WO2022094850A1 - 基于浮力自适应角度调节的太阳能板支撑装置 - Google Patents

基于浮力自适应角度调节的太阳能板支撑装置 Download PDF

Info

Publication number
WO2022094850A1
WO2022094850A1 PCT/CN2020/126723 CN2020126723W WO2022094850A1 WO 2022094850 A1 WO2022094850 A1 WO 2022094850A1 CN 2020126723 W CN2020126723 W CN 2020126723W WO 2022094850 A1 WO2022094850 A1 WO 2022094850A1
Authority
WO
WIPO (PCT)
Prior art keywords
float
connecting rod
outer cylinder
buoyancy
photovoltaic assembly
Prior art date
Application number
PCT/CN2020/126723
Other languages
English (en)
French (fr)
Inventor
吴丹丹
皇甫英杰
顾荣伟
李威
孙优生
徐光磊
王泽宇
Original Assignee
南京森淼环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京森淼环保科技有限公司 filed Critical 南京森淼环保科技有限公司
Priority to PCT/CN2020/126723 priority Critical patent/WO2022094850A1/zh
Publication of WO2022094850A1 publication Critical patent/WO2022094850A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of photovoltaic technology, in particular to a solar panel support device based on buoyancy self-adaptive angle adjustment.
  • Solar photovoltaic panels As a renewable clean energy, solar energy has been widely used, mainly reflected in the generation of electricity through solar photovoltaic panels.
  • Solar photovoltaic panels generally need to be installed and fixed on photovoltaic brackets during use, and have a certain installation angle. Only the inclination angle is considered. When the annual total radiation on the inclined surface of the photovoltaic panel reaches the maximum, the inclination angle at this time is the maximum. good inclination. Different regions have different optimal installation angles for photovoltaic panels.
  • brackets that can automatically adjust the angle of photovoltaic panels in the prior art, they have the following shortcomings when applied to consider the influence of wind loads:
  • the existing technology mostly adjusts the angle of photovoltaic panels according to the light, but cannot be adjusted according to the size of the wind;
  • the present invention proposes a solar panel support device with a simple structure and easy implementation based on buoyancy self-adaptive angle adjustment under wind conditions, which can ensure that photovoltaic modules are not affected by wind loads. Maintain the optimal angle, adjust the angle adaptively when there is wind load influence, reduce the wind load influence, and achieve the purpose of improving the safety of photovoltaic panels and increasing production capacity.
  • the front end of the photovoltaic component is supported by a support, and the photovoltaic component and the support are rotatably connected;
  • the rear end of the photovoltaic assembly is supported by a connecting rod, and the connecting rod and the photovoltaic assembly are slidably connected;
  • the lower end of the connecting rod is connected with the float, the lower end of the connecting rod and the float are located in the outer cylinder, and the outer cylinder is filled with water.
  • the bearing composition includes a fulcrum, a front purlin and a beam; the fulcrum is respectively fixed on both sides of the front section of the beam, and the fulcrum is pivotally connected with the front purlin.
  • the photovoltaic module and the support are rotatably connected.
  • the connecting rod fixing device includes a rear purlin and a support rod, one end of the support rod is connected with the connecting rod through an upper hoop, and the other end is fixed on the rear purlin; the upper hoop It is movably connected with the connecting rod; preferably, the rear purlin is fixed on the rear section of the beam, and the outer cylinder is fixed on the rear purlin through a lower hoop.
  • the connecting rod can move up and down freely in the upper hoop, thereby ensuring that the connecting rod can move freely vertically and at the same time, the horizontal direction can be kept stable.
  • the limiter is used to limit the sliding of the connecting rod relative to the photovoltaic assembly within a set range; the limiter is preferably a chute; the connecting rod and the photovoltaic assembly are connected at one end A roller (5) is provided, and the roller slides along the chute (4) fixed on the photovoltaic module. When the photovoltaic module rotates, the roller can move in the chute to keep the connecting rod in a vertical state.
  • the floats are formed by connecting a first-level float, a second-level float, and a third-level float that provide different buoyancy; the first-level float is located in the uppermost layer and provides the minimum buoyancy, and the third-level float is located in the bottom layer and provides the maximum buoyancy. .
  • the top of the outer cylinder is provided with a water injection hole, and a water outlet hole is provided at the initial height of the third-stage float; when the water filled in the outer cylinder just covers the third-stage float, the roller is at the limit position on the top of the limiter.
  • the filling water in the outer barrel loses a lot, open the water injection hole and the water outlet hole, and inject water through the water injection hole to the height of the water outlet hole.
  • the water injection hole and the water outlet hole are closed by bolts.
  • the top of the first-stage float is wrapped with a rubber film, and the outer size of the rubber film is adapted to the size of the upper opening of the outer cylinder, which plays the role of sealing and slowing down the evaporation of the filling water in the outer cylinder.
  • a narrow gap is set between the three-stage float and the outer cylinder, and the viscosity generated by the water body passing through the narrow gap when the float moves up and down is used to provide damping for the system to eliminate the vibration effect of dynamic wind load.
  • the gap can be set between 1mm and 5mm according to the actual situation.
  • the float is a hollow thin-walled structure;
  • the connecting rod is a solid structure;
  • the float, the connecting rod and the outer cylinder are all made of nylon material.
  • the size of the float is adapted to the size of the wind force and the angle of rotation of the photovoltaic module, and the design method is as follows:
  • the length of the photovoltaic module is l and the width is b.
  • the beneficial effects of the invention are as follows: a solar panel support device based on buoyancy self-adaptive angle adjustment is proposed.
  • the device has simple structure, low cost, no external power, and high reliability.
  • the angle can be adjusted according to the size of the wind.
  • the optimal power generation angle can be maintained.
  • FIG. 1 is a schematic structural diagram of a solar panel support device based on buoyancy adaptive angle adjustment according to an embodiment of the present invention.
  • Fig. 2 is the design calculation principle diagram of the present invention.
  • Figure 3 is a schematic diagram of the overall structure installation.
  • Figure 4 is a schematic diagram of the connecting rod and the float.
  • Photovoltaic module 2. Pivot, 3. Front purlin, 4. Chute, 5. Roller, 6. Beam, 7. Connecting rod, 8. Rubber film, 9. Upper hoop, 10. Support rod , 11, water injection hole, 12, outer cylinder, 13, first-level float, 14, second-level float, 15, third-level float, 16, lower hoop, 17, rear purlin, 18, outlet hole, 19, fill water.
  • a solar panel support device based on buoyancy self-adaptive angle adjustment under wind conditions, including photovoltaic module 1, fulcrum 2, front purlin 3, chute 4, roller 5, beam 6, connecting rod 7. Rubber membrane 8, upper hoop 9, support rod 10, water injection hole 11, outer cylinder 12, lower hoop 16, rear purlin 17, water outlet 18, filling water 19 and float.
  • the front end of the photovoltaic module 1 is supported by a support, and the rear end is supported by a connecting rod 7.
  • the support consists of a fulcrum 2, a front purlin 3 and a beam 6; the two fulcrums are respectively fixed on both sides of the front section of the beam 6. Pivot connection, the front end of the photovoltaic module 1 is fixed on the front purlin 3, and rotates through the fulcrum 2; the connecting rod 7 is connected with the float, the float is placed in the outer cylinder 12, the outer cylinder 12 is fixed on the support, and the outer cylinder is filled with water 19.
  • the connecting rod 7 is fixed by a connecting rod fixing device, and the connecting rod fixing device includes a rear purlin 17 and a support rod 10, one end of the support rod 10 is connected with the connecting rod 7 through the upper hoop 9, and the other end is fixed on the rear purlin 17;
  • the hoop 9 and the connecting rod 7 are movably connected; the rear purlin 17 is fixed on the rear section of the beam, and the outer cylinder 12 is fixed on the rear purlin 17 through the lower hoop 16 .
  • the device includes a limiter for limiting the sliding of the connecting rod relative to the photovoltaic assembly within a set range.
  • the limiter is selected from the chute 4 .
  • the upper end of the connecting rod 7 is equipped with a roller 5, and the roller 5 is placed in the chute 4 fixed at the back of the photovoltaic module 1. When the photovoltaic module 1 rotates, the roller 5 can move in the chute 4 to keep the connecting rod 7 in a vertical state. .
  • the floats are divided into a first-level float 13, a second-level float 14 and a third-level float 15 from top to bottom, wherein the first-level float 13 is located on the uppermost layer and provides the minimum buoyancy, and the third-level float 15 is located at the bottommost layer.
  • the top of the first-level float 13 is wrapped with a rubber film 8 , and the outer size of the rubber film 8 is adapted to the size of the upper opening of the outer cylinder 12 , and plays the role of sealing and slowing down the evaporation of the filling water 19 in the outer cylinder 12 .
  • the top of the outer cylinder 12 is provided with a water injection hole 11, and a water outlet hole 18 is provided at the initial height of the tertiary float 15.
  • a water injection hole 11 and the water outlet hole 18 are opened, and the water injection hole 18 is opened. 11. Inject water to the height of the water outlet hole 18; the water injection hole 11 and the water outlet hole 18 are closed by bolts.
  • the first-stage float 13, the second-stage float 14 and the third-stage float 15 are all hollow and thin-walled structures, and the material is nylon; the connecting rod 7 is a solid structure, and the outer cylinder 12 is made of nylon material.
  • a narrow gap is set between the tertiary float 15 and the outer cylinder 12, and the viscous property of the water body passing through the narrow gap when the float moves up and down is used to provide damping for the system to eliminate the vibration effect of dynamic wind load.
  • the gap can be set between 1mm and 5mm according to the actual situation.
  • the size of the first-level float 13, the second-level float 14 and the third-level float 15 are adapted to the wind force and the rotation angle of the photovoltaic module; this embodiment is aimed at that the photovoltaic module can be adjusted to a certain angle under the maximum wind speed, and the photovoltaic module can be adjusted at a lower wind speed.
  • the scene design goal of maintaining a certain angle provides a specific design method, as follows:
  • the length of the photovoltaic module in the embodiment is 2.25m, the width is 1m, and the weight is 24kg.
  • the distance between the fulcrum A at the lower purlin and the bottom end is 0.3 times the board length, that is, 0.675m.
  • the contact point, that is, when the connecting rod and the photovoltaic module are at the top limit of the limiter, the distance from the bottom end is 0.7 times the board length, which is 1.575m, and the initial angle is 25° when there is no wind. Considering the maximum wind speed of 50m/s .
  • the sinking distance of the wind speed float is:
  • the required buoyancy is:
  • Table 1 The buoyancy values required for solar panels to maintain different angles at different wind speeds
  • the minimum buoyancy required by the float is 123N and the maximum buoyancy is 146N.
  • the radius of the outer cylinder is set to 15cm, and the tertiary float provides the initial minimum buoyancy, and its radius is 14.5cm.
  • the minimum buoyancy corresponds to a solar panel angle of 25°, and the maximum buoyancy corresponds to an angle of 5°.
  • the change of the angle causes the change of the volume of the float into the water, which in turn causes the change of the buoyancy.
  • the change of the volume of the water into the water is related to the shape of the float. There is a certain functional relationship between the angle, the shape of the float and the buoyancy.
  • the buoyancy changes by 2N for every 1° change at 25-22, and 1N for every 1° change at 21-5, so as to further determine the float radius.
  • the float parameters provided in Table 2 are segmented, and are divided into multiple segments according to the angle. In order to facilitate processing and manufacturing, the float is divided into three segments.
  • the specific parameters are as follows:
  • the three-stage float provides initial buoyancy, with a radius of 14.5cm and a height of 18.6cm;
  • the secondary float is located above the tertiary float, with a radius of 6cm and a height of 15cm;
  • the first-level float is located above the second-level float, with a radius of 4cm and a height of 15.9cm;
  • the total height of the outer cylinder is 70cm, and the initial water level of the filling water is just below the upper surface of the third-stage float.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了基于浮力自适应角度调节的太阳能板支撑装置,包括光伏组件,所述光伏组件前端通过支座支撑,光伏组件和支座可旋转连接;所述光伏组件后端通过连杆支撑,连杆和光伏组件之间可滑动连接;所述连杆下端连接浮子,连杆下端与浮子位于外筒内,外筒内填充水。本发明实施例将浮子置于装有一定量水的外筒内,利用浮子的浮力通过与浮子相连的连杆支撑光伏组件一端,光伏组件另一端通过铰支固定在檩条上,风力作用下光伏组件发生转动,迎风面积减小,风载降低,同时结构的阻尼特性,可消除风荷载引起的振动;无风时,在连杆支撑作用下,光伏组件可保持最佳发电角度。本发明装置结构简单,可靠性高。

Description

基于浮力自适应角度调节的太阳能板支撑装置 技术领域
本发明属于光伏技术领域,尤其是一种基于浮力自适应角度调节的太阳能板支撑装置。
背景技术
太阳能作为一种可再生的清洁能源已被广泛的运用,主要体现在通过太阳能光伏板发电。太阳能光伏板在使用过程中一般需要安装固定在光伏支架上,且具有一定的安装角度,仅考虑倾斜角度,当光伏板倾斜面上的年总辐射量达到最大时,此时的倾斜角为最佳倾角。不同地区随着维度的不同,光伏板的最优安装角度不同。
现有的用于安装太阳能光伏板的支架多为固定的,即安装好之后,光伏板的角度不可再进行调整。故光伏板安装时在最优角度的基础上还需考虑风载等因素的影响,在可能出现大风如滩涂区等地方,光伏板安装角度往往远小于最优角度,造成光伏板发电量降低。
事实上,一年中强风载对光伏板可能造成影响的时间往往很短,通过减小安装角度降低风载影响的方式不是最佳解决办法,应考虑采用可调节角度的光伏板安装支架。
现有技术虽存在可自动调节光伏板角度的支架,但应用于考虑风载影响时存在以下不足之处:
1、现有技术多根据光照调节光伏板角度,无法根据风力大小调节;
2、现有技术调节光伏板角度时多通过设置的电机提供旋转动力,设备较为复杂,造价昂贵,且在滩涂区等较为复杂环境中可靠性不足。
发明内容
本发明针对上述太阳能板支架无法适应风力自动调节角度的不足,提出一种结构简单、便于实施的风力条件下基于浮力自适应角度调节的太阳能板支撑装置,能够保证光伏组件在无风载影响时保持最优角度,有风载影响时自适应的调节角度,降低风载影响,达到提高光伏板安全性、增加产能的目的。
为实现以上目的,本发明采用如下技术方案:
一种基于浮力自适应角度调节的太阳能板支撑装置,包括光伏组件;
所述光伏组件前端通过支座支撑,光伏组件和支座可旋转连接;
所述光伏组件后端通过连杆支撑,连杆和光伏组件之间可滑动连接;
所述连杆下端连接浮子,连杆下端与浮子位于外筒内,外筒内填充水。
作为本发明的进一步改进,所述支座组成包括支点、前檩条和横梁;所述支点分别固定于 横梁前段两侧,支点间与前檩条枢轴连接。使得光伏组件和支座可旋转连接。
进一步的,还包括连杆固定装置,所述连杆固定装置包括后檩条和支撑杆,所述支撑杆一端通过上抱箍与连杆连接,另一端固定于后檩条上;所述上抱箍和连杆间可活动连接;优选的,所述后檩条固定于横梁后段,所述外筒通过下抱箍固定于后檩条上。连杆在上抱箍内可上下自由活动,由此保证连杆竖向自由活动的同时,水平方向能够保持稳定。
进一步的,还包括限位件,所述限位件用于将连杆相对于光伏组件的滑动限制在设置的范围内;所述限位件优选滑槽;所述连杆和光伏组件连接一端设有滚轮(5),所述滚轮沿固定在光伏组件上的滑槽(4)滑动。光伏组件发生转动时,滚轮可在滑槽内移动,保持连杆处于竖直状态。
进一步的,所述浮子由提供不同大小浮力的一级浮子、二级浮子、三级浮子相连形成;其中一级浮子位于最上层,提供最小的浮力,三级浮子位于最下层,提供最大的浮力。
所述外筒顶部设有注水孔,在三级浮子初始高度位置设有出水孔;外筒内填充水刚好没过三级浮子时,滚轮处于限位件顶部限位处。当外桶内充填水损失较多时,打开注水孔及出水孔,通过注水孔注入水至出水孔高度处。优选的,注水孔及出水孔通过螺栓封闭。
进一步的,所述一级浮子顶部包裹有橡胶膜,橡胶膜外围尺寸与外筒上部开口尺寸相适应,起到封闭及减缓外筒内充填水蒸发的作用。
进一步的,所述三级浮子与外筒之间设置狭窄间隙,利用浮子在上下移动中,水体通过狭窄间隙产生的粘滞性,为系统提供阻尼,以消除动风载的振动影响。可根据实际情况,设置的间隙在1mm~5mm之间。
进一步的,所述浮子为空心薄壁结构;所述连杆为实心结构;所述浮子、连杆与外筒均采用尼龙材料。
作为本发明的进一步改进,所述浮子尺寸与风力大小及光伏组件转角相适应,其设计方式如下:
初始状态下,光伏组件长度l,宽度为b,支座支点距离光伏组件底端垂直距离为nl,连杆作用点(限位件顶部限位处)距离光伏组件底端垂直距离为ml,光伏组件初始角度α 0
当光伏组件角度为α时:
风速v,风压w p=0.5ρ 空气v 2,太阳能板所受风载F w=w plb sinα  (1)
浮子下沉距离Δh=(m-n)l cosα 0(tanα 0-tanα)  (2)
浮力F f=ρ gV  (3)
对太阳能板进行受力分析,A点取矩平衡时有:
0.5G(1-n) 2l cosα+0.5(1-n) 2F wl sinα=0.5Gn 2l cosα+(m-n)l cosα 0F f+0.5n 2F wl sinα(4)
可求得
Figure PCTCN2020126723-appb-000001
式(1)代入式(5)得,
Figure PCTCN2020126723-appb-000002
式(6)代入式(3)可得,
Figure PCTCN2020126723-appb-000003
外筒内径R,浮子外径r,浮子下沉距离Δh对应排水体积为V,则以下关系成立:
Figure PCTCN2020126723-appb-000004
可得
Figure PCTCN2020126723-appb-000005
通过式(2)、(6)、(7)及式(9)建立起风速v,角度α,外筒内径R,浮子外径r及浮子高度h之间的关系,依据上述各关系及光伏板尺寸等参数即可确定满足不同风力及角度要求的支架参数。
本发明的有益效果是:提出基于浮力自适应角度调节的太阳能板支撑装置,该装置结构简单,造价低,无需外部动力,可靠性高,有风时可依据风力大小自身调节角度,无风时可保持最佳发电角度。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性说明用于解释本发明,并不构成对本发明的不当限定。附图如下:
图1为本发明实施例基于浮力自适应角度调节的太阳能板支撑装置的结构示意图。
图2为本发明设计计算原理图。
图3为整体结构安装示意图。
图4为连杆及浮子示意图。
图中:1、光伏组件,2、支点,3、前檩条,4、滑槽,5、滚轮,6、横梁,7、连杆,8、橡胶膜,9、上抱箍,10、支撑杆,11、注水孔,12、外筒,13、一级浮子,14、二级浮子,15、三级浮子,16、下抱箍,17、后檩条,18、出水孔,19、填充水。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,但本发明的保护范围不限于下述的实施例。
如图1至图9所示,一种风力条件下基于浮力自适应调节角度的太阳能板支撑装置,包括光伏组件1、支点2、前檩条3、滑槽4、滚轮5、横梁6、连杆7、橡胶膜8、上抱箍9、支撑杆10、注水孔11、外筒12、下抱箍16、后檩条17、出水孔18、填充水19及浮子。
光伏组件1前端通过支座支撑,后端通过连杆7支撑,支座组成包括支点2、前檩条3和横梁6;两个支点分别固定于横梁6前段两侧,支点2间与前檩条3枢轴连接,光伏组件1前端固定在前檩条3上,通过支点2旋转;连杆7与浮子相连,浮子置于外筒12内,外筒12固定于支座上,外筒内有填充水19。
连杆7通过连杆固定装置固定,所述连杆固定装置包括后檩条17和支撑杆10,支撑杆10一端通过上抱箍9与连杆7连接,另一端固定于后檩条17上;上抱箍9和连杆7间可活动连接;后檩条17固定于横梁后段,外筒12通过下抱箍16固定于后檩条17上。
所述装置包括限位件,用于将连杆相对于光伏组件的滑动限制在设置的范围内。作为本实施例的一项优选,限位件选用滑槽4。连杆7上端装有滚轮5,滚轮5置于固定在光伏组件1背后的滑槽4内,光伏组件1发生转动时,滚轮5可在滑槽4内移动,保持连杆7处于竖直状态。
本实施例中,所述浮子自上而下分一级浮子13、二级浮子14及三级浮子15,其中一级浮子13位于最上层,提供最小的浮力,三级浮子15位于最下层,提供最大的浮力;浮子置于外筒12内,外筒12内填充水19刚好没过三级浮子15时,此时浮子的浮力略大于三级浮子15所受上部结构自重引起的压力,保证滚轮5处于滑槽4顶部限位处;
具体地,一级浮子13顶部部包裹有橡胶膜8,橡胶膜8外围尺寸与外筒12上部开口尺寸相适应,起到封闭及减缓外筒12内充填水19蒸发的作用。
具体地,外筒12顶部设有注水孔11,在三级浮子15初始高度位置设有出水孔18,当外通内充填水19损失较多时,打开注水孔11及出水孔18,通过注水孔11注入水至出水孔18高度处;注水孔11及出水孔18通过螺栓封闭。
具体地,所述一级浮子13、二级浮子14及三级浮子15均为空心薄壁结构,材料采用尼龙;连杆7为实心结构,与所述外筒12均采用尼龙材料。
具体地,三级浮子15与外筒12之间设置狭窄间隙,利用浮子在上下移动中,水体通过狭窄间隙产生的粘滞性,为系统提供阻尼,以消除动风载的振动影响。可根据实际情况,设置的间隙在1mm~5mm之间。
一级浮子13、二级浮子14及三级浮子15尺寸与风力大小及光伏组件转角相适应;本实施例针对在最大风速下光伏组件可调节至某一角度,在较小风速下光伏组件可维持在某个角度这一场景设计目标,提供了一种具体设计方法,如下:
实施例光伏组件长度为2.25m,宽度1m,重量24kg,下檩条处支点A距离底端距离为0.3倍板长即0.675m,连杆作用点B(初始限位时连杆与太阳能板之间的接触点,即连杆与光伏组件处于限位件顶部限位处时)距离底端距离为0.7倍板长即1.575m,初始角度即无风时角度为25°,考虑最大风速50m/s。
角度为α,风速为v时:
风速浮子下沉距离为:
Δh=(m-n)l cosα 0(tanα 0-tanα)
=(0.7-0.3)*2.25*cos25°(tan25°-tanα)
=0.38-0.82tanα
所需浮力为:
Figure PCTCN2020126723-appb-000006
所需排水体积:
Figure PCTCN2020126723-appb-000007
外筒内径R,浮子外径r:
Figure PCTCN2020126723-appb-000008
根据以上结果可得到不同风速条件下,太阳能板保持不同角度所需要的浮力如下表1所示。
表1太阳能板不同风速下保持不同角度所需浮力值
Figure PCTCN2020126723-appb-000009
根据表1可知,最大风速50m/s条件下,当太阳能板角度为5°时,保持太阳能板平衡所需要的浮力值为145.63N;风速5m/s条件下,当太阳能板角度为25°时,保持太阳能板平衡所需要的浮力值为122.63N;
考虑太阳能板可转动至最小角度为5°,风速5m/s时太阳能板不发生转动,则浮子所需提供的最小浮力为123N,最大浮力为146N。
设定外筒半径15cm,三级浮子提供初始最小浮力,其半径为14.5cm。最小浮力对应太阳能板角度为25°,最大浮力对应角度为5°。
角度变化引起浮子入水体积的变化,进而引起浮力的变化,入水体积的变化又与浮子的形状有关,角度、浮子形状及浮力之间存在一定的函数关系,为方便起见,本实施例对25~5°间的21个变化角度进行分配,25-22时每变化1°浮力变化2N,21-5时每变化1°浮力变化1N,从而进一步确定浮子半径。
结合上述推理公式及设计思路可得浮子设计参数如下表2所示:
表2浮子参数设计计算表
Figure PCTCN2020126723-appb-000010
表2提供浮子参数为分段式,且按角度分为多段,为方便加工制造,将浮子分为三段,具体参数如下:
三级浮子提供初始浮力,半径14.5cm,高度18.6cm;
二级浮子位于三级浮子之上,半径6cm,高度15cm;
一级浮子位于二级浮子之上,半径4cm,高度15.9cm;
外筒总高度70cm,填充水初始水位刚好没过三级浮子上表面。
上述描述仅是对本发明较佳实施例的描述,并非是对本发明范围的任何限定。任何熟悉该领域的普通技术人员根据上述揭示的技术内容做出的任何变更或修饰均应当视为等同的有效实施例,均属于本发明技术方案保护的范围。

Claims (10)

  1. 一种基于浮力自适应角度调节的太阳能板支撑装置,包括光伏组件(1),其特征在于:
    所述光伏组件前端通过支座支撑,光伏组件和支座可旋转连接;
    所述光伏组件后端通过连杆(7)支撑,连杆和光伏组件之间可滑动连接;
    所述连杆下端连接浮子,连杆下端与浮子位于外筒(12)内,外筒内填充水。
  2. 根据权利要求1所述的装置,其特征在于:所述支座组成包括支点(2)、前檩条(3)和横梁(6);所述支点分别固定于横梁前段两侧,支点间与前檩条枢轴连接。
  3. 根据权利要求1或2所述的装置,其特征在于:还包括连杆固定装置,所述连杆固定装置包括后檩条(17)和支撑杆(10),所述支撑杆一端通过上抱箍(9)与连杆连接,另一端固定于后檩条上;所述上抱箍和连杆间可活动连接;优选的,所述后檩条固定于横梁后段,所述外筒通过下抱箍(16)固定于后檩条上。
  4. 根据权利要求1所述的装置,其特征在于:还包括限位件,所述限位件用于将连杆相对于光伏组件的滑动限制在设置的范围内;
    所述限位件优选滑槽;所述连杆和光伏组件连接一端设有滚轮(5),所述滚轮沿固定在光伏组件上的滑槽(4)滑动。
  5. 根据权利要求1所述的装置,其特征在于:所述浮子由提供不同大小浮力的一级浮子(13)、二级浮子(14)、三级浮子(15)相连形成;其中一级浮子位于最上层,提供最小的浮力,三级浮子(15)位于最下层,提供最大的浮力。
  6. 根据权利要求1所述的装置,其特征在于:所述外筒顶部设有注水孔(11),在三级浮子(15)初始高度位置设有出水孔(18);外筒内填充水刚好没过三级浮子(15)时,滚轮(5)处于限位件顶部限位处。
  7. 根据权利要求1或5所述的装置,其特征在于:所述浮子顶部包裹有橡胶膜(8),橡胶膜(8)外围尺寸与外筒(12)上部开口尺寸相适应。
  8. 根据权利要求5所述的装置,其特征在于:所述三级浮子(15)与外筒(12)之间设置1mm~5mm的间隙。
  9. 根据权利要求1或5所述的装置,其特征在于:所述浮子为空心薄壁结构,所述连杆为实心结构;所述连杆、浮子与外筒均采用尼龙材料。
  10. 根据权利要求1或5所述的装置,其特征在于:所述浮子尺寸与风力大小及光伏组件转角相适应;风速v,角度α,外筒半径R,浮子半径r及浮子变化高度Δh满足如下关系:
    Δh=(m-n)l cosα 0(tanα 0-tanα)  (1)
    Figure PCTCN2020126723-appb-100001
    Figure PCTCN2020126723-appb-100002
    Figure PCTCN2020126723-appb-100003
    式中,l为光伏组件长度,b为其宽度,nl、ml分别为初始条件下下支座支点及连杆作用点和光伏组件底端最远垂直距离,α 0为光伏组件初始角度,F f为浮力,V为浮子排水体积。
PCT/CN2020/126723 2020-11-05 2020-11-05 基于浮力自适应角度调节的太阳能板支撑装置 WO2022094850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126723 WO2022094850A1 (zh) 2020-11-05 2020-11-05 基于浮力自适应角度调节的太阳能板支撑装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126723 WO2022094850A1 (zh) 2020-11-05 2020-11-05 基于浮力自适应角度调节的太阳能板支撑装置

Publications (1)

Publication Number Publication Date
WO2022094850A1 true WO2022094850A1 (zh) 2022-05-12

Family

ID=81458393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126723 WO2022094850A1 (zh) 2020-11-05 2020-11-05 基于浮力自适应角度调节的太阳能板支撑装置

Country Status (1)

Country Link
WO (1) WO2022094850A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958382A1 (fr) * 2010-03-31 2011-10-07 Gcmsd Plateforme flottante pour panneaux solaires
CN203775129U (zh) * 2014-04-11 2014-08-13 衢州职业技术学院 一种倾斜角可调节的光伏支架及由其组成的光伏支架系统
CN105162167A (zh) * 2015-09-30 2015-12-16 国网山东省电力公司电力科学研究院 一种基于自适应下垂控制的风光储微网调频方法
CN107040195A (zh) * 2017-05-12 2017-08-11 苏福来 一种海面高效光伏平台及其发电工作方法和清洗方法
CN108400758A (zh) * 2018-03-25 2018-08-14 宜兴锦尚太阳能科技有限公司 一种可调控日照角度的太阳能电池板
CN109818554A (zh) * 2019-02-28 2019-05-28 河海大学常州校区 基于浮台的新型自主降温水上太阳能光伏组件
CN209881704U (zh) * 2019-05-28 2019-12-31 衢州职业技术学院 倾角可调节的光伏支架及浮力缸
CN209881705U (zh) * 2019-05-28 2019-12-31 衢州职业技术学院 倾角可调节的光伏支架及泵式浮力缸

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958382A1 (fr) * 2010-03-31 2011-10-07 Gcmsd Plateforme flottante pour panneaux solaires
CN203775129U (zh) * 2014-04-11 2014-08-13 衢州职业技术学院 一种倾斜角可调节的光伏支架及由其组成的光伏支架系统
CN105162167A (zh) * 2015-09-30 2015-12-16 国网山东省电力公司电力科学研究院 一种基于自适应下垂控制的风光储微网调频方法
CN107040195A (zh) * 2017-05-12 2017-08-11 苏福来 一种海面高效光伏平台及其发电工作方法和清洗方法
CN108400758A (zh) * 2018-03-25 2018-08-14 宜兴锦尚太阳能科技有限公司 一种可调控日照角度的太阳能电池板
CN109818554A (zh) * 2019-02-28 2019-05-28 河海大学常州校区 基于浮台的新型自主降温水上太阳能光伏组件
CN209881704U (zh) * 2019-05-28 2019-12-31 衢州职业技术学院 倾角可调节的光伏支架及浮力缸
CN209881705U (zh) * 2019-05-28 2019-12-31 衢州职业技术学院 倾角可调节的光伏支架及泵式浮力缸

Similar Documents

Publication Publication Date Title
US11977272B2 (en) Solar trough mirror frame, rolling rib, roller, cleaning apparatus and method
AU2011213447B2 (en) Wind power generating device and wind blade structure
WO2022094844A1 (zh) 基于弹簧自适应角度调节的太阳能板支撑装置
DK177730B1 (en) Partial pitch wind turbine with floating foundation
JP2015205632A (ja) 水上太陽光発電装置及び水上太陽光発電システムと水上太陽光集光装置
CN111030584A (zh) 一种用于光伏组件调节朝向的阵列支架
WO2022094850A1 (zh) 基于浮力自适应角度调节的太阳能板支撑装置
EP1339984A2 (en) Vertical-axis wind turbine
CN212709887U (zh) 一种实时动态调节漂浮式风机姿态的智能调载系统
CN106100544A (zh) 一种基于防撞机构的太阳能单晶电池片
GB2466477A (en) Floating support for offshore wind turbine
CN111997841B (zh) 一种漂浮式风机发电机组
CN210273930U (zh) 一种便于调整倾斜角度的新能源用太阳能电池板
CN113104165A (zh) 一种水面光伏支撑装置
CN205692536U (zh) 一种户外广告牌的柔性卸压装置
CN220368647U (zh) 一种可自动调整倾角的光伏板支架
EP2342810B1 (en) A support system for holding solar mirrors and method for moving a frame supporting solar mirrors
CN206790394U (zh) 一种太阳能光伏支架
CN219621731U (zh) 用于海上风电基础的可移动式抗冰装置及海上风电基础
CN220107892U (zh) 带过道的屋顶光伏安装组件
CN221103266U (zh) 一种具有角度调节功能的光伏组件
CN220884732U (zh) 一种海上风电平台
CN211116418U (zh) 一种悬浮支撑的风力发电装置
CN113864126A (zh) 一种陆上风机机组平台
RU163007U1 (ru) Модульный ветродвигатель с горизонтальными лопастями и центробежным регулятором оборотов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2023)