WO2022095866A1 - 一种基片集成圆极化电磁辐射结构及阵列 - Google Patents
一种基片集成圆极化电磁辐射结构及阵列 Download PDFInfo
- Publication number
- WO2022095866A1 WO2022095866A1 PCT/CN2021/128299 CN2021128299W WO2022095866A1 WO 2022095866 A1 WO2022095866 A1 WO 2022095866A1 CN 2021128299 W CN2021128299 W CN 2021128299W WO 2022095866 A1 WO2022095866 A1 WO 2022095866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circularly polarized
- metal
- substrate
- radiation structure
- electromagnetic radiation
- Prior art date
Links
- 230000005670 electromagnetic radiation Effects 0.000 title claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 116
- 229910052751 metal Inorganic materials 0.000 claims abstract description 116
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims description 22
- 239000000523 sample Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 claims 7
- 239000011229 interlayer Substances 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 31
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
- H01Q9/285—Planar dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/108—Combination of a dipole with a plane reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/062—Two dimensional planar arrays using dipole aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Definitions
- the invention relates to the field of antennas, in particular to a substrate-integrated circularly polarized electromagnetic radiation structure and an array.
- the antenna In order to effectively transmit information and overcome the polarization distortion caused by the ionospheric Faraday rotation effect, the antenna is required to have circular polarization performance, and the same antenna front works simultaneously in the receive and transmit modes.
- the antenna is required to have the working capability of left-hand circular polarization and right-hand circular polarization.
- United States In terms of military use, in the field of early warning of space targets, countries also generally use circularly polarized antennas as basic radiation units. Therefore, circular polarization technology is widely used in military and civilian fields.
- the polarization of the antenna characterizes the time-varying characteristics of the orientation of the electric field strength vector at a given point in space when the antenna radiates, and is described by the time-varying trajectory of the endpoints of the electric field strength vector.
- the polarization of the antenna is divided into linear polarization, circular polarization and elliptical polarization.
- the circularly polarized antenna has the following advantages: the circularly polarized antenna can receive incoming waves of any linear polarization, and the circularly polarized wave radiated by the circularly polarized antenna can also be received by any polarized antenna; the circularly polarized antenna has a handedness Orthogonality, if the antenna radiates right-handed circularly polarized waves, it only receives right-handed circularly polarized waves but not left-handed circularly polarized waves, and vice versa; ideal polarization isolation can be achieved by using handed orthogonality ; The circularly polarized wave is incident on the symmetrical target, and the reflected wave changes the direction of rotation, etc. It is precisely because of these characteristics that the circularly polarized antenna has strong anti-jamming ability, and has been widely used in the fields of electronic reconnaissance and interference, polarization diversity work of communication and radar, and electronic countermeasures.
- Xue-Xia Yang et al. [A Polarization Reconfigurable Patch Antenna With Loop Slots on the Ground Plane, IEEE Antennas and Wireless Propagation Letters, 2012, 11(2): 69-72] designed a polarized reconfigurable square Microstrip antenna.
- the antenna has a slot on the ground metal plate corresponding to the two corners of the same side of the square radiation patch, and a switch diode is placed in the two slots respectively, and the polarization can be reconfigured by controlling the open and closed states of the switch. .
- the bandwidth of this antenna is too narrow, and there is no advantage in performance.
- the purpose of the invention of the present invention is: in order to solve the problem of the narrow bandwidth of the polarized reconfigurable antenna in the prior art, the present invention provides a substrate-integrated circularly polarized electromagnetic radiation structure and an array, which can realize circularly polarized ( Including left-hand circular polarization, right-hand circular polarization), and realize beam directivity.
- a substrate-integrated circularly polarized electromagnetic radiation structure includes an upper-layer metal radiation structure, a lower-layer metal backplane and a feeder; a plurality of connection points are provided between the upper-layer metal radiation structure and the lower-layer metal backplane;
- the upper metal radiating structure includes a metal ring and two metal branches arranged in the metal ring; the metal branch is a bent structure, and the two metal branches are arranged symmetrically with respect to the center of the feeder; the metal ring is a rectangular ring structure .
- the serpentine structure composed of two metal branches makes it possible to realize circular polarization (including left-handed circular polarization and right-handed circular polarization) in a wide band, and realize beam directivity.
- an intermediate layer dielectric substrate is located between the upper metal radiation structure and the lower metal backplane, and via holes are provided on the intermediate layer substrate at positions corresponding to the connection points between the upper metal radiation structure and the lower metal backplane.
- the metal branch is an L-shaped bent structure bent by 90 degrees.
- the length and width of the metal ring range from 0.2 times the wavelength to 1.5 times the wavelength of the lowest operating frequency of the antenna.
- the upper metal radiation structure includes multiple concentric metal rings with different sizes.
- the metal ring has at least one notch.
- the feeding part includes a probe connected to one of the metal branches, and the probe passes through a via hole of the intermediate layer dielectric substrate.
- the feeding part includes a probe, the probe is located in a region between two metal branches and has a distance from the two metal branches, and the probe passes through a via hole of the intermediate layer dielectric substrate.
- a substrate-integrated circularly polarized electromagnetic radiation structure array is composed of a plurality of substrate-integrated circularly polarized electromagnetic radiation structures according to any one of claims 1-8; the array includes a left-handed substrate integrated The circularly polarized electromagnetic radiation structure and the right-handed substrate integrate the circularly polarized electromagnetic radiation structure.
- the left-handed substrate-integrated circularly polarized electromagnetic radiation structure when used to emit left-handed circularly polarized waves, the left-handed circularly polarized waves irradiate the measured object and reflect back to right-handed circularly polarized waves, and the right-handed substrate integrates circularly polarized waves.
- the polarized electromagnetic radiation structure is used to receive right-handed circularly polarized waves;
- the right-handed substrate-integrated circularly polarized electromagnetic radiation structure When the right-handed substrate-integrated circularly polarized electromagnetic radiation structure is used to emit right-handed circularly polarized waves, the right-handed circularly polarized waves irradiate the measured object and reflect back to the left-handed circularly polarized waves, and the left-handed substrate integrates circularly polarized waves.
- the electromagnetic radiation structure is used to receive left-handed circularly polarized waves.
- a substrate integrated circularly polarized electromagnetic radiation structure of the present invention has a plurality of connection points between the upper metal radiation structure and the lower metal backplane;
- the upper metal radiation structure consists of a metal ring and two metal branches arranged in the metal ring Composition:
- the metal branch is a bent structure, the metal ring is a rectangular ring structure, the two metal branches are arranged in a 180-degree rotational symmetry with respect to the center of the feeder, and the serpentine structure composed of the two metal branches enables it to be in the wide band. , realize circular polarization (including left-hand circular polarization, right-hand circular polarization), and realize beam directivity.
- FIG. 1 is a schematic diagram of a left-handed substrate integrated circularly polarized electromagnetic radiation structure.
- FIG. 2 is a schematic diagram of a right-handed substrate integrated circularly polarized electromagnetic radiation structure.
- FIG. 3 is a perspective view of a substrate-integrated circularly polarized electromagnetic radiation structure.
- FIG. 4(a) and 4(b) are schematic diagrams of a substrate-integrated circularly polarized electromagnetic radiation structure with discontinuous metal rings;
- FIG. 4(c) is a schematic diagram of a substrate-integrated circularly polarized electromagnetic radiation structure of multiple metal rings.
- Fig. 5(a) is a schematic diagram of a substrate-integrated circularly polarized electromagnetic radiation structure array arranged in a dense array
- Fig. 5(b) is a schematic diagram of a sparsely arranged substrate-integrated circularly polarized electromagnetic radiation structure array.
- FIG. 6 is a schematic diagram of the substrate-integrated circularly polarized electromagnetic radiation structure array of Embodiment 4.
- FIG. 6 is a schematic diagram of the substrate-integrated circularly polarized electromagnetic radiation structure array of Embodiment 4.
- Figure 7(a) is a schematic diagram of a substrate-integrated circularly polarized electromagnetic radiation structure with probes directly connected and fed;
- Figure 7(b) is a schematic diagram of a substrate-integrated circularly polarized electromagnetic radiation structure with probes coupled and fed.
- a substrate-integrated circularly polarized electromagnetic radiation structure as shown in FIG. 1 includes an upper metal radiation structure 1 , a lower metal backplane 2 and a feeder 3 ;
- the upper metal radiating structure includes a metal ring 11 and two metal branches 12 arranged in the metal ring; the metal branch 12 is a bending structure, and the two metal branches 12 are arranged in a 180-degree rotational symmetry with respect to the center of the feeder 3;
- the metal ring 11 is a rectangular ring structure.
- connection points 4 between the upper metal radiation structure and the lower metal backplane there are multiple connection points 4 between the upper metal radiation structure and the lower metal backplane; between the upper metal radiation structure and the lower metal backplane is an intermediate layer dielectric substrate, and the intermediate layer substrate corresponds to A via hole is arranged at the position of the connection point between the upper metal radiation structure and the lower metal backplane.
- the metal branch 12 is a bending structure bent by 90 degrees. The benefits of such a connection are that the feed balance, circular polarization and high gain can be achieved.
- the part surrounded by the upper metal ring 11 is the main radiating part of the antenna, and this part can work independently, and can also radiate in multiple arrays.
- the size of the upper metal radiating structure 1 is between 0.2 times the wavelength and 1.5 times the wavelength of the lowest operating frequency of the antenna (1 mm to 7.5 mm for 60 GHz, and 0.76 mm to 5.77 mm for 78 GHz).
- the lower metal back plate 2 mainly plays a reflective role, and its size is characterized by including the upper metal part, that is, the lower metal plate includes the part of the upper metal part (including the metal branch 12 and the metal ring 11) projected onto the lower metal plate 2.
- the circularly polarized wave can be divided into left-handed circular polarization and right-handed circular polarization according to the direction of the electric field. polarized form.
- the two circularly polarized versions of the antenna are mirror-symmetrical.
- the antenna may be a circularly polarized antenna, and the upper metal radiating structure is a plurality of rotationally symmetrical metal branches 12 .
- a structure surrounding the metal branch 12 may be provided on the outside thereof, and may be a ring structure or a ring structure with a notch.
- the basic feature of the metal ring 11 is on the periphery of the two metal branches, and its specific shape has many forms, such as the form of discontinuous metal ring (as shown in Figure 4(a), Figure 4(b), in the metal ring 11) and multi-circle metal ring form (as shown in Figure 4(c)).
- the metal rings 11 may be connected adjacently.
- the antennas can form an array.
- An array can include different handed directions, which are used for transmitting and receiving respectively.
- FIG. 5 shows the specific structure of the array. Two layout methods: one is a dense array arrangement, as shown in Figure 5(a), the layout spacing is small, and the top metal of adjacent cells will be connected; the other is a sparse layout method, as shown in Figure 5(b) Array spacing Large, the top metal of adjacent cells will not be connected.
- the antenna When the antenna is used for radar detection, it can use different polarizations to transmit and receive to resist multipath interference, as shown in Figure 6.
- the principle of anti-multipath interference is (taking the transmission as left-handed circular polarization as an example): the transmitting antenna of the radar emits a left-handed circularly polarized wave, and the right-handed circularly polarized wave irradiated to the measured object is reflected back to the receiving antenna and received by the receiving antenna. The second reflected wave changes back to left-handed circularly polarized wave, which cannot be received by the receiving antenna.
- the wave energy that has been reflected more than twice is already very weak, and it will basically not affect the reception.
- the feeding of the antenna can be in the form of direct connection of probes or in the form of coupling.
- the probes 31 are realized by metal vias, and the metal vias are connected to one of the top metal branches 12 in a direct connection mode of the probes, as shown in Figure 7(a); and the metal vias are not connected to the two top metals is the feeding mode of probe coupling, as shown in Figure 7(b).
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开了一种基片集成圆极化电磁辐射结构,上层金属辐射结构与下层金属背板之间具有多个连接点;上层金属辐射结构由金属环,及金属环内设置的两个金属枝节组成;金属枝节为弯折结构,金属环为矩形环状结构,两个金属枝节相对于馈电部中心成180度旋转对称设置,两个金属枝节组成的蛇形结构,使其可以在宽带内,实现圆极化(包括左旋圆极化、右旋圆极化),并实现波束定向性。
Description
本发明涉及天线领域,特别是一种基片集成圆极化电磁辐射结构及阵列。
对卫星通信和遥感系统来说,为有效传输信息,克服电离层法拉第旋转效应引起的极化畸变,要求天线具有圆极化性能,且同一天线阵面在接收与发射模式下同时工作,这就要求天线具备左旋圆极化和右旋圆极化的工作能力。军用方面,在空间目标预警领域,各国也普遍采用圆极化天线作为基本辐射单元。因此圆极化技术在军用和民用领域都有广泛应用。
天线的极化表征的是在天线辐射时,空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量的端点随时间变化的轨迹来描述。天线的极化分为线极化、圆极化和椭圆极化三种形式,若采用线极化天线作为接收端时,易产生极化失配现象,从而影响天线收发质量。而圆极化天线具有如下优点:圆极化天线能收任意线极化的来波,圆极化天线辐射的圆极化波也可以由任意极化的天线接收;圆极化天线具有旋向正交性,若天线辐射右旋圆极化波,则只接收右旋圆极化波而不接收左旋圆极化波,反之亦然;利用旋向正交性可达到比较理想的极化隔离;圆极化波入射到对称目标,反射波变换旋向等。正是由于这些特点使圆极化天线具有较强的抗干扰能力,已被广泛应用于电子侦察和干扰、通信和雷达的极化分集工作以及电子对抗等领域。
Xue-Xia Yang等人在文献【A Polarization Reconfigurable Patch Antenna With Loop Slots on the Ground Plane,IEEE Antennas and Wireless Propagation Letters,2012,11(2):69-72】设计了一种极化可重构方形微带天线。该天线在方形辐射贴片同一边的两个角落对应的接地金属板分别开有一个槽,并在两个槽中分别放置一个开关二极管,通过控制开关的开、闭状态实现 极化可重构。但此天线带宽太窄,性能上无优势。
发明内容
本发明的发明目的在于:为了解决现有技术中极化可重构天线带宽窄的问题,本发明提供一种基片集成圆极化电磁辐射结构及阵列,可以在宽带内实现圆极化(包括左旋圆极化、右旋圆极化),并实现波束定向性的。
为了实现上述目的,本发明采用的技术方案为:
一种基片集成圆极化电磁辐射结构,包括上层金属辐射结构、下层金属背板和馈电部;上层金属辐射结构与下层金属背板之间具有多个连接点;
上层金属辐射结构包括金属环,及金属环内设置的两个金属枝节;金属枝节为弯折结构,两个金属枝节相对于馈电部中心成中心对称设置;所述金属环为矩形环状结构。
两个金属枝节组成的蛇形结构,使其可以在宽带内,实现圆极化(包括左旋圆极化、右旋圆极化),并实现波束定向性的。
优选的,所述上层金属辐射结构与下层金属背板之间为中间层介质基板,所述中间层基板上对应于上层金属辐射结构与下层金属背板之间的连接点的位置设置过孔。
优选的,所述金属枝节为弯折90度的L形状的弯折结构。
优选的,所述金属环长、宽的范围为天线最低工作频率的0.2倍波长至1.5倍波长之间。
优选的,所述上层金属辐射结构包括尺寸不同且同心的多圈金属环。
优选的,所述金属环上有至少一个缺口。
优选的,所述馈电部包括与其中一个金属枝节连接的探针,所述探针通过中间层介质基板的过孔。
优选的,所述馈电部包括探针,所述探针位于两个金属枝节之间的区域,且与两个金属枝节均具有间距,所述探针通过中间层介质基板的过孔。
一种基片集成圆极化电磁辐射结构阵列,所述阵列由多个如权利要求1-8任一项所述基片集成圆极化电磁辐射结构组成;所述阵列中包括左旋基片集成圆极化电磁辐射结构和右旋基片集成圆极化电磁辐射结构。
优选的:所述左旋基片集成圆极化电磁辐射结构用于发射左旋圆极化波时,左旋圆极化波照射到被测物体反射回右旋圆极化波,右旋基片集成圆极化电磁辐射结构用于接收右旋圆极化波;
所述右旋基片集成圆极化电磁辐射结构用于发射右旋圆极化波时,右旋圆极化波照射到被测物体反射回左旋圆极化波,左旋基片集成圆极化电磁辐射结构用于接收左旋圆极化波。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明的一种基片集成圆极化电磁辐射结构,上层金属辐射结构与下层金属背板之间具有多个连接点;上层金属辐射结构由金属环,及金属环内设置的两个金属枝节组成;金属枝节为弯折结构,金属环为矩形环状结构,两个金属枝节相对于馈电部中心成180度旋转对称设置,两个金属枝节组成的蛇形结构,使其可以在宽带内,实现圆极化(包括左旋圆极化、右旋圆极化),并实现波束定向性的。
图1是左旋基片集成圆极化电磁辐射结构的示意图。
图2为右旋基片集成圆极化电磁辐射结构的示意图。
图3为基片集成圆极化电磁辐射结构的立体图。
图4(a)、图4(b)为间断金属环的基片集成圆极化电磁辐射结构的示意图;图4(c)为多金属环的基片集成圆极化电磁辐射结构的示意图。
图5(a)为紧密布阵排列的基片集成圆极化电磁辐射结构阵列的示意图;图5(b)为稀疏布阵排列的基片集成圆极化电磁辐射结构阵列的示意图。
图6为实施例4的基片集成圆极化电磁辐射结构阵列的示意图。
图7(a)为探针直连馈电的基片集成圆极化电磁辐射结构的示意图;图7(b)为探针耦合馈电的基片集成圆极化电磁辐射结构的示意图。
图中标记:1-上层金属辐射结构,11-金属环,12-金属枝节,2-下层金属背板,3-馈电部,31-探针,4-连接点。
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示的一种基片集成圆极化电磁辐射结构,包括上层金属辐射结构1、下层金属背板2和馈电部3;
上层金属辐射结构包括金属环11,及金属环内设置的两个金属枝节12;金属枝节12为弯折结构,两个金属枝节12相对于馈电部3的中心成180度旋转对称设置;所述金属环11为矩形环状结构。
如图3所示,上层金属辐射结构与下层金属背板之间具有多个连接点4;所述上层金属辐射结构与下层金属背板之间为中间层介质基板,所述中间层基板上对应于上层金属辐射结构与下层金属背板之间的连接点的位置设置过孔。所述金属枝节12为弯折90度的弯折结构。这样连接的好处在于可以实现馈电平衡、圆极化和高增益。
由上层金属环11围住的部分为天线的主辐射部分,该部分可以独立工作,也可以多个组成阵列辐射。上层金属辐射结构1的尺寸为天线最低工作频率的0.2倍波长至1.5倍波长之间(以60GHz为例1mm~7.5mm之间,以78GHz为例0.76mm~5.77mm)。
下层金属背板2主要起反射作用,其大小特征为包含上层金属部分,即下层金属板包含上层金属部分(包含金属支节12和金属环11)投影到下层金属板2的部分即可。圆极化波按照电场旋向划分可以分为左旋圆极化和右旋圆极化,如图1所示为所述圆极化天线的左旋圆极化形式,图2所示为右旋圆极化形式。天线的两个圆极化形式是镜像对称的。
实施例2
天线可以为圆极化天线,上层金属辐射结构为旋转对称的多个金属支节12。金属支节12外侧可以设置将其包围的结构,可以是环状结构,也可以是具有缺口的环状结构。金属环11的基本特征是在两个金属支节的外围,其具体的形状还有很多种形式,如间断金属环形式(如图4(a)、图4(b)所示,在金属环11上开口)和多圈金属环形式(如图4(c))。除此之外,在天线单元小间距组阵的情况下(如图5(a)所示),金属环11还会有相邻相连的情况。
实施例3
天线可以形成阵列。一个阵列中可以包括不同的旋向,分别用于收发。图5展示阵列的具体结构。两种布阵方式:一个是紧密布阵排列,如图5(a)布阵间距小,相邻单元的顶层金属会相连;另一个是稀疏布阵方式,如图5(b)布阵间距大,相邻单元的顶层金属不会相连。
实施例4
天线在用于雷达探测是可以采用收发异极化,以抗多径干扰,如图6所示。抗多径干扰的原理为(以发射为左旋圆极化为例):雷达的发射天线发出左旋圆极化波,照射到被测物体反射回右旋圆极化波被接收天线接收,而经二次反射 的波又变回左旋圆极化波,接收天线接收不到。经过二次以上反射的波能量已经很弱,基本不会对接收造成影响。
实施例5
天线的馈电可以采用探针直连的方式或者采用耦合的方式。探针31是用金属过孔实现的,金属过孔与其中一个顶层金属支节12连接的为探针直连方式,如图7(a);而金属过孔与两个顶层金属都不相连的为探针耦合的馈电方式,如图7(b)。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种基片集成圆极化电磁辐射结构,其特征在于,包括上层金属辐射结构、下层金属背板和馈电部;上层金属辐射结构与下层金属背板之间具有多个连接点;上层金属辐射结构包括金属环,及金属环内设置的两个金属枝节;金属枝节为弯折结构,两个金属枝节相对于馈电部中心成中心对称设置;所述金属环为矩形环状结构。
- 根据权利要求1所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述上层金属辐射结构与下层金属背板之间为中间层介质基板,所述中间层基板上对应于上层金属辐射结构与下层金属背板之间的连接点的位置设置过孔。
- 根据权利要求2所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述金属枝节为弯折90度的L形状的弯折结构。
- 根据权利要求3所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述金属环长、宽的范围为天线最低工作频率的0.2倍波长至1.5倍波长之间。
- 根据权利要求3所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述上层金属辐射结构包括尺寸不同且同心的多圈金属环。
- 根据权利要求3所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述金属环上有至少一个缺口。
- 根据权利要求3所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述馈电部包括与其中一个金属枝节连接的探针,所述探针通过中间层介质基板的过孔。
- 根据权利要求3所述的一种基片集成圆极化电磁辐射结构,其特征在于,所述馈电部包括探针,所述探针位于两个金属枝节之间的区域,且与两个金属枝节均具有间距,所述探针通过中间层介质基板的过孔。
- 一种基片集成圆极化电磁辐射结构阵列,其特征在于,所述阵列由多个 如权利要求1-8任一项所述基片集成圆极化电磁辐射结构组成;所述阵列中包括左旋基片集成圆极化电磁辐射结构和右旋基片集成圆极化电磁辐射结构。
- 根据权利要求9所述的一种基片集成圆极化电磁辐射结构阵列,其特征在于:所述左旋基片集成圆极化电磁辐射结构用于发射左旋圆极化波时,左旋圆极化波照射到被测物体反射回右旋圆极化波,右旋基片集成圆极化电磁辐射结构用于接收右旋圆极化波;所述右旋基片集成圆极化电磁辐射结构用于发射右旋圆极化波时,右旋圆极化波照射到被测物体反射回左旋圆极化波,左旋基片集成圆极化电磁辐射结构用于接收左旋圆极化波。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/251,380 US20230411839A1 (en) | 2020-11-04 | 2021-11-03 | Substrate-integrated circularly polarized electromagnetic radiation structure and array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011215729.2 | 2020-11-04 | ||
CN202011215729.2A CN114447589A (zh) | 2020-11-04 | 2020-11-04 | 一种基片集成圆极化电磁辐射结构及阵列 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022095866A1 true WO2022095866A1 (zh) | 2022-05-12 |
Family
ID=81361640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/128299 WO2022095866A1 (zh) | 2020-11-04 | 2021-11-03 | 一种基片集成圆极化电磁辐射结构及阵列 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230411839A1 (zh) |
CN (1) | CN114447589A (zh) |
WO (1) | WO2022095866A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114843765A (zh) * | 2022-05-26 | 2022-08-02 | 中国人民解放军空军工程大学 | 一种辐射散射一体化的宽带天线 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101807739A (zh) * | 2009-02-13 | 2010-08-18 | 公安部第三研究所 | 一种用于rfid管理领域的小型化、圆极化天线 |
CN103022730A (zh) * | 2012-12-27 | 2013-04-03 | 北京理工大学 | 一种高增益多层介质复合双圆极化微带阵列天线 |
WO2017032107A1 (zh) * | 2015-08-24 | 2017-03-02 | 中兴通讯股份有限公司 | 一种宽带双圆极化rfid天线 |
CN107275765A (zh) * | 2017-05-18 | 2017-10-20 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | 一种自相移宽带圆极化交叉偶极子天线 |
CN108631055A (zh) * | 2018-04-10 | 2018-10-09 | 南京邮电大学 | 一种双频圆极化偶模环天线 |
CN213366792U (zh) * | 2020-11-04 | 2021-06-04 | 珠海市海米软件技术有限公司 | 一种基片集成圆极化电磁辐射结构及阵列 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017103161B4 (de) * | 2017-02-16 | 2018-11-29 | Kathrein Se | Antennenvorrichtung und Antennenarray |
CN109713437A (zh) * | 2018-12-05 | 2019-05-03 | 北京遥测技术研究所 | 一种宽频带高增益圆极化微带天线 |
-
2020
- 2020-11-04 CN CN202011215729.2A patent/CN114447589A/zh active Pending
-
2021
- 2021-11-03 US US18/251,380 patent/US20230411839A1/en active Pending
- 2021-11-03 WO PCT/CN2021/128299 patent/WO2022095866A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101807739A (zh) * | 2009-02-13 | 2010-08-18 | 公安部第三研究所 | 一种用于rfid管理领域的小型化、圆极化天线 |
CN103022730A (zh) * | 2012-12-27 | 2013-04-03 | 北京理工大学 | 一种高增益多层介质复合双圆极化微带阵列天线 |
WO2017032107A1 (zh) * | 2015-08-24 | 2017-03-02 | 中兴通讯股份有限公司 | 一种宽带双圆极化rfid天线 |
CN107275765A (zh) * | 2017-05-18 | 2017-10-20 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | 一种自相移宽带圆极化交叉偶极子天线 |
CN108631055A (zh) * | 2018-04-10 | 2018-10-09 | 南京邮电大学 | 一种双频圆极化偶模环天线 |
CN213366792U (zh) * | 2020-11-04 | 2021-06-04 | 珠海市海米软件技术有限公司 | 一种基片集成圆极化电磁辐射结构及阵列 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114843765A (zh) * | 2022-05-26 | 2022-08-02 | 中国人民解放军空军工程大学 | 一种辐射散射一体化的宽带天线 |
CN114843765B (zh) * | 2022-05-26 | 2023-09-08 | 中国人民解放军空军工程大学 | 一种辐射散射一体化的宽带天线 |
Also Published As
Publication number | Publication date |
---|---|
US20230411839A1 (en) | 2023-12-21 |
CN114447589A (zh) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bai et al. | A Metamaterial-Based $ S/X $-Band Shared-Aperture Phased-Array Antenna With Wide Beam Scanning Coverage | |
Dong et al. | Vivaldi antenna with pattern diversity for 0.7 to 2.7 GHz cellular band applications | |
Zhang et al. | Design of a dual-beam dual-polarized offset parabolic reflector antenna | |
CN112117532B (zh) | 基于微带天线的紧凑型低耦合三极化回溯阵及三极化mimo天线单元 | |
Wang et al. | Wideband multibeam SIW horn array with high beam isolation and full azimuth coverage | |
Liu et al. | Multiband dual-polarized hybrid antenna with complementary beam for simultaneous RF energy harvesting and WPT | |
Ding et al. | A Planar Wide-Angle Scanning Phased Array With $ X $-, $ Ku $-, and $ K $-Band RCS Reduction | |
WO2022095866A1 (zh) | 一种基片集成圆极化电磁辐射结构及阵列 | |
CN116111359A (zh) | 基于三维频率选择结构的双频低雷达散射截面反射阵天线 | |
CN213366792U (zh) | 一种基片集成圆极化电磁辐射结构及阵列 | |
Xiao et al. | Lightweight, solderless, ultrawideband transmitarray antenna with true-time-delay line | |
Jang et al. | Wideband wide beam-width modified angled dipole antenna for 5G millimeter-wave IoT applications | |
Wu et al. | Antenna design and channel measurements for on-body communications at 60 GHz | |
CN116387840B (zh) | 幅相联合调制超构表面和包含该超构表面的透射阵天线 | |
Wang et al. | A broadband circularly polarized endfire loop antenna for millimeter-wave applications | |
Dashti Ardakani et al. | A transparent robust quasi‐isotropic circularly polarized antenna for Cub‐Sat and outdoor wireless | |
Swapna et al. | Three-port pattern diversity antenna module for 5.2 GHz ceiling-mounted WLAN access points | |
Yang et al. | Millimeter wave dual polarization design using frequency selective surface (FSS) for 5G base-station applications | |
EP4050733A1 (en) | Antenna module and electronic device | |
Ye et al. | Planar endfire circularly polarized antenna with unidirectional radiation | |
Han et al. | A Broadband Double-Layer Transmitarray Antenna Based on Polarization Conversion Elements | |
Surendar et al. | Wideband Fractal Antenna For Ku Band Applications | |
KR102405794B1 (ko) | 편광 sar 애플리케이션을 위한 개선된 격리 특성을 가진 이중 대역 이중 극성 안테나 | |
Cicchetti et al. | Radiative Performance of a Vivaldi Antenna Equipped with Petal-Shaped and Massive Lens | |
Chen et al. | Gain Enhancement of Printed Circuit Board Patch Antenna Using Electromagnetic Band Gap Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21888563 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21888563 Country of ref document: EP Kind code of ref document: A1 |