WO2022095931A1 - 墙壁施工方法、装置、存储介质及处理器 - Google Patents

墙壁施工方法、装置、存储介质及处理器 Download PDF

Info

Publication number
WO2022095931A1
WO2022095931A1 PCT/CN2021/128745 CN2021128745W WO2022095931A1 WO 2022095931 A1 WO2022095931 A1 WO 2022095931A1 CN 2021128745 W CN2021128745 W CN 2021128745W WO 2022095931 A1 WO2022095931 A1 WO 2022095931A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
wall
grinding
constructed
ideal
Prior art date
Application number
PCT/CN2021/128745
Other languages
English (en)
French (fr)
Inventor
孙晋祥
程德考
张涛
全鑫
苏李伟
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2022095931A1 publication Critical patent/WO2022095931A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation

Definitions

  • the present application relates to the field of construction robots, for example, to a wall construction method, device, storage medium and processor.
  • the treatment method of the inner wall of the standard layer of the commercial residential development project is to manually detect the wall grinding area and the grout area with a ruler, and then use a manual hand-held grinder to grind and manually add grout.
  • Manual grinding has low efficiency, high labor intensity, and large on-site dust, which has a serious impact on people's body and mind. Due to the limitation of detection, the manual detection method can easily lead to missed detection of the wall, secondary rework occurs, and construction efficiency is reduced.
  • the present application provides a wall construction method, device, storage medium and processor to at least solve the problems of low efficiency and poor accuracy in the related art of manually constructing a wall by using a ruler.
  • a method for wall construction comprising: acquiring burst point information and seam information of a wall to be constructed; dividing the wall to be constructed to obtain a plurality of divided areas; The explosion point information and the seam information are used to determine the types of the multiple divided areas, wherein the types include a grinding area and a grout replenishing area; construction is performed according to the types of the multiple divided areas.
  • a wall construction device comprising: an acquisition module, configured to acquire burst point information and seam information of the wall to be constructed; a division module, configured to acquire information on the wall to be constructed Divide the area into a plurality of divided areas; a determination module is configured to determine the types of the plurality of divided areas according to the burst point information and the seam information, wherein the types include a grinding area and a grout-replenishing area; the construction module , which is set to perform construction according to the types of the plurality of divided areas.
  • a computer storage medium is also provided, where the computer storage medium includes a stored program, wherein when the program runs, the device where the computer storage medium is located is controlled to execute any one of the above The wall construction method described in the item.
  • a processor is also provided, and the processor is configured to run a program, wherein when the program runs, any one of the above-mentioned wall construction methods is executed.
  • Fig. 1 is the flow chart of a kind of wall construction method according to the embodiment of the present application.
  • Fig. 2 is the flow chart of the wall grinding construction according to the embodiment of the present application.
  • FIG. 3-1 is a schematic diagram of a burst region of a real wall according to an embodiment of the present application
  • 3-2 is a schematic diagram of a burst region of a thermal map of a wall according to an embodiment of the present application
  • 4-1 is a schematic diagram of a patchwork area of a real wall according to an embodiment of the present application.
  • 4-2 is a schematic diagram of a patchwork area of a thermal map of a wall according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a wall division area according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of wall construction according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of construction monitoring according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a wall construction device according to an embodiment of the present application.
  • a method embodiment of a method for wall construction is provided.
  • the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer-executable instructions, and, although in the flowchart A logical order is shown, but in some cases steps shown or described may be performed in a different order than herein.
  • FIG. 1 is a flowchart of a method for wall construction according to an embodiment of the present application. As shown in FIG. 1 , according to another aspect of the embodiment of the present application, a method for determining coordinates of a robot is also provided, and the method includes the following steps :
  • Step S102 acquiring burst point information and seam information of the wall to be constructed.
  • step S104 the wall to be constructed is divided into regions to obtain a plurality of divided regions.
  • Step S106 Determine the types of a plurality of divided areas according to the explosion point information and the seam information, wherein the types include a polishing area and a grout-replenishing area.
  • step S108 construction is performed according to the types of the plurality of divided areas.
  • the explosion point information and seam information of the wall to be constructed are obtained; the area to be constructed is divided into a plurality of divided areas; according to the explosion point information and the seam information, the types of the plurality of divided areas are determined, wherein, Types include grinding area and grouting area; the construction method is carried out according to the type of the divided area, the subsequent operation points are determined until the termination conditions are met, the final joint operation point is determined, the wall to be constructed is divided, and multiple divisions are determined.
  • Area through the explosion point information and seam information, determine the type of the divided area, and construct the divided area according to the type, so as to achieve the purpose of automatically constructing the wall according to the explosion point information and seam information of the wall, so as to realize the improvement of the wall.
  • the effect of construction efficiency and accuracy and then solve the problems of low efficiency and poor accuracy in the way of manually using a ruler to construct the wall.
  • the burst point information may be the location and area information that needs to be polished on the wall to be constructed.
  • the above seam information may be the seam formed due to the construction method during the construction of the wall to be constructed. The seam may cause the part of the seam to protrude during the later repair process, and construction needs to be carried out.
  • the above burst point information can be obtained by detecting the construction wall by means of laser ranging, and the above seam information can be determined according to the construction drawings of the wall to be constructed. In the construction drawings, the places where there are joints will be marked. The search and analysis of the above seam information can be determined.
  • the above-mentioned burst point information and seam information can be obtained by digitizing the wall to be constructed. For example, through the Building Information Modeling (BIM) technology, a building information model (BIM) of the wall to be constructed is generated, and the BIM model of the wall to be constructed is generated.
  • BIM Building Information Modeling
  • the data of the wall to be constructed is marked on the wall, and the data of the wall to be constructed includes the position, size and shape of the burst point information and the information of the seam on the wall to be constructed.
  • the above-mentioned wall to be constructed is divided into regions to obtain a plurality of divided regions.
  • the wall to be constructed can be divided into a plurality of parts according to a preset length. Since the shape of the wall is generally consistent up and down, the length direction of the intersection of the wall and the ground can be followed. , divide the wall to be constructed into a plurality of parts with the above preset length, and divide each part into a grid, and each grid is equivalent to a divided area.
  • the explosion point information and the seam information determine the types of multiple divided areas, wherein the types include the grinding area and the filling area. According to the explosion point information and the seam information, it can be determined whether there are explosion points and seams in the divided area. As a result, grinding or grout needs to be carried out. The corresponding grinding area needs to be ground, and the corresponding grout area needs to be grout.
  • the construction is carried out according to the type of the divided area, that is, the grinding area is ground and the grout is added to the grout area.
  • the sanding area can be sanded first, and then the grout refilling can be carried out. It is also possible to first refill the grout area, and then grind the grinding area, and only grind the places that need to be polished, and make grout for the places that need to be grout, so as to improve the construction efficiency of the wall to be constructed and solve the problem of manual labor. There are problems of low efficiency and poor accuracy in the method of using the ruler to construct the wall.
  • obtaining burst point information and seam information of the wall to be constructed includes: measuring the wall to be constructed to obtain the burst point information; and analyzing the construction drawings of the wall to be constructed to obtain the seam information.
  • the above-mentioned measurement of the wall to be constructed may be measured by a laser ranging device, to obtain burst point information of the wall to be constructed, and to establish a BIM model of the wall to be constructed, and on the BIM model, the burst point location and burst point area are displayed.
  • a laser ranging device to obtain burst point information of the wall to be constructed, and to establish a BIM model of the wall to be constructed, and on the BIM model, the burst point location and burst point area are displayed.
  • the construction drawings of the wall to be constructed determine the joint information of the wall to be constructed, and display the joint information on the above BIM model.
  • dividing the area of the wall to be constructed to obtain a plurality of divided areas includes: dividing the wall to be constructed into a plurality of sub-areas according to a preset size, wherein an overlapping area of a preset area overlaps between two adjacent sub-areas. ; Grid the sub-areas according to the preset height and width to obtain multiple grids, each grid corresponds to a divided area.
  • the above-mentioned preset size may be a preset length or a size of a preset shape, for example, the length and width of a rectangle, the side length of a square, the side length of a regular hexagon, and the like. That is to say, the above-mentioned divided areas may have various shapes, but the plurality of divided areas may completely cover the above-mentioned walls to be constructed.
  • the above-mentioned sub-areas are multiple areas to be preliminarily divided by the wall to be constructed, and are generally rectangular. For example, divide a wall with a 2L span in the length direction, and the adjacent divided areas overlap L, and the wall is divided into n areas.
  • the length of the wall cannot be divisible by 2L, the remaining area is merged into area n; the requirement is to divide the area.
  • the length L is parameterized, and L can be adjusted.
  • the purpose of wall segmentation processing is to reduce the influence of local sudden changes of the wall on the datum plane of the entire wall. An overlapping area with a preset area overlaps between two adjacent sub-areas, which can ensure that the wall to be constructed is analyzed twice, and the average or maximum value of the two calculations is output, thereby improving the accuracy of data calculation.
  • the above sub-areas are meshed to generate a plurality of divided areas, and the type of divided areas is determined according to the above-determined explosion point position, grinding amount and slurry replenishment area, so as to carry out construction on the divided areas.
  • the types of multiple divided areas including: fitting the ideal wall according to the target flatness of the wall to be constructed, and using the divided area protruding from the ideal wall as the grinding area , take the divided area lower than the ideal wall as the grouting area; according to the verticality of the ideal wall, determine the ideal vertical plane, and take the divided area lower than the ideal vertical plane as the grouting area.
  • the type of the divided area of the wall to be constructed is determined from the two aspects of flatness and verticality.
  • fitting the ideal wall can be based on the BIM model data of the wall to be constructed, and fitting through the least squares method to determine the ideal wall.
  • the ideal wall is the wall to be constructed that fully satisfies the flatness and verticality.
  • the divided area protruding from the ideal wall surface is the grinding area, and the divided area below the ideal wall surface is the grouting area.
  • the ideal vertical surface determine the ideal vertical surface, that is, determine the ideal vertical surface that meets the verticality requirements according to the ideal wall surface. Since the vertical surface correction only needs to grind the part that protrudes from the vertical surface, or The part below the vertical surface is grouted. Because the problem of the vertical surface usually requires a large area of correction, the grinding task is large, and the efficiency is low and the cost is high. Therefore, the method of grouting is usually used to correct the wall. Therefore, only the divided area lower than the ideal vertical plane is used as the grouting area, and the verticality of the wall to be constructed is corrected by grouting in the later stage, which improves the construction efficiency of the wall to be constructed and saves costs.
  • the ideal wall surface after fitting the ideal wall surface according to the target flatness of the wall to be constructed, using the divided area protruding from the ideal wall surface as the grinding area, and using the divided area below the ideal wall surface as the grouting area, also include: : Offset the ideal wall to determine the ideal wall interlayer; according to the ratio of the data of the wall to be constructed falling on the ideal wall interlayer to the total data of the wall to be constructed, adjust the ideal wall to maximize the ratio value.
  • the explosion point area needs to be sanded.
  • the range of the sanding area and the grout area is different. The higher the ideal wall, the smaller the sanding area, and the lower the ideal wall, the smaller the grout area.
  • the ideal wall is positively and negatively offset tmm along the normal direction to form an interlayer to generate an ideal wall interlayer.
  • the effectiveness of the construction wall is closer to the real situation of the wall to be constructed, and the ratio of the grinding area to the grouting area is k, which realizes the parameterization of the ratio of the grinding area and the grouting area.
  • the ratio of grinding and grouting is pre-determined. According to the difference between the actual ratio and the pre-determined ratio, the wall to be constructed is offset until the actual ratio reaches the pre-set ratio requirement, and the deviation of the wall to be constructed is completed. shift adjustment. Adjust the amount of sanding by offsetting and rotating the ideal wall.
  • the construction is carried out according to the type of the divided area, including: determining the area of the explosion point according to the area of the grinding area; when the area of the explosion point is less than or equal to the first preset area, determining the grinding based on the adjusted ideal wall surface Base surface, based on the grinding base surface, directly grind the grinding area; when the explosion point area is greater than the first preset area and less than or equal to the second preset area, move the grinding base surface to reduce the grinding amount.
  • the grinding reference surface is ground for grinding the grinding area, wherein the second preset area is larger than the first preset area; when the explosion point area is greater than the second preset area, the slurry replenishing area is replenished.
  • the area of the grinding area is also the area of the explosion point.
  • grinding and grouting are both ways to improve the quality of the wall to be constructed.
  • the feature of grinding is that subsequent construction can be performed after the grinding is completed. , no need to wait, high accuracy, but high cost and low efficiency; the characteristics of grouting are convenient construction and low cost, but after grouting needs to wait for drying and coagulation, the accuracy is poor. Therefore, the two methods should be weighed during construction to obtain a reasonable construction method.
  • the explosion point area is less than or equal to the first preset area, it means that the explosion point area is small and can be directly polished.
  • the explosion point area is larger than the first preset area and less than or equal to the second preset area, it means that the area of the explosion point area is slightly larger, and the grinding amount can be reduced by moving the reference surface.
  • the area of the explosion point is greater than the second preset area, it means that the area of the explosion point area is too large, and the flatness of the wall to be constructed is improved by grouting the grouting area.
  • it also includes: monitoring the grinding depth through a laser rangefinder component; when the grinding depth reaches the target grinding depth of the grinding area for grinding, determining that the grinding in the grinding area is in place; and entering the next grinding area for grinding.
  • the above-mentioned laser rangefinder components can be installed at the execution end of the robot, and can include two laser rangefinders.
  • the parts detected by the two laser rangefinders are the polished area and the unpolished area of the robot respectively.
  • the instrument detects two columns of data M and N for the polished area and the unpolished area.
  • M and N represent the depth values of the ground and unground areas, respectively.
  • the data detected by the two laser rangefinders are M2 and N2 respectively. Then the grinding depth H of the robot can be calculated by the following formula.
  • the robot determines that the grinding is in place, and the robot enters the next grinding area for grinding, and completes the grinding of the entire wall in turn, so as to ensure that the robot can be delivered in one construction. Good quality walls.
  • This embodiment also provides an optional implementation manner, which will be described below.
  • This embodiment provides a fully automatic concrete inner wall grinding robot process method based on BIM technology, which solves the problem of digitizing concrete wall information, achieves the best matching value of the wall grinding amount and repair amount, and achieves the most optimized construction. Work efficiency, solve the quality control problem of concrete wall construction, through precise control of the closed-loop feedback detection of the robot grinding amount, the robot can deliver a qualified wall in one operation.
  • This embodiment adopts the information digitization process of the concrete inner wall, extracts the explosion point information based on the wall data collected by the actual measurement laser, obtains the aluminum film seam information based on the construction design drawings, and unifies the explosion point information and the seam information. Integrate into BIM for planning.
  • the wall explosion point information and aluminum film seam information are transmitted to the robot, so that the robot can simultaneously polish the aluminum film seam overflow and explosion point area , able to deliver better quality walls than manual sanding treatments.
  • This embodiment realizes closed-loop control of grinding pressure, and ensures stable wall grinding quality.
  • the robot can automatically detect the grinding amount and realize the precise control of the grinding depth, which can ensure that the robot can deliver a qualified wall in one operation.
  • FIG. 2 is a flow chart of wall sanding construction according to an embodiment of the present application.
  • Figure 2 shows the flow chart of the wall grinding construction of the robot automatic grinding process system for concrete inner walls.
  • the whole system is divided into wall data collection and processing, BIM operation path planning, robot execution of operation tasks, robot autonomous detection of operation depth, and robot completion of all path operations.
  • Concrete interior wall grinding is divided into burst grinding and joint grinding.
  • the digital method of wall explosion point information is to collect the actual amount of laser light through actual measurement, and extract the wall explosion point information through an automatic algorithm.
  • the heat map of the wall is obtained through data processing. According to the heat map, the explosion point information of the wall is obtained, including the explosion point range, location, depth and other information.
  • the digital method of wall joint information is to obtain wall joint information through building construction drawings, and obtain information such as the location and height of aluminum film joints according to the aluminum mold installation structure of the construction drawings.
  • Figure 3-1 is a schematic diagram of a solid wall
  • Figure 3-2 is a schematic diagram of the explosion point information in the heat map of the corresponding wall.
  • Figure 3-1 is a schematic diagram of the explosion point area of a real wall according to an embodiment of the present application.
  • Figure 3-1 is a solid wall
  • Figure 3-2 is a digital illustration of the explosion point information of the concrete inner wall.
  • Figure 3-2 is a schematic diagram of an explosion point area in a heat map of a wall according to an embodiment of the present application, which is a digital illustration of explosion point information of a concrete inner wall in the heat map of the corresponding wall.
  • Fig. 4-1 is a schematic diagram of a joint area of a real wall according to an embodiment of the present application, as shown in Fig. 4-1 is a solid wall surface
  • Fig. 4-2 is a joint seam in a thermal diagram of a wall according to an embodiment of the present application
  • the schematic diagram of the area, as shown in Figure 4-2, is the seam information of the corresponding wall.
  • the digitization of concrete wall information can achieve the best matching value of the wall grinding and repairing amount and realize the optimal construction work efficiency.
  • Wall data segmentation principles and output formats include the following:
  • Fig. 5 is a schematic diagram of a wall division area according to an embodiment of the present application, as shown in Fig. 5, a wall is divided into a wall with a 2L span in the length direction, and the adjacent division areas overlap L, and are divided into If n regions are not divisible, the remaining regions are merged into region n; the requirement is to parameterize the division length L, which can be adjusted.
  • the purpose of wall segmentation processing is to reduce the influence of local sudden changes of the wall on the datum plane of the entire wall.
  • the wall construction includes: wall data processing, a method for establishing a reference plane (ideal wall), and a method for analyzing burst points and grouting areas.
  • the goal of wall processing is that the flatness and verticality are both within 5mm, so the wall data needs to be processed in two dimensions.
  • Step 1 Considering the processing of flatness, when the wall data fits the ideal wall, remove the requirement that the reference plane is perpendicular to the ground, and fit the ideal wall by the least square method based on the wall data. It is required to ensure that the burst point and grinding amount in the dimension of flatness can be accurately calculated, as well as the area that needs to be replenished, which should be consistent with the results of the burst point area obtained by manually detecting the flatness with a ruler.
  • the definition of the burst point is that the point cloud above the ideal wall tmm protrudes from the wall as the burst point grinding area, and the point below tmm is the grout area.
  • Step 2 The ideal wall surface is positively and negatively offset tmm along the normal direction to form an interlayer. It is required that the proportion of the entire wall surface data falling inside the interlayer reaches the maximum value, and the ratio of the grinding area to the grout area is k, so it is necessary to Offset and rotate the ideal wall to adjust the amount of sanding. Both the t value and the k value are required to be parameterized.
  • Step 3 Data processing in the dimension of verticality, calculate the verticality of the ideal wall according to the ideal wall calculated in the dimension of flatness, divide the ideal wall by the vertical surface, and use the part lower than the vertical surface as a supplementary The pulp area is treated, and the part higher than the vertical surface is not treated to ensure that the wall can meet the verticality requirements after the replenishment is completed.
  • Table 1 is the corresponding table of explosion point area and processing method, and the wall data processing is carried out according to the area of 2L*3m.
  • This embodiment can solve the problem of quality control of concrete wall construction. Through the precise control of the closed-loop feedback detection of the grinding amount of the robot, the robot can deliver a qualified wall in one operation.
  • FIG. 7 is a schematic diagram of construction monitoring according to an embodiment of the present application. As shown in FIG. 7 , it is a self-inspection grinding depth test method for a robot.
  • a group of laser rangefinders are installed at the robot execution end, and the parts detected by the two laser rangefinders are respectively It is the polished area and the unpolished area of the robot.
  • the two rangefinders detect two columns of data M and N. Before grinding, write down the data detected by the two laser rangefinders as M1 and N1 respectively. After grinding, the data detected by the two laser rangefinders are M2 and N2 respectively. Then the grinding depth H of the robot can be calculated by the following formula.
  • the robot determines that the grinding is in place, and the robot enters the next grinding area for grinding, and completes the grinding of the entire wall in turn, so as to ensure that the robot can deliver qualified quality products in one construction. wall.
  • Fig. 8 is a schematic diagram of a wall construction device according to an embodiment of the present application. As shown in Fig. 8, according to another aspect of the embodiment of the present application, a wall construction device is also provided, including: an acquisition module 82, a division module 84, the determination module 86 and the construction module 88, the device will be described below.
  • the obtaining module 82 is configured to obtain burst point information and seam information of the wall to be constructed;
  • the dividing module 84 is connected to the above-mentioned obtaining module 82 and is configured to divide the area of the wall to be constructed to obtain a plurality of divided areas;
  • the determining module 86 is connected with the The above-mentioned division modules 84 are connected, and are configured to determine the types of a plurality of divided areas according to the burst point information and the seam information, wherein the types include a grinding area and a grout-replenishing area;
  • the construction module 88 is connected to the above-mentioned determination module 86, and is set to according to Several types of divided areas are used for construction.
  • the acquisition module 82 is used to obtain the burst point information and joint information of the wall to be constructed; the division module 84 divides the area of the wall to be constructed to obtain a plurality of divided regions; the determination module 86 determines according to the burst point information and the joint information.
  • Types of multiple divided areas where the types include grinding areas and grouting areas; the construction module 88 determines the subsequent operation points according to the construction method of the types of multiple divided areas, until the termination conditions are met, and determines the final jointing operation
  • divide the wall to be constructed determine multiple divided areas, determine the type of the divided area through the explosion point information and joint information, and construct the divided area according to the type, so as to automatically realize the explosion point information and the joint according to the wall.
  • the purpose of constructing the wall is to achieve the effect of improving the efficiency and accuracy of the wall construction, thereby solving the problems of low efficiency and poor accuracy in the manual method of constructing the wall by using a ruler.
  • the obtaining module 82 includes: a measuring unit, configured to measure the wall to be constructed, and obtain burst point information; and an analysis unit, configured to analyze the construction drawings of the wall to be constructed, and obtain joint information.
  • the dividing module 84 includes: a dividing unit configured to divide the wall to be constructed into a plurality of sub-areas according to a preset size, wherein an overlapping area of a predetermined area overlaps between two adjacent sub-areas; the grid unit , set to grid the sub-areas according to the preset height and width to obtain multiple grids, each grid corresponds to a divided area.
  • the determining module 86 includes: a fitting unit, configured to fit the ideal wall according to the target flatness of the wall to be constructed, take the divided area protruding from the ideal wall as the grinding area, The divided area is used as the replenishing area; the first determining unit is set to determine the ideal vertical plane according to the verticality of the ideal wall surface, and the divided area lower than the ideal vertical plane is used as the replenishing area.
  • the determining module 86 further includes: an offset unit, set to offset the ideal wall surface to determine the ideal wall interlayer; an adjustment unit, set to be based on the data that the wall to be constructed falls on the ideal wall interlayer and the to-be-constructed wall interlayer. The proportion of the total data of the construction wall, and the ideal wall is adjusted so that the proportion reaches the maximum value.
  • the construction module 88 includes: a second determining unit, configured to determine the explosion point area according to the area of the polishing area; the polishing unit, configured to adjust the explosion point area based on the adjustment when the explosion point area is less than or equal to the first preset area.
  • the final ideal wall surface determines the grinding datum surface, and based on the grinding datum surface, the grinding area is directly ground; the mobile unit is set so that when the explosion point area is greater than the first preset area and less than or equal to the second preset area, Move the grinding datum surface to reduce the grinding amount, and grind the grinding area based on the moved grinding datum surface, wherein the second preset area is larger than the first preset area; the slurry replenishing unit is set to be larger than the second preset area when the explosion point area is larger than the second preset area. In the case of setting the area, the replenishment area is replenished.
  • it also includes: a detection module, set to monitor the grinding depth through a laser rangefinder component; a determination module, set to determine that the grinding of the grinding area is in place when the grinding depth reaches the target grinding depth of the grinding area for grinding treatment ;Processing module, set to enter the next grinding area for grinding.
  • a computer storage medium is also provided, where the computer storage medium includes a stored program, wherein when the program runs, the device where the computer storage medium is located is controlled to execute any one of the above wall construction methods.
  • the storage medium may be a non-transitory storage medium.
  • a processor is further provided, and the processor is configured to run a program, wherein when the program runs, any one of the above-mentioned wall construction methods is executed.
  • the disclosed technical content may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units may be a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • multiple functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • Part of the technical solution of the present application or all or part of the technical solution may be embodied in the form of a software product, and the computer software product is stored in a storage medium and includes a plurality of instructions to enable a computer device (which can be an individual A computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: Universal Serial Bus Flash Disk (U disk), Read-Only Memory (ROM), Random Access Memory (Random Access Memory, RAM), removable hard disk , disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

一种墙壁施工方法、装置、存储介质及处理器。其中,该墙壁施工方法包括:获取待施工墙壁的爆点信息和拼缝信息(S102);对待施工墙壁进行区域分割,得到多个划分区域(S104);根据爆点信息和拼缝信息,确定多个划分区域的类型,其中,类型包括打磨区域和补浆区域(S106);根据多个划分区域的类型进行施工(S108)。

Description

墙壁施工方法、装置、存储介质及处理器
本申请要求在2020年11月05日提交中国专利局、申请号为202011226087.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及施工机器人领域,例如涉及一种墙壁施工方法、装置、存储介质及处理器。
背景技术
商业住宅开发项目的标准层内墙面的处理方法是人工用靠尺检测出墙面打磨区域和补浆区域,由人工手持打磨机进行打磨和人工补浆。人工打磨效率低,劳动强度大,现场粉尘大,对人的身心造成严重的影响。人工检测的方式由于检测的局限性容易导致墙面漏检,出现二次返工的情况,降低施工效率。
发明内容
本申请提供了一种墙壁施工方法、装置、存储介质及处理器,以至少解决相关技术中人工采用靠尺的对墙壁进行施工的方式存在的效率低、准确度差的问题。
根据本申请实施例的一个方面,提供了一种墙壁施工方法,包括:获取待施工墙壁的爆点信息和拼缝信息;对所述待施工墙壁进行区域分割,得到多个划分区域;根据所述爆点信息和拼缝信息,确定所述多个划分区域的类型,其中,所述类型包括打磨区域和补浆区域;根据所述多个划分区域的类型进行施工。
根据本申请实施例的另一方面,还提供了一种墙壁施工装置,包括:获取模块,设置为获取待施工墙壁的爆点信息和拼缝信息;划分模块,设置为对所述待施工墙壁进行区域分割为多个划分区域;确定模块,设置为根据所述爆点信息和拼缝信息,确定所述多个划分区域的类型,其中,所述类型包括打磨区域和补浆区域;施工模块,设置为根据所述多个划分区域的类型进行施工。
根据本申请实施例的另一方面,还提供了一种计算机存储介质,所述计算机存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机存储介质所在设备执行上述中任意一项所述的墙壁施工方法。
根据本申请实施例的另一方面,还提供了一种处理器,所述处理器设置为 运行程序,其中,所述程序运行时执行上述中任意一项所述的墙壁施工方法。
附图说明
图1是根据本申请实施例的一种墙壁施工方法的流程图;
图2是根据本申请实施方式的墙壁打磨施工的流程图;
图3-1是根据本申请实施方式的真实墙壁的爆点区域的示意图;
图3-2是根据本申请实施方式的墙壁的热力图的爆点区域的示意图;
图4-1是根据本申请实施方式的真实墙壁的拼缝区域的示意图;
图4-2是根据本申请实施方式的墙壁的热力图的拼缝区域的示意图;
图5是根据本申请实施方式的墙壁划分区域的示意图;
图6是根据本申请实施方式的墙面施工的示意图;
图7是根据本申请实施方式的施工监测的示意图;
图8是根据本申请实施例的一种墙壁施工装置的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于列出的那些步骤或单元,而是可包括没有列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例,提供了一种墙壁施工方法的方法实施例,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本申请实施例的一种墙壁施工方法的流程图,如图1所示,根 据本申请实施例的另一方面,还提供了一种机器人的坐标确定方法,该方法包括以下步骤:
步骤S102,获取待施工墙壁的爆点信息和拼缝信息。
步骤S104,对待施工墙壁进行区域分割,得到多个划分区域。
步骤S106,根据爆点信息和拼缝信息,确定多个划分区域的类型,其中,类型包括打磨区域和补浆区域。
步骤S108,根据多个划分区域的类型进行施工。
通过上述步骤,采用获取待施工墙壁的爆点信息和拼缝信息;对待施工墙壁进行区域分割,得到多个划分区域;根据爆点信息和拼缝信息,确定多个划分区域的类型,其中,类型包括打磨区域和补浆区域;根据划分区域的类型进行施工的方式,确定之后的作业点,直至满足终止条件,确定最终的拼缝作业点的方式,对待施工墙壁进行划分,确定多个划分区域,通过爆点信息和拼缝信息,确定划分区域的类型,根据类型对划分区域进行施工,达到了自动根据墙壁的爆点信息和拼缝信息,对墙壁进行施工的目的,从而实现提高墙壁施工的效率和准确率的效果,进而解决了人工采用靠尺的对墙壁进行施工的方式存在的效率低、准确度差的问题。
上述爆点信息可以是待施工墙壁上需要进行打磨的位置和区域信息。上述拼缝信息可以是在对待施工墙壁的施工过程中,由于施工方式形成的拼缝,拼缝在后期修补过程中可能会导致拼缝的部位突出,需要进行施工。上述爆点信息可以通过激光测距的方式对待施工墙壁进行检测获得,上述拼缝信息可以根据待施工墙壁的施工图纸确定,在施工图纸中,存在拼缝的地方都会有标注,通过对施工图纸的查找和分析可以确定上述拼缝信息。
上述爆点信息和拼缝信息都可以通过对待施工墙壁的数字化获得,例如,通过建筑信息模型(Building Information Modeling,BIM)技术,生成待施工墙壁的建筑信息模型BIM,在待施工墙壁的BIM模型上标注出待施工墙壁的数据,待施工墙壁的数据包括爆点信息和拼缝信息在所述待施工墙壁上的位置,大小和形状。
对上述待施工墙壁进行区域分割,得到多个划分区域,可以是按照预设长度将待施工墙壁划分为多个部分,由于墙壁的形状一般都是上下一致,可以按照墙壁与地面交汇的长度方向,以上述预设长度将待施工墙壁划分为多个部分,对每个部分进行网格划分,每个网格相当于一个划分区域。
根据爆点信息和拼缝信息,确定多个划分区域的类型,其中,类型包括打磨区域和补浆区域,根据爆点信息和拼缝信息,可以确定划分区域是否存在爆 点和拼缝,而导致需要进行打磨或者补浆,打磨区域对应的要进行打磨处理,补浆区域对应的要进行补浆处理。
根据划分区域的类型进行施工,也即是对打磨区域进行打磨,对补浆区域进行补浆。在实施时,可以先对打磨区域进行打磨,然后对补浆区域进行补浆。也可以是先对补浆区域进行补浆,然后对打磨区域进行打磨,只针对需要打磨的地方进行打磨,针对需要补浆的地方进行补浆,从而提高对待施工墙壁的施工效率,解决了人工采用靠尺的对墙壁进行施工的方式存在的效率低、准确度差的问题。
可选的,获取待施工墙壁的爆点信息和拼缝信息包括:对待施工墙壁进行测量,获取爆点信息;对待施工墙壁的施工图纸进行分析,获取拼缝信息。
上述对待施工墙壁进行测量可以是通过激光测距装置进行测量,获取待施工墙壁的爆点信息,并建立待施工墙壁的BIM模型,在BIM模型上,显示爆点位置和爆点区域。根据待施工墙壁的施工图纸,确定待施工墙壁的拼缝信息,将拼缝信息显示在上述BIM模型上。
可选的,对待施工墙壁进行区域分割,得到多个划分区域包括:按照预设尺寸,将待施工墙壁划分为多个子区域,其中,相邻两个子区域之间重叠有预设面积的重叠区域;对子区域按照预设的高度和宽度进行网格化,得到多个网格,每个网格对应一个划分区域。
上述预设尺寸可以为预设长度,或者预设形状的尺寸,例如,矩形的长和宽,正方形的边长,正六边形的边长等。也即是说上述划分区域可以为多种形状,但是多个划分区域可以完全覆盖上述待施工墙壁。上述子区域也即是对待施工墙壁初步划分的多个区域,一般为矩形。例如,将一面墙按长度方向以2L跨度分割墙面,相邻分割区域重合L,墙面共分成n个区域,若墙面长度不能整除2L,将剩余区域并入区域n;要求是将分割长度L参数化,L可进行调整。墙面分割处理的目的是为了降低墙面局部突变对整个墙面基准面的影响。相邻两个子区域之间重叠有预设面积的重叠区域,可以保证对待施工墙壁进行两次分析,输出两次计算量的平均值或者最大值,从而提高了数据计算的准确率。将上述待施工墙壁分割成多个子区域之后,对每一个子区域单独计算爆点位置、打磨量、以及补浆区域,最终输出爆点位置、打磨量和补浆区域。
对上述子区域进行网格化,生成多个划分区域,并根据上述确定的爆点位置、打磨量和补浆区域确定划分区域的类型,以对划分区域进行施工。
可选的,根据爆点信息和拼缝信息,确定多个划分区域的类型,包括:根据待施工墙壁的目标平面度,拟合理想墙面,将凸出理想墙面的划分区域作为 打磨区域,将低于理想墙面的划分区域作为补浆区域;根据理想墙面的垂直度,确定理想垂面,将低于理想垂面的划分区域作为补浆区域。
在确定划分区域的类型时,需要先确定待施工墙面的施工目标,包括平面度和垂直度,因此,从平面度和垂直度两方面对待施工墙面的划分区域的类型进行确定。
根据待施工墙壁的目标平面度,拟合理想墙面,可以是基于待施工墙壁的BIM模型数据,通过最小二乘法进行拟合,确定理想墙面。理想墙面也即是待施工墙壁完全满足平面度和垂直度的墙面。凸出理想墙面的划分区域为打磨区域,低于理想墙面的划分区域为补浆区域。
根据理想墙面的垂直度,确定理想垂面,也即是根据理想墙面确定满足垂直度要求的理想垂面,由于垂面修正只需要通过打磨的方式,将突出垂面的部分打磨,或者将低于垂面的部分进行补浆,由于垂面的问题通常需要较大面积的修正,打磨的任务量较大,且效率低,成本高,因此,通常采用补浆的方式,修正墙壁的垂直度,因此,只将低于理想垂面的划分区域作为补浆区域,后期通过补浆的方式修正待施工墙面的垂直度,提高了待施工墙面的施工效率,并节省了成本。
可选的,在根据待施工墙壁的目标平面度,拟合理想墙面,将凸出理想墙面的划分区域作为打磨区域,将低于理想墙面的划分区域作为补浆区域之后,还包括:对理想墙面进行偏移,确定理想墙面夹层;根据待施工墙壁落在理想墙面夹层的数据与待施工墙壁的数据总量的比例,对理想墙面进行调整,以使比例达到最大值。
爆点区域需要进行打磨,在理想墙面处于不同位置的情况下,打磨区域和补浆区域的范围不同。理想墙面越高,打磨区域的面积越小,理想墙面越低,补浆区域越小。
理想墙面沿法向正负偏移tmm形成一个夹层,生成理想墙面夹层,要求整个待施工墙壁落在理想墙面夹层的数据与待施工墙壁的数据总量的比例达到最大值,保证待施工墙面的有效性,更贴和待施工墙面的真实情况,而且打磨区域和补浆区域的比例是k,实现对打磨区域和补浆区域的比例的参数化,在使用过程中,可以根据实际的施工能力,预先确定打磨和补浆的比例,通过实际比例和预先确定的比例的差距,对待施工墙壁进行偏移,直至实际比例达到预先设定的比例要求,完成对待施工墙壁的偏移调整。通过将理想墙面进行偏移和旋转调整,以调整打磨量。
可选的,根据划分区域的类型进行施工,包括:根据打磨区域的面积,确 定爆点面积;在爆点面积小于或等于第一预设面积的情况下,基于调整后的理想墙面确定打磨基准面,基于打磨基准面,对打磨区域直接进行打磨;在爆点面积大于第一预设面积且小于或等于第二预设面积的情况下,移动打磨基准面以降低打磨量,基于移动后的打磨基准面对打磨区域进行打磨,其中,第二预设面积大于第一预设面积;在爆点面积大于第二预设面积的情况下,对补浆区域进行补浆。
在确定打磨区域后,打磨区域的面积也即是爆点面积,在实际施工时,打磨和补浆都是提高待施工墙面质量的方式,打磨的特点在于可以在打磨完成后即可后续施工,无需等待,准确度高,但是成本高,效率低;补浆的特点在于施工方便,成本低,但是补浆后需要等待晾干凝结,准确度差。因此,在施工时对两种方式进行权衡,以求得合理的施工方式。
在爆点面积小于或等于第一预设面积的情况下,说明爆点面积较小,可以直接进行打磨。在爆点面积大于第一预设面积且小于或等于第二预设面积的情况下,说明爆点区域面积略大,可以通过移动基准面的方式降低打磨量。在爆点面积大于第二预设面积的情况下,说明爆点区域面积过大,通过对补浆区域进行补浆的方式来提高待施工墙壁的平面度。
可选的,还包括:通过激光测距仪组件监测打磨深度;在打磨深度达到打磨处理的打磨区域的目标打磨深度的情况下,确定打磨区域的打磨到位;进入下一个打磨区域进行打磨处理。
上述激光测距仪组件可以安装在机器人执行末端,可以包括两个激光测距仪,两个激光测距仪检测的部位分别是机器人打磨区域和未打磨区域,通过机器人升降运动,两个测距仪检测出打磨区域和未打磨区域的两列数据M和N。M和N分别代表打磨区域与未打磨区域的深度值。打磨之前记下两个激光测距仪检测的数据分别为M1,N1,打磨之后两个激光测距仪检测的数据分别为M2,N2,那么通过下面公式可以算出机器人的打磨深度H。
H=|(M2-N2)-(M1-N1)|
当机器人计算得到的打磨深度H等于基于打磨基准面确定的目标打磨深度时,则机器人判定打磨到位,机器人进入下一个打磨区域的打磨,依次完成整个墙面的打磨,从而保证机器人一次施工能够交付合格质量的墙面。
本实施例还提供了一种可选的实施方式,下面对该实施方式进行说明。
本实施方式提供了一种基于BIM技术的全自动混凝土内墙面打磨机器人工艺方法,解决了混凝土墙面信息数字化问题,达到墙面打磨量和修补量的最佳匹配值,达到最优化的施工工效,解决混凝土墙面施工的质量控制问题,通过 对机器人打磨量闭环反馈检测的精准控制,实现机器人一次作业交付合格墙面。
本实施方式采用了混凝土内墙面的信息数字化工艺,基于实测实量激光采集的墙面数据提取出爆点信息,基于施工设计图纸获取铝膜拼缝信息,将爆点信息和拼缝信息统一集成到BIM进行规划。通过第四代移动通信技术(the 4th Generation Mobile Communication Technology,4G)通信,将墙面爆点信息和铝膜拼缝信息传入机器人,实现机器人能够同时打磨铝膜拼缝溢浆和爆点区域,能够交付比人工打磨处理质量更好的墙面。本实施方式实现打磨压力闭环控制,保证墙面打磨质量稳定。实现机器人在自动打磨过程中,自动检测打磨量,实现打磨深度的精准控制,能够确保机器人一次作业交付合格墙面。
图2是根据本申请实施方式的墙壁打磨施工的流程图。图2示出了混凝土内墙面机器人全自动打磨工艺系统的墙壁打磨施工的流程图。整个系统分为墙面数据采集与处理,BIM作业路径规划,机器人执行作业任务,机器人自主检测作业深度,机器人完成所有路径作业。混凝土内墙打磨分为爆点打磨和拼缝打磨。墙面爆点信息的数字化方式是通过实测实量激光采集,经过自动化算法将墙面爆点信息提取出来。如图2所示,根据对实体墙面进行测量采集,经过数据处理获得墙面的热力图。根据热力图获取墙面的爆点信息,包括爆点范围、位置、深度等信息。墙面拼缝信息的数字化方式是通过建筑施工图纸获取墙面拼缝信息,根据施工图纸的铝模安装结构,获取铝膜拼缝的位置、高度等信息。如图3-1所示为实体墙面的示意图,如图3-2所示,是对应墙面的热力图中爆点信息的示意图。
对混凝土内墙面爆点信息进行数字化图示,图3-1是根据本申请实施方式的真实墙壁的爆点区域的示意图,如图3-1所示是实体墙面,图3-2是根据本申请实施方式的墙壁的热力图中爆点区域的示意图,如图3-2所示是对应墙面的热力图中混凝土内墙面爆点信息的数字化图示。图4-1是根据本申请实施方式的真实墙壁的拼缝区域的示意图,如图4-1所示是实体墙面,图4-2是根据本申请实施方式的墙壁的热力图中拼缝区域的示意图,如图4-2所示是对应墙面的拼缝信息。
混凝土墙面信息数字化,能够达到墙面打磨量和修补量的最佳匹配值和实现最优化的施工工效。
实测实量检测墙面数据之后,根据以下的规则处理,以获取墙面打磨量和修补量的最佳匹配值,从而达到最优化的施工工效:
墙面数据分割原则和输出格式包括以下方面:
a)墙面分割处理:图5是根据本申请实施方式的墙壁划分区域的示意图, 如图5所示,将一面墙按长度方向以2L跨度分割墙面,相邻分割区域重合L,共分成n个区域,若不能整除,将剩余区域并入区域n;要求是将分割长度L参数化,可进行调整。墙面分割处理的目的是为了降低墙面局部突变对整个墙面基准面的影响。
b)墙面分割成区域1,2,…,n之后,对每一个区域单独计算爆点位置、打磨量、以及补浆区域;最终输出爆点位置、打磨量和补浆区域按区域A、区域B、区域C分别输出,因此从区域B开始爆点位置、打磨量和补浆区域存在重复计算,取两次计算量的最大值,以此类推,输出整面墙的爆点位置、打磨量和补浆区域信息。其中,补浆区域的输出是以热力图的方式,并在热力图上标注出整个墙面的补浆区域大小和位置,由人工作业完成补浆。
c)针对区域A、区域B、区域C…爆点位置、打磨量的输出,设计到具体的数据格式定义,如图5所示,需要将区域网格化,以宽为m,高为h的网格将区域网格化,每一个网格的数据定义为数组[X坐标值,高度起点H,高度终点H+h,打磨量],这里只输出爆点区域覆盖的网格。要求:m,h参数化,并可进行调整。
图6是根据本申请实施方式的墙面施工的示意图,如图6所示,墙面施工包括:墙面数据处理、基准面(理想墙面)建立方法以及爆点、补浆区域分析方法。墙面的处理的目标是平面度和垂直度均在5mm以内,因此墙面数据需要考虑两个维度的处理。
a)步骤一:考虑平面度的处理,墙面数据拟合理想墙面时,去掉基准面垂直于地面的要求,基于墙面数据通过最小二乘法进行理想墙面拟合。要求保证能够准确地计算出在平面度维度上的爆点和打磨量,以及需要补浆的区域,应该与人工用靠尺检测平面度得到的爆点区域结果一致。爆点的定义是,墙面点云凸出理想墙面tmm以上的点作为爆点打磨区域,低于tmm的点作为补浆区域。
b)步骤二:理想墙面沿法向正负偏移tmm形成一个夹层,要求整个墙面数据落在夹层内部的占比达到最大值,而且打磨区域和补浆区域的比例是k,因此需要将理想墙面进行偏移和旋转调整,以调整打磨量。要求t数值和k值均参数化。
c)步骤三:垂直度维度的数据处理,根据平面度维度计算的理想墙面,计算出理想墙面的垂直度,用垂面将该理想墙面分割,低于垂面的那部分作为补浆区域处理,高于垂面的那部分不做处理,保证补浆完成之后,墙面能够达到垂直度的要求。
参数化初始值可以设定为:L=1000mm,m=100mm,h=100mm,t=2.5mm。
对于基准面调整目标值,按表1进行设定,其中,表1为爆点面积和处理方式的对应表,墙面数据处理都是按2L*3m的面积进行。
表1爆点面积和处理方式的对应表
Figure PCTCN2021128745-appb-000001
本实施方式能够解决混凝土墙面施工质量控制问题,通过机器人打磨量闭环反馈检测的精准控制,实现机器人一次作业交付合格墙面。
根据墙面数据提供的打磨深度,机器人采用在线复检的方式自查打磨深度,如果自检打磨深度不足,机器人继续打磨,直至打磨深度达到要求,则进行下一个工位的施工。图7是根据本申请实施方式的施工监测的示意图,如图7所示,为机器人自检打磨深度测试方法,机器人执行末端安装一组激光测距仪,两个激光测距仪检测的部位分别是机器人打磨区域和未打磨区域,通过机器人升降运动,两个测距仪检测出两列数据M和N。打磨之前记下两个激光测距仪检测的数据分别为M1,N1,打磨之后两个激光测距仪检测的数据分别为M2,N2,那么通过下面公式可以算出机器人的打磨深度H。
H=|(M2-N2)-(M1-N1)|
当机器人计算得到打磨深度H等于墙面数据输出的打磨深度时,则机器人判定打磨到位,机器人进入下一个打磨区域的打磨,依次完成整个墙面的打磨,从而保证机器人一次施工能够交付合格质量的墙面。
图8是根据本申请实施例的一种墙壁施工装置的示意图,如图8所示,根据本申请实施例的另一方面,还提供了一种墙壁施工装置,包括:获取模块82,划分模块84,确定模块86和施工模块88,下面对该装置进行说明。
获取模块82,设置为获取待施工墙壁的爆点信息和拼缝信息;划分模块84,与上述获取模块82相连,设置为对待施工墙壁进行区域分割,得到多个划分区域;确定模块86,与上述划分模块84相连,设置为根据爆点信息和拼缝信息,确定多个划分区域的类型,其中,类型包括打磨区域和补浆区域;施工模块88,与上述确定模块86相连,设置为根据多个划分区域的类型进行施工。
通过上述装置,采用获取模块82获取待施工墙壁的爆点信息和拼缝信息; 划分模块84对待施工墙壁进行区域分割,得到多个划分区域;确定模块86根据爆点信息和拼缝信息,确定多个划分区域的类型,其中,类型包括打磨区域和补浆区域;施工模块88根据多个划分区域的类型进行施工的方式,确定之后的作业点,直至满足终止条件,确定最终的拼缝作业点的方式,对待施工墙壁进行划分,确定多个划分区域,通过爆点信息和拼缝信息,确定划分区域的类型,根据类型对划分区域进行施工,达到了自动根据墙壁的爆点信息和拼缝信息,对墙壁进行施工的目的,从而实现提高墙壁施工的效率和准确率的效果,进而解决了人工采用靠尺的对墙壁进行施工的方式存在的效率低、准确度差的问题。
可选的,获取模块82包括:测量单元,设置为对待施工墙壁进行测量,获取爆点信息;分析单元,设置为对待施工墙壁的施工图纸进行分析,获取拼缝信息。
可选的,划分模块84包括:划分单元,设置为按照预设尺寸,将待施工墙壁划分为多个子区域,其中,相邻两个子区域之间重叠有预设面积的重叠区域;网格单元,设置为对子区域按照预设的高度和宽度进行网格化,得到多个网格,每个网格对应一个划分区域。
可选的,确定模块86包括:拟合单元,设置为根据待施工墙壁的目标平面度,拟合理想墙面,将凸出理想墙面的划分区域作为打磨区域,将低于理想墙面的划分区域作为补浆区域;第一确定单元,设置为根据理想墙面的垂直度,确定理想垂面,将低于理想垂面的划分区域作为补浆区域。
可选的,确定模块86,还包括:偏移单元,设置为对理想墙面进行偏移,确定理想墙面夹层;调整单元,设置为根据待施工墙壁落在理想墙面夹层的数据与待施工墙壁的数据总量的比例,对理想墙面进行调整,以使比例达到最大值。
可选的,施工模块88包括:第二确定单元,设置为根据打磨区域的面积,确定爆点面积;打磨单元,设置为在爆点面积小于或等于第一预设面积的情况下,基于调整后的理想墙面确定打磨基准面,基于打磨基准面,对打磨区域直接进行打磨;移动单元,设置为在爆点面积大于第一预设面积且小于或等于第二预设面积的情况下,移动打磨基准面以降低打磨量,基于移动后的打磨基准面对打磨区域进行打磨,其中,第二预设面积大于第一预设面积;补浆单元,设置为在爆点面积大于第二预设面积的情况下,对补浆区域进行补浆。
可选的,还包括:检测模块,设置为通过激光测距仪组件监测打磨深度;判定模块,设置为在打磨深度达到打磨处理的打磨区域的目标打磨深度的情况下,确定打磨区域的打磨到位;处理模块,设置为进入下一个打磨区域进行打 磨处理。
根据本申请实施例的另一方面,还提供了一种计算机存储介质,计算机存储介质包括存储的程序,其中,在程序运行时控制计算机存储介质所在设备执行上述中任意一项的墙壁施工方法。存储介质可以是非暂态(non-transitory)存储介质。
根据本申请实施例的另一方面,还提供了一种处理器,处理器设置为运行程序,其中,程序运行时执行上述中任意一项的墙壁施工方法。
在本申请的上述实施例中,对多个实施例的描述都各有侧重,一个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请多个实施例中的多个功能单元可以集成在一个处理单元中,也可以是每个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。本申请的技术方案的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括多个指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请多个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(Universal Serial Bus Flash Disk,U盘)、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。

Claims (12)

  1. 一种墙壁施工方法,包括:
    获取待施工墙壁的爆点信息和拼缝信息;
    对所述待施工墙壁进行区域分割,得到多个划分区域;
    根据所述爆点信息和所述拼缝信息,确定所述多个划分区域的类型,其中,所述类型包括打磨区域和补浆区域;
    根据所述多个划分区域的类型进行施工。
  2. 根据权利要求1所述的方法,其中,所述获取待施工墙壁的爆点信息和拼缝信息,包括:
    对所述待施工墙壁进行测量,获取所述爆点信息;
    对所述待施工墙壁的施工图纸进行分析,获取所述拼缝信息。
  3. 根据权利要求1所述的方法,其中,所述对所述待施工墙壁进行区域分割,得到多个划分区域,包括:
    按照预设尺寸,将所述待施工墙壁划分为多个子区域,其中,相邻两个子区域之间重叠有预设面积的重叠区域;
    对每个子区域按照预设的高度和宽度进行网格化,得到多个网格,每个网格对应一个划分区域。
  4. 根据权利要求1所述的方法,其中,所述根据所述爆点信息和所述拼缝信息,确定所述多个划分区域的类型,包括:
    根据所述待施工墙壁的目标平面度,拟合理想墙面,将凸出所述理想墙面的划分区域作为打磨区域,将低于所述理想墙面的划分区域作为补浆区域;
    根据所述理想墙面的垂直度,确定理想垂面,将低于所述理想垂面的划分区域作为补浆区域。
  5. 根据权利要求4所述的方法,其中,在所述根据所述待施工墙壁的目标平面度,拟合理想墙面,将凸出所述理想墙面的划分区域作为打磨区域,将低于所述理想墙面的划分区域作为补浆区域之后,还包括:
    对所述理想墙面进行偏移,确定理想墙面夹层;
    根据所述待施工墙壁落在所述理想墙面夹层的数据与所述待施工墙壁的数据总量的比例,对所述理想墙面进行调整。
  6. 根据权利要求5所述的方法,其中,所述根据所述多个划分区域的类型进行施工,包括:
    根据所述打磨区域的面积,确定爆点面积;
    在所述爆点面积小于或等于第一预设面积的情况下,基于调整后的理想墙面确定打磨基准面,基于所述打磨基准面,对所述打磨区域直接进行打磨;
    在所述爆点面积大于所述第一预设面积且小于或等于第二预设面积的情况下,移动所述打磨基准面以降低打磨量,基于移动后的打磨基准面对所述打磨区域进行打磨,其中,所述第二预设面积大于所述第一预设面积;
    在所述爆点面积大于所述第二预设面积的情况下,对所述补浆区域进行补浆。
  7. 根据权利要求1所述的方法,还包括:
    监测打磨深度;
    在所述打磨深度达到打磨处理的打磨区域的目标打磨深度的情况下,确定所述打磨区域的打磨到位;
    进入下一个打磨区域进行打磨处理。
  8. 一种墙壁施工装置,包括:
    获取模块,设置为获取待施工墙壁的爆点信息和拼缝信息;
    划分模块,设置为对所述待施工墙壁进行区域分割,得到多个划分区域;
    确定模块,设置为根据所述爆点信息和所述拼缝信息,确定所述多个划分区域的类型,其中,所述类型包括打磨区域和补浆区域;
    施工模块,设置为根据所述多个划分区域的类型进行施工。
  9. 根据权利要求8所述的装置,其中,所述获取模块包括:
    测量单元,设置为对所述待施工墙壁进行测量,获取所述爆点信息;
    分析单元,设置为对所述待施工墙壁的施工图纸进行分析,获取所述拼缝信息。
  10. 根据权利要求8所述的装置,其中,所述划分模块包括:
    划分单元,设置为按照预设尺寸,将所述待施工墙壁划分为多个子区域,其中,相邻两个子区域之间重叠有预设面积的重叠区域;
    网格单元,设置为对所述子区域按照预设的高度和宽度进行网格化,得到多个网格,每个网格对应一个划分区域。
  11. 一种计算机存储介质,所述计算机存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机存储介质所在设备执行权利要求1至7中任意 一项所述的墙壁施工方法。
  12. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至7中任意一项所述的墙壁施工方法。
PCT/CN2021/128745 2020-11-05 2021-11-04 墙壁施工方法、装置、存储介质及处理器 WO2022095931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011226087.6 2020-11-05
CN202011226087.6A CN112686836B (zh) 2020-11-05 2020-11-05 墙壁施工方法及装置

Publications (1)

Publication Number Publication Date
WO2022095931A1 true WO2022095931A1 (zh) 2022-05-12

Family

ID=75446058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128745 WO2022095931A1 (zh) 2020-11-05 2021-11-04 墙壁施工方法、装置、存储介质及处理器

Country Status (2)

Country Link
CN (1) CN112686836B (zh)
WO (1) WO2022095931A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686836B (zh) * 2020-11-05 2023-11-28 广东博智林机器人有限公司 墙壁施工方法及装置
CN113741467B (zh) * 2021-09-07 2023-10-13 深圳大方智能科技有限公司 一种竖直墙面施工方法及施工机器人
CN114296451B (zh) * 2021-12-15 2024-06-18 珠海一微半导体股份有限公司 基于遗传算法的机器人墙面工作的路径规划方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592895A (zh) * 2018-05-08 2018-09-28 安捷睿(厦门)机器人有限公司 基于三维激光扫描的建筑施工检测系统、方法及设备
CN109914756A (zh) * 2019-03-19 2019-06-21 珠海心怡科技有限公司 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
US20200098103A1 (en) * 2018-09-21 2020-03-26 Chongqing Construction Engineering Group Corporation Limited High-precision Intelligent Detection Method For Bridge Diseases Based On Spatial Position
CN111197979A (zh) * 2019-06-20 2020-05-26 广东领盛装配式建筑科技有限公司 一种基于点云数据分析的建筑检测方法及装置
CN111203766A (zh) * 2020-04-20 2020-05-29 广东博智林机器人有限公司 一种墙面打磨路径规划方法、装置、设备和介质
CN112686836A (zh) * 2020-11-05 2021-04-20 广东博智林机器人有限公司 墙壁施工方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592895A (zh) * 2018-05-08 2018-09-28 安捷睿(厦门)机器人有限公司 基于三维激光扫描的建筑施工检测系统、方法及设备
US20200098103A1 (en) * 2018-09-21 2020-03-26 Chongqing Construction Engineering Group Corporation Limited High-precision Intelligent Detection Method For Bridge Diseases Based On Spatial Position
CN109914756A (zh) * 2019-03-19 2019-06-21 珠海心怡科技有限公司 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
CN111197979A (zh) * 2019-06-20 2020-05-26 广东领盛装配式建筑科技有限公司 一种基于点云数据分析的建筑检测方法及装置
CN111203766A (zh) * 2020-04-20 2020-05-29 广东博智林机器人有限公司 一种墙面打磨路径规划方法、装置、设备和介质
CN112686836A (zh) * 2020-11-05 2021-04-20 广东博智林机器人有限公司 墙壁施工方法及装置

Also Published As

Publication number Publication date
CN112686836B (zh) 2023-11-28
CN112686836A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2022095931A1 (zh) 墙壁施工方法、装置、存储介质及处理器
CN107679441B (zh) 基于多时相遥感影像阴影提取城市建筑物高度的方法
CN111238352B (zh) 墙面虚拟靠尺检测方法、系统、设备和存储介质
CN203259123U (zh) 大型回转类工件内壁尺寸的测量装置及系统
CN104180771A (zh) 基于三维激光扫描的快速高精度罐体容积测量方法及装置
CN111027118B (zh) 一种实测实量任务点搜索与任务派发方法及系统
CN103307977A (zh) 大型回转类工件内壁尺寸的现场测量装置、系统及方法
CN104019745B (zh) 基于单目视觉间接标定方法的自由平面尺寸测量方法
CN104677301A (zh) 一种基于视觉检测的螺旋焊管管线外径测量装置和方法
CN112082493B (zh) 基于双目成像的管道法兰内半径视觉测量方法
CN103389136A (zh) 基于三维激光扫描技术的外浮顶立式金属罐容积测量方法
CN106338277B (zh) 一种基于基线的建筑物变化检测方法
CN102155913A (zh) 基于图像和激光的煤堆体积自动测量方法及装置
CN101858730A (zh) 一种自动测量煤堆体积的方法及其专用装置
CN114119488A (zh) 一种面向工厂化的预制叠合板尺寸质量智能检测方法
Chung et al. Development of LiDAR simulator for backpack-mounted mobile indoor mapping system
CN107504917B (zh) 一种三维尺寸测量方法及装置
CN106403818A (zh) 多规格大型方矩形管在线尺寸参数检测用的系统及方法
CN114937130A (zh) 一种地形图测绘方法、装置、设备及存储介质
CN110836661A (zh) 一种天坑参数测量方法
CN105651202A (zh) 一种用于测量矿山体积的三维扫描方法及装置
CN110390715B (zh) 一种同时检测建筑物屋顶、建筑物墙体及地面阴影的方法
Sammartano et al. Parametric generation in HBIM workflows for slam-based data: Discussing expectations on suitability and accuracy
CN104700406A (zh) 平面产状提取方法和系统
CN116051771A (zh) 一种基于无人机倾斜摄影模型的光伏bim屋顶自动建模方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888623

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2023)