WO2022095615A1 - 一种应用于变压器测温的分布式光纤测温装置及方法 - Google Patents

一种应用于变压器测温的分布式光纤测温装置及方法 Download PDF

Info

Publication number
WO2022095615A1
WO2022095615A1 PCT/CN2021/119728 CN2021119728W WO2022095615A1 WO 2022095615 A1 WO2022095615 A1 WO 2022095615A1 CN 2021119728 W CN2021119728 W CN 2021119728W WO 2022095615 A1 WO2022095615 A1 WO 2022095615A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
temperature
wavelength division
division multiplexer
network
Prior art date
Application number
PCT/CN2021/119728
Other languages
English (en)
French (fr)
Inventor
丁晔
须雷
熊慕文
刘东超
刘中泽
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2022095615A1 publication Critical patent/WO2022095615A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations

Definitions

  • the application belongs to the technical field of optical fiber sensing temperature measurement, and particularly relates to a distributed optical fiber temperature measurement device and method applied to transformer temperature measurement.
  • transformer peripheral temperature measurement has great practical significance for its health monitoring and long-term safe operation.
  • the detection of abnormal temperature helps to detect transformer faults early and reduce the operational risk of the grid.
  • the early transformer peripheral temperature measurement is distributed cable temperature measurement. Because the distributed cable temperature measurement is an active temperature measurement, there is a risk of short circuit to the transformer.
  • each exemplary embodiment of the present application is to provide a distributed optical fiber temperature measurement device and method applied to transformer temperature measurement, which can solve the complex problem of installation and disassembly of sensing optical fiber applied to transformer temperature measurement.
  • a distributed optical fiber temperature measurement device applied to transformer temperature measurement comprises a hardware circuit, a laser, a detector, a wavelength division multiplexer and a temperature sensing optical fiber network, wherein the hardware circuit is respectively connected with the The laser and the detector are connected, both the laser and the detector are connected with the wavelength division multiplexer, and the wavelength division multiplexer is connected with the temperature sensing fiber network;
  • the hardware circuit is configured to control the laser to emit excitation light, and the excitation light is configured to enter the temperature-sensing fiber network after passing through the wavelength division multiplexer, and the excitation light generates scattered light carrying temperature information in the temperature-sensing fiber network; backscattering The light is configured to return to the wavelength division multiplexer along the original path through the temperature-sensing optical fiber network, and the two beams of signal light separated from the wavelength division multiplexer are propagated to the detector and converted into corresponding electrical signals; the hardware circuit is configured to receive After the electrical signal is demodulated, the temperature information is obtained.
  • the above-mentioned wavelength division multiplexer includes a wavelength division multiplexer excitation light input port, a wavelength division multiplexer excitation light output port, and two wavelength division multiplexer signal light output ports, wherein the laser is connected to the wavelength division multiplexer.
  • the excitation light input port of the division multiplexer is connected, the detector is connected to the two signal light output ports of the wavelength division multiplexer, and the temperature-sensing optical fiber braided network is connected to the excitation light output port of the wavelength division multiplexer.
  • the size of the temperature-sensing optical fiber braided network is adjustable, and the size of the temperature-sensing optical fiber braided network is adjusted according to the actual size of the transformer, so that the temperature-sensitive optical fiber braided network closely fits the transformer.
  • the above-mentioned temperature-sensing optical fiber braided network can be installed and disassembled on the entire surface.
  • a hardware circuit controls a laser to emit excitation light, and the excitation light passes through a wavelength division multiplexer and enters a temperature-sensing optical fiber network, The excitation light generates scattered light carrying temperature information in the temperature-sensing fiber network; the backscattered light returns to the wavelength division multiplexer along the original path through the temperature-sensing fiber network, and the two beams of signals separated from the wavelength division multiplexer The light propagates to the detector and is converted into a corresponding electrical signal; the hardware circuit demodulates the temperature information from the electrical signal.
  • the distributed optical fiber temperature measurement device and method applied to transformer temperature measurement provided by various exemplary embodiments of the present application, by using temperature sensing optical fibers to weave a network, the entire surface of the network is attached to the outside of the transformer during installation, so that the temperature of the transformer can be accurately detected. temperature. When the transformer is maintained, the entire temperature measuring net can be removed. Since the temperature measuring fibers are of a mesh structure and their positions are determined, only one calibration is required, and subsequent repeated installations do not need to be calibrated.
  • FIG. 1 is a schematic structural diagram of a distributed temperature measurement device system of the present application.
  • FIG. 2 is a schematic diagram of each port of the wavelength division multiplexer of the present application.
  • each exemplary embodiment of the present application provides a distributed optical fiber temperature measurement device applied to transformer temperature measurement, including a hardware circuit 1 , a laser 2 , a detector 3 , a wavelength division multiplexer 4 and a temperature sensing device Optical fiber network 5, wherein, hardware circuit 1 is connected with laser 2 and detector 3, laser 2 and detector 3 are connected with wavelength division multiplexer 4, and temperature-sensing fiber network 5 is connected with wavelength division multiplexer 4; The function of the hardware circuit 1 is to synchronously control the laser 2 to emit light and the detector 3 to receive light.
  • the detector 3 converts the received optical signal into an electrical signal and demodulates the electrical signal;
  • the demultiplexer 4 transmits the excitation light to the temperature-sensing optical fiber braided network 5, and the temperature-sensing optical fiber braided network 5 is responsible for generating the temperature-sensitive quantity.
  • the structure of the wavelength division multiplexer 4 is shown in the embodiment shown in FIG. 2 .
  • the wavelength division multiplexer 4 includes a wavelength division multiplexer excitation light input port 4.1, two wavelength division multiplexer signal light output ports 4.2 and 4.3, and a wavelength division multiplexer excitation light output port 4.4.
  • the laser 2 is connected to the excitation light input port 4.1 of the wavelength division multiplexer.
  • the detector 3 is connected to the two wavelength division multiplexer signal light output ports 4.2 and 4.3.
  • the temperature-sensing optical fiber network 5 is connected to the excitation light output port 4.4 of the wavelength division multiplexer.
  • the size of the temperature-sensing optical fiber braided network 5 has an adjustment function, which can be adjusted according to the actual size of the transformer, so that the temperature-sensing optical fiber braided network 5 can be closely attached to the transformer to improve temperature measurement accuracy.
  • the size of the temperature-sensing optical fiber woven network 5 may be the size of the expanded area of the temperature-sensing optical fiber woven network.
  • the temperature-sensing optical fiber braided network 5 can be installed and disassembled on the entire surface, so that when the transformer is maintained, the entire surface can be disassembled and installed at one time, making it easy to install and maintain, and greatly improving work efficiency. Moreover, because the temperature-sensing optical fiber has a mesh structure, the relative positions between the optical fibers are fixed, and only one calibration is required, and subsequent disassembly and installation can be run without calibration.
  • the exemplary embodiments of the present application also provide a distributed optical fiber temperature measurement method applied to transformer temperature measurement, the content is: the hardware circuit 1 controls the laser 2 to emit excitation pulse laser, and the excitation light passes through the wavelength division multiplexer 4 and then enters the The temperature-sensing optical fiber braided net 5 is connected to each other, and the excitation light generates scattered light carrying temperature information in the temperature-sensing optical fiber braided network 5 .
  • the backscattered light of the scattered light is returned to the wavelength division multiplexer 4 through the temperature-sensing optical fiber network 5.
  • the excitation light output port of the wavelength division multiplexer 4 is also the input port of the scattered light.
  • the scattered light is subjected to wavelength division multiplexing.
  • the device 4 separates two beams of signal light, the detector 3 converts the two beams of signal light into electrical signals, and the hardware circuit 1 demodulates the temperature information after receiving the electrical signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种应用于变压器测温的分布式光纤测温装置,包括硬件电路(1)、激光器(2)、探测器(3)、波分复用器(4)和感温光纤编制网(5),硬件电路(1)分别与激光器(2)、探测器(3)相连,激光器(2)和探测器(3)均与波分复用器(4)相连,波分复用器(4)与感温光纤编制网(5)相连;硬件电路(1)控制激光器(2)发出激励光,激励光通过波分复用器(4)后进入感温光纤编制网(5),激励光在感温光纤编制网(5)中产生携带温度信息的散射光;背向散射光经感温光纤编制网(5)原路返回到波分复用器(4),从波分复用器(4)分离出的两束信号光到探测器(3)转变为电信号;硬件电路(1)接受电信号后解调出温度信息。可解决传感光纤应用于变压器测温的安装和拆卸复杂问题。还公开了一种应用于变压器测温的分布式光纤测温方法。

Description

一种应用于变压器测温的分布式光纤测温装置及方法
相关申请
本申请要求于2020年11月09日提交中国专利局、申请号为202011240453.3、申请名称为“一种应用于变压器测温的分布式光纤测温装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于光纤传感测温技术领域,特别涉及一种应用于变压器测温的分布式光纤测温装置及方法。
背景技术
近年来,变压器外围测温对于其健康状况监控和长期安全运行有重大现实意义。异常温度的发现有助于及早发现变压器故障,降低电网的运行风险。早期的变压器外围测温是分布式电缆测温。分布式电缆测温由于是有源测温,对变压器有短路风险。
近些年随着分布式光纤测温技术的发展和推广,分布式光纤测温技术在变压器测温中得到了应用。但是分布式测温光缆的安装方式是其在变压器测温中广泛推广的制约因素之一。传统的分布式光线安装方式是缠绕在变压器的外围,这种安装方式维护成本较高。每次维护都要将缠绕的光纤解开,待变压器维护完成之后再缠绕上去,然后做温度标定。其工作量之大,维护时间之久都为工程实用化带来了障碍。
发明内容
本申请各示例性实施例的目的,在于提供一种应用于变压器测温的分布式光纤测温装置及方法,其可解决传感光纤应用于变压器测温的安装和拆卸复杂问题。
为了实现上述目的,本申请的一方面提供的技术方案是:
一种应用于变压器测温的分布式光纤测温装置,所述分布式光纤测温装置包括硬件电路、激光器、探测器、波分复用器和感温光纤编制网,其中,硬件电路分别与激光器、探测器相连,激光器和探测器均与波分复用器相连,波分复用器与感温光纤编制网相连;
硬件电路被配置为控制激光器发出激励光,激励光被配置为通过波分复用器后进入 感温光纤编制网,激励光在感温光纤编制网中产生携带温度信息的散射光;背向散射光被配置为经感温光纤编制网沿原路返回到波分复用器,从波分复用器分离出的两束信号光传播到探测器转变为相应电信号;硬件电路被配置为接受电信号后解调出温度信息。
在一实施例中,上述波分复用器包括波分复用器激励光输入端口、波分复用器激励光输出端口和两个波分复用器信号光输出端口,其中,激光器与波分复用器激励光输入端口相连,探测器与两个波分复用器信号光输出端口相连,以及感温光纤编制网与波分复用器激励光输出端口相连。
在一实施例中,上述感温光纤编制网的尺寸为可调节,所述感温光纤维编制网的尺寸根据实际变压器尺寸做调整,使得感温光纤编制网与变压器紧密贴合。
在一实施例中,上述感温光纤编制网能够整面安装和拆卸。
本申请的另一方面,提供一种应用于变压器测温的分布式光纤测温方法,首先,硬件电路控制激光器发出激励光,该激励光通过波分复用器后进入感温光纤编制网,激励光在感温光纤编制网中产生携带温度信息的散射光;背向散射光经感温光纤编制网沿原路返回到波分复用器,从波分复用器分离出的两束信号光传播到探测器从而转变为相应电信号;硬件电路由所述电信号中解调出温度信息。
根据本申请各示例性实施例提供的应用于变压器测温的分布式光纤测温装置和方法,通过使用感温光纤编制网,安装时候整面网贴合变压器的外侧,可以准确地检测变压器的温度。当变压器维护的时候,可以将整面测温网拆下。由于测温光纤为网状结构,相互之间的位置确定,所以仅作一次标定即可,后续反复安装都无需再做标定工作。
附图说明
图1是本申请的分布式测温装置系统结构示意图。
图2是本申请的波分复用器各端口示意图。
具体实施方式
下面结合附图对本申请的技术方案做进一步说明。
如图1所示,本申请各示例性实施例提供一种应用于变压器测温的分布式光纤测温装置,包括硬件电路1、激光器2、探测器3、波分复用器4和感温光纤编制网5,其中,硬件电路1与激光器2和探测器3相连,激光器2和探测器3均与波分复用器4相连, 感温光纤编制网5与波分复用器4相连;硬件电路1的作用是同步控制激光器2发光和探测器3接受光,探测器3将接受的光信号转为电信号,并对电信号做解调;激光器2产生作为激励源的脉冲激光,波分复用器4将激励光传送至感温光纤编制网5,感温光纤编制网5负责产生温度敏感量。
在图2所示的实施例中示出了波分复用器4的结构。所述波分复用器4包括波分复用器激励光输入端口4.1、两个波分复用器信号光输出端口4.2和4.3、波分复用器激励光输出端口4.4。激光器2与波分复用器激励光输入端口4.1相连。探测器3与两个波分复用器信号光输出端口4.2和4.3相连。感温光纤编制网5与波分复用器激励光输出端口4.4相连。
在一实施例中,感温光纤编制网5的尺寸具有调节功能,可以根据实际变压器尺寸做调整,使得感温光纤编制网5可以与变压器紧密贴合,以提升测温准确度。本领域技术人员可理解的是,感温光纤编制网5的尺寸可以为感温光纤编制网的展开面积的尺寸。
在一实施例中,感温光纤编制网5可以整面安装和拆卸,这样在变压器维护的时候,可以一次性做整个面的拆卸和安装,使其安装维护简单易行,极大地提升工作效率。而且由于感温光纤为网状结构,光纤之间的相对位置固定,仅需一次标定,后续拆卸与安装都可以免标定运行。
本申请各示例性实施例还提供一种应用于变压器测温的分布式光纤测温方法,内容为:硬件电路1控制激光器2发出激励脉冲激光,激励光通过波分复用器4后进入与之相连的感温光纤编制网5,激励光在感温光纤编制网5中产生携带温度信息的散射光。散射光的背向散射光经感温光纤编制网5原路返回到波分复用器4,波分复用器4的激励光输出端口同时也是散射光的输入端口,散射光经波分复用器4后分离出两束信号光,探测器3把两束信号光转变为电信号,硬件电路1接受电信号后解调出温度信息。
以上实施例仅为说明本申请的技术思想,不能以此限定本申请的保护范围,凡是按照本申请提出的技术思想,在技术方案基础上所做的任何改动,均落入本申请保护范围之内。

Claims (5)

  1. 一种应用于变压器测温的分布式光纤测温装置,其中,所述分布式光纤测温装置包括硬件电路、激光器、探测器、波分复用器和感温光纤编制网,其中,所述硬件电路分别与所述激光器和所述探测器相连,所述激光器和所述探测器均与所述波分复用器相连,且所述波分复用器与所述感温光纤编制网相连;及
    所述硬件电路被配置为控制所述激光器发出激励光,所述激励光被配置为通过所述波分复用器后进入所述感温光纤编制网,所述激励光在所述感温光纤编制网中产生携带温度信息的散射光;背向散射光被配置为经所述感温光纤编制网沿原路返回到所述波分复用器,从所述波分复用器分离出的两束信号光传播到所述探测器从而转变为相应电信号;且所述硬件电路被配置为接收所述电信号后解调出温度信息。
  2. 如权利要求1所述的分布式光纤测温装置,其中,所述波分复用器包括波分复用器激励光输入端口、波分复用器激励光输出端口和两个波分复用器信号光输出端口,其中,所述激光器与所述波分复用器激励光输入端口相连,所述探测器与所述两个波分复用器信号光输出端口相连,以及所述感温光纤编制网与所述波分复用器激励光输出端口相连。
  3. 如权利要求1所述的分布式光纤测温装置,其中,所述感温光纤编制网的尺寸为可调节,所述感温光纤编制网的尺寸根据所述变压器进行调节,使得所述感温光纤编制网与所述变压器紧密贴合。
  4. 如权利要求1所述的分布式光纤测温装置,其中,所述感温光纤编制网能够整面安装和拆卸。
  5. 一种应用于变压器测温的分布式光纤测温方法,其中,所述方法包括:
    硬件电路控制激光器发出激励光,所述激励光通过波分复用器后进入感温光纤编制网,所述激励光在所述感温光纤编制网中产生携带温度信息的散射光;
    所述背向散射光经所述感温光纤编制网沿原路返回到所述波分复用器,从所述波分复用器分离出的两束信号光传播到探测器从而转变为相应电信号;以及
    所述硬件电路接收所述电信号中解调出温度信息。
PCT/CN2021/119728 2020-11-09 2021-09-23 一种应用于变压器测温的分布式光纤测温装置及方法 WO2022095615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011240453.3 2020-11-09
CN202011240453.3A CN114459628A (zh) 2020-11-09 2020-11-09 一种应用于变压器测温的分布式光纤测温装置及方法

Publications (1)

Publication Number Publication Date
WO2022095615A1 true WO2022095615A1 (zh) 2022-05-12

Family

ID=81404103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119728 WO2022095615A1 (zh) 2020-11-09 2021-09-23 一种应用于变压器测温的分布式光纤测温装置及方法

Country Status (2)

Country Link
CN (1) CN114459628A (zh)
WO (1) WO2022095615A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201653435U (zh) * 2010-03-30 2010-11-24 浙江大学 一种光纤光栅和光纤拉曼复合传感网络
CN201688928U (zh) * 2010-06-08 2010-12-29 浙江大学 一种增强型光纤拉曼分布式传感设备
CN102564643A (zh) * 2012-02-28 2012-07-11 西南交通大学 准分布式光纤光栅传感网络自动标定与变量分离感知方法及其装置
KR20120097684A (ko) * 2011-02-25 2012-09-05 주식회사 에스원 격자 유지용 고정 덮개를 이용한 광 섬유 센서망, 그리고 이를 이용한 침입 감지 장치 및 그 방법
CN204128711U (zh) * 2014-05-06 2015-01-28 长春理工大学 分布式高精度光纤温度监测网络系统
CN104567958A (zh) * 2015-01-05 2015-04-29 华中科技大学 基于时分波分复用的分布式微结构传感网络及其使用方法
CN107990998A (zh) * 2017-11-27 2018-05-04 南京南瑞继保电气有限公司 一种多通道分布式光纤测温装置及方法
CN207689037U (zh) * 2017-12-07 2018-08-03 中国能源建设集团广东省电力设计研究院有限公司 基于分布式光纤的管道温度场测量装置
CN210377734U (zh) * 2019-10-09 2020-04-21 威海北洋光电信息技术股份公司 基于光纤围栏的海洋边界安全监测装置
CN111238681A (zh) * 2020-02-20 2020-06-05 云南电网有限责任公司电力科学研究院 用于电力变压器的分布式测温系统及方法
US20200313763A1 (en) * 2019-03-26 2020-10-01 Nec Laboratories America, Inc Distributed sensing over optical fiber carrying live, high-speed data

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201653435U (zh) * 2010-03-30 2010-11-24 浙江大学 一种光纤光栅和光纤拉曼复合传感网络
CN201688928U (zh) * 2010-06-08 2010-12-29 浙江大学 一种增强型光纤拉曼分布式传感设备
KR20120097684A (ko) * 2011-02-25 2012-09-05 주식회사 에스원 격자 유지용 고정 덮개를 이용한 광 섬유 센서망, 그리고 이를 이용한 침입 감지 장치 및 그 방법
CN102564643A (zh) * 2012-02-28 2012-07-11 西南交通大学 准分布式光纤光栅传感网络自动标定与变量分离感知方法及其装置
CN204128711U (zh) * 2014-05-06 2015-01-28 长春理工大学 分布式高精度光纤温度监测网络系统
CN104567958A (zh) * 2015-01-05 2015-04-29 华中科技大学 基于时分波分复用的分布式微结构传感网络及其使用方法
CN107990998A (zh) * 2017-11-27 2018-05-04 南京南瑞继保电气有限公司 一种多通道分布式光纤测温装置及方法
CN207689037U (zh) * 2017-12-07 2018-08-03 中国能源建设集团广东省电力设计研究院有限公司 基于分布式光纤的管道温度场测量装置
US20200313763A1 (en) * 2019-03-26 2020-10-01 Nec Laboratories America, Inc Distributed sensing over optical fiber carrying live, high-speed data
CN210377734U (zh) * 2019-10-09 2020-04-21 威海北洋光电信息技术股份公司 基于光纤围栏的海洋边界安全监测装置
CN111238681A (zh) * 2020-02-20 2020-06-05 云南电网有限责任公司电力科学研究院 用于电力变压器的分布式测温系统及方法

Also Published As

Publication number Publication date
CN114459628A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
US9062965B2 (en) Multi-point measuring apparatus and method of FBG sensor having multiple delaying fibers
CN109595470B (zh) 一种分布式管道检测方法
US8120759B2 (en) Optical transmission strain sensor for wind turbines
US10634551B2 (en) Reflectometric vibration measurement system and relative method for monitoring multiphase flows
US8734011B2 (en) Distributed optical fiber temperature sensor based on optical fiber delay
US20070274712A1 (en) Method for detecting and localizing faults in an optical transmission path, and optical transmission system
WO2014101754A1 (zh) 多芯光纤、采用该多芯光纤的传感装置及其运行方法
CN109269624A (zh) 基于波分与时分联合复用的分布式管道监测装置与方法
EA032547B1 (ru) Оптоволоконная система для измерения вибраций в многофазных потоках и соответствующий способ контроля многофазных потоков
CN107036733B (zh) 基于暗脉冲光源的双芯弱光栅阵列的多参量分布式测量系统及测量方法
CN106249117A (zh) 侵入式变压器油中局部放电超声波光脉冲检测方法及系统
CN106769736B (zh) 一种粉尘浓度测量系统
CN107664515B (zh) 一种光纤周界传感定位系统及入侵扰动点位置的判定方法
CN105137201B (zh) 一种光纤绝缘子插入损耗检测仪
CN109991511A (zh) 一种架空线路雷击监测装置及监测方法
WO2022095615A1 (zh) 一种应用于变压器测温的分布式光纤测温装置及方法
CN108957209A (zh) 一种通信光纤光缆生产用的断线自动检测装置
CN104321633B (zh) 用于测量基片中间隔区域的系统
KR101474068B1 (ko) 광섬유 브래그 격자를 이용한 원전 환경 모니터링 시스템
CN115507817A (zh) 基于分布式光纤传感器的地下管廊管片沉降检测方法
CN218271048U (zh) 一种分布式光纤的振动传感与声发射监测系统
CN106257249A (zh) 适用于隧道测温的分布式光纤测温系统以及测温方法
CN106769735B (zh) 一种粉尘浓度测量装置
JP2001141830A (ja) 温度補償型光伝送式放射線計測装置及びその計測システム
CN208520551U (zh) 一种高压换流站传能光纤链路状态在线检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888314

Country of ref document: EP

Kind code of ref document: A1