranes known today require moisture to ensure high proton conductivity. The air flow, compressed to 2 to 3 bar and fed to the cathode side of the fuel cell, contains little moisture and causes the membrane to dry out, which would result in a severe drop in fuel cell performance. Therefore, this supply air flow must be humidified after compression and before entering the fuel cell.
Der Abluftstrom auf der Kathodenseite enthält große Mengen Wasserdampf, welcher durch die Reaktion von Wasserstoff und Sauerstoff erzeugt wurde. Nun kann dieser wasserdampfhaltige Abluftstrom nicht einfach mit dem trockenen Zuluftstrom zwecks Befeuchtung gemischt werden, denn der Abluftstrom aus der Brennstoffzelle ist stark abgereichert in seinem Sauerstoffgehalt. Es muss also ein Weg gefunden werden, nur den Wasserdampf aus dem Abluftstrom in den Zuluftstrom zu übertragen, ohne den Sauerstoffgehalt der Zuluft zu verringern. Genau das ist die Aufgabe des Brennstoffzellen-Befeuchters. The exhaust air stream on the cathode side contains large amounts of water vapor generated by the reaction of hydrogen and oxygen. Now, this exhaust air flow containing water vapor cannot simply be mixed with the dry supply air flow for the purpose of humidification, because the exhaust air flow from the fuel cell is greatly depleted in its oxygen content. A way must therefore be found to transfer only the water vapor from the exhaust air flow to the supply air flow without reducing the oxygen content of the supply air. This is exactly the task of the fuel cell humidifier.
Auch diese Aufgabe kann mit Hilfe eines Membrankontaktors gelöst werden. Herzstück des Kontaktors ist wiederum eine Membran, die idealerweise nur für Wasserdampf, nicht aber für Sauerstoff und Stickstoff durchlässig ist. Wird eine Seite der Membran mit feuchter und die andere mit trockener Luft überströmt, vorzugsweise im Gegenstrom, so fließt Wasserdampf aus dem feuchten Gasstrom zum trockenen Gasstrom. Das geschieht, obwohl normalerweise der komprimierte trockene Luftstrom unter einem höheren Druck steht als der feuchte Abluftstrom aus der Brennstoffzelle. Entscheidend für den Wassertransport ist die Wasserdampf-Partialdruckdifferenz. Solche Membrankontaktoren sind als Befeuchter für Brennstoffzellen seit längerer Zeit bekannt. Geeignete Membranen können als dünne hohle
Röhren (Hohlfaden-Membranen) oder als Flachmembranen gefertigt werden. Im Falle der Hohlfadenmembranen ist zwar die Realisierung eines Gegenstromes relativ einfach, zum Beispiel feuchtes Gas außen, trockenes Gas in der Röhre, die Fertigung der Hohlfadenmodule ist jedoch aufwändig. Die zu Bündeln vereinigten Fäden werden an den Enden vergossen, üblicherweise mit einem Polyurethan- oder einem Epoxidharz. Der Vorgang ist arbeits- und zeitintensiv. Zudem sind große Verklebungsblöcke aufgrund der schlecht abzuführenden Reaktionswärme der aushärtenden Klebstoffkomponenten nur schwierig zu fertigen - Erwärmungen bis hin zur Schädigung der Hohlfäden sind möglich.This task can also be solved with the help of a membrane contactor. The core of the contactor is a membrane that ideally is only permeable to water vapor but not to oxygen and nitrogen. If moist air flows over one side of the membrane and dry air flows over the other side, preferably in countercurrent, water vapor flows from the moist gas flow to the dry gas flow. This occurs even though the compressed dry air stream is normally at a higher pressure than the moist exhaust air stream from the fuel cell. The water vapor partial pressure difference is decisive for the water transport. Such membrane contactors have long been known as humidifiers for fuel cells. Suitable membranes can be thin hollow Tubes (hollow thread membranes) or as flat membranes. In the case of hollow-fiber membranes, it is relatively easy to implement a counterflow, for example moist gas on the outside, dry gas in the tube, but the manufacture of the hollow-fiber modules is complex. The strands, combined into bundles, are potted at the ends, usually with a polyurethane or epoxy resin. The process is labor and time intensive. In addition, large bonding blocks are difficult to produce due to the heat of reaction of the curing adhesive components, which is difficult to dissipate - heating up to the point of damage to the hollow fibers is possible.
Ein weiterer Nachteil beim Einsatz von Hohlfaden-Membranmodulen in mobilen Systemen ist die Schnittstelle der starren Klebeeinbindung mit der flexiblen Hohlfadenmembran. Bei Stoßbelastungen ist die Gefahr des Membranbruchs an der Klebeeinbindung gegeben. Es gibt Anwendungen, bei denen aufgrund der Einsatzbedingungen Flachmembranmodule Vorteile haben. Another disadvantage when using hollow-fiber membrane modules in mobile systems is the interface between the rigid adhesive bond and the flexible hollow-fiber membrane. In the event of impact loads, there is a risk of the membrane breaking at the adhesive connection. There are applications in which flat membrane modules have advantages due to the operating conditions.
Die hier vorliegende Erfindung befasst sich ausschließlich mit dem Einsatz von Flachmembranen. Flachmembrankontaktoren für die Befeuchtung von Brennstoffzellen sind bekannt. Allerdings werden in den meisten Konstruktionen auch hier in großem Umfang Verklebungen eingesetzt. Dieses bedeutet einen hohen Fertigungsaufwand, der Befeuchter kann nicht ohne Zerstörung demontiert werden und infolge dessen ist ein Austausch defekter Membranen oder anderer Komponenten nicht möglich. Die wenigen Kontaktorkonzepte für Befeuchter, die weitgehend auf Verklebungen verzichten, verwenden eine große Anzahl von Dichtungen. The present invention deals exclusively with the use of flat membranes. Flat membrane contactors for humidifying fuel cells are known. Admittedly, bonding is used to a large extent in most constructions. This means high production costs, the humidifier cannot be dismantled without being destroyed and, as a result, it is not possible to replace defective membranes or other components. The few contactor concepts for humidifiers that largely do without adhesives use a large number of seals.
Ein bekannter Membrankontaktor zur Be- oder Entfeuchtung von Gasströmen ist zum Beispiel in der DE102009034095 A1 beschrieben. Hier ist eine Vielzahl übereinanderliegender Membranen zu einem Stapel zusammengefasst. Zwischen jeweils 2 Membranen befinden sich abwechselnd Strömungskanäle und Dichtelemente für das trockene oder das feuchte Gas. Die Strömungskanäle für das feuchte oder das trockene Gas sind im rechten Winkel zueinander angeordnet. Die Anordnung besteht aus einer großen Zahl planarer Elemente, die durch Verklebung zusammengehalten werden. A known membrane contactor for humidifying or dehumidifying gas flows is described in DE102009034095 A1, for example. Here, a large number of membranes lying one on top of the other are combined to form a stack. Flow channels and sealing elements for the dry or moist gas are located alternately between each 2 membranes. The flow channels for the moist or the dry gas are arranged at right angles to one another. The array consists of a large number of planar elements held together by bonding.
Auch die DE102016224475 A1 beschreibt einen Membranbefeuchter, der mehrere aufeinandergesetzte Stapeleinheiten umfasst. Jede einzelne Stapeleinheit besteht aus einer Strömungsplatte und einer Diffusionseinheit. Die Diffusionseinheit besteht aus einer oder 2 Diffusionsschichten und einer wasserdampfdurchlässigen Membran. Jede Diffusionseinheit
weist außerdem zwei gegenüberliegende Aufnahmeelemente auf. In einer bevorzugten Bauweise werden Diffusionsschicht und Membran an den Rändern so gefalzt, dass eine Nut gebildet wird, in welche die Strömungsplatte eingeführt wird. DE102016224475 A1 also describes a membrane humidifier which comprises a plurality of stacked units placed one on top of the other. Each individual stacking unit consists of a flow plate and a diffusion unit. The diffusion unit consists of one or 2 diffusion layers and a water vapor permeable membrane. Each diffusion unit also has two opposing receiving elements. In a preferred construction, the diffusion layer and membrane are folded at the edges in such a way that a groove is formed into which the flow plate is inserted.
DE102012008197 A1 beschreibt ein Austauschsystem zum Austausch von Stoffen zwischen zwei Fluiden, mit einem von einem ersten Fluid durchströmbaren ersten Raum. Ein Kanallabyrinth bildet einen zweiten Raum, der sich zumindest teilweise durch den ersten Raum erstreckt, mit einem zweiten Fluid durchströmbar ausgebildet ist. Das Kanallabyrinth wird aus einer ersten permeablen Membran und einem Membrangegenstück gebildet, wobei selbige an vorgegebenen Linien oder Flächen verbunden sind, so dass zwischen der ersten Membran und dem Membrangegenstück das Kanallabyrinth entsteht. DE102012008197 A1 describes an exchange system for exchanging substances between two fluids, with a first space through which a first fluid can flow. A channel labyrinth forms a second space, which extends at least partially through the first space and is designed so that a second fluid can flow through it. The channel labyrinth is formed from a first permeable membrane and a membrane counterpart, the same being connected at predetermined lines or areas so that the channel labyrinth is formed between the first membrane and the membrane counterpart.
Zusammenfassung der Erfindung Summary of the Invention
Der erfindungsgemäße Flachmembrankontaktor zur Übertragung von Wasserdampf zwischen zwei Gasströmen nach Anspruch 1 behebt oder zumindest mindert die Nachteile des Standes der Technik. Dazu umfasst der Flachmembrankontaktor: a) einen in einem Gehäuse angeordneten Stapel von Membrantaschen, wobei jede Membrantasche zwei an ihren Rändern gasdicht verschweißte Membranen aufweist, die selektiv für Wasserdampf durchlässig sind; b) Leitstrukturen für einen ersten Gasstrom durch den Flachmembrankontaktor, die über Öffnungen in den Membrantaschen in Strömungsverbindung mit dem Inneren der Membrantaschen stehen; und c) Leitstrukturen für einen zweiten Gasstrom durch den Flachmembrankontaktor, die ausgelegt sind den zweiten Gasstrom außen an den Membrantaschen vorbeizuführen. The flat membrane contactor according to the invention for the transfer of water vapor between two gas streams according to claim 1 eliminates or at least reduces the disadvantages of the prior art. For this purpose, the flat membrane contactor comprises: a) a stack of membrane pockets arranged in a housing, each membrane pocket having two membranes which are welded gas-tight at their edges and are selectively permeable to water vapor; b) guiding structures for a first gas flow through the flat membrane contactor, which are in flow communication with the interior of the membrane pockets via openings in the membrane pockets; and c) guiding structures for a second gas stream through the flat membrane contactor, which are designed to guide the second gas stream past the outside of the membrane pockets.
Die Membrantaschen sind im Stapel so angeordnet, dass ihre Öffnungen übereinander liegen. Die Öffnungen der Membrantaschen sind mit Gasringen versehen und der erste Gasstrom steht über die Gasringe in Strömungsverbindung mit dem Inneren der Membrantaschen. The membrane pockets are arranged in the stack in such a way that their openings are on top of each other. The openings of the membrane pockets are provided with gas rings and the first gas flow is in flow communication with the interior of the membrane pockets via the gas rings.
Ein weiterer Aspekt der Erfindung betrifft eine Klimaanlage oder eine Brennstoffzelle mit einem solchen Flachmembrankontaktor. A further aspect of the invention relates to an air conditioning system or a fuel cell with such a flat membrane contactor.
Bevorzugte Ausführungsformen lassen sich den abhängigen Ansprüchen und der
nachfolgenden Beschreibung entnehmen. Preferred embodiments can be found in the dependent claims and the see the following description.
Kurzbeschreibung der Figuren Brief description of the figures
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und dazugehöriger Zeichnungen näher erläutert. Die Figuren zeigen: The invention is explained in more detail below using an exemplary embodiment and associated drawings. The figures show:
Figur 1 zeigt in einer partiellen Explosionsdarstellung eine exemplarische Ausführungsform eines erfindungsgemäßen Flachmembrankontaktors. FIG. 1 shows an exemplary embodiment of a flat membrane contactor according to the invention in a partially exploded view.
Figur 2 zeigt eine Membrantasche, die in dem Flachmembrankontaktor nach Figur 1 verbaut werden kann. FIG. 2 shows a membrane pocket that can be installed in the flat membrane contactor according to FIG.
Figur 3 zeigt eine Verteilerplatte, die sich im Innern der Membrantasche aus Figur 2 befinden kann. FIG. 3 shows a distributor plate which can be located inside the membrane pocket from FIG.
Figur 4 zeigt eine Verteilerplatte, die nach einer weiteren Ausführungsform des Flachmembrankontaktors zwischen den einzelnen Membrantaschen angeordnet ist. FIG. 4 shows a distributor plate which, according to a further embodiment of the flat membrane contactor, is arranged between the individual membrane pockets.
Detaillierte Beschreibung der Erfindung Detailed description of the invention
Generelles Konzept General concept
Der erfindungsgemäße Flachmembrankontaktor zur Übertragung von Wasserdampf zwischen zwei Gasströmen umfasst: a) einen in einem Gehäuse angeordneten Stapel von Membrantaschen, wobei jede Membrantasche zwei an ihren Rändern verschweißte Membranen aufweist, die selektiv für Wasserdampf durchlässig sind; b) Leitstrukturen für einen ersten Gasstrom durch den Flachmembrankontaktor, die über Öffnungen in den Membrantaschen in Strömungsverbindung mit dem Inneren der Membrantaschen stehen; und c) Leitstrukturen für einen zweiten Gasstrom durch den Flachmembrankontaktor, die ausgelegt sind den zweiten Gasstrom außen an den Membrantaschen vorbeizuführen. The flat membrane contactor according to the invention for transferring water vapor between two gas streams comprises: a) a stack of membrane pockets arranged in a housing, each membrane pocket having two membranes welded at their edges which are selectively permeable to water vapor; b) guiding structures for a first gas flow through the flat membrane contactor, which are in flow communication with the interior of the membrane pockets via openings in the membrane pockets; and c) guiding structures for a second gas stream through the flat membrane contactor, which are designed to guide the second gas stream past the outside of the membrane pockets.
Die Membrantaschen sind im Stapel so angeordnet, dass ihre Öffnungen übereinander liegen. Die Öffnungen der Membrantaschen sind mit Gasringen versehen und der erste Gasstrom steht über die Gasringe in Strömungsverbindung mit dem Inneren der
Membrantaschen. The membrane pockets are arranged in the stack in such a way that their openings are on top of each other. The openings of the membrane pockets are provided with gas rings and the first gas flow is in flow communication with the interior of the gas rings membrane pockets.
Der Flachmembrankontaktor weist demnach als Kernkomponente einen Stapel aus Membrantaschen auf. Die Membrantaschen werden im Inneren von einem ersten Gas durchströmt, während an der Außenseite, vorzugsweise im Gegenstrom, das zweite Gas an den Membranen der Membrantasche entlangströmt. Durch die selektiv für Wasserdampf durchlässigen Membranen wird der gewünschte Wasserdampfaustausch ermöglicht. Accordingly, the flat membrane contactor has a stack of membrane pockets as a core component. A first gas flows through the membrane pockets on the inside, while the second gas flows along the membranes of the membrane pocket on the outside, preferably in countercurrent. The desired water vapor exchange is made possible by the selective water vapor permeable membranes.
Der Flachmembrankontaktor umfasst die zur Führung der beiden Gasströme durch den Stapel der Membrantaschen notwendigen Leitstrukturen. Eine erste Leitstruktur führt dabei ein erstes Gas durch einen Strömungspfad, der durch das Innere der Membrantaschen verläuft. Das zweite Gas folgt dagegen einem Strömungspfad, der durch die zweite Leitstruktur vorgegeben ist und außen an den Membrantaschen entlangführt. Im Stapel liegen die Membranen benachbarter Membrantaschen also nicht direkt aneinander, sondern ermöglichen die Durchleitung des zweiten Gases. The flat membrane contactor includes the guide structures required to guide the two gas streams through the stack of membrane pockets. A first guide structure guides a first gas through a flow path that runs through the interior of the membrane pockets. The second gas, on the other hand, follows a flow path that is predetermined by the second guide structure and runs along the outside of the membrane pockets. In the stack, the membranes of adjacent membrane pockets are not directly adjacent to one another, but allow the second gas to pass through.
Der sich ergebende, sehr kompakte, aus wenigen Komponenten bestehende Aufbau mindert den Fertigungsaufwand und die Fertigungszeit erheblich. Insbesondere kann auf Verklebungen ganz oder weitgehend verzichtet werden. The resulting, very compact structure consisting of few components reduces the manufacturing effort and the manufacturing time considerably. In particular, gluing can be completely or largely dispensed with.
Besonders vorteilhaft ist, dass durch den modularen Aufbau der Flachmembrankontaktor hinsichtlich der Verfahrensparameter Volumenstrom, Druck, Druckverlust über die Verfahrensstrecke, Überströmgeschwindigkeit der Membran, Selektivität und Permeabilität der Membran angepasst werden kann. It is particularly advantageous that due to the modular design of the flat membrane contactor, the process parameters volume flow, pressure, pressure loss over the process section, overflow speed of the membrane, selectivity and permeability of the membrane can be adapted.
Die einzelnen Membrantaschen können parallel, in Reihe oder in einer definierten Stapelformation angeströmt werden. Zum Beispiel können im Fall der Reihenschaltung von Membrantaschen die Membranen in Mäanderform nacheinander durchströmt werden. Die einzelnen Kompartimente einer Stapelformation können mit einer unterschiedlichen Anzahl von Membrantaschen bestückt werden. Damit kann beispielsweise in Abhängigkeit der Volumenstromabnahme, bedingt durch die Membranpermeabilität, gegebenenfalls auch eine gleichförmige Überströmung der Membranoberfläche erzielt werden. The individual membrane pockets can be flown in parallel, in series or in a defined stack formation. For example, in the case of membrane pockets connected in series, the membranes can be flown through one after the other in a meandering shape. The individual compartments of a stack formation can be equipped with a different number of membrane pockets. In this way, for example, a uniform overflow of the membrane surface can also be achieved, for example as a function of the decrease in volume flow caused by the membrane permeability.
Die zur Herstellung der Membrantaschen verwendete wasserdampf-selektive Membran ist vorzugsweise eine Mehrschichtenmembran. Die Membran kann zum Beispiel aus einem Polymer-Vlies wie Polyester oder Polyphenylensulfid und in der zweiten Schicht aus einem porösen Polymer wie Polysulfon oder Polyimid bestehen. Die typischerweise 10 bis 100 pm
dicke Polymerschicht kann Poren aufweisen, deren Porendurchmesser sich von einer Seite zur anderen Seite verringert, wobei sich die kleineren Porendurchmesser an der Membranoberseite befinden. Die wasserdampf-permeable Membran kann auch aus drei oder mehr Schichten bestehen. In diesem Fall befindet sich auf dem Vlies eine makroporöse Polymerschicht, zum Beispiel aus Polysulfon, die mit einer weiteren, weitgehend porenfreien Schicht versehen ist. Diese porenfreie Schicht kann aus einer oder aus einem Komposit aus mehreren Polymer-Schichten bestehen. The water vapor-selective membrane used to produce the membrane pockets is preferably a multi-layer membrane. The membrane can consist, for example, of a polymer fleece such as polyester or polyphenylene sulfide and in the second layer of a porous polymer such as polysulfone or polyimide. The typically 10 to 100 pm thick polymer layer may have pores that decrease in pore diameter from side to side, with the smaller pore diameters being at the top of the membrane. The water vapor permeable membrane can also consist of three or more layers. In this case, there is a macroporous polymer layer on the fleece, for example made of polysulfone, which is provided with a further, largely non-porous layer. This pore-free layer can consist of one or a composite of several polymer layers.
Die Membrantaschen werden gefertigt, indem zwei Membran-Ausschnitte an den Rändern verschweißt werden. Diese Verschweißung kann thermisch, durch Ultraschall oder mit Hilfe von Laserstrahlen erfolgen. Dabei kann das Membranvlies innen in der Tasche liegen oder, wenn gewünscht, außen liegen. Im Falle einer zweischichtigen Membran bestehend aus einem Vlies und einer nanoporösen Membran ist die bevorzugte Konfiguration ein außenliegendes Vlies. Die Verschweißung der Membranen, sei es thermisch, durch Ultraschall oder mittels Laserstrahlen, ist gasdicht. Der Schweißvorgang kann leicht automatisiert werden, ist schnell und daher für eine Massenproduktion geeignet. In vielen Fällen dauert die Verschweißung einer Tasche weniger als 30 Sekunden. The membrane pockets are made by welding two membrane cutouts at the edges. This welding can be done thermally, by ultrasound or with the help of laser beams. The membrane fleece can be on the inside of the bag or, if desired, on the outside. In the case of a two-layer membrane consisting of a nonwoven and a nanoporous membrane, the preferred configuration is an outer nonwoven. The welding of the membranes, be it thermal, using ultrasound or laser beams, is gas-tight. The welding process can be easily automated, is fast, and therefore suitable for mass production. In many cases it takes less than 30 seconds to seal a bag.
Die Membrantaschen sind im Stapel so angeordnet, dass ihre Öffnungen übereinander liegen. Auf diese Weise lassen sich die notwendigen Leitstrukturen für das erste Gas besonders einfach realisieren. Die Öffnungen in den einzelnen Membrantaschen werden möglichst so zueinander beabstandet, dass das Gas über die gesamte Breite und Länge der Membrantasche geführt werden kann. In der Regel liegen die Öffnungen für den Eintritt und Austritt des Gases daher an gegenüberliegenden Rändern der Membrantasche. The membrane pockets are arranged in the stack in such a way that their openings are on top of each other. In this way, the necessary conducting structures for the first gas can be implemented in a particularly simple manner. The openings in the individual membrane pockets are spaced as far as possible from one another in such a way that the gas can be guided over the entire width and length of the membrane pocket. As a rule, the openings for the entry and exit of the gas are therefore on opposite edges of the membrane pocket.
Die Öffnungen der Membrantaschen sind mit Gasringen versehen und der erste Gasstrom steht über die Gasringe in Strömungsverbindung mit dem Inneren der Membrantaschen. Mit anderen Worten, die Öffnungen für den Ein- und Austritt des Gases in die Membrantasche weisen eine den Öffnungsrand einfassende und umlaufende ringförmige Struktur auf, die Strömungskanäle besitzt, durch die in radialer Richtung das Gas strömen kann. Eine Höhe der übereinanderliegenden Gasringe gibt dabei vorzugsweise einen Abstand der Membrantaschen untereinander vor. Auf diese Weise kann in besonders einfacher Weise ein Stapel mit definiertem Abstand zwischen den einzelnen Membrantaschen hergestellt werden. Die einzelnen Membrantaschen müssen dazu nur noch mit ihren Gasringen übereinanderliegend gestapelt und verspannt werden.
Vorzugsweise bilden die übereinanderliegenden Gasringe Verteilerkanäle aus, die den Teil der Leitstruktur für den ersten Gasstrom im Stapel darstellen, der die Strömungsverbindung mit dem Inneren der Membrantaschen herstellt. Die Gasringe der Eingangsbeziehungsweise Ausgangsöffnungen der gestapelten Membrantaschen ergeben also einen Verteilerkanal, über den das erste Gas zu- und abgeführt wird. Die Gasringe liegen dabei gasdicht aneinander, sodass das erste Gas nicht seitlich austreten kann. Die Verteilerkanäle der ersten Leitstruktur münden in der Regel in Anschlussstellen, die in einem Deckel des Gehäuses untergebracht sind. The openings of the membrane pockets are provided with gas rings and the first gas flow is in flow communication with the interior of the membrane pockets via the gas rings. In other words, the openings for the entry and exit of the gas in the membrane pocket have an annular structure that encloses and runs around the edge of the opening and has flow channels through which the gas can flow in the radial direction. A height of the gas rings lying one above the other preferably specifies a distance between the membrane pockets. In this way, a stack with a defined distance between the individual membrane pockets can be produced in a particularly simple manner. The individual membrane pockets only have to be stacked one on top of the other with their gas rings and braced. The gas rings lying one on top of the other preferably form distribution channels which represent the part of the guide structure for the first gas flow in the stack which establishes the flow connection with the interior of the membrane pockets. The gas rings of the inlet and outlet openings of the stacked membrane pockets thus result in a distribution channel through which the first gas is supplied and discharged. The gas rings are gas-tight against each other so that the first gas cannot escape laterally. The distribution channels of the first conductive structure usually open into connection points that are accommodated in a cover of the housing.
Besonders bevorzugt sind die vorgenannten Verteilerkanäle durchgehend geöffnet oder der Strömungspfad des ersten Gasstroms durch die Membrantaschen ist durch Umlenkplatten in den Verteilerkanälen vorgegeben. Nach der ersten Alternative werden alle Membrantaschen parallel durchströmt, was eine sehr einfache Realisation des Flachmembrankontaktors ermöglicht. Die zweite Alternative sieht ein Umlenken des Gasstroms vor, sodass alle Membrantaschen zum Beispiel in Reihe durchströmt werden. Die Umlenkstrukturen können jedoch auch so beschaffen sein, dass sich einzelne Blöcke aus mehreren Membrantaschen ergeben, die zwar parallel angeströmt werden, innerhalb derer jedoch die Membrantaschen in Reihe durchlaufen werden. Particularly preferably, the aforementioned distribution channels are open continuously or the flow path of the first gas stream through the membrane pockets is specified by deflection plates in the distribution channels. According to the first alternative, all membrane pockets are flown through in parallel, which enables a very simple realization of the flat membrane contactor. The second alternative provides for the gas flow to be deflected so that all membrane pockets are flown through in series, for example. However, the deflection structures can also be designed in such a way that individual blocks are formed from a plurality of membrane pockets, which are admittedly flowed on in parallel, but within which the membrane pockets are traversed in series.
Eine weitere bevorzugte Ausführungsform sieht vor, dass im Inneren der Membrantaschen eine Verteilerplatte vorhanden ist und diese Verteilerplatte auf ihrer Ober- und Unterseite Stege aufweist, die einen Strömungspfad für den ersten Gasstrom vorgeben. Die innere Verteilerplatte dient nicht nur einer mechanischen Stabilisierung der Membrantasche. Vielmehr dienen die Stege auf der Oberfläche der gleichmäßigeren Verteilung des Gasstroms im Inneren der Membrantasche und zur Ausbildung von Turbulenzen. Letzteres führt zu einer Reduzierung der durch laminare Strömung entstehenden Grenzschicht an der Membran, die den Austausch von Wasserdampf behindert. Alternativ zur inneren Verteilerplatte können in der Membrantasche abstandshaltende und strömungsbeeinflussende Elemente, wie polymere Abstandshalter, vorhanden sein, zum Beispiel netzartige Abstandshalter aus Polypropylen. A further preferred embodiment provides for a distributor plate to be present inside the membrane pockets, and for this distributor plate to have webs on its upper and lower side, which define a flow path for the first gas stream. The inner distributor plate not only serves to mechanically stabilize the membrane pocket. Rather, the webs on the surface serve to distribute the gas flow more evenly inside the membrane pocket and to create turbulence. The latter leads to a reduction in the boundary layer on the membrane, which is created by laminar flow and impedes the exchange of water vapor. As an alternative to the inner distributor plate, spacer and flow-influencing elements such as polymer spacers, for example net-like spacers made of polypropylene, can be present in the membrane pocket.
Ferner ist bevorzugt, wenn die Leitstrukturen für den zweiten Gasstrom Verteilerplatten umfassen, die abwechselnd mit den Membrantaschen im Stapel angeordnet sind. Jede Verteilerplatte weist insbesondere auf der Ober- und Unterseite Stege auf, die einen Strömungspfad für den zweiten Gasstrom über die Verteilerplatte vorgeben. Mit anderen
Worten, zwischen den Membrantaschen befinden sich die Verteilerplatten, über deren Ober- und Unterseite der zweite Gasstrom geleitet wird. Hierdurch wird die mechanische Stabilität des Stapels weiter erhöht. Zudem ermöglichen die Verteilerplatten eine gleichmäßigere Verteilung des Gasstromes über die Außenseiten der Membrantaschen, sodass der Wasserdampfaustausch forciert wird. Das Trennergebnis einer Membraneinheit ist zudem auch davon abhängig, dass bei der Überströmung der Membranoberfläche die laminare Grenzschicht zwischen dem Gasstrom und der Membranoberfläche geringgehalten wird. Die Ausbildung von Turbulenzen und damit eine Reduzierung der Grenzschicht kann insbesondere durch die Geometrie der Stege unterstützt werden. Alternativ zur Verteilerplatte können zwischen den Membrantaschen abstandshaltende und strömungsbeeinflussende Elemente, wie polymere Abstandshalter, vorhanden sein, zum Beispiel netzartige Abstandshalter aus Polypropylen. Furthermore, it is preferred if the guiding structures for the second gas stream comprise distributor plates which are arranged in the stack alternately with the membrane pockets. Each distributor plate has webs, in particular on the upper and lower side, which define a flow path for the second gas stream via the distributor plate. With others In other words, the distributor plates are located between the membrane pockets, and the second gas flow is conducted via the upper and lower sides of these plates. This further increases the mechanical stability of the stack. In addition, the distributor plates enable a more even distribution of the gas flow over the outside of the membrane pockets, so that the water vapor exchange is promoted. The separation result of a membrane unit also depends on the laminar boundary layer between the gas flow and the membrane surface being kept low when the membrane surface is flown over. The formation of turbulence and thus a reduction in the boundary layer can be supported in particular by the geometry of the webs. As an alternative to the distributor plate, spacer and flow-influencing elements such as polymer spacers, for example net-like spacers made of polypropylene, can be present between the membrane pockets.
Der Stapel aus Membrantaschen und ggf. dazwischen angeordnete Verteilerplatten werden in einem Gehäuse untergebracht. Vorteilhafterweise weist dabei eine Deckplatte des Gehäuses die Anschlüsse für die Leitstrukturen des ersten Gasstroms sowie die Anschlüsse für die Leitstrukturen des zweiten Gasstroms auf, sodass der Fertigungsprozess stark vereinfacht und ein im Bauraum besonders kompakter Flachmembrankontaktor bereitgestellt wird. Der Stapel wird dabei insbesondere so in das Gehäuse eingebracht, dass sich zwei voneinander separierte Räume ergeben, die nur durch die zwischen den Membrantaschen bestehenden Freiräume verbunden sind. In der Deckplatte oberhalb des einen Raums ist ein Anschluss für den zweiten Gasstrom vorgesehen, wohingegen in der Deckplatte oberhalb des zweiten Raums ein entsprechender Auslass integriert ist. Bei diesem Aufbau kann die Leitstruktur für den zweiten Gasstrom demnach in großen Teilen bereits durch das Gehäuse selbst verwirklicht werden, sodass die Fertigungskosten besonders gering sind. The stack of membrane pockets and, if necessary, distributor plates arranged between them are accommodated in a housing. A cover plate of the housing advantageously has the connections for the guide structures of the first gas stream and the connections for the guide structures of the second gas stream, so that the manufacturing process is greatly simplified and a flat membrane contactor that is particularly compact in terms of installation space is provided. In particular, the stack is introduced into the housing in such a way that two separate spaces result, which are only connected by the free spaces existing between the membrane pockets. A connection for the second gas flow is provided in the cover plate above one space, whereas a corresponding outlet is integrated in the cover plate above the second space. With this design, the guide structure for the second gas flow can therefore already be realized to a large extent by the housing itself, so that the production costs are particularly low.
Besonders vorteilhaft aufgrund seiner kompakten Bauweise ist der Einsatz des zuvor beschriebenen Flachmembrankontaktors in Klimaanlagen oder Brennstoffzellen, zum Beispiel Polymerbrennstoffzellen für Kraftfahrzeuge. The use of the flat membrane contactor described above in air conditioning systems or fuel cells, for example polymer fuel cells for motor vehicles, is particularly advantageous due to its compact design.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert. The invention is explained in more detail below using an exemplary embodiment.
Ausführunqsbeispiel exemplary embodiment
Figur 1 zeigt in einer partiellen Explosionsdarstellung eine exemplarische Ausführungsform
eines Flachmembrankontaktors 100. Der Flachmembrankontaktor 100 umfasst ein Modulgehäuse 10, das mit einer Deckplatte 20 verschlossen wird. Im Inneren des Gehäuses 10 ist ein Stapel 40 aus einzelnen Membrantaschen 50 untergebracht. FIG. 1 shows an exemplary embodiment in a partially exploded view a flat membrane contactor 100. The flat membrane contactor 100 comprises a module housing 10 which is closed with a cover plate 20. A stack 40 of individual membrane pockets 50 is accommodated inside the housing 10 .
Eine Membrantasche 50 ist in Figur 2 näher dargestellt. Gemäß der vorliegenden Ausführungsform hat die Membrantasche 50 eine hexagonal gestreckte Grundform, wobei die Breite so gewählt ist, dass der Stapel 40 weitgehend dichtend an den Seitenwandungen des Gehäuses 10 anliegt. Die Membrantasche 50 umfasst zwei Membranen 52, die an den Rändern 54 miteinander verschweißt sind. Die Membranen 52 sind selektiv durchlässig für Wasserdampf. A membrane pocket 50 is shown in more detail in FIG. According to the present embodiment, the membrane pocket 50 has a hexagonally elongated basic shape, the width being selected such that the stack 40 bears largely sealingly against the side walls of the housing 10 . The membrane pocket 50 comprises two membranes 52 which are welded to one another at the edges 54 . The membranes 52 are selectively permeable to water vapor.
Jede Membrantasche 50 weist zwei Öffnungen 56, 58 auf, die den Ein- und Auslass eines Gasstromes ermöglichen. Die Einlass- und Auslassöffnungen 56, 58 sind mit Dichtungen 60 und Gasringen 62 versehen, die den Abstand zu benachbarten Membrantaschen 50 definieren, wobei die Dichtungen 60 und Gasringe 62 auch als ein Teil ausgeführt sein können. Das Gas kann durch eine Vielzahl radialer Bohrungen 64 der Gasringe 62 in das Innere der Membrantaschen 50 gelangen. Die Gasringe 62 können aus Metall oder Hartplastik geformt sein. Each membrane pocket 50 has two openings 56, 58 which allow the inlet and outlet of a gas flow. The inlet and outlet openings 56, 58 are provided with seals 60 and gas rings 62 which define the distance to adjacent membrane pockets 50, whereby the seals 60 and gas rings 62 can also be made as one piece. The gas can get into the interior of the membrane pockets 50 through a large number of radial bores 64 in the gas rings 62 . The gas rings 62 can be formed of metal or hard plastic.
In das Innere der Membrantasche 50 kann eine Verteilerplatte 70, zum Beispiel aus Metall, eingebettet sein. Die Oberfläche der inneren Verteilerplatte 70 ist beidseitig durch eine Anzahl von Stegen 72 strukturiert. Die Stege 72 dienen der gleichmäßigen Verteilung des Gasstromes im Inneren der Membrantasche 50 und sollen gleichzeitig Turbulenzen erzeugen, die der Ausbildung eines laminaren Grenzfilms an den Membranen 52 entgegenwirken und so den Austausch von Wasserdampf durch die Membran 52 zu erleichtern. A distributor plate 70, for example made of metal, can be embedded in the interior of the membrane pocket 50. The surface of the inner distributor plate 70 is structured on both sides by a number of webs 72 . The webs 72 serve to evenly distribute the gas flow inside the membrane pocket 50 and are intended at the same time to generate turbulence which counteracts the formation of a laminar boundary film on the membranes 52 and thus facilitates the exchange of water vapor through the membrane 52 .
Im Flachmembrankontaktor 100 gemäß Figur 1 sind eine Vielzahl von Membrantaschen 50 übereinandergestapelt, wobei die Öffnungen 56, 58 übereinanderliegen. Die Einlass- und Auslassöffnungen 56, 58 bilden dabei einen Einlass- und Auslassverteilerkanal entweder für das erste Gas oder das zweite Gas. In the flat membrane contactor 100 according to FIG. 1, a large number of membrane pockets 50 are stacked one on top of the other, with the openings 56, 58 lying one on top of the other. The inlet and outlet openings 56, 58 thereby form an inlet and outlet distribution channel for either the first gas or the second gas.
Der so aufgebaute Stapel 40 befindet sich in dem Modulgehäuse 10 mit der Deckplatte 20. Der Membranstapel 40 wird durch je zwei diagonal versetzte Zuganker - die jeweils eine Stange 90 und ein Endstück 92 umfassen - in den Verteilerkanälen gehalten. Die Deckplatte 20 besitzt eine umlaufende Dichtung und kann zusätzlich durch Schnappverschlüsse verstärkt werden. Sie ist mit einer Einlassöffnung 21 und einer Auslassöffnung 22 für das
zweite Gas und einer Einlassöffnung 23 und einer Auslassöffnung 24 für das erste Gas versehen. The stack 40 constructed in this way is located in the module housing 10 with the cover plate 20. The membrane stack 40 is held in the distributor channels by two diagonally offset tie rods each comprising a rod 90 and an end piece 92. The cover plate 20 has a circumferential seal and can also be reinforced with snap fasteners. It is equipped with an inlet opening 21 and an outlet opening 22 for the second gas and an inlet port 23 and an outlet port 24 for the first gas.
Bei dem exemplarisch dargestellten Flachmembrankontaktor 100 umfasst demnach eine erste Leitstruktur für einen ersten Gasstrom die beiden Ein- und Auslassöffnungen 23, 24 in der Deckelplatte 20, die sich aus dem übereinanderliegenden Öffnungen 56, 58 der Membrantaschen 50 ergebenden durchgehenden Verteilerkanäle sowie die inneren Wegstrecken in den einzelnen Membrantaschen 50. Eine zweite Leitstruktur für den zweiten Gasstrom umfasst die beiden Ein- und Auslassöffnungen 21 , 22 in der Deckelplatte 20 und die sich im Inneren des Modulgehäuses 10 anschließenden Räume, die in dem Beispiel durch Wandungen des Modulgehäuses 10 und den Stapel 40 begrenzt sind. Ferner stehen diese Räume untereinander in Strömungsverbindung über den Stapel 40, das heißt der durch die Öffnung 21 eintretende zweite Gasstrom wird zwischen den Modultaschen 50 entlang der Membranen 52 durch den Stapel 40 geleitet. Dementsprechend kann Wasserdampf zwischen den beiden Gasströmen ausgetauscht werden. In the case of the flat membrane contactor 100 shown as an example, a first guide structure for a first gas flow therefore comprises the two inlet and outlet openings 23, 24 in the cover plate 20, the continuous distribution channels resulting from the openings 56, 58 of the membrane pockets 50 lying one above the other, and the inner paths in the individual membrane pockets 50. A second guide structure for the second gas flow comprises the two inlet and outlet openings 21, 22 in the cover plate 20 and the adjoining spaces inside the module housing 10, which in the example are limited by walls of the module housing 10 and the stack 40 are. Furthermore, these spaces are in flow connection with one another via the stack 40, ie the second gas stream entering through the opening 21 is passed between the module pockets 50 along the membranes 52 through the stack 40. Accordingly, water vapor can be exchanged between the two gas streams.
In einer Ausführungsform fließt zum Beispiel das viel Wasserdampf enthaltende Gas durch das Innere der Membrantaschen 50. Der Strömungspfad für das feuchte Gas folgt also der ersten Leitstruktur. Wenig oder kein Wasserdampf enthaltendes Gas folgt dagegen im Gegenstrom einem Strömungspfad, der durch die zweite Leitstruktur vorgegeben ist. Dabei strömt das trockene Gas außen an den Membranen 52 der Membrantaschen 50 vorbei und nimmt Feuchtigkeit auf. Denkbar ist jedoch auch ein Betrieb, bei dem das trockene Gas durch das Innere der Membrantaschen 50 und das feuchte Gas im Gegenstrom zwischen den Membrantaschen 50 fließt. In one embodiment, for example, the gas containing a lot of water vapor flows through the interior of the membrane pockets 50. The flow path for the moist gas thus follows the first guiding structure. In contrast, gas containing little or no water vapor follows a flow path in counterflow, which is predetermined by the second guide structure. The dry gas flows past the outside of the membranes 52 of the membrane pockets 50 and absorbs moisture. However, operation is also conceivable in which the dry gas flows through the interior of the membrane pockets 50 and the moist gas flows countercurrently between the membrane pockets 50 .
In einer weiteren Ausführungsform kann zwischen den Membrantaschen 50 des Stapels 40 jeweils eine Verteilerplatte 80 angeordnet werden. Die Verteilerplatte 80 dient der gleichmäßigeren Verteilung des an den Membranen 52 der Membrantaschen 50 entlangströmenden Gasstroms. Dazu weisen Ober- und Unterseite der Verteilerplatte 80 eine Vielzahl von Stegen 82 auf, die Kanäle für den Gasstrom vorgeben. Die Kanäle erhöhen zugleich die Turbulenz und halten damit den Umfang der Konzentrationspolarisation an den Membranen 52 gering, sodass der Austausch von Wasserdampf verbessert wird. Weiterhin ist eine (beidseitige) Randdichtung 84 vorgesehen, welche potentielle Verluste durch eine Randströmung verhindert.
In a further embodiment, a distributor plate 80 can be arranged between each of the membrane pockets 50 of the stack 40 . The distributor plate 80 serves to distribute the gas stream flowing along the membranes 52 of the membrane pockets 50 more evenly. For this purpose, the top and bottom of the distributor plate 80 have a multiplicity of webs 82 which define channels for the gas flow. At the same time, the channels increase the turbulence and thus keep the extent of the concentration polarization at the membranes 52 small, so that the exchange of water vapor is improved. Furthermore, an edge seal 84 (on both sides) is provided, which prevents potential losses due to an edge flow.
Claims
1. Flachmembrankontaktor (100) zur Übertragung von Wasserdampf zwischen zwei Gasströmen, umfassend: a) einen in einem Gehäuse (10) angeordneten Stapel (40) von Membrantaschen (50), wobei jede Membrantasche (50) zwei an ihren Rändern gasdicht verschweißte Membranen (52) aufweist, die selektiv für Wasserdampf durchlässig sind; b) Leitstrukturen für einen ersten Gasstrom durch den Flachmembrankontaktor (100), die über Öffnungen (56, 58) in den Membrantaschen (50) in Strömungsverbindung mit dem Inneren der Membrantaschen (50) stehen; und c) Leitstrukturen für einen zweiten Gasstrom durch den Flachmembrankontaktor (100), die ausgelegt sind den zweiten Gasstrom außen an den Membrantaschen (50) vorbeizuführen, wobei die Membrantaschen (50) im Stapel (40) so angeordnet sind, dass ihre Öffnungen (56, 58) übereinander liegen, dadurch gekennzeichnet, dass die Öffnungen (56, 58) der Membrantaschen (50) mit Gasringen (62) versehen sind und der erste Gasstrom über die Gasringe (62) in Strömungsverbindung mit dem Inneren der Membrantaschen (50) steht. 1. Flat membrane contactor (100) for transferring water vapor between two gas streams, comprising: a) a stack (40) of membrane pockets (50) arranged in a housing (10), each membrane pocket (50) having two membranes ( 52) selectively permeable to water vapor; b) conducting structures for a first gas stream through the flat membrane contactor (100), which are in flow communication with the interior of the membrane pockets (50) via openings (56, 58) in the membrane pockets (50); and c) conducting structures for a second gas flow through the flat membrane contactor (100), which are designed to guide the second gas flow past the outside of the membrane pockets (50), the membrane pockets (50) being arranged in the stack (40) in such a way that their openings (56 , 58) lie one above the other, characterized in that the openings (56, 58) of the membrane pockets (50) are provided with gas rings (62) and the first gas stream is in flow communication with the interior of the membrane pockets (50) via the gas rings (62). .
2. Flachmembrankontaktor nach Anspruch 1 , dadurch gekennzeichnet, dass eine Höhe der übereinanderliegenden Gasringe (62) einen Abstand der Membrantaschen (50) untereinander vorgibt. 2. Flat membrane contactor according to claim 1, characterized in that a height of the superimposed gas rings (62) specifies a spacing of the membrane pockets (50) from one another.
3. Flachmembrankontaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die übereinanderliegenden Gasringe (62) Verteilerkanäle ausbilden, die den Teil der Leitstruktur für den ersten Gasstrom im Stapel (40) darstellen, der die Strömungsverbindung mit dem Inneren der Membrantaschen (50) herstellt. 3. Flat membrane contactor according to claim 1 or 2, characterized in that the superimposed gas rings (62) form distribution channels which represent the part of the guide structure for the first gas stream in the stack (40) which establishes the flow connection with the interior of the membrane pockets (50). .
4. Flachmembrankontaktor nach Anspruch 3, dadurch gekennzeichnet, dass die Verteilerkanäle durchgehend geöffnet sind oder der Strömungspfad des ersten Gasstroms durch die Membrantaschen (50) durch Umlenkplatten in den
Verteilerkanälen vorgegeben ist. Flachmembrankontaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Inneren der Membrantaschen (50) eine Verteilerplatte (70) vorhanden ist und diese Verteilerplatte (70) auf ihrer Ober- und Unterseite Stege (72) aufweist, die einen Strömungspfad für den ersten Gasstrom vorgeben. Flachmembrankontaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitstrukturen für den zweiten Gasstrom Verteilerplatten (80) umfassen, die abwechselnd mit den Membrantaschen (50) im Stapel (40) angeordnet sind. Flachmembrankontaktor nach Anspruch 6, dadurch gekennzeichnet, dass jede Verteilerplatte (80) auf der Ober- und Unterseite Stege (82) aufweist, die einen Strömungspfad für den zweiten Gasstrom über die Verteilerplatte (80) vorgeben. Klimaanlage oder Brennstoffzelle mit einem Flachmembrankontaktor (100) nach einem der vorhergehenden Ansprüche.
4. Flachmembrankontaktor according to claim 3, characterized in that the distribution channels are open continuously or the flow path of the first gas flow through the membrane pockets (50) by baffles in the distribution channels is specified. Flat membrane contactor according to one of the preceding claims, characterized in that inside the membrane pockets (50) there is a distributor plate (70) and this distributor plate (70) has webs (72) on its upper and lower side, which form a flow path for the first gas stream to pretend Flat membrane contactor according to one of the preceding claims, characterized in that the conducting structures for the second gas stream comprise distributor plates (80) which are arranged in the stack (40) alternately with the membrane pockets (50). Flat membrane contactor according to Claim 6, characterized in that each distributor plate (80) has webs (82) on the upper and lower side, which define a flow path for the second gas stream via the distributor plate (80). Air conditioning or fuel cell with a flat membrane contactor (100) according to one of the preceding claims.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21802603.7A EP4240519A2 (en) | 2020-11-09 | 2021-10-22 | Membrane contactor for transferring water vapor between two gas flows |
CA3201325A CA3201325A1 (en) | 2020-11-09 | 2021-10-22 | Membrane contactor for transferring water vapor between two gas flows |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020129403.4A DE102020129403A1 (en) | 2020-11-09 | 2020-11-09 | Membrane contactor for transferring water vapor between two gas streams |
DE102020129403.4 | 2020-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022096287A2 true WO2022096287A2 (en) | 2022-05-12 |
WO2022096287A3 WO2022096287A3 (en) | 2022-08-11 |
Family
ID=78528894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/079314 WO2022096287A2 (en) | 2020-11-09 | 2021-10-22 | Membrane contactor for transferring water vapor between two gas flows |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4240519A2 (en) |
CA (1) | CA3201325A1 (en) |
DE (1) | DE102020129403A1 (en) |
WO (1) | WO2022096287A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3139246A1 (en) * | 2022-08-31 | 2024-03-01 | Sogefi Filtration | Air humidifier for fuel cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009034095A1 (en) | 2008-07-23 | 2010-03-11 | GM Global Technology Operations, Inc., Detroit | WVT construction for reduced mass and improved sealing reliability |
DE102012008197A1 (en) | 2012-04-26 | 2013-10-31 | Al-Ko Kober Ag | Exchange system for the exchange of substances between two fluids |
DE102016224475A1 (en) | 2016-12-08 | 2018-06-14 | Bayerische Motoren Werke Aktiengesellschaft | Membrane humidifier, preferably for a fuel cell system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE8337473U1 (en) * | 1983-04-30 | 1985-04-18 | Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht | MEMBRANE CUSHION |
FR2698436B1 (en) * | 1992-11-20 | 1995-03-03 | Seccacier | Mass and heat exchanger with porous plates. |
DE10209918A1 (en) | 2002-03-07 | 2003-09-25 | Geesthacht Gkss Forschung | Device for processing and separating in particular biologically organic flow media |
DE102004051671A1 (en) * | 2004-10-22 | 2006-04-27 | Microdyn-Nadir Gmbh | Device for filtering substances from liquids |
JP2006156099A (en) * | 2004-11-29 | 2006-06-15 | Mitsubishi Electric Corp | Humidifier and its manufacturing method |
WO2012084960A1 (en) * | 2010-12-21 | 2012-06-28 | Statkraft Development As | Membrane system for pressure retarded osmosis (pro) |
US9101875B2 (en) * | 2012-06-11 | 2015-08-11 | 7Ac Technologies, Inc. | Methods and systems for turbulent, corrosion resistant heat exchangers |
US20180320988A1 (en) * | 2017-05-02 | 2018-11-08 | Dais Analytic Corporation | Compact membrane-based heat and mass exchanger |
DE102019217301A1 (en) * | 2018-11-16 | 2020-06-04 | Mahle International Gmbh | Humidification module for humidifying a fluid |
DE102019200451A1 (en) * | 2019-01-16 | 2020-07-16 | Audi Ag | Humidifier module with sewn-in flow field, humidifier, method of manufacturing a humidifier module and method of manufacturing a humidifier |
-
2020
- 2020-11-09 DE DE102020129403.4A patent/DE102020129403A1/en active Pending
-
2021
- 2021-10-22 CA CA3201325A patent/CA3201325A1/en active Pending
- 2021-10-22 EP EP21802603.7A patent/EP4240519A2/en active Pending
- 2021-10-22 WO PCT/EP2021/079314 patent/WO2022096287A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009034095A1 (en) | 2008-07-23 | 2010-03-11 | GM Global Technology Operations, Inc., Detroit | WVT construction for reduced mass and improved sealing reliability |
DE102012008197A1 (en) | 2012-04-26 | 2013-10-31 | Al-Ko Kober Ag | Exchange system for the exchange of substances between two fluids |
DE102016224475A1 (en) | 2016-12-08 | 2018-06-14 | Bayerische Motoren Werke Aktiengesellschaft | Membrane humidifier, preferably for a fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
DE102020129403A1 (en) | 2022-05-12 |
WO2022096287A3 (en) | 2022-08-11 |
CA3201325A1 (en) | 2022-05-12 |
EP4240519A2 (en) | 2023-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112005001084B4 (en) | Gas separator and method for its operation | |
DE10102447B4 (en) | Humidifier for use with a fuel cell | |
DE112004000908T5 (en) | humidifying | |
DE102005037485A1 (en) | Humidifier for fuel cell, has moisture permeable humidifying membranes filled with resin at position at which membrane faces frame-shaped portions of gas separators in stacked state | |
WO2017167925A1 (en) | Gas diffusion layer | |
DE102017201814A1 (en) | Flow plate for a humidifier | |
DE102014006394A1 (en) | Humidifier for a fuel cell | |
WO2004028671A1 (en) | Device for exchanging humidity between a humid and a dry gas flow | |
DE102020134182A1 (en) | MOISTURE EXCHANGERS, IN PARTICULAR HUMIDIFIER FOR A FUEL CELL AND FUEL CELL SYSTEM | |
DE102012218303A1 (en) | Method for producing humidifier for humidification of process gases for fuel cell, involves stacking generated strips on humidifier stack which is laminated with water-permeable membrane | |
DE102014006464A1 (en) | Humidifying device, for example, for a fuel cell | |
DE102014205029A1 (en) | Conditioning unit for conditioning an operating medium and fuel cell assembly with such | |
WO2018055132A1 (en) | Flow plate for a humidifier | |
WO2022096287A2 (en) | Membrane contactor for transferring water vapor between two gas flows | |
DE19743067A1 (en) | Flow module, especially fuel cell | |
DE102014006465A1 (en) | Humidifying device, for example for a fuel cell | |
WO2015110236A1 (en) | Moisture exchanger and fuel cell arrangement comprising same | |
EP4376988A1 (en) | Humidifying device having channel plates, channel partial plate and channel plate for a humidifying device | |
EP4008035B1 (en) | Humidifier, fuel cell device comprising a humidifier, and motor vehicle | |
DE102017221983A1 (en) | Variable fiber density humidifier for a fuel cell system, fuel cell system, and vehicle having such | |
DE102014009326B4 (en) | Humidification device, for example for a fuel cell | |
DE102019205814A1 (en) | Conditioning device and fuel cell device with such | |
DE102020111347A1 (en) | Moisture transmission layer, storage humidifier, fuel cell device and automobile | |
DE102019211583A1 (en) | Process for manufacturing a humidifier and humidifier | |
DE102019126308A1 (en) | Humidifier, fuel cell device and motor vehicle with a fuel cell device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21802603 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 3201325 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021802603 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021802603 Country of ref document: EP Effective date: 20230609 |