WO2022094842A1 - 一种通信方法、无人机及存储介质 - Google Patents

一种通信方法、无人机及存储介质 Download PDF

Info

Publication number
WO2022094842A1
WO2022094842A1 PCT/CN2020/126697 CN2020126697W WO2022094842A1 WO 2022094842 A1 WO2022094842 A1 WO 2022094842A1 CN 2020126697 W CN2020126697 W CN 2020126697W WO 2022094842 A1 WO2022094842 A1 WO 2022094842A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication module
state
drone
motor rotation
communication
Prior art date
Application number
PCT/CN2020/126697
Other languages
English (en)
French (fr)
Inventor
赖云晖
刘欢
高建南
马宁
张冬
尹小俊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/126697 priority Critical patent/WO2022094842A1/zh
Priority to CN202080081360.2A priority patent/CN114731578A/zh
Publication of WO2022094842A1 publication Critical patent/WO2022094842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a communication method, an unmanned aerial vehicle and a storage medium.
  • drones equipped with shooting devices can provide people with tasks such as shooting, inspection, and surveillance.
  • the drone can be equipped with a camera to take some images, such as taking pictures of some inaccessible mountains, rivers and rivers, images of the disaster area, and so on.
  • a communication link based on a private communication protocol is usually deployed between the UAV and the control equipment.
  • the communication link based on the private communication protocol has the characteristics of safety, reliability and strong anti-interference ability, and can well support real-time downlink image transmission signals. and transmission of uplink control signals.
  • the speed is often slow and the efficiency is low.
  • the embodiments of the present invention provide a communication method, an unmanned aerial vehicle and a storage medium, which can flexibly utilize two communication modules with different transmission performances.
  • a first aspect of the embodiments of the present invention provides a communication method, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a first communication module and a second communication module.
  • the first communication module communicates based on a standard communication protocol, so
  • the second communication module communicates based on a private communication protocol, and the method includes:
  • the first communication module is controlled to send the image data indicated by the image download instruction based on the standard communication protocol
  • the second communication module is controlled to send or receive data based on the private communication protocol.
  • a second aspect of the embodiments of the present invention provides a communication method, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a first communication module and a second communication module.
  • the first communication module communicates based on a standard communication protocol.
  • the second communication module communicates based on a private communication protocol, and the method includes:
  • the first communication module is controlled to be in a non-working state and the second communication module is controlled to be in a working state.
  • a third aspect of the embodiments of the present invention provides an unmanned aerial vehicle, where the unmanned aerial vehicle includes a storage device, a switching controller, a first communication module and a second communication module;
  • the storage device for storing computer programs
  • the switching controller invokes the computer program to control the first communication module to send the image download instruction based on the standard communication protocol when the UAV is not taking off.
  • a fourth aspect of the embodiments of the present invention provides an unmanned aerial vehicle, where the unmanned aerial vehicle includes a storage device, a switching controller, a first communication module and a second communication module;
  • the storage device for storing computer programs
  • the switching controller calls the computer program to control the first communication module and the second communication module to be in a working state when the UAV is not taking off; When in a flying state, the first communication module is controlled to be in a non-working state and the second communication module is controlled to be in an working state.
  • a fifth aspect of the embodiments of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is adapted to be loaded by a processor and execute the communication according to the first aspect above The method or the communication method described in the second aspect.
  • two communication modules with different transmission performance are set on the UAV, and the two communication modules with different transmission performance are coordinated based on the state of the UAV, so that the two communication modules can be fully utilized. Transmission advantage.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another unmanned aerial vehicle provided by an embodiment of the present invention.
  • the embodiment of the present application deploys a first communication module and a second communication module in the UAV.
  • the first communication module communicates based on a standard communication protocol
  • the second communication module communicates based on a proprietary communication protocol.
  • the UAV is not taking off, it can be detected whether the UAV has obtained the image download instruction. If the UAV has obtained the image download instruction, the first communication module is controlled to send the image data indicated by the image download instruction based on the standard communication protocol. . In this way, the transmission speed and transmission bandwidth of the image downloading process can be guaranteed, and the image data can be quickly transmitted.
  • the second communication module When the drone is in a flying state, the second communication module is controlled to send or receive data based on the private communication protocol.
  • the communication link established based on the private communication protocol has strong anti-interference ability, can well support the transmission of real-time downlink image transmission signals and uplink control signals, and ensure the safety of UAVs during flight.
  • the first communication module may be a WiFi wireless communication module
  • the second communication image transmission module may be an Ocusync wireless communication module.
  • the first communication module and the second communication module may be two completely independent modules, or the first communication module and the second communication module share some components, such as an antenna, a front-end radio frequency circuit, etc., which are not limited in the embodiment of the present invention .
  • FIG. 1 is an architecture diagram of a communication system according to an embodiment of the present invention.
  • the communication system 10 may at least include an unmanned aerial vehicle 100 , a control device 110 , and a terminal device 120 .
  • the UAV 100 may be a fixed-wing UAV, or a rotary UAV such as a quad-rotor, a hexa-rotor, an octa-rotor, etc.
  • the control device 110 may be a dedicated remote controller, or it may be installed with a corresponding
  • the smart device of the application controlled by the drone for example, the smart device can be a smart phone, a tablet computer, etc.
  • the terminal device 120 in FIG. 1 may be a smart phone, a personal computer, a smart wearable device, etc., which is not limited in the embodiment of the present invention.
  • the drone 100 may establish a communication link 121 with the terminal device 120 through a first communication module, and the first communication module communicates based on a standard communication protocol.
  • the drone 100 may establish a communication link 111 with the control device 110 through a second communication module, and the second communication module communicates based on a proprietary communication protocol.
  • control device 100 may communicate with the terminal device 120 via a wired connection 131 .
  • the wired connection 131 may be a connection via a universal serial bus USB. In this way, before the terminal device 120 directly establishes a communication connection with the drone 100 , the terminal device 120 can perform data transmission with the drone 100 through the control device 110 .
  • the user can operate the terminal device 120 to cause the terminal device to generate a handover control command, and the terminal device transmits the handover control command to the drone 100 through the wired connection 131 and the communication link 111, if the handover control command is used to instruct the
  • the drone can control the first communication module to enter the working state, so that the terminal device 120 can establish the communication link 121 with the first communication module.
  • the user can operate a physical button on the drone 100 to generate a switching control command. If the switching control command is used to instruct to switch the first communication module to the working state, the drone can control the first communication module. The communication module enters the working state, so that the terminal device 120 can establish the communication link 121 with the first communication module.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present invention.
  • the communication method is applied to an unmanned aerial vehicle, and the unmanned aerial vehicle includes a first communication module and a second communication module.
  • the first communication module communicates based on a standard communication protocol
  • the second communication module communicates based on a proprietary communication protocol.
  • the communication method includes but is not limited to the steps described in the following S200 to S202.
  • S200 Determine the state of the drone.
  • the state of the drone includes a non-flying state and a flying state, and different operations are performed in different states.
  • the first communication module is controlled to send the image data indicated by the image download instruction based on a standard communication protocol.
  • the acquisition method of the image download instruction may be received by the first communication module based on a standard communication protocol, or received by the second communication module based on a proprietary communication protocol.
  • the image data indicated by the image download instruction may be sent to the terminal device 120 through the communication link 121 .
  • control the second communication module to send or receive data based on a private communication protocol.
  • the drone 100 can communicate with the control device 110 through the communication link 111 .
  • the control device 100 can also communicate with the terminal device 120 through the wired connection 131 , so that the terminal device 120 can perform data transmission with the drone 100 through the control device 110 .
  • the UAV before the UAV determines whether the UAV is in the state of not taking off, the UAV can also detect whether the current UAV is in the upgrade state or the frequency linking state, if the drone is in the upgrading state or the frequency linking state state, the first communication module is prohibited from establishing a communication connection with the terminal device based on the standard communication protocol at this time.
  • the UAV is in the upgrade state or the frequency connection state, it is necessary to use the second communication module based on the private communication protocol. Prohibiting the first communication module to establish a communication connection with the terminal device based on the standard communication protocol can ensure the normal upgrade or frequency connection of the UAV.
  • the first communication module is prohibited from establishing a communication connection with the terminal device based on a standard communication protocol. It can be understood that a person skilled in the art can set a prohibition condition that does not allow the first communication module to establish a communication connection with the terminal device based on a standard communication protocol according to the actual application, which is not limited to the above mentioned ones.
  • the UAV in order to detect whether the UAV is in a state of not taking off or in a flying state, the UAV can obtain the motor rotation information of the UAV, the motor rotation information is used to indicate whether the motor is rotating, and then according to the motor rotation information Determine the state of the drone, that is, the state of not taking off and the state of flight. If it is determined according to the motor rotation information that the drone is in a state of not taking off, step S201 may be performed; if it is determined that the drone is in a flying state according to the motor rotation information, step S202 may be performed.
  • determining the state of the UAV according to the motor rotation information may include: if the UAV determines that the motor is not rotating according to the motor rotation information, it may be determined that the UAV is in a state of not taking off; If the information confirms that the motor has been turned, it is determined that the drone is in a flying state.
  • the motor rotation information may include a motor rotation speed
  • the drone's determination of the state of the drone according to the motor rotation information may include: the drone may determine whether the motor rotation speed included in the motor rotation information is less than a speed threshold, If the motor rotation speed included in the motor rotation information is less than the speed threshold, it is determined that the UAV is in a state of not taking off; if the motor rotation speed included in the motor rotation information is greater than or equal to the speed threshold, it is determined that the UAV is in a flying state.
  • the speed threshold set here can be set according to the speed of the drone when it takes off and leaves the ground in actual work.
  • the drone before the drone controls the first communication module to send the image data indicated by the image download instruction based on the standard communication protocol, the first communication module has not established a connection with the terminal device based on the standard communication protocol. Therefore, the drone can output the first prompt information to the terminal device through the second communication module, and the first prompt information is used to indicate whether to control the first communication module to send the image data indicated by the image download instruction; The confirmation operation of the first prompt information controls the first communication module to establish a communication connection with the terminal device based on the standard communication protocol.
  • the drone can send the first prompt information to the control device through the second communication module, and then the control device sends the first prompt information to the terminal device, and the terminal device presents the first prompt information on its user interface.
  • the terminal device After obtaining the confirmation operation of the user for the first prompt information on the user interface, the terminal device generates confirmation information and sends it to the control device, and the control device sends the confirmation information through the communication link between it and the second communication module , after the drone obtains the confirmation information, it can control the first communication module to establish a communication connection with the terminal device based on a standard communication protocol, and the standard communication protocol may be, for example, a WiFi protocol.
  • the second communication module if the first communication module establishes a communication connection with the terminal device based on a standard communication protocol, the second communication module is controlled to enter a non-working state.
  • the drone in the process of sending the image data indicated by the image download instruction based on the communication connection established by the standard communication protocol, can obtain the wireless channel interference status of the environment where the drone is located, and determine the wireless channel interference status. Whether the channel interference state satisfies the preset condition, if the wireless channel interference state satisfies the preset condition, the second communication module is controlled to send the image data indicated by the image download instruction based on the private communication protocol. In another embodiment, if the wireless channel interference state satisfies a preset condition, output second prompt information to the terminal device through the first communication module, where the second prompt information is used to indicate whether to switch to the second communication module for sending The image data indicated by the image download instruction.
  • the UAV can obtain the wireless channel interference status of the environment in which the mobile platform is located within a preset period, or the UAV can Continuously obtain the wireless channel interference status of the environment where the drone is located.
  • the UAV can also determine the wireless channel interference state according to the data transmission rate in the process of transmitting data.
  • the drone can obtain the data transmission rate in the process of data transmission, and judge whether the data transmission rate is lower than the transmission rate threshold.
  • the wireless channel interference state satisfies the preset condition.
  • the drone sends images based on the communication connection established by the standard communication protocol. Download the image data indicated by the instruction. After determining that the interference state of the wireless channel satisfies the preset condition, the UAV can directly control the second communication module to send the image data indicated by the image download instruction based on the private communication protocol, or output the second prompt information to prompt the user whether to choose based on the private communication
  • the protocol sends the image data indicated by the image download instruction.
  • the UAV when the UAV is in the upgrade state or the frequency linking state, if the UAV obtains the handover control instruction, it does not respond to the handover control instruction, and the handover control instruction is used to instruct the first communication module based on standard communication
  • the protocol establishes a communication connection with the terminal device
  • a switching control virtual key may be set in the user interaction interface of the terminal device, the switching control virtual key correspondingly selects the first communication module when the switching control virtual key is at the first position, and the switching control virtual key correspondingly selects the second communication module when the switching control virtual key is at the second position communication module.
  • a physical button is provided on the drone, and the physical button selects the first communication module correspondingly when the physical button is in the first position, and selects the second communication module correspondingly when the physical button is in the second position.
  • the link can obtain the handover control instruction. Or when the drone detects that the entity button is operated to the first position, a switching control command is generated, and the drone directly obtains the switching operation command. If the UAV is in the upgrade state or the frequency link state when the handover operation instruction is obtained, the first communication module has been prohibited from establishing a communication connection with the terminal device based on the standard communication protocol. Therefore, the drone does not respond to switching control commands.
  • the interaction mode for the user to select the communication module is not limited to the above-mentioned modes.
  • a physical button is provided on the drone.
  • the first communication module is correspondingly selected, and when the user's second operation on the physical button is obtained, the corresponding Select the second communication module.
  • the first operation may be a long press, and the second operation may be a short press.
  • the communication module is switched to the second communication module, and when the current communication module is the second communication module, if the user's operation on the entity is obtained, the communication module is switched to the second communication module.
  • the operation of the physical button switches the communication module to the first communication module.
  • the operation may be a long press.
  • the drone when the drone is in flight, since the first communication module has been prohibited from establishing a communication connection with the terminal device based on a standard communication protocol during the flight, if the drone acquires the switching control instruction, Then it does not respond to the handover control instruction, wherein the handover control instruction is used to instruct the first communication module to establish a communication connection with the terminal device based on a standard communication protocol.
  • the process of obtaining the handover control command by the UAV can refer to the process of obtaining the handover control command when the UAV is in the upgrade state or the frequency link state, which will not be repeated here.
  • the drone can be set with a status indicator, and when the drone controls the first communication module to establish a communication connection with the terminal device based on a standard communication protocol, the drone can use the light color of the status indicator or the display frequency of the light color to determine the
  • the connection status is indicated, for example, the status of establishing a communication connection can be indicated by the red light of the status indicator, and the successful establishment of the communication connection can be indicated by the blue light of the status indicator, and so on.
  • the drone can be provided with a status indicator light, and the status indicator light can have different lighting states, so that the different lighting states can indicate the current connection status between the drone and the terminal device.
  • the status indicator of the drone shows a blue light flashing slowly; when switching to the first communication module but the communication connection between the first communication module and the terminal device has not yet
  • the status indicator of the drone shows a blue light breathing; when the first communication module successfully establishes a communication connection with the terminal device, the status indicator of the drone shows a steady blue light; when the first communication module When sending the image data indicated by the image download command, the status indicator of the drone will flash blue quickly.
  • the first communication module when the UAV is not taking off, if the image download instruction is obtained, the first communication module is controlled to send the image data indicated by the image download instruction based on the standard communication protocol.
  • the second communication module When the UAV is in the flying state when the second communication module is controlled to send or receive data based on the proprietary communication protocol. It can not only ensure that the drone communicates in a reliable way when flying, but also ensure faster image data download when the drone is not taking off.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • the communication method is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a first communication module and a second communication module.
  • the first communication module communicates based on a standard communication protocol
  • the second communication module communicates based on a proprietary communication protocol, for example, the proprietary communication protocol may be a proprietary image transmission protocol or the like.
  • the communication method includes the following steps S300-S302:
  • the state of the drone includes a non-flying state and a flying state, and different operations are performed in different states.
  • the non-working state includes the following two situations: the drone can detect whether the distance between the drone and the control device is greater than the distance threshold; (1) if the distance between the drone and the control device is greater than the distance threshold, Then turn off the first communication module, and the first communication module is completely in a power-off state at this time; (2) if the distance between the drone and the control device is less than or equal to the distance threshold, the first communication module is controlled to be in a low power consumption state , so that the drone can quickly control the first communication module to be in a working state after the drone returns to home and stops the paddle, that is, the drone controls the first communication module to quickly establish a communication connection with the terminal device, reducing the time for communication connection.
  • the drone may acquire motor rotation information of the drone, where the motor rotation information is used to indicate whether the motor rotates, and then determine the state of the drone according to the motor rotation information, wherein the state of the drone may be is not taking off or flying. If it is determined according to the motor rotation information that the UAV is in a state of not taking off, step S301 may be executed; if it is determined that the UAV is in a flying state according to the motor rotation information, step S302 may be executed.
  • determining the running state of the drone according to the motor rotation information may include: if the drone determines that the motor is not rotating according to the motor rotation information, it may be determined that the drone is in a state of not taking off; The rotation information determines that the motor has rotated, and the drone is determined to be in a flying state.
  • the motor rotation information may include a motor rotation speed
  • determining the running state of the drone according to the motor rotation information by the drone may include: the drone may determine whether the motor rotation speed included in the motor rotation information is less than a speed threshold , if the motor rotation speed included in the motor rotation information is less than the speed threshold, it is determined that the UAV is in a state of not taking off; if the motor rotation speed included in the motor rotation information is greater than or equal to the speed threshold, it is determined that the UAV is in a flying state.
  • the speed threshold set here is set according to the rotation speed of the drone when it takes off and leaves the ground in actual work.
  • the drone when the drone is not taking off, if the drone obtains an image download instruction, it can output first prompt information to the terminal device, where the first prompt information is used to indicate whether to control the first communication module to send The image data indicated by the image download instruction. If the drone detects the confirmation operation for the first prompt information, the drone controls the first communication module to send the image data indicated by the image download instruction based on the standard communication protocol. In one embodiment, when the drone outputs the first prompt information to the terminal device, the drone may send the first prompt information to the control device through the second communication module, and then the control device sends the first prompt information to the terminal. equipment. Or the drone can directly transmit the first prompt information to the terminal device.
  • the terminal device presents the first prompt information on its user interaction interface, and if the user's confirmation operation for the first prompt information on the user interaction interface is obtained, the terminal device generates confirmation information. Further, the terminal device can send the confirmation information to the control device, and the control device can send the confirmation information to the drone through the communication link between it and the second communication module, or the terminal device can communicate with the first communication module through it. The communication link between the two sends this confirmation directly to the drone.
  • the drone in the process of sending the image data indicated by the image download instruction based on the communication connection established by the standard communication protocol, can obtain the wireless channel interference status of the environment where the drone is located, and determine the wireless channel interference status. Whether the channel interference state satisfies the preset condition, if the wireless channel interference state satisfies the preset condition, the second communication module is controlled to send the image data indicated by the image download instruction based on the private communication protocol. In another embodiment, if the wireless channel interference state satisfies the preset condition, output second prompt information to the terminal device, where the second prompt information is used to instruct to switch to the second communication module to send the image data indicated by the image download instruction.
  • the drone can send the second prompt information to the terminal device through the first communication module based on a standard communication protocol, or the drone can output the second prompt information to the terminal device through the second communication module based on a proprietary communication protocol .
  • the UAV obtains the wireless channel interference state of the environment where the UAV is located, and how to determine that the wireless channel interference state satisfies the preset condition can refer to the corresponding description in FIG. 2 of the above embodiment, and will not be repeated here.
  • the UAV when the UAV is in the upgrade state or the frequency linking state, if the UAV obtains the handover control instruction, it does not respond to the handover control instruction, and the handover control instruction is used to instruct the first communication module based on standard communication
  • the protocol establishes a communication connection with the terminal device.
  • the specific implementation manner that the drone obtains the handover control command and if the drone obtains the handover control command, does not respond to the handover control command can refer to the corresponding description in the above-mentioned embodiment Fig. 2, and will not be repeated here.
  • the drone when the drone is in flight, since the first communication module has been prohibited from establishing a communication connection with the terminal device based on a standard communication protocol during the flight, if the drone acquires the switching control instruction, Then it does not respond to the handover control instruction, wherein the handover control instruction is used to instruct the first communication module to establish a communication connection with the terminal device based on a standard communication protocol.
  • the process of obtaining the handover control command by the UAV can refer to the process of obtaining the handover control command when the UAV is in the upgrade state or the frequency link state, which will not be repeated here.
  • the drone can be set with a status indicator, and when the drone controls the first communication module to establish a communication connection with the terminal device based on a standard communication protocol, the drone can use the light color of the status indicator or the display frequency of the light color to determine the
  • the connection status is indicated, for example, the status of establishing a communication connection can be indicated by the red light of the status indicator, and the successful establishment of the communication connection can be indicated by the blue light of the status indicator, and so on.
  • the drone can be provided with a status indicator light, and the status indicator light can have different lighting states, so that the different lighting states can indicate the current connection status between the drone and the terminal device.
  • the status indicator of the drone shows a blue light flashing slowly; when switching to the first communication module but the communication connection between the first communication module and the terminal device has not yet
  • the status indicator of the drone shows a blue light breathing; when the first communication module successfully establishes a communication connection with the terminal device, the status indicator of the drone shows a steady blue light; when the first communication module When sending the image data indicated by the image download command, the status indicator of the drone will flash blue quickly.
  • the drone when the drone is not taking off, the drone controls the first communication module and the second communication module to be in a working state.
  • the drone controls the first communication module to be in a non-working state and the second communication module to be in a working state.
  • the two communication modules with different transmission performance are in working state, and the transmission advantages of the two communication modules can be fully utilized.
  • the unmanned aerial vehicle is in a flying state, the first communication module is controlled to be in a non-working state so as to avoid interference with the data transmission of the second communication module, which can better ensure the reliability of the flying of the unmanned aerial vehicle.
  • FIG. 4 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 400 may at least include a switching controller 410 , a first The communication module 430 and the second communication module 440 and the storage device 450 .
  • the first communication module 430 communicates based on a standard communication protocol
  • the second communication module 440 communicates based on a proprietary communication protocol.
  • the drone 400 may also include a power assembly and a camera (not shown).
  • the switching controller 410 may be a central processing unit (CPU).
  • the control device 410 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or the like.
  • the above-mentioned PLD may be a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL), or the like.
  • the storage device 450 may include a volatile memory (volatile memory), such as random-access memory (RAM); the storage device may also include a non-volatile memory (non-volatile memory), such as flash memory memory (flash memory), solid-state drive (solid-state drive, SSD), etc.; the storage device may also include a combination of the above-mentioned types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • solid-state drive solid-state drive
  • SSD solid-state drive
  • the storage device 450 is further used to store program instructions.
  • the handover controller 410 may invoke the program instructions to implement the communication method shown in the embodiment of FIG. 2 of the present application.
  • the switching controller 410 is configured to control the first communication module to send the data based on the standard communication protocol if the image download instruction is obtained when the UAV is not taking off.
  • the switching controller 410 is further configured to: acquire motor rotation information of the drone, where the motor rotation information is used to indicate whether the motor rotates; The state of the man-machine, the state of the UAV is not taking off or flying.
  • the motor rotation information includes a motor rotation speed
  • the switching controller 410 is specifically configured to: if the motor rotation speed included in the motor rotation information is less than a speed threshold, determine that the UAV is in Not taking off state; if the motor rotation speed included in the motor rotation information is greater than or equal to a speed threshold, it is determined that the drone is in a flying state.
  • the switching controller 410 is specifically configured to: if it is determined that the motor is not rotating according to the motor rotation information, determine that the drone is in a non-take-off state; if according to the motor rotation information If it is determined that the motor has been rotated, it is determined that the drone is in a flying state.
  • the switching controller 410 before the controlling the first communication module to send the image data indicated by the image download instruction based on the standard communication protocol, the switching controller 410 is further configured to:
  • the switching controller 410 is further configured to: in the process of sending the image data indicated by the image download instruction based on the communication connection established by the standard communication protocol, acquire the unmanned aerial vehicle The wireless channel interference state of the environment; if the wireless channel interference state satisfies a preset condition, control the second communication module to send the image data indicated by the image download instruction based on the private communication protocol; or if the If the wireless channel interference state satisfies the preset condition, output second prompt information to the terminal device through the first communication module, where the second prompt information is used to indicate whether to switch to the second communication module to send the image Download the image data indicated by the instruction.
  • the wireless channel interference state is determined according to the data transmission rate during data transmission, and the handover controller 410 is further configured to: if the data transmission rate is lower than a transmission rate threshold, determine The wireless channel interference state satisfies a preset condition.
  • the switching controller 410 is further configured to: when the UAV is in the upgrade state or the frequency linking state, if a switching control instruction is obtained, not to respond to the switching control instruction, and the The handover control instruction is used to instruct the first communication module to establish a communication connection with the terminal device based on the standard communication protocol.
  • the switching controller 410 is further configured to: when the UAV is in a flying state, if a switching control instruction is obtained, the switching control instruction is not responded to, and the switching control instruction uses instructing the first communication module to establish a communication connection with the terminal device based on the standard communication protocol.
  • FIG. 5 is a schematic diagram of the architecture of another unmanned aerial vehicle provided by an embodiment of the present invention.
  • the unmanned aerial vehicle may include at least a switching controller 510, a first communication module 530, and a second communication module. 540 , and a storage device 550 .
  • the first communication module 530 communicates based on a standard communication protocol
  • the second communication module 540 communicates based on a proprietary communication protocol.
  • the drone also includes a power assembly 520 and a camera 560 .
  • the switching controller 510 may be a central processing unit (CPU).
  • the control device 510 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or the like.
  • the above-mentioned PLD may be a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL), or the like.
  • the storage device 550 may include a volatile memory (volatile memory), such as random-access memory (random-access memory, RAM); the storage device may also include a non-volatile memory (non-volatile memory), such as flash memory memory (flash memory), solid-state drive (solid-state drive, SSD), etc.; the storage device may also include a combination of the above-mentioned types of memory.
  • volatile memory volatile memory
  • non-volatile memory such as flash memory (flash memory), solid-state drive (solid-state drive, SSD), etc.
  • flash memory flash memory
  • solid-state drive solid-state drive
  • the storage device 550 is further used to store program instructions.
  • the handover controller 510 may invoke the program instructions to implement the communication method shown in the embodiment of FIG. 3 of the present application.
  • the switching controller 510 is specifically configured to: control the first communication module and the second communication module to be in a working state when the UAV is not taking off; When the drone is in a flying state, the first communication module is controlled to be in a non-working state and the second communication module is controlled to be in a working state.
  • the switching controller 510 is specifically configured to: when the first communication module is in a working state, the first communication module establishes a communication connection with the terminal device based on the standard communication protocol; Alternatively, the first communication module establishes a communication connection with the terminal device based on the standard communication protocol, and transmits data based on the communication connection.
  • the switching controller 510 is further configured to: control the first communication module based on the standard communication protocol if an image download instruction is obtained when the UAV is not taking off Send the image data indicated by the image download instruction.
  • the switching controller 510 before the controlling the first communication module to send the image data indicated by the image download instruction based on the standard communication protocol, is further configured to: output to the terminal device first prompt information, the first prompt information is used to indicate whether to control the first communication module to send the image data indicated by the image download instruction; the switching controller 510, when controlling the first communication module based on the When the standard communication protocol sends the image data indicated by the image download instruction, it is specifically used to: if a confirmation operation for the first prompt information is detected, control the first communication module to send the image data based on the standard communication protocol. The image data indicated by the image download instruction.
  • the switching controller 510 is further configured to: in the process of sending the image data indicated by the image download instruction based on the communication connection established by the standard communication protocol, acquire the unmanned aerial vehicle The wireless channel interference state of the environment; if the wireless channel interference state satisfies a preset condition, control the second communication module to send the image data indicated by the image download instruction based on the private communication protocol; or if the If the wireless channel interference state satisfies the preset condition, second prompt information is output to the terminal device, and the second prompt information is used to indicate whether to switch to the second communication module to send the image data indicated by the image download instruction.
  • the switching controller 510 is specifically configured to: if the distance between the drone and the control device is greater than a distance threshold, turn off the first communication module; If the distance between the control devices is less than or equal to the distance threshold, the first communication module is controlled to be in a low power consumption state.
  • the switching controller 510 is further configured to: acquire motor rotation information of the drone, where the motor rotation information is used to indicate whether the motor rotates; The state of the man-machine, the state of the UAV is not taking off or flying.
  • the switching controller 510 is specifically configured to: if the motor rotation speed included in the motor rotation information is less than a speed threshold, determine that the drone is in a state of not taking off; if the motor rotation information If the rotation speed of the included motor is greater than or equal to the speed threshold, it is determined that the drone is in a flying state.
  • the switching controller 510 is specifically configured to: if it is determined according to the motor rotation information that the motor is not rotating, determine that the UAV is in a non-takeoff state; if according to the motor rotation information If it is determined that the motor has been rotated, it is determined that the drone is in a flying state.
  • the switching controller 510 is further configured to: when the UAV is in the upgrade state or the frequency linking state, if a switching control instruction is obtained, not to respond to the switching control instruction, and the The handover control instruction is used to instruct the first communication module to establish a communication connection with the terminal device based on the standard communication protocol.
  • the switching controller 510 is further configured to: when the UAV is in a flying state, if a switching control instruction is obtained, it does not respond to the switching control instruction, and the switching control instruction uses instructing the first communication module to establish a communication connection with the terminal device based on the standard communication protocol.
  • This embodiment of the present application further provides a readable storage medium, where the readable storage medium stores a computer program, and when the computer program is executed by a processor, it can be used to implement the implementation corresponding to FIG. 2 or FIG. 3 in the embodiment of the present application
  • the communication method described in the example will not be repeated here.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Selective Calling Equipment (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种通信方法、无人机及存储介质,其中该通信方法包括:当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据;当所述无人机处于飞行状态时,控制所述第二通信模块基于所述私有通信协议发送或接收数据,可较为灵活的利用两种不同传输性能的通信模块。

Description

一种通信方法、无人机及存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种通信方法、无人机及存储介质。
背景技术
目前,随着电子技术和通信技术的发展,安装有拍摄装置的无人机可以为人们提供拍摄、巡查、监视等等任务。无人机可以搭载拍摄装置拍摄一些图像,例如拍摄一些人迹罕至的山川河流的景色影像,灾区的受灾情况影像等等。
无人机与控制设备之间通常部署有基于私有通信协议的通信链路,基于私有通信协议的通信链路具有安全、可靠、抗干扰能力强的特点,可以很好的支持实时下行图像传输信号和上行控制信号的传输。然而,利用基于私有通信协议的通信链路进行图像下载时,往往速度较慢,效率低下。
发明内容
本发明实施例提供了一种通信方法、无人机及存储介质,可较为灵活的利用两种不同传输性能的通信模块。
本发明实施例第一方面提供了一种通信方法,应用于无人机,所述无人机包括第一通信模块和第二通信模块,所述第一通信模块基于标准通信协议进行通信,所述第二通信模块基于私有通信协议进行通信,所述方法包括:
当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据;
当所述无人机处于飞行状态时,控制所述第二通信模块基于所述私有通信协议发送或接收数据。
本发明实施例第二方面提供了一种通信方法,应用于无人机,所述无人机包括第一通信模块和第二通信模块,所述第一通信模块基于标准通信协议进行通信,所述第二通信模块基于私有通信协议进行通信,所述方法包括:
当所述无人机处于未起飞状态时,控制所述第一通信模块和所述第二通信模块处于工作状态;
当所述无人机处于飞行状态时,控制所述第一通信模块处于非工作状态状态以及所述第二通信模块处于工作状态。
本发明实施例第三方面提供了一种无人机,所述无人机包括存储装置、切换控制器、第一通信模块和第二通信模块;
所述存储装置,用于存储计算机程序;
所述切换控制器,调用所述计算机程序,用于当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据;当所述无人机处于飞行状态时,控制所述第二通信模块基于所述私有通信协议发送或接收数据。
本发明实施例第四方面提供了一种无人机,所述无人机包括存储装置、切换控制器、第一通信模块和第二通信模块;
所述存储装置,用于存储计算机程序;
所述切换控制器,调用所述计算机程序,用于当所述无人机处于未起飞状态时,控制所述第一通信模块和所述第二通信模块处于工作状态;当所述无人机处于飞行状态时,控制所述第一通信模块处于非工作状态状态以及所述第二通信模块处于工作状态。
本发明实施例第五方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于由处理器加载并执行如上述第一方面所述的通信方法或者第二方面所述的通信方法。
在本发明实施例中,在无人机上设置了两种不同传输性能的通信模块,并基于无人机的状态对这两种不同传输性能的通信模块进行协调,可以充分利用两种通信模块的传输优势。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种通信系统的架构示意图;
图2为本发明实施例提供的一种通信方法的流程示意图;
图3为本发明实施例提供的另一种通信方法的流程示意图;
图4为本发明实施例提供的一种无人机的结构示意图;
图5为本发明实施例提供的另一种无人机的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了在保证无人机飞行控制安全的基础上,更为便捷地实现图像数据下载,本申请实施例在无人机中部署了第一通信模块和第二通信模块。第一通信模块基于标准通信协议进行通信,第二通信模块基于私有通信协议进行通信。当无人机处于未起飞状态时,可检测无人机是否获取到图像下载指令,若无人机获取到图像下载指令,则控制第一通信模块基于标准通信协议发送图像下载指令指示的图像数据。如此,可以保证图像下载过程的传输速度和传输带宽,能够快速地传输图像数据。当无人机处于飞行状态时,控制第二通信模块基于私有通信协议发送或接收数据。基于该私有通信协议建立的通信链路抗干扰能力强,可以很好的支持实时下行图像传输信号和上行控制信号的传输,保证无人机飞行时的安全性。
示例的,第一通信模块可以是WiFi无线通信模块,第二通信图传模块可以是Ocusync无线通信模块。该第一通信模块和第二通信模块可以是完全独立的两个模块,或者该第一通信模块和该第二通信模块共用部分器件,如天线、前端射频电路等,本发明实施例不做限定。
请参见图1,图1为本发明实施例提供的一种通信系统的架构图,如图1所示,该通信系统10可至少包括无人机100、控制设备110和终端设备120。其中,无人机100可以是固定翼无人机,也可以是例如四旋翼、六旋翼、八旋翼等旋翼无人机,控制设备110可以是专用遥控器,也可以是安装了相应的可以对无人机进行控制的应用的智能设备,该智能设备例如可以是智能手机、平板电脑等。而图1中的终端设备120可以智能手机、个人电脑、智能可穿戴设备等,本发明实施例不做限定。
在一个实施例中,无人机100可以通过第一通信模块建立与终端设备120之间的通信链路121,第一通信模块基于标准通信协议进行通信。无人机100可以通过第二通信模块建立与控制设备110之间的通信链路111,第二通信模块基于私有通信协议进行通信。
在一个实施例中,控制设备100可以通过有线连接131与终端设备120通信。该有线连接131可以是通过通用串行总线USB进行连接。如此,在终端设备120与无人机100直接建立通信连接之前,终端设备120可以通过控制设备110与无人机100进行数据传输。例如,用户可以操作终端设备120以使得终端设备生成切换控制指令,终端设备通过有线连接131和通信链路111,将该切换控制指令传输给无人机100,若该切换控制指令用于指示将第一通信模块切换到工作状态,则无人机可以控制该第一通信模块进入工作状态,从而使得终端设备120可以建立与第一通信模块之间的通信链路121。
在一个实施例中,用户可以操作无人机100上的实体按键以生成切换控制指令,若该切换控制指令用于指示将第一通信模块切换到工作状态,则无人机可以控制该第一通信模块进入工作状态,从而使得终端设备120可以建立与第一通信模块之间的通信链路121。
基于上述通信系统,请参见图2,图2为本发明实施例提供的一种通信方法的流程示意图,该通信方法应用于无人机,该无人机包括第一通信模块和第二通信模块,该第一通信模块基于标准通信协议进行通信,该第二通信模块基于私有通信协议进行通信。该通信方法包括但不限于如下S200到S202所描述的步骤。
S200,确定无人机的状态,在本发明实施例中,无人机的状态包括未飞行状态和飞行状态,在不同的状态执行不同的操作。
S201,当无人机处于未起飞状态时,若获取到图像下载指令,则控制第一通信模块基于标准通信协议发送图像下载指令指示的图像数据。其中,图像下载指令的获取方式可以是第一通信模块基于标准通信协议接收到的,或者,第二通信模块基于私有通信协议接收到的。示例的,请参见图1,当无人机100处于未起飞状态时,若获取到图像下载指令,可以通过通信链路121,将图像下载指令指示的图像数据发送给终端设备120。
S202、当无人机处于飞行状态时,控制第二通信模块基于私有通信协议发送或接收数据。示例的,请参见图1,无人机100起飞后,无人机100可以通过通信链路111与控制设备110通信。进一步的,控制设备100还可以通过有线连接131与终端设备120通信,使得终端设备120可以通过控制设备110与无人机100进行数据传输。
在一个实施例中,无人机在确定无人机是否处于未起飞状态之前,无人机还可以检测当前无人机是否处于升级状态或对频状态,若无人机处于升级状态或对频状态,则此时禁止第一通信模块基于标准通信协议与终端设备建立通信连接。无人机处于升级状态或对频状态时需要利用基于私有通信协议的第二通信模块,禁止第一通信模块基于标准通信协议与终端设备建立通信连接可以保证无人机正常升级或是对频。在另一个实施例中,若无人机通过通信接口连接到笔记本电脑,进行数据读取等操作时,禁止第一通信模块基于标准通信协议与终端设备建立通信连接。可以理解的,本领域技术人员可以根据实际应用设置不允许第一通信模块基于标准通信协议与终端设备建立通信连接的禁止条件,不限于上述提到的几种。
在一个实施例中,为了检测无人机是处于未起飞状态还是处于飞行状态,无人机可以获取无人机的电机转动信息,该电机转动信息用于指示电机是否转动,然后根据电机转动信息确定无人机的状态,即未起飞状态、飞行状态。若根据电机转动信息确定无人机处于未起飞状态,则可以执行步骤S201;若根据电机转动信息确定无人机处于飞行状态,则执行步骤S202。
在一个实施例中,无人机根据电机转动信息确定无人机的状态可以包括:若无人机根据电机转动信息确定电机未转动,则可以确定无人机处于未起飞状态;若根据电机转动信息确定电机已转动,则确定无人机处于飞行状态。
在一个实施例中,该电机转动信息可以包括电机转动速度,无人机根据电机转动信息确定无人机的状态可以包括:无人机可以判断电机转动信息包括的电机转动速度是否小于速度阈值,若电机转动信息包括的电机转动速度小于速度阈值,则确定无人机处于未起飞状态;若电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定无人机处于飞行状态。需要说明的是,这里设置速度阈值可根据无人机实际工作中,起飞离开地面时的转速来设置。
在一个实施例中,无人机在控制第一通信模块基于标准通信协议发送图像下载指令指示的图像数据之前,第一通信模块还未基于标准通信协议与终端设备建立连接。因此,无人机可通过第二通信模块向终端设备输出第一提示信息,该第一提示信息用于指示是否控制第一通信模块发送图像下载指令指示的图像数据;若无人机检测到针对第一提示信息的确认操作,则控制第一通信模块基于标准通信协议与终端设备建立通信连接。
具体的,无人机可通过第二通信模块向控制设备发送第一提示信息,然后由控制设备向终端设备发送第一提示信息,终端设备在其用户交互界面上呈现该第一提示信息,若获取到用户在该用户交互界面上针对该第一提示信息的确认操作,则终端设备生成确认信息并发送给控制设备,控制设备通过其与第二通信模块之间的通信链路发送该确认信息,无人机获取到该确认信息之后则可控制第一通信模块基于标准通信协议与终端设备建立通信连接,标准通信协议例如可以是WiFi协议。
在一个实施例中,若第一通信模块基于标准通信协议与终端设备建立通信连接,则控制第二通信模块进入非工作状态。
在一个实施例中,无人机在基于标准通信协议建立的通信连接发送图像下载指令指示的图像数据的过程中,无人机可获取无人机所处环境的无线信道干扰状态,并判断无线信 道干扰状态是否满足预设条件,如果无线信道干扰状态满足预设条件,则控制第二通信模块基于私有通信协议发送图像下载指令指示的图像数据。在另一个实施例中,如果无线信道干扰状态满足预设条件,则通过第一通信模块向终端设备输出第二提示信息,该第二提示信息用于指示是否切换至所述第二通信模块发送所述图像下载指令指示的图像数据。
无人机在基于标准通信协议建立的通信连接发送图像下载指令指示的图像数据的过程中,无人机可在预设周期内获取移动平台所处环境的无线信道干扰状态,或者无人机可不断获取无人机所处环境的无线信道干扰状态。在一个实施例中,无人机还可根据传输数据过程中的数据传输速率来确定无线信道干扰状态。无人机可获取在传输数据过程中的数据传输速率,并判断数据传输速率是否低于传输速率阈值,若数据传输速率低于传输速率阈值,说明当前数据传输受到信道干扰比较大,则可以确定无线信道干扰状态满足预设条件。若数据传输速率不低于传输速率阈值,说明当前数据传输受到信道干扰较小,则可以确定无线信道干扰状态不满足预设条件,则此时无人机基于标准通信协议建立的通信连接发送图像下载指令指示的图像数据。在确定无线信道干扰状态满足预设条件之后,无人机可以直接控制第二通信模块基于私有通信协议发送图像下载指令指示的图像数据,或者输出第二提示信息,以提示用户是否选择基于私有通信协议发送图像下载指令指示的图像数据。
在一个实施例中,当无人机处于升级状态或对频状态时,若无人机获取到切换控制指令,则不响应切换控制指令,该切换控制指令用于指示第一通信模块基于标准通信协议与终端设备建立通信连
具体的,终端设备的用户交互界面中可以设置有一个切换控制虚拟按键,该切换控制虚拟按键在第一位置时对应选择第一通信模块,该切换控制虚拟按键在第二位置时对应选择第二通信模块。或者,无人机上设置有一个实体按键,该实体按键在第一位置时对应选择第一通信模块,该实体按键在第二位置时对应选择第二通信模块。当终端设备检测到操作该切换控制虚拟按键到第一位置时会生成一个切换控制指令,无人机通过第二通信模块和控制设备之间的通信链路以及控制设备和终端设备之间的通信链路可以获取到该切换控制指令。或者当无人机检测到操作该实体按键到第一位置时会生成一个切换控制指令,无人机直接获取该切换操作指令。如果获取到切换操作指令时,无人机处于升级状态或对频状态,已经禁止第一通信模块基于标准通信协议与终端设备建立通信连接。因此,无人机不响应切换控制指令。
需要说明的是用户选择通信模块的交互方式不限于上述几种方式。在其他的实施例中,无人机上设置有一个实体按键,获取到用户对该实体按键的第一操作时,对应选择第一通信模块,获取到用户对该实体按键的第二操作时,对应选择第二通信模块。示例的,该第一操作可以是长按,第二操作可以是短按。或者,当前通信模块为第一通信模块时,如获取到用户对该实体按键的操作,则将通信模块切换为第二通信模块,当前通信模块为第二通信模块时,如获取到用户对该实体按键的操作,则将通信模块切换为第一通信模块。示例的,该操作可以是长按。
再一个实施例中,当无人机处于飞行状态时,由于在飞行过程中已被禁止第一通信模块基于标准通信协议与终端设备建立通信连接,因此,若无人机获取到切换控制指令,则不响应切换控制指令,其中,切换控制指令用于指示第一通信模块基于标准通信协议与终 端设备建立通信连接。
需要说明的是,当无人机处于飞行状态时,无人机获取切换控制命令的过程可参见当无人机处于升级状态或对频状态时获取切换控制命令的过程,在此不再赘述。
在一个实施例中,无人机可设置状态指示灯,无人机在控制第一通信模块基于标准通信协议与终端设备建立通信连接时,可以通过状态指示灯的灯光颜色或者灯光颜色显示频率来提示连接状态,例如,正在建立通信连接的状态可以用状态指示灯的红灯来进行提示,成功建立通信连接可以用状态指示灯的蓝灯来进行提示等等。
在另一个实施例中,无人机可设置有状态指示灯,该状态指示灯可以有不同的发光状态,从而不同发光状态可以指示当前无人机与终端设备之间的连接状态。当从第二通信模块切换到第一通信模块时,无人机的状态指示灯显示为蓝灯慢闪;当切换到第一通信模块但是第一通信模块和终端设备之间的通信连接还未建立完成时,无人机的状态指示灯显示为蓝灯呼吸;当第一通信模块与终端设备成功建立通信连接时,无人机的状态指示灯显示为蓝灯常亮;当第一通信模块发送图像下载指令指示的图像数据时,无人机的状态指示灯显示为蓝灯快闪。
在本发明实施例中,当无人机处于未起飞状态时,若获取到图像下载指令,则控制第一通信模块基于标准通信协议发送图像下载指令指示的图像数据,当无人机处于飞行状态时,控制第二通信模块基于私有通信协议发送或接收数据。既可以保证无人机飞行时利用可靠的方式进行通信,又可以保证在无人机未起飞时实现更快的图像数据下载。
基于上述通信系统,请参见图3,图3为本发明实施例提供的一种通信方法的流程示意图,该通信方法应用于无人机,无人机包括第一通信模块和第二通信模块,该第一通信模块基于标准通信协议进行通信,该第二通信模块基于私有通信协议进行通信,例如,该私有通信协议可以为私有图传协议等。该通信方法包括以下步骤S300-S302:
S300,确定无人机的状态,在本发明实施例中,无人机的状态包括未飞行状态和飞行状态,在不同的状态执行不同的操作。
S301、当无人机处于未起飞状态时,控制第一通信模块和第二通信模块处于工作状态。其中,当第一通信模块处于工作状态时,存在两种可能的情况:(1)第一通信模块基于标准通信协议与终端设备建立通信连接,但暂时没有基于该通信连接传输数据;(2)第一通信模块基于标准通信协议与终端设备建立通信连接,且基于通信连接传输数据。
S302、当无人机处于飞行状态时,控制第一通信模块处于非工作状态以及第二通信模块处于工作状态。
在一个实施例中,非工作状态包括以下两种情况:无人机可以检测与控制设备之间的距离是否大于距离阈值;(1)若无人机与控制设备之间的距离大于距离阈值,则关闭第一通信模块,此时第一通信模块完全处于断电状态;(2)若无人机与控制设备之间的距离小于或者等于距离阈值,则控制第一通信模块处于低功耗状态,以使得无人机在返航停桨之后,无人机能够快速控制第一通信模块处于工作状态,即无人机控制第一通信模块与终端设备快速建立通信连接,减少通信连接的时间。
在一个实施例中,无人机可以获取无人机的电机转动信息,该电机转动信息用于指示电机是否转动,然后根据电机转动信息确定无人机的状态,其中,无人机的状态可以是未 起飞状态或飞行状态。若根据电机转动信息确定无人机处于未起飞状态,则可以执行步骤S301;若根据电机转动信息确定无人机处于飞行状态,则执行步骤S302。
在一个实施例中,无人机根据电机转动信息确定无人机的运行状态可以包括:若无人机根据电机转动信息确定电机未转动,则可以确定无人机处于未起飞状态;若根据电机转动信息确定电机已转动,则确定无人机处于飞行状态。
在一个实施例中,该电机转动信息可以包括电机转动速度,无人机根据电机转动信息确定无人机的运行状态可以包括:无人机可以判断电机转动信息包括的电机转动速度是否小于速度阈值,若电机转动信息包括的电机转动速度小于速度阈值,则确定无人机处于未起飞状态;若电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定无人机处于飞行状态。需要说明的是,这里设置速度阈值根据无人机实际工作中,起飞离开地面时的转速来设置。
在一个实施例中,当无人机处于未起飞状态,若无人机获取图像下载指令,则可以向终端设备输出第一提示信息,该第一提示信息用于指示是否控制第一通信模块发送图像下载指令指示的图像数据。若无人机检测到针对第一提示信息的确认操作,则无人机控制第一通信模块基于标准通信协议发送图像下载指令指示的图像数据。在一个实施例中,无人机向终端设备输出第一提示信息可以是无人机通过第二通信模块将第一提示信息发送给控制设备,然后再由控制设备将第一提示信息发送至终端设备。或者无人机可以直接向终端设备传输第一提示信息。
具体的,终端设备在其用户交互界面上呈现该第一提示信息,若获取到用户在该用户交互界面上针对该第一提示信息的确认操作,则终端设备生成确认信息。进一步的,终端设备可以将该确认信息发送给控制设备,控制设备通过其与第二通信模块之间的通信链路向无人机发送该确认信息,或者终端设备通过其与第一通信模块之间的通信链路向无人机直接发送该确认信息。
在一个实施例中,无人机在基于标准通信协议建立的通信连接发送图像下载指令指示的图像数据的过程中,无人机可获取无人机所处环境的无线信道干扰状态,并判断无线信道干扰状态是否满足预设条件,如果无线信道干扰状态满足预设条件,则控制第二通信模块基于私有通信协议发送图像下载指令指示的图像数据。在另一个实施例中,如果无线信道干扰状态满足预设条件,则向终端设备输出第二提示信息,该第二提示信息用于指示切换至第二通信模块发送图像下载指令指示的图像数据。
在一个实施例中,无人机可以通过第一通信模块基于标准通信协议向终端设备发送第二提示信息,或者无人机可以通过第二通信模块基于私有通信协议向终端设备输出第二提示信息。
其中,无人机获取无人机所处环境的无线信道干扰状态,以及如何确定无线信道干扰状态满足预设条件的实现方式可参见上述实施例图2中相应的描述,在此不再赘述。
在一个实施例中,当无人机处于升级状态或对频状态时,若无人机获取到切换控制指令,则不响应切换控制指令,该切换控制指令用于指示第一通信模块基于标准通信协议与终端设备建立通信连接。其中,无人机获取到切换控制指令以及若无人机获取到切换控制指令,不响应切换控制指令的具体实现方式可参见上述实施例图2中相应的描述,在此不 再赘述。
再一个实施例中,当无人机处于飞行状态时,由于在飞行过程中已被禁止第一通信模块基于标准通信协议与终端设备建立通信连接,因此,若无人机获取到切换控制指令,则不响应切换控制指令,其中,切换控制指令用于指示第一通信模块基于标准通信协议与终端设备建立通信连接。
需要说明的是,当无人机处于飞行状态时,无人机获取切换控制命令的过程可参见当无人机处于升级状态或对频状态时获取切换控制命令的过程,在此不再赘述。
在一个实施例中,无人机可设置状态指示灯,无人机在控制第一通信模块基于标准通信协议与终端设备建立通信连接时,可以通过状态指示灯的灯光颜色或者灯光颜色显示频率来提示连接状态,例如,正在建立通信连接的状态可以用状态指示灯的红灯来进行提示,成功建立通信连接可以用状态指示灯的蓝灯来进行提示等等。
在另一个实施例中,无人机可设置有状态指示灯,该状态指示灯可以有不同的发光状态,从而不同发光状态可以指示当前无人机与终端设备之间的连接状态。当从第二通信模块切换到第一通信模块时,无人机的状态指示灯显示为蓝灯慢闪;当切换到第一通信模块但是第一通信模块和终端设备之间的通信连接还未建立完成时,无人机的状态指示灯显示为蓝灯呼吸;当第一通信模块与终端设备成功建立通信连接时,无人机的状态指示灯显示为蓝灯常亮;当第一通信模块发送图像下载指令指示的图像数据时,无人机的状态指示灯显示为蓝灯快闪。
在本发明实施例中,当无人机处于未起飞状态时,无人机控制第一通信模块和第二通信模块处于工作状态。当无人机处于飞行状态时,无人机控制第一通信模块处于非工作状态以及第二通信模块处于工作状态。如此,在无人机处于未起飞状态时,两个不同传输性能的通信模块都处于工作状态,可以充分利用两种通信模块的传输优势。在无人机处于飞行状态时,控制第一通信模块处于非工作状态以免对第二通信模块的数据传输造成干扰,可以更好的保证无人机飞行的可靠性。
基于上述提供的通信方法,请参见图4,图4为本发明实施例提供一种无人机的结构示意图,如图4所示,无人机400可至少可包括切换控制器410、第一通信模块430和第二通信模块440以及存储装置450。第一通信模块430基于标准通信协议进行通信,第二通信模块440基于私有通信协议进行通信。无人机400还可以包括动力组件和拍摄装置(图未示)。
所述切换控制器410可以是中央处理器(central processing unit,CPU)。所述控制设备410还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。上述PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。
所述存储装置450可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置还可以包括上述种类的存储器的组合。
可选地,所述存储装置450还用于存储程序指令。所述切换控制器410可以调用所述程序指令,实现如本申请图2实施例中所示的通信方法。
在一个实施例中,所述切换控制器410,用于当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据;当所述无人机处于飞行状态时,控制所述第二通信模块基于所述私有通信协议发送或接收数据。
在一个实施例中,所述切换控制器410,还用于:获取所述无人机的电机转动信息,所述电机转动信息用于指示电机是否转动;根据所述电机转动信息确定所述无人机的状态,所述无人机的状态为未起飞状态或飞行状态。
在一个实施例中,所述电机转动信息包括电机转动速度,所述切换控制器410,具体用于:若所述电机转动信息包括的电机转动速度小于速度阈值,则确定所述无人机处于未起飞状态;若所述电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定所述无人机处于飞行状态。
在一个实施例中,所述切换控制器410,具体用于:若根据所述电机转动信息确定所述电机未转动,则确定所述无人机处于未起飞状态;若根据所述电机转动信息确定所述电机已转动,则确定所述无人机处于飞行状态。
在一个实施例中,所述控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据之前,所述切换控制器410,还用于:
通过所述第二通信模块向所述终端设备输出第一提示信息,所述第一提示信息用于指示是否控制所述第一通信模块发送所述图像下载指令指示的图像数据;若检测到针对所述第一提示信息的确认操作,则控制所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接。
在一个实施例中,所述切换控制器410,还用于:在基于所述标准通信协议建立的所述通信连接发送所述图像下载指令指示的图像数据的过程中,获取所述无人机所处环境的无线信道干扰状态;若所述无线信道干扰状态满足预设条件,则控制所述第二通信模块基于所述私有通信协议发送所述图像下载指令指示的图像数据;或者若所述无线信道干扰状态满足预设条件,则通过所述第一通信模块向所述终端设备输出第二提示信息,所述第二提示信息用于指示是否切换至所述第二通信模块发送所述图像下载指令指示的图像数据。
在一个实施例中,所述无线信道干扰状态是根据传输数据过程中的数据传输速率确定的,所述切换控制器410,还用于:若所述数据传输速率低于传输速率阈值,则确定所述无线信道干扰状态满足预设条件。
在一个实施例中,所述切换控制器410,还用于:当所述无人机处于升级状态或对频状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
在一个实施例中,所述切换控制器410,还用于:当所述无人机处于飞行状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
本发明实施例中所述无人机的具体实现可参考前述实施例图2中相关内容的描述,在 此不赘述。
进一步地,请参见图5,图5为本发明实施例提供的另一种无人机的架构示意图,该无人机可至少可包括切换控制器510、第一通信模块530和第二通信模块540、以及存储装置550。第一通信模块530基于标准通信协议进行通信,第二通信模块540基于私有通信协议进行通信。无人机还包括动力组件520和拍摄装置560。
切换控制器510可以是中央处理器(central processing unit,CPU)。所述控制设备510还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。上述PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。
所述存储装置550可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置还可以包括上述种类的存储器的组合。
可选地,所述存储装置550还用于存储程序指令。所述切换控制器510可以调用所述程序指令,实现如本申请图3实施例中所示的通信方法。
在一个实施例中,所述切换控制器510,具体用于:当所述无人机处于未起飞状态时,控制所述第一通信模块和所述第二通信模块处于工作状态;当所述无人机处于飞行状态时,控制所述第一通信模块处于非工作状态状态以及所述第二通信模块处于工作状态。
在一个实施例中,所述切换控制器510,具体用于:当所述第一通信模块处于工作状态时,所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接;或者,所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接,并基于所述通信连接传输数据。
在一个实施例中,所述切换控制器510,还用于:当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据。
在一个实施例中,所述控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据之前,所述切换控制器510,还用于:向所述终端设备输出第一提示信息,所述第一提示信息用于指示是否控制所述第一通信模块发送所述图像下载指令指示的图像数据;所述切换控制器510,在控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据时具体用于:若检测到针对所述第一提示信息的确认操作,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据。
在一个实施例中,所述切换控制器510,还用于:在基于所述标准通信协议建立的所述通信连接发送所述图像下载指令指示的图像数据的过程中,获取所述无人机所处环境的无线信道干扰状态;若所述无线信道干扰状态满足预设条件,则控制所述第二通信模块基于所述私有通信协议发送所述图像下载指令指示的图像数据;或者若所述无线信道干扰状态满足预设条件,则向所述终端设备输出第二提示信息,所述第二提示信息用于指示是否 切换至所述二通信模块发送所述图像下载指令指示的图像数据。
在一个实施例中,所述切换控制器510,具体用于:若所述无人机与控制设备之间的距离大于距离阈值,则关闭所述第一通信模块;若所述无人机与所述控制设备之间的距离小于或者等于所述距离阈值,则控制所述第一通信模块处于低功耗状态。
在一个实施例中,所述切换控制器510,还用于:获取所述无人机的电机转动信息,所述电机转动信息用于指示电机是否转动;根据所述电机转动信息确定所述无人机的状态,所述无人机的状态为未起飞状态或飞行状态。
在一个实施例中,所述切换控制器510,具体用于:若所述电机转动信息包括的电机转动速度小于速度阈值,则确定所述无人机处于未起飞状态;若所述电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定所述无人机处于飞行状态。
在一个实施例中,所述切换控制器510,具体用于:若根据所述电机转动信息确定所述电机未转动,则确定所述无人机处于未起飞状态;若根据所述电机转动信息确定所述电机已转动,则确定所述无人机处于飞行状态。
在一个实施例中,所述切换控制器510,还用于:当所述无人机处于升级状态或对频状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
在一个实施例中,所述切换控制器510,还用于:当所述无人机处于飞行状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
本发明实施例中所述无人机的具体实现可参考前述实施例图3中相关内容的描述,在此不赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,可以用于实现本申请实施例图2或者图3所对应实施例中描述的通信方法,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (41)

  1. 一种通信方法,其特征在于,应用于无人机,所述无人机包括第一通信模块和第二通信模块,所述第一通信模块基于标准通信协议进行通信,所述第二通信模块基于私有通信协议进行通信,所述方法包括:
    当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据;
    当所述无人机处于飞行状态时,控制所述第二通信模块基于所述私有通信协议发送或接收数据。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述无人机的电机转动信息,所述电机转动信息用于指示电机是否转动;
    根据所述电机转动信息确定所述无人机的状态,所述无人机的状态为未起飞状态或飞行状态。
  3. 如权利要求2所述的方法,其特征在于,所述电机转动信息包括电机转动速度,所述根据所述电机转动信息确定所述无人机的状态,包括:
    若所述电机转动信息包括的电机转动速度小于速度阈值,则确定所述无人机处于未起飞状态;
    若所述电机转动信息包括的电机转动速度大于或者等于所述速度阈值,则确定所述无人机处于飞行状态。
  4. 如权利要求2所述的方法,其特征在于,所述根据所述电机转动信息确定所述无人机的状态,包括:
    若根据所述电机转动信息确定所述电机未转动,则确定所述无人机处于未起飞状态;
    若根据所述电机转动信息确定所述电机已转动,则确定所述无人机处于飞行状态。
  5. 如权利要求1所述的方法,其特征在于,所述控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据之前,还包括:
    通过所述第二通信模块向终端设备输出第一提示信息,所述第一提示信息用于指示是否控制所述第一通信模块发送所述图像下载指令指示的图像数据;
    若检测到针对所述第一提示信息的确认操作,则控制所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接。
  6. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在基于所述标准通信协议建立的所述通信连接发送所述图像下载指令指示的图像数据的过程中,获取所述无人机所处环境的无线信道干扰状态;
    若所述无线信道干扰状态满足预设条件,则控制所述第二通信模块基于所述私有通信协议发送所述图像下载指令指示的图像数据;或者
    若所述无线信道干扰状态满足预设条件,则通过所述第一通信模块向终端设备输出第二提示信息,所述第二提示信息用于指示是否切换至所述第二通信模块发送所述图像下载指令指示的图像数据。
  7. 如权利要求6所述的方法,其特征在于,所述无线信道干扰状态是根据传输数据过程中的数据传输速率确定的,所述方法还包括:
    若所述数据传输速率低于传输速率阈值,则确定所述无线信道干扰状态满足预设条件。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    当所述无人机处于升级状态或对频状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  9. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    当所述无人机处于飞行状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  10. 一种通信方法,其特征在于,应用于无人机,所述无人机包括第一通信模块和第二通信模块,所述第一通信模块基于标准通信协议进行通信,所述第二通信模块基于私有通信协议进行通信,所述方法包括:
    当所述无人机处于未起飞状态时,控制所述第一通信模块和所述第二通信模块处于工作状态;
    当所述无人机处于飞行状态时,控制所述第一通信模块处于非工作状态状态以及所述第二通信模块处于工作状态。
  11. 如权利要求10所述的方法,其特征在于,当所述第一通信模块处于工作状态时,所述第一通信模块基于所述标准通信协议与终端设备建立通信连接;或者,所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接,并基于所述通信连接传输数据。
  12. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据。
  13. 如权利要求12所述的方法,其特征在于,所述控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据之前,所述方法还包括:
    向终端设备输出第一提示信息,所述第一提示信息用于指示是否控制所述第一通信模块发送所述图像下载指令指示的图像数据;
    所述控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据,包括:
    若检测到针对所述第一提示信息的确认操作,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据。
  14. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    在基于所述标准通信协议建立的所述通信连接发送所述图像下载指令指示的图像数据的过程中,获取所述无人机所处环境的无线信道干扰状态;
    若所述无线信道干扰状态满足预设条件,则控制所述第二通信模块基于所述私有通信协议发送所述图像下载指令指示的图像数据;或者
    若所述无线信道干扰状态满足预设条件,则向终端设备输出第二提示信息,所述第二提示信息用于指示是否切换至所述二通信模块发送所述图像下载指令指示的图像数据。
  15. 如权利要求10所述的方法,其特征在于,所述控制所述第一通信模块处于非工作状态,包括:
    若所述无人机与控制设备之间的距离大于距离阈值,则关闭所述第一通信模块;
    若所述无人机与所述控制设备之间的距离小于或者等于所述距离阈值,则控制所述第一通信模块处于低功耗状态。
  16. 如权利要求10-15任一项所述的方法,其特征在于,所述方法还包括:
    获取所述无人机的电机转动信息,所述电机转动信息用于指示电机是否转动;
    根据所述电机转动信息确定所述无人机的状态,所述无人机的状态为未起飞状态或飞行状态。
  17. 如权利要求16所述的方法,其特征在于,所述电机转动信息包括电机转动速度,所述根据所述电机转动信息确定所述无人机的状态,包括:
    若所述电机转动信息包括的电机转动速度小于速度阈值,则确定所述无人机处于未起飞状态;
    若所述电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定所述无人机处于飞行状态。
  18. 如权利要求16所述的方法,其特征在于,所述根据所述电机转动信息确定所述无人机的状态,包括:
    若根据所述电机转动信息确定所述电机未转动,则确定所述无人机处于未起飞状态;
    若根据所述电机转动信息确定所述电机已转动,则确定所述无人机处于飞行状态。
  19. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    当所述无人机处于升级状态或对频状态时,若获取到切换控制指令,则不响应所述切 换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  20. 如权利要求10-19任一项所述的方法,其特征在于,所述方法还包括:
    当所述无人机处于飞行状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  21. 一种无人机,其特征在于,所述无人机包括:存储装置、切换控制器、第一通信模块和第二通信模块;
    所述存储装置,用于存储计算机程序;
    所述切换控制器,调用所述计算机程序,用于当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据;当所述无人机处于飞行状态时,控制所述第二通信模块基于所述私有通信协议发送或接收数据。
  22. 如权利要求21所述的无人机,其特征在于,所述切换控制器,还用于:获取所述无人机的电机转动信息,所述电机转动信息用于指示电机是否转动;根据所述电机转动信息确定所述无人机的状态,所述无人机的状态为未起飞状态或飞行状态。
  23. 如权利要求22所述的无人机,其特征在于,所述电机转动信息包括电机转动速度,所述切换控制器,具体用于:若所述电机转动信息包括的电机转动速度小于速度阈值,则确定所述无人机处于未起飞状态;若所述电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定所述无人机处于飞行状态。
  24. 如权利要求22所述的无人机,其特征在于,所述切换控制器,具体用于:若根据所述电机转动信息确定所述电机未转动,则确定所述无人机处于未起飞状态;若根据所述电机转动信息确定所述电机已转动,则确定所述无人机处于飞行状态。
  25. 如权利要求21所述的无人机,其特征在于,所述切换控制器,还用于:通过所述第二通信模块向终端设备输出第一提示信息,所述第一提示信息用于指示是否控制所述第一通信模块发送所述图像下载指令指示的图像数据;
    若检测到针对所述第一提示信息的确认操作,则控制所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接。
  26. 如权利要求21所述的无人机,其特征在于,所述切换控制器,还用于:在基于所述标准通信协议建立的所述通信连接发送所述图像下载指令指示的图像数据的过程中,获取所述无人机所处环境的无线信道干扰状态;若所述无线信道干扰状态满足预设条件,则 控制所述第二通信模块基于所述私有通信协议发送所述图像下载指令指示的图像数据;或者若所述无线信道干扰状态满足预设条件,则通过所述第一通信模块向终端设备输出第二提示信息,所述第二提示信息用于指示是否切换至所述第二通信模块发送所述图像下载指令指示的图像数据。
  27. 如权利要求26所述的无人机,其特征在于,所述无线信道干扰状态是根据传输数据过程中的数据传输速率确定的,所述切换控制器,还用于:若所述数据传输速率低于传输速率阈值,则确定所述无线信道干扰状态满足预设条件。
  28. 如权利要求21-27任一项所述的无人机,其特征在于,所述切换控制器,还用于:当所述无人机处于升级状态或对频状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  29. 如权利要求21-27任一项所述的无人机,其特征在于,所述切换控制器,还用于:当所述无人机处于飞行状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  30. 一种无人机,其特征在于,所述无人机包括:存储装置、切换控制器、第一通信模块和第二通信模块;
    所述存储装置,用于存储计算机程序;
    所述切换控制器,调用所述计算机程序,用于当所述无人机处于未起飞状态时,控制所述第一通信模块和所述第二通信模块处于工作状态;当所述无人机处于飞行状态时,控制所述第一通信模块处于非工作状态状态以及所述第二通信模块处于工作状态。
  31. 如权利要求30所述的无人机,其特征在于,当所述第一通信模块处于工作状态时,所述第一通信模块基于所述标准通信协议与终端设备建立通信连接;或者,所述第一通信模块基于所述标准通信协议与所述终端设备建立通信连接,并基于所述通信连接传输数据。
  32. 如权利要求30所述的无人机,其特征在于,所述切换控制器,还用于:当所述无人机处于未起飞状态时,若获取到图像下载指令,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据。
  33. 如权利要求32所述的无人机,其特征在于,所述切换控制器,还用于:控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据之前,向终端设备输出第一提示信息,所述第一提示信息用于指示是否控制所述第一通信模块发送所述图像下载指令指示的图像数据;所述切换控制器在控制所述第一通信模块基于所述标准通 信协议发送所述图像下载指令指示的图像数据时,具体用于:若检测到针对所述第一提示信息的确认操作,则控制所述第一通信模块基于所述标准通信协议发送所述图像下载指令指示的图像数据。
  34. 如权利要求32所述的无人机,其特征在于,所述切换控制器,还用于:在基于所述标准通信协议建立的所述通信连接发送所述图像下载指令指示的图像数据的过程中,获取所述无人机所处环境的无线信道干扰状态;若所述无线信道干扰状态满足预设条件,则控制所述第二通信模块基于所述私有通信协议发送所述图像下载指令指示的图像数据;或者若所述无线信道干扰状态满足预设条件,则向终端设备输出第二提示信息,所述第二提示信息用于指示是否切换至所述二通信模块发送所述图像下载指令指示的图像数据。
  35. 如权利要求30所述的无人机,其特征在于,所述切换控制器,具体用于:若所述无人机与控制设备之间的距离大于距离阈值,则关闭所述第一通信模块;若所述无人机与所述控制设备之间的距离小于或者等于所述距离阈值,则控制所述第一通信模块处于低功耗状态。
  36. 如权利要求30-35任一项所述的无人机,其特征在于,所述切换控制器,还用于:获取所述无人机的电机转动信息,所述电机转动信息用于指示电机是否转动;
    根据所述电机转动信息确定所述无人机的状态,所述无人机的状态为未起飞状态或飞行状态。
  37. 如权利要求36所述的无人机,其特征在于,所述电机转动信息包括电机转动速度,所述根据所述电机转动信息确定所述无人机的状态,所述切换控制器,具体用于:若所述电机转动信息包括的电机转动速度小于速度阈值,则确定所述无人机处于未起飞状态;若所述电机转动信息包括的电机转动速度大于或者等于速度阈值,则确定所述无人机处于飞行状态。
  38. 如权利要求36所述的无人机,其特征在于,所述切换控制器,具体用于:若根据所述电机转动信息确定所述电机未转动,则确定所述无人机处于未起飞状态;若根据所述电机转动信息确定所述电机已转动,则确定所述无人机处于飞行状态。
  39. 如权利要求30所述的无人机,其特征在于,所述切换控制器,还用于:当所述无人机处于升级状态或对频状态时,若获取到切换控制指令,则不响应所述切换控制指令,所述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  40. 如权利要求30-39任一项所述的无人机,其特征在于,所述切换控制器,还用于:当所述无人机处于飞行状态时,若获取到切换控制指令,则不响应所述切换控制指令,所 述切换控制指令用于指示所述第一通信模块基于所述标准通信协议与终端设备建立通信连接。
  41. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序适于由处理器加载并执行如权利要求1-20中任一项所述的方法。
PCT/CN2020/126697 2020-11-05 2020-11-05 一种通信方法、无人机及存储介质 WO2022094842A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/126697 WO2022094842A1 (zh) 2020-11-05 2020-11-05 一种通信方法、无人机及存储介质
CN202080081360.2A CN114731578A (zh) 2020-11-05 2020-11-05 一种通信方法、无人机及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126697 WO2022094842A1 (zh) 2020-11-05 2020-11-05 一种通信方法、无人机及存储介质

Publications (1)

Publication Number Publication Date
WO2022094842A1 true WO2022094842A1 (zh) 2022-05-12

Family

ID=81458543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126697 WO2022094842A1 (zh) 2020-11-05 2020-11-05 一种通信方法、无人机及存储介质

Country Status (2)

Country Link
CN (1) CN114731578A (zh)
WO (1) WO2022094842A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070017A (zh) * 2015-08-13 2015-11-18 杭州若联科技有限公司 一种无人机无线通信方法和系统
CN106774426A (zh) * 2017-03-16 2017-05-31 深圳市乐升科技有限公司 一种无人机控制方法及系统
CN107396426A (zh) * 2016-05-16 2017-11-24 天津航天中为数据系统科技有限公司 用于无人机的机载终端及相应的数据传输系统和传输方法
CN108702201A (zh) * 2017-11-30 2018-10-23 深圳市大疆创新科技有限公司 无人机系统和通信方法
US20200145582A1 (en) * 2017-07-05 2020-05-07 Sony Corporation Imaging device, camera-mounted drone, mode control method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3346618B1 (en) * 2014-02-10 2021-09-15 SZ DJI Technology Co., Ltd. Adaptive communication mode switching
CN111625015A (zh) * 2019-02-28 2020-09-04 上海博泰悦臻电子设备制造有限公司 无人机控制方法及车载终端
CN114531194A (zh) * 2019-07-24 2022-05-24 深圳市道通智能航空技术股份有限公司 无线通信方法、装置、无人机以及无人机控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070017A (zh) * 2015-08-13 2015-11-18 杭州若联科技有限公司 一种无人机无线通信方法和系统
CN107396426A (zh) * 2016-05-16 2017-11-24 天津航天中为数据系统科技有限公司 用于无人机的机载终端及相应的数据传输系统和传输方法
CN106774426A (zh) * 2017-03-16 2017-05-31 深圳市乐升科技有限公司 一种无人机控制方法及系统
US20200145582A1 (en) * 2017-07-05 2020-05-07 Sony Corporation Imaging device, camera-mounted drone, mode control method, and program
CN108702201A (zh) * 2017-11-30 2018-10-23 深圳市大疆创新科技有限公司 无人机系统和通信方法

Also Published As

Publication number Publication date
CN114731578A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US11956705B2 (en) Function execution device and communication terminal
US10108379B2 (en) Information processing apparatus, method of controlling the same and storage medium
WO2014197576A1 (en) Mechanism to enable wifi offload based on power preference of user equipment
WO2018170862A1 (zh) 飞行器及其外部设备、通信方法、装置与系统
US9736624B2 (en) Communication device, communication device control method and program
CN108924520B (zh) 传输控制方法、装置、控制器、拍摄设备及飞行器
US20200367240A1 (en) Electronic device for transmitting or receiving data in wireless communication system and method therefor
WO2020154959A1 (zh) 多负载图传方法、控制系统、控制终端、无人机和服务器
US20200264602A1 (en) Unmanned aerial vehicle system and communication method
US20210294327A1 (en) System and method for movable object control
JP2017143389A5 (zh)
WO2022094842A1 (zh) 一种通信方法、无人机及存储介质
JP6978818B2 (ja) 無人航空機制御システム、その制御方法、及びプログラム
WO2021035641A1 (zh) 控制方法、远程服务器、控制站及存储介质
WO2017110297A1 (en) Information processing device, information processing method, and program
EP3889051A1 (en) Method and apparatus for controlling light emitting module, electronic device, and storage medium
US11006323B2 (en) Electronic device and WLAN relay function control method thereof
US10645737B2 (en) Wireless communication terminal, wireless communication system, wireless communication method, and recording medium
WO2020154890A1 (zh) 一种可移动平台的控制方法、装置及可移动平台
US10264434B2 (en) Communication apparatus, method for controlling the same, and program
CN111433706A (zh) 负载控制电路及可移动平台
JP6452665B2 (ja) 飛行装置及び通信方法
CN106793155B (zh) 网络通道选择方法、装置及终端
WO2019227311A1 (zh) 信号处理电路和设备,以及通信模式的处理方法
WO2023115619A1 (zh) 车辆驾驶方法、电视机以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960303

Country of ref document: EP

Kind code of ref document: A1