WO2022095016A1 - 一种农业植保器械 - Google Patents

一种农业植保器械 Download PDF

Info

Publication number
WO2022095016A1
WO2022095016A1 PCT/CN2020/127461 CN2020127461W WO2022095016A1 WO 2022095016 A1 WO2022095016 A1 WO 2022095016A1 CN 2020127461 W CN2020127461 W CN 2020127461W WO 2022095016 A1 WO2022095016 A1 WO 2022095016A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant protection
valve
agricultural plant
pipeline
protection apparatus
Prior art date
Application number
PCT/CN2020/127461
Other languages
English (en)
French (fr)
Inventor
颜勋
高俊彰
王博
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/127461 priority Critical patent/WO2022095016A1/zh
Priority to CN202080078308.1A priority patent/CN114745952B/zh
Publication of WO2022095016A1 publication Critical patent/WO2022095016A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass

Definitions

  • the present application relates to the technical field of plant protection, in particular to an agricultural plant protection instrument.
  • agricultural plant protection can be automatically sprayed by agricultural plant protection equipment.
  • the agricultural plant protection equipment includes a water pump, a pipeline and a sprinkler head.
  • the water pump provides a pressure source to spray the liquid in the pipeline from the sprinkler head under the action of pressure.
  • the water pump cannot realize fast switching and precise control of the water flow, it is necessary to add a certain number of valve devices in the pipeline of agricultural plant protection equipment to control the spraying in actual operation.
  • the traditional method is to use a unified controller to pre-commission the pipeline status, pump speed and other information in the entire agricultural plant protection equipment, and adjust the logic and timing of the valve device control through software. To ensure the precise spraying effect of the entire agricultural plant protection equipment.
  • more complex control circuits and corresponding control logics are required.
  • the embodiment of the present application provides an agricultural plant protection device, including a container for holding liquid, and one or more pipelines communicating with the container, and each pipeline includes:
  • a pipeline for connecting the spray head and the container; a valve device is installed on the pipeline to adjust the liquid flow in the pipeline;
  • a sensor for detecting status information of the liquid flowing from the conduit to the spray head
  • a controller electrically connected with the valve device and the sensor the controller is configured to automatically control the valve state of the connected valve device according to the state information of the liquid sensed by the sensor, so as to control the The spray flow of the sprinkler.
  • the controller of each pipeline can automatically control the connected valve device according to the state information of the liquid in the pipeline sensed by the sensor.
  • the valve status can realize independent and autonomous control of each pipeline; at the same time, since each pipeline can independently control the nozzle flow, the number of pipelines can be quickly increased or decreased according to the spraying needs, or the spray flow of individual pipelines can be adjusted independently, thereby improving the spraying efficiency. of accuracy.
  • FIG. 1 is an agricultural plant protection drone shown in an exemplary embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an agricultural plant protection apparatus according to an exemplary embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an agricultural plant protection apparatus including a trunk pipeline according to an exemplary embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an agricultural plant protection apparatus including a host computer according to an exemplary embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an agricultural plant protection apparatus including a drive circuit according to an exemplary embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a driving circuit according to an exemplary embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a driving circuit in which the switching device is a PMOS transistor according to an exemplary embodiment of the present application.
  • the embodiment of the present application first provides an agricultural plant protection device. As an improvement, it can realize independent and autonomous control of different pipelines set therein, especially for valve devices in different positions, can complete automatic control, and because different pipelines are independent and autonomous control , so the complexity of the controller control logic can be greatly reduced.
  • the agricultural plant protection device in the embodiment of the present application may be a movable platform, such as an unmanned aerial vehicle, an unmanned vehicle, a robot, etc., which can move to different positions by performing actions such as translation, rotation, and flipping. And spray the carried liquid to be sprayed, wherein the unmanned aerial vehicle can be an agricultural plant protection drone, and the unmanned vehicle can be an agricultural spraying vehicle.
  • agricultural plant protection equipment can also be manned equipment, such as a manned spraying vehicle.
  • the agricultural plant protection apparatus may also be a manual spraying device, for example, the agricultural plant protection apparatus may be held or carried by the operator for operation.
  • FIG. 1 is an agricultural plant protection drone shown in an exemplary embodiment of the present application, wherein the agricultural plant protection drone 10 at least includes a liquid to be sprayed.
  • a pipeline (not shown in the figure) connecting the container 101, the liquid pump 102, the spray head 103, etc. is included.
  • the liquid pump 102 draws the liquid from the container 101 through the pipeline and delivers the liquid to the spray head 103, and sprays the liquid out through the spray head 103, wherein the container 101 can be a water tank, a medicine box, etc., and the liquid can be water, drugs, etc.
  • the agricultural plant protection drone 10 can be used to spray liquid pesticides, water and other liquid spraying activities on agricultural products, forest trees, etc. in the agricultural industry.
  • actions such as moving, rotating, and turning over can be performed, so as to move to different positions in the preset area and perform spraying operations at different angles.
  • FIG. 2 is a schematic structural diagram of an agricultural plant protection device shown in an exemplary embodiment of the present application.
  • the agricultural plant protection device 20 include:
  • a sensor 2024 for detecting status information of the liquid flowing to the spray head 2021 in the pipe 2022;
  • a sensor 2024 is separately provided in each pipeline, so that the controller 2025 of each pipeline can sense the sensor 2024 according to the sensor 2024.
  • the state information of the liquid measured automatically controls the valve state of the connected valve device 2023, and realizes the independent and autonomous control of each pipeline; at the same time, since each pipeline can independently control the flow rate of the nozzle, it can also be quickly increased or decreased according to the spraying demand.
  • the number of pipes, or the spray flow of individual pipes can be adjusted individually to improve the accuracy of spraying. In general, its advantages are reflected in at least the following three aspects:
  • each pipeline can automatically control the valve device according to the liquid state information of its own pipeline sensed by the sensor, for each pipeline, it is only necessary to design a relatively simple control logic according to the current pipeline information. , and does not need to consider the relatively complex control logic of how to control multiple pipelines at the same time.
  • the agricultural plant protection apparatus provided by the embodiment of the present application will be described below with continued reference to FIG. 2 .
  • the diameters of the pipelines in different pipelines may be the same or different, and the nozzles included in different pipelines may be the same or different. How to configure the technician can choose according to the actual needs.
  • each pipeline included in the pipeline system 202 may be communicated with the container 201 through a main pipeline.
  • FIG. 3 shows a pipeline including a main pipeline according to an exemplary embodiment of the present application.
  • the schematic structural diagram of the agricultural plant protection equipment such as the agricultural plant protection equipment 30 shown in FIG. 3, is different from FIG. 2 in that each pipeline in the pipeline system 202 is communicated with the container 201 through the trunk pipeline 203, and further trunk pipeline 203 It can also include sensors, valve devices and controllers electrically connected to the sensors and valve devices, so that the automatic control of the trunk pipeline can also be realized.
  • the principle of automatic control is the same as the automatic control principle of each pipeline in pipeline 202. Repeat.
  • each pipeline in the pipeline system may be connected to the trunk pipeline 203 in parallel.
  • the setting of the main pipeline 203 can further cooperate with the control of the spray flow of each pipeline in the pipeline system 202.
  • the control The valve device in the main pipeline 203 is used to increase or decrease the liquid flow in the main pipeline 203, and then the controller 2025 in each pipeline performs further precise control, so that the controller 2025 in each pipeline can be effectively reduced. Adjusting the workload of the liquid flow in each pipeline can effectively improve the control efficiency.
  • the controller 2025 may be an IC chip (Integrated Circuit Chip, integrated circuit), and the valve device 2023 may be an electric valve, such as a solenoid valve, or an electric valve driven by a motor.
  • the sensor 2024 can be used to sense the flow rate, flow rate, hydraulic pressure and other state information of the liquid flowing to the nozzle 2021 in the pipeline 2022.
  • the sensor 2024 can be one of the state information of the sensed liquid, or it can sense a variety of liquids at the same time. status information.
  • the senor 2024 can be a flow sensor, so the controller 2025 can control the valve state of the valve device based on the liquid flow detected by the flow sensor; the sensor 2024 can also be a pressure sensor, so the controller 2025 can also be The valve state of the valve device is controlled based on the hydraulic value detected by the pressure sensor; the sensor 2024 may also be a flow rate sensor, whereby the controller 2025 may also control the valve state of the valve device based on the liquid flow rate detected by the flow rate sensor.
  • the controller 2025 may uniformly control the valve state of the valve device based on the acquired liquid flow rate.
  • the liquid flow value can be obtained directly by setting the sensor 2024 as a flow sensor; the sensor 2024 can also be set as a pressure sensor, and the controller 2025 determines the pipeline in combination with the parameters of the nozzle 2021 while obtaining the pressure value of the liquid from the pressure sensor.
  • the parameters of the nozzle 2021 include parameters representing the aperture of the nozzle 2021, and the liquid flow in the pipeline is determined by the aperture of the nozzle 2021 and the pressure value of the liquid detected by the pressure sensor.
  • the The shape of the nozzle can be considered and combined with the parameters characterizing the shape and aperture of the nozzle and the detection value of the pressure sensor to determine the liquid flow rate.
  • the sensor 2024 may be set as a flow rate sensor, and the controller 2025 may determine the liquid flow rate in the pipe 2022 in combination with the pipe diameter of the pipe 2022 while acquiring the flow rate value of the liquid from the flow rate sensor.
  • the valve state of the valve device is controlled by the controller 2025 based on the obtained hydraulic pressure or flow rate
  • the hydraulic pressure or flow rate of the liquid can also be directly obtained directly through the corresponding sensor or indirectly obtained in combination with other parameters. No longer.
  • FIG. 4 is a schematic structural diagram of an agricultural plant protection apparatus including a host computer shown in an exemplary embodiment of the present application, such as the agricultural plant protection apparatus 40 shown in FIG. 2
  • the host computer 204 can exchange data with the controller 2025, for example, can send various parameter information, specifically, can send the parameters of the nozzle 2021 information, the pipe diameter information of the pipe 2022.
  • the host computer 204 can also send information indicating the target liquid flow to the controller 2025, so that the controller 2025 controls the valve state of the valve device to adjust the liquid flow in the pipeline 2022 based on the target liquid flow.
  • the specific controller 2025 acquires the target liquid flow rate, and also acquires the real-time flow rate of the liquid in the current pipeline 2022 detected by the sensor 2024, and determines the current Check whether the liquid flow in the pipeline 2025 meets the target liquid flow, and control the valve state of the valve device if it does not meet the target liquid flow to adjust the liquid flow in the pipeline 2025 to meet the target liquid flow.
  • the opening of the valve can be enlarged to increase the liquid flow; when the liquid flow in the current pipeline 2025 is greater than the target liquid flow, the valve opening can be reduced to reduce the liquid flow.
  • the agricultural plant protection apparatus 20 may further include a liquid pump communicated with the pipeline, the liquid pump provides pressure for the liquid transmission in the pipeline, and the state of the liquid in the pipeline is adjusted by adjusting the working state of the liquid pump. Therefore, when the valve of the valve device 2023 is opened to the maximum, if the liquid flow in the pipeline is still less than the required target liquid flow, the controller 2025 can notify the upper computer 204 to control the liquid pump to increase the pressure so as to increase the pressure. Liquid flow in the pipe.
  • the host computer 204 can be the main control module of the agricultural plant protection equipment, for example, it can be the flight control module mounted on the agricultural plant protection drone. While controlling the agricultural plant protection drone to fly on the working path, it communicates with the in-pipe controller 2025. Carry out the interaction of the spray flow information of the pipeline; the host computer 204 can also be an independent control module newly added in the agricultural plant protection equipment, which can be used to specifically interact with the pipeline spray flow information with the controller 2025 in the pipeline.
  • the target liquid flow rate of different pipelines may be different, so that the spray flow rate of different pipelines can be different to meet the needs of some special occasions during the operation of agricultural plant protection equipment.
  • the agricultural plant protection equipment shown in Figure 1 can be used as an example to illustrate. Since the sprinklers are installed on the wings on both sides, when the agricultural plant protection equipment turns during operation, one side of the sprinklers will be in the corner of the curve.
  • the spraying area of the nozzle on the inner and outer diameters will be larger than the spraying area of the nozzle on the inner diameter, so the nozzle on the outer diameter can correspond to the target of the connected pipeline
  • the liquid flow rate is configured to be greater than the target liquid flow rate of the pipeline corresponding to the connected nozzle at the inner diameter, thereby ensuring the uniform spraying of the agricultural plant protection equipment on the working area during the turning process.
  • the valve opening of the valve device corresponding to the connected nozzle can be controlled to be greater than
  • the nozzles with the inner diameter correspond to the valve openings of the connected valve devices, so that when the liquid flow in the pipeline meets the target liquid flow, the spraying flow of the nozzles with the outer diameter is greater than the spraying flow of the nozzles with the inner diameter.
  • the pipe diameter of the pipe corresponding to the communication of the nozzle at the outer diameter is larger than the pipe diameter of the pipe corresponding to the communication of the nozzle at the inner diameter, so that it is still possible to face the largest valve opening of the valve device. Make sure that the spray flow rate of the sprinkler head at the outer diameter is greater than the spray flow rate of the sprinkler head at the inner diameter.
  • the target liquid flow rate can be set to a fixed value or an interval according to actual needs.
  • the target liquid flow value can also be pre-stored by the controller 2025 in its internal memory.
  • it may also be obtained from a control terminal that communicates with the agricultural plant protection equipment and is used to control the operation of the agricultural plant protection equipment.
  • a possible scenario is that the user controls the operation of the agricultural plant protection equipment through the control terminal.
  • the target liquid flow rate is input in the control terminal, and the control terminal sends it to the controller 2025 in the agricultural plant protection apparatus to realize the control of the liquid flow rate in the pipeline 2022, so as to control the spray flow rate of the corresponding sprinkler.
  • the control terminal may be a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, a remote control, and the like.
  • valve states that the valve device 2023 may include and how the controller 2025 controls the valve state of the valve device 2023 will be described below. It can be understood that different control methods may be adopted according to the valve device 2023 .
  • the controller 2025 can directly output a control signal to the valve device 2023 to control the valve state of the valve device 2023, for example, by outputting a first control signal to control the valve opening of the valve device 2023, and outputting a second control signal to control the valve device 2023 is turned off.
  • the first and second control signals may be high-level signals and low-level signals, respectively.
  • the first and second control signals may be configured as low-level signals and high-level signals respectively. flat signal.
  • the valve state of the valve device 2023 can be controlled by controlling the magnitude of the current output to the valve device 2023 , for example, the size of the valve opening of the valve device 2023 can be controlled by controlling the magnitude of the current output to the valve device 2023 .
  • the valve state of the valve device 2023 can be controlled by controlling the direction of the current output to the valve device 2023. For example, when the current of a specified magnitude is output to the valve device, the valve is controlled to open; when the current is stopped, the valve is controlled to stop. Open and maintain the current opening size; control the valve to close when the reverse current of the specified size is output to the valve device; control the valve to stop closing and maintain the current opening size when the current is stopped.
  • the controller 2025 may also indirectly control the valve state of the valve device 2023, eg, through a drive circuit to control the valve state of the valve device 2023. It can be understood that the principle may be similar to the manner in which the controller 2025 directly controls the valve device 2023 in the previous embodiment.
  • FIG. 5 is an agricultural plant protection apparatus including a driving circuit shown in an exemplary embodiment of the present application, such as the agricultural plant protection apparatus 50 shown in FIG.
  • a drive circuit 205 is also included, wherein the controller 2025 is electrically connected to the valve device 2023 through the drive circuit 205 , and controls the valve state of the valve device 2023 through the drive circuit 205 .
  • the displacement of the valve of the valve device 2023 can be controlled by adjusting the current of the driving circuit 205 .
  • the valve state of the valve device 2023 may include a fully open state, a partially open state, and a closed state. Specifically, when the current of the drive circuit 205 is adjusted to 0, the valve of the control valve device 2023 is completely closed, that is, the valve device is in a closed state; by adjusting the current of the drive circuit 205 to reach a specified threshold, the valve of the valve device 2023 is controlled to be closed.
  • valve state of the valve device 2023 can be controlled by adjusting the current of the driving circuit 205 . It can be understood that adjusting the current of the driving circuit 205 to 0 does not necessarily limit the current to 0. In practical applications, the current may be adjusted to a value close to 0 within a certain range, or a smaller specified value.
  • valve device 2023 it is also possible to control the valve device 2023 to be in a fully open state by adjusting the current of the drive circuit 205 to 0.
  • the corresponding relationship between the current of the drive circuit 205 and the valve state of the valve device 2023 It can be set by technical personnel according to actual needs, which is not limited. Therefore, the controller 2025 can control the valve state of the valve device 2025 by comparing the target liquid flow rate with the liquid flow rate in the pipeline detected by the sensor 2024, and by adjusting the current of the driving circuit 205.
  • the current of the driving circuit 205 can be increased to increase the opening degree of the valve device 2023 in the partially open state, and even reach the fully open state;
  • the current of the drive circuit 205 is reduced to reduce the degree of opening of the valve device 2023 in the partially open state.
  • the valve state of the valve device 2023 can also be controlled by controlling the current direction output by the driving circuit, which will not be repeated here.
  • the valve device 2023 may also be in an intermittent switching state, that is, it is continuously opened and closed, or intermittently opened and closed, which can be understood as within a control cycle of the controller 2025
  • the control valve device 2023 performs one opening and closing. Specifically, in one control cycle of the controller 2025, the valve device 2023 can be controlled to open by adjusting the output of the drive circuit 205 to a high level, and the valve device can be controlled to close by adjusting the output of the drive circuit 205 to a low level.
  • a control cycle of the controller 2025 is taken as an example to illustrate how to control the opening and closing of the valve device 2023 in the intermittent switching state.
  • the opening duration and closing duration of the valve of the valve device 2023 can be controlled by adjusting the duty cycle of the output level of the driving circuit 205, thereby controlling one valve of the valve device 2023.
  • the turn-on duration in the control period for example, in the case that the liquid flow rate in the current pipeline is less than the target liquid flow rate, the duty cycle of the output level of the drive circuit 205 can be increased (that is, the duration of the high level in the control period is increased) , so as to increase the liquid flow of the current pipeline; on the contrary, the duty cycle of the output level of the drive circuit 205 can be reduced (that is, to reduce the duration of the high level in the control cycle), thereby reducing the liquid flow of the current pipeline. .
  • the valve opening time of the valve device 2023 in one control cycle can also be fixed, and the switching frequency of the valve of the valve device 2023 in the intermittent switching state can be controlled by adjusting the control cycle of the controller 2025 .
  • the switching frequency of the valve can be increased by shortening the control cycle, thereby increasing the liquid flow in the current pipeline; otherwise, the control cycle can be increased to reduce the valve the switching frequency, thereby reducing the liquid flow of the current pipeline.
  • valve device 2023 can also be controlled in combination with the two methods shown above, that is, the valve device 2023 can be controlled based on the duty cycle and the control period at the same time.
  • the duty cycle may be increased and the control period may be decreased simultaneously to simultaneously Increase the opening time of the valve of the valve device 2023 in one control cycle and the switching frequency of the valve, thereby increasing the liquid flow in the current pipeline; conversely, it is also possible to reduce the duty cycle and increase the control cycle at the same time to reduce at the same time.
  • the opening time of the valve of the small valve device 2023 in one control cycle and the switching frequency of the valve thereby reducing the liquid flow of the current pipeline.
  • the liquid flow rate of the pipeline can be adjusted more accurately by controlling the action of the valve device 2023 in the intermittent switching state, because the valve The degree of opening may be difficult to accurately control, and because the pipelines are mostly circular tubes, the relationship between the degree of valve opening and the liquid flow in the pipeline is also difficult to accurately correspond.
  • the valve device 2023 intermittent switching the valve can be effectively avoided.
  • the degree of opening is difficult to grasp the influence on the liquid flow in the control pipeline, so that the liquid flow in the pipeline can be adjusted more accurately.
  • FIG. 6 is a schematic structural diagram of a driving circuit shown in an exemplary embodiment of the present application.
  • the driving circuit 205 shown in FIG. 6 includes A controllable constant current source 2051 and a switch device 2052, wherein the switch device 2051 may include three ports, the first end of which is electrically connected to the controllable constant current source 2051, the second end is electrically connected to the controller 2025, and the third end is electrically connected to the valve Device 2023 is connected. Therefore, the controller 2025 can control the working state of the switching device 2052 by adjusting the controllable constant current source 2051 to control the valve state of the valve device 2023 .
  • the switching device 2051 can be a MOS tube (Metal-Oxide-Semiconductor, metal oxide semiconductor), a triode, etc.
  • MOS tube Metal-Oxide-Semiconductor, metal oxide semiconductor
  • the MOS tube can be an NMOS tube (Negative channel Metal-Oxide-Semiconductor, N-channel metal oxide semiconductor), PMOS tube (Positive channel Metal-Oxide-Semiconductor, N-channel metal oxide semiconductor).
  • the switch device 2052 can also be used to ensure that the valve device 2023 is in a closed state in the event of a power failure, so as to avoid the phenomenon of pipeline leakage when the agricultural plant protection equipment is not in operation or when the operation is completed.
  • the valve of the valve device 2023 may be configured to remain closed when the switch device 2052 is turned off, and only open when the switch device 2052 is turned on. Therefore, when the switch device 2052 is turned off, that is, the valve device 2023 is powered off, it can ensure that the valve device 2023 is in a closed state, and only when the switch device 2052 is turned on, the valve device 2023 is in an open state, avoiding The phenomenon of pipeline leakage.
  • FIG. 7 is a schematic structural diagram of a driving circuit in which the switching device is a PMOS tube according to an exemplary embodiment of the present application.
  • the driving circuit 205 shown in FIG. 7 can be The G pole (gate) of the PMOS tube is electrically connected to the controller 2025, the S pole (source) is connected to the controllable constant current source 2051, and the D pole (drain) is connected to the valve device 2023, so that the controller 2025 adjusts the The level of the controllable constant current source is used to control the level of the S pole.
  • the S pole level is adjusted to a low level
  • the PMOS tube is in the off state, and the drive is at this time.
  • the output of the circuit is a low level
  • the S pole level is adjusted to a high level
  • the S pole level is higher than the G pole level
  • the PMOS tube is in a conducting state
  • the drive circuit output is a high level at this time.
  • the magnitude change of the output current of the driving circuit 205 can be controlled by adjusting the level change of the S pole, so that the valve state of the valve device 2023 can be controlled in combination with the methods provided in the previous embodiments.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种农业植保器械(20,30,40,50),包括用于盛装液体的容器(201)、与容器(201)连通的一个或多个管路,每个管路包括喷头(2021)、用于连通喷头(2021)与容器(201)的管道(2022),管道(2022)上安装有阀门装置(2023),用于调节管道(2022)内的液体流量;每个管路还包括用于检测管道(2022)内流向喷头(2021)的液体的状态信息的传感器(2024),以及与阀门装置(2023)、以及传感器(2024)电连接的控制器(2025),控制器(2025)用于根据传感器(2024)感测的液体的状态信息,自动控制所连接的阀门装置(2023)的阀门状态,以控制喷头(2021)的喷洒流量。实现了农业植保器械(20,30,40,50)中各管路的自控以及提高喷洒的精度。

Description

一种农业植保器械 技术领域
本申请涉及植保技术领域,尤其涉及一种农业植保器械。
背景技术
目前农业植保已可以通过农业植保器械完成自动喷洒,其中农业植保器械中包括水泵、管路以及喷头,由水泵提供压力源使管路中的液体在压力的作用下从喷头喷洒而出。但由于水泵无法实现对水流的快速开关和精准控制,所以实际作业中,需要在农业植保器械的管路中增加一定数量的阀门装置来控制喷洒。
对于管路中的阀门装置的控制,传统的方法都是由统一的控制器对整个农业植保器械中管路状态、水泵转速等信息的预调试,通过软件对阀门装置控制的逻辑和时序调整,来保证整个农业植保器械的精准喷洒效果。但随着阀门装置数量的不断增加,伴随而来的是需要更加复杂的控制电路和相应的控制逻辑。
发明内容
本申请实施例提供一种农业植保器械,包括用于盛装液体的容器、与所述容器连通的一个或多个管路,每个管路包括:
喷头;
用于连通所述喷头与所述容器的管道;所述管道上安装有阀门装置,用于调节所述管道内的液体流量;
用于检测所述管道流向所述喷头的液体的状态信息的传感器;以及
与所述阀门装置、以及所述传感器电连接的控制器,所述控制器用于根据所述传感器感测的所述液体的状态信息,自动控制所连接的阀门装置的阀门状态,以控制所述喷头的喷洒流量。
本申请实施例所提供的农业植保器械,通过在每个管路单独设置传感器,使得每个管路的控制器根据传感器感测的管路中液体的状态信息,自动控制所连接的阀门装置的阀门状态,实现每个管路独立自主控制;同时,由于每个管路可以独立控制喷头流量,还可以根据喷洒需求快速增减管路的数量,或者单独调节个别管路的喷洒流量,从而提高喷洒的精准程度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一示例性实施例示出的一种农业植保无人机。
图2是本申请一示例性实施例示出的一种农业植保器械的结构示意图。
图3是本申请一示例性实施例示出的一种包括干路管道的农业植保器械的结构示意图。
图4是本申请一示例性实施例示出的一种包括上位机的农业植保器械的结构示意图。
图5是本申请一示例性实施例示出的一种包括驱动电路的农业植保器械的结构示意图。
图6是本申请一示例性实施例示出的一种驱动电路的结构示意图。
图7是本申请一示例性实施例示出的一种开关装置为PMOS管的驱动电路的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例首先提供一种农业植保器械,作为改进,可以实现其中所设的不同管路独立自主控制,尤其对于不同位置的阀门装置,均可以完成自控,且由于不同管路之间为独立自主控制,因此能够大大降低控制器控制逻辑的复杂度。
在一些可选的例子中,本申请实施例中农业植保器械可以是可移动平台,例如可以是无人飞行器、无人车、机器人等,通过执行平移、转动、翻转等动作运动到不同的位置并喷洒所携带的待喷洒液体,其中无人飞行器可以是农业植保无人机,无人车可以是农业喷洒车。农业植保器械除了可以是前面所述的不载人设备,还可以是载人设备,例如载人的喷洒车。或者农业植保器械还可以是人力喷洒装置,例如可以由作业者手持或背负该农业植保器械进行作业。以上所举仅为示例并非限定,对于农业植保器械其他可能的具体形式不在此作穷举。
以农业植保器械为农业植保无人机为例,参照图1,图1是本申请一示例性实施例示出的一种农业植保无人机,其中农业植保无人机10至少包括盛装待喷洒液体的容器101、液泵102、喷头103。另外还包括将容器 101、液泵102、喷头103等连通的管路(图中未示出)。在喷洒作业的过程中,液泵102通过管路从容器101内抽取液体并向喷头103输送液体,通过喷头103将液体喷洒出去,其中容器101可以是水箱、药箱等,液体可以是水,药物等。
在一些实施方式中,农业植保无人机10可以用于在农耕产业中对农产品、林木等进行农药、水等液体喷洒作业活动。示例性的,在作业过程中可以执行移动、转动、翻转等动作,从而运动至预设区域内不同的位置、以不同的角度进行喷洒作业。
下面继续介绍本申请提供的农业植保器械更具体的结构,参照图2,图2是本申请一示例性实施例示出的一种农业植保器械的结构示意图,如图2所示,农业植保器械20包括:
用于盛装液体的容器201、与所述容器201连通的管路系统202,其中管路系统202可以包括一个或多个管路,每个管路包括:
喷头2021;
用于连通所述喷头2021与所述容器201的管道2022;所述管道2022上安装有阀门装置2023,用于调节所述管道2022内的液体流量;
用于检测所述管道2022内流向所述喷头2021的液体的状态信息的传感器2024;以及
与所述阀门装置2023、以及所述传感器2024电连接的控制器2025,所述控制器2025用于根据所述传感器2024感测的所述液体的状态信息,自动控制所连接的阀门装置2023的阀门状态,以控制所述喷头2021的喷洒流量。
本申请实施例所提供的农业植保器械20,对于其中可能包括的多个管路,分别在每个管路单独设置有传感器2024,使得每个管路的控制器2025可以根据所述传感器2024感测的所述液体的状态信息,自动控制所 连接的阀门装置2023的阀门状态,实现每个管路独立自主控制;同时,由于每个管路可以独立控制喷头流量,还可以根据喷洒需求快速增减管路的数量,或者单独调节个别管路的喷洒流量,从而提高喷洒的精准程度。总的来说,其优越性至少体现在以下的三个方面:
第一,对农业植保器械喷洒作业的控制逻辑的简化。由于每个管路都可以根据传感器感测到自身管路的液体状态信息来自动控制阀门装置,因此对于每个管路而言,仅需要单独根据当前的管路信息来设计相对简单的控制逻辑,而并不需要在考虑如何同时控制多个管路的相对复杂的控制逻辑。
第二,方便对农业植保器械后续的二次开发和升级。在管路的分布发生变化时,由于每个管路都是对自身管路的自控,因此无论管路的分布如何变化,依旧可以沿用原本的控制逻辑,从而可以实现单独对农业植保器械进行硬件上的更新升级,而无需重新调整控制逻辑。并且还可以根据实际管路的分布,例如增加或减少某些位置的管路。
第三,精确控制农业植保器械中各管路的喷洒流量。由于实际生产等因素,对于批量生产以后的农业植保器械,水泵、管路等可能存在一定差异,对于一些要求各管路的喷洒流量一致的场合,可以通过在各管路中所设的传感器准确地监管管路内的液体状态信息,并由此精确地调节各管路的喷洒流量一致。当然也可以是适用于对各管路的喷洒流量要求不一的情况,尤其是对于一些需要频繁调节管路喷洒流量的变频控制场景,更加彰显精确控制管路喷洒流量的控制效果。
下面继续参照图2来介绍本申请实施例提供的农业植保器械。其中与容器201连通的管路有多个的情况下,不同的管路中的管道的管径可以相同也可以不同,不同管路所包括的喷头可以一致也可以不同,具体管道与喷头之间如何配置技术人员可以根据实际需求选择。
在一个实施例中,管路系统202中所包括的各管路可以通过一个干路管道与容器201连通,参照图3,图3是本申请一示例性实施例示出的一种包括干路管道的农业植保器械的结构示意图,如图3所示的农业植保器械30,其与图2的区别在于管路系统202中各管路通过干路管道203与容器201连通,进一步的干路管道203中也同样可以包括传感器、阀门装置以及与传感器和阀门装置电连接的控制器,由此也可以实现干路管道的自控,其自控的原理与管路202中各管路自控原理一致,不做赘述。可选的,管路系统中各管路可以是并联与干路管道203连通。干路管道203的设置,可以进一步地配合控制管路系统202中各管路的喷洒流量,例如在需要大幅度地增大或减小各管路的喷洒流量的情况下,可以直接先通过控制干路管道203中阀门装置来调大或调小干路管道203内的液体流量,再由各管路中的控制器2025做进一步的精确控制,由此可以有效地减小各管路控制器调整各自管路液体流量的工作量,能够有效提高控制的效率。
其中,控制器2025可以是IC芯片(Integrated Circuit Chip,集成电路),阀门装置2023可以是电动阀,例如,电磁阀,或者采用电机驱动的电动阀。传感器2024可以是用来感测管道2022内流向喷头2021的液体的流量、流速、液压等状态信息,传感器2024可以是感测液体的其中一种状态信息,也可以是同时感测液体的多种状态信息。相应的,传感器2024可以是流量传感器,由此控制器2025可以是基于该流量传感器所检测的液体流量来控制阀门装置的阀门状态;传感器2024也可以是压力传感器,由此控制器2025也可以是基于压力传感器所检测的液压值来控制阀门装置的阀门状态;传感器2024还可以是流速传感器,由此控制器2025还可以是基于流速传感器所检测的液体流速来控制阀门装置的阀门状态。
在一个实施例中,可以是由控制器2025统一基于所获取的液体流量来控制阀门装置的阀门状态。可以通过将传感器2024设为流量传感器来直接获取液体流量值;也可以将传感器2024设为压力传感器,由控制器2025 在从压力传感器获取液体的压力值的同时,结合喷头2021的参数来确定管道2022内的液体流量。其中喷头2021的参数包括表征喷头2021的孔径的参数,由喷头2021的孔径以及压力传感器检测到的液体的压力值来确定管道内液体流量,进一步的,为使所确定的液体流量更加准确,还可以考虑喷头的形状,并结合表征喷头的形状和孔径的参数以及压力传感器检测值来确定液体流量。或者还可以是将传感器2024设为流速传感器,则控制器2025在从流速传感器获取液体的流速值的同时,还可以结合管道2022的管径来确定管道2022内的液体流量。类似的,在由控制器2025统一基于所获取的液体液压或者流速来控制阀门装置的阀门状态的情况下,也可以直接通过相应的传感器直接获取或结合其他参数间接获取液体液压或流速,对此不再赘述。
另外,对于从传感器2024获取的检测值以外其他的参数,可以由控制器2025预存于其内部存储器,也可以是由控制器2025从外部获取。以图4为例说明,参照图4,图4是本申请一示例性实施例示出的一种包括上位机的农业植保器械的结构示意图,如图4所示的农业植保器械40,其与图2区别在于,还包括与各管路中控制器2025连接的上位机204,其中上位机204可以与控制器2025进行数据交互,例如可以发送各种参数信息,具体的,可以发送喷头2021的参数信息、管道2022的管径信息。
此外,上位机204还可以向控制器2025发送指示目标液体流量的信息,以使控制器2025基于该目标液体流量控制阀门装置的阀门状态来调节管道2022内的液体流量。具体的控制器2025在获取该目标液体流量的同时,还获取传感器2024所检测的当前管道2022内液体的实时流量,通过当前管道2025内液体的实时流量与该目标液体流量的比对,确定当前管道2025内液体流量是否符合目标液体流量,并在不符合的情况下控制阀门装置的阀门状态将管道2025内的液体流浪调节至符合目标液体流量。例如在当前管道2025内液体流量小于目标液体流量时,可以加大阀门的开口以便 增大液体流量;在当前管道2025内液体流量大于目标液体流量时可以减小阀门的开口以便减小液体流量。
在一个实施例中,农业植保器械20还可以包括与管道连通的液泵,由液泵为管道的液体传输提供压力,通过调节液泵的工作状态来调节管路内液体的状态。由此,当阀门装置2023的阀门开启到最大的情况下,若管道内的液体流量依旧小于所要求的目标液体流量时,控制器2025可以通知上位机204控制所述液泵提高压力,以便提高管道内液体流量。其中上位机204可以是农业植保器械的主控模块,例如可以是农业植保无人机上搭载的飞控模块,在控制农业植保无人机在作业路径上飞行的同时,与管路中控制器2025进行管路的喷洒流量信息的交互;上位机204还可以是农业植保器械中新增的独立的控制模块,可以用来专门与管路中控制器2025进行管路的喷洒流量信息的交互。
另外,由于作业的需求,不同的管路的目标液体流量可能不同,由此可以使得不同的管路的喷洒流量不同,以满足农业植保器械作业过程中一些特殊场合下的需求。例如,可以以图1所示的农业植保器械为例说明,由于喷头分别安装于其两侧的机翼上,当农业植保器械在作业过程中发生转向时,将有一侧的喷头处于弯道的内径,而另一侧的喷头处于弯道的外径,此时相同时间内外径上喷头的喷洒区域将大于内径上喷头的喷洒区域,因此可以将处于外径的喷头对应连通的管路的目标液体流量配置为大于处于内径的喷头对应连通的管路的目标液体流量,由此可以确保农业植保器械在转向的过程中对作业区域的均匀喷洒。
在处于外径的喷头对应连通的管路的目标液体流量大于处于内径的喷头对应连通的管路的目标液体流量的基础上,可以控制处于外径的喷头对应连通的阀门装置的阀门开口大于处于内径的喷头对应连通的阀门装置的阀门开口,使得管路内液体流量在符合目标液体流量的情况下,处于外径的喷头的喷洒流量大于处于内径的喷头的喷洒流量。进一步的,还可以 将处于外径的喷头对应连通的管道的管径设置为大于处于内径的喷头对应连通的管道的管径,由此在可能面临阀门装置的阀门开口最大的情况下,依旧可以确保处于外径的喷头的喷洒流量大于处于内径的喷头的喷洒流量。
可以理解,目标液体流量根据实际需求可以设为一个固定的值,也可以是一个区间。另外,目标液体流量值也可以由控制器2025预存于其内部存储器。在一些可行的例子中,还可能是从与农业植保器械通信连接用来控制农业植保器械作业的控制终端获取,例如一个可能的场景为,用户通过控制终端控制农业植保器械作业的过程中,通过在控制终端输入目标液体流量,并由控制终端发送到农业植保器械中的控制器2025来实现管道2022中液体流量的控制,以控制相应的喷头的喷洒流量。其中控制终端可以是手机、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备、遥控器等。
下面将介绍阀门装置2023可能包括的阀门状态以及控制器2025具体如何控制阀门装置2023的阀门状态,可以理解,根据阀门装置2023的不同,可以采用不同的控制方式。
在一个实施例中,控制器2025可以直接向阀门装置2023输出控制信号来控制阀门装置2023的阀门状态,例如通过输出第一控制信号控制阀门装置2023的阀门开启,输出第二控制信号控制阀门装置2023关闭,示例性的,第一、第二控制信号可以分别为高电平信号、低电平信号,当然也可以反过来分别将第一、第二控制信号配置为低电平信号、高电平信号。除此以外还可以通过控制向阀门装置2023输出的电流大小来控制阀门装置2023的阀门状态,例如可以通过控制向阀门装置2023输出的电流大小来控制阀门装置2023的阀门开口大小。或者还可以通过控制向阀门装置2023输出的电流方向控制阀门装置2023的阀门状态,例如在控制向阀门装置输出正向的指定大小的电流时,控制阀门开启;在停止输出该电流时 控制阀门停止开启并维持当前开口大小;在控制向阀门装置输出反向的指定大小的电流时,控制阀门关闭;在停止输出该电流时控制阀门停止关闭并维持当前开口大小。
控制器2025还可以间接地控制阀门装置2023的阀门状态,例如通过驱动电路来控制阀门装置2023的阀门状态。可以理解,其原理可以是与前面实施例中控制器2025直接控制阀门装置2023的方式类似。下面以图5为例进行详细说明,参见图5,图5是本申请一示例性实施例示出的一种包括驱动电路的农业植保器械,如图5所示的农业植保器械50,其与图2的区别在于还包括驱动电路205,其中控制器2025通过驱动电路205与阀门装置2023电连接,并通过驱动电路205控制阀门装置2023的阀门状态。
在一个实施例中,可以通过调整驱动电路205的电流大小来控制阀门装置2023的阀门的位移,此时阀门装置2023可能出现的阀门状态包括完全开启状态、部分开启状态、关闭状态。具体的,可以通过调整驱动电路205的电流为0时,控制阀门装置2023的阀门完全关闭,也即是阀门装置处于关闭状态;通过调整驱动电路205的电流达到指定阈值时,控制阀门装置2023的阀门完全开启,也即是阀门装置2023处于完全开启状态;通过调整驱动电路205的电流在0到指定阈值之间变化来控制阀门装置2023的开启程度,也即是控制阀门装置2023在部分开启状态下的开启程度。由此实现通过调整驱动电路205的电流大小控制阀门装置2023的阀门状态。可以理解,调整驱动电路205的电流为0并非限定必须将电流调整为0,在实际应用的时候可以是将电流调整为在一定范围内接近于0的值,或者是较小的一个指定值。并且,在可行的情况下,也可能反过来通过调整驱动电路205的电流为0来控制阀门装置2023为完全开启状态,具体驱动电路205的电流大小与阀门装置2023的阀门状态之间的对应关系可以由技术人员根据实际需求设定,对此并不限定。由此控制器2025可以通过比对目标液体流量以及由传感器2024检测的管路中的液体流量,并通过调整 驱动电路205的电流大小控制阀门装置2025的阀门状态。例如在当前管路中液体流量小于目标液体流量的情况下,调大驱动电路205的电流来增大阀门装置2023在部分开启状态下的开启程度,乃至于到达完全开启状态;反之,则可以调小驱动电路205的电流来减小阀门装置2023在部分开启状态下的开启程度。与前面实施例中控制器2025直接控制阀门装置2023的方式类似的,还可以通过控制驱动电路输出的电流方向控制阀门装置2023的阀门状态,在此不再赘述。
在另一个实施例中,阀门装置2023还可以是处于间歇性开关状态,也即是进行连续性的开启和关闭,或者间隔性地开启和关闭,可以理解为在控制器2025的一个控制周期内控制阀门装置2023执行一次开启和关闭。具体的,在控制器2025的一个控制周期内,可以通过调节驱动电路205输出高电平来控制阀门装置2023开启,通过调节驱动电路205输出低电平来控制阀门装置闭合。在此基础上,以控制器2025的一个控制周期为例说明如何控制阀门装置2023在间歇性开关状态下的开启和关闭。
在一种示例性的方式中,在一个控制周期内,可以通过调节驱动电路205输出电平的占空比控制阀门装置2023的阀门的开启时长和闭合时长,由此来控制阀门装置2023阀门一个控制周期内的开启时长,例如在当前管路中液体流量小于目标液体流量的情况下,可以增大驱动电路205输出电平的占空比(即增大控制周期内高电平的持续时间),从而增大当前管路的液体流量;反之,则可以减小驱动电路205输出电平的占空比(即减少控制周期内高电平的持续时间),从而减小当前管路的液体流量。
在另一种示例性的方式中,还可以通过固定一个控制周期内阀门装置2023阀门开启时长,通过调节控制器2025的控制周期来控制阀门装置2023的阀门在间歇性开关状态下的开关频率。例如在当前管路中液体流量小于目标液体流量的情况下,通过缩短控制周期来加大阀门的开关频率,从而增大当前管路的液体流量;反之,则可以增大控制周期来减小阀门的 开关频率,从而减小当前管路的液体流量。
当然,还可以同时结合以上所示的两种方式来控制阀门装置2023,也即同时基于占空比和控制周期来控制阀门装置2023,例如可能同时提高占空比以及减小控制周期,来同时增大阀门装置2023的阀门在一个控制周期内的开启时长以及阀门的开关频率,由此增大当前管路的液体流量;反之也可能同时减小占空比以及增大控制周期,来同时减小阀门装置2023的阀门在一个控制周期内的开启时长以及阀门的开关频率,由此减小当前管路的液体流量。
值得注意的是,相比通过控制阀门装置2023的阀门开口程度来调节管路的液体流量,通过控制阀门装置2023在间歇性开关状态下的动作可以更精确地调节管路的液体流量,因为阀门开口程度可能难以准确控制,且由于管路多为圆形管状,阀门开口程度与管路中液体流量之间的关系也难以准确对应,而通过控制阀门装置2023间歇性开关则可以有效地避免阀门开口程度难以把握对控制管道内液体流量的影响,从而可以更精确地调节管路的液体流量。
下面对图5中的驱动电路205进行介绍,以图6为例,图6是本申请一示例性实施例示出的一种驱动电路的结构示意图,如图6所示的驱动电路205,包括可控恒流源2051和开关装置2052,其中开关装置2051可以包括三个端口,其第一端与可控恒流源2051电连接,第二端与控制器2025电连接,第三端与阀门装置2023连接。由此控制器2025可以通过调整可控恒流源2051控制开关装置2052的工作状态,以控制阀门装置2023的阀门状态。其中开关装置2051可以是MOS管(Metal-Oxide-Semiconductor,金属氧化物半导体)、三极管等,MOS管可以是NMOS管(Negative channel Metal-Oxide-Semiconductor,N沟道金属氧化物半导体)、PMOS管(Positive channel Metal-Oxide-Semiconductor,N沟道金属氧化物半导体)。
在一个实施例中,还可以通过开关装置2052来确保阀门装置2023在断电的情况下处于关闭状态,以避免在农业植保器械未进行作业或作业完成的情况下出现管路漏液的现象。具体的,可以配置阀门装置2023的阀门在开关装置2052断开时保持关闭状态,在开关装置2052导通时才开启。由此,当开关装置2052断开时,也即阀门装置2023处于断电的情况,可以确保阀门装置2023处于关闭状态,而只有在开关装置2052导通时,阀门装置2023才处于开启状态,避免了管路漏液的现象。
以开关装置为PMOS管为例,参照图7,图7是本申请一示例性实施例示出的一种开关装置为PMOS管的驱动电路的结构示意图,如图7所示的驱动电路205,可以将PMOS管的G极(栅极)与控制器2025电连接,S极(源极)与可控恒流源2051,D极(漏极)与阀门装置2023连接,由此控制器2025通过调节可控恒流源的电平来控制S极的电平,具体的,在调节S极电平为低电平时由于S极电平低于G极电平,PMOS管处于截止状态,此时驱动电路输出为低电平;在调节S极电平为高电平时由于S极电平高于G极电平,PMOS管处于导通状态,此时驱动电路输出为高电平。同时还可以通过调节S极电平高低变化来控制驱动电路205输出电流的大小变化,由此结合前面实施例所提供的方式可以实现控制阀门装置2023的阀门状态。
可以理解,在不冲突的情况下,前面所述的各实施例及实施例中的特征可以相互组合。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或 者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供农业植保器械进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (26)

  1. 一种农业植保器械,其特征在于,包括用于盛装液体的容器、与所述容器连通的一个或多个管路,每个管路包括:
    喷头;
    用于连通所述喷头与所述容器的管道;所述管道上安装有阀门装置,用于调节所述管道内的液体流量;
    用于检测所述管道流向所述喷头的液体的状态信息的传感器;以及
    与所述阀门装置、以及所述传感器电连接的控制器,所述控制器用于根据所述传感器感测的所述液体的状态信息,自动控制所连接的阀门装置的阀门状态,以控制所述喷头的喷洒流量。
  2. 根据权利要求1所述的农业植保器械,其特征在于,还包括干路管道,多个所述管路并联连通于所述干路管道,并通过所述干路管道与所述容器连通。
  3. 根据权利要求1所述的农业植保器械,其特征在于,所述传感器感测所述液体的状态信息包括如下至少一种:流量,流速,或液压。
  4. 根据权利要求1所述的农业植保器械,其特征在于,所述传感器为流量传感器,所述控制器基于所述流量传感器的检测值,控制所述阀门装置的阀门状态。
  5. 根据权利要求1所述的农业植保器械,其特征在于,所述传感器为压力传感器;
    所述控制器基于所述压力传感器的检测值、所述喷头的参数确定所述管道内的液体流量。
  6. 根据权利要求1所述的农业植保器械,其特征在于,所述传感器为流速传感器;
    所述控制器基于所述流速传感器的检测值以及所述管道的管径确定所述管道内的液体流量。
  7. 根据权利要求5所述的农业植保器械,其特征在于,所述喷头的参 数包括表征喷头的孔径和/或形状的参数。
  8. 根据权利要求5所述的农业植保器械,其特征在于,还包括上位机,所述控制器与所述上位机电连接,所述上位机用于向所述控制器发送所述喷头的参数信息。
  9. 根据权利要求8所述的农业植保器械,其特征在于,所述上位机还用于向所述控制器发送目标液体流量,以使所述控制器控制所述阀门装置的阀门状态,将所述管道内的液体流量调节至所述目标液体流量。
  10. 根据权利要求9所述的农业植保器械,其特征在于,不同所述管路的目标液体流量不同。
  11. 根据权利要求10所述的农业植保器械,其特征在于,所述农业植保器械在作业过程中发生转向时,处于外径的所述喷头对应连通的所述管路的目标液体流量大于处于内径的所述喷头对应连通的所述管路的目标液体流量。
  12. 根据权利要求11所述的农业植保器械,其特征在于,处于外径的喷头对应连通的所述管道的管径大于处于内径的喷头对应连通的所述管道的管径;或者,
    处于外径的喷头对应连通的所述阀门装置的阀门开口大于处于内径的喷头对应连通的所述阀门装置的阀门开口。
  13. 根据权利要求1所述的农业植保器械,其特征在于,所述阀门装置为电磁阀。
  14. 根据权利要求13所述的农业植保器械,其特征在于,所述管路还包括驱动电路,所述控制器通过所述驱动电路与所述阀门装置电连接,并通过所述驱动电路控制所述阀门装置的阀门状态。
  15. 根据权利要求14所述的农业植保器械,其特征在于,所述驱动电路包括可控恒流源和开关装置;
    所述开关装置的第一端与所述可控恒流源电连接,第二端与所述控制器电连接,第三端与阀门装置连接;
    所述控制器通过调整所述可控恒流源控制所述开关装置的工作状态,以控制所述阀门装置的阀门状态。
  16. 根据权利要求15所述的农业植保器械,其特征在于,所述阀门装置的阀门在所述开关装置导通时处于开启状态,在所述开关装置断开时处于关闭状态。
  17. 根据权利要求15所述的农业植保器械,其特征在于,所述开关装置为MOS管或三极管。
  18. 根据权利要求14所述的农业植保器械,其特征在于,所述阀门状态包括至少一种:
    完全开启状态、部分开启状态、关闭状态。
  19. 根据权利要求18所述的农业植保器械,其特征在于,所述控制器控制所述阀门装置的阀门状态的方式包括:
    通过调整所述驱动电路的电流大小控制所述阀门装置的阀门的位移。
  20. 根据权利要求14所述的农业植保器械,其特征在于,所述阀门状态包括间歇性开关状态。
  21. 根据权利要求20所述的农业植保器械,其特征在于,所述控制器控制所述阀门装置的阀门状态的方式包括:
    在间歇性开关状态下,通过调节所述驱动电路输出电平的占空比控制所述阀门装置的阀门在所述控制器的一个控制周期内的开启时长和闭合时长。
  22. 根据权利要求20所述的农业植保器械,其特征在于,所述控制器控制所述阀门装置的阀门状态的方式还包括:
    通过调节所述控制器的控制周期控制所述阀门装置的阀门在间歇性开关状态下的开关频率。
  23. 根据权利要求9所述的农业植保器械,其特征在于,所述农业植保器械还包括与管道连通的液泵;
    所述控制器还用于:
    在所述阀门装置的阀门开启到最大、且所述管道内的液体流量小于所述目标液体流量时,通知所述上位机控制所述液泵提高压力。
  24. 根据权利要求1所述的农业植保器械,其特征在于,所述控制器为IC芯片。
  25. 根据权利要求1所述的农业植保器械,其特征在于,所述阀门装置为电动阀。
  26. 根据权利要求1所述的农业植保器械,其特征在于,所述农业植保器械为农业植保无人机。
PCT/CN2020/127461 2020-11-09 2020-11-09 一种农业植保器械 WO2022095016A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/127461 WO2022095016A1 (zh) 2020-11-09 2020-11-09 一种农业植保器械
CN202080078308.1A CN114745952B (zh) 2020-11-09 2020-11-09 一种农业植保器械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127461 WO2022095016A1 (zh) 2020-11-09 2020-11-09 一种农业植保器械

Publications (1)

Publication Number Publication Date
WO2022095016A1 true WO2022095016A1 (zh) 2022-05-12

Family

ID=81456911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127461 WO2022095016A1 (zh) 2020-11-09 2020-11-09 一种农业植保器械

Country Status (2)

Country Link
CN (1) CN114745952B (zh)
WO (1) WO2022095016A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203369286U (zh) * 2013-06-06 2014-01-01 山东众和农业装备技术有限公司 一种用于植保机械的定量喷洒控制系统
DE102017208912A1 (de) * 2017-05-26 2018-11-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ausbringung eines Pflanzenschutzmittels aus der Luft
CN109758851A (zh) * 2019-01-28 2019-05-17 滨州学院 一种用于施工车间产尘区域的移动式微雾降尘装置及方法
CN110999891A (zh) * 2019-12-23 2020-04-14 山东思代尔农业装备有限公司 一种适用于大型喷杆式喷药机的变量喷药控制系统
CN111315494A (zh) * 2019-03-29 2020-06-19 深圳市大疆创新科技有限公司 无人飞行器、喷洒作业方法、套件及可读存储介质
CN111683756A (zh) * 2019-04-29 2020-09-18 深圳市大疆创新科技有限公司 喷头装置、喷洒系统、可移动平台及其喷洒作业方法
CN211721619U (zh) * 2019-12-31 2020-10-23 河北农业大学 一种三支路自动变量喷药及监控系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850884B1 (fr) * 2003-02-10 2007-03-16 Blanchard Sas Dispositif de pulverisation a circulation continue
CN102669079A (zh) * 2012-04-09 2012-09-19 浙江大学 对靶变量喷雾实验机
CN104554725B (zh) * 2014-11-18 2017-05-03 浙江大学 一种变量喷洒农药的无人机以及方法
CN110178824A (zh) * 2019-07-05 2019-08-30 秦邵恩 一种变量喷雾系统及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203369286U (zh) * 2013-06-06 2014-01-01 山东众和农业装备技术有限公司 一种用于植保机械的定量喷洒控制系统
DE102017208912A1 (de) * 2017-05-26 2018-11-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ausbringung eines Pflanzenschutzmittels aus der Luft
CN109758851A (zh) * 2019-01-28 2019-05-17 滨州学院 一种用于施工车间产尘区域的移动式微雾降尘装置及方法
CN111315494A (zh) * 2019-03-29 2020-06-19 深圳市大疆创新科技有限公司 无人飞行器、喷洒作业方法、套件及可读存储介质
CN111683756A (zh) * 2019-04-29 2020-09-18 深圳市大疆创新科技有限公司 喷头装置、喷洒系统、可移动平台及其喷洒作业方法
CN110999891A (zh) * 2019-12-23 2020-04-14 山东思代尔农业装备有限公司 一种适用于大型喷杆式喷药机的变量喷药控制系统
CN211721619U (zh) * 2019-12-31 2020-10-23 河北农业大学 一种三支路自动变量喷药及监控系统

Also Published As

Publication number Publication date
CN114745952B (zh) 2024-07-30
CN114745952A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
US9459630B2 (en) System and method for controlling a remote valve
US9829872B2 (en) Method for parametering a field device
CN203117796U (zh) 流体质量流量控制器
WO2022095016A1 (zh) 一种农业植保器械
JP5307465B2 (ja) 半導体処理装置の制御方法
CN109550650A (zh) 一种压电陶瓷喷射阀远程控制系统
CN110425333B (zh) 一种微型形状记忆合金双丝流量控制阀
US11669111B2 (en) Valve assembly and system used to control flow rate of a fluid
CN109799775B (zh) 一种基于可编程逻辑阵列的混合阀气动控制系统
CN104148217A (zh) 全自动农药精准变量喷洒控制系统
CN210041830U (zh) 一种快速负电压切换电路
CN107787938A (zh) 一种变量施药机的恒压变量控制系统
CN103309290A (zh) 作物病虫害精确防控机载系统
CN205408944U (zh) 一种农业灌溉监控系统
US20200348702A1 (en) Advanced pressure based mass flow controllers and diagnostics
CN203768420U (zh) 用于立式淬火机床水、雾、风定量冷却的控制系统
CN206657254U (zh) 一种应用于温度控制测试环境箱的温度自动控制系统
CN102109853A (zh) 基于双cpu的气体质量流量控制器
CN204672247U (zh) 便携标准气体配气仪
CN202948335U (zh) 基于双cpu的气体质量流量控制装置
CN102440707A (zh) 自动调温淋浴装置
CN105690396A (zh) 一种无线遥操开启水下机器人设备的装置
CN204437718U (zh) 一种蒸汽主管道稳压检漏系统
CN109353515A (zh) 一种植保无人机液位测量装置
CN203533217U (zh) 气体供应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960474

Country of ref document: EP

Kind code of ref document: A1