WO2022095946A1 - 手术机器人、控制方法、系统及可读存储介质 - Google Patents

手术机器人、控制方法、系统及可读存储介质 Download PDF

Info

Publication number
WO2022095946A1
WO2022095946A1 PCT/CN2021/128828 CN2021128828W WO2022095946A1 WO 2022095946 A1 WO2022095946 A1 WO 2022095946A1 CN 2021128828 W CN2021128828 W CN 2021128828W WO 2022095946 A1 WO2022095946 A1 WO 2022095946A1
Authority
WO
WIPO (PCT)
Prior art keywords
pose
manipulation end
surgical robot
force
manipulation
Prior art date
Application number
PCT/CN2021/128828
Other languages
English (en)
French (fr)
Inventor
杨君娟
葛银明
何超
李涛
彭维礼
Original Assignee
苏州微创畅行机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微创畅行机器人有限公司 filed Critical 苏州微创畅行机器人有限公司
Priority to EP21888638.0A priority Critical patent/EP4241715A4/en
Priority to US18/251,861 priority patent/US20230405815A1/en
Publication of WO2022095946A1 publication Critical patent/WO2022095946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1764Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/066Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0801Prevention of accidental cutting or pricking
    • A61B2090/08021Prevention of accidental cutting or pricking of the patient or his organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Definitions

  • the present invention relates to the field of robot-assisted surgical systems and methods, in particular to a surgical robot, a control method, a system and a readable storage medium.
  • the orthopedic surgical robot can effectively reduce the damage of soft tissue and bone tissue, reduce the bleeding and trauma of the patient, and is more conducive to the rehabilitation of the knee joint of the patient after the operation.
  • doctors still rely on doctors to control the scope of osteotomy. Different doctors have different surgical results, resulting in different surgical results for patients. There may even be misoperations during surgery, resulting in excessive amputation.
  • Soft tissue and bone tissue of the patient can effectively reduce the damage of soft tissue and bone tissue, reduce the bleeding and trauma of the patient, and is more conducive to the rehabilitation of the knee joint of the patient after the operation.
  • the purpose of the present invention is to provide a surgical robot, a control method, a system and a readable storage medium, so as to solve the problems that the boundary control of the existing surgical robot is difficult, inaccurate, and prone to misoperation.
  • a control method of a surgical robot includes a manipulation end, and the control method of the surgical robot includes:
  • the first feedback information includes command pose information of the joints of the manipulation end
  • the second feedback information includes torque information generated by the external environmental force on the joints of the manipulation end.
  • the step of compensating the driving information applied by the surgical robot to the manipulation end includes:
  • the command angle ⁇ of the joint of the manipulation end is obtained through kinematic inverse solution
  • the external environmental force torque Fc is calculated and obtained;
  • the driving information is obtained by compensating the external environment force Fc into the torque required for the joint of the manipulation end to move from the current pose to the commanded pose.
  • the calculation steps of the pose controller include:
  • the torque required for the joint of the manipulation end to move from the current pose to the commanded pose is calculated.
  • the command speed is calculated from the command pose difference.
  • the first feedback information includes command pose information of the joint of the manipulation end, and the first feedback information includes an impedance control model of the joint of the manipulation end by the external environmental force.
  • the step of compensating the driving information applied by the surgical robot to the manipulation end includes:
  • the command angle ⁇ of the joint of the manipulation end is obtained through kinematic inverse solution
  • the driving information is obtained based on the theoretical output torque Fs, the third torque and the second torque.
  • the input of the impedance control model includes the following steps:
  • the pose difference between the actual pose of the manipulation end and the command pose is obtained by calculating the positive kinematics solution
  • the pose difference is used as an input to the impedance control model.
  • the manipulation end includes a robotic arm and/or a manipulator
  • the first feedback information includes command pose information of the joints of the robotic arm and/or the manipulator
  • the manipulator is used to fix and Guide surgical instruments to perform surgical operations.
  • a readable storage medium which stores a program, and when the program is executed, implements the above-mentioned control method of a surgical robot.
  • a surgical robot which includes a manipulation end, the manipulation end including a robotic arm and/or a manipulator for guiding surgical instruments to perform surgical operations,
  • the manipulation tip is controlled by the control method of the surgical robot as described above.
  • a surgical robot system which includes a control device, a navigation device and a manipulation end, the navigation device is used for tracking the current pose of the manipulation end And the pose information is fed back to the control device, and the control device is used to control the manipulation end according to the method described above.
  • the manipulation end includes a robotic arm and a manipulator for guiding surgical instruments to perform surgical operations
  • the manipulator has multiple degrees of freedom
  • the first feedback information includes the robotic arm and/or the manipulator.
  • the surgical robot includes a manipulation end
  • the control method of the surgical robot includes: setting according to the edge information of the surgical object A safe area and a warning boundary outside the safe area; based on the distance function between the current pose of the manipulation end and the warning boundary, combined with the first feedback information fed back by the manipulation end and the second generated based on the external environmental force Feedback information to compensate the driving information applied by the surgical robot to the manipulation tip, so that the manipulation tip reduces, eliminates or limits the external environmental force to the manipulation tip after the manipulation tip exceeds the range of the safety zone. drive impact.
  • the external environmental force is reversely compensated to the driving joint, thereby realizing boundary control and allowing the external environment
  • the force acts on the patient as little as possible.
  • the manipulation end is outside the range of the safety zone, the additional driving torque required to drive the joints of the manipulator is greater, and the required external environmental force is greater, so as to avoid operator error. the effect of the operation.
  • Fig. 1 is the schematic diagram of the operation scene involved in the present invention
  • FIG. 2 is a schematic diagram of the degrees of freedom of the osteotomy guide tool according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of an osteotomy guide tool according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a surgical robot according to Embodiment 1 of the present invention.
  • Fig. 5 is the principle block diagram of the control method of Embodiment 1 of the present invention.
  • Fig. 6 is the principle block diagram of the control method of the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a physical model of impedance control according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of impedance control according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of admittance control in Embodiment 2 of the present invention.
  • proximal is generally the end close to the operator
  • proximal usually refers to the end close to the patient, that is, close to the surgical object
  • distal usually refers to the end close to the patient, that is, close to the surgical object
  • proximal end usually refers to the corresponding two parts, which not only include the end point, unless the content otherwise clearly pointed out.
  • the core idea of the present invention is to provide a surgical robot, a control method, a system and a readable storage medium, so as to solve the problems that the boundary control of the existing surgical robot is difficult, inaccurate, and prone to misoperation.
  • the following description is made with reference to the accompanying drawings.
  • FIG. 1 shows an exemplary embodiment, which shows an application scenario of knee joint replacement using a surgical robot.
  • the surgical robot of the present invention has no particular limitation on the application environment, and can also be applied to other operations, For example, surgery on the limbs, abdomen, chest, brain, etc.
  • the surgical robot is described by taking knee joint replacement as an example, but this should not be taken as a limitation of the present invention.
  • the surgical robot system includes a control device, a navigation device, a robotic arm 2 and an osteotomy guide tool 4 .
  • the robotic arm 2 is arranged on the operating trolley 1, and the control device is a computer in some embodiments, but the present invention is not limited to this, the computer is configured with a processor, a main display 8 and a keyboard 10, more preferably also A secondary display 7 is included. The contents displayed on the auxiliary display 7 and the main display 8 may be the same or different.
  • the navigation device may be a magnetic positioning navigation device, an optical positioning navigation device/optical positioning sensor or an inertial positioning navigation device.
  • the navigation device is an optical positioning and navigation device. Compared with other navigation methods, the measurement accuracy is high, and the positioning accuracy of the osteotomy guide tool 4 can be effectively improved.
  • an optical positioning and navigation device is used as an example for description, but it is not limited thereto.
  • the navigation device specifically includes a navigation marker and a tracker 6, the navigation marker includes a base target 15 and a tool target 3, and the base target 15 is fixed, for example, the base target 15 is fixed on the operating trolley 1. It is used to provide a base coordinate system (or a base target coordinate system), and the tool target 3 is installed on the osteotomy guide tool 4 to track the position of the osteotomy guide tool 4 .
  • the osteotomy guide tool 4 is installed at the end of the mechanical arm 2 , so that the osteotomy guide tool 4 is supported by the mechanical arm 2 and the spatial position and posture of the osteotomy guide tool 4 are adjusted.
  • the tracker 6 is used to capture the signal reflected by the tool target 3 (preferably the optical signal from the tracker 6 ) and record the pose of the tool target 3 (that is, the position and attitude of the tool target 3 under the base frame) , and then the computer program stored in the memory of the control device controls the movement of the manipulator 2 according to the current pose and the desired pose of the tool target 3.
  • the manipulator 2 drives the osteotomy guide tool 4 and the tool target 3 to move, and makes the tool target move. 3 reaches the desired pose, the desired pose of the tool target 3 corresponds to the desired pose of the osteotomy guide tool 4 .
  • the automatic positioning of the osteotomy guide tool 4 can be realized, and the real-time pose of the osteotomy guide tool 4 can be tracked and fed back by the tool target 3 during the operation, and the cutting can be realized by controlling the movement of the mechanical arm 2
  • the adjustment of the position and posture of the osteotomy guide tool 4 can further control the surgical instruments (such as an oscillating saw or an electric drill) installed on the osteotomy guide tool 4 .
  • the osteotomy guide tool 4 is supported without the need to fix the guide tool on the human body, thereby avoiding injury to the human body.
  • the surgical robot further includes an operating trolley 1 and a navigation trolley 9 .
  • the control device and a part of the navigation device are installed on the navigation trolley 9, for example, the processor is installed inside the navigation trolley 9, the keyboard 10 is placed outside the navigation trolley 9 for operation, and the main
  • the display 8 , the auxiliary display 7 and the tracker 6 are all mounted on a bracket, the bracket is vertically fixed on the navigation trolley 9 , and the robotic arm 2 is mounted on the operating trolley 1 .
  • the use of the operating trolley 1 and the navigation trolley 9 makes the entire surgical operation more convenient.
  • the use process of the surgical robot of this embodiment generally includes the following operations:
  • Step SK1 Move the operating trolley 1 and the navigation trolley 9 to a suitable position beside the hospital bed;
  • Step SK2 install the navigation markers (the navigation markers also include the femoral target 11, the tibia target 13), the osteotomy guide tool 4 and other related components (such as sterile bags);
  • Step SK3 preoperative planning; specifically, the operator imports the CT/MRI scan model of the patient's bone into the computer for preoperative planning, and obtains an osteotomy plan, which includes, for example, the coordinates of the osteotomy plane and the model of the prosthesis. and the installation orientation of the prosthesis; specifically, according to the image data of the patient’s knee joint obtained by CT/MRI scans, a 3D knee joint virtual model is created, and then an osteotomy plan is created according to the 3D knee joint virtual model, so that the operator can The bone plan is preoperatively evaluated. More specifically, the osteotomy plan is determined based on the three-dimensional virtual model of the knee joint, combined with the obtained size specifications of the prosthesis and the installation position of the osteotomy plate.
  • the osteotomy plan is finally in the form of a surgical report.
  • the output records a series of reference data such as the coordinates of the osteotomy plane, the amount of osteotomy, the angle of the osteotomy, the size of the prosthesis, the installation position of the prosthesis, surgical aids, etc. It also includes a series of theoretical explanations, such as selecting the osteotomy
  • the reasons for the angle, etc. are provided as a reference for the surgical operator; wherein, the three-dimensional knee joint virtual model can be displayed through the main display 8, and the operator can input surgical parameters through the keyboard 10 for preoperative planning;
  • Step SK4 real-time bone registration; in this embodiment, the navigation markers further include a femoral target 11 and a tibia target 13 .
  • the femoral target 11 is used to locate the spatial position and posture of the femur 12
  • the tibial target 13 is used to locate the spatial position and posture of the tibia 14 .
  • the processor can obtain the actual orientation/pose of the femur 12 and the tibia 14 through the feature matching algorithm, and correspond to the image orientation of the femur 12 and the tibia 14, and then navigate.
  • the device associates the actual orientation of the femur 12, tibia 14 with the corresponding targets mounted on the femur 12 and tibia 14, so that the femoral target 11 and the tibial target 13 can track the actual position of the bone in real time.
  • the actual positions of the femur 12 and the tibia 14 are linked with the corresponding targets installed on the femur 12 and the tibia 14 through the navigation device, so that the femoral target 11 and the tibia target 13 can track the actual position of the bone in real time, and during the operation, as long as the target
  • the relative position with the bone is fixed, and the movement of the bone will not affect the surgical effect;
  • Step SK5 Drive the robotic arm 2 to move to a predetermined position to perform the surgical operation; specifically, send the coordinates of the preoperatively planned osteotomy plane to the robotic arm 2 through the navigation device, and the robotic arm 2 locates the osteotomy plane through the tool target 3
  • the manipulator 2 enters the holding state (ie does not move), after that, the operator can use the osteotomy tool 5 such as an oscillating saw or an electric drill to guide, fix or position the osteotomy guide tool 4 to perform the operation. Osteotomy and/or drilling operations. After the osteotomy and drilling operations are completed, the operator can install the prosthesis and perform other surgical operations.
  • the traditional surgery and the navigation surgery system without the robotic arm involved in the positioning requires manual adjustment and positioning of the osteotomy guide tool, which has poor accuracy and low adjustment efficiency, and the use of the robotic arm 2 to locate the osteotomy guide tool 4, the operator does not need to use additional bone
  • the nails fix the osteotomy guide tool to the bone, reducing the traumatic surface of the patient and reducing operative time.
  • the tool target 3 can be installed on the osteotomy guide tool 4 , but in other embodiments, the tool target 3 can also be installed on the distal joint of the robotic arm 2 .
  • robot-assisted surgery can be realized, helping the operator to locate the position to be osteotomy or the osteotomy tool, so as to facilitate the operator to perform the osteotomy.
  • the movement range of the osteotomy guide tool 4 cannot be effectively limited within a certain boundary range, which will cause unnecessary harm to the patient during misoperation.
  • an embodiment of the present invention provides a control method for a surgical robot, where the surgical robot includes a manipulation end.
  • the manipulation end includes at least one of a robotic arm 2 and a manipulator (for guiding a surgical instrument to perform a surgical operation, such as an osteotomy guide tool 4 ) or a combination of both.
  • the control method of the surgical robot is used to control the movement of the manipulation tip.
  • the manipulator is not limited to the osteotomy guide tool 4 , but is also applicable to other occasions where the movement range of the manipulation end of the surgical robot is limited.
  • the surgical robot is controlled using the control method.
  • FIG. 2 is a schematic diagram of the degree of freedom of the osteotomy guide tool according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the osteotomy guide tool according to the first embodiment of the present invention
  • FIG. 4 is the present invention
  • FIG. 5 is a principle block diagram of the control method according to the first embodiment of the present invention.
  • Embodiment 1 is described by taking an osteotomy guide tool 4 as an example of manipulating the distal end.
  • the osteotomy guide tool and/or the joint of the robotic arm can also be controlled.
  • Figures 2 to 3 show an osteotomy guide tool 4, which includes three degrees of freedom, namely, the translational degrees of freedom along the X axis, the translational degrees of freedom along the Y axis, and the translational degrees of freedom around the Z axis shown in Figure 2.
  • FIG. 3 which is a schematic top view of the osteotomy guide tool 4 .
  • the osteotomy guide tool 4 includes an X-direction translation axis 16 , a Y-direction translation axis 17 , and a translation axis perpendicular to the X-direction 16 and 16 .
  • the X-direction translation axis 16 , the Y-direction translation axis 17 and the Z axis 18 can be regarded as three joints corresponding to the osteotomy guide tool 4 .
  • the three joints can obtain the driving information from the control device, and according to the driving information
  • the information performs the action, for example, the osteotomy guide tool 4 includes three joint drive motors to correspond to three degrees of freedom.
  • the manipulation end can also be a robotic arm 2, which also includes several joint drive motors.
  • the manipulation end may also include a robotic arm 2 and an osteotomy guide tool 4 .
  • the tracker 6 can identify the position and posture of the space where the osteotomy tool 5 is currently located through the base target 15. maintain state, fixed at a certain position), its pose under the tracker 6 is (This pose is the pose information obtained by the control device according to the joint encoder in the manipulator first, and then the pose information of the manipulator under the tracker is obtained after the pose information is transformed by the matrix), the osteotomy guide tool 4 The pose under the tracker 6 is (This pose is calculated by tracking the tool target 3 on the osteotomy guide tool 4 by the tracker 6 ), then when the robotic arm 2 does not move, the osteotomy guide tool 4 moves alone to adjust the pose of the osteotomy tool 5 for:
  • the position and posture of the osteotomy guiding tool 4 alone can be tracked and obtained by the tracker 6 . Since the osteotomy tool 5 is mounted on the osteotomy guide tool 4 , the posture of the osteotomy guide tool 4 reflects the spatial posture of the osteotomy tool 5 .
  • the control method of the surgical robot includes:
  • Step S1 setting a safety zone and a warning boundary outside the safety zone according to the edge information of the surgical object;
  • Step S2 Based on the distance function between the current pose of the surgical instrument (eg, the osteotomy tool 5 ) installed on the manipulation end (eg, the osteotomy guide tool 4 ) and the warning boundary, combined with the first feedback fed back by the manipulation tip information and the second feedback information generated based on the external environmental force, to compensate the driving information applied by the surgical robot to the manipulation tip, so that the manipulation tip reduces, eliminates or limits after the manipulation tip exceeds the range of the safety zone The driving influence of the external environmental force on the manipulation tip.
  • the surgical instrument eg, the osteotomy tool 5
  • the manipulation end eg, the osteotomy guide tool 4
  • the bone is taken as an example of the operation object for description.
  • a safety zone and a warning boundary need to be set first.
  • the edge information of the bone can be obtained through an image acquisition device (eg, a scanning device such as CT), and the safety zone and the warning boundary can be set according to the edge information of the bone.
  • the image acquisition device collects the environmental boundary of the bone, and then the operator (such as a doctor) sets the preoperative plan based on experience, and sets the warning boundary and safety zone on the basis of the environmental boundary (starting from the bone, in order from the inside to the outside) It is the safety zone-environment boundary-warning boundary, where the safety zone is located in the innermost and belongs to the safe operation area of the operation).
  • the first feedback information includes the command pose information of the joints of the robotic arm 2 and/or the osteotomy guide tool 4
  • the second feedback information includes The torque information exerted on the osteotomy guide tool 4 is calculated based on the force generated by the joints of the arm 2 and/or the osteotomy guide tool 4 .
  • the robot arm 2 and/or the osteotomy guide are combined with the distance function.
  • the pose information of the joints of the tool 4 and the torque information generated by the external environmental force to the osteotomy guide tool 4, the control mode of torque compensation is used to compensate the drive information applied by the control device to the osteotomy guide tool 4,
  • the external environmental forces can be minimized or not applied to the bones.
  • the warning boundary includes a warning line or a warning surface, and those skilled in the art can establish a distance function between the current position of the osteotomy guide tool 4 and the warning boundary according to the prior art.
  • the osteotomy guide tool 4 can be moved in a certain direction to a safe area and stopped, and then the distance function can be established.
  • the osteotomy guide tool 4 has three joints with three degrees of freedom, that is, it adds three additional degrees of freedom of movement to the body of the multiple joints of the robotic arm 2. For example, if the robotic arm 2 has 6 degrees of freedom, then the robotic arm 2 and the osteotomy guide tool 4 have a total of 9 degrees of freedom of movement at this time, which significantly improves the flexibility of surgical operations.
  • the external environmental force includes: the resistance generated by the surgical object (eg, bone) to the manipulation end (eg, the osteotomy guide tool 4 ), and the traction force exerted by the operator on the osteotomy guide tool 4 .
  • the traction force applied by the operator to the osteotomy guide tool 4 may be a pushing force or a pulling force of a human hand.
  • the external environmental force such as the equivalent torque F that can be measured and output by the force sensor 304
  • the force sensor 304 includes but is not limited to a six-dimensional force sensor or a joint torque sensor, etc., which can be installed on the osteotomy guide tool 4, and the force sensor 304 can be The operator's traction on the osteotomy guide tool 4 and the resistance of the bone to the osteotomy guide tool 4 via the osteotomy tool 5 are measured.
  • the external environmental force can also be the equivalent torque F obtained by the electric current of the joint driving motor of the osteotomy guide tool 4 .
  • the step of compensating the driving information applied by the surgical robot to the osteotomy guide tool 4 includes:
  • Step SA1 Obtain the command angle ⁇ of the joint of the osteotomy guide tool 4 through the kinematic inverse solution 301 according to the command pose information Xd; the command pose refers to the target pose sent by the control system of the surgical robot to the osteotomy guide tool 4 , the command angle ⁇ refers to the target angle of the joint sent by the control system of the surgical robot to the osteotomy guide tool 4 .
  • Step SA2 The commanded angle ⁇ is used as the input of the dynamic calculation 305, and the theoretical output torque Fs is obtained by calculation. Specifically, the commanded angle ⁇ can be decomposed into the commanded position and commanded speed of the joint of the osteotomy guide tool 4 , and the commanded position and commanded speed of the joint can be calculated according to the dynamic calculation 305 to obtain the theoretical output torque of the joint of the osteotomy guide tool 4 Fs.
  • Step SA3 The command angle ⁇ is used as the input of the pose controller 302, and the moment required for the joint of the osteotomy guide tool 4 to move from the current pose to the command pose (ie the target pose) is calculated. Further, the calculation step of the pose controller 302 includes: according to the command pose and the current pose, and the command speed and the current speed of the joints of the osteotomy guide tool 4, calculate the joints of the osteotomy guide tool 4 from the current position. The torque required to move the pose to the commanded pose. Preferably, the command speed is calculated from the command pose difference.
  • Step SA4 According to the equivalent torque F, the gravity compensation and friction compensation torque N and the theoretical output torque Fs output by the force sensor 304 under the action of the external environmental force, calculate the external environmental force torque Fc (see Fig. 5 in number 306).
  • the external environmental force moment Fc here can be understood as the resultant moment of the traction moment f of the operator to the osteotomy guide tool 4 and the resistance moment Fa of the bone to the osteotomy guide tool 4 via the osteotomy tool 5 .
  • the external environment force torque Fc is processed by a force controller 307, so that the calculated theoretical external environment force torque Fc is more in line with the real value.
  • Step SA5 Compensate the external environmental force moment Fc to the moment required for the joint of the osteotomy guide tool 4 to move from the current posture to the commanded posture (see the reference numeral 308 in FIG. 5 ), and obtain the driving information, so as to obtain the driving information.
  • the control of the manipulation tip is realized (see reference numeral 303 in Fig. 5).
  • the joint moment to be compensated is calculated according to the distance function and compensated into each joint of the osteotomy guide tool 4, so as to obtain the driving information of each joint.
  • the system will automatically increase the resistance generated by each joint, so as to resist the operator's traction force, so that the operator's traction force can act on the osteotomy surface as little as possible to achieve protection effect.
  • the osteotomy guide tool 4 works normally in the safe area; if the osteotomy guide tool 4 crosses the safety boundary, it can perform speed-limited movement; when the warning boundary is reached, the system executes the control according to the distance function.
  • the osteotomy guide tool 4 moves along the warning border or stops on the warning border. In this way, the purpose of reducing the driving influence of the external environmental force on the osteotomy guiding tool 4 after the osteotomy guiding tool 4 exceeds the range of the safety zone is achieved.
  • This embodiment also provides a readable storage medium on which a program is stored. When the program is executed, the above-mentioned control method is implemented.
  • the readable storage medium can be integrated into a surgical robot, such as integrated into a control device. can also be attached independently.
  • this embodiment also provides a surgical robot system, which includes a control device, a navigation device, and a manipulation terminal, where the navigation device is used to track the current posture of the manipulation terminal and feed back the posture information to the control device.
  • the control means for controlling the manipulation tip according to the method as described above.
  • the manipulation end includes a robotic arm and a manipulator for guiding surgical instruments to perform surgical operations, the manipulator has multiple degrees of freedom, and the first feedback information includes the Command pose information of the joints of the manipulator and/or the manipulator.
  • the external environmental force is reversely compensated to the driving joint, so as to realize the boundary control and let the external environment
  • the force acts on the patient as little as possible, and when the manipulation end is outside the range of the safety zone, the required external environmental force is greater, so as to achieve the effect of avoiding the operator's misoperation.
  • FIG. 6 is a schematic block diagram of the control method according to the second embodiment of the present invention
  • FIG. 7 is a schematic diagram of the physical model of impedance control according to the second embodiment of the present invention
  • FIG. 8 is the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of admittance control in Embodiment 2 of the present invention.
  • the surgical robot, control method, system, and readable storage medium provided by the second embodiment of the present invention are basically the same as the surgical robot, control method, system, and readable storage medium of the surgical robot provided by the first embodiment, and the same parts will not be described again. Only the differences are described below.
  • the control method provided in the second embodiment mainly adopts the impedance control mode to compensate the traction force exerted by the operator.
  • the first feedback information includes: command pose information of the joints of the manipulation end
  • the second feedback information includes an impedance control model of the joints of the manipulation end by the external environmental force.
  • the second embodiment also takes the bone as the surgical object, and takes the osteotomy guide tool 4 as the manipulation end as an example for description.
  • the steps of compensating the driving information applied by the surgical robot to the osteotomy guide tool 4 include:
  • Step SB1 According to the commanded pose information Xd, the commanded angle ⁇ of the joint of the osteotomy guide tool 4 is obtained through the inverse kinematics solution 301 .
  • Step SB2 The commanded angle ⁇ is used as the input of the dynamic calculation 305, and the theoretical output torque Fs is obtained by calculation.
  • the meaning and solution process of the above command angle ⁇ and the theoretical output torque Fs reference may be made to steps SA1 and SA2 of the first embodiment.
  • Step SB3 Based on the pose difference between the current pose of the osteotomy guide tool 4 and the command pose, and the speed difference between the current speed of the osteotomy guide tool 4 and the command speed, according to the impedance control model 312, Calculate the first moment in Cartesian space.
  • the first moment can be understood as a calculated virtual moment in Cartesian space.
  • Step SB4 Convert the first moment to each joint of the osteotomy guide tool 4 according to the transposition J T of the Jacobian matrix at the current joint angle, to obtain the second moment received by each joint (see reference numeral 313 in FIG. 6 ) .
  • the second moment can be understood as the compensation moment of each joint in each joint space obtained by multiplying the first moment by the transposition of the Jacobian matrix.
  • Step SB5 Compensate the corresponding friction force feedforward fm to each joint of the osteotomy guide tool 4 to obtain the third moment of each joint.
  • the frictional force feedforward fm can be calculated according to the speed information of each joint fed back by the osteotomy guide tool 4 .
  • the frictional force feed-forward fm is compensated to each joint of the osteotomy guide tool 4, and the joint torque can be fed-forwardly compensated.
  • Step SB6 Obtain the driving information based on the theoretical output torque Fs, the third torque and the second torque, so as to realize the control of the osteotomy guide tool 4 (see reference numeral 303 in FIG. 6 ).
  • the joint torque of the osteotomy guide tool 4 consists of three parts, the first part is the theoretical output torque Fs, the second part is the second torque converted from the first torque, and the third part is the friction compensation of each joint (ie third moment).
  • FIG. 7 shows a physical model of impedance control
  • FIG. 8 shows a physical model of impedance control
  • M represents the mass of the physical model
  • the wavy line on the right side represents the spring
  • D represents the damping
  • Figure 8 is the expression of the transfer function in the control theory
  • Md is equivalent to the mass parameter of the physical model in Figure 7
  • Bd is equivalent to the damping coefficient of the physical model in Fig. 7
  • Kd is equivalent to the spring coefficient of the spring of the physical model in Fig. 7.
  • the input of the impedance control model includes the following steps:
  • Step SC1 According to the equivalent torque F output by the force sensor 304 under the action of the external environmental force, the posture change corresponding to the joint is calculated according to the admittance control 311; FIG. 9 shows the principle diagram of the admittance control 311, It is also the expression of the transfer function in control theory, Ms is equivalent to the mass parameter of the physical model in Figure 7, Bs is equivalent to the damping coefficient of the physical model in Figure 7, Ks is equivalent to the spring of the physical model in Figure 7 elastic coefficient.
  • Ms is equivalent to the mass parameter of the physical model in Figure 7
  • Bs is equivalent to the damping coefficient of the physical model in Figure 7
  • Ks is equivalent to the spring of the physical model in Figure 7 elastic coefficient.
  • Step SC2 Based on the change in the pose, the pose difference between the actual pose and the command pose of the osteotomy guide tool 4 is obtained by calculating the positive kinematics solution 310 .
  • Step SC3 Use the pose difference as the input of the impedance control model. Therefore, when the osteotomy guide tool 4 is closer to the warning boundary, the additional driving torque required to drive its joint is greater, and the external force exerted by the operator is also greater, thereby reducing the risk of misoperation during the operation.
  • the osteotomy guide tool 4 is used as the manipulation end. Since the osteotomy guide tool 4 has only three degrees of freedom, it is beneficial to simplify the kinematic model and the dynamic model, thereby facilitating the inverse kinematics solution 301 and the positive kinematics solution 310 and Implementation of Kinetic Calculations 305 .
  • the manipulator 2 can also be used as the manipulation end, or the manipulator 2 and the osteotomy guide tool 4 can be combined together to be regarded as the manipulation end. It can be understood that when there are more than three degrees of freedom, corresponding to the above control method, in addition to considering the effect of the moment, the corresponding force can also be taken into consideration. It can be understood that, in other embodiments, the control method is not limited to be applied in knee replacement surgery.
  • the surgical robot includes a manipulation end
  • the control method of the surgical robot includes: according to the edge of the surgical object
  • the information sets a safe area and a warning boundary outside the safe area; based on the distance function between the current pose of the manipulation end and the warning boundary, combined with the first feedback information fed back by the manipulation end and generated based on external environmental forces
  • the second feedback information compensates the driving information applied by the surgical robot to the manipulation end, so that the manipulation end reduces, eliminates or limits the impact of the external environmental force on the manipulation end after it exceeds the range of the safety zone. Manipulate the drive influence of the end.
  • the external environmental force is reversely compensated to the driving joint, thereby realizing boundary control and allowing the external environment
  • the force acts on the patient as little as possible.
  • the manipulation end is outside the range of the safety zone, the additional driving torque required to drive the joints of the manipulator is greater, and the required external environmental force is greater, so as to avoid operator error. the effect of the operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人、控制方法、系统及可读存储介质,手术机器人包括一操纵末端,手术机器人的控制方法包括:依据手术对象的边缘信息设定安全区及位于安全区之外的警戒边界;基于操纵末端的当前位姿与警戒边界的距离函数,结合操纵末端所反馈的第一反馈信息和基于外部环境力所产生的第二反馈信息,补偿手术机器人向操纵末端施加的驱动信息,以使操纵末端在超出安全区的范围后,减少、消除或限制外部环境力对操纵末端的驱动影响。

Description

手术机器人、控制方法、系统及可读存储介质 技术领域
本发明涉及机器人辅助手术系统和方法领域,特别涉及一种手术机器人、控制方法、系统及可读存储介质。
背景技术
骨科手术机器人可以有效减少软组织和骨组织的损伤,患者出血少,创伤小,更有利于患者的术后的膝关节的康复。但是,一般的机器人手术过程中仍靠医生把控截骨范围,不同医生的手术结果各不相同,使得患者的手术效果各不相同,甚至可能有术中误操作的发生,使得过多截掉患者的软组织及骨组织。
因此,需要对骨科手术机器人的截骨边界进行限制,以有效的限制机器人在边界范围内运动。尽管已有设计方案来限制机器人的运动边界,但是此类方案需要得到触觉设备的精确的动力学模型,对于机构较为复杂的手术机器人实现难度较大,特别是当有摩擦力等非线性因素影响时,容易让医生误判。
发明内容
本发明的目的在于提供一种手术机器人、控制方法、系统及可读存储介质,以解决现有的手术机器人的边界控制不易、不准确,易误操作的问题。
为解决上述技术问题,根据本发明的第一个方面,提供了一种手术机器人的控制方法,所述手术机器人包括一操纵末端,所述手术机器人的控制方法包括:
依据手术对象的边缘信息设定安全区及位于所述安全区之外的警戒边界;
基于操纵末端的当前位姿与警戒边界的距离函数,结合所述操纵末端所反馈的第一反馈信息和基于外部环境力所产生的第二反馈信息,补偿所述手术机器人向所述操纵末端施加的驱动信息,以使所述操纵末端在超出所述安全区的范围后,减少、消除或限制所述外部环境力对所述操纵末端的驱动影 响。
可选的,所述第一反馈信息包括所述操纵末端的关节的指令位姿信息,所述第二反馈信息包括由所述外部环境力对所述操纵末端的关节产生的力矩信息。
可选的,补偿所述手术机器人向所述操纵末端施加的驱动信息的步骤包括:
根据所述指令位姿信息Xd通过运动学反解得到所述操纵末端的关节的指令角度θ;
将所述指令角度θ作为动力学计算的输入,计算得到理论输出力矩Fs;
将所述指令角度θ作为位姿控制器的输入,计算得到所述操纵末端的关节从当前位姿运动到指令位姿所需的力矩;
根据力传感器在所述外部环境力作用下感应的等效力矩F、重力补偿及摩擦力补偿力矩N以及所述理论输出力矩Fs,计算得到所述外部环境力力矩Fc;
将所述外部环境力Fc补偿到所述操纵末端的关节从当前位姿运动到指令位姿所需的力矩中,得到所述驱动信息。
可选的,所述外部环境力包括:手术对象对所述操纵末端产生的阻力力矩Fa、以及操作者对所述操纵末端施加的牵引力力矩f;所述等效力矩F满足:F=Fs+N+Fa+f;所述外部环境力力矩Fc满足:Fc=F-Fs-N。
可选的,所述位姿控制器的计算步骤包括:
根据所述操纵末端的关节的指令位姿和当前位姿、以及指令速度与当前速度,计算得到所述操纵末端的关节从当前位姿运动到指令位姿所需的力矩。
可选的,所述指令速度由指令位姿差分计算得到。
可选的,所述第一反馈信息包括所述操纵末端的关节的指令位姿信息,所述第一反馈信息包括由所述外部环境力对所述操纵末端的关节的阻抗控制模型。
可选的,补偿所述手术机器人向所述操纵末端施加的驱动信息的步骤包括:
根据所述指令位姿信息Xd通过运动学反解得到所述操纵末端的关节的 指令角度θ;
将所述指令角度θ作为动力学计算的输入,计算得到理论输出力矩Fs;
基于所述操纵末端的当前位姿与指令位姿之间的位姿差、以及所述操纵末端的当前速度与指令速度之间的速度差,根据所述阻抗控制模型,计算得到笛卡尔空间下的第一力矩;
将所述第一力矩根据当前关节角度下的雅可比矩阵的转置换算到各个关节受到的第二力矩;
将对应的摩擦力前馈f补偿到所述操纵末端的各个关节上,得到各个关节的第三力矩;
基于所述理论输出力矩Fs、第三力矩以及第二力矩得到所述驱动信息。
可选的,所述阻抗控制模型的输入包括以下步骤:
根据力传感器在所述外部环境力作用下输出的等效力矩F,根据导纳控制计算得到关节对应的位姿变化量;
基于所述位姿变化量,通过运动学正解计算得到所述操纵末端的实际位姿与指令位姿之间的位姿差;
将所述位姿差作为所述阻抗控制模型的输入。
可选的,所述操纵末端包括机械臂和/或操纵器,所述第一反馈信息包括所述机械臂和/或所述操纵器的关节的指令位姿信息,所述操纵器用于固定并引导手术器械进行手术操作。
为解决上述技术问题,根据本发明的第二个方面,还提供了一种可读存储介质,其上存储有程序,所述程序被执行时实现如上所述的手术机器人的控制方法。
为解决上述技术问题,根据本发明的第三个方面,还提供了一种手术机器人,其包括操纵末端,所述操纵末端包括机械臂和/或用于引导手术器械进行手术操作的操纵器,所述操纵末端利用如上所述的手术机器人的控制方法进行控制。
为解决上述技术问题,根据本发明的第四个方面,还提供了一种手术机器人系统,其包括控制装置、导航装置以及操纵末端,所述导航装置用于跟 踪所述操纵末端的当前位姿并将位姿信息反馈给所述控制装置,所述控制装置用于根据如上所述的方法控制所述操纵末端。
可选的,所述操纵末端包括机械臂以及用于引导手术器械进行手术操作的操纵器,所述操纵器具有多个自由度,所述第一反馈信息包括所述机械臂和/或所述操纵器的关节的指令位姿信息。
综上所述,在本发明提供的手术机器人、控制方法、系统及可读存储介质中,所述手术机器人包括一操纵末端,所述手术机器人的控制方法包括:依据手术对象的边缘信息设定安全区及位于所述安全区之外的警戒边界;基于操纵末端的当前位姿与警戒边界的距离函数,结合所述操纵末端所反馈的第一反馈信息和基于外部环境力所产生的第二反馈信息,补偿所述手术机器人向所述操纵末端施加的驱动信息,以使所述操纵末端在超出所述安全区的范围后,减少、消除或限制所述外部环境力对所述操纵末端的驱动影响。
如此配置,通过将第一反馈信息和第二反馈信息补偿到向所述操纵末端施加的驱动信息中,实现将外部环境力反向补偿到驱动关节上,从而实现了边界控制,可以让外部环境力尽可能少的作用到患者上,当操纵末端在超出所述安全区的范围后,则驱动机械臂关节所需的额外驱动力矩越大,所需外部环境力越大,实现避免操作者误操作的效果。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明涉及的手术场景的示意图;
图2是本发明实施例一的截骨导向工具的自由度的示意图;
图3是本发明实施例一的截骨导向工具的示意图;
图4是本发明实施例一的手术机器人的示意图;
图5是本发明实施例一的控制方法的原理框图;
图6是本发明实施例二的控制方法的原理框图;
图7是本发明实施例二的阻抗控制物理模型的示意图;
图8是本发明实施例二的阻抗控制的原理图;
图9是本发明实施例二的导纳控制的原理图。
附图中:
1-手术台车;2-机械臂;3-工具靶标;4-截骨导向工具;5-截骨工具;6-跟踪仪;7-辅助显示器;8-主显示器;9-导航台车;10-键盘;11-股骨靶标;12-股骨;13-胫骨靶标;14-胫骨;15-基座靶标;16-X向平移轴;17-Y向平移轴;18-Z轴。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者即靠近手术对象的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
本发明的核心思想在于提供一种手术机器人、控制方法、系统及可读存储介质,以解决现有的手术机器人的边界控制不易、不准确,易误操作的问 题。以下参考附图进行描述。
图1示出了一个示范性的实施例,其中示出了利用手术机器人进行膝关节置换的应用场景,然而,本发明的手术机器人对应用环境没有特别的限制,也可应用于其他的手术,例如四肢、腹部、胸部、脑部等部位的手术。以下描述中,以用于膝关节置换为示例对手术机器人进行说明,但不应以此作为对本发明的限定。
如图1所示,所述手术机器人系统包括控制装置、导航装置、机械臂2以及截骨导向工具4。机械臂2设置在手术台车1上,所述控制装置在一些实施例中为一台计算机,但本发明对此不作限制,该计算机配置了处理器、主显示器8和键盘10,更优选还包括辅助显示器7。所述辅助显示器7和主显示器8所显示的内容可以是一致的,也可以不同。所述导航装置可以是磁定位导航装置、光学定位导航装置/光学定位传感器或者惯性定位导航装置。优选的,所述导航装置为光学定位导航装置,相比于其他的导航方式,测量精度高,可有效提高截骨导向工具4的定位精度。以下描述中,以光学定位导航装置作为示例进行说明,但不以此为限。
所述导航装置具体包括导航标志物和跟踪仪6,所述导航标志物包括基座靶标15和工具靶标3,基座靶标15固定不动,例如基座靶标15被固定在手术台车1上而用于提供一个基坐标系(或称基座靶标坐标系),而工具靶标3安装在截骨导向工具4上而用于跟踪截骨导向工具4的位置。所述截骨导向工具4安装在机械臂2的末端,从而通过机械臂2来支撑截骨导向工具4,并调整截骨导向工具4的空间位置和姿态。
实际中,利用跟踪仪6来捕捉工具靶标3反射的信号(优选来自于跟踪仪6的光学信号)并记录工具靶标3的位姿(即工具靶标3在基座标系下的位置和姿态),再由控制装置的存储器内存储的计算机程序根据工具靶标3的当前位姿和期望位姿,控制机械臂2运动,机械臂2驱动截骨导向工具4和工具靶标3运动,并使工具靶标3到达期望位姿,工具靶标3的期望位姿对应于截骨导向工具4的期望位姿。
因此,对于手术机器人的应用,可实现截骨导向工具4的自动定位,且 手术过程中由工具靶标3跟踪并反馈截骨导向工具4的实时位姿,并通过控制机械臂2的运动实现截骨导向工具4的位置和姿态的调整,进一步可控制安装于截骨导向工具4上的手术器械(例如摆锯或电钻),不仅截骨导向工具4的定位精度高,而且通过机械臂2来支撑截骨导向工具4,而无需将导向工具固定在人体上,可避免对人体产生伤害。
一般的,所述手术机器人还包括手术台车1和导航台车9。所述控制装置和一部分所述导航装置安装在导航台车9上,例如所述处理器安装在导航台车9的内部,所述键盘10放置在导航台车9的外部进行操作,所述主显示器8、辅助显示器7和跟踪仪6均安装在一个支架上,所述支架竖直固定在导航台车9上,而所述机械臂2安装在手术台车1上。手术台车1和导航台车9的使用,使整个手术操作更为方便。
在执行膝关节置换手术时,本实施例的手术机器人的使用过程大致包括以下操作:
步骤SK1:将手术台车1及导航台车9移动至病床旁边合适的位置;
步骤SK2:安装导航标志物(导航标志物还包括股骨靶标11、胫骨靶标13)、截骨导向工具4以及其他相关部件(如无菌袋);
步骤SK3:术前规划;具体的,操作者将患者的骨头CT/MRI扫描模型导入所述计算机进行术前规划,得到截骨方案,该截骨方案例如包括截骨平面坐标、假体的型号以及假体的安装方位等信息;具体地,根据CT/MRI扫描得到的患者膝关节影像数据,创建三维膝关节虚拟模型,进而根据三维膝关节虚拟模型创建截骨方案,以便手术操作者根据截骨方案进行术前评估,更具体地,基于三维膝关节虚拟模型,并结合得到的假体的尺寸规格以及截骨板的安装位置等确定截骨方案,所述截骨方案最终以手术报告形式输出,其记录有截骨平面坐标、截骨量、截骨角度、假体规格、假体的安装位置、手术辅助工具等一系列参考数据,特别还包括一系列理论说明,如选取该截骨角度的原因说明等,以为手术操作者提供参考;其中,三维膝关节虚拟模型可通过主显示器8进行显示,且操作者可通过键盘10输入手术参数,以便进行术前规划;
步骤SK4:骨实时配准;本实施例中,所述导航标志物还包括股骨靶标11和胫骨靶标13。其中股骨靶标11用于定位股骨12的空间位置和姿态,胫骨靶标13用于定位胫骨14的空间位置和姿态。术前评估后,需要实时获取骨头特征点位置,然后处理器才可以通过特征匹配算法得到股骨12及胫骨14的实际方位/位姿,并与股骨12及胫骨14的图像方位相对应,随后导航装置将股骨12、胫骨14的实际方位与安装在股骨12及胫骨14上的相应靶标相联系,从而使股骨靶标11和胫骨靶标13可以实时跟踪骨头的实际位置。通过导航装置将股骨12及胫骨14的实际方位与安装在股骨12及胫骨14上的相应靶标相联系,使得股骨靶标11和胫骨靶标13可以实时跟踪骨头的实际位置,且手术过程中,只要靶标与骨头间的相对位置固定,骨头移动不会影响手术效果;
步骤SK5:驱动机械臂2运动到预定位置,执行手术操作;具体地,通过导航装置将术前规划的截骨平面坐标发送给机械臂2,所述机械臂2通过工具靶标3定位截骨平面并运动到预定位置后,使机械臂2进入保持状态(即不动),此后,操作者即可使用摆锯或电钻等截骨工具5通过截骨导向工具4的引导、固定或定位,进行截骨和/或钻孔操作。完成截骨及钻孔操作后,操作者即可安装假体及进行其他手术操作。
传统手术及没有机械臂参与定位的导航手术系统,需要手动调整并定位截骨导向工具,精度差,调整效率低,而使用机械臂2定位截骨导向工具4,操作者不需要使用额外的骨钉将截骨导向工具固定在骨头上,减少病人的创伤面,并缩减手术时间。如前所述,所述工具靶标3可安装在截骨导向工具4上,但在其他实施例中,所述工具靶标3也可以安装在机械臂2的末端关节上。
基于上述手术机器人,可实现机器人辅助手术,帮助操作者定位需截骨的位置或截骨工具,以便于操作者实施截骨。然而,操作者在实施截骨的过程中,例如在机械臂2进入保持状态后,难以对截骨导向工具4的位姿加以约束,避免外界环境力对截骨导向工具4位姿的影响,无法将截骨导向工具4的运动范围有效地限制在一定的边界范围内,因此将会导致误操作时对患者 造成不必要的伤害。
基于此,本发明实施例提供一种手术机器人的控制方法,所述手术机器人包括一操纵末端。需理解,该操纵末端包括机械臂2和操纵器(用于引导手术器械进行手术操作,如截骨导向工具4)中的至少一个或两者的组合。所述手术机器人的控制方法用于控制所述操纵末端的运动。在其它的一些应用场景下,操纵器并不局限于截骨导向工具4,也适用于其它对手术机器人的操纵末端的运动范围有边界限制的场合。所述手术机器人利用所述控制方法进行控制。
【实施例一】
请参考图2至图5,其中,图2是本发明实施例一的截骨导向工具的自由度的示意图;图3是本发明实施例一的截骨导向工具的示意图;图4是本发明实施例一的手术机器人的示意图;图5是本发明实施例一的控制方法的原理框图。
实施例一以一截骨导向工具4作为操纵末端的示例进行说明,实际中也可对截骨导向工具和/或机械臂的关节进行控制。图2至图3示出了一种截骨导向工具4,其包括三个自由度,分别为图2所示的沿X轴的平移自由度、沿Y轴的平移自由度以及绕Z轴的转动自由度具体的,请参考图3,其为截骨导向工具4的俯视示意图,所述截骨导向工具4包括X向平移轴16、Y向平移轴17和垂直于X向平移轴16及Y向平移轴17的Z轴18,截骨工具5(如摆锯)安装在截骨导向工具4上后,可分别沿X向平移轴16和Y向平移轴17进行平移,截骨工具5还可以围绕Z轴18转动。X向平移轴16、Y向平移轴17以及Z轴18可以视作对应于截骨导向工具4的三个关节,优选的,该三个关节均可获取来自控制装置的驱动信息,并根据驱动信息执行动作,例如,截骨导向工具4包括三个关节驱动电机,以对应于三个自由度。在其它的一些实施例中,操纵末端也可为机械臂2,其同样包括若干个关节驱动电机。当然在一些实施例中,操纵末端也可以包括机械臂2和截骨导向工具4。
进一步的,请参考图4,跟踪仪6通过基座靶标15可以识别当前截骨工具5所在空间的位姿,具体的,假设将机械臂2固定摆位在某个位置后(即机械臂进入保持状态,固定在某个位置),其在跟踪仪6下的位姿为
Figure PCTCN2021128828-appb-000001
(此位姿是控制装置首先根据机械臂内的关节编码器所得的位姿信息,然后再将该位姿信息通过矩阵转换后得到机械臂在跟踪仪下的位姿),截骨导向工具4的位姿在跟踪仪6下的位姿为
Figure PCTCN2021128828-appb-000002
(此位姿通过跟踪仪6跟踪截骨导向工具4上的工具靶标3计算得到),则机械臂2在不动的情况下,截骨导向工具4单独运动实现调整截骨工具5的位姿
Figure PCTCN2021128828-appb-000003
为:
Figure PCTCN2021128828-appb-000004
由此可以理解的,截骨导向工具4单独运动的位姿可以由跟踪仪6跟踪获得。由于截骨工具5安装于截骨导向工具4上,因此截骨导向工具4的位姿即反映了截骨工具5的空间位姿。
所述手术机器人的控制方法包括:
步骤S1:依据手术对象的边缘信息设定安全区及位于所述安全区之外的警戒边界;
步骤S2:基于操纵末端(如截骨导向工具4)所安装的手术器械(例如截骨工具5)的当前位姿与所述警戒边界的距离函数,结合所述操纵末端所反馈的第一反馈信息和基于外部环境力所产生的第二反馈信息,补偿所述手术机器人向所述操纵末端施加的驱动信息,以使所述操纵末端在超出所述安全区的范围后,减少、消除或限制所述外部环境力对所述操纵末端的驱动影响。
在一个示范性的实施例中,以骨骼作为手术对象为例进行说明,步骤S1中,首先需要设定安全区及警戒边界。例如在一些实施例中,可通过图像采集装置(例如CT等扫描装置)得到骨骼的边缘信息,依据骨骼的边缘信息设定安全区及警戒边界。具体的,由图像采集装置采集骨骼的环境边界,进而由操作者(如医生)根据经验设置术前规划,并在环境边界基础上设置警戒边界及安全区(自骨骼出发,从里向外依次为安全区-环境边界-警戒边界,其中安全区位于最里并属于手术的安全操作区域)。
在步骤S2中,所述第一反馈信息包括所述机械臂2和/或截骨导向工具4 的关节的指令位姿信息,所述第二反馈信息包括由所述外部环境力对所述机械臂2和/或截骨导向工具4的关节产生的力而计算得到的施加在所述截骨导向工具4上的力矩信息。
在本实施例中,基于截骨导向工具4当前所在位置(其可由跟踪仪6跟踪截骨导向工具4的位姿而得到)与警戒边界的距离函数,结合机械臂2和/或截骨导向工具4的关节的位姿信息及由所述外部环境力对所述截骨导向工具4产生的力矩信息,采用力矩补偿的控制模式补偿控制装置向所述截骨导向工具4施加的驱动信息,可以使外部环境力尽可能少的或者不作用到骨骼上。可选的,警戒边界包括警戒线或警戒面等,本领域技术人员可根据现有技术建立截骨导向工具4当前所在位置与警戒边界的距离函数。具体实施中,可令截骨导向工具4沿某一方向运动到安全区内并停止,再建立所述距离函数。所述的截骨导向工具4具有三个自由度的三个关节,即,其是在机械臂2的多个关节的本体基础上额外添加了三个运动自由度,例如,若机械臂2具有6个自由度,则此时的机械臂2和截骨导向工具4一共具有9个运动自由度,显著提高了手术操作灵活度。
可选的,外部环境力包括:手术对象(如骨骼)对所述操纵末端(如截骨导向工具4)产生的阻力、以及操作者对截骨导向工具4施加的牵引力。具体的,操作者对截骨导向工具4施加的牵引力可以是人手的推力或拉力等。
外部环境力如可通过力传感器304测量并输出的等效力矩F,力传感器304包括但不限于六维力传感器或关节力矩传感器等,其可以安装在截骨导向工具4上,力传感器304可以测量操作者对截骨导向工具4的牵引力,以及骨骼经由截骨工具5对截骨导向工具4的阻力。当然外部环境力也可以为由截骨导向工具4的关节驱动电机的电流而得到的等效力矩F。
请参考图5,补偿所述手术机器人向所述截骨导向工具4施加的驱动信息的步骤包括:
步骤SA1:根据指令位姿信息Xd通过运动学反解301得到所述截骨导向工具4的关节的指令角度θ;指令位姿指手术机器人的控制系统发送给截骨导向工具4的目标位姿,指令角度θ指手术机器人的控制系统发送给截骨导向 工具4的关节的目标角度。
步骤SA2:将所述指令角度θ作为动力学计算305的输入,计算得到理论输出力矩Fs。具体的,指令角度θ可以分解为截骨导向工具4的关节的指令位置和指令速度,关节的指令位置和指令速度根据动力学计算305即可计算得到截骨导向工具4的关节的理论输出力矩Fs。
步骤SA3:将所述指令角度θ作为位姿控制器302的输入,计算得到截骨导向工具4的关节从当前位姿运动到指令位姿(即目标位姿)所需的力矩。进一步的,所述位姿控制器302的计算步骤包括:根据截骨导向工具4的关节的指令位姿和当前位姿、以及指令速度与当前速度,计算得到截骨导向工具4的关节从当前位姿运动到指令位姿所需的力矩。优选的,所述指令速度由指令位姿差分计算得到。
步骤SA4:根据力传感器304在所述外部环境力作用下输出的等效力矩F、重力补偿及摩擦力补偿力矩N以及所述理论输出力矩Fs,计算得到所述外部环境力力矩Fc(见图5中标号306)。这里的外部环境力力矩Fc可以理解为操作者对截骨导向工具4的牵引力力矩f与骨骼经由截骨工具5对截骨导向工具4的阻力力矩Fa的合力矩。可选的,所述等效力矩F满足:F=Fs+N+Fa+f;所述外部环境力力矩Fc满足:Fc=F-Fs-N。进一步的,在计算得到外部环境力力矩Fc后,将该外部环境力力矩Fc通过一力控制器307进行处理,使计算得到的理论的外部环境力力矩Fc更符合真实值。
步骤SA5:将所述外部环境力力矩Fc补偿到截骨导向工具4的关节从当前位姿运动到指令位姿所需的力矩中(见图5中标号308),得到所述驱动信息,以实现对操纵末端的控制(见图5中标号303)。具体的,根据距离函数计算需补偿的关节力矩并补偿到截骨导向工具4的各个关节中,从而得到各关节的驱动信息。当截骨导向工具4到达警戒边界后,系统将自动增大各个关节产生的阻力,以此抵制操作者的牵引力,进而让操作者施加的牵引力尽可能少的作用到截骨面上以达到保护的作用。可选的,在手术过程中,截骨导向工具4在安全区内正常工作;若截骨导向工具4越过安全边界后可以进行限速运动;当到达警戒边界后,系统根据距离函数执行,控制截骨导向工 具4沿着警戒边界运动或是停在警戒边界上。由此实现使截骨导向工具4在超出安全区的范围后,减少外部环境力对截骨导向工具4的驱动影响的目的。
本实施例还提供一种可读存储介质,其上存储有程序,所述程序被执行时实现如上所述的控制方法,该可读存储介质可集成设置在手术机器人上,如集成于控制装置中,也可以独立附设。
进一步的,本实施例还提供一种手术机器人系统,其包括控制装置、导航装置以及操纵末端,所述导航装置用于跟踪所述操纵末端的当前位姿并将位姿信息反馈给所述控制装置,所述控制装置用于根据如上所述的方法控制所述操纵末端。优选的,在所述手术机器人系统中,所述操纵末端包括机械臂以及用于引导手术器械进行手术操作的操纵器,所述操纵器具有多个自由度,所述第一反馈信息包括所述机械臂和/或所述操纵器的关节的指令位姿信息。
综上,通过将第一反馈信息和第二反馈信息补偿到向所述操纵末端施加的驱动信息中,实现将外部环境力反向补偿到驱动关节上,从而实现了边界控制,可以让外部环境力尽可能少的作用到患者上,当操纵末端在超出所述安全区的范围后,所需外部环境力越大,实现避免操作者误操作的效果。
【实施例二】
请参考图6至图9,其中,图6是本发明实施例二的控制方法的原理框图;图7是本发明实施例二的阻抗控制物理模型的示意图;图8是本发明实施例二的阻抗控制的原理图;图9是本发明实施例二的导纳控制的原理图。
本发明实施例二提供的手术机器人、控制方法、系统及可读存储介质与实施例一提供的手术机器人的手术机器人、控制方法、系统及可读存储介质基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
实施例二提供的控制方法主要采用阻抗控制模式来对操作者施加的牵引力进行补偿。具体的,在步骤S2中,第一反馈信息包括:所述操纵末端的关节的指令位姿信息,第二反馈信息包括由所述外部环境力对所述操纵末端的关节的阻抗控制模型。
实施例二同样以骨骼作为手术对象,以截骨导向工具4作为操纵末端为例进行说明。
请参考图6,补偿所述手术机器人向所述截骨导向工具4施加的驱动信息的步骤包括:
步骤SB1:根据所述指令位姿信息Xd通过运动学反解301得到截骨导向工具4的关节的指令角度θ。
步骤SB2:将所述指令角度θ作为动力学计算305的输入,计算得到理论输出力矩Fs。以上指令角度θ和理论输出力矩Fs的含义和求解过程,可参考实施例一步骤SA1和步骤SA2。
步骤SB3:基于截骨导向工具4的当前位姿与指令位姿之间的位姿差、以及截骨导向工具4的当前速度与指令速度之间的速度差,根据所述阻抗控制模型312,计算得到笛卡尔空间下的第一力矩。该第一力矩可以理解为计算出的在笛卡尔空间下的一个虚拟的力矩。
步骤SB4:将所述第一力矩根据当前关节角度下的雅可比矩阵的转置J T换算到截骨导向工具4的各个关节,得到各个关节受到的第二力矩(见图6中标号313)。具体的,第二力矩可以理解为第一力矩乘以雅克比矩阵的转置而换算得到的在各个关节空间下的各个关节的补偿力矩。
步骤SB5:将对应的摩擦力前馈fm补偿到截骨导向工具4的各个关节上,得到各个关节的第三力矩。具体的,摩擦力前馈fm可根据截骨导向工具4所反馈的各关节的速度信息计算得到。摩擦力前馈fm补偿到截骨导向工具4的各个关节上,可对关节力矩进行前馈补偿。
步骤SB6:基于所述理论输出力矩Fs、第三力矩以及第二力矩得到所述驱动信息,以实现对截骨导向工具4的控制(见图6中标号303)。具体的,截骨导向工具4的关节力矩由三部分组成,第一部分是理论输出力矩Fs,第二部分是第一力矩换算得到的第二力矩,第三部分是各个关节的摩擦力补偿(即第三力矩)。
优选的,请参考图7,其示出了一种阻抗控制物理模型,其对应的原理图如图8所示。图7中,M表示物理模型的质量,右侧的波浪线S代表弹簧, D代表阻尼;图8是控制理论中的传递函数的表达形式,Md等效于图7中物理模型的质量参数,Bd等效于图7中物理模型的阻尼系数,Kd等效于图7中物理模型的弹簧的弹性系数。本领域技术人员可根据现有技术理解上述的阻抗控制模型,这里不再详细介绍。
进一步的,所述阻抗控制模型的输入包括以下步骤:
步骤SC1:根据力传感器304在所述外部环境力作用下输出的等效力矩F,根据导纳控制311计算得到关节对应的位姿变化量;图9示出了导纳控制311的原理图,其亦是控制理论中的传递函数的表达形式,Ms等效于图7中物理模型的质量参数,Bs等效于图7中物理模型的阻尼系数,Ks等效于图7中物理模型的弹簧的弹性系数。等效力矩F的含义和计算,可参考实施例一。
步骤SC2:基于所述位姿变化量,通过运动学正解310计算得到截骨导向工具4的实际位姿与指令位姿之间的位姿差。
步骤SC3:将所述位姿差作为所述阻抗控制模型的输入。由此,当截骨导向工具4越接近警戒边界,则驱动其关节所需的额外驱动力矩越大,所需操作者施加的外力亦越大,从而降低了手术过程中误操作的风险。
以上实施例将截骨导向工具4作为操纵末端,由于截骨导向工具4只有三个自由度,有利于简化运动学模型及动力学模型,进而便于运动学的反解301和运动学正解310以及动力学计算305的实现。然而在其它的一些实施例中,也可以将机械臂2作为操纵末端,或者将机械臂2与截骨导向工具4一同形成组合,视作操纵末端。可以理解的,当自由度超过三个时,对应于上述的控制方法,除了考虑力矩产生的作用外,还可以将相应的力一并纳入考虑。可以理解的,在其它的一些实施例中,所述控制方法亦不限于应用在膝关节置换手术中。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可,此外,各个实施例之间不同的部分也可互相组合使用,本发明对此不作限定。
综上,在本发明提供的手术机器人、手术机器人的控制方法、手术机器人系统及可读存储介质中,所述手术机器人包括一操纵末端,所述手术机器人的控制方法包括:依据手术对象的边缘信息设定安全区及位于所述安全区之外的警戒边界;基于操纵末端的当前位姿与警戒边界的距离函数,结合所述操纵末端所反馈的第一反馈信息和基于外部环境力所产生的第二反馈信息,补偿所述手术机器人向所述操纵末端施加的驱动信息,以使所述操纵末端在超出所述安全区的范围后,减少、消除或限制所述外部环境力对所述操纵末端的驱动影响。如此配置,通过将第一反馈信息和第二反馈信息补偿到向所述操纵末端施加的驱动信息中,实现将外部环境力反向补偿到驱动关节上,从而实现了边界控制,可以让外部环境力尽可能少的作用到患者上,当操纵末端在超出所述安全区的范围后,则驱动机械臂关节所需的额外驱动力矩越大,所需外部环境力越大,实现避免操作者误操作的效果。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (14)

  1. 一种手术机器人的控制方法,所述手术机器人包括一操纵末端,其特征在于,所述手术机器人的控制方法包括:
    依据手术对象的边缘信息设定安全区及位于所述安全区之外的警戒边界;
    基于操纵末端的当前位姿与警戒边界的距离函数,结合所述操纵末端所反馈的第一反馈信息和基于外部环境力所产生的第二反馈信息,补偿所述手术机器人向所述操纵末端施加的驱动信息,以使所述操纵末端在超出所述安全区的范围后,减少、消除或限制所述外部环境力对所述操纵末端的驱动影响。
  2. 根据权利要求1所述的手术机器人的控制方法,其特征在于,所述第一反馈信息包括所述操纵末端的关节的指令位姿信息,所述第二反馈信息包括由所述外部环境力对所述操纵末端的关节产生的力矩信息。
  3. 根据权利要求2所述的手术机器人的控制方法,其特征在于,补偿所述手术机器人向所述操纵末端施加的驱动信息的步骤包括:
    根据所述指令位姿信息Xd通过运动学反解得到所述操纵末端的关节的指令角度θ;
    将所述指令角度θ作为动力学计算的输入,计算得到理论输出力矩Fs;
    将所述指令角度θ作为位姿控制器的输入,计算得到所述操纵末端的关节从当前位姿运动到指令位姿所需的力矩;
    根据力传感器在所述外部环境力作用下感应的等效力矩F、重力补偿及摩擦力补偿力矩N以及所述理论输出力矩Fs,计算得到所述外部环境力力矩Fc;
    将所述外部环境力力矩Fc补偿到所述操纵末端的关节从当前位姿运动到指令位姿所需的力矩中,得到所述驱动信息。
  4. 根据权利要求3所述的手术机器人的控制方法,其特征在于,所述外部环境力包括:手术对象对所述操纵末端产生的阻力力矩Fa、以及操作者对所述操纵末端施加的牵引力力矩f;所述等效力矩F满足:F=Fs+N+Fa+f;所述外部环境力力矩Fc满足:Fc=F-Fs-N。
  5. 根据权利要求3所述的手术机器人的控制方法,其特征在于,所述位姿控制器的计算步骤包括:
    根据所述操纵末端的关节的指令位姿和当前位姿、以及指令速度与当前速度,计算得到所述操纵末端的关节从当前位姿运动到指令位姿所需的力矩。
  6. 根据权利要求5所述的手术机器人的控制方法,其特征在于,所述指令速度由指令位姿差分计算得到。
  7. 根据权利要求1所述的手术机器人的控制方法,其特征在于,所述第一反馈信息包括所述操纵末端的关节的指令位姿信息,所述第一反馈信息包括由所述外部环境力对所述操纵末端的关节的阻抗控制模型。
  8. 根据权利要求7所述的手术机器人的控制方法,其特征在于,
    补偿所述手术机器人向所述操纵末端施加的驱动信息的步骤包括:
    根据所述指令位姿信息Xd通过运动学反解得到所述操纵末端的关节的指令角度θ;
    将所述指令角度θ作为动力学计算的输入,计算得到理论输出力矩Fs;
    基于所述操纵末端的当前位姿与指令位姿之间的位姿差、以及所述操纵末端的当前速度与指令速度之间的速度差,根据所述阻抗控制模型,计算得到笛卡尔空间下的第一力矩;
    将所述第一力矩根据当前关节角度下的雅可比矩阵的转置换算到各个关节受到的第二力矩;
    将对应的摩擦力前馈f补偿到所述操纵末端的各个关节上,得到各个关节的第三力矩;
    基于所述理论输出力矩Fs、第三力矩以及第二力矩得到所述驱动信息;
    补偿所述手术机器人向所述操纵末端施加的驱动信息的步骤包括:
    根据所述指令位姿信息Xd通过运动学反解得到所述操纵末端的关节的指令角度θ;
    将所述指令角度θ作为动力学计算的输入,计算得到理论输出力和其力矩Fs;
    基于所述操纵末端的当前位姿与指令位姿之间的位姿差、以及所述操纵末端的当前速度与指令速度之间的速度差,根据所述阻抗控制模型,计算得到笛卡尔空间下的第一力和其力矩;
    将所述第一力和其力矩根据当前关节角度下的雅可比矩阵的转置换算到各个关节受到的第二力和其力矩;
    将对应的摩擦力前馈f补偿到所述操纵末端的各个关节上,得到各个关节的第三力及其力矩;
    基于所述理论输出力及其力矩Fs、第三力及其力矩以及第二力及其力矩得到所述驱动信息。
  9. 根据权利要求8所述的手术机器人的控制方法,其特征在于,所述阻抗控制模型的输入包括以下步骤:
    根据力传感器在所述外部环境力作用下输出的等效力矩F,根据导纳控制计算得到关节对应的位姿变化量;
    基于所述位姿变化量,通过运动学正解计算得到所述操纵末端的实际位姿与指令位姿之间的位姿差;
    将所述位姿差作为所述阻抗控制模型的输入。
  10. 根据权利要求1所述的手术机器人的控制方法,其特征在于,所述操纵末端包括机械臂和/或操纵器,所述第一反馈信息包括所述机械臂和/或所述操纵器的关节的指令位姿信息,所述操纵器用于固定并引导手术器械进行手术操作。
  11. 一种可读存储介质,其上存储有程序,其特征在于,所述程序被执行时实现如权利要求1~10中任一项所述的手术机器人的控制方法。
  12. 一种手术机器人,其特征在于,包括操纵末端,所述操纵末端包括机械臂和/或用于引导手术器械进行手术操作的操纵器,所述操纵末端利用根据权利要求1~10中任一项所述的手术机器人的控制方法进行控制。
  13. 一种手术机器人系统,其特征在于,包括控制装置、导航装置以及操纵末端,所述导航装置用于跟踪所述操纵末端的当前位姿并将位姿信息反馈给所述控制装置,所述控制装置用于根据如权利要求1~10任一项所述的方 法控制所述操纵末端。
  14. 如权利要求13所述的手术机器人系统,其特征在于,所述操纵末端包括机械臂以及用于引导手术器械进行手术操作的操纵器,所述操纵器具有多个自由度,所述第一反馈信息包括所述机械臂和/或所述操纵器的关节的指令位姿信息。
PCT/CN2021/128828 2020-11-05 2021-11-04 手术机器人、控制方法、系统及可读存储介质 WO2022095946A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888638.0A EP4241715A4 (en) 2020-11-05 2021-11-04 SURGICAL ROBOT, CONTROL METHOD, SYSTEM, AND READABLE STORAGE MEDIUM
US18/251,861 US20230405815A1 (en) 2020-11-05 2021-11-04 Surgical robot, control method, system, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011223748.XA CN112336461B (zh) 2020-11-05 2020-11-05 手术机器人、控制方法、系统及可读存储介质
CN202011223748.X 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022095946A1 true WO2022095946A1 (zh) 2022-05-12

Family

ID=74428470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128828 WO2022095946A1 (zh) 2020-11-05 2021-11-04 手术机器人、控制方法、系统及可读存储介质

Country Status (4)

Country Link
US (1) US20230405815A1 (zh)
EP (1) EP4241715A4 (zh)
CN (2) CN115153852A (zh)
WO (1) WO2022095946A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153852A (zh) * 2020-11-05 2022-10-11 苏州微创畅行机器人有限公司 手术机器人、控制方法、系统及可读存储介质
CN112998863B (zh) * 2021-03-12 2022-05-06 杭州柳叶刀机器人有限公司 机器人安全边界交互装置、电子设备和存储介质
WO2022253286A1 (zh) * 2021-06-02 2022-12-08 上海微创医疗机器人(集团)股份有限公司 术中不动点的调整方法、可读存储介质及手术机器人系统
CN113509270B (zh) * 2021-07-09 2022-05-24 武汉联影智融医疗科技有限公司 末端工具运动引导方法、系统和手术机器人
CN113478491B (zh) * 2021-09-07 2021-11-16 成都博恩思医学机器人有限公司 一种机械臂的摆位控制方法、系统、机器人及存储介质
CN113977602B (zh) * 2021-10-27 2023-03-21 华南理工大学 一种力反馈末端夹持器导纳控制方法
CN114220060B (zh) * 2021-12-24 2022-10-28 萱闱(北京)生物科技有限公司 基于人工智能的器具标注方法、装置、介质和计算设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140039517A1 (en) * 2012-08-03 2014-02-06 Stryker Corporation Navigation System for use with a Surgical Manipulator Operable in Manual or Semi-Autonomous Modes
US20140222207A1 (en) * 2012-08-03 2014-08-07 Stryker Corporation Surgical Manipulator Capable of Controlling a Surgical Instrument in Multiple Modes
CN106965175A (zh) * 2017-03-24 2017-07-21 北京理工大学 一种开颅机器人的协同交互控制系统
CN110114031A (zh) * 2016-10-28 2019-08-09 奥尔索夫特公司 机器人切割工作流
CN111870349A (zh) * 2020-07-24 2020-11-03 前元运立(北京)机器人智能科技有限公司 一种手术机器人的安全边界与力控制方法
CN112336461A (zh) * 2020-11-05 2021-02-09 苏州微创畅行机器人有限公司 手术机器人、控制方法、系统及可读存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2304430T3 (es) * 2001-01-29 2008-10-16 The Acrobot Company Limited Robots con limitacion activa.
WO2007111749A2 (en) * 2005-12-20 2007-10-04 Intuitive Surgical, Inc. Method for handling an operator command exceeding a medical device state limitation in a medical robotic system
US9675375B2 (en) * 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
WO2007136769A2 (en) * 2006-05-19 2007-11-29 Mako Surgical Corp. Method and apparatus for controlling a haptic device
US9119655B2 (en) * 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
CN109512509B (zh) * 2018-12-27 2020-07-03 中国科学院深圳先进技术研究院 一种机器人的柔顺控制方法、装置及设备
CN111329581B (zh) * 2020-01-23 2022-03-15 诺创智能医疗科技(杭州)有限公司 手术机械臂的力反馈测量方法和手术机械臂
CN111214291A (zh) * 2020-01-23 2020-06-02 诺创智能医疗科技(杭州)有限公司 手术机械臂及手术机器人
CN111249005A (zh) * 2020-03-20 2020-06-09 苏州新医智越机器人科技有限公司 一种穿刺手术机器人柔顺控制系统
CN111772794B (zh) * 2020-06-29 2023-06-23 郑州大学 用于微创手术的主端、从端机器人控制方法与装置
CN111870348B (zh) * 2020-07-23 2022-01-28 武汉联影智融医疗科技有限公司 手术机器人辅助定位方法、手术机器人及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140039517A1 (en) * 2012-08-03 2014-02-06 Stryker Corporation Navigation System for use with a Surgical Manipulator Operable in Manual or Semi-Autonomous Modes
US20140222207A1 (en) * 2012-08-03 2014-08-07 Stryker Corporation Surgical Manipulator Capable of Controlling a Surgical Instrument in Multiple Modes
CN110114031A (zh) * 2016-10-28 2019-08-09 奥尔索夫特公司 机器人切割工作流
CN106965175A (zh) * 2017-03-24 2017-07-21 北京理工大学 一种开颅机器人的协同交互控制系统
CN111870349A (zh) * 2020-07-24 2020-11-03 前元运立(北京)机器人智能科技有限公司 一种手术机器人的安全边界与力控制方法
CN112336461A (zh) * 2020-11-05 2021-02-09 苏州微创畅行机器人有限公司 手术机器人、控制方法、系统及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4241715A4 *

Also Published As

Publication number Publication date
CN115153852A (zh) 2022-10-11
EP4241715A4 (en) 2024-05-15
EP4241715A1 (en) 2023-09-13
CN112336461B (zh) 2022-08-12
CN112336461A (zh) 2021-02-09
US20230405815A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2022095946A1 (zh) 手术机器人、控制方法、系统及可读存储介质
WO2021063023A1 (zh) 截骨导向工具的位置校正方法及骨科手术系统
CN112155734B (zh) 可读存储介质、骨建模配准系统及骨科手术系统
US11633233B2 (en) Surgical system for cutting an anatomical structure according to at least one target cutting plane
US7892243B2 (en) Surgical manipulator
Lueth et al. A surgical robot system for maxillofacial surgery
CN112155732B (zh) 可读存储介质、骨建模配准系统及骨科手术系统
US11389256B2 (en) Surgical robot
Taylor et al. Taming the bull: safety in a precise surgical robot
US11266475B2 (en) Repositioning system for a remotely controllable manipulator and related methods
WO2021098176A1 (zh) 截骨校验方法、校验工具、可读存储介质及骨科手术系统
US20200297440A1 (en) Interactive anatomical positioner and a robotic system therewith
CN112155733B (zh) 可读存储介质、骨建模配准系统及骨科手术系统
WO2019135805A1 (en) Interactive anatomical positioner and a robotic system therewith
Jin et al. Design and kinematic analysis of a pedicle screws surgical robot
Haidegger et al. Accuracy improvement of a neurosurgical robot system
Mohareri et al. da Vinci® auxiliary arm as a robotic surgical assistant for semi-autonomous ultrasound guidance during robot-assisted laparoscopic surgery
Chen et al. A design of surgical robotic system based on 6-DOF parallel mechanism
WO2021098177A1 (zh) 截骨校验方法、校验设备、可读存储介质及骨科手术系统
Duan et al. Modelling and experiment based on a navigation system for a cranio-maxillofacial surgical robot
CN113907886A (zh) 脊柱手术机器人的手术执行臂、系统及控制系统
Stolka et al. Improving navigation precision of milling operations in surgical robotics
CN220860150U (zh) 一种腹腔镜手术和骨科手术双工机器人
Wang et al. Path planning of robot-assisted osteotomy in orthognathic surgery
US11185376B2 (en) Robot for placement of spinal instrumentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18251861

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888638

Country of ref document: EP

Effective date: 20230605