WO2022095715A1 - Use of cell-free fat extract for treating ulcerative colitis - Google Patents

Use of cell-free fat extract for treating ulcerative colitis Download PDF

Info

Publication number
WO2022095715A1
WO2022095715A1 PCT/CN2021/125391 CN2021125391W WO2022095715A1 WO 2022095715 A1 WO2022095715 A1 WO 2022095715A1 CN 2021125391 W CN2021125391 W CN 2021125391W WO 2022095715 A1 WO2022095715 A1 WO 2022095715A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
fat extract
free fat
extract
preparation
Prior art date
Application number
PCT/CN2021/125391
Other languages
French (fr)
Chinese (zh)
Inventor
张文杰
侯曦凡
Original Assignee
上海萨美细胞技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海萨美细胞技术有限公司 filed Critical 上海萨美细胞技术有限公司
Publication of WO2022095715A1 publication Critical patent/WO2022095715A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to the field of medicine, in particular to the therapeutic use of cell-free fat extract for ulcerative colitis.
  • Ulcerative colitis also known as nonspecific ulcerative colitis, is a chronic inflammatory and ulcerative lesion of the large intestinal mucosa of unknown etiology.
  • the main clinical manifestations are abdominal pain, diarrhea, mucous stool, and bloody stool. Because the cause of this disease is unknown and the treatment is difficult, it is listed as one of the modern intractable diseases by the World Health Organization.
  • the purpose of the present invention is to provide the use of a cell-free fat extract in the prevention and/or treatment of ulcerative colitis and its complications.
  • a cell-free fat extract for preparing a composition or preparation for preventing and/or treating ulcerative colitis and/or its complications.
  • the ulcerative colitis complication is selected from the group consisting of abdominal pain, diarrhea, mucus stool, bloody stool, or a combination thereof.
  • the cell-free fat extract is a cell-free fat extract prepared from human or non-human mammalian fat.
  • the non-human mammal is monkey, orangutan, cow, pig, dog, sheep, mouse or rabbit.
  • compositions or preparations include pharmaceutical compositions or preparations, food compositions or preparations, health product compositions or preparations, or dietary supplements.
  • composition or preparation further includes a pharmaceutically, food, health product or dietary acceptable carrier.
  • the dosage form of the composition or preparation is an oral preparation, an external preparation or an injection preparation.
  • the injection preparation is an intravenous injection or an intramuscular injection.
  • the dosage form of the composition or preparation is a solid dosage form, a semi-solid dosage form, or a liquid dosage form, such as solution, gel, cream, lotion, ointment, cream, paste, cake, powder, Patches etc.
  • the dosage form of the composition or preparation is powder, granule, capsule, injection, tincture, oral liquid, tablet or lozenge.
  • composition or preparation is administered by topical, topical, or subcutaneous injection.
  • the cell-free fat extract does not contain cells and does not contain lipid droplets.
  • the lipid droplets are oil droplets released after fat cells are disrupted.
  • the "does not contain lipid droplets" means that in the cell-free fat extract, the volume of oil droplets accounts for less than 1% of the total liquid, preferably less than 0.5%, more preferably less than 0.1%.
  • the cells are selected from the group consisting of endothelial cells, adipose stem cells, macrophages, and stromal cells.
  • the "cell-free” refers to the average number of cells in 1 ml of cell-free fat extract ⁇ 1, preferably ⁇ 0.5, more preferably ⁇ 0.1, or 0.
  • the cell-free fat extract is a naturally-obtained nano-fat extract without added components.
  • the "no added ingredients” means that, except for the rinsing step, no solution, solvent, small molecule, chemical agent, and biological additive are added during the preparation of the fat extract.
  • the cell-free adipose extract is prepared by centrifuging adipose tissue after emulsification.
  • the cell-free fat extract contains one or more components selected from the group consisting of IGF-1, BDNF, GDNF, TGF- ⁇ 1, HGF, bFGF, VEGF, TGF- ⁇ 1 , PDGF, EGF, NT-3, GH, G-CSF, or a combination thereof.
  • the cell-free fat extract contains, but is not limited to, one or more components selected from the group consisting of IGF-1, BDNF, GDNF, bFGF, VEGF, TGF- ⁇ 1, HGF , PDGF, or a combination thereof.
  • the cell-free fat extract is a cell-free fat extract.
  • the concentration of the IGF-1 is 5000-30000pg/ml, preferably 6000-20000pg/ml, more preferably 7000-15000pg/ml , more preferably 8000-12000pg/ml, more preferably 9000-11000pg/ml, more preferably 9500-10500pg/ml.
  • the concentration of BDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1850 pg/ml.
  • the concentration of GDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1900 pg/ml.
  • the concentration of the bFGF is 50-600pg/ml, preferably 100-500pg/ml, more preferably 120-400pg/ml, more Preferably 150-300 pg/ml, more preferably 200-280 pg/ml, more preferably 220-260 pg/ml.
  • the concentration of the VEGF is 50-500pg/ml, preferably 100-400pg/ml, more preferably 120-300pg/ml, more Preferably 150-250 pg/ml, more preferably 170-230 pg/ml, more preferably 190-210 pg/ml.
  • the concentration of TGF- ⁇ 1 is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml , more preferably 800-1200pg/ml, more preferably 800-1100pg/ml, more preferably 900-1000pg/ml.
  • the concentration of the HGF is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml, more Preferably 600-1200 pg/ml, more preferably 800-1000 pg/ml, more preferably 850-950 pg/ml.
  • the concentration of PDGF is 50-600pg/ml, preferably 80-400pg/ml, more preferably 100-300pg/ml, more Preferably 140-220 pg/ml, more preferably 160-200 pg/ml, more preferably 170-190 pg/ml.
  • the weight ratio of IGF-1 to VEGF is 20-100:1, preferably 30-70:1, more preferably 40-60:1, most preferably 45-55: 1.
  • the weight ratio of BDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8-9.5:1.
  • the weight ratio of GDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8.5-9.5:1.
  • the weight ratio of bFGF to VEGF is 0.2-8:1, preferably 0.5-5:1, more preferably 0.6-2:1, more preferably 0.8-1.6:1, Optimally 1-1.5:1.
  • the weight ratio of TGF- ⁇ 1 to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8: 1, preferably 4-6:1.
  • the weight ratio of HGF to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8:1, More preferably 4-5.5:1.
  • the weight ratio of PDGF to VEGF is 0.1-3:1, preferably 0.2-2:1, more preferably 0.4-1.5:1, and most preferably 0.7-1.2:1.
  • the cell-free fat extract is prepared by the following method:
  • Emulsifying the intermediate layer to obtain an emulsified fat mixture also referred to as nano-fat
  • a second aspect of the present invention provides a method for preparing a cell-free fat extract, the method comprising the steps of:
  • Emulsifying the intermediate layer to obtain an emulsified fat mixture also referred to as nano-fat
  • the cell-free fat extract is as described in the first aspect of the present invention.
  • the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
  • the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 1-8 minutes, and optimally 1-5 minutes.
  • the temperature of the centrifugation is 2-6°C.
  • the emulsification is mechanical emulsification.
  • the mechanical emulsification is performed mechanically by repeated blowing through a syringe (eg 20-200 times, preferably 20-150 times, more preferably 20-100 times, more preferably 30-50 times). emulsification.
  • the blowing method is to repeatedly push and beat at a constant speed with two 10ml injection syringes connected to a tee tube.
  • the emulsification is a method of crushing by a tissue homogenizer.
  • the emulsified fat mixture is further frozen and then thawed.
  • the thawed mixture is used for centrifugation after thawing after freezing.
  • the freezing temperature is -50°C to -120°C, preferably -60°C to -100°C, more preferably -70°C to -90°C.
  • the thawing temperature is 20-40°C, preferably 25-40°C, more preferably 37°C.
  • the number of cycles of thawing after freezing is 1-5 times (preferably 1, 2, 3 or 4 times).
  • the emulsified fat mixture is layered into four layers, the first layer is an oil layer, the second layer is a residual adipose tissue layer, and the third layer is a liquid layer layer (ie, the middle liquid layer), and the fourth layer is the cell/tissue debris sedimentation layer.
  • the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
  • the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 2-8 minutes, and optimally 3-7 minutes.
  • the temperature of the centrifugation is 2-6°C.
  • the first layer, the second layer, the third layer and the fourth layer are arranged in order from top to bottom.
  • the intermediate liquid layer is a transparent or substantially transparent layer.
  • the filter bag in the step (6), can remove the adipocytes in the primary fat extract.
  • the filtration and sterilization are performed through a filter (eg, a 0.22 ⁇ m microporous membrane).
  • a filter eg, a 0.22 ⁇ m microporous membrane
  • the filter is a microporous membrane filter.
  • the pore size of the microporous filter membrane is 0.05-0.8 ⁇ m, preferably 0.1-0.5 ⁇ m, more preferably 0.1-0.4 ⁇ m, more preferably 0.15-0.3 ⁇ m, more preferably 0.2-0.25 ⁇ m, optimally 0.22 ⁇ m.
  • the filtration and sterilization are firstly passed through a first filter that can filter out cells, and then passed through a second filter that can filter out pathogens (such as bacteria).
  • filter eg, 0.22 ⁇ m filter.
  • the step (6) further includes sub-packaging the fat extract to form a sub-packaged product.
  • the subpackaged extract can be stored at -20°C for later use; it can be used directly after thawing at low temperature (such as -4°C) or normal temperature, or it can be stored at low temperature (such as 4°C) for a period of time after thawing, and then used ).
  • the third aspect of the present invention provides a cell-free fat extract, which is prepared by the method described in the second aspect of the present invention.
  • the fourth aspect of the present invention provides a composition or formulation comprising (a) the cell-free fat extract according to the third aspect of the present invention; and (b) pharmaceutically, food, Nutraceutical or dietary acceptable carrier or excipient.
  • the composition is a pharmaceutical composition, a food composition, a health product composition or a dietary supplement.
  • the dosage form of the composition or preparation is an oral preparation, an external preparation or an injection preparation.
  • the dosage form of the composition or preparation is powder, granule, capsule, injection, tincture, oral liquid, tablet or lozenge.
  • the injection is an intravenous injection or an intramuscular injection.
  • the dosage form of the composition or preparation is a solid dosage form, a semi-solid dosage form, or a liquid dosage form, such as solution, gel, cream, lotion, ointment, cream, paste, cake, powder, Patches etc.
  • the mass percentage of the cell-free fat extract is 5 wt %, preferably 1-20 wt %, based on the total weight of the composition or preparation.
  • the fifth aspect of the present invention provides a method for preparing the composition or preparation according to the fourth aspect of the present invention, the method comprising the steps of: mixing the cell-free fat extract according to the third aspect of the present invention with a pharmaceutical It is mixed with acceptable carriers or excipients on food, health product or diet to form a composition or preparation.
  • the sixth aspect of the present invention provides a method for preventing and/or treating ulcerative colitis and/or its complications, by administering the cell-free fat extract according to the third aspect of the present invention to a subject in need thereof.
  • the subject is a human or a non-human mammal.
  • the non-human mammals include rodents, such as rats and mice.
  • the present inventors developed a cell-free fat extract for the first time.
  • the cell-free fat extract of the present invention has an excellent therapeutic effect on ulcerative colitis and its complications.
  • the present invention has been completed on this basis.
  • the terms “comprising,” “including,” and “containing” are used interchangeably to include not only open definitions, but also semi-closed, and closed definitions. In other words, the terms include “consisting of”, “consisting essentially of”.
  • cell free fat extract As used herein, the terms “cell free fat extract”, “Cell free fat extract” and “CEFFE” are used interchangeably.
  • prevention refers to a method of preventing the onset of a disease and/or its attendant symptoms or protecting a subject from acquiring a disease. "Prevention” as used herein also includes delaying the onset of the disease and/or its attendant symptoms and reducing the risk of the disease in a subject.
  • Treatment includes delaying and stopping the progression of the disease, or eliminating the disease, and does not require 100% inhibition, elimination and reversal.
  • the composition or pharmaceutical composition of the present invention reduces, Ulcerative colitis and/or complications thereof are inhibited and/or reversed, eg, by at least about 10%, at least about 30%, at least about 50%, or at least about 80%.
  • IGF-1 insulin-like growth factors-1
  • BDNF brain-derived neurotrophic factor
  • GDNF glial cellline-derived neurotrophic factor
  • bFGF basic fibroblast growth factor
  • VEGF vascular endothelial growth factor
  • TGF- ⁇ 1 is referred to as transforming growth factor- ⁇ 1.
  • HGF Hepatocyte Growth Factor
  • PDGF Platelet derived growth factor
  • EGF Epidermal Growth Factor
  • NT-3 As used in the text, the term "NT-3" is referred to as neurotrophins-3.
  • GH Growth Hormone
  • G-CSF granulocyte colony stimulating factor
  • CEFFE Cell free fat extract
  • the terms "cell-free adipose extract of the present invention”, “extract of the present invention”, “fat extract of the present invention” and the like are used interchangeably to refer to the process during the preparation of the fat extract (other than the rinsing step) )
  • An adipose tissue-derived extract (or extract) prepared without the addition of any solutions, solvents, small molecules, chemicals, and biological additives.
  • a typical method for preparing the extract of the present invention is as described above in the second aspect of the present invention.
  • the extract of the present invention does not have to add any additives (or added components) during the preparation process, some or small amounts of safe substances (such as small amounts) that do not negatively or adversely affect the activity of the extract of the present invention may also be added. water).
  • the cell-free fat extract is a cell-free fat extract.
  • the cell-free adipose extract of the present invention various cytokines may be included.
  • the cell-free adipose extract comprises IGF-1, BDNF, GDNF, TGF- ⁇ , HGF, bFGF, VEGF, TGF- ⁇ 1, PDGF, EGF, NT-3, GH and G-CSF one or more.
  • the concentration of the IGF-1 is 5000-30000pg/ml, preferably 6000-20000pg/ml, more preferably 7000-15000pg/ml , more preferably 8000-12000pg/ml, more preferably 9000-11000pg/ml, more preferably 9500-10500pg/ml.
  • the concentration of BDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1850 pg/ml.
  • the concentration of GDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1900 pg/ml.
  • the concentration of the bFGF is 50-600pg/ml, preferably 100-500pg/ml, more preferably 120-400pg/ml, more Preferably 150-300 pg/ml, more preferably 200-280 pg/ml, more preferably 220-260 pg/ml.
  • the concentration of the VEGF is 50-500pg/ml, preferably 100-400pg/ml, more preferably 120-300pg/ml, more Preferably 150-250 pg/ml, more preferably 170-230 pg/ml, more preferably 190-210 pg/ml.
  • the concentration of TGF- ⁇ 1 is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml , more preferably 800-1200pg/ml, more preferably 800-1100pg/ml, more preferably 900-1000pg/ml.
  • the concentration of the HGF is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml, more Preferably 600-1200 pg/ml, more preferably 800-1000 pg/ml, more preferably 850-950 pg/ml.
  • the concentration of PDGF is 50-600pg/ml, preferably 80-400pg/ml, more preferably 100-300pg/ml, more Preferably 140-220 pg/ml, more preferably 160-200 pg/ml, more preferably 170-190 pg/ml.
  • the weight ratio of IGF-1 to VEGF is 20-100:1, preferably 30-70:1, more preferably 40-60:1, most preferably 45-55: 1.
  • the weight ratio of BDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8-9.5:1.
  • the weight ratio of GDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8.5-9.5:1.
  • the weight ratio of bFGF to VEGF is 0.2-8:1, preferably 0.5-5:1, more preferably 0.6-2:1, more preferably 0.8-1.6:1, Optimally 1-1.5:1.
  • the weight ratio of TGF- ⁇ 1 to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8: 1, preferably 4-6:1.
  • the weight ratio of HGF to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8:1, More preferably 4-5.5:1.
  • the weight ratio of PDGF to VEGF is 0.1-3:1, preferably 0.2-2:1, more preferably 0.4-1.5:1, and most preferably 0.7-1.2:1.
  • the cell-free fat extract of the present invention is prepared by the method as described in the second aspect of the present invention.
  • the cell-free fat extracts of the present invention are prepared by the following methods:
  • Emulsifying the intermediate layer to obtain an emulsified fat mixture also referred to as nano-fat
  • the cell-free fat extract of the present invention is a cell-free fat extract of the present invention.
  • the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
  • the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 1-8 minutes, and optimally 1-5 minutes.
  • the emulsification is mechanical emulsification.
  • the mechanical emulsification is performed mechanically by repeated blowing through a syringe (eg 20-200 times, preferably 20-150 times, more preferably 20-100 times, more preferably 30-50 times). emulsification.
  • the blowing method is to repeatedly push and beat at a constant speed with two 10ml injection syringes connected to a tee tube.
  • the emulsification is a method of crushing by a tissue homogenizer.
  • the emulsified fat mixture is further frozen and then thawed.
  • the thawed mixture is used for centrifugation after thawing after freezing.
  • the freezing temperature is -50°C to -120°C, preferably -60°C to -100°C, more preferably -70°C to -90°C.
  • the thawing temperature is 20-40°C, preferably 25-40°C, more preferably 37°C.
  • the number of cycles of thawing after freezing is 1-5 times (preferably 1, 2, 3 or 4 times).
  • the emulsified fat mixture is layered into four layers, the first layer is an oil layer, the second layer is a residual adipose tissue layer, and the third layer is a liquid layer layer (ie, the middle liquid layer), and the fourth layer is the cell/tissue debris sedimentation layer.
  • the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
  • the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 2-8 minutes, and optimally 3-7 minutes.
  • the first layer, the second layer, the third layer and the fourth layer are arranged in order from top to bottom.
  • the intermediate liquid layer is a transparent or substantially transparent layer.
  • the filter bag in the step (6), can remove the adipocytes in the primary fat extract.
  • the filtration and sterilization are performed through a filter (eg, a 0.22 ⁇ m microporous membrane).
  • a filter eg, a 0.22 ⁇ m microporous membrane
  • the filter is a microporous membrane filter.
  • the pore size of the microporous filter membrane is 0.05-0.8 ⁇ m, preferably 0.1-0.5 ⁇ m, more preferably 0.1-0.4 ⁇ m, more preferably 0.15-0.3 ⁇ m, more preferably 0.2-0.25 ⁇ m, optimally 0.22 ⁇ m.
  • the filtration and sterilization are firstly passed through a first filter that can filter out cells, and then passed through a second filter that can filter out pathogens (such as bacteria).
  • filter eg, 0.22 ⁇ m filter.
  • the step (6) further includes sub-packaging the fat extract to form a sub-packaged product.
  • the subpackaged extract can be stored at -20°C for later use; it can be used directly after thawing at low temperature (such as -4°C) or normal temperature, or it can be stored at low temperature (such as 4°C) for a period of time after thawing, and then used ).
  • Ulcerative colitis also known as non-specific ulcerative colitis, is a chronic inflammatory and ulcerative lesion of the large intestine mucosa of unknown etiology. Because the cause of this disease is unknown and the treatment is difficult, it is listed as one of the modern intractable diseases by the World Health Organization.
  • the cell-free fat extract of the present invention has an excellent therapeutic effect on ulcerative colitis and its complications.
  • the ulcerative colitis complications include, but are not limited to: abdominal pain, diarrhea, mucous stools, bloody stools, or a combination thereof.
  • compositions described in the present invention include (but are not limited to): pharmaceutical compositions, food compositions, health care compositions, dietary supplements, and the like.
  • the cell-free fat extracts of the present invention can be prepared into pharmaceutical compositions such as tablets, capsules, powders, microparticles, solutions, lozenges, jellies, creams, elixirs, suspensions, Dosage forms such as tinctures, poultices, liniments, lotions, and aerosols.
  • Pharmaceutical compositions can be prepared by generally known preparation techniques, and suitable pharmaceutical additives can be added to the medicament.
  • composition of the present invention may also include a pharmaceutically, food, health product or dietary acceptable carrier.
  • “Pharmaceutically, food, nutraceutical or dietary acceptable carrier” means: one or more compatible solid or liquid filler or gel substances, which are suitable for human use and must be of sufficient purity and sufficiently low toxicity.
  • “Compatibility” as used herein means that the components of the composition can be admixed with the compounds of the present invention and with each other without significantly reducing the efficacy of the compounds.
  • acceptable carrier moieties are cellulose and its derivatives (such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate, etc.) , gelatin, talc, solid lubricants (such as stearic acid, magnesium stearate), calcium sulfate, vegetable oils (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyols (such as propylene glycol, glycerin, mannitol, sorbitol) etc.), emulsifiers (such as Tween ), wetting agents (such as sodium lauryl sulfate), colorants, flavors, stabilizers, antioxidants, preservatives, pyrogen-free water, etc.
  • solid lubricants such as stearic acid, magnesium stearate
  • calcium sulfate such as soybean oil, sesame oil, peanut oil, olive oil, etc.
  • polyols such as propylene glycol, glycerin,
  • the mode of administration of the composition of the present invention is not particularly limited, and representative modes of administration include (but are not limited to): oral, parenteral (intravenous, intramuscular), topical, and preferred modes of administration are oral administration and injection.
  • the dosage form of the composition or preparation of the present invention is an oral preparation, an external preparation or an injection preparation.
  • solid dosage forms for oral administration or administration include capsules, tablets, pills, powders and granules.
  • the active compound is mixed with at least one conventional inert excipient (or carrier), such as sodium citrate or dicalcium phosphate, or with (a) fillers or compatibilizers, for example, starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders such as, for example, hydroxymethylcellulose, alginate, gelatin, polyvinylpyrrolidone, sucrose and acacia; (c) humectants, For example, glycerol; (d) disintegrants, such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate; (e) slow solvents, such as paraffin; (f) Absorption accelerators such as sodium citrate
  • Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared using coatings and shell materials, such as enteric coatings and other materials well known in the art. They may contain opacifiers.
  • Liquid dosage forms for oral administration or administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures.
  • liquid dosage forms may contain inert diluents conventionally employed in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, dimethylformamide and oils, especially cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil or mixtures of these substances, and the like.
  • inert diluents conventionally employed in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, di
  • compositions can also contain adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
  • suspensions may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances and the like.
  • suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances and the like.
  • compositions for parenteral injection may comprise physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • Suitable aqueous and non-aqueous carriers, diluents, solvents or excipients include water, ethanol, polyols and suitable mixtures thereof.
  • Dosage forms for topical administration or administration of the compounds of this invention include ointments, powders, patches, sprays and inhalants.
  • the active ingredient is mixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants that may be required if necessary.
  • the cell-free adipose extract of the present invention may be administered or administered alone, or in combination with other drugs for preventing and/or treating fatty liver and/or its complications.
  • a safe and effective amount of the cell-free fat extract of the present invention is suitable for human or non-human animals (such as rats, mice, dogs, cats, cows, chickens, ducks, etc.) in need of treatment, wherein the administration
  • the current dose is the effective dose that can be considered as acceptable in pharmacy, food or health care products.
  • the term "safe and effective amount” refers to an amount that produces function or activity in humans and/or animals and is acceptable to humans and/or animals. Those of ordinary skill in the art should understand that the "safe and effective amount” may vary with the form of the pharmaceutical composition, the route of administration, the excipients of the drug used, the severity of the disease, and the combination with other drugs, etc. different.
  • the daily dosage is usually 0.1 to 1000 mg, preferably 1 to 600 mg, and more preferably 2 to 300 mg.
  • the specific dosage should also take into account the route of administration, the patient's health and other factors, which are all within the skill of the skilled physician.
  • the present invention finds for the first time that acellular fat extract has excellent therapeutic effect on ulcerative colitis and its complications.
  • Embodiment 1 examines the therapeutic effect of CEFFE on ulcerative colitis
  • Adipose tissue was obtained from 6 healthy women who underwent conventional liposuction, with an average age of 31 years (24-36 years). After local injection of tumescent fluid anesthesia, a 3mm liposuction cannula with a large lateral hole (2mm x 7mm) was used to connect a 20mL syringe, and radial suction was performed under artificial negative pressure. Rinse 3 times with normal saline.
  • the middle layer ie, the fat layer containing adipocytes
  • the mechanically emulsified fat mixture was placed in a -80°C refrigerator for freezing, and then thawed in a 37°C water bath. After a single freeze-thaw cycle, the thawed fat mixture was centrifuged at 1200g at 4°C for 5 minutes to obtain fractions.
  • the layered mixture is divided into 4 layers, the first layer is the oil layer, the second layer is the residual adipose tissue layer, the third layer is the liquid layer, and the fourth layer is the cell/tissue debris precipitation layer, remove the oil layer and For the residual adipose tissue layer, the liquid layer is sucked, and the contamination of the cell/tissue debris sediment layer is avoided during the sucking process, so as to obtain the initial fat extraction solution.
  • the content of cytokines including IGF-1, BDNF, GDNF, bFGF, VEGF, TGF- ⁇ 1, HGF and PDGF, was detected by ELISA immunosorbent assay kit.
  • the average concentrations of 6 samples were as follows: IGF-1 (9840.6pg/ml), BDNF (1764.5pg/ml), GDNF (1831.9pg/ml), bFGF (242.3pg/ml), VEGF (202.9pg/ml), TGF- ⁇ 1 (954.5 pg/ml), HGF (898.4 pg/ml) and PDGF (179.9 pg/ml).
  • mice in the normal control group (group 1) drank purified water, and the mice in the other groups (groups 2 to 6) drank 2% DSS (dextran sodium sulfate) aqueous solution for modeling, and the animals in each cage were replaced with drinking water or DSS aqueous solution, the water intake was 40 mL per day for 8 consecutive days.
  • group 1 drank purified water
  • group 2 to 6 drank 2% DSS (dextran sodium sulfate) aqueous solution for modeling, and the animals in each cage were replaced with drinking water or DSS aqueous solution, the water intake was 40 mL per day for 8 consecutive days.
  • the normal control group was given no treatment, the model control group was given sodium chloride injection, the positive control group was given cyclosporine injection, and the experimental groups 4-6 were given the corresponding dose of CEFFE.
  • Animal modeling started at the same time, the positive control group (group 3) was administered once a day, a total of 9 times, the other groups (group 2, group 4 to group 6) were administered once every other day, a total of Five times of administration (D1, D3, D5, D7, D9) were administered, and the administration method was tail vein injection. Take the first day of administration as D1, the second day as D2, and so on.
  • Euthanasia method After CO 2 overdose inhalation, thoracotomy or abdominal aortic bleeding to death. After euthanasia, the colon from the anus to the ileocecal area was taken from the pathology department. After measuring the length, the contents were washed with 0.9% sodium chloride injection and then longitudinally cut along the long axis. After puncture and fixation, they were fixed in 10% neutral formalin, embedded in paraffin, sliced, and stained with HE to observe the pathological damage of colonic tissue. Each animal was selected to observe 3 visual fields at the distal end, middle segment and proximal end of the colon, and the total histological damage score of the colon was calculated. Histological damage scores are shown in Table 3 below:
  • Measurement data were expressed as mean standard deviation, and all data statistics were performed using SPSS13.0 or Graphpad prism5.0 statistical software.

Abstract

The present invention relates to use of a cell-free fat extract for treating ulcerative colitis. Specifically, the present invention provides use of a cell-free fat extract for preparing a composition or a formulation. The composition or formulation is used for preventing and/or treating ulcerative colitis and/or complications thereof. The cell-free fat extract of the present invention has excellent treatment effects on ulcerative colitis and complications thereof.

Description

无细胞脂肪提取液对溃疡性结肠炎的治疗用途Therapeutic use of cell-free fat extract for ulcerative colitis 技术领域technical field
本发明涉及药物领域,具体涉及无细胞脂肪提取液对溃疡性结肠炎的治疗用途。The invention relates to the field of medicine, in particular to the therapeutic use of cell-free fat extract for ulcerative colitis.
背景技术Background technique
溃疡性结肠炎(ulcerative colitic,UC)又称非特异性溃疡性结肠炎,是一种病因不明的大肠粘膜的慢性炎症和溃疡性病变。临床以腹痛、腹泻、粘液便、血便等为主要表现。由于本病原因不明,治疗棘手,被世界卫生组织列为现代难治病之一。Ulcerative colitis (UC), also known as nonspecific ulcerative colitis, is a chronic inflammatory and ulcerative lesion of the large intestinal mucosa of unknown etiology. The main clinical manifestations are abdominal pain, diarrhea, mucous stool, and bloody stool. Because the cause of this disease is unknown and the treatment is difficult, it is listed as one of the modern intractable diseases by the World Health Organization.
因此,本领域需要开发一种能够有效治疗溃疡性结肠炎的药物。Therefore, there is a need in the art to develop a drug that can effectively treat ulcerative colitis.
发明内容SUMMARY OF THE INVENTION
本发明的目在于提供一种无细胞脂肪提取物在预防和/或治疗溃疡性结肠炎和其并发症方面中的用途。The purpose of the present invention is to provide the use of a cell-free fat extract in the prevention and/or treatment of ulcerative colitis and its complications.
本发明第一方面,提供一种无细胞脂肪提取物的用途,用于制备组合物或制剂,所述组合物或制剂用于预防和/或治疗溃疡性结肠炎和/或其并发症。In a first aspect of the present invention, there is provided the use of a cell-free fat extract for preparing a composition or preparation for preventing and/or treating ulcerative colitis and/or its complications.
在另一优选例中,所述的溃疡性结肠炎并发症选自下组:腹痛、腹泻、粘液便、血便,或其组合。In another preferred embodiment, the ulcerative colitis complication is selected from the group consisting of abdominal pain, diarrhea, mucus stool, bloody stool, or a combination thereof.
在另一优选例中,所述的无细胞脂肪提取物为从人或非人哺乳动物中的脂肪中提取制备获得的无细胞脂肪提取物。In another preferred embodiment, the cell-free fat extract is a cell-free fat extract prepared from human or non-human mammalian fat.
在另一优选例中,所述的非人哺乳动物为猴、猩猩、牛、猪、狗、羊、鼠或兔。In another preferred embodiment, the non-human mammal is monkey, orangutan, cow, pig, dog, sheep, mouse or rabbit.
在另一优选例中,所述的组合物或制剂包括药物组合物或制剂、食品组合物或制剂、保健品组合物或制剂或膳食补充剂。In another preferred example, the compositions or preparations include pharmaceutical compositions or preparations, food compositions or preparations, health product compositions or preparations, or dietary supplements.
在另一优选例中,所述的组合物或制剂还包括药学上、食品上、保健品或膳食上可接受的载体。In another preferred embodiment, the composition or preparation further includes a pharmaceutically, food, health product or dietary acceptable carrier.
在另一优选例中,所述的组合物或制剂的剂型为口服制剂、外用制剂或注射制剂。In another preferred embodiment, the dosage form of the composition or preparation is an oral preparation, an external preparation or an injection preparation.
在另一优选例中,所述的注射制剂为静脉注射剂或肌肉注射剂。In another preferred embodiment, the injection preparation is an intravenous injection or an intramuscular injection.
在另一优选例中,所述组合物或制剂的剂型为固体剂型、半固体剂型、或液体剂型,如溶液、凝胶、膏霜、乳液、膏剂、霜剂、糊剂、饼、粉剂、贴剂等。In another preferred embodiment, the dosage form of the composition or preparation is a solid dosage form, a semi-solid dosage form, or a liquid dosage form, such as solution, gel, cream, lotion, ointment, cream, paste, cake, powder, Patches etc.
在另一优选例中,所述组合物或制剂的剂型为粉剂、颗粒剂、胶囊剂、注射剂、酊剂、口服液、片剂或含片。In another preferred embodiment, the dosage form of the composition or preparation is powder, granule, capsule, injection, tincture, oral liquid, tablet or lozenge.
在另一优选例中,所述的组合物或制剂通过外用、局部、或皮下注射方式施用。In another preferred embodiment, the composition or preparation is administered by topical, topical, or subcutaneous injection.
在另一优选例中,所述无细胞脂肪提取物不含有细胞且不含有脂滴。In another preferred embodiment, the cell-free fat extract does not contain cells and does not contain lipid droplets.
在另一优选例中,所述脂滴为脂肪细胞破碎后释放的油滴。In another preferred embodiment, the lipid droplets are oil droplets released after fat cells are disrupted.
在另一优选例中,所述“不含有脂滴”指所述无细胞脂肪提取物中,油滴体积占总液体百分比小于1%,优选地小于0.5%,更优选地小于0.1%。In another preferred embodiment, the "does not contain lipid droplets" means that in the cell-free fat extract, the volume of oil droplets accounts for less than 1% of the total liquid, preferably less than 0.5%, more preferably less than 0.1%.
在另一优选例中,所述细胞选自下组:内皮细胞、脂肪干细胞、巨噬血细胞、 基质细胞。In another preferred embodiment, the cells are selected from the group consisting of endothelial cells, adipose stem cells, macrophages, and stromal cells.
在另一优选例中,所述“无细胞”指1ml无细胞脂肪提取物中的细胞平均数量≤1个,优选地≤0.5个,更佳地≤0.1个,或为0个。In another preferred embodiment, the "cell-free" refers to the average number of cells in 1 ml of cell-free fat extract ≤ 1, preferably ≤ 0.5, more preferably ≤ 0.1, or 0.
在另一优选例中,所述无细胞脂肪提取物为天然获得的无添加成分的纳米脂肪提取物。In another preferred example, the cell-free fat extract is a naturally-obtained nano-fat extract without added components.
在另一优选例中,所述“无添加成分的”指除漂洗步骤外,在所述脂肪提取物的制备过程中未添加任何溶液、溶剂、小分子、化学制剂、和生物添加剂。In another preferred example, the "no added ingredients" means that, except for the rinsing step, no solution, solvent, small molecule, chemical agent, and biological additive are added during the preparation of the fat extract.
在另一优选例中,所述种无细胞脂肪提取物是通过将脂肪组织经过乳化后离心制备获得。In another preferred embodiment, the cell-free adipose extract is prepared by centrifuging adipose tissue after emulsification.
在另一优选例中,所述的无细胞脂肪提取物含有一种或多种选自下组的组分:IGF-1、BDNF、GDNF、TGF-β1、HGF、bFGF、VEGF、TGF-β1、PDGF、EGF、NT-3、GH、G-CSF,或其组合。In another preferred embodiment, the cell-free fat extract contains one or more components selected from the group consisting of IGF-1, BDNF, GDNF, TGF-β1, HGF, bFGF, VEGF, TGF-β1 , PDGF, EGF, NT-3, GH, G-CSF, or a combination thereof.
在另一优选例中,所述的种无细胞脂肪提取物含有但不限于一种或多种选自下组的组分:IGF-1、BDNF、GDNF、bFGF、VEGF、TGF-β1、HGF、PDGF,或其组合。In another preferred embodiment, the cell-free fat extract contains, but is not limited to, one or more components selected from the group consisting of IGF-1, BDNF, GDNF, bFGF, VEGF, TGF-β1, HGF , PDGF, or a combination thereof.
在另一优选例中,所述的无细胞脂肪提取物为无细胞脂肪提取液。In another preferred embodiment, the cell-free fat extract is a cell-free fat extract.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的IGF-1的浓度为5000-30000pg/ml,较佳地6000-20000pg/ml,更佳地7000-15000pg/ml,更佳地8000-12000pg/ml,更佳地9000-11000pg/ml,更佳地9500-10500pg/ml。In another preferred example, in the cell-free fat extract, the concentration of the IGF-1 is 5000-30000pg/ml, preferably 6000-20000pg/ml, more preferably 7000-15000pg/ml , more preferably 8000-12000pg/ml, more preferably 9000-11000pg/ml, more preferably 9500-10500pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的BDNF的浓度为800-5000pg/ml,较佳地1000-4000pg/ml,更佳地1200-2500pg/ml,更佳地1400-2000pg/ml,更佳地1600-2000pg/ml,更佳地1700-1850pg/ml。In another preferred example, in the cell-free fat extract, the concentration of BDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1850 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的GDNF的浓度为800-5000pg/ml,较佳地1000-4000pg/ml,更佳地1200-2500pg/ml,更佳地1400-2000pg/ml,更佳地1600-2000pg/ml,更佳地1700-1900pg/ml。In another preferred example, in the cell-free fat extract, the concentration of GDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1900 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的bFGF的浓度为50-600pg/ml,较佳地100-500pg/ml,更佳地120-400pg/ml,更佳地150-300pg/ml,更佳地200-280pg/ml,更佳地220-260pg/ml。In another preferred example, in the cell-free fat extract, the concentration of the bFGF is 50-600pg/ml, preferably 100-500pg/ml, more preferably 120-400pg/ml, more Preferably 150-300 pg/ml, more preferably 200-280 pg/ml, more preferably 220-260 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的VEGF的浓度为50-500pg/ml,较佳地100-400pg/ml,更佳地120-300pg/ml,更佳地150-250pg/ml,更佳地170-230pg/ml,更佳地190-210pg/ml。In another preferred embodiment, in the cell-free fat extract, the concentration of the VEGF is 50-500pg/ml, preferably 100-400pg/ml, more preferably 120-300pg/ml, more Preferably 150-250 pg/ml, more preferably 170-230 pg/ml, more preferably 190-210 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的TGF-β1的浓度为200-3000pg/ml,较佳地400-2000pg/ml,更佳地600-1500pg/ml,更佳地800-1200pg/ml,更佳地800-1100pg/ml,更佳地900-1000pg/ml。In another preferred example, in the cell-free fat extract, the concentration of TGF-β1 is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml , more preferably 800-1200pg/ml, more preferably 800-1100pg/ml, more preferably 900-1000pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的HGF的浓度为200-3000pg/ml,较佳地400-2000pg/ml,更佳地600-1500pg/ml,更佳地600-1200pg/ml,更佳地800-1000pg/ml,更佳地850-950pg/ml。In another preferred embodiment, in the cell-free fat extract, the concentration of the HGF is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml, more Preferably 600-1200 pg/ml, more preferably 800-1000 pg/ml, more preferably 850-950 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的PDGF的浓度为50-600pg/ml,较佳地80-400pg/ml,更佳地100-300pg/ml,更佳地140-220pg/ml,更佳地160-200pg/ml,更佳地170-190pg/ml。In another preferred example, in the cell-free fat extract, the concentration of PDGF is 50-600pg/ml, preferably 80-400pg/ml, more preferably 100-300pg/ml, more Preferably 140-220 pg/ml, more preferably 160-200 pg/ml, more preferably 170-190 pg/ml.
在另一优选例中,所述的IGF-1与VEGF的重量比为20-100:1,较佳地30-70:1,更佳地40-60:1,最佳地45-55:1。In another preferred embodiment, the weight ratio of IGF-1 to VEGF is 20-100:1, preferably 30-70:1, more preferably 40-60:1, most preferably 45-55: 1.
在另一优选例中,所述的BDNF与VEGF的重量比为2-20:1,较佳地4-15:1,更佳地6-12:1,最佳地8-9.5:1。In another preferred embodiment, the weight ratio of BDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8-9.5:1.
在另一优选例中,所述的GDNF与VEGF的重量比为2-20:1,较佳地4-15:1,更佳地6-12:1,最佳地8.5-9.5:1。In another preferred embodiment, the weight ratio of GDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8.5-9.5:1.
在另一优选例中,所述的bFGF与VEGF的重量比为0.2-8:1,较佳地0.5-5:1,更佳地0.6-2:1,更佳地0.8-1.6:1,最佳地1-1.5:1。In another preferred embodiment, the weight ratio of bFGF to VEGF is 0.2-8:1, preferably 0.5-5:1, more preferably 0.6-2:1, more preferably 0.8-1.6:1, Optimally 1-1.5:1.
在另一优选例中,所述的TGF-β1与VEGF的重量比为1-20:1,较佳地1-15:1,更佳地1-10:1,更佳地2-8:1,更佳地4-6:1。In another preferred embodiment, the weight ratio of TGF-β1 to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8: 1, preferably 4-6:1.
在另一优选例中,所述的HGF与VEGF的重量比为1-20:1,较佳地1-15:1,更佳地1-10:1,更佳地2-8:1,更佳地4-5.5:1。In another preferred embodiment, the weight ratio of HGF to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8:1, More preferably 4-5.5:1.
在另一优选例中,所述的PDGF与VEGF的重量比为0.1-3:1,较佳地0.2-2:1,更佳地0.4-1.5:1,最佳地0.7-1.2:1。In another preferred embodiment, the weight ratio of PDGF to VEGF is 0.1-3:1, preferably 0.2-2:1, more preferably 0.4-1.5:1, and most preferably 0.7-1.2:1.
在另一优选例中,所述的无细胞脂肪提取物通过以下方法制备:In another preferred embodiment, the cell-free fat extract is prepared by the following method:
(1)提供一脂肪组织原料,将所述脂肪组织原料破碎,并进行漂洗(如用生理盐水),从而获得经漂洗的脂肪组织;(1) providing an adipose tissue raw material, crushing the adipose tissue raw material, and rinsing (such as with physiological saline), thereby obtaining rinsed adipose tissue;
(2)对所述经漂洗后的脂肪组织进行离心,获得分层的混合物;(2) centrifuging the rinsed adipose tissue to obtain a layered mixture;
(3)对所述分层的混合物,去除上层油层和下层水层,收集中间层(即含脂肪细胞的脂肪层);(3) for the layered mixture, remove the upper oil layer and the lower water layer, and collect the middle layer (ie, the fat layer containing adipocytes);
(4)对所述中间层进行乳化,获得乳化的脂肪混合物(也称为纳米脂肪);(4) Emulsifying the intermediate layer to obtain an emulsified fat mixture (also referred to as nano-fat);
(5)将所述乳化的脂肪混合物通过离心处理,从而获得中间液体层,即为脂肪初提物;和(5) subjecting the emulsified fat mixture to centrifugation to obtain an intermediate liquid layer, i.e., the initial fat extract; and
(6)对所述脂肪初提物进行过滤和除菌,从而获得无细胞的脂肪提取物。(6) Filtration and sterilization of the primary fat extract to obtain a cell-free fat extract.
本发明第二方面,提供一种制备无细胞脂肪提取物的方法,所述的方法包括步骤:A second aspect of the present invention provides a method for preparing a cell-free fat extract, the method comprising the steps of:
(1)提供一脂肪组织原料,将所述脂肪组织原料破碎,并进行漂洗(如用生理盐水),从而获得经漂洗的脂肪组织;(1) providing an adipose tissue raw material, crushing the adipose tissue raw material, and rinsing (such as with physiological saline), thereby obtaining rinsed adipose tissue;
(2)对所述经漂洗后的脂肪组织进行离心,获得分层的混合物;(2) centrifuging the rinsed adipose tissue to obtain a layered mixture;
(3)对所述分层的混合物,去除上层油层和下层水层,收集中间层(即含脂肪细胞的脂肪层);(3) for the layered mixture, remove the upper oil layer and the lower water layer, and collect the middle layer (ie, the fat layer containing adipocytes);
(4)对所述中间层进行乳化,获得乳化的脂肪混合物(也称为纳米脂肪);(4) Emulsifying the intermediate layer to obtain an emulsified fat mixture (also referred to as nano-fat);
(5)将所述乳化的脂肪混合物通过离心处理,从而获得中间液体层,即为脂肪初提物;和(5) subjecting the emulsified fat mixture to centrifugation to obtain an intermediate liquid layer, i.e., the initial fat extract; and
(6)对所述脂肪初提物进行过滤和除菌,从而获得无细胞的脂肪提取物。(6) Filtration and sterilization of the primary fat extract to obtain a cell-free fat extract.
在另一优选例中,所述的无细胞脂肪提取物如本发明第一方面所述。In another preferred embodiment, the cell-free fat extract is as described in the first aspect of the present invention.
在另一优选例中,所述的步骤(2)中,所述离心在800-2500g下离心,较佳地800-2000g,更佳地1000-1500g,最佳地1100-1300g。In another preferred example, in the step (2), the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
在另一优选例中,所述的步骤(2)中,所述离心的时间为1-15min,较佳地1-10min,更佳地1-8min,最佳地1-5min。In another preferred example, in the step (2), the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 1-8 minutes, and optimally 1-5 minutes.
在另一优选例中,所述的离心的温度为2-6℃。In another preferred embodiment, the temperature of the centrifugation is 2-6°C.
在另一优选例中,所述的步骤(4)中,所述的乳化为机械乳化。In another preferred example, in the step (4), the emulsification is mechanical emulsification.
在另一优选例中,所述机械乳化为经注射器反复吹打(如吹打20-200次,较佳 地20-150次,更佳地20-100次,更佳地30-50次)进行机械乳化。In another preferred embodiment, the mechanical emulsification is performed mechanically by repeated blowing through a syringe (eg 20-200 times, preferably 20-150 times, more preferably 20-100 times, more preferably 30-50 times). emulsification.
在另一优选例中,所述的吹打的方式为2个10ml注射针筒连接三通管反复匀速推打。In another preferred example, the blowing method is to repeatedly push and beat at a constant speed with two 10ml injection syringes connected to a tee tube.
在另一优选例中,,所述的步骤(4)中,所述乳化为通过组织匀浆机打碎的方法。In another preferred example, in the step (4), the emulsification is a method of crushing by a tissue homogenizer.
在另一优选例中,所述的步骤(5)中,在将所述乳化的脂肪混合物通过离心处理前,还包括对所述乳化的脂肪混合物冷冻后解冻处理。In another preferred example, in the step (5), before the emulsified fat mixture is subjected to centrifugal treatment, the emulsified fat mixture is further frozen and then thawed.
在另一优选例中,冷冻后解冻处理后,将解冻后的混合物用于离心。In another preferred embodiment, the thawed mixture is used for centrifugation after thawing after freezing.
在另一优选例中,所述的冷冻的温度为-50℃至-120℃,较佳地-60℃至-100℃,更佳地-70℃至-90℃。In another preferred embodiment, the freezing temperature is -50°C to -120°C, preferably -60°C to -100°C, more preferably -70°C to -90°C.
在另一优选例中,所述的解冻的温度为20-40℃,较佳地25-40℃,更佳地37℃。In another preferred embodiment, the thawing temperature is 20-40°C, preferably 25-40°C, more preferably 37°C.
在另一优选例中,所述的冷冻后解冻的循环次数为1-5次(优选为1、2、3或4次)。In another preferred embodiment, the number of cycles of thawing after freezing is 1-5 times (preferably 1, 2, 3 or 4 times).
在另一优选例中,所述的步骤(5)中,离心后,所述乳化的脂肪混合物分层4层,第一层为油层,第二层为残余脂肪组织层,第三层为液体层(即为中间液体层),第四层为细胞/组织碎片沉淀层。In another preferred example, in the step (5), after centrifugation, the emulsified fat mixture is layered into four layers, the first layer is an oil layer, the second layer is a residual adipose tissue layer, and the third layer is a liquid layer layer (ie, the middle liquid layer), and the fourth layer is the cell/tissue debris sedimentation layer.
在另一优选例中,所述的步骤(5)中,所述离心在800-2500g下离心,较佳地800-2000g,更佳地1000-1500g,最佳地1100-1300g。In another preferred example, in the step (5), the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
在另一优选例中,所述的步骤(5)中,所述离心的时间为1-15min,较佳地1-10min,更佳地2-8min,最佳地3-7min。In another preferred example, in the step (5), the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 2-8 minutes, and optimally 3-7 minutes.
在另一优选例中,所述的离心的温度为2-6℃。In another preferred embodiment, the temperature of the centrifugation is 2-6°C.
在另一优选例中,所述的步骤(5)中,第一层、第二层、第三层和第四层从上到下依次排列。In another preferred example, in the step (5), the first layer, the second layer, the third layer and the fourth layer are arranged in order from top to bottom.
在另一优选例中,所述的步骤(5)中,所述的中间液体层为透明或基本透明层。In another preferred embodiment, in the step (5), the intermediate liquid layer is a transparent or substantially transparent layer.
在另一优选例中,所述的步骤(6)中,所述的过滤包能够将脂肪初提物中的脂肪细胞除去。In another preferred example, in the step (6), the filter bag can remove the adipocytes in the primary fat extract.
在另一优选例中,所述的步骤(6)中,所述的过滤和除菌是通过滤器(如0.22μm微孔滤膜)进行。In another preferred example, in the step (6), the filtration and sterilization are performed through a filter (eg, a 0.22 μm microporous membrane).
在另一优选例中,所述的过滤器为微孔滤膜过滤器。In another preferred embodiment, the filter is a microporous membrane filter.
在另一优选例中,所述的微孔滤膜的孔径大小为0.05-0.8μm,较佳地0.1-0.5μm,更佳地0.1-0.4μm,更佳地0.15-0.3μm,更佳地0.2-0.25μm,最佳地0.22μm。In another preferred example, the pore size of the microporous filter membrane is 0.05-0.8 μm, preferably 0.1-0.5 μm, more preferably 0.1-0.4 μm, more preferably 0.15-0.3 μm, more preferably 0.2-0.25 μm, optimally 0.22 μm.
在另一优选例中,所述的步骤(6)中,所述的过滤和除菌是先通过可滤去细胞的第一过滤器,然后再通过可滤去病原体(如细菌)的第二滤器(如0.22μm的滤器)进行的。In another preferred embodiment, in the step (6), the filtration and sterilization are firstly passed through a first filter that can filter out cells, and then passed through a second filter that can filter out pathogens (such as bacteria). filter (eg, 0.22 μm filter).
在另一优选例中,所述的步骤(6)中,还包括对所述脂肪提取物进行分装,形成分装的产品。(所述分装后的提取物可于-20℃保存待用;可低温(如-4℃)或常温解冻后直接使用,或解冻后置于低温(如4℃)保存一段时间,然后使用)。In another preferred embodiment, the step (6) further includes sub-packaging the fat extract to form a sub-packaged product. (The subpackaged extract can be stored at -20℃ for later use; it can be used directly after thawing at low temperature (such as -4℃) or normal temperature, or it can be stored at low temperature (such as 4℃) for a period of time after thawing, and then used ).
本发明第三方面,提供一种无细胞脂肪提取物,所述的无细胞脂肪提取物通过如本发明第二方面所述的方法制备获得。The third aspect of the present invention provides a cell-free fat extract, which is prepared by the method described in the second aspect of the present invention.
本发明第四方面,提供一种组合物或制剂,所述的组合物或制剂包含(a)如本发明第三方面所述的无细胞脂肪提取物;和(b)药学上、食品上、保健品或膳食上可接受的载体或赋形剂。The fourth aspect of the present invention provides a composition or formulation comprising (a) the cell-free fat extract according to the third aspect of the present invention; and (b) pharmaceutically, food, Nutraceutical or dietary acceptable carrier or excipient.
在另一优选例中,所述的组合物为药物组合物、食品组合物、保健品组合物或膳食补充剂。In another preferred example, the composition is a pharmaceutical composition, a food composition, a health product composition or a dietary supplement.
在另一优选例中,所述的组合物或制剂的剂型为口服制剂、外用制剂或注射制剂。In another preferred embodiment, the dosage form of the composition or preparation is an oral preparation, an external preparation or an injection preparation.
在另一优选例中,所述组合物或制剂的剂型为粉剂、颗粒剂、胶囊剂、注射剂、酊剂、口服液、片剂或含片。In another preferred embodiment, the dosage form of the composition or preparation is powder, granule, capsule, injection, tincture, oral liquid, tablet or lozenge.
在另一优选例中,所述的注射剂为静脉注射剂或肌肉注射剂。In another preferred embodiment, the injection is an intravenous injection or an intramuscular injection.
在另一优选例中,所述组合物或制剂的剂型为固体剂型、半固体剂型、或液体剂型,如溶液、凝胶、膏霜、乳液、膏剂、霜剂、糊剂、饼、粉剂、贴剂等。In another preferred embodiment, the dosage form of the composition or preparation is a solid dosage form, a semi-solid dosage form, or a liquid dosage form, such as solution, gel, cream, lotion, ointment, cream, paste, cake, powder, Patches etc.
在另一优选例中,在所述组合物或制剂中,无细胞脂肪提取物的质量百分比为5wt%,较佳地1-20wt%,以合物或制剂的总重量计。In another preferred example, in the composition or preparation, the mass percentage of the cell-free fat extract is 5 wt %, preferably 1-20 wt %, based on the total weight of the composition or preparation.
本发明第五方面,提供一种制备如本发明第四方面所述的组合物或制剂的方法,所述的方法包括步骤:将如本发明第三方面所述的无细胞脂肪提取物与药学上、食品上、保健品或膳食上可接受的载体或赋形剂混合,从而形成组合物或制剂。The fifth aspect of the present invention provides a method for preparing the composition or preparation according to the fourth aspect of the present invention, the method comprising the steps of: mixing the cell-free fat extract according to the third aspect of the present invention with a pharmaceutical It is mixed with acceptable carriers or excipients on food, health product or diet to form a composition or preparation.
本发明第六方面,提供一种预防和/治疗溃疡性结肠炎和/或其并发症的的方法,对需要的对象施用如本发明第三方面所述的的无细胞脂肪提取物。The sixth aspect of the present invention provides a method for preventing and/or treating ulcerative colitis and/or its complications, by administering the cell-free fat extract according to the third aspect of the present invention to a subject in need thereof.
在另一优选例中,所述的对象为人或非人哺乳动物。In another preferred embodiment, the subject is a human or a non-human mammal.
在另一优选例中,所述非人哺乳动物包括啮齿动物,如大鼠、小鼠。In another preferred embodiment, the non-human mammals include rodents, such as rats and mice.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (eg, the embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, it is not repeated here.
具体实施方式Detailed ways
本发明人经过广泛而深入的研究,首次开发了一种无细胞脂肪提取物。本发明所述的无细胞脂肪提取物对溃疡性结肠炎和其并发症具有优异的治疗作用。在此基础上完成了本发明。After extensive and in-depth research, the present inventors developed a cell-free fat extract for the first time. The cell-free fat extract of the present invention has an excellent therapeutic effect on ulcerative colitis and its complications. The present invention has been completed on this basis.
术语the term
除非另有定义,否则本文中所用的所有技术和科学术语的含义与本发明所属领域普通技术人员普遍理解的含义相同。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
如本文所用,术语“包括”、“包含”与“含有”可互换使用,不仅包括开放式定义,还包括半封闭式、和封闭式定义。换言之,所述术语包括了“由……构成”、“基本上由……构成”。As used herein, the terms "comprising," "including," and "containing" are used interchangeably to include not only open definitions, but also semi-closed, and closed definitions. In other words, the terms include "consisting of", "consisting essentially of".
如本文所用,术语“无细胞脂肪提取液”、“Cell free fat extract”与“CEFFE”可互换使用。As used herein, the terms "cell free fat extract", "Cell free fat extract" and "CEFFE" are used interchangeably.
在本发明中,术语“预防”表示预防疾病和/或它的附随症状的发作或者保护对象免于获得疾病的方法。本文中使用的"预防"还包括延迟疾病和/或它的附随症状的发作和降低对象的得病的风险。In the present invention, the term "prevention" refers to a method of preventing the onset of a disease and/or its attendant symptoms or protecting a subject from acquiring a disease. "Prevention" as used herein also includes delaying the onset of the disease and/or its attendant symptoms and reducing the risk of the disease in a subject.
本发明所述的“治疗”包括延缓和终止疾病的进展,或消除疾病,并不需要100%抑制、消灭和逆转。在一些实施方案中,与不存在本发明所述的组合物、药盒、食品盒或保健品盒、活性成分组合时观察到的水平相比,本发明所述组合物或药物组合物减轻、抑制和/或逆转了溃疡性结肠炎和/或其并发例如至少约10%、至少约30%、至少约50%、或至少约80%。"Treatment" as used in the present invention includes delaying and stopping the progression of the disease, or eliminating the disease, and does not require 100% inhibition, elimination and reversal. In some embodiments, the composition or pharmaceutical composition of the present invention reduces, Ulcerative colitis and/or complications thereof are inhibited and/or reversed, eg, by at least about 10%, at least about 30%, at least about 50%, or at least about 80%.
如文本所用,术语“IGF-1”称为胰岛素样生长因子1(insulin-like growth factors-1)。As used in the text, the term "IGF-1" is referred to as insulin-like growth factors-1.
如文本所用,术语“BDNF”称为脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)。As used in the text, the term "BDNF" is referred to as brain-derived neurotrophic factor (BDNF).
如文本所用,术语“GDNF”称为胶质细胞源性神经营养因子(glialcellline-derivedneurotrophicfactor)。As used in the text, the term "GDNF" is referred to as glial cellline-derived neurotrophic factor.
如文本所用,术语“bFGF”称为碱性成纤维细胞生长因子(basic fibroblast growth factor)。As used in the text, the term "bFGF" is referred to as basic fibroblast growth factor.
如文本所用,术语“VEGF”称为血管内皮生长因子(vascular endothelial growth factor)。As used herein, the term "VEGF" is referred to as vascular endothelial growth factor.
如文本所用,术语“TGF-β1”称为转化生长因子-β1(transforming growth factor-β1)。As used herein, the term "TGF-β1" is referred to as transforming growth factor-β1.
如文本所用,术语“HGF”称为肝细胞生长因子As used in the text, the term "HGF" is referred to as Hepatocyte Growth Factor
如文本所用,术语“PDGF”称为血小板衍生生长因子(Platelet derived growth factor)As used in the text, the term "PDGF" is referred to as Platelet derived growth factor
如文本所用,术语“EGF”称为表皮细胞生长因子(Epidermal Growth Factor)As used in the text, the term "EGF" is referred to as Epidermal Growth Factor
如文本所用,术语“NT-3”称为神经营养因子3(neurotrophins-3)。As used in the text, the term "NT-3" is referred to as neurotrophins-3.
如文本所用,术语“GH”称为生长激素(Growth Hormone)。As used in the text, the term "GH" is referred to as Growth Hormone.
如文本所用,术语“G-CSF”称为粒细胞集落刺激因子(granulocyte colony stimulating factor)。As used in the text, the term "G-CSF" is referred to as granulocyte colony stimulating factor.
无细胞脂肪提取物(Cell free fat extract,CEFFE)及其制备方法Cell free fat extract (CEFFE) and preparation method thereof
如本文所用,术语“本发明的无细胞脂肪提取物”、“本发明提取物”、“本发明的脂肪提取物”等可互换使用,指在脂肪提取物制备过程中(除漂洗步骤外)未添加任何溶液、溶剂、小分子、化学制剂、和生物添加剂所制备的源自脂肪组织的提取物(或提取液)。一种典型的制备本发明提取物的方法如上本发明第二方面中所述。此外,应理解,虽然本发明提取物在制备过程中不必添加任何添加剂(或添加成分),但是也可以添加一些或少量的对本发明提取物的活性无负面或不利影响的安全的物质(如少量水)。As used herein, the terms "cell-free adipose extract of the present invention", "extract of the present invention", "fat extract of the present invention" and the like are used interchangeably to refer to the process during the preparation of the fat extract (other than the rinsing step) ) An adipose tissue-derived extract (or extract) prepared without the addition of any solutions, solvents, small molecules, chemicals, and biological additives. A typical method for preparing the extract of the present invention is as described above in the second aspect of the present invention. In addition, it should be understood that although the extract of the present invention does not have to add any additives (or added components) during the preparation process, some or small amounts of safe substances (such as small amounts) that do not negatively or adversely affect the activity of the extract of the present invention may also be added. water).
在本发明的一个优选例中,所述的无细胞脂肪提取物为无细胞脂肪提取液。In a preferred embodiment of the present invention, the cell-free fat extract is a cell-free fat extract.
在本发明所述的无细胞脂肪提取物,可以包括多种细胞因子。代表性地,所述的无细胞脂肪提取物包括IGF-1、BDNF、GDNF、TGF-β、HGF、bFGF、VEGF、TGF-β1、PDGF、EGF、NT-3、GH和G-CSF中的一种或多种。In the cell-free adipose extract of the present invention, various cytokines may be included. Typically, the cell-free adipose extract comprises IGF-1, BDNF, GDNF, TGF-β, HGF, bFGF, VEGF, TGF-β1, PDGF, EGF, NT-3, GH and G-CSF one or more.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的IGF-1的浓度为 5000-30000pg/ml,较佳地6000-20000pg/ml,更佳地7000-15000pg/ml,更佳地8000-12000pg/ml,更佳地9000-11000pg/ml,更佳地9500-10500pg/ml。In another preferred example, in the cell-free fat extract, the concentration of the IGF-1 is 5000-30000pg/ml, preferably 6000-20000pg/ml, more preferably 7000-15000pg/ml , more preferably 8000-12000pg/ml, more preferably 9000-11000pg/ml, more preferably 9500-10500pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的BDNF的浓度为800-5000pg/ml,较佳地1000-4000pg/ml,更佳地1200-2500pg/ml,更佳地1400-2000pg/ml,更佳地1600-2000pg/ml,更佳地1700-1850pg/ml。In another preferred example, in the cell-free fat extract, the concentration of BDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1850 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的GDNF的浓度为800-5000pg/ml,较佳地1000-4000pg/ml,更佳地1200-2500pg/ml,更佳地1400-2000pg/ml,更佳地1600-2000pg/ml,更佳地1700-1900pg/ml。In another preferred example, in the cell-free fat extract, the concentration of GDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more Preferably 1400-2000 pg/ml, more preferably 1600-2000 pg/ml, more preferably 1700-1900 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的bFGF的浓度为50-600pg/ml,较佳地100-500pg/ml,更佳地120-400pg/ml,更佳地150-300pg/ml,更佳地200-280pg/ml,更佳地220-260pg/ml。In another preferred embodiment, in the cell-free fat extract, the concentration of the bFGF is 50-600pg/ml, preferably 100-500pg/ml, more preferably 120-400pg/ml, more Preferably 150-300 pg/ml, more preferably 200-280 pg/ml, more preferably 220-260 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的VEGF的浓度为50-500pg/ml,较佳地100-400pg/ml,更佳地120-300pg/ml,更佳地150-250pg/ml,更佳地170-230pg/ml,更佳地190-210pg/ml。In another preferred example, in the cell-free fat extract, the concentration of the VEGF is 50-500pg/ml, preferably 100-400pg/ml, more preferably 120-300pg/ml, more Preferably 150-250 pg/ml, more preferably 170-230 pg/ml, more preferably 190-210 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的TGF-β1的浓度为200-3000pg/ml,较佳地400-2000pg/ml,更佳地600-1500pg/ml,更佳地800-1200pg/ml,更佳地800-1100pg/ml,更佳地900-1000pg/ml。In another preferred example, in the cell-free fat extract, the concentration of TGF-β1 is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml , more preferably 800-1200pg/ml, more preferably 800-1100pg/ml, more preferably 900-1000pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的HGF的浓度为200-3000pg/ml,较佳地400-2000pg/ml,更佳地600-1500pg/ml,更佳地600-1200pg/ml,更佳地800-1000pg/ml,更佳地850-950pg/ml。In another preferred example, in the cell-free fat extract, the concentration of the HGF is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml, more Preferably 600-1200 pg/ml, more preferably 800-1000 pg/ml, more preferably 850-950 pg/ml.
在另一优选例中,在所述的无细胞脂肪提取物中,所述的PDGF的浓度为50-600pg/ml,较佳地80-400pg/ml,更佳地100-300pg/ml,更佳地140-220pg/ml,更佳地160-200pg/ml,更佳地170-190pg/ml。In another preferred example, in the cell-free fat extract, the concentration of PDGF is 50-600pg/ml, preferably 80-400pg/ml, more preferably 100-300pg/ml, more Preferably 140-220 pg/ml, more preferably 160-200 pg/ml, more preferably 170-190 pg/ml.
在另一优选例中,所述的IGF-1与VEGF的重量比为20-100:1,较佳地30-70:1,更佳地40-60:1,最佳地45-55:1。In another preferred embodiment, the weight ratio of IGF-1 to VEGF is 20-100:1, preferably 30-70:1, more preferably 40-60:1, most preferably 45-55: 1.
在另一优选例中,所述的BDNF与VEGF的重量比为2-20:1,较佳地4-15:1,更佳地6-12:1,最佳地8-9.5:1。In another preferred embodiment, the weight ratio of BDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8-9.5:1.
在另一优选例中,所述的GDNF与VEGF的重量比为2-20:1,较佳地4-15:1,更佳地6-12:1,最佳地8.5-9.5:1。In another preferred embodiment, the weight ratio of GDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8.5-9.5:1.
在另一优选例中,所述的bFGF与VEGF的重量比为0.2-8:1,较佳地0.5-5:1,更佳地0.6-2:1,更佳地0.8-1.6:1,最佳地1-1.5:1。In another preferred embodiment, the weight ratio of bFGF to VEGF is 0.2-8:1, preferably 0.5-5:1, more preferably 0.6-2:1, more preferably 0.8-1.6:1, Optimally 1-1.5:1.
在另一优选例中,所述的TGF-β1与VEGF的重量比为1-20:1,较佳地1-15:1,更佳地1-10:1,更佳地2-8:1,更佳地4-6:1。In another preferred embodiment, the weight ratio of TGF-β1 to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8: 1, preferably 4-6:1.
在另一优选例中,所述的HGF与VEGF的重量比为1-20:1,较佳地1-15:1,更佳地1-10:1,更佳地2-8:1,更佳地4-5.5:1。In another preferred embodiment, the weight ratio of HGF to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8:1, More preferably 4-5.5:1.
在另一优选例中,所述的PDGF与VEGF的重量比为0.1-3:1,较佳地0.2-2:1,更佳地0.4-1.5:1,最佳地0.7-1.2:1。In another preferred embodiment, the weight ratio of PDGF to VEGF is 0.1-3:1, preferably 0.2-2:1, more preferably 0.4-1.5:1, and most preferably 0.7-1.2:1.
优选地,本发明所述的无细胞脂肪提取物通过如上述本发明第二方面所述的方法制备获得。Preferably, the cell-free fat extract of the present invention is prepared by the method as described in the second aspect of the present invention.
代表性地,本发明所述的无细胞脂肪提取物通过以下方法制备:Typically, the cell-free fat extracts of the present invention are prepared by the following methods:
(1)提供一脂肪组织原料,将所述脂肪组织原料破碎,并进行漂洗(如用生理盐水),从而获得经漂洗的脂肪组织;(1) providing an adipose tissue raw material, crushing the adipose tissue raw material, and rinsing (such as with physiological saline), thereby obtaining rinsed adipose tissue;
(2)对所述经漂洗后的脂肪组织进行离心,获得分层的混合物;(2) centrifuging the rinsed adipose tissue to obtain a layered mixture;
(3)对所述分层的混合物,去除上层油层和下层水层,收集中间层(即含脂肪细胞的脂肪层);(3) for the layered mixture, remove the upper oil layer and the lower water layer, and collect the middle layer (ie, the fat layer containing adipocytes);
(4)对所述中间层进行乳化,获得乳化的脂肪混合物(也称为纳米脂肪);(4) Emulsifying the intermediate layer to obtain an emulsified fat mixture (also referred to as nano-fat);
(5)将所述乳化的脂肪混合物通过离心处理,从而获得中间液体层,即为脂肪初提物;和(5) subjecting the emulsified fat mixture to centrifugation to obtain an intermediate liquid layer, i.e., the initial fat extract; and
(6)对所述脂肪初提物进行过滤和除菌,从而获得无细胞的脂肪提取物。(6) Filtration and sterilization of the primary fat extract to obtain a cell-free fat extract.
具体地,本发明所述的无细胞脂肪提取物Specifically, the cell-free fat extract of the present invention
在另一优选例中,所述的步骤(2)中,所述离心在800-2500g下离心,较佳地800-2000g,更佳地1000-1500g,最佳地1100-1300g。In another preferred example, in the step (2), the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
在另一优选例中,所述的步骤(2)中,所述离心的时间为1-15min,较佳地1-10min,更佳地1-8min,最佳地1-5min。In another preferred example, in the step (2), the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 1-8 minutes, and optimally 1-5 minutes.
在另一优选例中,所述的步骤(4)中,所述的乳化为机械乳化。In another preferred example, in the step (4), the emulsification is mechanical emulsification.
在另一优选例中,所述机械乳化为经注射器反复吹打(如吹打20-200次,较佳地20-150次,更佳地20-100次,更佳地30-50次)进行机械乳化。In another preferred embodiment, the mechanical emulsification is performed mechanically by repeated blowing through a syringe (eg 20-200 times, preferably 20-150 times, more preferably 20-100 times, more preferably 30-50 times). emulsification.
在另一优选例中,所述的吹打的方式为2个10ml注射针筒连接三通管反复匀速推打。In another preferred example, the blowing method is to repeatedly push and beat at a constant speed with two 10ml injection syringes connected to a tee tube.
在另一优选例中,所述的步骤(4)中,所述乳化为通过组织匀浆机打碎的方法。In another preferred embodiment, in the step (4), the emulsification is a method of crushing by a tissue homogenizer.
在另一优选例中,所述的步骤(5)中,在将所述乳化的脂肪混合物通过离心处理前,还包括对所述乳化的脂肪混合物冷冻后解冻处理。In another preferred example, in the step (5), before the emulsified fat mixture is subjected to centrifugal treatment, the emulsified fat mixture is further frozen and then thawed.
在另一优选例中,冷冻后解冻处理后,将解冻后的混合物用于离心。In another preferred embodiment, the thawed mixture is used for centrifugation after thawing after freezing.
在另一优选例中,所述的冷冻的温度为-50℃至-120℃,较佳地-60℃至-100℃,更佳地-70℃至-90℃。In another preferred embodiment, the freezing temperature is -50°C to -120°C, preferably -60°C to -100°C, more preferably -70°C to -90°C.
在另一优选例中,所述的解冻的温度为20-40℃,较佳地25-40℃,更佳地37℃。In another preferred embodiment, the thawing temperature is 20-40°C, preferably 25-40°C, more preferably 37°C.
在另一优选例中,所述的冷冻后解冻的循环次数为1-5次(优选为1、2、3或4次)。In another preferred embodiment, the number of cycles of thawing after freezing is 1-5 times (preferably 1, 2, 3 or 4 times).
在另一优选例中,所述的步骤(5)中,离心后,所述乳化的脂肪混合物分层4层,第一层为油层,第二层为残余脂肪组织层,第三层为液体层(即为中间液体层),第四层为细胞/组织碎片沉淀层。In another preferred example, in the step (5), after centrifugation, the emulsified fat mixture is layered into four layers, the first layer is an oil layer, the second layer is a residual adipose tissue layer, and the third layer is a liquid layer layer (ie, the middle liquid layer), and the fourth layer is the cell/tissue debris sedimentation layer.
在另一优选例中,所述的步骤(5)中,所述离心在800-2500g下离心,较佳地800-2000g,更佳地1000-1500g,最佳地1100-1300g。In another preferred example, in the step (5), the centrifugation is performed at 800-2500g, preferably 800-2000g, more preferably 1000-1500g, and most preferably 1100-1300g.
在另一优选例中,所述的步骤(5)中,所述离心的时间为1-15min,较佳地1-10min,更佳地2-8min,最佳地3-7min。In another preferred example, in the step (5), the centrifugation time is 1-15 minutes, preferably 1-10 minutes, more preferably 2-8 minutes, and optimally 3-7 minutes.
在另一优选例中,所述的步骤(5)中,第一层、第二层、第三层和第四层从上到下依次排列。In another preferred example, in the step (5), the first layer, the second layer, the third layer and the fourth layer are arranged in order from top to bottom.
在另一优选例中,所述的步骤(5)中,所述的中间液体层为透明或基本透明层。In another preferred embodiment, in the step (5), the intermediate liquid layer is a transparent or substantially transparent layer.
在另一优选例中,所述的步骤(6)中,所述的过滤包能够将脂肪初提物中的脂肪细胞除去。In another preferred example, in the step (6), the filter bag can remove the adipocytes in the primary fat extract.
在另一优选例中,所述的步骤(6)中,所述的过滤和除菌是通过滤器(如0.22μm微孔滤膜)进行。In another preferred example, in the step (6), the filtration and sterilization are performed through a filter (eg, a 0.22 μm microporous membrane).
在另一优选例中,所述的过滤器为微孔滤膜过滤器。In another preferred embodiment, the filter is a microporous membrane filter.
在另一优选例中,所述的微孔滤膜的孔径大小为0.05-0.8μm,较佳地0.1-0.5μm,更佳地0.1-0.4μm,更佳地0.15-0.3μm,更佳地0.2-0.25μm,最佳地0.22μm。In another preferred example, the pore size of the microporous filter membrane is 0.05-0.8 μm, preferably 0.1-0.5 μm, more preferably 0.1-0.4 μm, more preferably 0.15-0.3 μm, more preferably 0.2-0.25 μm, optimally 0.22 μm.
在另一优选例中,所述的步骤(6)中,所述的过滤和除菌是先通过可滤去细胞的第一过滤器,然后再通过可滤去病原体(如细菌)的第二滤器(如0.22μm的滤器)进行的。In another preferred embodiment, in the step (6), the filtration and sterilization are firstly passed through a first filter that can filter out cells, and then passed through a second filter that can filter out pathogens (such as bacteria). filter (eg, 0.22 μm filter).
在另一优选例中,所述的步骤(6)中,还包括对所述脂肪提取物进行分装,形成分装的产品。(所述分装后的提取物可于-20℃保存待用;可低温(如-4℃)或常温解冻后直接使用,或解冻后置于低温(如4℃)保存一段时间,然后使用)。In another preferred embodiment, the step (6) further includes sub-packaging the fat extract to form a sub-packaged product. (The subpackaged extract can be stored at -20℃ for later use; it can be used directly after thawing at low temperature (such as -4℃) or normal temperature, or it can be stored at low temperature (such as 4℃) for a period of time after thawing, and then used ).
溃疡性结肠炎ulcerative colitis
溃疡性结肠炎(ulcerative colitic,UC)又称非特异性溃疡性结肠炎,是一种病因不明的大肠粘膜的慢性炎症和溃疡性病变,临床以腹痛、腹泻、粘液便、血便等为主要表现。由于本病原因不明,治疗棘手,被世界卫生组织列为现代难治病之一。Ulcerative colitis (UC), also known as non-specific ulcerative colitis, is a chronic inflammatory and ulcerative lesion of the large intestine mucosa of unknown etiology. Because the cause of this disease is unknown and the treatment is difficult, it is listed as one of the modern intractable diseases by the World Health Organization.
用途use
本发明所述的无细胞脂肪提取物对溃疡性结肠炎和其并发症具有优异的治疗作用。The cell-free fat extract of the present invention has an excellent therapeutic effect on ulcerative colitis and its complications.
代表性地,所述的溃疡性结肠炎并发症包括(但不限于):腹痛、腹泻、粘液便、血便,或其组合。Typically, the ulcerative colitis complications include, but are not limited to: abdominal pain, diarrhea, mucous stools, bloody stools, or a combination thereof.
组合物和施用Composition and Administration
本发明所述的组合物包括(但并不限于):药物组合物、食品组合物、保健组合物、膳食补充剂等。The compositions described in the present invention include (but are not limited to): pharmaceutical compositions, food compositions, health care compositions, dietary supplements, and the like.
代表性地,可将本发明的无细胞脂肪提取物制备成药物组合物,诸如片剂、胶囊、粉剂、微粒剂、溶液剂、锭剂、胶冻、乳膏制剂、醑剂、悬液、酊、泥敷剂、搽剂、洗剂、和气雾剂之类的剂型。药物组合物能够由通常已知的制备技术来制备,并且合适的药物添加剂能够被添加到该药物中。Typically, the cell-free fat extracts of the present invention can be prepared into pharmaceutical compositions such as tablets, capsules, powders, microparticles, solutions, lozenges, jellies, creams, elixirs, suspensions, Dosage forms such as tinctures, poultices, liniments, lotions, and aerosols. Pharmaceutical compositions can be prepared by generally known preparation techniques, and suitable pharmaceutical additives can be added to the medicament.
本发明的组合物还可以包括药学上、食品上、保健品或膳食上可接受的载体。“药学上、食品上、保健品或膳食上可接受的载体”指的是:一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组份能和本发明的化合物以及它们之间相互掺和,而不明显降低化合物的药效。药学上、食品上、保健品或膳食上可接受的载体可以接受的载体部分例子有纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等)、明胶、滑石、固体润滑剂(如硬脂酸、硬脂酸镁)、硫酸钙、植物油(如豆油、芝麻油、花生油、橄榄油等)、多元醇(如丙二醇、甘油、甘露醇、山梨醇等)、乳化剂(如吐温
Figure PCTCN2021125391-appb-000001
)、润湿剂(如十二烷基硫酸钠)、着色剂、调味剂、稳定剂、抗氧化剂、防腐剂、无热原水等。
The composition of the present invention may also include a pharmaceutically, food, health product or dietary acceptable carrier. "Pharmaceutically, food, nutraceutical or dietary acceptable carrier" means: one or more compatible solid or liquid filler or gel substances, which are suitable for human use and must be of sufficient purity and sufficiently low toxicity. "Compatibility" as used herein means that the components of the composition can be admixed with the compounds of the present invention and with each other without significantly reducing the efficacy of the compounds. Pharmaceutical, food, health product or dietary acceptable carrier Examples of acceptable carrier moieties are cellulose and its derivatives (such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate, etc.) , gelatin, talc, solid lubricants (such as stearic acid, magnesium stearate), calcium sulfate, vegetable oils (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyols (such as propylene glycol, glycerin, mannitol, sorbitol) etc.), emulsifiers (such as Tween
Figure PCTCN2021125391-appb-000001
), wetting agents (such as sodium lauryl sulfate), colorants, flavors, stabilizers, antioxidants, preservatives, pyrogen-free water, etc.
本发明组合物施用方式没有特别限制,代表性的施用方式包括(但并不限 于):口服、肠胃外(静脉内、肌肉内)、局部施用,优选的施用方式为口服施用和注射施用。The mode of administration of the composition of the present invention is not particularly limited, and representative modes of administration include (but are not limited to): oral, parenteral (intravenous, intramuscular), topical, and preferred modes of administration are oral administration and injection.
本发明所述的组合物或制剂的剂型为口服制剂、外用制剂或注射制剂。代表性地,用于口服施用或给药的固体剂型包括胶囊剂、片剂、丸剂、散剂和颗粒剂。在这些固体剂型中,活性化合物与至少一种常规惰性赋形剂(或载体)混合,如柠檬酸钠或磷酸二钙,或与下述成分混合:(a)填料或增容剂,例如,淀粉、乳糖、蔗糖、葡萄糖、甘露醇和硅酸;(b)粘合剂,例如,羟甲基纤维素、藻酸盐、明胶、聚乙烯基吡咯烷酮、蔗糖和阿拉伯胶;(c)保湿剂,例如,甘油;(d)崩解剂,例如,琼脂、碳酸钙、马铃薯淀粉或木薯淀粉、藻酸、某些复合硅酸盐、和碳酸钠;(e)缓溶剂,例如石蜡;(f)吸收加速剂,例如,季胺化合物;(g)润湿剂,例如鲸蜡醇和单硬脂酸甘油酯;(h)吸附剂,例如,高岭土;和(i)润滑剂,例如,滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠,或其混合物。胶囊剂、片剂和丸剂中,剂型也可包含缓冲剂。The dosage form of the composition or preparation of the present invention is an oral preparation, an external preparation or an injection preparation. Typically, solid dosage forms for oral administration or administration include capsules, tablets, pills, powders and granules. In these solid dosage forms, the active compound is mixed with at least one conventional inert excipient (or carrier), such as sodium citrate or dicalcium phosphate, or with (a) fillers or compatibilizers, for example, starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders such as, for example, hydroxymethylcellulose, alginate, gelatin, polyvinylpyrrolidone, sucrose and acacia; (c) humectants, For example, glycerol; (d) disintegrants, such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate; (e) slow solvents, such as paraffin; (f) Absorption accelerators such as quaternary amine compounds; (g) wetting agents such as cetyl alcohol and glyceryl monostearate; (h) adsorbents such as kaolin; and (i) lubricants such as talc, hard Calcium fatty acid, magnesium stearate, solid polyethylene glycol, sodium lauryl sulfate, or mixtures thereof. In capsules, tablets and pills, the dosage form may also contain buffering agents.
固体剂型如片剂、糖丸、胶囊剂、丸剂和颗粒剂可采用包衣和壳材制备,如肠衣和其它本领域公知的材料。它们可包含不透明剂,。Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared using coatings and shell materials, such as enteric coatings and other materials well known in the art. They may contain opacifiers.
用于口服施用或给药的液体剂型包括药学上可接受的乳液、溶液、悬浮液、糖浆或酊剂。除了活性化合物外,液体剂型可包含本领域中常规采用的惰性稀释剂,如水或其它溶剂,增溶剂和乳化剂,例知,乙醇、异丙醇、碳酸乙酯、乙酸乙酯、丙二醇、1,3-丁二醇、二甲基甲酰胺以及油,特别是棉籽油、花生油、玉米胚油、橄榄油、蓖麻油和芝麻油或这些物质的混合物等。Liquid dosage forms for oral administration or administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures. In addition to the active compound, liquid dosage forms may contain inert diluents conventionally employed in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, dimethylformamide and oils, especially cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil or mixtures of these substances, and the like.
除了这些惰性稀释剂外,组合物也可包含助剂,如润湿剂、乳化剂和悬浮剂、甜味剂、娇味剂和香料。Besides these inert diluents, the compositions can also contain adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
除了活性成分外,悬浮液可包含悬浮剂,例如,乙氧基化异十八烷醇、聚氧乙烯山梨醇和脱水山梨醇酯、微晶纤维素、甲醇铝和琼脂或这些物质的混合物等。In addition to the active ingredient, suspensions may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances and the like.
用于肠胃外注射的组合物可包含生理上可接受的无菌含水或无水溶液、分散液、悬浮液或乳液,和用于重新溶解成无菌的可注射溶液或分散液的无菌粉末。适宜的含水和非水载体、稀释剂、溶剂或赋形剂包括水、乙醇、多元醇及其适宜的混合物。Compositions for parenteral injection may comprise physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions. Suitable aqueous and non-aqueous carriers, diluents, solvents or excipients include water, ethanol, polyols and suitable mixtures thereof.
用于局部施用或给药的本发明化合物的剂型包括软膏剂、散剂、贴剂、喷射剂和吸入剂。活性成分在无菌条件下与生理上可接受的载体及任何防腐剂、缓冲剂,或必要时可能需要的推进剂一起混合。Dosage forms for topical administration or administration of the compounds of this invention include ointments, powders, patches, sprays and inhalants. The active ingredient is mixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants that may be required if necessary.
本发明无细胞脂肪提取物可以单独施用或给药,或者与其它预防和/或治疗脂肪肝和/或其并发症的药物联合施用或给药。The cell-free adipose extract of the present invention may be administered or administered alone, or in combination with other drugs for preventing and/or treating fatty liver and/or its complications.
施用组合物时,是将安全有效量的本发明无细胞脂肪提取物适用于需要治疗的人或非人动物(如大鼠、小鼠、狗、猫、牛、鸡、鸭等),其中施用时剂量为药学上、食品上或保健品上可接受认为的有效给药剂量。如本文所用,术语“安全有效量”,是指对人和/或动物产生功能或活性的且可被人和/或动物所接受的量。本领域的普通技术人员应该理解,所述的“安全有效量”可随着药物组合物的形式、给药途径、所用药物的辅料、疾病的严重程度以及与其他药物联合用药等情况的不同而有所不同。例如,对于60kg体重的人而言,日给药剂量通常为0.1~1000mg,优选1~600mg,更优选为2-300mg。当然,具体剂量 还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。When the composition is administered, a safe and effective amount of the cell-free fat extract of the present invention is suitable for human or non-human animals (such as rats, mice, dogs, cats, cows, chickens, ducks, etc.) in need of treatment, wherein the administration The current dose is the effective dose that can be considered as acceptable in pharmacy, food or health care products. As used herein, the term "safe and effective amount" refers to an amount that produces function or activity in humans and/or animals and is acceptable to humans and/or animals. Those of ordinary skill in the art should understand that the "safe and effective amount" may vary with the form of the pharmaceutical composition, the route of administration, the excipients of the drug used, the severity of the disease, and the combination with other drugs, etc. different. For example, for a person weighing 60 kg, the daily dosage is usually 0.1 to 1000 mg, preferably 1 to 600 mg, and more preferably 2 to 300 mg. Of course, the specific dosage should also take into account the route of administration, the patient's health and other factors, which are all within the skill of the skilled physician.
本发明的主要优点包括:The main advantages of the present invention include:
本发明首次发现无细胞脂肪提取物溃疡性结肠炎及其并发症具有优异的治疗效果。The present invention finds for the first time that acellular fat extract has excellent therapeutic effect on ulcerative colitis and its complications.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In the following examples, the experimental methods without specific conditions are usually in accordance with conventional conditions, or in accordance with the conditions suggested by the manufacturer. Percentages and parts are by weight unless otherwise indicated.
实施例1考出CEFFE对溃疡性结肠炎的治疗效果Embodiment 1 examines the therapeutic effect of CEFFE on ulcerative colitis
1.实验方法1. Experimental method
1.1.无细胞脂肪提取液(Cell free fat extract,CEFFE)的制备1.1. Preparation of cell free fat extract (CEFFE)
脂肪由自愿者在获得知情同意的条件下获得。无细胞脂肪组织提取液的制备方法如下:Fat was obtained from volunteers with informed consent. The preparation method of cell-free adipose tissue extract is as follows:
(1)脂肪组织获取自6名常规脂肪抽吸术的健康女性,平均年龄31岁(24-36岁)。局部注射肿胀液麻醉后,使用具有大侧孔(2mm x 7mm)的3mm吸脂抽脂套管连接20mL注射器,人工负压下放射状抽吸,将获得的脂肪直立静止,去除肿胀液后,用生理盐水漂洗3遍。(1) Adipose tissue was obtained from 6 healthy women who underwent conventional liposuction, with an average age of 31 years (24-36 years). After local injection of tumescent fluid anesthesia, a 3mm liposuction cannula with a large lateral hole (2mm x 7mm) was used to connect a 20mL syringe, and radial suction was performed under artificial negative pressure. Rinse 3 times with normal saline.
(2)取经漂洗后的脂肪组织,置于离心管中,放入离心机中以1200g 4℃离心3分钟后,获得分层的混合物。(2) Take the rinsed adipose tissue, place it in a centrifuge tube, put it in a centrifuge and centrifuge at 1200g for 3 minutes at 4°C to obtain a layered mixture.
(3)对所述分层的混合物,去除上层油层和下层水层,收集中间层(即含脂肪细胞的脂肪层)。(3) For the layered mixture, the upper oil layer and the lower water layer are removed, and the middle layer (ie, the fat layer containing adipocytes) is collected.
(4)对所述中间层,用2个10ml注射针筒连接三通管反复匀速推打30次,从而进行机械乳化,并获得经机械乳化的脂肪混合物(也称为纳米脂肪)。(4) For the middle layer, use two 10ml injection syringes connected with a tee tube to repeatedly push and beat 30 times at a constant speed to perform mechanical emulsification and obtain a mechanically emulsified fat mixture (also called nano fat).
(5)将所述经机械乳化的脂肪混合物置入-80℃冰箱冷冻,再进行37℃水浴解冻,单次冻融循环后,将解冻后的脂肪混合物以1200g 4℃离心5分钟,获得分层的混合物,分层的混合物共分为4层,第一层为油层,第二层为残余脂肪组织层,第三层为液体层,第四层为细胞/组织碎片沉淀层,去除油层和残余脂肪组织层,吸取液体层,吸取过程中避免细胞/组织碎片沉淀层污染,从而得到脂肪初提取液。(5) The mechanically emulsified fat mixture was placed in a -80°C refrigerator for freezing, and then thawed in a 37°C water bath. After a single freeze-thaw cycle, the thawed fat mixture was centrifuged at 1200g at 4°C for 5 minutes to obtain fractions. The layered mixture is divided into 4 layers, the first layer is the oil layer, the second layer is the residual adipose tissue layer, the third layer is the liquid layer, and the fourth layer is the cell/tissue debris precipitation layer, remove the oil layer and For the residual adipose tissue layer, the liquid layer is sucked, and the contamination of the cell/tissue debris sediment layer is avoided during the sucking process, so as to obtain the initial fat extraction solution.
(6)将得到的脂肪初提取液经0.22μm滤器过滤除菌,从而灭菌并去除可能混有的活细胞,从而获得无细胞脂肪提取液(CEFFE),分装冻存于-20℃保存,使用时4℃解冻。(6) Filter and sterilize the obtained fat primary extract through a 0.22 μm filter, thereby sterilizing and removing possible mixed living cells, thereby obtaining cell-free fat extract (CEFFE), which is frozen in aliquots and stored at -20°C , thawed at 4°C when used.
对制备得到的无细胞脂肪提取液,使用ELISA免疫吸附测定试剂盒检测细胞因子含量,包括IGF-1、BDNF、GDNF、bFGF、VEGF、TGF-β1、HGF和PDGF等细胞因子。6例样本检测平均浓度如下:IGF-1(9840.6pg/ml)、BDNF(1764.5pg/ml)、GDNF(1831.9pg/ml)、bFGF(242.3pg/ml)、VEGF(202.9pg/ml)、TGF-β1(954.5pg/ml)、HGF(898.4pg/ml)和PDGF(179.9pg/ml)。For the prepared cell-free fat extract, the content of cytokines, including IGF-1, BDNF, GDNF, bFGF, VEGF, TGF-β1, HGF and PDGF, was detected by ELISA immunosorbent assay kit. The average concentrations of 6 samples were as follows: IGF-1 (9840.6pg/ml), BDNF (1764.5pg/ml), GDNF (1831.9pg/ml), bFGF (242.3pg/ml), VEGF (202.9pg/ml), TGF-β1 (954.5 pg/ml), HGF (898.4 pg/ml) and PDGF (179.9 pg/ml).
1.2小鼠溃疡性结肠炎模型建立、分组及给药1.2 Establishment, grouping and administration of ulcerative colitis model in mice
所有检疫合格的动物根据体重接近原则筛选48只,随机分为6组,每组8只。各组动物分组及给药剂量如下表1所示:All quarantined animals were screened according to the principle of close weight, and they were randomly divided into 6 groups with 8 animals in each group. The groupings and doses of animals in each group are shown in Table 1 below:
表1 各组动物分组及给药剂量Table 1 Animal grouping and dosage of each group
Figure PCTCN2021125391-appb-000002
Figure PCTCN2021125391-appb-000002
分组后正常对照组(组1)小鼠饮用纯化水,其余各组小鼠(组2~组6)饮用2%DSS(葡聚糖硫酸钠)水溶液造模,每笼动物每天更换饮用水或DSS水溶液,饮水量每天为40mL,连续8天。After grouping, the mice in the normal control group (group 1) drank purified water, and the mice in the other groups (groups 2 to 6) drank 2% DSS (dextran sodium sulfate) aqueous solution for modeling, and the animals in each cage were replaced with drinking water or DSS aqueous solution, the water intake was 40 mL per day for 8 consecutive days.
给药方式及频率:Dosing mode and frequency:
正常对照组不作处理,模型对照组给予氯化钠注射液,阳性对照组给予环孢素注射液,实验组4-6给予对应剂量的CEFFE治疗。动物造模同时开始给药,阳性对照组(组3)每天给药1次,共计给药9次,其余组别(组2,组4~组6)均为隔天给药1次,共计给药5次(D1、D3、D5、D7、D9),给药方式均为尾静脉注射。以给药第1天为D1,第2天为D2,以此类推。The normal control group was given no treatment, the model control group was given sodium chloride injection, the positive control group was given cyclosporine injection, and the experimental groups 4-6 were given the corresponding dose of CEFFE. Animal modeling started at the same time, the positive control group (group 3) was administered once a day, a total of 9 times, the other groups (group 2, group 4 to group 6) were administered once every other day, a total of Five times of administration (D1, D3, D5, D7, D9) were administered, and the administration method was tail vein injection. Take the first day of administration as D1, the second day as D2, and so on.
1.3体重和DAI评分1.3 Weight and DAI score
所有动物接收、出检疫和分组前均称重1次,造模后组1~组6动物每天称重,D1~D9每天进行一次DAI评分。评分标准如下表2所示:All animals were weighed once before receiving, leaving quarantine and grouping. After modeling, animals in groups 1 to 6 were weighed every day, and D1 to D9 were scored once a day. The scoring criteria are shown in Table 2 below:
表2 DAI评分Table 2 DAI score
Figure PCTCN2021125391-appb-000003
Figure PCTCN2021125391-appb-000003
1.4组织学检测1.4 Histological examination
D9所有动物安乐死。D9 All animals were euthanized.
安乐死方法:CO 2过量吸入后,开胸或腹主动脉放血致死。安乐死后由病理部取肛门部至回盲部的结肠,测量长度后以0.9%氯化钠注射液冲洗内容物后沿长轴方向纵向剖开,由直肠侧向盲肠侧卷曲折叠,并以大头针穿刺固定后置 于10%中性福尔马林中固定,石蜡包埋,切片,HE染色后观察结肠组织病理损伤,重点观察结肠粘膜损伤程度,是否发生炎症与溃疡形成。每个动物选择选择结肠远端、中段、与近端各观察3个视野,计算3段结肠总组织学损伤评分。组织学损伤评分如下表3所示: Euthanasia method: After CO 2 overdose inhalation, thoracotomy or abdominal aortic bleeding to death. After euthanasia, the colon from the anus to the ileocecal area was taken from the pathology department. After measuring the length, the contents were washed with 0.9% sodium chloride injection and then longitudinally cut along the long axis. After puncture and fixation, they were fixed in 10% neutral formalin, embedded in paraffin, sliced, and stained with HE to observe the pathological damage of colonic tissue. Each animal was selected to observe 3 visual fields at the distal end, middle segment and proximal end of the colon, and the total histological damage score of the colon was calculated. Histological damage scores are shown in Table 3 below:
表3 组织学损伤评分Table 3 Histological damage score
Figure PCTCN2021125391-appb-000004
Figure PCTCN2021125391-appb-000004
1.5数据统计分析1.5 Statistical analysis of data
计量资料以平均值标准差来表示,所有数据统计均采用SPSS13.0或Graphpad prism5.0统计学软件进行。Measurement data were expressed as mean standard deviation, and all data statistics were performed using SPSS13.0 or Graphpad prism5.0 statistical software.
2.实验结果2. Experimental results
实验结果发现,CEFFE组DAI评分和组织学损伤评分显著低于模型对照组,表明CEFFE对溃疡性结肠炎具有优异的治疗效果。The experimental results showed that the DAI score and histological damage score of the CEFFE group were significantly lower than those of the model control group, indicating that CEFFE has an excellent therapeutic effect on ulcerative colitis.
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned herein are incorporated by reference in this application as if each document were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

Claims (15)

  1. 一种无细胞脂肪提取物的用途,其特征在于,用于制备组合物或制剂,所述组合物或制剂用于预防和/或治疗溃疡性结肠炎和/或其并发症。Use of a cell-free fat extract, characterized in that it is used to prepare a composition or preparation for preventing and/or treating ulcerative colitis and/or its complications.
  2. 如权利要求1所述的用途,其特征在于,所述的溃疡性结肠炎并发症选自下组:腹痛、腹泻、粘液便、血便,或其组合。The use of claim 1, wherein the ulcerative colitis complication is selected from the group consisting of abdominal pain, diarrhea, mucus stool, bloody stool, or a combination thereof.
  3. 如权利要求1所述的用途,其特征在于,所述的无细胞脂肪提取物含有一种或多种选自下组的组分:IGF-1、BDNF、GDNF、TGF-β1、HGF、bFGF、VEGF、TGF-β1、PDGF、EGF、NT-3、GH、G-CSF,或其组合。The use of claim 1, wherein the cell-free fat extract contains one or more components selected from the group consisting of IGF-1, BDNF, GDNF, TGF-β1, HGF, bFGF , VEGF, TGF-β1, PDGF, EGF, NT-3, GH, G-CSF, or a combination thereof.
  4. 如权利要求3所述的用途,其特征在于,所述的无细胞脂肪提取物包括选自下组的一种或多种特征:The use of claim 3, wherein the cell-free fat extract comprises one or more characteristics selected from the group consisting of:
    在所述的无细胞脂肪提取物中,所述的IGF-1的浓度为5000-30000pg/ml,较佳地6000-20000pg/ml,更佳地7000-15000pg/ml,更佳地8000-12000pg/ml,更佳地9000-11000pg/ml,更佳地9500-10500pg/ml;In the cell-free fat extract, the concentration of IGF-1 is 5000-30000pg/ml, preferably 6000-20000pg/ml, more preferably 7000-15000pg/ml, more preferably 8000-12000pg /ml, more preferably 9000-11000pg/ml, more preferably 9500-10500pg/ml;
    在所述的无细胞脂肪提取物中,所述的BDNF的浓度为800-5000pg/ml,较佳地1000-4000pg/ml,更佳地1200-2500pg/ml,更佳地1400-2000pg/ml,更佳地1600-2000pg/ml,更佳地1700-1850pg/ml;In the cell-free fat extract, the concentration of the BDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more preferably 1400-2000pg/ml , more preferably 1600-2000pg/ml, more preferably 1700-1850pg/ml;
    在所述的无细胞脂肪提取物中,所述的GDNF的浓度为800-5000pg/ml,较佳地1000-4000pg/ml,更佳地1200-2500pg/ml,更佳地1400-2000pg/ml,更佳地1600-2000pg/ml,更佳地1700-1900pg/ml;In the cell-free fat extract, the concentration of GDNF is 800-5000pg/ml, preferably 1000-4000pg/ml, more preferably 1200-2500pg/ml, more preferably 1400-2000pg/ml , more preferably 1600-2000pg/ml, more preferably 1700-1900pg/ml;
    在所述的无细胞脂肪提取物中,所述的bFGF的浓度为50-600pg/ml,较佳地100-500pg/ml,更佳地120-400pg/ml,更佳地150-300pg/ml,更佳地200-280pg/ml,更佳地220-260pg/ml;In the cell-free fat extract, the concentration of the bFGF is 50-600 pg/ml, preferably 100-500 pg/ml, more preferably 120-400 pg/ml, more preferably 150-300 pg/ml , more preferably 200-280pg/ml, more preferably 220-260pg/ml;
    在所述的无细胞脂肪提取物中,所述的VEGF的浓度为50-500pg/ml,较佳地100-400pg/ml,更佳地120-300pg/ml,更佳地150-250pg/ml,更佳地170-230pg/ml,更佳地190-210pg/ml;In the cell-free fat extract, the concentration of the VEGF is 50-500pg/ml, preferably 100-400pg/ml, more preferably 120-300pg/ml, more preferably 150-250pg/ml , more preferably 170-230pg/ml, more preferably 190-210pg/ml;
    在所述的无细胞脂肪提取物中,所述的TGF-β1的浓度为200-3000pg/ml,较佳地400-2000pg/ml,更佳地600-1500pg/ml,更佳地800-1200pg/ml,更佳地800-1100pg/ml,更佳地900-1000pg/ml;In the cell-free fat extract, the concentration of TGF-β1 is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml, more preferably 800-1200pg /ml, more preferably 800-1100pg/ml, more preferably 900-1000pg/ml;
    在所述的无细胞脂肪提取物中,所述的HGF的浓度为200-3000pg/ml,较佳地400-2000pg/ml,更佳地600-1500pg/ml,更佳地600-1200pg/ml,更佳地800-1000pg/ml,更佳地850-950pg/ml;和/或In the cell-free fat extract, the concentration of the HGF is 200-3000pg/ml, preferably 400-2000pg/ml, more preferably 600-1500pg/ml, more preferably 600-1200pg/ml , more preferably 800-1000pg/ml, more preferably 850-950pg/ml; and/or
    在所述的无细胞脂肪提取物中,所述的PDGF的浓度为50-600pg/ml,较佳地80-400pg/ml,更佳地100-300pg/ml,更佳地140-220pg/ml,更佳地160-200pg/ml,更佳地170-190pg/ml。In the cell-free fat extract, the concentration of the PDGF is 50-600pg/ml, preferably 80-400pg/ml, more preferably 100-300pg/ml, more preferably 140-220pg/ml , more preferably 160-200pg/ml, more preferably 170-190pg/ml.
  5. 如权利要求3所述的用途,其特征在于,所述的无细胞脂肪提取物包括选自下组的一种或多种特征:The use of claim 3, wherein the cell-free fat extract comprises one or more characteristics selected from the group consisting of:
    所述的IGF-1与VEGF的重量比为20-100:1,较佳地30-70:1,更佳地40-60:1,最佳地45-55:1;The weight ratio of IGF-1 to VEGF is 20-100:1, preferably 30-70:1, more preferably 40-60:1, and most preferably 45-55:1;
    所述的BDNF与VEGF的重量比为2-20:1,较佳地4-15:1,更佳地6-12:1,最佳地8-9.5:1;The weight ratio of BDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8-9.5:1;
    所述的GDNF与VEGF的重量比为2-20:1,较佳地4-15:1,更佳地6-12:1,最佳地8.5-9.5:1;The weight ratio of GDNF to VEGF is 2-20:1, preferably 4-15:1, more preferably 6-12:1, and most preferably 8.5-9.5:1;
    所述的bFGF与VEGF的重量比为0.2-8:1,较佳地0.5-5:1,更佳地0.6-2:1,更佳地0.8-1.6:1,最佳地1-1.5:1;The weight ratio of bFGF to VEGF is 0.2-8:1, preferably 0.5-5:1, more preferably 0.6-2:1, more preferably 0.8-1.6:1, and most preferably 1-1.5: 1;
    所述的TGF-β1与VEGF的重量比为1-20:1,较佳地1-15:1,更佳地1-10:1,更佳地2-8:1,更佳地4-6:1;The weight ratio of TGF-β1 to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8:1, more preferably 4- 6:1;
    所述的HGF与VEGF的重量比为1-20:1,较佳地1-15:1,更佳地1-10:1,更佳地2-8:1,更佳地4-5.5:1;和/或The weight ratio of HGF to VEGF is 1-20:1, preferably 1-15:1, more preferably 1-10:1, more preferably 2-8:1, more preferably 4-5.5: 1; and/or
    所述的PDGF与VEGF的重量比为0.1-3:1,较佳地0.2-2:1,更佳地0.4-1.5:1,最佳地0.7-1.2:1。The weight ratio of PDGF to VEGF is 0.1-3:1, preferably 0.2-2:1, more preferably 0.4-1.5:1, and most preferably 0.7-1.2:1.
  6. 如权利要求1所述的用途,其特征在于,所述的无细胞脂肪提取物通过以下方法制备:The use according to claim 1, wherein the cell-free fat extract is prepared by the following method:
    (1)提供一脂肪组织原料,将所述脂肪组织原料破碎,并进行漂洗(如用生理盐水),从而获得经漂洗的脂肪组织;(1) providing an adipose tissue raw material, crushing the adipose tissue raw material, and rinsing (such as with physiological saline), thereby obtaining rinsed adipose tissue;
    (2)对所述经漂洗后的脂肪组织进行离心,获得分层的混合物;(2) centrifuging the rinsed adipose tissue to obtain a layered mixture;
    (3)对所述分层的混合物,去除上层油层和下层水层,收集中间层(即含脂肪细胞的脂肪层);(3) for the layered mixture, remove the upper oil layer and the lower water layer, and collect the middle layer (ie, the fat layer containing adipocytes);
    (4)对所述中间层进行乳化,获得乳化的脂肪混合物(也称为纳米脂肪);(4) Emulsifying the intermediate layer to obtain an emulsified fat mixture (also referred to as nano-fat);
    (5)将所述乳化的脂肪混合物通过离心处理,从而获得中间液体层,即为脂肪初提物;和(5) subjecting the emulsified fat mixture to centrifugation to obtain an intermediate liquid layer, i.e., the initial fat extract; and
    (6)对所述脂肪初提物进行过滤和除菌,从而获得无细胞的脂肪提取物。(6) Filtration and sterilization of the primary fat extract to obtain a cell-free fat extract.
  7. 如权利要求1所述的用途,其特征在于,所述的组合物或制剂的剂型为口服制剂、外用制剂或注射制剂。The use according to claim 1, wherein the dosage form of the composition or preparation is an oral preparation, an external preparation or an injection preparation.
  8. 如权利要求7所述的用途,其特征在于,所述的注射制剂为静脉注射剂或肌肉注射剂。The use according to claim 7, wherein the injection preparation is an intravenous injection or an intramuscular injection.
  9. 如权利要求1所述的用途,其特征在于,所述组合物或制剂的剂型为固体剂型、半固体剂型、或液体剂型。The use according to claim 1, wherein the dosage form of the composition or preparation is a solid dosage form, a semi-solid dosage form, or a liquid dosage form.
  10. 如权利要求1所述的用途,其特征在于,所述无细胞脂肪提取物不含有细胞且不含有脂滴。The use of claim 1, wherein the cell-free fat extract contains no cells and no lipid droplets.
  11. 如权利要求1所述的用途,其特征在于,所述无细胞脂肪提取物为天然获得的无添加成分的纳米脂肪提取物。The use according to claim 1, wherein the cell-free fat extract is a naturally-obtained nano-fat extract without added components.
  12. 一种无细胞脂肪提取物,其特征在于,所述的无细胞脂肪提取物通过以下方法制备:A cell-free fat extract, characterized in that, the cell-free fat extract is prepared by the following method:
    (1)提供一脂肪组织原料,将所述脂肪组织原料破碎,并进行漂洗(如用生理盐水),从而获得经漂洗的脂肪组织;(1) providing an adipose tissue raw material, crushing the adipose tissue raw material, and rinsing (such as with physiological saline), thereby obtaining rinsed adipose tissue;
    (2)对所述经漂洗后的脂肪组织进行离心,获得分层的混合物;(2) centrifuging the rinsed adipose tissue to obtain a layered mixture;
    (3)对所述分层的混合物,去除上层油层和下层水层,收集中间层(即含脂肪细胞的脂肪层);(3) for the layered mixture, remove the upper oil layer and the lower water layer, and collect the middle layer (ie, the fat layer containing adipocytes);
    (4)对所述中间层进行乳化,获得乳化的脂肪混合物(也称为纳米脂肪);(4) Emulsifying the intermediate layer to obtain an emulsified fat mixture (also referred to as nano-fat);
    (5)将所述乳化的脂肪混合物通过离心处理,从而获得中间液体层,即为脂肪初提物;和(5) subjecting the emulsified fat mixture to centrifugation to obtain an intermediate liquid layer, i.e., the initial fat extract; and
    (6)对所述脂肪初提物进行过滤和除菌,从而获得无细胞的脂肪提取物。(6) Filtration and sterilization of the primary fat extract to obtain a cell-free fat extract.
  13. 一种组合物或制剂,其特征在于,所述的组合物或制剂包含(a)如权利要求12所述的无细胞脂肪提取物;和(b)药学上、食品上、保健品或膳食上可接受的载体或赋形剂。A composition or preparation, characterized in that the composition or preparation comprises (a) the cell-free fat extract according to claim 12; and (b) pharmacy, food, health product or diet acceptable carrier or excipient.
  14. 如权利要求12所述的组合物或制剂,其特征在于,在所述组合物或制剂中,所述无细胞脂肪提取物的质量百分比为1-20wt%,以组合物或制剂的总重量计。The composition or preparation of claim 12, wherein, in the composition or preparation, the mass percentage of the cell-free fat extract is 1-20 wt%, based on the total weight of the composition or preparation .
  15. 一种预防和/治疗溃疡性结肠炎和/或其并发症的的方法,其特征在于,对需要的对象施用如权利要求12所述的无细胞脂肪提取物。A method for preventing and/or treating ulcerative colitis and/or its complications, characterized in that the cell-free fat extract according to claim 12 is administered to a subject in need thereof.
PCT/CN2021/125391 2020-11-06 2021-10-21 Use of cell-free fat extract for treating ulcerative colitis WO2022095715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011231879.2 2020-11-06
CN202011231879.2A CN114432342A (en) 2020-11-06 2020-11-06 Application of cell-free fat extract in treating ulcerative colitis

Publications (1)

Publication Number Publication Date
WO2022095715A1 true WO2022095715A1 (en) 2022-05-12

Family

ID=81360985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125391 WO2022095715A1 (en) 2020-11-06 2021-10-21 Use of cell-free fat extract for treating ulcerative colitis

Country Status (2)

Country Link
CN (1) CN114432342A (en)
WO (1) WO2022095715A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170119682A1 (en) * 2015-11-02 2017-05-04 Tigenix, S.A.U. Mesenchymal stem cell-derived exosomes and their uses
CN110496241A (en) * 2018-05-16 2019-11-26 上海交通大学医学院附属第九人民医院 It is derived from the biomaterial and its preparation method and application of adipose tissue
CN112386528A (en) * 2019-08-15 2021-02-23 上海萨美细胞技术有限公司 Fat extract without additive components, and its preparation method and application
CN112675153A (en) * 2019-10-17 2021-04-20 上海萨美细胞技术有限公司 Application of acellular adipose tissue extract in promoting hair growth and fixing hair
CN113398331A (en) * 2021-05-25 2021-09-17 郑州市和沐生物科技有限公司 Cell-free fat extract, and preparation method and analysis method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170119682A1 (en) * 2015-11-02 2017-05-04 Tigenix, S.A.U. Mesenchymal stem cell-derived exosomes and their uses
CN110496241A (en) * 2018-05-16 2019-11-26 上海交通大学医学院附属第九人民医院 It is derived from the biomaterial and its preparation method and application of adipose tissue
CN112386528A (en) * 2019-08-15 2021-02-23 上海萨美细胞技术有限公司 Fat extract without additive components, and its preparation method and application
CN112675153A (en) * 2019-10-17 2021-04-20 上海萨美细胞技术有限公司 Application of acellular adipose tissue extract in promoting hair growth and fixing hair
CN113398331A (en) * 2021-05-25 2021-09-17 郑州市和沐生物科技有限公司 Cell-free fat extract, and preparation method and analysis method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABDEL MOHSEN MANAL, AHMED MARWA: "Histological Study on the Effect of Adipose Mesenchymal Stem Cells Derived Microvesicles and the Role of its RNA Content on Experimentally-Induced Ulcerative Colitis in Albino Rats", EGYPTIAN JOURNAL OF HISTOLOGY, vol. 0, no. 0, 13 February 2019 (2019-02-13), pages 0 - 0, XP055928284, DOI: 10.21608/ejh.2019.7831.1078 *
NISHIKAWA TAKAHIRO; MAEDA KEIKO; NAKAMURA MASANAO; YAMAMURA TAKESHI; SAWADA TSUNAKI; MIZUTANI YASUYUKI; ITO TAKANORI; ISHIKAWA TAK: "Filtrated Adipose Tissue-Derived Mesenchymal Stem Cell Lysate Ameliorates Experimental Acute Colitis in Mice", DIGESTIVE DISEASES AND SCIENCES., SPRINGER NEW YORK LLC, US, vol. 66, no. 4, 1 January 1900 (1900-01-01), US , pages 1034 - 1044, XP037405021, ISSN: 0163-2116, DOI: 10.1007/s10620-020-06359-3 *
ZHENG YANGYANG, LIU YI : "Research progress of nano-fatty derivatives", CHINESE JOURNAL OF AESTHETIC AND PLASTIC SURGERY, vol. 30, no. 10, 15 October 2019 (2019-10-15), CN , pages 631 - 633+647, XP055879156, ISSN: 1673-7040 *
ZHENG YANGYANG: "Research Progress of Nano Fat Derivatives", ZHONGGUO MEIRONG ZHENGXING WAIKE ZAZHI = CHINESE JOURNAL OF AESTHETIC AND PLASTIC SURGERY, CN, vol. 30, no. 10, 31 October 2019 (2019-10-31), CN , pages 631 - 633,647, XP055878996, ISSN: 1673-7040, DOI: 10.3969/j.issn.1673-7040.2019.10.018 *

Also Published As

Publication number Publication date
CN114432342A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2021143912A1 (en) Therapeutic action of cell-free fat extract on fatty liver and complications thereof
WO2021249561A1 (en) Therapeutic use of of cell-free fat extract for pulmonary diseases
WO2022028375A1 (en) Therapeutic use of cell-free fat extract solution for pulmonary diseases
WO2022170940A1 (en) Cell-free fat extract for use in improving aging and promoting skin rejuvenation
WO2021249402A1 (en) Effects of cell-free fat liquid extract on macrophage polarization modulation and disease treatment
WO2022095715A1 (en) Use of cell-free fat extract for treating ulcerative colitis
TWI494115B (en) Use of alcohol extract of longan seeds
WO2022100400A1 (en) Use of cell-free fat extract for treatment of nonalcoholic steatohepatitis
WO2022194094A1 (en) Use of cell-free fat extract for treating spinal cord injury
WO2022135545A1 (en) Use of cell-free fat extract in treatment of erectile dysfunction
WO2023020178A1 (en) Use of cell-free fat extract for treating vaginal atrophy
CN113908149A (en) Application of formononetin in preparation of medicine for preventing and treating acute lung injury
WO2022100399A1 (en) Therapeutic application of cell-free fat extract to arthritis
WO2023284466A1 (en) Cell-free fat extract for tretaing ovarian insufficiency
WO2022116983A1 (en) Therapeutic use of cell-free fat extract for osteoporosis
JP6001789B2 (en) Use of longan seed alcohol extract
WO2022170939A1 (en) Use of cell-free fat extract in treatment of optic nerve injury
WO2020214919A1 (en) Method and composition for reversing and/or inhibiting atherosclerosis
WO2022194093A1 (en) Use of cell-free fat extract for treating non-hypertrophic scars
CN117398413A (en) Cell-free fat extract for treating ovarian dysfunction
JP2017119675A (en) Pharmaceutical compositions for treating colorectal cancer
JP2017119677A (en) Pharmaceutical compositions for treating lung cancer
CN117959435A (en) Application of Shanhaidan capsule in treating coronary heart disease caused by hyperlipidemia
CN116492420A (en) Lung strengthening composition of siren and preparation method and application thereof
KR20130133477A (en) Phellius linteus extracts as an effective components for prostatism improvement, acne improvement and hair growth enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888412

Country of ref document: EP

Kind code of ref document: A1