WO2022092554A1 - Multi-degree-of-freedom medical robot - Google Patents

Multi-degree-of-freedom medical robot Download PDF

Info

Publication number
WO2022092554A1
WO2022092554A1 PCT/KR2021/012403 KR2021012403W WO2022092554A1 WO 2022092554 A1 WO2022092554 A1 WO 2022092554A1 KR 2021012403 W KR2021012403 W KR 2021012403W WO 2022092554 A1 WO2022092554 A1 WO 2022092554A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
rear end
link arm
degree
moving
Prior art date
Application number
PCT/KR2021/012403
Other languages
French (fr)
Korean (ko)
Inventor
이성온
류우석
신현수
Original Assignee
주식회사 피치랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피치랩 filed Critical 주식회사 피치랩
Publication of WO2022092554A1 publication Critical patent/WO2022092554A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/009Physiotherapeutic tables, beds or platforms; Chiropractic or osteopathic tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/06Magnetotherapy using magnetic fields produced by permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the present invention relates to a medical multi-DOF robot capable of providing 6-DOF motion to a magnetic stimulator.
  • the brain is an organ located inside the head and is the highest central organ of the nervous system.
  • the brain is divided into cerebrum, cerebellum, midbrain, mesencephalon, pons and medulla, and generates brainwaves.
  • EEG also called electroencephalography (EEG) refers to the flow of electricity generated when signals are transmitted between cranial nerves in the nervous system. EEG differs when the brain processes various information and is the most important indicator of brain activity.
  • Applying electrical stimulation to the brain can treat or alleviate neurological symptoms such as hand tremors.
  • Methods for applying electrical stimulation to the brain include an invasive brain electrical stimulation method and a non-invasive brain electrical stimulation method.
  • the invasive brain electrical stimulation method is a method of inserting an electrode into the brain through surgery and applying an electrical signal to the electrode.
  • the non-invasive brain electrical stimulation method is a method of attaching an electrode to the scalp and then applying an electrical signal to the electrode.
  • the non-invasive brain electrical stimulation method has the advantage of being less costly and less risky than the invasive brain electrical stimulation method. Accordingly, research and development of an electrical stimulation device capable of applying electrical stimulation to the brain in a non-invasive manner is being conducted.
  • Non-invasive brain stimulation has been in the spotlight for the treatment of various neurological/psychiatric disorders, and representative techniques include transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS).
  • TMS transcranial magnetic stimulation
  • tDCS transcranial direct current stimulation
  • TUS transcranial ultrasound stimulation
  • treatment cases such as dementia, epilepsy, and depression have been reported by stimulating specific areas of the patient's brain.
  • a brain stimulation device that secures high safety and high accuracy (that is, can smoothly perform patient's motion compensation), and can provide accurate and repetitive stimulation with low-cost and simple installation and operation. It is necessary to develop a capable equipment.
  • a medical multi-degree-of-freedom robot includes a first link arm having a first front end and a first rear end; a first actuator installed on the first front end to rotate the first front end about the first rotation axis; a second link arm having a second front end and a second rear end; a second actuator installed at the first rear end to rotate the second front end about a second rotation axis; and a stimulation unit connected to the second rear end, the stimulation unit comprising: a linear moving device connected to the second rear end; a posture control device connected to the linear movement device to provide two or more degrees of freedom; and a magnetic stimulator connected to the posture control device.
  • the posture adjusting device includes: a third link arm installed in the linear movement device and having a third front end and a third rear end; a fourth link arm having a fourth front end and a fourth rear end; a third actuator installed at the third rear end to rotate the fourth front end about the third rotation axis; a fifth link arm having a fifth front end and a fifth rear end; a fourth actuator installed on the fourth rear end to rotate the fifth front end about a fourth axis of rotation perpendicular to the third axis of rotation; a sixth link arm having a sixth front end and a sixth rear end; and a fifth actuator installed at the fifth rear end to rotate the sixth front end to a fifth axis of rotation perpendicular to the third and fourth axis of rotation, and the magnetic stimulator may be connected to the sixth rear end.
  • a torsion spring may be installed between the first actuator and the first front end, and between the second actuator and the second front end, respectively.
  • a stand installed on the ground; and a height adjustment unit installed on the top of the stand and connected to the first actuator, wherein the height adjustment unit adjusts the height of the first actuator so that the intersection of the first and second rotational axes coincides with the center of the head of the subject. there is.
  • the stimulation unit may include: a torque sensor installed at a sixth rear end; And it may further include a moving platform connected to the torque sensor.
  • the first actuator may include a first motor and a first reducer
  • the second actuator may include a second motor and a second reducer
  • the first and second reducers may each be configured as a harmonic drive. there is.
  • the first actuator may further include a first brake for preventing free rotation of the first link arm
  • the second actuator may further include a second brake for preventing free rotation of the second link arm.
  • the distance between the first link arm and the center of the head of the stimulated person may be longer than the distance between the second link arm and the center of the head.
  • the extension lines of the third to fifth rotation shafts may be configured to intersect at one intersection point.
  • intersection point may be configured to move along a linear axis of the linear movement device upon movement of the third link arm.
  • the first and second link arms are each configured in a spherical frame to surround the head of the subject, and the magnetic stimulator may be a non-invasive brain stimulator.
  • the posture adjusting device may be configured to control the posture of the magnetic stimulator by adjusting a roll, a pitch, and a yaw angle of the magnetic stimulator.
  • a control method for a medical multi-DOF robot comprising: setting a position and a direction of a stimulus focus with respect to a subject; calculating input values of the first to fifth actuators and the linear movement device by performing inverse kinematic analysis; moving the first and second link arms according to the input value; fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the input value; and moving the third link member according to the input value to fix the magnetic pole focus.
  • the method may further include the step of moving the third link member to adjust the magnetic pole focus and the contact force (calibration).
  • the method further includes changing the stimulus focus, wherein the changing of the stimulus focus includes: resetting the position and direction of another stimulus focus; calculating secondary input values of the first to fifth actuators and the linear movement device by performing inverse kinematic analysis according to the reset stimulus focus; moving the first to sixth link arms to initial positions; moving the first and second link arms according to the secondary input value; fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the secondary input value; and moving the third link member according to the secondary input value to fix the magnetic pole focus.
  • the medical multi-degree-of-freedom robot has two spherical arms, it is possible to secure a wider working area than the existing device based on a specific effective work area corresponding to the periphery of the human head, The possible collision between the human head and the robot is minimized, maximizing the safety of the victim.
  • the medical multi-degree-of-freedom robot can stimulate the brain at a desired position and angle, thereby enabling safe and precise brain stimulation.
  • the equipment can be manufactured at low cost, the penetration rate of equipment can be increased, the effect of brain stimulation treatment can be maximized by designing the device to enable self-treatment, and the reliability of related research can be greatly improved.
  • FIG. 1 is a perspective view illustrating a medical multi-DOF robot according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a driving part of a medical multi-DOF robot according to an embodiment of the present invention.
  • 3A is a perspective view illustrating the stimulation unit in FIG. 2 ;
  • FIG. 3B is a perspective view illustrating the stimulation unit shown in FIG. 2 as viewed from a different direction from that of FIG. 2 .
  • FIG. 4 is a view showing a rotational movable range of the first rotary joint shown in FIG. 2 .
  • FIG. 5 is a view showing a rotational movable range of the second rotary joint shown in FIG.
  • FIG. 6 is a view showing the linear movable range of the linear joint shown in FIG.
  • FIG. 7 is a view for explaining an embodiment in which a torque sensor is installed in the stimulation unit shown in FIG. 2 .
  • FIG. 8 is a view showing an operation state of the linear moving device shown in FIG.
  • FIG. 9 is a view showing an operation state of the posture control device shown in FIG.
  • FIG. 10 is a view showing a state in which a 'T' shape is applied to the link arm shown in FIG. 2 .
  • FIG. 11 is a view for explaining the operation of the first rotary joint shown in FIG.
  • FIG. 12 is a view for explaining the operation of the second rotary joint shown in FIG.
  • FIG. 13 is a view for explaining the operation of the stimulation unit shown in FIG.
  • FIG. 14 is a view for explaining a movable range of a medical multi-DOF robot.
  • 15 is a flowchart illustrating a method for controlling a medical multi-DOF robot according to an embodiment of the present invention.
  • FIG. 16 is a flowchart illustrating a step of changing a stimulus focus shown in FIG. 15 .
  • 17 is a diagram for explaining inverse kinematic analysis.
  • 18 is a block diagram for explaining a control and compensation process of a medical multi-DOF robot.
  • FIG. 1 is a perspective view showing a medical multi-DOF robot 1 according to an embodiment of the present invention.
  • the medical multi-DOF robot 1 has a serial-type mechanism structure in which a linear joint and a rotary joint of two or more degrees of freedom are additionally attached to a main link part having a spherical frame, and the overall size can be minimized.
  • the medical multi-DOF robot 1 is driven with a total of six degrees of freedom, and may be composed of a single two-DOF spherical frame, a linear actuator connected thereto, and an orientation mechanism module with two or more degrees of freedom.
  • the direction conversion modules with more than two degrees of freedom are connected at right angles to each other and can be connected to the moving platform while inducing only the direction change of the end.
  • a stimulator for brain stimulation may be attached to the moving platform.
  • the medical multi-DOF robot 1 may include a stand 10 , a first rotation joint 100 , a second rotation joint 200 , and a stimulation unit 300 .
  • the first rotation joint 100 may include a first actuator 130 that rotates the first link arm 120 about the first link arm 120 and the first rotation shaft 110 .
  • the second rotation joint 200 may include a second actuator 230 for rotating the second link arm 220 about the first link arm 220 and the second rotation shaft 210 .
  • the stimulation unit 300 may include a linear joint having a linear movement axis 315 and third to fifth rotational joints, which will be described later in detail.
  • An angle between the extension line of the first rotation shaft 110 and the extension line of the second rotation shaft 120 may be approximately 50°. Also, an angle between the extension line of the second rotation shaft 120 and the extension line of the linear movement shaft 315 may be approximately 65°.
  • the stand 10 may be installed on the ground, and may be composed of a lower portion 11 and an upper portion 12 .
  • a height adjustment unit 13 may be installed in the upper part 12 .
  • a rail 14 may be formed on the upper portion 12 , and an actuator 15 may be installed on the upper portion of the rail 14 .
  • the frame 16 is installed on the rail 14 and can be moved up and down along the rail 14 by an actuator 15 .
  • the first actuator 130 may be installed in the frame 16 .
  • the height adjustment unit 13 moves the first actuator 130 so that the intersection point P 1 of the first and second rotation shafts 110 and 210 is the center of the head of the person stimulated by the stimulation unit 300 . It is possible to adjust the height of the first rotation joint 100 to match.
  • the height adjustment unit 13 provides one degree of freedom between the ground and the device, so that it is possible to position the rotation center of the positioning device at the center of the head of the subject.
  • FIG. 2 is a perspective view showing a driving part of the medical multi-DOF robot 1 according to an embodiment of the present invention.
  • the first link arm 120 may have a first front end 121 and a first rear end 122 .
  • the first actuator 130 may be installed on the first front end 121 to rotate the first front end 121 about the first rotational shaft 110 .
  • the second link arm 220 may have a second front end 221 and a second rear end 222 .
  • the second actuator 230 may be installed on the first rear end 122 to rotate the second front end 221 about the second rotation shaft 210 .
  • the stimulation unit 300 may be connected to the second rear end 222 .
  • the stimulation unit 300 includes a linear movement device 310 connected to the second rear end 222 , a posture adjustment apparatus 400 connected to the linear movement apparatus 310 to provide two or more degrees of freedom, and a posture adjustment apparatus It may include a magnetic stimulator 500 connected to the 400 .
  • the linear movement device 310 is connected to a ball screw to control the depth of the focus of the stimulator and is driven, and may include a rotation conversion module actuator with two or more degrees of freedom, a speed reducer, and a sensor for feedback of the position of the driving module.
  • the linear movement device 310 may include a linear frame 311 , an actuator 312 , and a third link arm 313 .
  • the third link arm 313 is installed on the linear frame 311 and may be moved along the longitudinal direction of the linear frame 311 by the actuator 312 .
  • the linear joint 301 may include a linear movement device 310 and a third link arm 313 .
  • the third rotation joint 401 may include a third actuator 420 and a fourth link arm 410 .
  • the fourth rotation joint 402 may include a fourth actuator 440 and a fifth link arm 430 .
  • the fifth rotation joint 403 may include a fifth actuator 460 and a sixth link arm 450 .
  • the linear movement device 310 may include a rail 311 , an actuator 312 , and a third link arm 313 .
  • the third link arm 313 may be linearly moved along the rail 311 by the actuator 312 .
  • a first torsion spring 140 is installed between the first actuator 130 and the first front end portion 121 of the first link arm 120 , and the second actuator 230 and the second link arm 220 .
  • a second torsion spring 240 may be installed between the second front end portions 211 . Since the first and second torsion springs 140 and 240 are provided as described above, even if the magnetic stimulator 500 collides with the subject, the torsion spring is able to absorb these shocks and the shock applied to the subject. can be minimized.
  • the first actuator 130 may include a first motor 131 and a first reducer 133
  • the second actuator 230 may include a second motor 231 and a second reducer 233
  • each of the first and second reduction gears 133 and 233 may be configured as a harmonic drive.
  • the reduction ratio of the harmonic drive is about 100:1, so that the high torque can be finally transmitted to the link arm.
  • the first actuator 130 is disposed on the first motor 131 and the first reducer 133 and further includes a first brake 132 for preventing free rotation of the first link arm 120
  • the second actuator Reference numeral 230 may further include a second brake 232 disposed between the second motor 231 and the second reduction gear 233 to prevent free rotation of the second link arm 220 . Accordingly, even when the power is turned off, the posture of the robot can be maintained without change.
  • the first and second link arms 120 and 220 are each configured in a spherical frame so as to surround the head of the subject, and the magnetic stimulator 500 may be a non-invasive brain stimulator.
  • the stimulator moves around the subject's head using the spherical frame, since the subject's head is excluded from the effective operating range, it has high safety and can have a wide effective operating range.
  • the distance between the first link arm 120 and the center of the head of the subject may be longer than the distance between the second link arm 220 and the center of the head. Since the stimulation unit 300 is installed in the second link arm 220 and more detailed manipulation is possible in the stimulation unit 300 itself, the movement of the first link arm 120 is larger than that of the second link arm 220 . can provide
  • the posture adjusting device 400 may be configured to control the posture of the magnetic stimulator 500 by adjusting roll, pitch, and yaw angles of the magnetic stimulator 500 .
  • a linear joint and a direction change joint of two or more degrees of freedom are added between the stimulator and the spherical frame, so that the depth and direction of the focus of the stimulator can be controlled in detail, and thus high accuracy can be achieved.
  • FIG. 3A is a perspective view illustrating the stimulation unit 300 in FIG. 2 .
  • FIG. 3B is a perspective view illustrating the stimulation unit 300 shown in FIG. 2 as viewed from a different direction from that of FIG. 2 .
  • the third link arm 313 may have a third front end 314 installed on the rail 311 and a third rear end 315 on which the third actuator 420 is installed.
  • the fourth link arm 410 may have a fourth front end 411 and a fourth rear end 412 , and the third actuator 420 is installed at the third rear end 315 and the fourth front end ( 411 may be rotated about the third rotation shaft 425 .
  • the fifth link arm 430 may have a fifth front end 431 and a fifth rear end 432 , and the fourth actuator 440 is installed at the fourth rear end 412 and the fifth front end ( 431 may be rotated about a fourth rotational shaft 445 perpendicular to the third rotational shaft 425 .
  • the sixth link arm 450 may have a sixth front end 451 and a sixth rear end 452 , and the fifth actuator 460 is installed at the fifth rear end 432 and installed at the sixth front end ( 451 may be rotated by a fifth rotation shaft 465 perpendicular to the third and fourth rotation shafts 425 and 445 .
  • the magnetic stimulator 500 may be connected to the sixth rear end portion 452 .
  • Extension lines of the third to fifth rotation shafts 425 , 445 , and 465 may be configured to intersect at one intersection point P 2 .
  • This intersection P 2 may be configured to move along the linear axis 315 of the linear movement device 310 when the third link arm 313 moves.
  • the combination of the first and second rotary joints 100 and 200 and the linear joint 310 can efficiently move the spherical surface around the subject's head by using a spherical link member, thereby securing high accuracy and driving speed. there is. In addition, it is possible to work on the entire area of the upper hemisphere of the subject's head. On the other hand, compared to the serial type robot, even when the control fails, safety can be secured because there is no area passing through the head of the subject in the work area of the end-effector of the robot. On the other hand, the focus and contact force control of the stimulation apparatus may be facilitated by the operation of the one-degree-of-freedom linear unit.
  • the posture adjusting device 400 it may be easy to control the focal depth and angle of the stimulation apparatus through the combined driving of the fourth to sixth link arms 410 , 430 , and 450 .
  • FIG. 4 is a view showing a rotational movable range of the first rotary joint 100 shown in FIG. 2 .
  • 5 is a view showing a rotational movable range of the second rotary joint 200 shown in FIG. 2 .
  • 6 is a view showing the linear movable range of the linear joint 300 shown in FIG.
  • the reference position of the medical multi-degree-of-freedom robot 1 is a state in which the first and second link arms 120 and 220 are aligned so that the stimulation unit 300 is at the highest position from the ground as shown in FIG. 1 . it means.
  • the driving range of each joint of the medical multi-DOF robot 1 may be limited to move only the entire area of the upper hemisphere of the subject's head, which is a target workspace.
  • the first actuator 130 rotates the first link arm 120 between +100° and -100° from the reference position.
  • the second actuator 230 may be driven to rotate the second link arm 220 between +100° and -100° from the reference position.
  • first rotational joint may be rotated between +180° and -180°, and the driving of the second rotational joint may be limited to rotate in the range of 0° to 180°.
  • the actuator 312 may drive the third frame 313 to linearly move between 0 mm and 15 mm.
  • the third actuator 420 may drive the fourth link arm 410 to rotate between +90° and -90° from the reference position.
  • the fourth actuator 440 may drive the fifth link arm 430 to rotate between +90° and -90° from the reference position.
  • the fifth actuator 460 may drive the sixth link arm 450 to rotate between +90° and -90° from the reference position.
  • FIG. 7 is a view for explaining an embodiment in which a torque sensor is installed in the stimulation unit 300 shown in FIG. 2 .
  • the stimulation unit 300 may include a torque sensor 530 installed on the sixth rear end 452 of the sixth link arm 450 .
  • the magnetic stimulator 500 may be connected to the torque sensor 530 .
  • the magnetic stimulator 500 may include a moving platform 510 directly connected to the torque sensor 530 and a magnetic field generator 520 .
  • the moving platform 510 may have a shape surrounding the magnetic field generator 520 .
  • the torque sensor 530 may detect generation of 6-axis torque, and may sense a contact force when the magnetic stimulator 500 comes into contact with the head of the subject. In addition, when the torque sensor 530 detects a contact force greater than or equal to the reference force, the linear movement device 310 may be operated to move the magnetic stimulator 500 away from the head of the subject.
  • the torque sensor 530 when used, the safety of the subject can be increased, and the touch force can be sensed, so that the stimulus can be performed with a force of an appropriate size when stimulating the object.
  • FIG. 8 is a view showing an operation state of the linear moving device 310 shown in FIG.
  • FIG. 9 is a view showing an operation state of the posture adjusting device 400 shown in FIG. 2 .
  • Fig. 8 (a) shows a state that the linear movement device 310 operates
  • Figs. 8 (b) and 8 (c) show a state that the fifth rotary joint 403 operates.
  • 9(a), (b), (c), and (d) illustrate a state in which the magnetic stimulator 500 moves while the third to fifth rotary joints 401 , 402 and 403 operate. In this way, by adjusting the posture of the magnetic stimulator 500, the depth and direction of the stimulation focus may be adjusted.
  • FIG. 10 is a view showing a state in which a 'T' shape is applied to the link arm shown in FIG. 2 .
  • first and second link arms 120 and 220 have to withstand the high load of the stimulation unit 300, respectively, they may be configured as arms having a 'T'-shaped cross-section.
  • the moment of inertia increases compared to an arm having a general rectangular cross-section, thereby reducing the possibility of deformation due to a high load.
  • FIG. 11 is a view for explaining the operation of the first rotary joint 100 shown in FIG. 12 is a view for explaining the operation of the second rotary joint 200 shown in FIG. 13 is a view for explaining the operation of the stimulation unit 300 shown in FIG. 14 is a view for explaining the movable range of the medical multi-degree-of-freedom robot 1 .
  • the drawings shown in FIGS. 1 to 3 are briefly expressed.
  • FIG. 11 it can be confirmed to what extent the head of the subject can be covered by the operation of the first rotary joint 100 .
  • FIG. 12 it can be confirmed to what extent the head of the subject can be covered by the operation of the second rotary joint 200 beyond the movable range of the first rotary joint 100 .
  • FIG. 13 a process of adjusting the posture of the magnetic stimulator 500 through the operation of the linear joint 301 and the third to fifth rotational joints 401 , 402 , 403 can be confirmed.
  • the medical multi-DOF robot 1 can provide the magnetic stimulator 500 with motions of 5 to 6 degrees of freedom, and the upper hemisphere of the head of the target workspace, which is the target workspace. It can cover the entire area.
  • S1000 control method of the medical multi-DOF robot 1 according to an embodiment of the present invention.
  • the medical multi-DOF robot 1 may operate in the following order.
  • the distance value between the center of the subject's head and the center of the sphere of the spherical frame is set to 0.
  • Information on the stimulation site of the stimulator prescribed by an expert is input into the device.
  • the stimulator is activated and brain stimulation is performed as much as the specified amount of stimulation.
  • the control method (S1000) of the medical multi-DOF robot includes the steps of setting the position and direction of the stimulus focus with respect to the subject (S1100), and performing inverse kinematic analysis to obtain first to fifth actuators and a linear calculating an input value of the mobile device (S1200), moving the first and second link arms according to the input value (S1300); It may include the steps of fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the input value (S1400), and fixing the magnetic pole focus by moving the third link member according to the input value (S1500).
  • the control method (S1000) may further include a step (S1600) of adjusting the magnetic pole focus and the contact force by moving the third link member (S1600).
  • the control method ( S1000 ) may further include changing the stimulus focus ( S1700 ).
  • step S1100 specifically, a total of six degrees of freedom of a position (x, y, z values) and a direction (Roll, Pitch, and Yaw values) may be set.
  • FIG. 16 is a flowchart illustrating a step S1700 of changing the stimulus focus shown in FIG. 15 .
  • the step of changing the stimulus focus includes resetting the position and direction of another stimulus focus (S1710), performing inverse kinematic analysis according to the reset stimulus focus to obtain the first to fifth actuators and the linear Calculating a secondary input value of the moving device (S1720), moving the first to sixth link arms to an initial position (S1730), moving the first and second link arms according to the secondary input value (S1740), fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the secondary input value (S1750), and fixing the magnetic pole focus by moving the third link member according to the secondary input value It may include a step (S1760) of doing.
  • the changing step (S1700) may further include the step (S1770) of adjusting the magnetic pole focus and the contact force by moving the third link member (S1770).
  • the step of changing the stimulus focus based on the position and direction of another focus may be performed again.
  • 17 is a diagram for explaining inverse kinematic analysis.
  • the basic coordinates and movement coordinates O (x, y, z) and P (u, v, w) are assigned to the ground and the magnetic stimulator 500 , respectively.
  • two vector loops are used in kinematics.
  • the first vector loop through points O, P, Q is a transformation (T 1 ) containing information related to the desired posture.
  • the second vector loop is the transformation (T 2 ) from the origin (O) to the point Q via the actuator.
  • D P is a transformation matrix from the origin to point P
  • D(axis, value) is a transformation matrix that transforms along a specific axis.
  • R(axis, value) is a transformation matrix that rotates along a specific axis.
  • r d and r s are the distances between point O and the initial position of the prismatic joint, and between point Q and the magnetic pole focus (P), respectively, and ⁇ and ⁇ are the spherical
  • the design angle of the frame ie, the first and second link arms. Since each component of T 1 and T 2 must be the same, the desired value ( ⁇ i , d) of each joint is derived as follows.
  • an end-effector (ie, magnetic stimulator 500 ) of the device can be positioned at a target location and orientation.
  • the second revolute joint may be driven in the range of -100° ⁇ 2 ⁇ 100°, and the driving range of the first revolute joint is also set to -100° ⁇ 1 ⁇ 100°.
  • the second revolute joint may be driven in the range of 0° ⁇ 2 ⁇ 180°, and the first revolute joint is also driven at -180° ⁇ 1 ⁇ 180°.
  • a driving range can be set.
  • 18 is a block diagram for explaining a control and compensation process of a medical multi-DOF robot.
  • the robot can be controlled using a position-based visual servoing (PBVS) method to compensate for unexpected human movements.
  • PBVS position-based visual servoing
  • the control method used in the existing Cartesian coordinate system can be used as it is.
  • Position and orientation errors used for feedback control can be defined as follows. In Euclidean geometry, the position error (e p ) is defined using the difference between the desired position (p d ) and the current working end position (p e ).
  • the rotation matrix R is a matrix that rotates the direction while maintaining the length of an arbitrary vector z as in Equation (5), and belongs to a special orthogonal group.
  • the rotation matrix has the advantage of not having a singularity, but it is difficult to adjust the gain.
  • a rotation matrix that represents the orientation error of the controller.
  • the rotation error can be estimated by using the component values of the matrix as it is. After multiplying the estimated error by the gain, the final error ( ) is found.
  • the advantage of the rotation matrix is that there is no singularity at any point, and the desired performance can be obtained by adjusting the gain for the direction error.
  • the gain can be set in consideration of the safety and performance of the experiment.
  • the present invention relates to a multi-degree-of-freedom robot for medical use. Since it is possible to stimulate the brain at a desired position and angle, safe and precise brain stimulation can be achieved, and equipment can be manufactured at low cost, thereby increasing the penetration rate of equipment. In addition, it is possible to maximize the effect of brain stimulation treatment by designing the device to allow self-treatment, so it has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Manipulator (AREA)

Abstract

A multi-degree-of-freedom medical robot according to one embodiment comprises: a first link arm having a first front end portion and a first rear end portion; a first actuator provided at the first front end portion to rotate the first front end portion around a first rotary shaft; a second link arm having a second front end portion and a second rear end portion; a second actuator provided at the first rear end portion so as to rotate the second front end portion around a second rotary shaft; and a stimulation unit connected to the second rear end portion, wherein the stimulation unit can comprise: a linearly moving device connected to the second rear end portion; a pose adjuster connected to the linearly moving device to provide at least two types of degrees of freedom; and a magnetic stimulator connected to the pose adjuster.

Description

의료용 다자유도 로봇Multi-DOF robot for medical use
본 발명은 자성 자극기에 6자유도 움직임을 제공할 수 있는 의료용 다자유도 로봇에 관한 것이다.The present invention relates to a medical multi-DOF robot capable of providing 6-DOF motion to a magnetic stimulator.
뇌는 머리의 내부에 위치하는 기관으로 신경계의 최고 중추기관이다. 뇌는 대뇌(cerebrum), 소뇌(cerebellum), 중간뇌(midbrain, mesencephalon), 다리뇌(pons) 및 연수(medulla)로 나뉘어지며, 뇌파(brainwave)를 발생한다. 뇌파는 뇌전도(electroencephalography, EEG)라고도 하며, 신경계에서 뇌신경 사이에 신호가 전달될때 생기는 전기의 흐름을 말한다. 뇌파는 두뇌가 다양한 정보를 처리할 때 다르게 나타나며 뇌의 활동 상황을 측정하는 가장 중요한 지표이다.The brain is an organ located inside the head and is the highest central organ of the nervous system. The brain is divided into cerebrum, cerebellum, midbrain, mesencephalon, pons and medulla, and generates brainwaves. EEG, also called electroencephalography (EEG), refers to the flow of electricity generated when signals are transmitted between cranial nerves in the nervous system. EEG differs when the brain processes various information and is the most important indicator of brain activity.
뇌에 전기적인 자극을 가하면 손떨림과 같은 신경증상을 치료하거나 완화시킬 수 있다. 뇌에 전기적인 자극을가하는 방법에는 침습형 뇌 전기 자극 방법과 비침습형 뇌 전기 자극 방법이 있다. 침습형 뇌 전기 자극 방법은 수술을 통해 뇌에 전극을 삽입하고, 전극에 전기 신호를 가하는 방법이다. 이에 비하여 비침습형 뇌 전기 자극방법은 두피에 전극을 접착시킨 다음, 전극에 전기 신호를 가하는 방법이다. 비침습형 뇌 전기 자극 방법은 침습형 뇌 전기 자극 방법에 비하여 비용과 위험이 적다는 장점이 있다. 이에 따라 비침습적인 방법으로 뇌에 전기 자극을 가할 수 있는 전기 자극 장치에 대한 연구 및 개발이 이루어지고 있다.Applying electrical stimulation to the brain can treat or alleviate neurological symptoms such as hand tremors. Methods for applying electrical stimulation to the brain include an invasive brain electrical stimulation method and a non-invasive brain electrical stimulation method. The invasive brain electrical stimulation method is a method of inserting an electrode into the brain through surgery and applying an electrical signal to the electrode. On the other hand, the non-invasive brain electrical stimulation method is a method of attaching an electrode to the scalp and then applying an electrical signal to the electrode. The non-invasive brain electrical stimulation method has the advantage of being less costly and less risky than the invasive brain electrical stimulation method. Accordingly, research and development of an electrical stimulation device capable of applying electrical stimulation to the brain in a non-invasive manner is being conducted.
비침습적 방식의 뇌자극은 다양한 신경/정신 의학적 질환의 치료 측면에서 크게 각광받고 있으며, 대표적 기술로 TMS (transcranial magnetic stimulation), tDCS (transcranial direct current stimulation), TUS(transcranial ultrasound stimulation) 등을 들 수 있다. 실제로 환자 뇌의 특정 부위를 자극하여 치매, 간질, 우울증 등 치료 사례가 보고되고 있다.Non-invasive brain stimulation has been in the spotlight for the treatment of various neurological/psychiatric disorders, and representative techniques include transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS). there is. In fact, treatment cases such as dementia, epilepsy, and depression have been reported by stimulating specific areas of the patient's brain.
비침습형 자극 뇌 자극 방법은 대부분 사람의 손으로 자극 위치 및 각도 등을 조절하는 방법을 사용하여 원하는 위치에 정확하게 자극을 가하기 어려웠으며, 이로 인해 자극 효과의 재현성이 떨어지는 단점이 있었다. 따라서, 높은 기대성능에도 불구하고 아직까지 널리 이용되지 못하고 있다. Most of the non-invasive stimulation brain stimulation methods use a method of controlling the position and angle of stimulation by human hands, and it is difficult to accurately apply stimulation to a desired location, which has a disadvantage in that the reproducibility of the stimulation effect is poor. Therefore, despite the high expected performance, it has not yet been widely used.
이러한 문제점을 극복하기 위해 최근 로봇을 이용하여 뇌자극의 정확도를 높이려는 노력들이 있었다. 예를 들어 ①기존의 6자유도 직렬형 로봇암, ②직렬형 구형 메커니즘, ③6자유도 병렬형 메커니즘 등을 이용한 연구에서는, 정밀한 자극을 통해 뇌 자극 성능을 많이 향상시킬 수 있었다. 그러나, 직렬형 형태의 로봇은 안전성이 낮으며 제어에 실패하는 경우 사람의 머리에 큰 충격을 가할 수 있다는 문제점이 있고, 기존의 구형(spherical) 메커니즘과 병렬형 구조의 로봇의 경우 안전성의 확보가 가능할 수는 있으나, 장비의 크기가 커지고 고가의 제작비를 필요로 한다는 점에서 문제점이 있다.In order to overcome this problem, recent efforts have been made to increase the accuracy of brain stimulation using robots. For example, in studies using ① the existing 6-DOF serial-type robot arm, ② the serial-type spherical mechanism, and ③ the 6-DOF parallel-type mechanism, brain stimulation performance could be greatly improved through precise stimulation. However, the serial type robot has low safety and has a problem that a large shock can be applied to a person's head if the control fails. Although possible, there is a problem in that the size of the equipment increases and it requires an expensive production cost.
따라서, 높은 안전성을 확보하는 동시에 정확도가 높은(즉, 환자의 운동 보상도 원활하게 수행할 수 있는) 뇌 자극 장치의 개발이 요구되며, 저가이면 서 간단한 설치와 조작만으로도 정확하고 반복적인 자극을 할 수 있는 장비의 개발이 필요하다.Therefore, it is required to develop a brain stimulation device that secures high safety and high accuracy (that is, can smoothly perform patient's motion compensation), and can provide accurate and repetitive stimulation with low-cost and simple installation and operation. It is necessary to develop a capable equipment.
본 발명의 일 실시예에 따른 의료용 다자유도 로봇은 제1전단부와 제1 후단부를 갖는 제1링크 암; 제1 전단부에 설치되어 제1전단부를 제1회전축을 중심으로 회동시키는 제1액츄에이터; 제2 전단부와 제2후단부를 갖는 제2링크 암; 제1 후단부에 설치되어 제2전단부를 제2회전축을 중심으로 회동시키는 제2 액츄에이터; 및 제2 후단부에 연결되는 자극 유닛을 포함하고, 자극 유닛은, 제2 후단부에 연결되는 선형 이동 장치; 선형 이동 장치에 연결되어 2개 이상의 자유도를 제공하는 자세 조절 장치; 및 자세 조절 장치에 연결되는 자성 자극기를 포함할 수 있다.A medical multi-degree-of-freedom robot according to an embodiment of the present invention includes a first link arm having a first front end and a first rear end; a first actuator installed on the first front end to rotate the first front end about the first rotation axis; a second link arm having a second front end and a second rear end; a second actuator installed at the first rear end to rotate the second front end about a second rotation axis; and a stimulation unit connected to the second rear end, the stimulation unit comprising: a linear moving device connected to the second rear end; a posture control device connected to the linear movement device to provide two or more degrees of freedom; and a magnetic stimulator connected to the posture control device.
일 실시예에 따르면, 자세 조절 장치는, 선형 이동 장치에 설치되고, 제3 전단부와 제3 후단부를 갖는 제3 링크 암; 제4 전단부와 제4 후단부를 갖는 제4 링크 암; 제3 후단부에 설치되어 제4 전단부를 제3 회전축을 중심으로 회동시키는 제3 액츄에이터; 제5전단부와 제5후단부를 갖는 제5링크 암; 제4 후단부에 설치되어 제5전단부를 제3 회전축에 수직한 제4 회전축을 중심으로 회동시키는 제4 액츄에이터; 제6 전단부와 제6후단부를 갖는 제6링크 암; 및 제5후단부에 설치되어 제6 전단부를 제3 및 제4 회전축에 수직한 제5회전축으로 회동시키는 제5 액츄에이터를 포함하고, 자성 자극기는 제6 후단부에 연결될 수 있다.According to an embodiment, the posture adjusting device includes: a third link arm installed in the linear movement device and having a third front end and a third rear end; a fourth link arm having a fourth front end and a fourth rear end; a third actuator installed at the third rear end to rotate the fourth front end about the third rotation axis; a fifth link arm having a fifth front end and a fifth rear end; a fourth actuator installed on the fourth rear end to rotate the fifth front end about a fourth axis of rotation perpendicular to the third axis of rotation; a sixth link arm having a sixth front end and a sixth rear end; and a fifth actuator installed at the fifth rear end to rotate the sixth front end to a fifth axis of rotation perpendicular to the third and fourth axis of rotation, and the magnetic stimulator may be connected to the sixth rear end.
일 실시예에 따르면, 제1액츄에이터와 제1전단부 사이, 및 제2액츄에이터와 제2전단부 사이 각각에는 토션 스프링이 설치될 수 있다.According to an embodiment, a torsion spring may be installed between the first actuator and the first front end, and between the second actuator and the second front end, respectively.
일 실시예에 따르면, 지면에 설치되는 스탠드; 및 스탠드의 상부에 설치되고 제1액츄에이터가 연결되는 높이 조절 유닛을 더 포함하고, 높이 조절 유닛은 제1및 제2 회전축의 교차점이 피자극자의 머리 중심과 일치하도록 제1액츄에이터의 높이를 조절할 수 있다.According to one embodiment, a stand installed on the ground; and a height adjustment unit installed on the top of the stand and connected to the first actuator, wherein the height adjustment unit adjusts the height of the first actuator so that the intersection of the first and second rotational axes coincides with the center of the head of the subject. there is.
일 실시예에 따르면, 자극 유닛은, 제6 후단부에 설치되는 토크 센서; 및 토크 센서에 연결되는 무빙 플랫폼을 더 포함할 수 있다.According to an embodiment, the stimulation unit may include: a torque sensor installed at a sixth rear end; And it may further include a moving platform connected to the torque sensor.
일 실시예에 따르면, 제1액츄에이터는 제1 모터와 제1감속기를 포함하고, 제2액츄에이터는 제2모터와 제2감속기를 포함하고, 제1및 제2감속기는 각각 하모닉 드라이브로 구성될 수 있다.According to an embodiment, the first actuator may include a first motor and a first reducer, the second actuator may include a second motor and a second reducer, and the first and second reducers may each be configured as a harmonic drive. there is.
일 실시예에 따르면, 제1액츄에이터는 제1링크 암의 자유 회동을 방지하는 제1브레이크를 더 포함하고, 제2액츄에이터는 제2링크 암의 자유 회동을 방지하는 제2브레이크를 더 포함할 수 있다.According to one embodiment, the first actuator may further include a first brake for preventing free rotation of the first link arm, and the second actuator may further include a second brake for preventing free rotation of the second link arm. there is.
일 실시예에 따르면, 제1링크 암과 피자극자의 머리 중심 사이의 거리는 제2링크 암과 머리 중심 사이의 거리보다 길 수 있다.According to an embodiment, the distance between the first link arm and the center of the head of the stimulated person may be longer than the distance between the second link arm and the center of the head.
일 실시예에 따르면, 제3 내지 제5회전축의 연장선은 하나의 교차점에서 교차하도록 구성될 수 있다.According to one embodiment, the extension lines of the third to fifth rotation shafts may be configured to intersect at one intersection point.
일 실시예에 따르면, 교차점은 제3 링크 암의 이동시 선형 이동 장치의 선형 축을 따라 이동하도록 구성될 수 있다.According to an embodiment, the intersection point may be configured to move along a linear axis of the linear movement device upon movement of the third link arm.
일 실시예에 따르면, 제1 및 제2 링크 암은 피자극자의 머리를 감싸도록 각각 구형(spherical) 프레임으로 구성되고, 자성 자극기는 비침습적 뇌자극기일 수 있다.According to an embodiment, the first and second link arms are each configured in a spherical frame to surround the head of the subject, and the magnetic stimulator may be a non-invasive brain stimulator.
일 실시예에 따르면, 자세 조절 장치는 자성 자극기의 롤, 피치, 요우 각도를 조절하여자성 자극기의 자세를 제어하도록 구성될 수 있다.According to an embodiment, the posture adjusting device may be configured to control the posture of the magnetic stimulator by adjusting a roll, a pitch, and a yaw angle of the magnetic stimulator.
본 발명의 일 실시예에 따른 의료용 다자유도 로봇의 제어 방법에 있어서, 피자극자에 대한 자극 초점의 위치와 방향을 설정하는 단계; 역기구학(inverse kinematic) 분석을 수행하여 제1 내지 제5 액츄에이터 및 선형 이동 장치의 입력값을 계산하는 단계; 입력값에 따라 제1및 제2링크 암을 이동시키는 단계; 입력값에 따라 제4내지 제6링크 암을 이동시켜서 자성 자극기의 자세를 고정하는 단계; 및 입력값에 따라 제3 링크 부재를 이동시켜서 자극 초점을 고정하는 단계를 포함할 수 있다.In a control method for a medical multi-DOF robot according to an embodiment of the present invention, the method comprising: setting a position and a direction of a stimulus focus with respect to a subject; calculating input values of the first to fifth actuators and the linear movement device by performing inverse kinematic analysis; moving the first and second link arms according to the input value; fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the input value; and moving the third link member according to the input value to fix the magnetic pole focus.
일 실시예에 따르면, 제3 링크 부재를 이동시켜서 자극 초점 및 접촉힘을 조정(calibration)하는 단계를 더 포함할 수 있다.According to an embodiment, the method may further include the step of moving the third link member to adjust the magnetic pole focus and the contact force (calibration).
일 실시예에 따르면, 자극 초점을 변경하는 단계를 더 포함하고, 자극 초점을 변경하는 단계는,다른 자극 초점의 위치와 방향으로 재설정하는 단계; 재설정된 자극 초점에 따라 역기구학(inverse kinematic) 분석을 수행하여 제1 내지 제5 액츄에이터 및 선형 이동 장치의 2차 입력값을 계산하는 단계; 제1 내지 제6 링크 암을 초기 위치로 이동시키는 단계; 2차 입력값에 따라 제1및 제2링크 암을이동시키는 단계; 2차 입력값에 따라 제4내지 제6링크 암을 이동시켜서 자성 자극기의 자세를 고정하는 단계; 및 2차 입력값에 따라 제3 링크 부재를 이동시켜서 자극 초점을 고정하는 단계를 포함할 수 있다.According to an embodiment, the method further includes changing the stimulus focus, wherein the changing of the stimulus focus includes: resetting the position and direction of another stimulus focus; calculating secondary input values of the first to fifth actuators and the linear movement device by performing inverse kinematic analysis according to the reset stimulus focus; moving the first to sixth link arms to initial positions; moving the first and second link arms according to the secondary input value; fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the secondary input value; and moving the third link member according to the secondary input value to fix the magnetic pole focus.
본 발명의 일 실시예 따른 의료용 다자유도 로봇은 두 개의 구형 암(arm)을 가지므로, 사람 머리 주변에 해당하는 특정한 유효 작업 영역을 기준으로 기존의 장치보다 넓은 작업영역을 확보할 수 있으며, 사람 머리와 로봇 간의 충돌 가능 부분이 최소화되어 피자극자의 안전성을 극대화할 수 있다.Since the medical multi-degree-of-freedom robot according to an embodiment of the present invention has two spherical arms, it is possible to secure a wider working area than the existing device based on a specific effective work area corresponding to the periphery of the human head, The possible collision between the human head and the robot is minimized, maximizing the safety of the victim.
또한, 의료용 다자유도 로봇은 원하는 위치 및 각도로 뇌를 자극하는 것이 가능하게 되므로 안전하고 정밀한 뇌 자극을 가능하게 할 수 있다. 또한, 저비용으로 장비 제작이 가능하므로 장비의 보급률을 높일 수 있고, 자가 치료가 가능하도록 장치를 설계하여 뇌 자극 치료의 효과를 극대화할 수 있으며, 관련 연구의 신뢰성을 크게 향상시킬 수 있다.In addition, the medical multi-degree-of-freedom robot can stimulate the brain at a desired position and angle, thereby enabling safe and precise brain stimulation. In addition, since the equipment can be manufactured at low cost, the penetration rate of equipment can be increased, the effect of brain stimulation treatment can be maximized by designing the device to enable self-treatment, and the reliability of related research can be greatly improved.
도 1은 본 발명의 일 실시예에 따른 의료용 다자유도 로봇을 나타낸 사시도이다.1 is a perspective view illustrating a medical multi-DOF robot according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 의료용 다자유도 로봇의 구동 부분을 나타낸 사시도이다.2 is a perspective view illustrating a driving part of a medical multi-DOF robot according to an embodiment of the present invention.
도 3a는 도 2에서 자극 유닛을 나타낸 사시도이다.3A is a perspective view illustrating the stimulation unit in FIG. 2 ;
도 3b는 도 2에 도시된 자극 유닛을 도 2와 다른 방향에서 바라본 모습을 나타낸 사시도이다.FIG. 3B is a perspective view illustrating the stimulation unit shown in FIG. 2 as viewed from a different direction from that of FIG. 2 .
도 4는 도 2에 도시된 제1 회전 조인트의 회동 가동 범위를 나타낸 도면이다.4 is a view showing a rotational movable range of the first rotary joint shown in FIG. 2 .
도 5는 도 2에 도시된 제2 회전 조인트의 회동 가동 범위를 나타낸 도면이다.5 is a view showing a rotational movable range of the second rotary joint shown in FIG.
도 6은 도 2에 도시된 선형 조인트의 선형 가동 범위를 나타낸 도면이다.6 is a view showing the linear movable range of the linear joint shown in FIG.
도 7은 도 2에 도시된 자극 유닛에 토크 센서를 설치한 실시예를 설명하기위한 도면이다.FIG. 7 is a view for explaining an embodiment in which a torque sensor is installed in the stimulation unit shown in FIG. 2 .
도 8은 도 2에 도시된 선형 이동 장치의 작동 모습을 나타낸 도면이다.8 is a view showing an operation state of the linear moving device shown in FIG.
도 9는 도 2에 도시된 자세 조절 장치의 작동 모습을 나타낸 도면이다.9 is a view showing an operation state of the posture control device shown in FIG.
도 10은 도 2에 도시된 링크 암에 'T'자 형상을 적용한 모습을 나타낸 도면이다.10 is a view showing a state in which a 'T' shape is applied to the link arm shown in FIG. 2 .
도 11은 도 2에 도시된 제1회전 조인트의 작동을 설명하기 위한 도면이다.11 is a view for explaining the operation of the first rotary joint shown in FIG.
도 12는 도 2에 도시된 제2회전 조인트의 작동을 설명하기 위한 도면이다.12 is a view for explaining the operation of the second rotary joint shown in FIG.
도 13은 도 2에 도시된 자극 유닛의 작동을 설명하기 위한 도면이다.13 is a view for explaining the operation of the stimulation unit shown in FIG.
도 14는 의료용 다자유도 로봇의 가동 범위를 설명하기 위한 도면이다.14 is a view for explaining a movable range of a medical multi-DOF robot.
도 15는 본 발명의 일 실시예에 따른 의료용 다자유도 로봇의 제어 방법을 나타낸 순서도이다.15 is a flowchart illustrating a method for controlling a medical multi-DOF robot according to an embodiment of the present invention.
도 16은 도 15에 도시된 자극 초점을 변경하는 단계를 나타낸 순서도이다.16 is a flowchart illustrating a step of changing a stimulus focus shown in FIG. 15 .
도 17은 역기구학 분석을 설명하기 위한 도면이다.17 is a diagram for explaining inverse kinematic analysis.
도 18은 의료용 다자유도 로봇의 제어 및 보상과정을 설명하기 위한 블록도이다.18 is a block diagram for explaining a control and compensation process of a medical multi-DOF robot.
본 발명의 실시예들은 본 발명의 기술적 사상을 설명하기 위하여 예시적으로 제시된다. 본 발명에 따른 권리 범위는 이하의 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되지 않는다.Embodiments of the present invention are presented by way of example to explain the technical spirit of the present invention. The scope of the rights according to the present invention is not limited to the following embodiments or specific descriptions of these embodiments.
도 1은 본 발명의 일 실시예에 따른 의료용 다자유도 로봇(1)을 나타낸 사시도이다.1 is a perspective view showing a medical multi-DOF robot 1 according to an embodiment of the present invention.
의료용 다자유도 로봇(1)은 구형 프레임을 가지는 주요 링크부에 선형 조인트와 2자유도 이상의 회전 조인트를 추가적으로 부착한 직렬형 메커니즘 구조로, 전체적인 크기를 최소화할 수 있다.The medical multi-DOF robot 1 has a serial-type mechanism structure in which a linear joint and a rotary joint of two or more degrees of freedom are additionally attached to a main link part having a spherical frame, and the overall size can be minimized.
의료용 다자유도 로봇(1)은 총 6자유도로 구동되며, 하나의 2자유도 구형 프레임과 그에 연결된 선형 엑츄에이터와 2자유도 이상의 방향 변환(orientation mechanism) 모듈로 구성될 수 있다. 2자유도 이상의 방향 변환 모듈은 각각 직각으로 연결되어 끝 단의 방향변화만 유도하면서 무빙 플랫폼과 연결될 수 있다. 무빙 플랫폼에는 뇌자극을 위한 자극기가 부착될 수 있다.The medical multi-DOF robot 1 is driven with a total of six degrees of freedom, and may be composed of a single two-DOF spherical frame, a linear actuator connected thereto, and an orientation mechanism module with two or more degrees of freedom. The direction conversion modules with more than two degrees of freedom are connected at right angles to each other and can be connected to the moving platform while inducing only the direction change of the end. A stimulator for brain stimulation may be attached to the moving platform.
의료용 다자유도 로봇(1)은 스탠드(10), 제1 회전 조인트(100), 제2 회전 조인트(200), 자극 유닛(300)을 포함할 수 있다. 제1 회전 조인트(100)는 제1 링크 암(120)과 제1 회전축(110)을 중심으로 제1 링크 암(120)을 회동시키는 제1 액츄에이터(130)를 포함할 수 있다. 제2 회전 조인트(200)는 제1 링크 암(220)과 제2 회전축(210)을 중심으로 제2 링크 암(220)을 회동시키는 제2 액츄에이터(230)를 포함할 수 있다. 자극 유닛(300)은 선형 이동 축(315)를 갖는 선형 조인트와 제3 내지 제5 회전 조인트를 포함할 수 있으며, 상세한 내용은 후술한다.The medical multi-DOF robot 1 may include a stand 10 , a first rotation joint 100 , a second rotation joint 200 , and a stimulation unit 300 . The first rotation joint 100 may include a first actuator 130 that rotates the first link arm 120 about the first link arm 120 and the first rotation shaft 110 . The second rotation joint 200 may include a second actuator 230 for rotating the second link arm 220 about the first link arm 220 and the second rotation shaft 210 . The stimulation unit 300 may include a linear joint having a linear movement axis 315 and third to fifth rotational joints, which will be described later in detail.
제1 회전축(110)의 연장선과 제2 회전축(120)의 연장선이 이루는 각도는 대략 50°가 될 수 있다. 또한, 제2 회전축(120)의 연장선과 선형 이동 축(315)의 연장선이 이루는 각도는 대략 65°가 될 수 있다.An angle between the extension line of the first rotation shaft 110 and the extension line of the second rotation shaft 120 may be approximately 50°. Also, an angle between the extension line of the second rotation shaft 120 and the extension line of the linear movement shaft 315 may be approximately 65°.
스탠드(10)는 지면 상에 설치될 수 있고, 하부(11)과 상부(12)로 구성될 수 있다. 상부(12)에는 높이 조절 유닛(13)이 설치될 수 있다. 상부(12)에는 레일(14)이 형성될 수 있고, 레일(14)의 상단에는 액츄에이터(15)가 설치될 수 있다. 프레임(16)은 레일(14)에 설치되어 액츄에이터(15)에 의하여 레일(14)을 따라 상하로 이동될 수 있다. 제1 액츄에이터(130)는 프레임(16)에 설치될 수 있다.The stand 10 may be installed on the ground, and may be composed of a lower portion 11 and an upper portion 12 . A height adjustment unit 13 may be installed in the upper part 12 . A rail 14 may be formed on the upper portion 12 , and an actuator 15 may be installed on the upper portion of the rail 14 . The frame 16 is installed on the rail 14 and can be moved up and down along the rail 14 by an actuator 15 . The first actuator 130 may be installed in the frame 16 .
높이 조절 유닛(13)은 제1 액츄에이터(130)를 이동시켜서, 제1 및 제2 회전축(110, 210)의 교차점(P1)이 자극 유닛(300)에 의해 자극을 받는 피자극자의 머리 중심과 일치하도록 제1 회전 조인트(100)의 높이를 조절할 수 있다.The height adjustment unit 13 moves the first actuator 130 so that the intersection point P 1 of the first and second rotation shafts 110 and 210 is the center of the head of the person stimulated by the stimulation unit 300 . It is possible to adjust the height of the first rotation joint 100 to match.
이와 같이, 높이 조절 유닛(13)은 지면과 장치 사이에 1자유도를 제공함으로써, 피자극자의 머리 중심에 포시져닝 장치의 회전 중심이 위치하는 것이 가능하도록 해줄 수 있다.In this way, the height adjustment unit 13 provides one degree of freedom between the ground and the device, so that it is possible to position the rotation center of the positioning device at the center of the head of the subject.
도 2는 본 발명의 일 실시예에 따른 의료용 다자유도 로봇(1)의 구동 부분을 나타낸 사시도이다.2 is a perspective view showing a driving part of the medical multi-DOF robot 1 according to an embodiment of the present invention.
제1 회전 조인트(100)에서, 제1 링크 암(120)은 제1 전단부(121)와 제1 후단부(122)를 가질 수 있다. 제1 액츄에이터(130)는 제1 전단부(121)에 설치되어 제1 전단부(121)를 제1 회전축(110)을 중심으로 회동시킬 수 있다.In the first rotation joint 100 , the first link arm 120 may have a first front end 121 and a first rear end 122 . The first actuator 130 may be installed on the first front end 121 to rotate the first front end 121 about the first rotational shaft 110 .
제2 회전 조인트(200)에서, 제2 링크 암(220)은 제2 전단부(221)와 제2 후단부(222)를 가질 수 있다. 제2 액츄에이터(230)는 제1 후단부(122)에 설치되어 제2 전단부(221)를 제2 회전축(210)을 중심으로 회동시킬 수 있다. 제2 후단부(222)에는 자극 유닛(300)이 연결될 수 있다.In the second rotation joint 200 , the second link arm 220 may have a second front end 221 and a second rear end 222 . The second actuator 230 may be installed on the first rear end 122 to rotate the second front end 221 about the second rotation shaft 210 . The stimulation unit 300 may be connected to the second rear end 222 .
자극 유닛(300)은 제2 후단부(222)에 연결되는 선형 이동 장치(310), 선형 이동 장치(310)에 연결되어 2개 이상의 자유도를 제공하는 자세 조절 장치(400), 및 자세 조절 장치(400)에 연결되는 자성 자극기(500)를 포함할 수 있다.The stimulation unit 300 includes a linear movement device 310 connected to the second rear end 222 , a posture adjustment apparatus 400 connected to the linear movement apparatus 310 to provide two or more degrees of freedom, and a posture adjustment apparatus It may include a magnetic stimulator 500 connected to the 400 .
선형 이동 장치(310)는 자극기 초점의 깊이 조절을 위하여 볼 스크류와 연결되어 구동되고, 2자유도 이상의 회전 변환 모듈 엑츄에이터, 감속기 그리고 구동 모듈의 위치 피드백을 위한 센서로 구성될 수 있다. The linear movement device 310 is connected to a ball screw to control the depth of the focus of the stimulator and is driven, and may include a rotation conversion module actuator with two or more degrees of freedom, a speed reducer, and a sensor for feedback of the position of the driving module.
선형 이동 장치(310)는 선형 프레임(311), 액츄에이터(312), 및 제3 링크 암(313)을 포함할 수 있다. 제3 링크 암(313)은 선형 프레임(311)에 설치되고, 액츄에이터(312)에 의하여 선형 프레임(311)의 길이 방향을 따라 이동될 수 있다.The linear movement device 310 may include a linear frame 311 , an actuator 312 , and a third link arm 313 . The third link arm 313 is installed on the linear frame 311 and may be moved along the longitudinal direction of the linear frame 311 by the actuator 312 .
선형 조인트(301)는 선형 이동 장치(310)와 제3 링크 암(313)을 포함할 수 있다. 제3 회전 조인트(401)는 제3 액츄에이터(420)와 제4 링크 암(410)을 포함할 수 있다. 제4 회전 조인트(402)는 제4 액츄에이터(440)와 제5 링크 암(430)을 포함할 수 있다. 제5 회전 조인트(403)는 제5 액츄에이터(460)와 제6 링크 암(450)을 포함할 수 있다.The linear joint 301 may include a linear movement device 310 and a third link arm 313 . The third rotation joint 401 may include a third actuator 420 and a fourth link arm 410 . The fourth rotation joint 402 may include a fourth actuator 440 and a fifth link arm 430 . The fifth rotation joint 403 may include a fifth actuator 460 and a sixth link arm 450 .
선형 이동 장치(310)는 레일(311), 액츄에이터(312), 제3 링크 암(313)을 포함할 수 있다. 제3 링크 암(313)은 액츄에이터(312)에 의하여 레일(311)을 따라 선형 이동할 수 있다.The linear movement device 310 may include a rail 311 , an actuator 312 , and a third link arm 313 . The third link arm 313 may be linearly moved along the rail 311 by the actuator 312 .
제1 액츄에이터(130)과 제1 링크 암(120)의 제1 전단부(121) 사이에는 제1 토션 스프링(140)이 설치되고, 제2 액츄에이터(230)와 제2 링크 암(220)의 제2 전단부(211) 사이에는 제2 토션 스프링(240)이 설치될 수 있다. 이와 같이 제1 및 제2 토션 스프링(140, 240)이 제공되므로, 만일 자성 자극기(500)가 피자극자에게 충돌하더라도, 토션 스프링이 이러한 충격을 흡수할 수 있게 되어서 피자극자에게 가해지는 충격을 최소화할 수 있다.A first torsion spring 140 is installed between the first actuator 130 and the first front end portion 121 of the first link arm 120 , and the second actuator 230 and the second link arm 220 . A second torsion spring 240 may be installed between the second front end portions 211 . Since the first and second torsion springs 140 and 240 are provided as described above, even if the magnetic stimulator 500 collides with the subject, the torsion spring is able to absorb these shocks and the shock applied to the subject. can be minimized.
이와 같이, 각 구동 조인트와 프레임 사이에는 높은 강성을 가지는 토션 스프링을 부착함으로써, 피실험자의 머리와 로봇팔 충돌 시 피실험자에게 가해지는 물리적 데미지를 최소화시킬 수 있다.In this way, by attaching a torsion spring having high rigidity between each driving joint and the frame, physical damage applied to the subject when the subject's head and the robot arm collide can be minimized.
제1 액츄에이터(130)는 제1 모터(131)와 제1감속기(133)를 포함하고, 제2 액츄에이터(230)는 제2 모터(231)와 제2 감속기(233)를 포함할 수 있다. 또한, 제1 및 제2 감속기(133, 233)는 각각 하모닉 드라이브(harmonic drive)로 구성될 수 있다. 하모닉 드라이브의 감속비는 100:1 정도를 가지게 되어서, 최종적으로 고토크를 링크 암에 전달할 수 있다.The first actuator 130 may include a first motor 131 and a first reducer 133 , and the second actuator 230 may include a second motor 231 and a second reducer 233 . Also, each of the first and second reduction gears 133 and 233 may be configured as a harmonic drive. The reduction ratio of the harmonic drive is about 100:1, so that the high torque can be finally transmitted to the link arm.
제1 액츄에이터(130)는 제1 모터(131)와 제1감속기(133)에 배치되고 제1 링크 암(120)의 자유 회동을 방지하는 제1 브레이크(132)를 더 포함하고, 제2 액츄에이터(230)는 제2 모터(231)와 제2 감속기(233) 사이에 배치되고 제2 링크 암(220)의 자유 회동을 방지하는 제2 브레이크(232)를 더 포함할 수 있다. 이에 따라, 전원이 OFF 된 상태에서도 로봇의 자세가 변하지지 않고 유지될 수 있다.The first actuator 130 is disposed on the first motor 131 and the first reducer 133 and further includes a first brake 132 for preventing free rotation of the first link arm 120 , the second actuator Reference numeral 230 may further include a second brake 232 disposed between the second motor 231 and the second reduction gear 233 to prevent free rotation of the second link arm 220 . Accordingly, even when the power is turned off, the posture of the robot can be maintained without change.
제1 및 제2 링크 암(120, 220)은 피자극자의 머리를 감싸도록 각각 구형(spherical) 프레임으로 구성되고, 자성 자극기(500)는 비침습적 뇌자극기일 수 있다. 이와 같이 구형 프레임을 사용하여 자극기가 피자극자의 머리 주위를 이동시, 피자극자의 머리 부분은 유효한 작동 범위에서 제외되기 때문에 높은 안전성을 가지며, 넓은 유효 작동 범위를 가질 수 있다.The first and second link arms 120 and 220 are each configured in a spherical frame so as to surround the head of the subject, and the magnetic stimulator 500 may be a non-invasive brain stimulator. As described above, when the stimulator moves around the subject's head using the spherical frame, since the subject's head is excluded from the effective operating range, it has high safety and can have a wide effective operating range.
제1 링크 암(120)과 피자극자의 머리 중심 사이의 거리는 제2 링크 암(220)과 머리 중심 사이의 거리보다 길 수 있다. 제2 링크 암(220)에는 자극 유닛(300)이 설치되고 자극 유닛(300) 자체에서 보다 세밀한 조작이 가능하므로, 제1 링크 암(120)이 제2 링크 암(220) 보다 큰 범위의 움직임을 제공할 수 있다.The distance between the first link arm 120 and the center of the head of the subject may be longer than the distance between the second link arm 220 and the center of the head. Since the stimulation unit 300 is installed in the second link arm 220 and more detailed manipulation is possible in the stimulation unit 300 itself, the movement of the first link arm 120 is larger than that of the second link arm 220 . can provide
자세 조절 장치(400)는 자성 자극기(500)의 롤(roll), 피치(pitch), 요우(yaw) 각도를 조절하여 자성 자극기(500)의 자세를 제어하도록 구성될 수 있다.The posture adjusting device 400 may be configured to control the posture of the magnetic stimulator 500 by adjusting roll, pitch, and yaw angles of the magnetic stimulator 500 .
의료용 다자유도 로봇(1)는 자극기와 구형 프레임 사이에 선형 조인트와 2자유도 이상의 방향 변환 조인트가 추가됨으로써, 자극기 초점의 깊이 및 방향을 세부적으로 컨트롤 할 수 있어, 높은 정확도를 가질 수 있다.In the medical multi-DOF robot 1, a linear joint and a direction change joint of two or more degrees of freedom are added between the stimulator and the spherical frame, so that the depth and direction of the focus of the stimulator can be controlled in detail, and thus high accuracy can be achieved.
도 3a는 도 2에서 자극 유닛(300)을 나타낸 사시도이다. 도 3b는 도 2에 도시된 자극 유닛(300)을 도 2와 다른 방향에서 바라본 모습을 나타낸 사시도이다.3A is a perspective view illustrating the stimulation unit 300 in FIG. 2 . FIG. 3B is a perspective view illustrating the stimulation unit 300 shown in FIG. 2 as viewed from a different direction from that of FIG. 2 .
제3 링크 암(313)은 레일(311)에 설치되는 제3 전단부(314)와 제3 액츄에이터(420)가 설치되는 제3 후단부(315)를 가질 수 있다. 제4 링크 암(410)은 제4 전단부(411)와 제4 후단부(412)를 가질 수 있고, 제3 액츄에이터 (420)는 제3 후단부(315)에 설치되어 제4 전단부(411)를 제3 회전축(425)을 중심으로 회동시킬 수 있다.The third link arm 313 may have a third front end 314 installed on the rail 311 and a third rear end 315 on which the third actuator 420 is installed. The fourth link arm 410 may have a fourth front end 411 and a fourth rear end 412 , and the third actuator 420 is installed at the third rear end 315 and the fourth front end ( 411 may be rotated about the third rotation shaft 425 .
제5 링크 암(430)는 제5전단부(431)와 제5 후단부(432)를 가질 수 있고, 제4 액츄에이터(440)는 제4 후단부(412)에 설치되어 제5전단부(431)를 제3 회전축(425)에 수직한 제4 회전축(445)을 중심으로 회동시킬 수 있다. 제6 링크 암(450)은 제6 전단부(451)와 제6후단부(452)를 가질 수 있고, 제5 액츄에이터(460)는 제5 후단부(432)에 설치되어 제6 전단부(451)를 제3 및 제4 회전축(425, 445)에 수직한 제5회전축(465)으로 회동시킬 수 있다. 자성 자극기(500)는 제6 후단부(452)에 연결될 수 있다.The fifth link arm 430 may have a fifth front end 431 and a fifth rear end 432 , and the fourth actuator 440 is installed at the fourth rear end 412 and the fifth front end ( 431 may be rotated about a fourth rotational shaft 445 perpendicular to the third rotational shaft 425 . The sixth link arm 450 may have a sixth front end 451 and a sixth rear end 452 , and the fifth actuator 460 is installed at the fifth rear end 432 and installed at the sixth front end ( 451 may be rotated by a fifth rotation shaft 465 perpendicular to the third and fourth rotation shafts 425 and 445 . The magnetic stimulator 500 may be connected to the sixth rear end portion 452 .
제3 내지 제5회전축(425, 445, 465)의 연장선은 하나의 교차점(P2)에서 교차하도록 구성될 수 있다. 이러한, 교차점(P2)은 제3 링크 암(313)의 이동시 선형 이동 장치(310)의 선형 축(315)을 따라 이동하도록 구성될 수 있다. Extension lines of the third to fifth rotation shafts 425 , 445 , and 465 may be configured to intersect at one intersection point P 2 . This intersection P 2 may be configured to move along the linear axis 315 of the linear movement device 310 when the third link arm 313 moves.
제1 및 제2 회전 조인트(100, 200)와 선형 조인트(310)의 조합은 구형 링크부재의 이용으로 피자극자의 머리주변의 구형 표면을 효율적으로 이동 가능하여 높은 정확도와 구동 속도를 확보할 수 있다. 또한, 피자극자의 머리 상반구 전영역에 대한 작업이 가능하다. 한편, 직렬형 로봇과 비교하여 제어 실패 시에도 로봇의 작업단(end-effector)의 작업영역에 피자극자의 머리부분을 통과하는 영역이 없으므로 안전성 확보가 가능하다. 한편, 1 자유도 선형 유닛의 동작으로 자극기의 초점 및 접촉 힘 제어가 용이해질 수 있다.The combination of the first and second rotary joints 100 and 200 and the linear joint 310 can efficiently move the spherical surface around the subject's head by using a spherical link member, thereby securing high accuracy and driving speed. there is. In addition, it is possible to work on the entire area of the upper hemisphere of the subject's head. On the other hand, compared to the serial type robot, even when the control fails, safety can be secured because there is no area passing through the head of the subject in the work area of the end-effector of the robot. On the other hand, the focus and contact force control of the stimulation apparatus may be facilitated by the operation of the one-degree-of-freedom linear unit.
자세 조절 장치(400)와 관련하여, 제4 내지 제6 링크 암(410, 430, 450)의 복합 구동을 통해 자극기의 초점 깊이 및 각도를 제어하기 용이해질 수 있다.With respect to the posture adjusting device 400 , it may be easy to control the focal depth and angle of the stimulation apparatus through the combined driving of the fourth to sixth link arms 410 , 430 , and 450 .
도 4는 도 2에 도시된 제1 회전 조인트(100)의 회동 가동 범위를 나타낸 도면이다. 도 5는 도 2에 도시된 제2 회전 조인트(200)의 회동 가동 범위를 나타낸 도면이다. 도 6은 도 2에 도시된 선형 조인트(300)의 선형 가동 범위를 나타낸 도면이다.4 is a view showing a rotational movable range of the first rotary joint 100 shown in FIG. 2 . 5 is a view showing a rotational movable range of the second rotary joint 200 shown in FIG. 2 . 6 is a view showing the linear movable range of the linear joint 300 shown in FIG.
의료용 다자유도 로봇(1)의 기준 위치는 도 1에 도시된 형상과 같이 자극 유닛(300)이 지면으로부터 가장 높은 위치에 있도록 제1 및 제2 링크 암(120, 220)이 정렬된 상태를 의미한다.The reference position of the medical multi-degree-of-freedom robot 1 is a state in which the first and second link arms 120 and 220 are aligned so that the stimulation unit 300 is at the highest position from the ground as shown in FIG. 1 . it means.
의료용 다자유도 로봇(1)의 각 조인트는 목표 작업 영역(target workspace)인 피자극자의 머리 상반구 전영역만을 이동하도록, 그 구동 범위가 제한될 수 있다. The driving range of each joint of the medical multi-DOF robot 1 may be limited to move only the entire area of the upper hemisphere of the subject's head, which is a target workspace.
일 실시예로, 도 5에 도시된 것과 같이 제1 회전 조인트(100)에서, 제1 액츄에이터(130)는 제1 링크 암(120)을 기준 위치로부터 +100°~ -100°사이에서 회동하도록 구동되고, 제2 회전 조인트(200)에서, 제2 액츄에이터(230)는 제2 링크 암(220)을 기준 위치로부터 +100°~ -100°사이에서 회동하도록 구동될 수 있다. In one embodiment, as shown in FIG. 5 , in the first rotary joint 100 , the first actuator 130 rotates the first link arm 120 between +100° and -100° from the reference position. driven, in the second rotation joint 200 , the second actuator 230 may be driven to rotate the second link arm 220 between +100° and -100° from the reference position.
다른 실시예로, 제1 회전 조인트는 +180°~ -180°사이에서 회동하고, 제2 회전 조인트는 0°~ 180°범위에서 회동하도록 구동이 제한될 수 있다. In another embodiment, the first rotational joint may be rotated between +180° and -180°, and the driving of the second rotational joint may be limited to rotate in the range of 0° to 180°.
선형 조인트(301)에서, 액츄에이터(312)는 제3 프레임(313)을 0mm ~ 15mm 사이에서 선형 이동하도록 구동시킬 수 있다.In the linear joint 301 , the actuator 312 may drive the third frame 313 to linearly move between 0 mm and 15 mm.
한편, 제3 회전 조인트(401)에서, 제3 액츄에이터(420)는 제4 링크 암(410)을 기준 위치로부터 +90°~ -90°사이에서 회동하도록 구동시킬 수 있다. 제4 회전 조인트(402)에서, 제4 액츄에이터(440)는 제5 링크 암(430)을 기준 위치로부터 +90°~ -90°사이에서 회동하도록 구동시킬 수 있다. 제5 회전 조인트(403)에서, 제5 액츄에이터(460)는 제6 링크 암(450)을 기준 위치로부터 +90°~ -90°사이에서 회동하도록 구동시킬 수 있다.Meanwhile, in the third rotation joint 401 , the third actuator 420 may drive the fourth link arm 410 to rotate between +90° and -90° from the reference position. In the fourth rotation joint 402 , the fourth actuator 440 may drive the fifth link arm 430 to rotate between +90° and -90° from the reference position. In the fifth rotation joint 403 , the fifth actuator 460 may drive the sixth link arm 450 to rotate between +90° and -90° from the reference position.
도 7은 도 2에 도시된 자극 유닛(300)에 토크 센서를 설치한 실시예를 설명하기 위한 도면이다.FIG. 7 is a view for explaining an embodiment in which a torque sensor is installed in the stimulation unit 300 shown in FIG. 2 .
자극 유닛(300)은 제6 링크 암(450)의 제6 후단부(452)에 설치되는 토크 센서(530)를 포함할 수 있다. 토크 센서(530)에는 자성 자극기(500)가 연결될 수 있다. 자성 자극기(500)는 토크 센서(530)에 직접 연결되는 무빙 플랫폼(510) 및 자기장 발생기(520)를 포함할 수 있다. 무빙 플랫폼(510)은 자기장 발생기(520)를 에워싸는 형상을 가질 수 있다.The stimulation unit 300 may include a torque sensor 530 installed on the sixth rear end 452 of the sixth link arm 450 . The magnetic stimulator 500 may be connected to the torque sensor 530 . The magnetic stimulator 500 may include a moving platform 510 directly connected to the torque sensor 530 and a magnetic field generator 520 . The moving platform 510 may have a shape surrounding the magnetic field generator 520 .
토크 센서(530)는 6축 토크 발생을 감지할 수 있으며, 자성 자극기(500)가 피자극자의 머리에 접촉하는 경우 접촉 힘을 감지할 수 있다. 또한, 토크 센서(530)가 기준 힘 이상의 접촉 힘을 감지하는 경우에는 선형 이동 장치(310)을 작동시켜서 자성 자극기(500)를 피자극자의 머리로부터 즉각 멀어지도록 이동시킬 수 있다.The torque sensor 530 may detect generation of 6-axis torque, and may sense a contact force when the magnetic stimulator 500 comes into contact with the head of the subject. In addition, when the torque sensor 530 detects a contact force greater than or equal to the reference force, the linear movement device 310 may be operated to move the magnetic stimulator 500 away from the head of the subject.
이와 같이, 토크 센서(530)를 사용하면 피자극자의 안전성을 높일 뿐 아니라, 접촉 힘 감지를 가능하게 하여 대상체 자극시 적절한 크기의 힘으로 자극이 가능할 수 있다.In this way, when the torque sensor 530 is used, the safety of the subject can be increased, and the touch force can be sensed, so that the stimulus can be performed with a force of an appropriate size when stimulating the object.
도 8은 도 2에 도시된 선형 이동 장치(310)의 작동 모습을 나타낸 도면이다. 도 9는 도 2에 도시된 자세 조절 장치(400)의 작동 모습을 나타낸 도면이다.8 is a view showing an operation state of the linear moving device 310 shown in FIG. FIG. 9 is a view showing an operation state of the posture adjusting device 400 shown in FIG. 2 .
도 8(a)는 선형 이동 장치(310)가 작동하는 모습을 나타내고, 도 8(b), 8(c)는 제5 회전 조인트(403)이 작동하는 모습을 나타낸다. 도 9(a), (b), (c), (d)는 제3 내지 제5 회전 조인트(401, 402, 403)이 작동하면서, 자성 자극기(500)가 이동하는 모습을 나타낸다. 이와 같이 자성 자극기(500)의 자세를 조절하여 자극 초점의 깊이와 방향을 조절할 수 있다.Fig. 8 (a) shows a state that the linear movement device 310 operates, and Figs. 8 (b) and 8 (c) show a state that the fifth rotary joint 403 operates. 9(a), (b), (c), and (d) illustrate a state in which the magnetic stimulator 500 moves while the third to fifth rotary joints 401 , 402 and 403 operate. In this way, by adjusting the posture of the magnetic stimulator 500, the depth and direction of the stimulation focus may be adjusted.
도 10은 도 2에 도시된 링크 암에 'T'자 형상을 적용한 모습을 나타낸 도면이다.10 is a view showing a state in which a 'T' shape is applied to the link arm shown in FIG. 2 .
제1 및 제2 링크 암(120, 220)은 각각 자극 유닛(300)의 고하중을 견뎌야 하기 때문에, 'T'자 형상의 단면을 가진 암으로 구성될 수 있다. 암이 'T'자 형상의 단면을 가지게 되면 일반적인 사각형 형상의 단면을 갖는 암보다 관성 모멘트가 증가하게 되어서 고하중에 대한 변형 발생 가능성을 낮출 수 있다.Since the first and second link arms 120 and 220 have to withstand the high load of the stimulation unit 300, respectively, they may be configured as arms having a 'T'-shaped cross-section. When the arm has a 'T'-shaped cross-section, the moment of inertia increases compared to an arm having a general rectangular cross-section, thereby reducing the possibility of deformation due to a high load.
도 11은 도 2에 도시된 제1 회전 조인트(100)의 작동을 설명하기 위한 도면이다. 도 12는 도 2에 도시된 제2 회전 조인트(200)의 작동을 설명하기 위한 도면이다. 도 13은 도 2에 도시된 자극 유닛(300)의 작동을 설명하기 위한 도면이다. 도 14는 의료용 다자유도 로봇(1)의 가동 범위를 설명하기 위한 도면이다. 설명의 편의를 위하여 도 1 내지 3에 도시된 도면을 간략하게 표현하였다.11 is a view for explaining the operation of the first rotary joint 100 shown in FIG. 12 is a view for explaining the operation of the second rotary joint 200 shown in FIG. 13 is a view for explaining the operation of the stimulation unit 300 shown in FIG. 14 is a view for explaining the movable range of the medical multi-degree-of-freedom robot 1 . For convenience of explanation, the drawings shown in FIGS. 1 to 3 are briefly expressed.
도 11을 참조하면, 제1 회전 조인트(100)의 작동으로 피자극자의 머리에서 어느 영역까지 커버할 수 있는지 확인할 수 있다. 도 12를 참조하면, 제2 회전 조인트(200)의 작동으로 제1 회전 조인트(100)의 가동 범위를 넘어서서 피자극자의 머리에서 어느 영역까지 커버할 수 있는지 확인할 수 있다. 도 13을 참조하면, 선형 조인트(301) 및 제3 내지 제5 회전 조인트(401, 402, 403)의 작동을 통해 자성 자극기(500)의 자세를 조절하는 과정을 확인할 수 있다.Referring to FIG. 11 , it can be confirmed to what extent the head of the subject can be covered by the operation of the first rotary joint 100 . Referring to FIG. 12 , it can be confirmed to what extent the head of the subject can be covered by the operation of the second rotary joint 200 beyond the movable range of the first rotary joint 100 . Referring to FIG. 13 , a process of adjusting the posture of the magnetic stimulator 500 through the operation of the linear joint 301 and the third to fifth rotational joints 401 , 402 , 403 can be confirmed.
도 14에 도시된 바와 같이, 의료용 다자유도 로봇(1)는 자성 자극기(500)에 5 자유도에서 6 자유도의 움직임을 제공할 수 있으며, 목표 작업 영역(target workspace)인 피자극자의 머리 상반구 전영역을 커버할 수 있다.As shown in FIG. 14 , the medical multi-DOF robot 1 can provide the magnetic stimulator 500 with motions of 5 to 6 degrees of freedom, and the upper hemisphere of the head of the target workspace, which is the target workspace. It can cover the entire area.
도 15는 본 발명의 일 실시예에 따른 의료용 다자유도 로봇(1)의 제어 방법(S1000)을 나타낸 순서도이다.15 is a flowchart illustrating a control method (S1000) of the medical multi-DOF robot 1 according to an embodiment of the present invention.
의료용 다자유도 로봇(1)은 아래와 같은 순서로 작동할 수 있다.The medical multi-DOF robot 1 may operate in the following order.
(1) 준비단계(1) Preparation stage
- 장치의 조립 및 사용을 위한 베이스 고정- Fixing the base for assembly and use of the device
- 베이스 단에 추가적으로 부착된 선형 엑츄에이터를 이용하여 피실험자의 머리 중심과 구형 프레임의 구 중심부의 거리값을 0으로 만들어준다.- By using a linear actuator additionally attached to the base, the distance value between the center of the subject's head and the center of the sphere of the spherical frame is set to 0.
(2) 자극 부위 입력 단계(2) Stimulation site input step
전문가를 통해 처방된 피자극자의 자극 부위 정보를 장치에 입력시킨다.Information on the stimulation site of the stimulator prescribed by an expert is input into the device.
(3) 자극 시간, 자극 세기 등 입력 단계 (3) Input steps such as stimulation time, stimulation intensity, etc.
원하는 자극 세기와 시간 등을 지정한다.Specify the desired stimulus intensity and time.
(4) 자극 단계(4) stimulation phase
- 큰 운동을 담당하는 저속, 고출력의 구형 프레임을 구동하여, 자극기를 작업영역 근처로 이동시킨다. - Move the stimulator near the work area by driving the low-speed, high-output spherical frame responsible for large movements.
- 역기구학 해석을 통해 얻어진 자세를 5개 이상의 엑츄에이터를 동시 구동하여, 원하는 뇌 자극 위치 및 각도로 자극기를 이동시킨다. - Move the stimulator to the desired brain stimulation position and angle by simultaneously driving 5 or more actuators in the posture obtained through inverse kinematics analysis.
- 자극기가 작동되어 지정한 자극량만큼 뇌자극이 수행된다. - The stimulator is activated and brain stimulation is performed as much as the specified amount of stimulation.
다음으로, 도 15를 참조하여, 설명한다.Next, with reference to FIG. 15, it demonstrates.
의료용 다자유도 로봇의 제어 방법(S1000)은, 피자극자에 대한 자극 초점의 위치와 방향을 설정하는 단계(S1100), 역기구학(inverse kinematic) 분석을 수행하여 제1 내지 제5 액츄에이터 및 선형 이동 장치의 입력값을 계산하는 단계(S1200), 입력값에 따라 제1 및 제2 링크 암을 이동시키는 단계(S1300); 입력값에 따라 제4내지 제6링크 암을 이동시켜서 자성 자극기의 자세를 고정하는 단계(S1400), 및 입력값에 따라 제3 링크 부재를 이동시켜서 자극 초점을 고정하는 단계(S1500)를 포함할 수 있다. 또한, 제어 방법(S1000)은 제3 링크 부재를 이동시켜서 자극 초점 및 접촉힘을 조정(calibration)하는 단계(S1600)을 더 포함할 수 있다. 또한, 제어 방법(S1000)은 자극 초점을 변경하는 단계(S1700)을 더 포함할 수 있다.The control method (S1000) of the medical multi-DOF robot includes the steps of setting the position and direction of the stimulus focus with respect to the subject (S1100), and performing inverse kinematic analysis to obtain first to fifth actuators and a linear calculating an input value of the mobile device (S1200), moving the first and second link arms according to the input value (S1300); It may include the steps of fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the input value (S1400), and fixing the magnetic pole focus by moving the third link member according to the input value (S1500). can In addition, the control method (S1000) may further include a step (S1600) of adjusting the magnetic pole focus and the contact force by moving the third link member (S1600). Also, the control method ( S1000 ) may further include changing the stimulus focus ( S1700 ).
단계 S1100에서, 구체적으로, 위치(x, y, z 값), 방향(Roll, Pitch, Yaw 값)의 총 6자유도를 설정할 수 있다.In step S1100, specifically, a total of six degrees of freedom of a position (x, y, z values) and a direction (Roll, Pitch, and Yaw values) may be set.
도 16은 도 15에 도시된 자극 초점을 변경하는 단계(S1700)를 나타낸 순서도이다.FIG. 16 is a flowchart illustrating a step S1700 of changing the stimulus focus shown in FIG. 15 .
자극 초점을 변경하는 단계(S1700)는, 다른 자극 초점의 위치와 방향으로 재설정하는 단계(S1710), 재설정된 자극 초점에 따라 역기구학(inverse kinematic) 분석을 수행하여 제1 내지 제5 액츄에이터 및 선형 이동 장치의 2차 입력값을 계산하는 단계(S1720), 제1 내지 제6 링크 암을 초기 위치로 이동시키는 단계(S1730), 2차 입력값에 따라 제1 및 제2 링크 암을 이동시키는 단계(S1740), 2차 입력값에 따라 제4 내지 제6 링크 암을 이동시켜서 자성 자극기의 자세를 고정하는 단계(S1750), 및 2차 입력값에 따라 제3 링크 부재를 이동시켜서 자극 초점을 고정하는 단계(S1760)를 포함할 수 있다. 한편, 변경하는 단계(S1700)는 제3 링크 부재를 이동시켜서 자극 초점 및 접촉힘을 조정(calibration)하는 단계(S1770)을 더 포함할 수 있다.The step of changing the stimulus focus (S1700) includes resetting the position and direction of another stimulus focus (S1710), performing inverse kinematic analysis according to the reset stimulus focus to obtain the first to fifth actuators and the linear Calculating a secondary input value of the moving device (S1720), moving the first to sixth link arms to an initial position (S1730), moving the first and second link arms according to the secondary input value (S1740), fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the secondary input value (S1750), and fixing the magnetic pole focus by moving the third link member according to the secondary input value It may include a step (S1760) of doing. On the other hand, the changing step (S1700) may further include the step (S1770) of adjusting the magnetic pole focus and the contact force by moving the third link member (S1770).
이후에, 자극 초점을 추가로 변경하고자 한다면, 또 다른 초점의 위치와 방향을 기준으로 자극 초점을 변경하는 단계(S1700)를 다시 수행할 수 있다.Thereafter, if the stimulus focus is to be further changed, the step of changing the stimulus focus based on the position and direction of another focus ( S1700 ) may be performed again.
도 17은 역기구학 분석을 설명하기 위한 도면이다.17 is a diagram for explaining inverse kinematic analysis.
도 17에 도시된 바와 같이, 기본 좌표와 이동 좌표 O (x, y, z) 및 P (u, v, w)는 각각 지면과 자성 자극기(500)에 할당된다. 역기구학 분석을 위하여, 운동학에서는 두 개의 벡터 루프가 사용된다. 점 O, P, Q를 통과하는 첫 번째 벡터 루프는 원하는 자세와 관련된 정보를 포함하는 변환(T1)이다. 두 번째 벡터 루프는 액추에이터를 통해 원점 (O)에서 점 Q 로의 변환(T2)이다. 자극기의 위치 벡터 (P=[PxPYPz]T) 및 회전 행렬 Rp가 주어지면, 변환 행렬 T1은 다음과 같이 얻어진다.As shown in FIG. 17 , the basic coordinates and movement coordinates O (x, y, z) and P (u, v, w) are assigned to the ground and the magnetic stimulator 500 , respectively. For inverse kinematics analysis, two vector loops are used in kinematics. The first vector loop through points O, P, Q is a transformation (T 1 ) containing information related to the desired posture. The second vector loop is the transformation (T 2 ) from the origin (O) to the point Q via the actuator. Given the position vector of the stimulator (P=[P x P Y P z ] T ) and the rotation matrix R p , the transformation matrix T 1 is obtained as
수식 (1):Formula (1):
Figure PCTKR2021012403-appb-img-000001
Figure PCTKR2021012403-appb-img-000001
여기서 DP은 원점에서 P 점까지의 변환 행렬이고 D(축, 값)은 특정 축을 따라 변환하는 변환 행렬이다. 그러면 회전 관절의 입력 값(θi)와 선형 액추에이터의 입력 값(d)으로 구성된 변환 행렬 변환(T2)은 다음과 같이 표현할 수 있다.where D P is a transformation matrix from the origin to point P, and D(axis, value) is a transformation matrix that transforms along a specific axis. Then, the transformation matrix transformation (T 2 ) composed of the input value (θ i ) of the rotary joint and the input value (d) of the linear actuator can be expressed as follows.
수식 (2):Formula (2):
Figure PCTKR2021012403-appb-img-000002
Figure PCTKR2021012403-appb-img-000002
여기서 R(축, 값)은 특정 축을 따라 회전하는 변환 행렬이다. 수식 (1)과 (2)에서, rd와 rs는 각각 점 O와 선형 조인트(Prismatic joint)의 초기 위치 사이, 그리고 점 Q와 자극 초점 (P) 사이의 거리이고, α 및 β은 구형 프레임(즉, 제1 및 제2 링크 암)의 디자인 각도이다. T1과 T2의 각 구성 요소가 같아야 하므로 각 조인트의 원하는 값 (θi, d)은 다음과 같이 도출된다.where R(axis, value) is a transformation matrix that rotates along a specific axis. In equations (1) and (2), r d and r s are the distances between point O and the initial position of the prismatic joint, and between point Q and the magnetic pole focus (P), respectively, and α and β are the spherical The design angle of the frame (ie, the first and second link arms). Since each component of T 1 and T 2 must be the same, the desired value (θ i , d) of each joint is derived as follows.
수식 (3):Formula (3):
Figure PCTKR2021012403-appb-img-000003
Figure PCTKR2021012403-appb-img-000003
Figure PCTKR2021012403-appb-img-000004
Figure PCTKR2021012403-appb-img-000004
Figure PCTKR2021012403-appb-img-000005
Figure PCTKR2021012403-appb-img-000005
여기서, c는 cos이고 s는 sin이라고 하면,where c is cos and s is sin,
Figure PCTKR2021012403-appb-img-000006
Figure PCTKR2021012403-appb-img-000006
Figure PCTKR2021012403-appb-img-000007
Figure PCTKR2021012403-appb-img-000007
Figure PCTKR2021012403-appb-img-000008
Figure PCTKR2021012403-appb-img-000008
Figure PCTKR2021012403-appb-img-000009
Figure PCTKR2021012403-appb-img-000009
파생된 입력 값을 사용하여 장치의 작업단(end-effector, 즉, 자성 자극기(500))가 대상 위치 및 방향으로 위치될 수 있다. 이때, 제2 회전 조인트(Revolute joint)는 -100°<θ2<100° 범위에서 구동될 수 있으며, 제1 회전 조인트(Revolute joint)도 -100°<θ1<100°로 구동 범위가 설정될 수 있다.Using the derived input values, an end-effector (ie, magnetic stimulator 500 ) of the device can be positioned at a target location and orientation. At this time, the second revolute joint may be driven in the range of -100°<θ 2 <100°, and the driving range of the first revolute joint is also set to -100°<θ 1 <100°. can be
다만, 특이점을 방지하기 위해 제2 회전 조인트(Revolute joint)는 0°<θ2<180° 범위에서 구동될 수 있으며, 제1 회전 조인트(Revolute joint)도 -180° <θ1<180°로 구동 범위가 설정될 수 있다.However, in order to prevent a singularity, the second revolute joint may be driven in the range of 0°<θ 2 <180°, and the first revolute joint is also driven at -180° <θ 1 <180°. A driving range can be set.
도 18은 의료용 다자유도 로봇의 제어 및 보상과정을 설명하기 위한 블록도이다.18 is a block diagram for explaining a control and compensation process of a medical multi-DOF robot.
이하에서는 예상치 못한 인간의 움직임을 보상하기 위해 PBVS (position-based visual servoing) 방법을 사용하여 로봇을 제어할 수 있다. PBVS 기법은 3D 포즈 추정 과정이 필요하지만 기존의 데카르트 좌표계에서 사용하던 제어 방법을 그대로 사용할 수 있다.Hereinafter, the robot can be controlled using a position-based visual servoing (PBVS) method to compensate for unexpected human movements. Although the PBVS technique requires a 3D pose estimation process, the control method used in the existing Cartesian coordinate system can be used as it is.
피드백 제어에 사용되는 위치 및 방향 오류는 다음과 같이 정의될 수 있다. 유클리드 기하학에서 원하는 위치 (pd)와 현재의 작업단 위치 (pe)의 차이를 이용하여 위치 오차 (ep)를 정의한다.Position and orientation errors used for feedback control can be defined as follows. In Euclidean geometry, the position error (e p ) is defined using the difference between the desired position (p d ) and the current working end position (p e ).
수식 (4):Formula (4):
Figure PCTKR2021012403-appb-img-000010
Figure PCTKR2021012403-appb-img-000010
회전 행렬 R는 수식 (5)에서와 같이 임의 벡터 z의 길이를 유지하면서 방향을 회전하는 행렬이며, 특별한 직교 그룹에 속한다.The rotation matrix R is a matrix that rotates the direction while maintaining the length of an arbitrary vector z as in Equation (5), and belongs to a special orthogonal group.
수식 (5):Formula (5):
Figure PCTKR2021012403-appb-img-000011
Figure PCTKR2021012403-appb-img-000011
회전 행렬은 오일러 각도와 달리 특이점이 없다는 장점이 있지만 게인(gain) 조정이 어렵다. 아래에서는 컨트롤러의 방향 오류를 나타내는 회전 행렬을 사용한다.Unlike the Euler angle, the rotation matrix has the advantage of not having a singularity, but it is difficult to adjust the gain. Below we use a rotation matrix that represents the orientation error of the controller.
삼각 함수의 작은 각도 근사값을 사용하여 새로운 방향 오류 (e0) 표현을 정의한다. 삼각 함수의 입력 각이 매우 작으면 sinθ=θ와 cosθ=1 과 같이 사인 함수와 코사인 함수를 근사하여 표현할 수 있다.We use the small angle approximation of the trigonometric function to define a new expression of orientation error (e 0 ). If the input angle of the trigonometric function is very small, the sine function and the cosine function can be approximated and expressed as sinθ=θ and cosθ=1.
각각 14도 및 8도이며 근사치로 인한 오류율은 대략 1%이다. 따라서 이 근사치는 피사체의 약간의 움직임을 보정하기 위한 것이기 때문에 사용할 수 있다. 원하는 방향이 주어 졌을 때 (Rd), 작업단의 회전 (Re)이 측정 시스템에 의해 결정되면 방향 오류는 다음과 같다.14 degrees and 8 degrees, respectively, and the error rate due to approximation is approximately 1%. Therefore, this approximation can be used because it is intended to compensate for slight movement of the subject. Given the desired orientation (R d ), if the rotation of the working end (R e ) is determined by the measuring system, the orientation error is
수식 (6):Formula (6):
Figure PCTKR2021012403-appb-img-000012
Figure PCTKR2021012403-appb-img-000012
수식 (6)에서 ZYX 오일러 각도를 사용하여 회전 행렬에 작은 각도 근사를 적용했다. 작은 각도가 가정되기 때문에 2 차 및 3 차 항도 무시할 수 있을 만큼 작다고 가정할 수 있다.A small angle approximation was applied to the rotation matrix using ZYX Euler angles in equation (6). Since small angles are assumed, we can assume that the second and third terms are also negligibly small.
이를 통해 행렬의 구성 요소 값을 그대로 사용하여 회전 오류를 추정 할 수 있다. 추정된 오차에 게인을 곱한 후, 식 (7)과 같이 회전 행렬의 곱을 사용하여 최종 오차(
Figure PCTKR2021012403-appb-img-000013
)를 구합니다. 이러한 추정을 통해 어느 지점에서도 특이점이 없는 회전 행렬의 장점이며, 방향 오차에 대한 게인을 조정하여 원하는 성능을 얻을 수 있다.
Through this, the rotation error can be estimated by using the component values of the matrix as it is. After multiplying the estimated error by the gain, the final error (
Figure PCTKR2021012403-appb-img-000013
) is found. Through this estimation, the advantage of the rotation matrix is that there is no singularity at any point, and the desired performance can be obtained by adjusting the gain for the direction error.
수식 (7):Formula (7):
Figure PCTKR2021012403-appb-img-000014
Figure PCTKR2021012403-appb-img-000014
게인 값에 따라 보상되는 속도가 빠를수록 실험의 위험성이 높아지기 때문에 실험의 안전성과 성능을 고려하여 게인을 설정할 수 있다.The higher the speed compensated according to the gain value, the higher the risk of the experiment. Therefore, the gain can be set in consideration of the safety and performance of the experiment.
이상 본 발명의 기술적 사상이 설명되었지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속한다.Although the technical spirit of the present invention has been described above, various substitutions, modifications and changes can be made without departing from the technical spirit and scope of the present invention that can be understood by those of ordinary skill in the art to which the present invention pertains. Also, such substitutions, modifications and variations are intended to be within the scope of the appended claims.
[부호의 설명][Explanation of code]
1: 지주 받침 기구1: Post support mechanism
10: 스탠드10: stand
100, 200, 401, 402, 403: 회전 조인트100, 200, 401, 402, 403: rotary joint
120, 220: 링크 암120, 220: link arm
300: 자극 유닛300: stimulation unit
310: 선형 이동 장치310: linear movement device
400: 방향 조절 장치400: direction control device
500: 자성 자극기500: magnetic stimulator
본 발명은 의료용 다자유도 로봇에 관한 것으로, 원하는 위치 및 각도로 뇌를 자극하는 것이 가능하게 되므로 안전하고 정밀한 뇌 자극을 가능하게 할 수 있으며, 저비용으로 장비 제작이 가능하므로 장비의 보급률을 높일 수 있고, 자가 치료가 가능하도록 장치를 설계하여 뇌 자극 치료의 효과를 극대화할 수 있어 산업상 이용가능성이 높다.The present invention relates to a multi-degree-of-freedom robot for medical use. Since it is possible to stimulate the brain at a desired position and angle, safe and precise brain stimulation can be achieved, and equipment can be manufactured at low cost, thereby increasing the penetration rate of equipment. In addition, it is possible to maximize the effect of brain stimulation treatment by designing the device to allow self-treatment, so it has high industrial applicability.

Claims (15)

  1. 제1 전단부와 제1 후단부를 갖는 제1링크 암;a first link arm having a first front end and a first rear end;
    상기 제1 전단부에 설치되어 상기 제1 전단부를 제1 회전축을 중심으로 회동시키는 제1 액츄에이터;a first actuator installed on the first front end to rotate the first front end about a first rotational axis;
    제2 전단부와 제2 후단부를 갖는 제2링크 암;a second link arm having a second front end and a second rear end;
    상기 제1 후단부에 설치되어 상기 제2 전단부를 제2 회전축을 중심으로 회동시키는 제2 액츄에이터; 및a second actuator installed at the first rear end to rotate the second front end about a second rotation axis; and
    상기 제2 후단부에 연결되는 자극 유닛을 포함하고,and a stimulation unit connected to the second rear end,
    상기 자극 유닛은,The stimulation unit,
    상기 제2 후단부에 연결되는 선형 이동 장치;a linear moving device connected to the second rear end;
    상기 선형 이동 장치에 연결되어 2개 이상의 자유도를 제공하는 자세 조절 장치; 및a posture control device connected to the linear movement device to provide two or more degrees of freedom; and
    상기 자세 조절 장치에 연결되는 자성 자극기를 포함하는,Comprising a magnetic stimulator connected to the posture control device,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  2. 제1항에 있어서, According to claim 1,
    상기 자세 조절 장치는,The posture control device,
    상기 선형 이동 장치에 설치되고, 제3 전단부와 제3 후단부를 갖는 제3 링크 암;a third link arm installed on the linear moving device and having a third front end and a third rear end;
    제4 전단부와 제4 후단부를 갖는 제4 링크 암;a fourth link arm having a fourth front end and a fourth rear end;
    상기 제3 후단부에 설치되어 상기 제4 전단부를 제3 회전축을 중심으로 회동시키는 제3 액츄에이터;a third actuator installed at the third rear end to rotate the fourth front end about a third rotation axis;
    제5 전단부와 제5 후단부를 갖는 제5링크 암;a fifth link arm having a fifth front end and a fifth rear end;
    상기 제4 후단부에 설치되어 상기 제5전단부를 상기 제3 회전축에 수직한 제4 회전축을 중심으로 회동시키는 제4 액츄에이터;a fourth actuator installed at the fourth rear end to rotate the fifth front end about a fourth axis of rotation perpendicular to the third axis of rotation;
    제6 전단부와 제6 후단부를 갖는 제6 링크 암;및a sixth link arm having a sixth front end and a sixth rear end; and
    상기 제5 후단부에 설치되어 상기 제6 전단부를 상기 제3 및 제4 회전축에 수직한 제5 회전축으로 회동시키는 제5 액츄에이터를 포함하고,and a fifth actuator installed at the fifth rear end to rotate the sixth front end to a fifth rotational axis perpendicular to the third and fourth rotational axes,
    상기 자성 자극기는 제6 후단부에 연결되는,The magnetic stimulator is connected to the sixth rear end,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  3. 제1항에있어서,The method of claim 1,
    상기 제1 액츄에이터와 상기 제1 전단부 사이, 및 상기 제2 액츄에이터와 상기 제2 전단부 사이 각각에는 토션 스프링이 설치되는,A torsion spring is installed between the first actuator and the first front end, and between the second actuator and the second front end, respectively,
    지주 받침 기구.pole support mechanism.
  4. 제1항에 있어서,According to claim 1,
    지면에 설치되는 스탠드; 및a stand installed on the ground; and
    상기 스탠드의 상부에 설치되고 상기 제1액츄에이터가 연결되는 높이 조절 유닛을 더 포함하고,It is installed on the upper part of the stand and further comprises a height adjustment unit to which the first actuator is connected,
    상기 높이 조절 유닛은 상기 제1 및 제2 회전축의 교차점이 피자극자의 머리 중심과 일치하도록 상기 제1 액츄에이터의 높이를 조절하는,The height adjustment unit adjusts the height of the first actuator so that the intersection of the first and second rotation shafts coincides with the center of the head of the subject,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 자극 유닛은,The stimulation unit,
    상기 제6 후단부에 설치되는 토크 센서; 및a torque sensor installed at the sixth rear end; and
    상기 토크 센서에 연결되는 무빙 플랫폼을 더 포함하는,Further comprising a moving platform connected to the torque sensor,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  6. 제1항에 있어서,According to claim 1,
    상기 제1 액츄에이터는 제1 모터와 제 1감속기를 포함하고,The first actuator includes a first motor and a first reducer,
    상기 제2 액츄에이터는 제 2모터와 제 2감속기를 포함하고,The second actuator includes a second motor and a second reducer,
    상기 제1 및 제2감속기는 각각 하모닉 드라이브로 구성되는,The first and second reducers are each composed of a harmonic drive,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제1액츄에이터는 상기 제1 링크 암의 자유 회동을 방지하는 제1브레이크를 더 포함하고,The first actuator further includes a first brake for preventing free rotation of the first link arm,
    상기 제2액츄에이터는 상기 제2 링크 암의 자유 회동을 방지하는 제2브레이크를 더 포함하는,The second actuator further comprises a second brake for preventing the free rotation of the second link arm,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  8. 제1항에 있어서,According to claim 1,
    상기 제1 링크 암과 피자극자의 머리 중심 사이의 거리는 상기 제2링크 암과 상기 머리 중심 사이의 거리보다 긴,The distance between the first link arm and the center of the head of the stimulated person is longer than the distance between the second link arm and the center of the head,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  9. 제2항에 있어서,3. The method of claim 2,
    상기 제3 내지 제5 회전축의 연장선은 하나의 교차점에서 교차하도록 구성된,The extension lines of the third to fifth rotation axes are configured to intersect at one intersection point,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 교차점은 상기 제3 링크 암의 이동시 상기 선형 이동 장치의 선형 축을 따라 이동하도록 구성된,the intersection is configured to move along a linear axis of the linear movement device upon movement of the third link arm;
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  11. 제1항에 있어서,According to claim 1,
    상기 제1 및 제2링크 암은 피자극자의 머리를 감싸도록 각각 구형(spherical) 프레임으로 구성되고,The first and second link arms are each composed of a spherical frame to surround the head of the subject,
    상기 자성 자극기는 비침습적 뇌자극기인,The magnetic stimulator is a non-invasive brain stimulator,
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  12. 제1항에 있어서,According to claim 1,
    상기 자세 조절 장치는 상기 자성 자극기의 롤, 피치, 요우 각도를 조절하여 상기 자성 자극기의 자세를 제어하도록 구성된,The posture adjusting device is configured to control the posture of the magnetic stimulator by adjusting a roll, pitch, and yaw angle of the magnetic stimulator.
    의료용 다자유도 로봇.A multi-degree-of-freedom robot for medical use.
  13. 제1항 내지 제12항에 따른 의료용 다자유도 로봇의 제어 방법에 있어서,In the control method of the medical multi-degree-of-freedom robot according to claim 1 to 12,
    피자극자에 대한 자극 초점의 위치와 방향을 설정하는 단계;setting the position and direction of the stimulus focus with respect to the subject;
    역기구학(inverse kinematic) 분석을 수행하여 제1내지 제5 액츄에이터 및 선형 이동 장치의 입력값을 계산하는 단계;calculating input values of the first to fifth actuators and the linear movement device by performing inverse kinematic analysis;
    상기 입력값에 따라 상기 제1및 제2링크 암을 이동시키는 단계;moving the first and second link arms according to the input value;
    상기 입력값에 따라 상기 제4내지 제6링크 암을 이동시켜서 자성 자극기의 자세를 고정하는 단계; 및fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the input value; and
    상기 입력값에 따라 상기 제3 링크 부재를 이동시켜서 상기 자극 초점을 고정하는 단계를 포함하는,Comprising the step of fixing the magnetic pole focus by moving the third link member according to the input value,
    제어 방법.control method.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 제3 링크 부재를 이동시켜서 자극 초점 및 접촉힘을 조정(calibration)하는 단계를 더 포함하는,Further comprising the step of moving the third link member to adjust the stimulus focus and the contact force (calibration),
    제어 방법.control method.
  15. 제13항에 있어서,14. The method of claim 13,
    자극 초점을 변경하는 단계를 더 포함하고,changing the stimulus focus;
    상기 자극 초점을 변경하는 단계는,Changing the stimulus focus comprises:
    다른 자극 초점의 위치와 방향으로 재설정하는 단계;resetting the position and orientation of a different stimulus focus;
    재설정된 자극 초점에 따라 역기구학(inverse kinematic) 분석을 수행하여 제1 내지 제5 액츄에이터 및 선형 이동 장치의 2차 입력값을 계산하는 단계;calculating secondary input values of the first to fifth actuators and the linear movement device by performing inverse kinematic analysis according to the reset stimulus focus;
    상기 제1내지 제6 링크 암을 초기 위치로 이동시키는 단계;moving the first to sixth link arms to an initial position;
    상기 2차 입력값에 따라 상기 제1및 제2링크 암을 이동시키는 단계;moving the first and second link arms according to the secondary input value;
    상기 2차 입력값에 따라 상기 제4내지 제6링크 암을 이동시켜서 자성 자극기의 자세를 고정하는 단계; 및fixing the posture of the magnetic stimulator by moving the fourth to sixth link arms according to the secondary input value; and
    상기 2차 입력값에 따라 상기 제3 링크 부재를 이동시켜서 상기 자극 초점을 고정하는 단계를 포함하는,Comprising the step of fixing the magnetic pole focus by moving the third link member according to the secondary input value,
    제어 방법.control method.
PCT/KR2021/012403 2020-10-26 2021-09-13 Multi-degree-of-freedom medical robot WO2022092554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200139611A KR102495396B1 (en) 2020-10-26 2020-10-26 Medical multi-dof robot
KR10-2020-0139611 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022092554A1 true WO2022092554A1 (en) 2022-05-05

Family

ID=81384133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012403 WO2022092554A1 (en) 2020-10-26 2021-09-13 Multi-degree-of-freedom medical robot

Country Status (2)

Country Link
KR (1) KR102495396B1 (en)
WO (1) WO2022092554A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140200388A1 (en) * 2011-07-18 2014-07-17 M. Bret Schneider Concurrent stimulation of deep and superficial brain regions
CN205084215U (en) * 2015-11-11 2016-03-16 李庆玉 Intelligence cranial nerve irritation therapy ware
KR101670735B1 (en) * 2015-02-27 2016-10-31 한국과학기술연구원 Robot for controlling position of moving platform and System for stimulating living body having the same
US20170291037A1 (en) * 2014-10-07 2017-10-12 Teijin Pharma Limited Transcranial magnetic stimulation system
CN211132727U (en) * 2019-10-21 2020-07-31 川北医学院 Nerve rehabilitation instrument for psychiatric department

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034237B4 (en) 2008-07-23 2011-06-30 Matthäus, Lars, Dipl.-Math.techn., 23562 Positioning system for transcranial magnetic stimulation
US20110282357A1 (en) * 2010-05-14 2011-11-17 Intuitive Surgical Operations, Inc. Surgical system architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140200388A1 (en) * 2011-07-18 2014-07-17 M. Bret Schneider Concurrent stimulation of deep and superficial brain regions
US20170291037A1 (en) * 2014-10-07 2017-10-12 Teijin Pharma Limited Transcranial magnetic stimulation system
KR101670735B1 (en) * 2015-02-27 2016-10-31 한국과학기술연구원 Robot for controlling position of moving platform and System for stimulating living body having the same
CN205084215U (en) * 2015-11-11 2016-03-16 李庆玉 Intelligence cranial nerve irritation therapy ware
CN211132727U (en) * 2019-10-21 2020-07-31 川北医学院 Nerve rehabilitation instrument for psychiatric department

Also Published As

Publication number Publication date
KR102495396B1 (en) 2023-02-06
KR20220055305A (en) 2022-05-03

Similar Documents

Publication Publication Date Title
Hsieh et al. Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation
Ball et al. MEDARM: a rehabilitation robot with 5DOF at the shoulder complex
WO2019240453A1 (en) Robot arm structure and surgical robot manipulator including same
WO2015156472A1 (en) Robot
EP0849053B1 (en) Method of controlling force assisting device and control apparatus using the same
WO2015156470A1 (en) Medical robot
WO2015156471A1 (en) Robot
WO2011102629A2 (en) Master control device of robot, and surgical robot using same
WO2022092554A1 (en) Multi-degree-of-freedom medical robot
WO2020130558A2 (en) Surgical robot apparatus, and method for driving surgical robot apparatus
US11690773B2 (en) Wearable upper limb rehabilitation training robot with precise force control
CN111110513B (en) Four-degree-of-freedom elbow-wrist joint rehabilitation robot
CN110279470A (en) Dynamic regulation device, dynamic adjusting system and its application method
WO2020130559A2 (en) User interface device, master console of surgical robot device, and operation method of master console
Bauer et al. Direct drive hand exoskeleton for robot-assisted post stroke rehabilitation
KR101670735B1 (en) Robot for controlling position of moving platform and System for stimulating living body having the same
WO2023080618A1 (en) Positioning arm with 3-degree-of-freedom gravity compensation
CN114131608A (en) Mechanical arm control method of high-strength temperature-sensitive flexible driver
CN115089429A (en) Upper limb rehabilitation training robot, upper limb rehabilitation training system and method
WO2017164677A1 (en) Haptic actuator with linear and rotational movement
WO2024005554A1 (en) Non-invasive stimulator and stimulation method using same
WO2023080651A1 (en) Positioning arm position of which is lockable by single fixing device
CN111906795A (en) Infectious disease ward nursing robot walking on both feet
CN218875470U (en) Working device and collision protection structure thereof
Hu et al. Biomechtronic design of a wearable upper dual-arm exoskeleton robot for lifting tasks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886550

Country of ref document: EP

Kind code of ref document: A1