WO2022094848A1 - 一种通信网络抗干扰的方法、装置及系统 - Google Patents

一种通信网络抗干扰的方法、装置及系统 Download PDF

Info

Publication number
WO2022094848A1
WO2022094848A1 PCT/CN2020/126719 CN2020126719W WO2022094848A1 WO 2022094848 A1 WO2022094848 A1 WO 2022094848A1 CN 2020126719 W CN2020126719 W CN 2020126719W WO 2022094848 A1 WO2022094848 A1 WO 2022094848A1
Authority
WO
WIPO (PCT)
Prior art keywords
aviation
path loss
loss compensation
compensation factor
scenario
Prior art date
Application number
PCT/CN2020/126719
Other languages
English (en)
French (fr)
Inventor
王凯
李鹏
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2020/126719 priority Critical patent/WO2022094848A1/zh
Publication of WO2022094848A1 publication Critical patent/WO2022094848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device and system for anti-interference in a communication network.
  • the UAV In the process of using the UAV, it needs to access the network. That is to say, the UAV is connected to the network as an aviation UE. Compared with the ground UE, the public coverage of the aviation UE across cells increases significantly. As the height of the man-machine increases, the power of the UAV also increases. In this case, the UAV will cause interference between the cells serving the ground UE and the aviation UE, that is, the adjacent cells of the aviation UE will be disturbed. The uplink produces interference, and the higher the power of the UAV, the stronger the interference to the uplink between cells, which greatly affects the communication quality between the UE and the base station in the adjacent cells.
  • the embodiment of the present invention discloses a method, device and system for anti-interference of a communication network.
  • the interference of aviation UE to the uplink of adjacent cells is reduced, and the aviation UE is improved.
  • Network communication quality of neighboring cells is improved.
  • An embodiment of the present invention discloses an anti-interference method for a communication network, including:
  • the uplink power of the aviation UE is reduced based on the adjusted path loss compensation factor.
  • the path loss compensation factor adjustment flag sent by the base station is received; the path loss compensation factor adjustment flag indicates that the aviation UE has the path loss compensation factor adjustment authority.
  • the adjustment parameter includes: the height of the aviation UE or the path transmission mode of the aviation UE:
  • the preset adjustment conditions include:
  • the altitude of the aviation UE has changed
  • the path transmission mode of the wireless signal where the aviation UE is located has changed; the path transmission mode includes the line-of-sight transmission of the LOS wireless signal and the non-line-of-sight transmission of the NOLS wireless signal.
  • the adjusting the path loss compensation factor includes:
  • the altitude of the current aviation UE and various parameters in the NLOS scenario are acquired, and the path loss compensation factor is calculated based on the altitude of the current aviation UE and each compensation parameter in the NLOS scenario.
  • each compensation parameter in the LOS scenario includes:
  • each compensation parameter in the NLOS scenario includes:
  • Threshold value, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario are threshold values, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario.
  • the path loss compensation parameter is calculated by the base station
  • the path loss compensation parameter is calculated by the aviation UE.
  • the embodiment of the present invention also discloses an anti-interference device for a communication network, including:
  • an acquisition unit for acquiring preset adjustment parameters
  • a path loss compensation factor adjustment unit configured to adjust the path loss compensation factor when the preset adjustment parameters meet the preset adjustment conditions and the aviation UE has the authority to adjust the path loss compensation factor
  • An uplink power adjustment unit configured to reduce the uplink power of the aviation UE based on the adjusted path loss compensation factor.
  • the path loss compensation factor adjustment unit includes:
  • a scenario determination unit configured to determine that the aviation UE is in a LOS scenario or an NLOS scenario
  • the first path loss compensation factor adjustment subunit is used to obtain each compensation parameter under the LOS scene when the aviation UE is in the LOS scene, and calculate the path loss compensation factor based on each compensation parameter under the LOS scene;
  • the first path loss compensation factor adjustment subunit is used to obtain the altitude of the current aviation UE and various parameters in the NLOS scenario when the aviation UE is in the NLOS scenario, and based on the altitude of the current aviation UE and each compensation in the NLOS scenario The parameter calculates the path loss compensation factor.
  • the embodiment of the present invention also discloses an anti-interference data transmission system for a communication network, including:
  • the base station is configured to send a path loss compensation factor adjustment flag to the aviation UE; the path loss compensation factor adjustment flag indicates that the aviation UE has a path loss compensation factor adjustment authority;
  • the aviation UE is configured to execute the above-mentioned method for anti-interference in a communication network.
  • the present invention also discloses an aviation UE, characterized in that, the aviation UE includes:
  • the processor is used to execute the program stored in the memory
  • the memory is used to store a program, and the program is used to execute the above-mentioned method for anti-interference in a communication network.
  • An embodiment of the present invention discloses an anti-interference method for a communication network, including: obtaining preset adjustment parameters; when the preset adjustment parameters meet preset adjustment conditions, and the aviation UE has the authority to adjust the path loss compensation factor, Adjust the path loss compensation factor; reduce the uplink power of the aviation UE based on the adjusted path loss compensation factor.
  • the aviation UE adjusts the uplink power of the aviation UE, that is, the uplink power of the aviation UE at a certain altitude is reduced, thereby reducing the interference of the aviation UE to the uplink between cells .
  • the aviation UE when the aviation UE has the authority to adjust the path loss factor, the aviation UE can adjust the path loss compensation factor by itself, without the need for complex signaling interaction between the base station and the aviation UE, or through the base station. Adjusting the path loss compensation factor is not only simple to implement, but also reduces the overhead of the base station and aviation UE.
  • FIG. 1 shows a schematic flowchart of a method for anti-interference in a communication network provided by an embodiment of the present invention
  • FIG. 2 shows a schematic flowchart of a method for adjusting a path loss compensation factor provided by an embodiment of the present invention
  • FIG. 3 shows an interactive schematic diagram of a communication anti-interference method provided by an embodiment of the present invention
  • FIG. 4 shows a schematic structural diagram of an apparatus for anti-interference in a communication network provided by an embodiment of the present invention
  • FIG. 5 shows a schematic structural diagram of an aviation UE provided by an embodiment of the present invention
  • FIG. 6 shows a schematic structural diagram of a data transmission system for anti-interference in a communication network provided by an embodiment of the present invention.
  • the transmit power of the UE is related to the path loss and the path loss compensation factor.
  • the path loss compensation factor belongs to the cell-level parameter, that is, the path loss compensation factor is the same for the aviation UE and the ground UE, but due to the wireless channel of the aviation UE and the ground UE Therefore, the purpose of reducing the uplink power of the aviation UE can be achieved by adjusting the path loss compensation factor of the aviation UE.
  • the adjustment of the uplink power of the aviation UE can be realized through the following process: first, the base station sends a request for measuring its own altitude to the aviation UE, and after the aviation UE measures its own altitude, the measured aviation UE's The altitude is sent to the base station, the base station calculates the path loss compensation factor based on the altitude of the aviation UE, and sends the path loss compensation factor to the aviation UE, and the aviation UE adjusts the uplink power based on the path loss compensation factor.
  • the above-mentioned interaction between the base station and the aviation UE can realize the adjustment of the uplink power of the aviation UE, in the process of adjustment, complex signaling interaction between the base station and the UE is required, and if the altitude of the aviation UE continues to occur Changes, frequent interaction is required between the aviation UE and the base station, which is not only complicated to implement, but also has a large overhead and high power consumption for the base station and the aviation UE.
  • the present invention simplifies the interaction process between the base station and the aviation UE, and through the aviation UE
  • the UE calculates the path loss compensation factor and adjusts the uplink power of the aviation UE.
  • the specific adjustment process is as follows:
  • FIG. 1 a schematic flowchart of a method for anti-interference in a communication network provided by an embodiment of the present invention is shown.
  • the method includes:
  • the aviation UE can continuously monitor the adjustment parameters.
  • the adjustment parameters change, it is very likely to cause interference to the uplink between the adjacent cells of the aviation UE, thereby affecting the connection between the UE and the adjacent cells in the adjacent cells.
  • the communication quality of the base station is very likely to cause interference to the uplink between the adjacent cells of the aviation UE, thereby affecting the connection between the UE and the adjacent cells in the adjacent cells.
  • the preset adjustment parameters may include: the altitude of the aviation UE or the path transmission mode of the aviation UE.
  • the path transmission methods of aviation UE include two types: LOS (full name in English: line of sight, full name in Chinese: line of sight transmission of wireless signals) and NOLS (full name in English: not line of sight, full Chinese name: non-line of sight transmission of wireless signals ).
  • the aviation UE after the aviation UE detects the adjustment parameter, it judges whether the adjustment parameter complies with the preset adjustment condition.
  • the preset conditions include the following two:
  • Condition 2 The path transmission mode of the wireless signal where the aviation UE is located has changed; wherein, the path transmission mode includes: line-of-sight transmission of the LOS wireless signal and non-line-of-sight transmission of the NLOS wireless signal.
  • the aviation UE may not send information to the base station, but directly perform the path loss compensation factor. Adjustment.
  • an adjustment authority is set in the aviation UE, and when the aviation UE satisfies the adjustment authority, the aviation UE can adjust the road loss compensation factor.
  • the condition for enabling the aviation UE to have the right to adjust the path loss compensation factor is that the aviation UE has the path loss compensation factor adjustment flag.
  • the path loss compensation factor adjustment flag may be sent by the base station to the aviation UE.
  • the execution process of the aviation UE after acquiring the preset adjustment parameters includes:
  • the path loss compensation factor is adjusted.
  • the path loss compensation factor when adjusting the path loss compensation factor, the path loss compensation factor needs to be calculated based on some compensation parameters, wherein the path loss compensation factor includes: the compensation amount of the path loss, the path loss compensation of the aviation UE in the LOS scenario The parameter value, the threshold value of the path loss compensation parameter of the aviation UE in the NLOS scenario, the height threshold value, etc.
  • the adjustment of the path loss compensation factor needs to calculate the path loss compensation factor separately based on the current altitude of the aviation UE and whether the path loss compensation factor is in the LOS scene or the NLOS scene.
  • the specific calculation method of the path loss compensation factor will be carried out below. The detailed introduction is not repeated in this embodiment.
  • S104 Decrease the uplink power of the aviation UE based on the adjusted path loss compensation factor.
  • the uplink power of the aviation UE may be adjusted based on the path loss compensation factor, so as to reduce the uplink power of the aviation UE.
  • the uplink power of the aviation UE can be calculated by the following formula 1):
  • P PUSCH,C (i) represents the uplink power of the aviation UE
  • P CMAX, c (i) represents the maximum transmit power of the aviation UE
  • M PSUCH, c (i), represents the number of RBs used for PUSCH transmission in subframe i;
  • PO_NOMINAL_PUSCH (j) is a cell-specific parameter
  • PO_UE_PUSCH (j) is a UE-specific parameter, both of which are indicated by high-level signaling, and this parameter can be used to set different values for different uplink transmission data packets .
  • the value of parameter j is related to the data packet transmitted in the uplink.
  • a c (j) is the cell-specific compensation amount for path loss
  • PL c is the open-loop path loss compensation obtained based on the UE's estimation of the downlink.
  • ⁇ TF,c (i) is the power adjustment value based on MCS.
  • the power adjustment based on MCS can make the UE dynamically adjust the corresponding transmit power spectral density according to the selected MCS.
  • the MCS of the UE is scheduled by the eNodeB. By setting the transmit MCS of the UE, the transmit power spectral density of the UE can be adjusted quickly to achieve an effect similar to fast power control.
  • f c (i) is the adjustment value of the current power control of the PUSCH, and this parameter is adjusted according to the TPC command on the PDCCH.
  • ⁇ a (h,isLos) represents the path loss compensation factor.
  • the preset adjustment parameters are obtained; when the preset adjustment parameters meet the preset adjustment conditions, and the aviation UE has the authority to adjust the path loss compensation factor, the path loss compensation factor is adjusted; based on the adjusted The path loss compensation factor reduces the uplink power of the aviation UE.
  • the aviation UE adjusts the uplink power of the aviation UE, that is, the uplink power of the aviation UE at a certain altitude is reduced, thereby reducing the interference of the aviation UE to the uplink between cells .
  • the aviation UE when the aviation UE has the authority to adjust the path loss factor, the aviation UE can adjust the path loss compensation factor by itself, without the need for complex signaling interaction between the base station and the aviation UE, or through the base station. Adjusting the path loss compensation factor is not only simple to implement, but also reduces the overhead of the base station and aviation UE.
  • FIG. 2 a schematic flowchart of a method for adjusting a path loss compensation factor provided by an embodiment of the present invention is shown.
  • the method includes:
  • the aviation UE corresponds to different path loss compensation factor adjustment methods under different wireless channel states.
  • the path loss compensation factor may be calculated by the compensation amount of the path loss and the path loss compensation parameter value of the aviation UE in the LOS scenario.
  • the calculation method needs to be determined based on the altitude of the aviation UE, specifically, including:
  • the path loss compensation factor of the aviation UE is calculated based on the upper limit value of the path loss compensation parameter and the compensation amount of the path loss for the aviation UE in the NOLS scenario;
  • the path loss compensation factor is zero.
  • the path loss compensation factor can be calculated by the following formula:
  • a LOS indicates the path loss compensation parameter value of the aviation UE in the LOS scenario
  • a c (j) represents the compensation amount of path loss
  • h represents the altitude value of the aviation UE
  • H medinm represents the middle value of the preset height threshold
  • H LOW represents the lower limit of the preset altitude threshold
  • path loss compensation parameters may be sent by the base station to the aviation UE, or may be calculated by the aviation UE itself.
  • the aviation UE can adjust the path loss compensation factor by itself without performing complex communication with the base station, which not only simplifies the implementation, but also reduces the overhead of the base station and the aviation UE.
  • FIG. 3 an interactive schematic diagram of a communication anti-interference method provided by an embodiment of the present invention is shown.
  • the method includes:
  • the base station sends a road loss compensation factor adjustment flag to the aviation UE;
  • the road loss compensation factor adjustment flag indicates that the aviation UE has the right to adjust the road loss compensation factor;
  • S302 in this embodiment is the same as S101 described above, and details are not repeated in this embodiment.
  • the aviation UE adjusts the road loss compensation factor when the preset adjustment parameters meet the preset adjustment conditions and the aviation UE has the right to adjust the road loss compensation factor;
  • S303 in this embodiment is the same as S102 described above, and details are not repeated in this embodiment.
  • S304 Decrease the uplink power of the aviation UE based on the adjusted path loss compensation factor.
  • S304 in this embodiment is the same as S103 described above, and details are not repeated in this embodiment.
  • the base station only needs to interact with the aviation UE once, that is, send the path loss compensation factor adjustment flag to the aviation UE, then the aviation UE has the right to adjust the path loss compensation factor.
  • the aviation UE has the authority to adjust the path loss factor
  • the aviation UE can adjust the path loss compensation factor by itself, without the need for complex signaling interaction between the base station and the aviation UE, and without adjusting the path loss compensation factor through the base station. Simple and reduces overhead for base stations and aviation UEs.
  • FIG. 4 a schematic structural diagram of an apparatus for anti-interference in a communication network provided by an embodiment of the present invention is shown.
  • the apparatus includes:
  • an obtaining unit 401 configured to obtain preset adjustment parameters
  • the path loss compensation factor adjustment unit 402 is configured to adjust the path loss compensation factor when the preset adjustment parameters meet the preset adjustment conditions and the aviation UE has the permission to adjust the path loss compensation factor;
  • the uplink power adjustment unit 403 is configured to reduce the uplink power of the aviation UE based on the adjusted path loss compensation factor.
  • the receiving unit is configured to receive the path loss compensation factor adjustment flag sent by the base station; the path loss compensation factor adjustment flag indicates that the aviation UE has the path loss compensation factor adjustment authority.
  • the adjustment parameter includes: the altitude of the aviation UE or the path transmission mode of the aviation UE:
  • the preset adjustment conditions include:
  • the altitude of the aviation UE has changed
  • the path transmission mode of the wireless signal where the aviation UE is located has changed; the path transmission mode includes the line-of-sight transmission of the LOS wireless signal and the non-line-of-sight transmission of the NOLS wireless signal.
  • the path loss compensation factor adjustment unit includes:
  • a scenario determination unit configured to determine that the aviation UE is in a LOS scenario or an NLOS scenario
  • a first path loss compensation factor adjustment subunit configured to obtain each compensation parameter in the LOS scenario when the aviation UE is in the LOS scenario, and calculate the path loss compensation factor based on each compensation parameter in the LOS scenario;
  • the first path loss compensation factor adjustment subunit is used to obtain the altitude of the current aviation UE and various parameters in the NLOS scenario when the aviation UE is in the NLOS scenario, and based on the altitude of the current aviation UE and each compensation in the NLOS scenario The parameter calculates the path loss compensation factor.
  • each compensation parameter in the LOS scenario includes:
  • each compensation parameter in the NLOS scenario includes:
  • Threshold value, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario are threshold values, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario.
  • the path loss compensation parameter is calculated by the base station
  • the path loss compensation parameter is calculated by the aviation UE.
  • the aviation UE adjusts the uplink power of the aviation UE, that is, the uplink power of the aviation UE at a certain altitude is reduced, thereby reducing the effect of the aviation UE on the intercell. Uplink interference.
  • the aviation UE can adjust the path loss compensation factor by itself, without the need for complex signaling interaction between the base station and the aviation UE, or through the base station. Adjusting the path loss compensation factor is not only simple to implement, but also reduces the overhead of the base station and aviation UE.
  • the aviation UE includes:
  • processor 501 and memory 502;
  • the processor is used to execute the program stored in the memory
  • the memory is used to store a program, and the program is used to execute:
  • the uplink power of the aviation UE is reduced based on the adjusted path loss compensation factor.
  • the path loss compensation factor adjustment flag sent by the base station is received; the path loss compensation factor adjustment flag indicates that the aviation UE has the path loss compensation factor adjustment authority.
  • the adjustment parameter includes: the altitude of the aviation UE or the path transmission mode of the aviation UE:
  • the preset adjustment conditions include:
  • the altitude of the aviation UE has changed
  • the path transmission mode of the wireless signal where the aviation UE is located has changed; the path transmission mode includes the line-of-sight transmission of the LOS wireless signal and the non-line-of-sight transmission of the NOLS wireless signal.
  • the adjusting the path loss compensation factor includes:
  • the altitude of the current aviation UE and various parameters in the NLOS scenario are acquired, and the path loss compensation factor is calculated based on the altitude of the current aviation UE and each compensation parameter in the NLOS scenario.
  • each compensation parameter in the LOS scenario includes:
  • each compensation parameter in the NLOS scenario includes:
  • Threshold value, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario are threshold values, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario.
  • the path loss compensation parameter is calculated by the base station
  • the path loss compensation parameter is calculated by the aviation UE.
  • the aviation UE adjusts the uplink power of the aviation UE, that is, the uplink power of the aviation UE at a certain altitude is reduced, thereby reducing the interference of the aviation UE between cells. Uplink interference.
  • the aviation UE can adjust the path loss compensation factor by itself, without the need for complex signaling interaction between the base station and the aviation UE, or through the base station. Adjusting the path loss compensation factor is not only simple to implement, but also reduces the overhead of the base station and aviation UE.
  • FIG. 6 a schematic structural diagram of a communication network anti-jamming system provided by an embodiment of the present invention is shown.
  • the system includes:
  • the base station is used to send a path loss compensation factor adjustment flag to the aviation UE; the path loss compensation factor adjustment flag indicates that the aviation UE has a path loss compensation factor adjustment authority;
  • the aviation UE is used to obtain preset adjustment parameters
  • the uplink power of the aviation UE is reduced based on the adjusted path loss compensation factor.
  • the path loss compensation factor adjustment flag sent by the base station is received; the path loss compensation factor adjustment flag indicates that the aviation UE has the path loss compensation factor adjustment authority.
  • the adjustment parameter includes: the altitude of the aviation UE or the path transmission mode of the aviation UE:
  • the preset adjustment conditions include:
  • the altitude of the aviation UE has changed
  • the path transmission mode of the wireless signal where the aviation UE is located has changed; the path transmission mode includes the line-of-sight transmission of the LOS wireless signal and the non-line-of-sight transmission of the NOLS wireless signal.
  • the adjusting the path loss compensation factor includes:
  • the altitude of the current aviation UE and various parameters in the NLOS scenario are acquired, and the path loss compensation factor is calculated based on the altitude of the current aviation UE and each compensation parameter in the NLOS scenario.
  • each compensation parameter in the LOS scenario includes:
  • each compensation parameter in the NLOS scenario includes:
  • Threshold value, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario are threshold values, altitude threshold value, and path loss compensation amount of path loss compensation parameters for aviation UE in NLOS scenario.
  • the path loss compensation parameter is calculated by the base station
  • the path loss compensation parameter is calculated by the aviation UE.
  • the base station only needs to interact with the aviation UE once, that is, send the path loss compensation factor adjustment flag to the aviation UE, then the aviation UE has the right to adjust the path loss compensation factor.
  • the aviation UE can adjust the path loss compensation factor by itself, without the need for complex signaling interaction between the base station and the aviation UE, and without the need to adjust the path loss compensation factor through the base station. Simple and reduces overhead for base stations and aviation UEs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信网络抗干扰的方法,包括:获取预设的调整参数;在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;基于调整后的路损补偿因子降低所述航空UE的上行功率。这样,航空UE在对路损补偿因子进行调整后,对航空UE的上行功率进行了调整,即降低了在一定高度下航空UE的上行功率,进而降低了航空UE对小区间上行链路的干扰。并且,通过本实施例的方式,在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。

Description

一种通信网络抗干扰的方法、装置及系统 技术领域
本发明涉及通讯领域,尤其涉及一种通信网络抗干扰的方法、装置及系统。
背景技术
近年来,随着自动化技术、人工智能技术等科技水平的不断提高,无人机在军用、民用等领域都得到了快速的发展,比如无人机在国家公共安全领域如反恐侦查、交通监控,在民用领域如无人机航拍等方面都具有广泛的应用前景。
无人机在使用的过程中需要接入网络,也就是说,无人机作为航空UE接入网络,而与地面UE相比,航空UE跨小区的公共覆盖范围显著增加,并且,随着无人机高度的升高,无人机的功率也在增加,在这种情况下,无人机会对服务于地面UE和航空UE的小区间产生干扰,即会对航空UE的相邻小区间的上行链路产生干扰,而且无人机的功率越高对小区间的上行链路产生的干扰越强,这样极大的影响了相邻小区中UE与基站的通信质量。
发明内容
有鉴于此,本发明实施例公开了一种通信网络抗干扰的方法、装置及系统,通过降低航空UE上行功率的方法,降低了航空UE对相邻小区上行链路的干扰,提升了航空UE相邻小区的网络通信质量。
本发明实施例公开了一种通信网络抗干扰的方法,包括:
获取预设的调整参数;
在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
基于调整后的路损补偿因子降低所述航空UE的上行功率。
可选的,还包括:
接收基站发送的路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限。
可选的,在所述调整参数包括:航空UE的高度或者航空UE的路径传输方 式的情况下:
所述预设调整条件包括:
航空UE的高度发生了变化;
或者
航空UE所处的无线信号的路径传输方式发生了变化;路径传输方式包括LOS无线信号的视线传输以及NOLS无线信号的非视线传输。
可选的,所述对所述路损补偿因子进行调整,包括:
确定所述航空UE处于LOS场景或者是NLOS场景;
在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
在所述航空UE处于NLOS场景下,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
可选的,所述LOS场景下的各个补偿参数包括:
路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值。
可选的,所述NLOS场景下的各个补偿参数包括:
航空UE处于NLOS场景下的路损补偿参数的门限值、高度门限值、路径损耗的补偿量。
可选的,所述路损补偿参数是基站计算得到的;
或者所述路损补偿参数是所述航空UE计算得到的。
本发明实施例还公开了一种通信网络抗干扰的装置,包括:
获取单元,用于获取预设的调整参数;
路损补偿因子调整单元,用于在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
上行功率调整单元,用于基于调整后的路损补偿因子降低所述航空UE的上行功率。
可选的,所述路损补偿因子调整单元,包括:
场景确定单元,用于确定所述航空UE处于LOS场景或者是NLOS场景;
第一路损补偿因子调整子单元,用于在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路 损补偿因子;
第一路损补偿因子调整子单元,用于在所述航空UE处于NLOS场景下,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
本发明实施例还公开了一种通信网络抗干扰的数据传输系统,包括:
基站和航空UE;
所述基站用于,向所述航空UE发送路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限;
所述航空UE,用于执行上述所述的通信网络抗干扰的方法。
本发明还公开了一种航空UE,其特征在于,所述航空UE包括:
处理器和存储器;
其中,所述处理器用于执行所述存储器中存储的程序;
所述存储器用于存储程序,所述程序用于执行上述所述的通信网络抗干扰的方法。
本发明实施例公开了一种通信网络抗干扰的方法,包括:获取预设的调整参数;在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;基于调整后的路损补偿因子降低所述航空UE的上行功率。这样,航空UE在对路损补偿因子进行调整后,对航空UE的上行功率进行了调整,即降低了在一定高度下航空UE的上行功率,进而降低了航空UE对小区间上行链路的干扰。并且,通过本实施例的方式,在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下,还可以根据提供的附图获得其它的附图。
图1示出了本发明实施例提供的一种通信网络抗干扰的方法的流程示意图;
图2示出了本发明实施例提供的一种路损补偿因子的调整方法的流程示意图;
图3示出了本发明实施例提供的一种通信抗干扰的方法的交互示意图;
图4示出了本发明实施例提供的一种通信网络抗干扰的装置的结构示意图;
图5示出了本发明实施例提供的一种航空UE的结构示意图;
图6示出了本发明实施例提供的一种通信网络抗干扰的数据传输系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
申请人发现,航空UE在高空飞行状态时,会对服务于地面UE和航空UE的小区间产生干扰,具体的是对航空UE相邻小区间的上行链路产生干扰,并且,随着航空UE高度不断升高,航空UE的上行功率也不断升高,由此产生的干扰也越来越强。
在这种情况下,为了降低干扰,申请人发现可以通过降低航空UE上行功率的方式,从而降低航空UE对相邻小区上行链路产生的干扰。
其中,UE的发射功率与路损和路损补偿因子有关,路损补偿因子属于小区级参数,即路损补偿因子对于航空UE和地面UE是一样的,但是由于航空UE和地面UE的无线信道不同,因此可以通过调整航空UE的路损补偿因子,从而实现降低航空UE上行功率的目的。
由此,申请人发现,可以通过如下的过程实现对航空UE上行功率的调整:首先基站向航空UE下发测量自身高度的请求,航空UE测量了自身高度后,再 将测量得到的航空UE的高度发送给基站,基站基于航空UE的高度计算路损补偿因子,并将路损补偿因子发送给航空UE,航空UE基于该路损补偿因子调整上行功率。
虽然通过上述基站和航空UE的交互,可以实现对航空UE上行功率的调整,但是,在调整的过程中,需要基站和UE之间进行复杂的信令交互,而且,若航空UE的高度不断发生变化,航空UE和基站之间需要频繁的进行交互,这样,不但实现起来复杂,而且基站和航空UE的开销都会很大,功耗较高。
因此,为了实现降低航空UE对相邻小区的干扰的前提下,降低航空UE和基站的开销,降低基站和航空UE的功耗,本发明简化了基站和航空UE的交互过程,并通过由航空UE自身计算路损补偿因子,对航空UE的上行功率作出调整,具体调整过程如下:
获取预设的调整参数;在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;基于调整后的路损补偿因子降低所述航空UE的上行功率。通过上述的调整,在航空UE存在路损因子调整权限的情况下,,航空UE可以基于自身的变化自行对上行功率进行调整,这样,无需基站和航空UE之间进行复杂的信令交换,不仅实现简单,而且降低了基站和航空UE的开销,降低了功耗,并且也实现了降低航空UE相邻小区通信干扰的问题。
参考图1,示出了本发明实施例提供的一种通信网络抗干扰的方法的流程示意图,在本实施例中,该方法包括:
S101:获取预设的调整参数;
本实施例中,航空UE可以不断的监测调整参数,在调整参数发生变化的情况下,很有可能会对航空UE相邻小区间的上行链路产生干扰,从而会影响相邻小区中UE与基站的通信质量。
其中,预设的调整参数可以包括:航空UE的高度或者航空UE的路径传输方式。其中,航空UE的路径传输方式包括两种:LOS(英文全称:line of sight,中文全称:无线信号的视线传输)和NOLS(英文全称:not line of sight,中文全称:无线信号的非视线传输)。
S102:在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因 子调整权限的情况下,对路损补偿因子进行调整。
本实施例中,当航空UE检测到调整参数后,对调整参数是否符合预设的调整条件进行判断。
其中,预设条件包括如下两个:
条件一、航空UE的高度发生了变化;
条件二、航空UE所处的无线信号的路径传输方式发生了变化;其中,路径传输方式包括:LOS无线信号的视线传输和NLOS无线信号的非视线传输。
其中,在满足上述任何一个条件的情况下,则表示预设的调整参数符合预设调整条件。
本实施例中,为了减少航空UE和基站之间交互的次数,航空UE在检测到预设的调整参数符合预设调整条件的情况下,可以不向基站发送信息,直接对路损补偿因子进行调整。
为了实现航空UE可以直接对路损补偿因子进行调整,本实施例中,在航空UE中设置了调整权限,在航空UE满足调整权限的情况下,航空UE可以对路损补偿因子进行调整。
本实施例中,开启航空UE具有调整路损补偿因子权限的条件是,航空UE具有路损补偿因子调整标志。其中,该路损补偿因子调整标志可以是基站发送给航空UE的。在一种实施方式中,航空UE在获取了预设的调整参数后的执行过程包括:
判断预设的调整参数是否符合预设调整条件;
若预设的调整参数符合预设的调整条件,判断航空UE是否存在路损补偿因子调整权限;
若航空UE存在路损补偿因子的调整条件,对路损补偿因子进行调整。
本实施例中,在对路损补偿因子进行调整时,需要基于一些补偿参数计算路损补偿因子,其中,路损补偿因子包括:路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值、航空UE处于NLOS场景下的路损补偿参数的门限值、高度门限值等。
其中,对路损补偿因子的调整,需要基于航空UE当前的高度已经路损补偿因子是处于LOS场景还是NLOS场景,分别计算路损补偿因子,具体的路损补偿因子的计算方法会在下文中进行详细的介绍,本实施例中不再赘述。
S104:基于调整后的路损补偿因子降低所述航空UE的上行功率。
本实施例中,在计算得到路损补偿因子后,可以基于路损补偿因子调整航空UE的上行功率,以降低航空UE的上行功率。
举例说明:可以通过如下的公式1)计算航空UE的上行功率:
1)
Figure PCTCN2020126719-appb-000001
其中,P PUSCH,C(i)表示航空UE的上行功率;
P CMAX,c(i),表示航空UE的最大发射功率;
M PSUCH,c(i),表示子帧i中,PUSCH传输所使用的RB数目;
P O_PUSCH,c(j)=PO_NOMINAI(j)+PO_UE_PUSCH(j);
其中,P O_NOMINAL_PUSCH(j)为小区专用参数,P O_UE_PUSCH(j)为UE专用参数,两个参数均由高层信令指示,该参数可用于对不同的上行传输数据包设定不同的值。此外,参数j的取值与上行传输的数据包有关,当传输半持续性许可的数据包时,j=0;当传输动态调度许可的数据包时,j=1;当传输随机接入响应许可的数据包时,j=2。
a c(j)是小区特定的对路径损耗的补偿量;
举例说明:当j=0或1时,a(j)={0,0.4,0.5,0.6,0.7,0.8,0.9,1},由高层信令控制。当j=2时,(j)=1。本文档中j=1采用动态调度情况,a c(j)假设为0.5。
PL c是基于UE对于下行链路的估计,所得到的开环路径损耗补偿。
TF,c(i)是基于MCS的功率调整值。基于MCS的功率调整可以使得UE根据选定的MCS动态的调整相应的发射功率谱密度。UE的MCS是由eNodeB调度的,通过设置UE的发射MCS,可以较快地调整UE的发射功率谱密度,达到类似快速功率控制的效果。
f c(i)是PUSCH当前功率控制的调整值,该参数依据PDCCH上的TPC命令进行调整。
a(h,isLos)表示路损补偿因子。
本实施例中,获取预设的调整参数;在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;基于调整后的路损补偿因子降低所述航空UE的上行功率。这样,航空UE在对路损补偿因子进行调整后,对航空UE的上行功率进行了调整,即降低了在一定高度下航空UE的上行功率,进而降低了航空UE对小区间上行链路的干扰。并且,通过本实施例的方式,在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。
参考图2,示出了本发明实施例提供的一种路损补偿因子的调整方法的流程示意图,在本实施例中,给方法包括:
S201:确定所述航空UE处于LOS场景或者是NLOS场景;
本实施例中,航空UE在不同的无线信道状态下,对应于不同的路损补偿因子调整方法。
S202:在所述航空UE处于LOS场景下,获取LOS场景下各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
本实施例中,在LOS场景下,可以通过路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值,计算路损补偿因子。
S203:在所述航空UE处于NLOS场景下时,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
本实施例中,当航空UE处于NLOS场景下时,需要基于航空UE的高度确定计算方法,具体的,包括:
当航空UE的高度大于或者等于预设的高度门限的中间值时,基于航空UE处于NOLS场景下的路损补偿参数的上限值和路径损耗的补偿量计算航空UE的路损补偿因子;
当航空UE的高度大于或者等于预设的高度门限的下限值,且小于预设的高度门限的中间值时,基于航空UE处于NLOS场景下的路损补偿参数门限的中间值和路径损耗的补偿量,计算航空UE的路损补偿因子;
当航空UE的高度小于预设的高度门限的下限值,则路损补偿因子为零。
例如,可以通过如下的公式,计算路损补偿因子:
1)
Figure PCTCN2020126719-appb-000002
其中,isLOS=1,表示航空UE处于LOS场景下,isLOS=0表示航空UE处于NLOS场景下;
a LOS表示航空UE处于LOS场景下的路损补偿参数值;
a c(j)表示路径损耗的补偿量;
h表示航空UE的高度值;
H medinm表示预设的高度门限的中间值;
H LOW表示预设的高度门限的下限值;
Figure PCTCN2020126719-appb-000003
表示航空UE处于NLOS场景下的路损补偿参数门限值的上限值;
Figure PCTCN2020126719-appb-000004
表示航空UE处于NLOS场景下的路损补偿参数门限值的中间值。
需要说明的是,上述路损补偿参数可以是基站发送给航空UE的,也可以是航空UE自行计算得到的。
本实施例中,航空UE无需和基站之间进行复杂的通信,就能自行对路损补偿因子进行调整,这样不仅实现简单,并且减小了基站和航空UE的开销。
参考图3,示出了本发明实施例提供的一种通信抗干扰的方法的交互示意图,在本实施例中,包括:
S301:基站向航空UE发送路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限;
S302:航空UE获取预设的调整参数;
本实施例中的S302和上述的S101一致,本实施例中不再赘述。
S303:航空UE在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
本实施例中的S303和上述的S102一致,本实施例中不再赘述。
S304:基于调整后的路损补偿因子降低所述航空UE的上行功率。
本实施例中的S304和上述的S103一致,本实施例中不再赘述。
通过本实施例的方式,基站只需要和航空UE交互一次,即将路损补偿因子调整标志发送给航空UE,那么航空UE则具有的路损补偿因子调整权限。在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。
参考图4,示出了本发明实施例提供的一种通信网络抗干扰的装置的结构示意图,在本实施例中,该装置包括:
获取单元401,用于获取预设的调整参数;
路损补偿因子调整单元402,用于在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
上行功率调整单元403,用于基于调整后的路损补偿因子降低所述航空UE的上行功率。
可选的,还包括:
接收单元,用于接收基站发送的路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限。
可选的,在所述调整参数包括:航空UE的高度或者航空UE的路径传输方式的情况下:
所述预设调整条件包括:
航空UE的高度发生了变化;
或者
航空UE所处的无线信号的路径传输方式发生了变化;路径传输方式包括LOS无线信号的视线传输以及NOLS无线信号的非视线传输。
可选的,所述路损补偿因子调整单元,包括:
场景确定单元,用于确定所述航空UE处于LOS场景或者是NLOS场景;
第一路损补偿因子调整子单元,用于在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
第一路损补偿因子调整子单元,用于在所述航空UE处于NLOS场景下, 获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
可选的,所述LOS场景下的各个补偿参数包括:
路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值。
可选的,所述NLOS场景下的各个补偿参数包括:
航空UE处于NLOS场景下的路损补偿参数的门限值、高度门限值、路径损耗的补偿量。
可选的,所述路损补偿参数是基站计算得到的;
或者所述路损补偿参数是所述航空UE计算得到的。
通过本实施例的装置,航空UE在对路损补偿因子进行调整后,对航空UE的上行功率进行了调整,即降低了在一定高度下航空UE的上行功率,进而降低了航空UE对小区间上行链路的干扰。并且,通过本实施例的方式,在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。
参考图5,示出了本发明实施例提供的一种航空UE的结构示意图,在本实施例中,该航空UE包括:
处理器501和存储器502;
其中,所述处理器用于执行所述存储器中存储的程序;
所述存储器用于存储程序,所述程序用于执行:
获取预设的调整参数;
在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
基于调整后的路损补偿因子降低所述航空UE的上行功率。
可选的,还包括:
接收基站发送的路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限。
可选的,在所述调整参数包括:航空UE的高度或者航空UE的路径传输方式的情况下:
所述预设调整条件包括:
航空UE的高度发生了变化;
或者
航空UE所处的无线信号的路径传输方式发生了变化;路径传输方式包括LOS无线信号的视线传输以及NOLS无线信号的非视线传输。
可选的,所述对所述路损补偿因子进行调整,包括:
确定所述航空UE处于LOS场景或者是NLOS场景;
在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
在所述航空UE处于NLOS场景下,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
可选的,所述LOS场景下的各个补偿参数包括:
路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值。
可选的,所述NLOS场景下的各个补偿参数包括:
航空UE处于NLOS场景下的路损补偿参数的门限值、高度门限值、路径损耗的补偿量。
可选的,所述路损补偿参数是基站计算得到的;
或者所述路损补偿参数是所述航空UE计算得到的。
通过本实施例的终端,航空UE在对路损补偿因子进行调整后,对航空UE的上行功率进行了调整,即降低了在一定高度下航空UE的上行功率,进而降低了航空UE对小区间上行链路的干扰。并且,通过本实施例的方式,在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。
参考图6,示出了本发明实施例提供的一种通信网络抗干扰系统的结构示意图,在本实施例中,该系统包括:
基站601和航空UE602;
所述基站用于,向所述航空UE发送路损补偿因子调整标志;所述路损补 偿因子调整标志表示所述航空UE存在路损补偿因子调整权限;
所述航空UE,用于获取预设的调整参数;
在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
基于调整后的路损补偿因子降低所述航空UE的上行功率。
可选的,还包括:
接收基站发送的路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限。
可选的,在所述调整参数包括:航空UE的高度或者航空UE的路径传输方式的情况下:
所述预设调整条件包括:
航空UE的高度发生了变化;
或者
航空UE所处的无线信号的路径传输方式发生了变化;路径传输方式包括LOS无线信号的视线传输以及NOLS无线信号的非视线传输。
可选的,所述对所述路损补偿因子进行调整,包括:
确定所述航空UE处于LOS场景或者是NLOS场景;
在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
在所述航空UE处于NLOS场景下,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
可选的,所述LOS场景下的各个补偿参数包括:
路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值。
可选的,所述NLOS场景下的各个补偿参数包括:
航空UE处于NLOS场景下的路损补偿参数的门限值、高度门限值、路径损耗的补偿量。
可选的,所述路损补偿参数是基站计算得到的;
或者所述路损补偿参数是所述航空UE计算得到的。
通过本实施例的系统,基站只需要和航空UE交互一次,即将路损补偿因 子调整标志发送给航空UE,那么航空UE则具有的路损补偿因子调整权限。在航空UE存在路损因子调整权限的情况下,航空UE可以自行对路损补偿因子进行调整,无需基站和航空UE进行复杂的信令交互,也无需通过基站调整路损补偿因子,这样不仅实现简单,并且减小了基站和航空UE的开销。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种通信网络抗干扰的方法,其特征在于,包括:
    获取预设的调整参数;
    在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
    基于调整后的路损补偿因子降低所述航空UE的上行功率。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收基站发送的路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限。
  3. 根据权利要求1所述的方法,其特征在于,在所述调整参数包括:航空UE的高度或者航空UE的路径传输方式的情况下:
    所述预设调整条件包括:
    航空UE的高度发生了变化;
    或者
    航空UE所处的无线信号的路径传输方式发生了变化;路径传输方式包括LOS无线信号的视线传输以及NOLS无线信号的非视线传输。
  4. 根据权利要求1所述的方法,其特征在于,所述对所述路损补偿因子进行调整,包括:
    确定所述航空UE处于LOS场景或者是NLOS场景;
    在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
    在所述航空UE处于NLOS场景下,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
  5. 根据权利要求4所述的方法,其特征在于,所述LOS场景下的各个补偿参数包括:
    路径损耗的补偿量、航空UE处于LOS场景下的路损补偿参数值。
  6. 根据权利要求4所述的方法,其特征在于,所述NLOS场景下的各个补偿参数包括:
    航空UE处于NLOS场景下的路损补偿参数的门限值、高度门限值、路径 损耗的补偿量。
  7. 根据权利要求4-6中任意一项所述的方法,其特征在于,所述路损补偿参数是基站计算得到的;
    或者所述路损补偿参数是所述航空UE计算得到的。
  8. 一种通信网络抗干扰的装置,其特征在于,包括:
    获取单元,用于获取预设的调整参数;
    路损补偿因子调整单元,用于在预设的调整参数符合预设调整条件,且航空UE存在路损补偿因子调整权限的情况下,对路损补偿因子进行调整;
    上行功率调整单元,用于基于调整后的路损补偿因子降低所述航空UE的上行功率。
  9. 根据权利要求8所述的装置,其特征在于,所述路损补偿因子调整单元,包括:
    场景确定单元,用于确定所述航空UE处于LOS场景或者是NLOS场景;
    第一路损补偿因子调整子单元,用于在所述航空UE处于LOS场景下,获取LOS场景下的各个补偿参数,并基于LOS场景下的各个补偿参数计算路损补偿因子;
    第一路损补偿因子调整子单元,用于在所述航空UE处于NLOS场景下,获取当前航空UE的高度和NLOS场景下的各个参数,并基于当前航空UE的高度和NLOS场景下的各个补偿参数计算路损补偿因子。
  10. 一种通信网络抗干扰的数据传输系统,其特征在于,包括:
    基站和航空UE;
    所述基站用于,向所述航空UE发送路损补偿因子调整标志;所述路损补偿因子调整标志表示所述航空UE存在路损补偿因子调整权限;
    所述航空UE,用于执行权利要求1-7所述的通信网络抗干扰的方法。
  11. 一种航空UE,其特征在于,所述航空UE包括:
    处理器和存储器;
    其中,所述处理器用于执行所述存储器中存储的程序;
    所述存储器用于存储程序,所述程序用于执行权利要求1-7所述的通信网络抗干扰的方法。
PCT/CN2020/126719 2020-11-05 2020-11-05 一种通信网络抗干扰的方法、装置及系统 WO2022094848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126719 WO2022094848A1 (zh) 2020-11-05 2020-11-05 一种通信网络抗干扰的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126719 WO2022094848A1 (zh) 2020-11-05 2020-11-05 一种通信网络抗干扰的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2022094848A1 true WO2022094848A1 (zh) 2022-05-12

Family

ID=81458568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126719 WO2022094848A1 (zh) 2020-11-05 2020-11-05 一种通信网络抗干扰的方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2022094848A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444237A (zh) * 2011-08-12 2013-12-11 富士通株式会社 一种上行功率控制方法和装置
CN108401282A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 一种自适应调整上行功率参数的方法及装置
CN110139351A (zh) * 2018-02-08 2019-08-16 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
WO2019193560A1 (en) * 2018-04-05 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Airborne status dependent uplink power control related task(s) for aerial ues

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444237A (zh) * 2011-08-12 2013-12-11 富士通株式会社 一种上行功率控制方法和装置
CN108401282A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 一种自适应调整上行功率参数的方法及装置
CN110139351A (zh) * 2018-02-08 2019-08-16 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
WO2019193560A1 (en) * 2018-04-05 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Airborne status dependent uplink power control related task(s) for aerial ues

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, SPIRENT COMMUNICATIONS: "Introduction of new Event H1 measurement and reporting test case for Aerial UE", 3GPP DRAFT; R5-194772 AERIAL UE EVENT H1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG5, no. Reno, Nevada, United States; 20190513 - 20190517, 15 May 2019 (2019-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051742076 *

Similar Documents

Publication Publication Date Title
US20200275382A1 (en) System and Method for Wireless Power Control
US11871357B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
US10039062B2 (en) Uplink transmit power of a mobile controlled by base station based on difference between target and received quality
EP2503829B1 (en) Method for obtaining uplink transmission power control parameters
EP2400801B1 (en) Method, equipment and network device for controlling power
EP2744277A1 (en) Uplink power control method and device
US8965436B2 (en) Method for controlling uplink transmit power in mobile communication system
CN110139351B (zh) 一种功率控制方法及装置、设备、存储介质
KR20110090959A (ko) 간섭 관리 및 송신 품질 제어에 기초한 개선된 업링크 파워 제어
KR20230082688A (ko) 공중 ue에 대한 공수 상태 종속 업링크 전력 제어 관련 작업
CN108282855B (zh) 上行功率控制方法及终端
WO2015170726A1 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
CN104105187A (zh) 多链路连接的上行传输功率控制方法与装置
CN102300304A (zh) 一种上行功控的实现方法及装置
CN104837189A (zh) 一种基于lte-a系统的闭环功率控制修正方法
CN103945513A (zh) 功率控制方法和装置
CN112399541A (zh) 适用于非地面网络的上行功率控制方法及装置
WO2014119264A1 (ja) 無線通信システム、無線局および上り送信電力制御方法
WO2020030117A1 (zh) 功率控制参数的确定方法及装置、存储介质、电子设备
WO2013164024A1 (en) Method for power control of sounding reference signals
WO2022094848A1 (zh) 一种通信网络抗干扰的方法、装置及系统
CN112532338B (zh) 一种通信网络抗干扰的方法、装置及系统
WO2019095247A1 (zh) 无人飞行器及其功率控制的方法
WO2018205873A1 (zh) 一种功率控制方法及装置
CN110650522B (zh) 闭环功率控制方法、网络侧设备和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960309

Country of ref document: EP

Kind code of ref document: A1