WO2022092361A1 - High-volume aluminum composite and method of manufacturing same - Google Patents

High-volume aluminum composite and method of manufacturing same Download PDF

Info

Publication number
WO2022092361A1
WO2022092361A1 PCT/KR2020/014987 KR2020014987W WO2022092361A1 WO 2022092361 A1 WO2022092361 A1 WO 2022092361A1 KR 2020014987 W KR2020014987 W KR 2020014987W WO 2022092361 A1 WO2022092361 A1 WO 2022092361A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
titanium boride
aluminum composite
preform
volume
Prior art date
Application number
PCT/KR2020/014987
Other languages
French (fr)
Korean (ko)
Inventor
조승찬
고성민
김정환
이상복
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2022092361A1 publication Critical patent/WO2022092361A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4517Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application application under inert, e.g. non-oxidising, atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4521Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application application under increased pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the technical idea of the present invention relates to an aluminum composite material, and more particularly, to an aluminum composite material having a high area ratio and a method for manufacturing the same.
  • aluminum composite material having special performance in application fields such as automobile field, aerospace field, and defense industry field is increasing, and thus, research on aluminum composite material is in progress.
  • These aluminum composites are ceramic using silicon carbide (SiC), alumina (Al 2 O 3 ), boron carbide (B 4 C), titanium carbide (TiC), titanium diboride (TiB 2 ) or a combination thereof on an aluminum matrix. Manufactured by adding reinforcements.
  • the aluminum composite material has excellent mechanical properties while maintaining a low density.
  • the production of aluminum composites is made in an ex-situ process in which reinforcement material is added from the outside of the base material.
  • the ex-situ method has advantages in that it is easy to control the volume ratio of the reinforcing material, and economical efficiency and productivity are excellent.
  • the reinforcing material since the reinforcing material is physically attached to the base material, there is an unstable limit at the interface between the reinforcing material and the base material. there is.
  • the technical problem to be achieved by the technical idea of the present invention is to provide a high-volume ratio aluminum composite material capable of improving properties by securing interfacial stability and a method for manufacturing the same.
  • a solid area ratio aluminum composite material capable of improving properties by ensuring interfacial stability and a method for manufacturing the same.
  • a method for manufacturing a high-volume aluminum composite includes: forming a titanium boride preform; disposing solid aluminum on the titanium boride preform; heating the aluminum to melt; pressurizing the molten aluminum using a gas so that the molten aluminum is impregnated into the titanium boride preform; and cooling the titanium boride preform impregnated with the molten aluminum to form an aluminum composite.
  • forming the titanium boride preform comprises the steps of forming a titanium boride compression material by compressing the titanium boride powder; and sintering the titanium boride compression material to form the titanium boride preform.
  • the titanium boride powder may have an average particle size in the range of 2 ⁇ m to 3 ⁇ m.
  • the compression of the titanium boride powder may be performed at a uniaxial pressure in the range of 60 MPa to 100 MPa.
  • the sintering of the titanium boride compressed material may be performed in an inert gas atmosphere, at a temperature in the range of 900°C to 1100°C, for 10 minutes to 120 minutes.
  • the heating and melting of the aluminum may be performed at a temperature in the range of 900°C to 1800°C in a vacuum atmosphere.
  • the step of pressurizing the molten aluminum using a gas may be performed by injecting an inert gas having a pressure of 1 bar to 20 bar into the molten aluminum.
  • the heating and melting of the aluminum and the pressing of the molten aluminum using a gas may be performed simultaneously.
  • the aluminum may include pure aluminum or an aluminum alloy.
  • the solid area ratio aluminum composite material is manufactured by the above-described method for manufacturing the high area ratio aluminum composite material, and includes a titanium boride preform; and aluminum impregnated in the titanium boride preform.
  • it has pores having a porosity of 20% by volume to 50% by volume, and at least some of the pores may be filled with the aluminum.
  • the high-volume aluminum composite material may exhibit a mixed fracture behavior in which the brittle fracture of the titanium boride and the ductile fracture of aluminum are mixed.
  • the solid area ratio aluminum composite material may have a density of 3.0 g/cm 3 to 4.2 g/cm 3 .
  • the high-volume aluminum composite material may have a tensile strength of 100 MPa to 500 MPa, a compressive yield strength of 100 MPa to 600 MPa, and a Vickers hardness of 40 Hv to 250 Hv.
  • the high-volume aluminum composite material may have a thermal expansion coefficient of 11 ppmK -1 to 17 ppmK -1 .
  • the method for manufacturing the high-volume aluminum composite includes: forming a ceramic preform; disposing solid aluminum on the ceramic preform; heating the aluminum to melt; pressing the molten aluminum with a gas so that the molten aluminum is impregnated into the ceramic preform; and cooling the ceramic preform impregnated with the molten aluminum to form an aluminum composite.
  • the ceramic preform may include at least one of Al 2 O 3 , B 4 C, SiC, and TiC.
  • the present invention it is to prepare a titanium boride-aluminum composite material having a high volume fraction and uniformly dispersed using a melt pressure impregnation process.
  • the present invention can be applied to manufacturing a metal matrix composite by applying a gas pressure at a high temperature of about 1000°C to 1800°C.
  • the effect of the fine titanium boride reinforcement on the mechanical properties of the titanium boride-aluminum composite material was analyzed.
  • the titanium boride reinforcing material is uniformly dispersed in aluminum, the titanium boride-aluminum composite material may have an ideal microstructure having high hardness and high strength, which may be manufactured in a cost-effective melting process.
  • the present invention provides a titanium boride-reinforced aluminum metal matrix composite formed by using a titanium boride (TiB 2 ) and aluminum (Al1050) alloy having improved properties.
  • the aluminum composite is reinforced with fine titanium boride having a volume ratio of 60% or more.
  • the aluminum composite material is manufactured using melt pressure impregnation using gas pressure at high temperature. Examining the microstructure of the titanium boride-aluminum composite formed by pressing at 1000°C at 10 bar for 1 hour, it can be confirmed that the molten aluminum is effectively impregnated into the titanium boride preform having a high volume fraction, which has improved wettability and external It is analyzed that it is due to gas pressurization. In addition, cracks, pores, and brittle intermetallic compounds were not found at the interface between the titanium boride and the aluminum.
  • the titanium boride-aluminum composite material has an excellent microstructure without bonds, and has improved mechanical properties such as hardness and strength. From these results, in the titanium boride-aluminum composite, it is analyzed that the load is effectively transferred from the aluminum matrix to the fine titanium boride reinforcement.
  • the titanium boride-aluminum composite material may be applied to various industrial fields such as automobile field, aerospace field, and defense industry field.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a method for manufacturing the solid area ratio aluminum composite material of FIG. 1 according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a contact angle between titanium boride and aluminum applied to the method of manufacturing a solid-area aluminum composite material according to an embodiment of the present invention.
  • FIG. 5 is a photograph showing the contact form between titanium boride and aluminum applied to the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
  • FIG. 6 is a scanning electron microscope photograph showing a titanium boride powder for carrying out the manufacturing method of the solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 7 is a scanning electron microscope photograph showing a titanium boride preform formed by performing the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
  • FIG. 8 is a titanium boride-formed by the method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention - are external photos according to the steps of the aluminum composite material.
  • FIG. 9 is a scanning electron microscope photograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 10 is an EPMA mapping photograph of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 11 is a graph showing an X-ray diffraction pattern of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 12 is a transmission electron micrograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 13 is a stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 14 is a compressive stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • 15A, 15B, and 15C are scanning electron micrographs showing the fracture surface after a tensile test of a titanium boride-aluminum composite formed by the method for manufacturing a solid-area aluminum composite according to an embodiment of the present invention.
  • the technical idea of the present invention is to provide a high-volume ratio aluminum composite material capable of improving properties by securing interfacial stability and a method for manufacturing the same.
  • Metal matrix composite has excellent properties such as light weight, mechanical properties, functional properties, high temperature stability, abrasion resistance, and oxidation resistance, a lot of research is in progress.
  • MMC Metal matrix composite
  • the uniform dispersion of the reinforcement in the matrix and the interfacial stability between the reinforcement and the matrix are very important factors for the properties.
  • Urena et al. (Urena et al.) oxidized the surface of SiC reinforcements through heat treatment to improve the wettability of the reinforcement to the aluminum matrix.
  • Rajan et al. (Rajan et al.) coated the surface of carbon/graphite, SiC, and Al 2 O 3 reinforcement with nickel (Ni) or copper (Cu) in order to improve the wettability of the reinforcement to the aluminum matrix.
  • Zhou et al. Zhou et al.
  • these surface pretreatment processes improve the interfacial properties between the reinforcement and the matrix, there is a limitation in that the composition of the base metal is changed and additional time and cost are required.
  • the surface tension of aluminum decreases with increasing temperature.
  • the wettability of TiB 2 with aluminum increases.
  • the wettability can be increased to enable spontaneous impregnation.
  • the process temperature is increased, the wettability of the reinforcement and the matrix can be increased without performing a surface pretreatment process.
  • a composite produced only by a spontaneous impregnation process may have unimpregnated pores between the reinforcement and the matrix.
  • an additional pressing process may be performed to remove the impregnated pores.
  • titanium boride (TiB 2 ) is selected as an example among the ceramic reinforcements used for manufacturing the aluminum composite material.
  • the titanium boride has advantages of excellent Young's modulus, excellent hardness, high wettability to aluminum at high temperature, and high chemical stability to aluminum.
  • this is exemplary and the technical spirit of the present invention is not limited thereto, and may include various ceramic reinforcement materials, for example, Al 2 O 3 , B 4 C, SiC, TiC, and the like.
  • FIG. 1 is a flowchart illustrating a method ( S100 ) of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
  • the manufacturing method (S100) of the manufacturing method of the high-volume aluminum composite material includes the steps of forming a titanium boride preform (S110); disposing solid aluminum on the titanium boride preform (S120); heating and melting the aluminum (S130); pressing the molten aluminum using a gas so that the molten aluminum is impregnated into the titanium boride preform (S140); and cooling the titanium boride preform impregnated with the molten aluminum to form an aluminum composite (S150).
  • FIG. 2 is a schematic diagram illustrating a method for manufacturing the solid area ratio aluminum composite material of FIG. 1 according to an embodiment of the present invention.
  • forming the titanium boride (TiB 2 ) preform (S110) includes compressing the titanium boride powder to form a titanium boride compression material; and sintering the compression material to form the titanium boride preform 110 .
  • the titanium boride powder may have an average particle size in the range of 2 ⁇ m to 3 ⁇ m. Compression of the titanium boride powder may be performed at a uniaxial pressure in the range of 60 MPa to 100 MPa. Compression of the titanium boride powder may be made at room temperature, for example, at a temperature in the range of 0°C to 40°C.
  • the sintering of the compressed material may be performed in an inert gas atmosphere such as argon gas or nitrogen gas, for example, at a temperature in the range of 900°C to 1100°C, for example at 1000°C, for example, 10 minutes to 120 minutes. .
  • an inert gas atmosphere such as argon gas or nitrogen gas, for example, at a temperature in the range of 900°C to 1100°C, for example at 1000°C, for example, 10 minutes to 120 minutes. .
  • the titanium boride preform 110 is charged into the crucible 190 .
  • the crucible may be, for example, a magnesium oxide (MgO) crucible, but this is exemplary and the technical spirit of the present invention is not limited thereto.
  • a solid aluminum 120 is disposed on the charged titanium boride preform 110 . That is, the solid aluminum 120 is charged in the crucible (190).
  • Aluminum 120 may include pure aluminum or an aluminum alloy.
  • the step (S130) of heating and melting the aluminum is, for example, in a vacuum atmosphere ranging from 1.0 x 10 -1 torr to 5.0 x 10 -1 torr, for example, in a vacuum atmosphere of 2.8 x 10 -1 torr, for example.
  • a vacuum atmosphere ranging from 1.0 x 10 -1 torr to 5.0 x 10 -1 torr, for example, in a vacuum atmosphere of 2.8 x 10 -1 torr, for example.
  • a temperature in the range of 900 °C to 1800 °C for example, it may be carried out at a temperature of 1000 °C. It may be maintained at the heated temperature until the aluminum is completely melted, for example, for 30 minutes to 2 hours, for example, for 1 hour. Accordingly, the solid aluminum 120 may be changed to the molten aluminum 130 .
  • the step of pressurizing the molten aluminum using a gas may be performed by injecting an inert gas having a pressure of 1 bar to 20 bar into the molten aluminum.
  • the molten aluminum 130 may be impregnated into the titanium boride preform 110 by this gas pressure. It may be maintained at a heated temperature during the pressing (S140).
  • the step S130 and the step S140 may be performed simultaneously.
  • the aluminum composite material 140 may be formed by cooling the titanium boride preform 110 impregnated with the molten aluminum 130 .
  • the aluminum composite 140 may be referred to as a titanium boride-aluminum composite.
  • the titanium boride preform may have, for example, pores having a porosity of 20% by volume to 50% by volume, or, for example, pores having a porosity of 35% by volume. At least a portion of the pores may be filled with the aluminum.
  • the solid area ratio aluminum composite material may have a density of 3.0 g/cm 3 to 4.2 g/cm 3 .
  • the high-volume aluminum composite material may have a tensile strength of 100 MPa to 500 MPa, a compressive yield strength of 100 MPa to 600 MPa, and a Vickers hardness of 40 Hv to 250 Hv.
  • the high-volume aluminum composite material may have a thermal expansion coefficient of 11 ppmK -1 to 17 ppmK -1 .
  • a method of heating a metal and pressurizing it with a gas to impregnate it may be referred to as a liquid pressing infiltration (LPI) process.
  • the melt pressure impregnation process may be performed simultaneously with a high temperature process of 1800 °C and a pressurization process of 20 bar.
  • the manufacturing method of the solid area ratio aluminum composite material may be applied to various ceramic reinforcement materials.
  • FIG. 3 is a flowchart illustrating a method ( S200 ) of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
  • the ceramic preform may include at least one of Al 2 O 3 , B 4 C, SiC, and TiC.
  • the contact angle between titanium boride and aluminum was measured using a sessile drop method.
  • the Cecil drop was a drop of liquid aluminum on a titanium boride plate of 20x20x2 mm 3 under a temperature of 700° C. to 1000° C. in a vacuum.
  • As the liquid aluminum Al1050 aluminum alloy (Portland aluminum, Portland, Australia) was used to minimize the effect of additional elements. Note that the aluminum described below refers to the Al1050 aluminum alloy.
  • Table 1 shows the chemical composition of the Al1050 aluminum alloy.
  • the content of each element is expressed in wt%.
  • titanium boride (TiB 2 ) powder As a reinforcing material of the titanium boride-aluminum composite material, titanium boride (TiB 2 ) powder (Kojundo Chemical Laboratory Co., Ltd., Saitama, Japan) was used.
  • the titanium boride powder had an average particle size in the range of 2 ⁇ m to 3 ⁇ m.
  • the titanium boride powder was compressed at a uniaxial pressure of 80 MPa to form a titanium boride compressed material, and then the titanium boride compressed material was sintered at 1000° C. for 60 minutes in an argon atmosphere to form a titanium boride preform. Accordingly, the titanium boride preform had a porous structure having a diameter of 50 mm and a height of 20 mm.
  • the porosity of the titanium boride preform was calculated by measuring the volume and weight of the preform.
  • titanium boride-aluminum composite material was formed using a melt pressure impregnation process.
  • Molten aluminum was impregnated into the titanium boride preform using hydrostatic pressure. Accordingly, aluminum may be filled in the pores of the titanium boride preform.
  • titanium boride which is a reinforcing material, may be uniformly dispersed in aluminum, which is a metal matrix.
  • the melt pressure impregnation process may be performed as follows.
  • the titanium boride preform and the aluminum were charged into a magnesium oxide (MgO) crucible, and heated to 1000° C. in a vacuum atmosphere (2.8 ⁇ 10 ⁇ 1 torr) at a heating rate of 10° C./min.
  • argon gas at a pressure of 10 bar was injected into the molten aluminum to impregnate the molten aluminum in the porous titanium boride preform, thereby preparing the titanium boride-aluminum composite. .
  • a scanning electron microscope (SEM, JSM-6610LV, JEOL, Tokyo, Japan), a transmission electron microscope (TEM, JEM-ARM200F, JEOL, Tokyo, Japan), the microstructure of the titanium boride-aluminum composite prepared by the melt pressure impregnation process ), and electron probe microanalyzer (EPMA, JXA-8530F, JEOL, Tokyo, Japan).
  • Analysis was performed using an X-ray diffraction analyzer (Cu K ⁇ radiation at 30 kV and 250 mA) (XRD, D/Max-2500, Rigaku, Tokyo, Japan).
  • the Archimedes method was used and compared with the theoretical density.
  • CTE coefficient of thermal expansion
  • the wettability properties between titanium boride and aluminum were investigated while increasing the temperature in vacuum. Specifically, the contact angle between the titanium boride and the aluminum was measured while increasing the temperature from room temperature to 1000° C. in vacuum.
  • FIG. 4 is a graph showing a contact angle between titanium boride and aluminum applied to the method of manufacturing a solid-area aluminum composite material according to an embodiment of the present invention.
  • FIG. 5 is a photograph showing the contact form between titanium boride and aluminum applied to the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
  • contact angles and contact forms at 700° C., 800° C., 900° C., and 1000° C. in vacuum are shown.
  • the temperature was increased to measure the contact angle until the aluminum was completely melted and spread widely on the titanium boride plate.
  • the contact angle between the titanium boride plate and the aluminum was 100 degrees or more until 6000 seconds had elapsed. From these results, it can be seen that it is difficult to spontaneously impregnate the molten aluminum into the inside of the titanium boride preform.
  • the contact angle between the titanium boride plate and the aluminum was 40 degrees or less.
  • the contact angle decreased to 90 degrees or less after 94 seconds had elapsed. This means that the wettability between the titanium boride and the aluminum is rapidly increased. From these results, it can be seen that at 1000° C., it is easy to impregnate molten aluminum into porous titanium boride in a relatively short time.
  • the titanium boride-aluminum composite material was prepared by performing melt pressure impregnation at 1000 °C.
  • the reinforcing material When the reinforcing material is uniformly dispersed in the composite, it is possible to effectively impregnate the molten metal alloy, thereby improving the mechanical properties of the metal matrix composite.
  • a titanium boride preform was prepared in a porous structure.
  • the titanium boride preform in order to effectively impregnate the molten aluminum by the subsequent melt pressure impregnation process, it is preferable that the titanium boride preform not only have a porous structure, but also that the titanium boride particles are weakly bonded without crystal growth.
  • FIG. 6 is a scanning electron microscope photograph showing a titanium boride powder for carrying out the manufacturing method of the solid area aluminum composite material according to an embodiment of the present invention.
  • the titanium boride powder has a particle size in the range of 2 ⁇ m to 3 ⁇ m, and also includes relatively large particles of 5 ⁇ m and small fragments of various sizes.
  • FIG. 7 is a scanning electron microscope photograph showing a titanium boride preform formed by performing the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
  • the titanium boride preform was prepared by sintering titanium boride powder at 1000°C.
  • the temperature of 1000° C. is very low compared to the sintering temperature of general titanium boride ceramics. Therefore, it is analyzed that the titanium boride preform has a relatively weakly bonded structure.
  • the titanium boride preform has a porous microstructure composed of titanium boride particles having a size of 2 ⁇ m to 3 ⁇ m, and therefore it is analyzed that crystal growth does not occur during sintering at 1000°C. That is, the titanium boride particles are weakly bonded to each other, maintain their original shapes, and may have a porosity of about 35% by volume. Therefore, at the heating temperature, the molten aluminum can be effectively impregnated into the open pores uniformly formed in the titanium boride preform.
  • the titanium boride preform has a diameter of 50 mm and a height of 20 mm.
  • FIG. 8 is a titanium boride-formed by the method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention - are external photos according to the steps of the aluminum composite material.
  • FIG. 8 external photos according to stages of the titanium boride-aluminum composite are shown. In the case of melt pressure impregnation at 1000° C., it can be seen that aluminum is uniformly and completely impregnated in the titanium boride preform.
  • FIG. 9 is a scanning electron microscope photograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • the gray titanium boride preform was a silver titanium boride-aluminum composite material, and a change in color occurred.
  • molten aluminum was effectively impregnated into the porous titanium boride preform by applying a gas pressure, and the titanium boride particles were individually dispersed in the aluminum matrix without agglomeration.
  • the volume fraction of the titanium boride preform was analyzed using a scanning electron microscope image obtained from the central region and the side region of the titanium boride-aluminum composite material using an Image J program.
  • the volume fraction of the titanium boride preform was found to be about 65%.
  • the porosity of the titanium boride preform is about 35%, it is analyzed that aluminum is effectively impregnated into the titanium boride preform.
  • the particle size of the titanium boride was similar to that of the titanium boride powder before being manufactured. Therefore, it is analyzed that crystal growth of the titanium boride particles did not occur while the melt pressure impregnation process was performed at a temperature of 1000°C.
  • FIG. 10 is an EPMA mapping photograph of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • titanium boride-aluminum composite material an aluminum region and a titanium boride region are clearly separated. Titanium and boron atoms were mostly observed only in titanium boride particles. Therefore, the titanium boride is uniformly dispersed without agglomeration while having a high volume ratio.
  • the aluminum was impregnated in the micrometer-sized space provided between the titanium boride having an average particle size of 2 ⁇ m to 3 ⁇ m. In addition, the aluminum was effectively impregnated even in a narrow space of a sub-micrometer size between the titanium boride.
  • the process was performed at a temperature that can provide high wettability, for example, a process temperature of 1000 ° C.
  • a process temperature of 1000 ° C the boride by the high wettability between the titanium boride and aluminum
  • a titanium boride-aluminum composite material having a large volume fraction of titanium may be prepared.
  • magnesium oxide was also confirmed in the microstructure of the titanium boride-aluminum composite material.
  • the magnesium oxide is analyzed to be due to the reaction of magnesium, oxygen, and sub-elements of aluminum provided from a magnesium oxide crucible used for manufacturing.
  • the amount of the magnesium oxide is very small, the effect on the mechanical properties is analyzed to be negligible.
  • FIG. 11 is a graph showing an X-ray diffraction pattern of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • titanium boride-aluminum composite material only a peak corresponding to aluminum and a peak corresponding to titanium boride were observed. Magnesium oxide was found in the EPMA mapping photograph, but was not found in the X-ray diffraction pattern because it was very small.
  • titanium boride (TiB 2 ) is thermodynamically stable compared to intermetallic compounds such as AlB 2 and Al 3 Ti and ceramics such as B 4 C and TiC. Therefore, it is analyzed that the interfacial reaction between the titanium boride and the aluminum did not occur during the melt pressure impregnation.
  • FIG. 12 is a transmission electron microscope photograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • the interface between the titanium boride (TiB 2 ) and aluminum (Al) does not include voids or defects and forms a very smooth boundary.
  • the interface between the titanium boride and the aluminum is analyzed to have a semi-coherent characteristic. From these results, it is analyzed that the molten aluminum is effectively impregnated into the titanium boride preform.
  • the thermal expansion coefficient of the titanium boride is 6 ppmK -1 to 8 ppmK -1
  • the thermal expansion coefficient of the aluminum is 26 ppmK -1 to 28 ppmK -1
  • the manufacturing process During the period, it can be seen that the titanium boride particles are not broken and form a smooth interface.
  • EDS energy dispersive X-ray spectroscopy
  • the titanium boride-aluminum composite produced by the melt pressure impregnation process has a smooth and excellent microstructure without brittle complexes, and is therefore expected to have superior mechanical properties compared to the case prepared by other ex-situ processes. .
  • FIG. 13 is a stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • FIG. 14 is a compressive stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
  • the titanium boride-aluminum (TiB 2 - Al1050) composite material is indicated by a black solid line
  • the Al1050 aluminum alloy as a comparative example is indicated by a red dotted line.
  • the internal photos are photos of the test specimen of TiB 2 -aluminum composite before and after the test.
  • the tensile strength and compressive strength of the titanium boride-aluminum composite material were greatly increased, and the elongation rate was decreased. This is due to the high strength and brittleness of the titanium boride.
  • the elastic modulus calculated from the tensile stress-strain gradient was significantly increased compared to the Al1050 aluminum alloy, which is analyzed because the titanium boride has a high elastic modulus of 530 GPa.
  • Ceramic-reinforced metal matrix composites with a high volume fraction also exhibit the same fracture behavior as general ceramics. Therefore, in the stress-strain graph of a general metal matrix composite, it is common that fracture occurs in the elastic deformation region.
  • the titanium boride-aluminum composite prepared by the melt pressure impregnation process exhibits slight plastic deformation during the tensile test, and in particular, a clear plastic deformation behavior in the compression test. This phenomenon is very interesting and requires precise analysis.
  • the titanium boride-aluminum composite prepared by the melt pressure impregnation process has fine titanium boride particles dispersed in the aluminum metal matrix with the help of increased impregnation temperature and applied gas pressure, and a smooth interface is formed. .
  • Table 2 shows the mechanical and physical properties of TiB 2 -aluminum composite and Al1050 aluminum alloy.
  • the density of the titanium boride (TiB 2 ) is 4.52 g/cm 3 , which is relatively higher than that of aluminum, the density of the titanium boride-aluminum composite material is increased by 1.4 times compared to the Al1050 aluminum alloy.
  • the tensile strength (UTS) at room temperature of the titanium boride-aluminum composite material was 471.5 MPa, which was significantly increased by 7.0 times compared to the Al1050 aluminum alloy of 67.1 MPa.
  • the compressive yield strength (CYS) and Vickers hardness (hardness) at room temperature of the titanium boride-aluminum composite material were significantly increased by 8.4 times, respectively, compared to the Al1050 aluminum alloy.
  • the thermal expansion coefficient of the titanium boride-aluminum composite material was 12.97 ppmK -1 at a temperature between room temperature and 100 °C. This is 49% lower than the Al1050 aluminum alloy.
  • the properties of the composite material can be roughly estimated using the rule of mixtures (ROM) of Equation 1 below. According to this mixing law, the properties and composition of the mixed material can be predicted.
  • the tensile strength of the titanium boride-aluminum composite material was very high compared to the value predicted by the mixing law of bulk titanium boride and aluminum. This phenomenon is very interesting and is analyzed to be related to the plastic deformation behavior shown in the stress-strain graph of the titanium boride-aluminum composite material.
  • the tensile strength of bulk ceramics is very low due to fracture behavior, and the strength of ceramics depends on the particle size and distribution of defects, so it does not have a standard value. Therefore, the effect of mixing the excellent microstructure and smooth interface of the titanium boride and the aluminum of the titanium boride-aluminum composite is analyzed.
  • 15A, 15B, and 15C are scanning electron micrographs showing the fracture surface after a tensile test of a titanium boride-aluminum composite formed by the method for manufacturing a solid-area aluminum composite according to an embodiment of the present invention.
  • FIG. 15a the fracture surface of the Al1050 aluminum alloy is shown. It can be seen that when a load is applied to the Al1050 aluminum alloy specimen in a vertical direction, rough dimples having a size of several tens of micrometers are formed and the Al1050 aluminum alloy specimen is destroyed.
  • the fracture surface of the titanium boride-aluminum composite is shown. Compared with the aluminum, it can be seen that the microstructure is very fine. This is because of the presence of fine titanium boride reinforcement and the formation of finer particles of the aluminum matrix.
  • FIG. 15C a high-resolution photograph is shown to analyze the fracture surface of the titanium boride-aluminum composite. It can be seen that very fine dimples are formed and the titanium boride particles are destroyed. It is analyzed that this fracture behavior is that the cracks formed on the soft aluminum matrix are transferred to the strong titanium boride particles.
  • the titanium boride-aluminum composite manufactured by the melt pressure impregnation process exhibits a mixed fracture behavior in which the brittle fracture of the titanium boride and the ductile fracture of aluminum are mixed. In particular, it is destroyed without causing interfacial delamination at the interface between the titanium boride and the aluminum, and thus it can be seen that the load is effectively transferred from the soft aluminum matrix to the high strength titanium boride reinforcing material.
  • the titanium boride-aluminum composite manufactured through the aid of a temperature and gas pressure of 1000° C. using the melt pressure impregnation process was strengthened using a high volume fraction of fine titanium boride in aluminum, and the saddle was greatly increased. It shows strength and sufficient elongation.
  • a titanium boride-aluminum composite material having improved mechanical properties and microstructure was prepared in order to compensate for the unstable interface of the composite material manufactured by using the ex-situ method. Melting the titanium boride-aluminum composite with a fine titanium boride reinforcement uniformly dispersed in about 65% volume ratio by applying a gas pressure at a high temperature, taking advantage of the improved wettability between titanium boride and aluminum as the temperature increases It was successfully prepared using the pressure impregnation process. At a high temperature of 1000°C, the aluminum alloy molten metal was well impregnated even in the sub-micro-sized regions between the titanium boride particles. No interfacial defects were found due to excellent wettability and gas pressure between the titanium boride and aluminum matrix.
  • the density of the titanium boride-aluminum composite material was 3.84 g/cm 3 , which was 1.4 times that of the Al1050 aluminum alloy.
  • Tensile strength, compressive yield strength, and Vickers hardness of the titanium boride-aluminum composite material were 471.5 MPa, 500.4 MPa, and 194.4 Hv, respectively, which were 7.0 times, 8.4 times, and 8.4 times larger than that of the Al1050 aluminum alloy.
  • the thermal expansion coefficient of the titanium boride-aluminum composite material was 12.97 ppmK -1 at a temperature between room temperature and 100° C., which is 49% lower than that of the Al1050 aluminum alloy.
  • the load applied to the titanium boride-aluminum composite material is effectively transferred from the soft aluminum matrix to the high strength titanium boride reinforcement material, and thus ductile fracture and the mixed fracture behavior of brittle fracture. For this reason, the strength and elongation of the titanium boride-aluminum composite material were found to be very high compared to the conventional high volume fraction metal matrix composite prepared by other ex-situ methods.
  • the titanium boride-aluminum composite material manufactured by the melt pressure impregnation process has excellent mechanical and physical properties, and thus can be applied to various fields such as automobile field, aerospace field, and defense industry field.
  • the titanium boride-aluminum composite material may be applied to various industrial fields such as automobile fields, aerospace fields, and defense industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention provides a high-volume aluminum composite capable of improving properties by securing interfacial stability, and a method of manufacturing the high-volume aluminum composite. According to one embodiment of the present invention, the method of manufacturing the high-volume aluminum composite comprises the steps of: forming a titanium boride preform; disposing solid aluminum on the titanium boride preform; melting the aluminum by heating; pressing the melted aluminum by using gas so as to have the melted aluminum impregnated into the titanium boride preform; and forming an aluminum composite by cooling the titanium boride preform impregnated with the melted aluminum.

Description

고체적율 알루미늄 복합재 및 그 제조방법Solid area ratio aluminum composite material and its manufacturing method
본 발명의 기술적 사상은 알루미늄 복합재료에 관한 것으로서, 보다 상세하게는 고체적율 알루미늄 복합재 및 그 제조방법에 관한 것이다.The technical idea of the present invention relates to an aluminum composite material, and more particularly, to an aluminum composite material having a high area ratio and a method for manufacturing the same.
자동차 분야, 항공우주 분야, 및 방위산업 분야 등과 같은 응용 분야에서 특별한 성능을 가지는 경량 물질의 요구가 높아지고 있고, 따라서 알루미늄 복합재에 관한 연구가 진행되고 있다. 이러한 알루미늄 복합재는, 알루미늄 기지에 실리콘 카바이드(SiC), 알루미나(Al 2O 3), 보론 카바이드(B 4C), 티타늄 카바이드(TiC), 티타늄 디보라이드(TiB 2) 또는 이들의 조합을 이용한 세라믹 강화재들을 추가하여 제조한다. 상기 알루미늄 복합재는 낮은 밀도를 유지하면서도 우수한 기계적 특성을 가진다.The demand for a lightweight material having special performance in application fields such as automobile field, aerospace field, and defense industry field is increasing, and thus, research on aluminum composite material is in progress. These aluminum composites are ceramic using silicon carbide (SiC), alumina (Al 2 O 3 ), boron carbide (B 4 C), titanium carbide (TiC), titanium diboride (TiB 2 ) or a combination thereof on an aluminum matrix. Manufactured by adding reinforcements. The aluminum composite material has excellent mechanical properties while maintaining a low density.
알루미늄 복합재의 제조는 베이스 물질의 외부로부터 강화재 물질이 추가하는 엑스-시츄 공정으로 이루어진다. 인-시츄 방법과 비교하면, 상기 엑스-시츄 방법은 강화재의 부피비를 제어하기 용이하고, 경제성과 생산성이 우수한 장점이 있다. 상기 그러나, 엑스-시츄 방법에서는, 강화재가 베이스 물질에 물리적으로 부착되므로, 상기 강화재와 상기 베이스 물질의 계면에 불안정한 한계가 있으며, 이에 따라 강도 및 연신율 등과 같은 기계적 특성 및 물리적 특성이 저하되는 한계가 있다.The production of aluminum composites is made in an ex-situ process in which reinforcement material is added from the outside of the base material. Compared with the in-situ method, the ex-situ method has advantages in that it is easy to control the volume ratio of the reinforcing material, and economical efficiency and productivity are excellent. However, in the ex-situ method, since the reinforcing material is physically attached to the base material, there is an unstable limit at the interface between the reinforcing material and the base material. there is.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 계면 안정성을 확보하여 특성을 향상시킬 수 있는 고체적율 알루미늄 복합재 및 그 제조방법을 제공하는 것이다.The technical problem to be achieved by the technical idea of the present invention is to provide a high-volume ratio aluminum composite material capable of improving properties by securing interfacial stability and a method for manufacturing the same.
그러나 이러한 과제는 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.However, these tasks are exemplary, and the technical spirit of the present invention is not limited thereto.
본 발명의 일 관점에 의하면, 계면 안정성을 확보하여 특성을 향상시킬 수 있는 고체적율 알루미늄 복합재 및 그 제조방법을 제공한다. According to one aspect of the present invention, there is provided a solid area ratio aluminum composite material capable of improving properties by ensuring interfacial stability and a method for manufacturing the same.
본 발명의 일 실시예에 의하면, 고체적율 알루미늄 복합재의 제조방법은, 붕화티타늄 프리폼을 형성하는 단계; 상기 붕화티타늄 프리폼 상에 고상의 알루미늄을 배치하는 단계; 상기 알루미늄을 가열하여 용융시키는 단계; 상기 용융된 알루미늄이 상기 붕화티타늄 프리폼 내로 함침되도록, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계; 및 상기 용융된 알루미늄이 함침된 상기 붕화티타늄 프리폼을 냉각하여, 알루미늄 복합재를 형성하는 단계;를 포함할 수 있다.According to an embodiment of the present invention, a method for manufacturing a high-volume aluminum composite includes: forming a titanium boride preform; disposing solid aluminum on the titanium boride preform; heating the aluminum to melt; pressurizing the molten aluminum using a gas so that the molten aluminum is impregnated into the titanium boride preform; and cooling the titanium boride preform impregnated with the molten aluminum to form an aluminum composite.
본 발명의 일 실시예에 의하면, 상기 붕화티타늄 프리폼을 형성하는 단계는, 붕화티타늄 분말을 압축하여 붕화티타늄 압축재를 형성하는 단계; 및 상기 붕화티타늄 압축재를 소결하여 상기 붕화티타늄 프리폼을 형성하는 단계;를 포함할 수 있다.According to an embodiment of the present invention, forming the titanium boride preform comprises the steps of forming a titanium boride compression material by compressing the titanium boride powder; and sintering the titanium boride compression material to form the titanium boride preform.
본 발명의 일 실시예에 의하면, 상기 붕화티타늄 분말은, 2 μm 내지 3 μm 범위의 평균 입자크기를 가질 수 있다.According to an embodiment of the present invention, the titanium boride powder may have an average particle size in the range of 2 μm to 3 μm.
본 발명의 일 실시예에 의하면, 상기 붕화티타늄 분말의 압축은, 60 MPa 내지 100 MPa 범위의 단축 압력으로 수행될 수 있다.According to an embodiment of the present invention, the compression of the titanium boride powder may be performed at a uniaxial pressure in the range of 60 MPa to 100 MPa.
본 발명의 일 실시예에 의하면, 상기 붕화티타늄 압축재의 소결은, 불활성 가스 분위기에서, 900℃ 내지 1100℃ 범위의 온도에서, 10분 내지 120분 동안 수행될 수 있다.According to an embodiment of the present invention, the sintering of the titanium boride compressed material may be performed in an inert gas atmosphere, at a temperature in the range of 900°C to 1100°C, for 10 minutes to 120 minutes.
본 발명의 일 실시예에 의하면, 상기 알루미늄을 가열하여 용융시키는 단계는, 진공 분위기에서 900℃ 내지 1800℃ 범위의 온도로 수행될 수 있다.According to an embodiment of the present invention, the heating and melting of the aluminum may be performed at a temperature in the range of 900°C to 1800°C in a vacuum atmosphere.
본 발명의 일 실시예에 의하면, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계는, 1 bar 내지 20 bar의 압력의 불활성 가스를 상기 용융된 알루미늄에 주입하여 수행될 수 있다.According to an embodiment of the present invention, the step of pressurizing the molten aluminum using a gas may be performed by injecting an inert gas having a pressure of 1 bar to 20 bar into the molten aluminum.
본 발명의 일 실시예에 의하면, 상기 알루미늄을 가열하여 용융시키는 단계와 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계는, 동시에 수행될 수 있다.According to an embodiment of the present invention, the heating and melting of the aluminum and the pressing of the molten aluminum using a gas may be performed simultaneously.
본 발명의 일 실시예에 의하면, 상기 알루미늄은, 순수한 알루미늄 또는 알루미늄 합금을 포함할 수 있다.According to an embodiment of the present invention, the aluminum may include pure aluminum or an aluminum alloy.
본 발명의 일 실시예에 의하면, 상기 고체적율 알루미늄 복합재는, 상술한 고체적율 알루미늄 복합재의 제조방법에 의하여 제조되고, 붕화티타늄 프리폼; 및 상기 붕화티타늄 프리폼 내에 함침된 알루미늄;을 포함할 수 있다.According to an embodiment of the present invention, the solid area ratio aluminum composite material is manufactured by the above-described method for manufacturing the high area ratio aluminum composite material, and includes a titanium boride preform; and aluminum impregnated in the titanium boride preform.
본 발명의 일 실시예에 의하면, 20 부피% 내지 50 부피%의 기공도의 기공들을 가지고, 상기 기공들의 적어도 일부에 상기 알루미늄이 충진될 수 있다.According to an embodiment of the present invention, it has pores having a porosity of 20% by volume to 50% by volume, and at least some of the pores may be filled with the aluminum.
본 발명의 일 실시예에 의하면, 상기 고체적율 알루미늄 복합재는, 상기 붕화티타늄의 취성 파괴와 알루미늄의 연성 파괴가 혼합된 혼합 파괴 거동을 나타낼 수 있다.According to an embodiment of the present invention, the high-volume aluminum composite material may exhibit a mixed fracture behavior in which the brittle fracture of the titanium boride and the ductile fracture of aluminum are mixed.
본 발명의 일 실시예에 의하면, 상기 고체적율 알루미늄 복합재는, 3.0 g/cm 3 내지 4.2 g/cm 3 의 밀도를 가질 수 있다.According to an embodiment of the present invention, the solid area ratio aluminum composite material may have a density of 3.0 g/cm 3 to 4.2 g/cm 3 .
본 발명의 일 실시예에 의하면, 상기 고체적율 알루미늄 복합재는, 100 MPa 내지 500 MPa의 인장 강도, 100 MPa 내지 600 MPa의 압축 항복 강도, 및 40 Hv 내지 250 Hv의 비커스 경도를 가질 수 있다.According to an embodiment of the present invention, the high-volume aluminum composite material may have a tensile strength of 100 MPa to 500 MPa, a compressive yield strength of 100 MPa to 600 MPa, and a Vickers hardness of 40 Hv to 250 Hv.
본 발명의 일 실시예에 의하면, 상기 고체적율 알루미늄 복합재는, 11 ppmK -1 내지 17 ppmK -1 의 열팽창 계수를 가질 수 있다.According to an embodiment of the present invention, the high-volume aluminum composite material may have a thermal expansion coefficient of 11 ppmK -1 to 17 ppmK -1 .
본 발명의 일 실시예에 의하면, 상기 고체적율 알루미늄 복합재의 제조방법은, 세라믹 프리폼을 형성하는 단계; 상기 세라믹 프리폼 상에 고상의 알루미늄을 배치하는 단계; 상기 알루미늄을 가열하여 용융시키는 단계; 상기 용융된 알루미늄이 상기 세라믹 프리폼 내로 함침되도록, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계; 및 상기 용융된 알루미늄이 함침된 상기 세라믹 프리폼을 냉각하여, 알루미늄 복합재를 형성하는 단계;를 포함할 수 있다.According to an embodiment of the present invention, the method for manufacturing the high-volume aluminum composite includes: forming a ceramic preform; disposing solid aluminum on the ceramic preform; heating the aluminum to melt; pressing the molten aluminum with a gas so that the molten aluminum is impregnated into the ceramic preform; and cooling the ceramic preform impregnated with the molten aluminum to form an aluminum composite.
본 발명의 일 실시예에 의하면, 상기 세라믹 프리폼은, Al 2O 3, B 4C, SiC, 및 TiC 중 적어도 어느 하나를 포함할 수 있다.According to an embodiment of the present invention, the ceramic preform may include at least one of Al 2 O 3 , B 4 C, SiC, and TiC.
본 발명의 기술적 사상에 의할 경우, 용융가압함침 공정을 이용하여 균일하게 분산되고 높은 부피 분율을 가지는 붕화티타늄-알루미늄 복합재를 제조하는 것이다. 본 발명은 1000℃ 내지 1800℃ 정도의 고온에서 가스 압력을 인가하여 금속 기지 복합재를 제조하는 것에 적용될 수 있다. 또한, 상기 붕화티타늄-알루미늄 복합재의 기계적 특성에 대한 미세한 붕화티타늄 강화재의 효과를 분석하였다. 상기 붕화티타늄 강화재가 알루미늄에 균일하게 분산되면, 상기 붕화티타늄-알루미늄 복합재는 높은 경도와 높은 강도를 가지는 이상적인 미세구조를 가질 수 있고, 이는 비용 효율적인 용융 공정에서 제조할 수 있다. According to the technical idea of the present invention, it is to prepare a titanium boride-aluminum composite material having a high volume fraction and uniformly dispersed using a melt pressure impregnation process. The present invention can be applied to manufacturing a metal matrix composite by applying a gas pressure at a high temperature of about 1000°C to 1800°C. In addition, the effect of the fine titanium boride reinforcement on the mechanical properties of the titanium boride-aluminum composite material was analyzed. When the titanium boride reinforcing material is uniformly dispersed in aluminum, the titanium boride-aluminum composite material may have an ideal microstructure having high hardness and high strength, which may be manufactured in a cost-effective melting process.
본 발명은 개선된 특성을 가지는 붕화티타늄(TiB 2) 및 알루미늄(Al1050) 합금을 이용하여 형성한 붕화티타늄 강화 알루미늄 금속 기지 복합재를 제공한다. 상기 알루미늄 복합재는 60% 이상의 부피비를 가지는 미세한 붕화티타늄에 의하여 강화된다. 상기 알루미늄 복합재는 고온에서 가스압력을 이용한 용융가압함침을 이용하여 제조된다. 1000℃에서 10 bar로 1 시간 동안 가압하여 형성한 붕화티타늄-알루미늄 복합재의 미세구조를 검토하면, 용융된 알루미늄이 높은 부피 분율의 붕화티타늄 프리폼 내로 효과적으로 함침됨을 확인할 수 있고, 이는 개선된 젖음성과 외부 가스 가압에 기인한 것으로 분석된다. 또한, 상기 붕화티타늄과 상기 알루미늄의 계면에서는 크랙, 기공, 및 취성 금속간 화합물이 발견되지 않았다.The present invention provides a titanium boride-reinforced aluminum metal matrix composite formed by using a titanium boride (TiB 2 ) and aluminum (Al1050) alloy having improved properties. The aluminum composite is reinforced with fine titanium boride having a volume ratio of 60% or more. The aluminum composite material is manufactured using melt pressure impregnation using gas pressure at high temperature. Examining the microstructure of the titanium boride-aluminum composite formed by pressing at 1000°C at 10 bar for 1 hour, it can be confirmed that the molten aluminum is effectively impregnated into the titanium boride preform having a high volume fraction, which has improved wettability and external It is analyzed that it is due to gas pressurization. In addition, cracks, pores, and brittle intermetallic compounds were not found at the interface between the titanium boride and the aluminum.
결론적으로, 상기 붕화티타늄-알루미늄 복합재는 결합들이 없는 우수한 미세구조를 가지며, 경도 및 강도 등의 기계적 특성이 개선되었다. 이러한 결과로부터, 상기 붕화티타늄-알루미늄 복합재에서는, 알루미늄 기지로부터 미세한 붕화티타늄 강화재로 하중이 효과적으로 전달되는 것으로 분석된다.In conclusion, the titanium boride-aluminum composite material has an excellent microstructure without bonds, and has improved mechanical properties such as hardness and strength. From these results, in the titanium boride-aluminum composite, it is analyzed that the load is effectively transferred from the aluminum matrix to the fine titanium boride reinforcement.
상기 붕화티타늄-알루미늄 복합재는 자동차 분야, 항공우주 분야, 및 방위산업 분야 등과 같은 다양한 산업 분야에 적용될 수 있다.The titanium boride-aluminum composite material may be applied to various industrial fields such as automobile field, aerospace field, and defense industry field.
상술한 본 발명의 효과들은 예시적으로 기재되었고, 이러한 효과들에 의해 본 발명의 범위가 한정되는 것은 아니다.The above-described effects of the present invention have been described by way of example, and the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법을 도시하는 흐름도이다.1 is a flowchart illustrating a method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 도 1의 상기 고체적율 알루미늄 복합재의 제조방법을 공정에 따라 도시하는 개략도이다.FIG. 2 is a schematic diagram illustrating a method for manufacturing the solid area ratio aluminum composite material of FIG. 1 according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법을 도시하는 흐름도이다.3 is a flowchart illustrating a method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 적용되는 붕화티타늄과 알루미늄 사이의 접촉각을 나타내는 그래프이다.4 is a graph showing a contact angle between titanium boride and aluminum applied to the method of manufacturing a solid-area aluminum composite material according to an embodiment of the present invention.
도 5는 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 적용되는 붕화티타늄과 알루미늄 사이의 접촉 형태를 나타내는 사진들이다.5 is a photograph showing the contact form between titanium boride and aluminum applied to the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법을 수행하기 위한 붕화티타늄 분말을 나타내는 주사전자현미경 사진들이다.6 is a scanning electron microscope photograph showing a titanium boride powder for carrying out the manufacturing method of the solid area aluminum composite material according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법을 수행하여 형성한 붕화티타늄 프리폼을 나타내는 주사전자현미경 사진들이다.7 is a scanning electron microscope photograph showing a titanium boride preform formed by performing the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 단계에 따른 외형 사진들이다.8 is a titanium boride-formed by the method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention - are external photos according to the steps of the aluminum composite material.
도 9는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 미세조직을 나타내는 주사전자현미경 사진이다.9 is a scanning electron microscope photograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 EPMA 맵핑 사진들이다.10 is an EPMA mapping photograph of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 X-선 회절 패턴을 나타내는 그래프이다.11 is a graph showing an X-ray diffraction pattern of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 미세구조를 나타내는 투과전자현미경 사진들이다.12 is a transmission electron micrograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 상온에서의 응력-변형률 그래프이다.13 is a stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 14은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 상온에서의 압축 응력-변형률 그래프이다.14 is a compressive stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 15a, 도 15b, 및 도 15c는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 인장 시험 후의 파괴 표면을 나타내는 주사전자현미경 사진들이다.15A, 15B, and 15C are scanning electron micrographs showing the fracture surface after a tensile test of a titanium boride-aluminum composite formed by the method for manufacturing a solid-area aluminum composite according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다. 본 명세서에서 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명의 기술적 사상은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more completely explain the technical idea of the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, The scope of the technical idea is not limited to the following examples. Rather, these embodiments are provided so as to more fully and complete the present disclosure, and to fully convey the technical spirit of the present invention to those skilled in the art. In this specification, the same reference numerals refer to the same elements throughout. Furthermore, various elements and regions in the drawings are schematically drawn. Accordingly, the technical spirit of the present invention is not limited by the relative size or spacing drawn in the accompanying drawings.
본 발명의 기술적 사상은 계면 안정성을 확보하여 특성을 향상시킬 수 있는 고체적율 알루미늄 복합재 및 그 제조방법을 제공하는 것이다.The technical idea of the present invention is to provide a high-volume ratio aluminum composite material capable of improving properties by securing interfacial stability and a method for manufacturing the same.
금속 기지 복합재(metal matrix composite, MMC)는 경량화, 기계적 특성, 기능적 특성, 고온 안정성, 내마모성, 및 내산화성과 같은 우수한 특성을 가지므로 많은 연구가 진행되고 있다. 이러한 금속 기지 복합재에서, 강화재의 기지 내의 균일한 분산과 강화재와 기지 사이의 계면 안정성은 특성을 위한 매우 중요한 요소이다.Metal matrix composite (MMC) has excellent properties such as light weight, mechanical properties, functional properties, high temperature stability, abrasion resistance, and oxidation resistance, a lot of research is in progress. In such a metal matrix composite, the uniform dispersion of the reinforcement in the matrix and the interfacial stability between the reinforcement and the matrix are very important factors for the properties.
상기 금속 기지 복합재 중에서, 알루미늄 복합재에서의 계면 결함을 보상하기 위하여 하기와 같이 다양한 연구가 수행되어 왔다. 우레나 등(Urena et al.)은 알루미늄 기지에 대한 강화재의 젖음성을 개선하기 위하여 열처리를 통하여 SiC 강화재들의 표면을 산화시켰다. 라잔 등( Rajan et al.)은 알루미늄 기지에 대한 강화재의 젖음성을 개선하기 위하여, 탄소/그라파이트, SiC, 및 Al 2O 3 의 강화재의 표면에 니켈(Ni) 또는 구리(Cu)를 코팅하였다. 조우 등(Zhou et al.)은 TiC p-Al-Cu 복합재를 제조하기 전에 TiC와 Al-Cu의 젖음성을 개선하기 위하여 니켈 코팅을 수행하였다. 그러나, 이러한 표면 전처리 공정들이 강화재와 기지 사이의 계면 특성을 개선하여도, 베이스 금속의 조성이 변화되고 추가 시간과 비용이 요구되는 한계가 있다.Among the metal matrix composites, various studies have been conducted as follows to compensate for interfacial defects in the aluminum composite. Urena et al. (Urena et al.) oxidized the surface of SiC reinforcements through heat treatment to improve the wettability of the reinforcement to the aluminum matrix. Rajan et al. (Rajan et al.) coated the surface of carbon/graphite, SiC, and Al 2 O 3 reinforcement with nickel (Ni) or copper (Cu) in order to improve the wettability of the reinforcement to the aluminum matrix. Zhou et al. (Zhou et al.) performed nickel coating to improve the wettability of TiC and Al-Cu before preparing TiC p -Al-Cu composites. However, even if these surface pretreatment processes improve the interfacial properties between the reinforcement and the matrix, there is a limitation in that the composition of the base metal is changed and additional time and cost are required.
코우 등(Kou et al.)에 의하면, 온도가 증가됨에 따라 알루미늄의 표면 장력이 감소된다. 온도가 증가되면, TiB 2 와 알루미늄의 젖음성은 증가된다. 특히, 1000℃ 이상의 온도에서는, 자발적인 함침이 가능하도록 젖음성이 증가될 수 있다. 따라서, 공정 온도가 증가되면, 표면 전처리 공정을 수행하지 않고도 강화재와 기지의 젖음성은 증가될 수 있다. 그러나, 자발적인 함침 공정 만으로 제조된 복합재는 상기 강화재와 상기 기지 사이에 불함침 기공들을 가질 수 있다. 이러한 문제점을 해결하기 위한 방법으로는 추가적인 가압 공정을 수행하여 상기 불함침 기공들을 제거할 수 있다.According to Kou et al., the surface tension of aluminum decreases with increasing temperature. As the temperature increases, the wettability of TiB 2 with aluminum increases. In particular, at a temperature of 1000° C. or higher, the wettability can be increased to enable spontaneous impregnation. Accordingly, when the process temperature is increased, the wettability of the reinforcement and the matrix can be increased without performing a surface pretreatment process. However, a composite produced only by a spontaneous impregnation process may have unimpregnated pores between the reinforcement and the matrix. As a method for solving this problem, an additional pressing process may be performed to remove the impregnated pores.
본 발명에서는, 알루미늄 복합재를 제조하기 위하여 사용되는 세라믹 강화재들 중에 붕화티타늄(TiB 2)을 예시적으로 선택한다. 상기 붕화티타늄은 우수한 영률, 우수한 경도, 고온에서 알루미늄에 대한 높은 젖음성, 알루미늄에 대한 높은 화학적 안정성을 가지는 장점이 있다. 그러나, 이는 예시적이며 본 발명의 기술적 사상은 이에 한정되는 것은 아니고, 다양한 세라믹 강화재를 포함할 수 있고, 예를 들어 Al 2O 3, B 4C, SiC, TiC 등을 포함할 수 있다.In the present invention, titanium boride (TiB 2 ) is selected as an example among the ceramic reinforcements used for manufacturing the aluminum composite material. The titanium boride has advantages of excellent Young's modulus, excellent hardness, high wettability to aluminum at high temperature, and high chemical stability to aluminum. However, this is exemplary and the technical spirit of the present invention is not limited thereto, and may include various ceramic reinforcement materials, for example, Al 2 O 3 , B 4 C, SiC, TiC, and the like.
도 1은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법(S100)을 도시하는 흐름도이다.1 is a flowchart illustrating a method ( S100 ) of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
도 1을 참조하면, 상기 고체적율 알루미늄 복합재의 제조방법의 제조방법(S100)은, 붕화티타늄 프리폼을 형성하는 단계(S110); 상기 붕화티타늄 프리폼 상에 고상의 알루미늄을 배치하는 단계(S120); 상기 알루미늄을 가열하여 용융시키는 단계(S130); 상기 용융된 알루미늄이 상기 붕화티타늄 프리폼 내로 함침되도록, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계(S140); 및 상기 용융된 알루미늄이 함침된 상기 붕화티타늄 프리폼을 냉각하여, 알루미늄 복합재를 형성하는 단계(S150);를 포함한다.Referring to FIG. 1, the manufacturing method (S100) of the manufacturing method of the high-volume aluminum composite material includes the steps of forming a titanium boride preform (S110); disposing solid aluminum on the titanium boride preform (S120); heating and melting the aluminum (S130); pressing the molten aluminum using a gas so that the molten aluminum is impregnated into the titanium boride preform (S140); and cooling the titanium boride preform impregnated with the molten aluminum to form an aluminum composite (S150).
도 2는 본 발명의 일 실시예에 따른 도 1의 상기 고체적율 알루미늄 복합재의 제조방법을 공정에 따라 도시하는 개략도이다.FIG. 2 is a schematic diagram illustrating a method for manufacturing the solid area ratio aluminum composite material of FIG. 1 according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 먼저, 상기 붕화티타늄(TiB 2) 프리폼을 형성하는 단계(S110)는, 붕화티타늄 분말을 압축하여 붕화티타늄 압축재를 형성하는 단계; 및 상기 압축재를 소결하여 상기 붕화티타늄 프리폼(110)을 형성하는 단계;를 포함한다.Referring to FIGS. 1 and 2 , first, forming the titanium boride (TiB 2 ) preform (S110) includes compressing the titanium boride powder to form a titanium boride compression material; and sintering the compression material to form the titanium boride preform 110 .
상기 붕화티타늄 분말은 2 μm 내지 3 μm 범위의 평균 입자크기를 가질 수 있다. 상기 붕화티타늄 분말의 압축은 60 MPa 내지 100 MPa 범위의 단축 압력으로 수행될 수 있다. 상기 붕화티타늄 분말의 압축은 상온에서 이루어질 수 있고, 예를 들어 0℃ 내지 40℃ 범위의 온도에서 이루어질 수 있다.The titanium boride powder may have an average particle size in the range of 2 μm to 3 μm. Compression of the titanium boride powder may be performed at a uniaxial pressure in the range of 60 MPa to 100 MPa. Compression of the titanium boride powder may be made at room temperature, for example, at a temperature in the range of 0°C to 40°C.
상기 압축재의 소결은 아르곤 가스 또는 질소 가스와 같은 불활성 가스 분위기에서, 예를 들어 900℃ 내지 1100℃ 범위의 온도에서, 예를 들어 1000℃ 에서, 예를 들어 10분 내지 120분 동안 수행될 수 있다.The sintering of the compressed material may be performed in an inert gas atmosphere such as argon gas or nitrogen gas, for example, at a temperature in the range of 900°C to 1100°C, for example at 1000°C, for example, 10 minutes to 120 minutes. .
이어서, 상기 붕화티타늄 프리폼(110)을 도가니(190) 내에 장입한다. 상기 도가니는, 예를 들어 마그네슘 산화물(MgO) 도가니일 수 있으나, 이는 예시적이며 본 발명의 기술적 사상은 이에 한정되는 것은 아니다. 장입한 붕화티타늄 프리폼(110) 상에 고상의 알루미늄(120)을 배치한다. 즉, 고상의 알루미늄(120)은 도가니(190) 내에 장입되는 것이다. 알루미늄(120)은 순수한 알루미늄 또는 알루미늄 합금을 포함할 수 있다.Next, the titanium boride preform 110 is charged into the crucible 190 . The crucible may be, for example, a magnesium oxide (MgO) crucible, but this is exemplary and the technical spirit of the present invention is not limited thereto. A solid aluminum 120 is disposed on the charged titanium boride preform 110 . That is, the solid aluminum 120 is charged in the crucible (190). Aluminum 120 may include pure aluminum or an aluminum alloy.
상기 알루미늄을 가열하여 용융시키는 단계(S130)는, 예를 들어 1.0 x 10 -1 torr 내지 5.0 x 10 -1 torr 범위의 진공 분위기에서, 예를 들어 2.8 x 10 -1 torr의 진공 분위기에서, 예를 들어 900℃ 내지 1800℃ 범위의 온도로, 예를 들어 1000℃의 온도로 수행될 수 있다. 상기 가열된 온도에서 알루미늄이 완전히 용융될 때까지 유지할 수 있고, 예를 들어 30 분 내지 2시간 동안, 예를 들어 1 시간 동안 유지할 수 있다. 이에 따라, 고상의 알루미늄(120)은 용융된 알루미늄(130)으로 변화될 수 있다The step (S130) of heating and melting the aluminum is, for example, in a vacuum atmosphere ranging from 1.0 x 10 -1 torr to 5.0 x 10 -1 torr, for example, in a vacuum atmosphere of 2.8 x 10 -1 torr, for example. For example, at a temperature in the range of 900 °C to 1800 °C, for example, it may be carried out at a temperature of 1000 °C. It may be maintained at the heated temperature until the aluminum is completely melted, for example, for 30 minutes to 2 hours, for example, for 1 hour. Accordingly, the solid aluminum 120 may be changed to the molten aluminum 130 .
상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계(S140)는 1 bar 내지 20 bar의 압력의 불활성 가스를 상기 용융된 알루미늄에 주입하여 수행될 수 있다. 이러한 가스 압력에 의하여 용융된 알루미늄(130)이 붕화티타늄 프리폼(110) 내로 함침될 수 있다. 상기 가압하는 단계(S140) 동안에 가열된 온도에서 유지될 수 있다.The step of pressurizing the molten aluminum using a gas (S140) may be performed by injecting an inert gas having a pressure of 1 bar to 20 bar into the molten aluminum. The molten aluminum 130 may be impregnated into the titanium boride preform 110 by this gas pressure. It may be maintained at a heated temperature during the pressing (S140).
상기 단계(S130)과 상기 단계(S140)는 동시에 수행될 수 있다.The step S130 and the step S140 may be performed simultaneously.
상기 알루미늄 복합재를 형성하는 단계(S150)는, 상기 용융된 알루미늄(130)이 함침된 붕화티타늄 프리폼(110)을 냉각하여 알루미늄 복합재(140)를 형성할 수 있다. 알루미늄 복합재(140)는 붕화티타늄-알루미늄 복합재로 지칭될 수 있다.In the forming of the aluminum composite material (S150), the aluminum composite material 140 may be formed by cooling the titanium boride preform 110 impregnated with the molten aluminum 130 . The aluminum composite 140 may be referred to as a titanium boride-aluminum composite.
따라서, 상기 고체적율 알루미늄 복합재는, 붕화티타늄 프리폼; 및 상기 붕화티타늄 프리폼 내에 함침된 알루미늄;을 포함하여 구성될 수 있다.Therefore, the solid area ratio aluminum composite material, titanium boride preform; and aluminum impregnated in the titanium boride preform.
상기 붕화티타늄 프리폼은, 예를 들어 20 부피% 내지 50 부피%의 기공도의 기공들을 가지거나, 예를 들어 35 부피%의 기공도의 기공들을 가질 수 있다. 상기 기공들의 적어도 일부에 상기 알루미늄이 충진될 수 있다.The titanium boride preform may have, for example, pores having a porosity of 20% by volume to 50% by volume, or, for example, pores having a porosity of 35% by volume. At least a portion of the pores may be filled with the aluminum.
상기 고체적율 알루미늄 복합재는, 3.0 g/cm 3 내지 4.2 g/cm 3 의 밀도를 가질 수 있다.The solid area ratio aluminum composite material may have a density of 3.0 g/cm 3 to 4.2 g/cm 3 .
상기 고체적율 알루미늄 복합재는, 100 MPa 내지 500 MPa의 인장 강도, 100 MPa 내지 600 MPa의 압축 항복 강도, 및 40 Hv 내지 250 Hv의 비커스 경도를 가질 수 있다.The high-volume aluminum composite material may have a tensile strength of 100 MPa to 500 MPa, a compressive yield strength of 100 MPa to 600 MPa, and a Vickers hardness of 40 Hv to 250 Hv.
상기 고체적율 알루미늄 복합재는, 11 ppmK -1 내지 17 ppmK -1 의 열팽창 계수를 가질 수 있다.The high-volume aluminum composite material may have a thermal expansion coefficient of 11 ppmK -1 to 17 ppmK -1 .
이와 같이, 금속을 가열하여 가스로 가압하여 함침시키는 방법을 용융가압함침 공정(Liquid pressing infiltration, LPI)으로 지칭할 수 있다. 상기 용융가압함침 공정은 1800℃의 고온 공정과 20 bar의 가압 공정을 동시에 수행시킬 수 있다.As described above, a method of heating a metal and pressurizing it with a gas to impregnate it may be referred to as a liquid pressing infiltration (LPI) process. The melt pressure impregnation process may be performed simultaneously with a high temperature process of 1800 °C and a pressurization process of 20 bar.
상기 고체적율 알루미늄 복합재의 제조방법은 다양한 세라믹 강화재에 적용될 수 있다.The manufacturing method of the solid area ratio aluminum composite material may be applied to various ceramic reinforcement materials.
도 3은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법(S200)을 도시하는 흐름도이다.3 is a flowchart illustrating a method ( S200 ) of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention.
도 3을 참조하면, 세라믹 프리폼을 형성하는 단계(S210); 상기 세라믹 프리폼 상에 고상의 알루미늄을 배치하는 단계(S220); 상기 알루미늄을 가열하여 용융시키는 단계(S230); 상기 용융된 알루미늄이 상기 세라믹 프리폼 내로 함침되도록, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계(S240); 및 상기 용융된 알루미늄이 함침된 상기 세라믹 프리폼을 냉각하여, 알루미늄 복합재를 형성하는 단계(S250);를 포함한다.3, forming a ceramic preform (S210); disposing solid aluminum on the ceramic preform (S220); heating and melting the aluminum (S230); pressing the molten aluminum using a gas so that the molten aluminum is impregnated into the ceramic preform (S240); and cooling the ceramic preform impregnated with the molten aluminum to form an aluminum composite (S250).
상기 세라믹 프리폼은, Al 2O 3, B 4C, SiC, 및 TiC 중 적어도 어느 하나를 포함할 수 있다.The ceramic preform may include at least one of Al 2 O 3 , B 4 C, SiC, and TiC.
실험예Experimental example
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred experimental examples are presented to help the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited by the following experimental examples.
실험 방법experimental method
붕화티타늄-알루미늄 복합재의 제조Production of titanium boride-aluminum composites
상기 붕화티타늄-알루미늄 복합재를 제조하기 전에, 공정 조건의 최적화를 위한 실험을 수행하였다. 이러한 최적화를 위하여, 온도에 따른 붕화티타늄과 알루미늄 사이의 접촉각을 측정하였다.Before preparing the titanium boride-aluminum composite material, an experiment for optimizing process conditions was performed. For this optimization, the contact angle between titanium boride and aluminum according to temperature was measured.
붕화티타늄과 알루미늄 사이의 접촉각은 세실 드롭법(sessile drop)을 이용하여 측정하였다. 상기 세실 드롭은 진공에서 700℃ 내지 1000℃의 온도 하에서, 20x20x2 mm 3 의 붕화티타늄 평판 상에 액상 알루미늄을 드롭시켰다. 상기 액상 알루미늄은 Al1050 알루미늄 합금(Portland aluminum, Portland, Australia)을 이용하여, 추가 원소들의 효과를 최소화하였다. 이하에 기재된 알루미늄은 Al1050 알루미늄 합금을 지칭하는 것임에 유의한다.The contact angle between titanium boride and aluminum was measured using a sessile drop method. The Cecil drop was a drop of liquid aluminum on a titanium boride plate of 20x20x2 mm 3 under a temperature of 700° C. to 1000° C. in a vacuum. As the liquid aluminum, Al1050 aluminum alloy (Portland aluminum, Portland, Australia) was used to minimize the effect of additional elements. Note that the aluminum described below refers to the Al1050 aluminum alloy.
표 1은 상기 Al1050 알루미늄 합금의 화학조성을 나타낸다. 표 1에서, 각 원소의 함량은 중량%로 표시되어 있다.Table 1 shows the chemical composition of the Al1050 aluminum alloy. In Table 1, the content of each element is expressed in wt%.
원소element AlAl FeFe CuCu MgMg MnMn SiSi TiTi VV ZnZn
함량content 99.8이상99.8 or higher 0.1
이하
0.1
Below
0.001
이하
0.001
Below
0.001
이하
0.001
Below
0.02
이하
0.02
Below
0.05
이하
0.05
Below
0.04
이하
0.04
Below
0.02
이하
0.02
Below
0.002
이하
0.002
Below
상기 붕화티타늄-알루미늄 복합재의 강화재로서, 붕화티타늄(TiB 2) 분말(Kojundo Chemical Laboratory Co., Ltd., Saitama, Japan)을 사용하였다. 상기 붕화티타늄 분말은 2 μm 내지 3 μm 범위의 평균 입자크기를 가졌다. 상기 붕화티타늄 분말은 80 MPa의 단축 압력으로 압축하여 붕화티타늄 압축재를 형성한 후에, 상기 붕화티타늄 압축재를 아르곤 분위기 하에서 1000℃에서 60 분 동안 소결하여, 붕화티타늄 프리폼을 형성하였다. 이에 따라, 상기 붕화티타늄 프리폼은 직경 50 mm 및 높이 20 mm의 다공성 구조를 가졌다. 상기 붕화티타늄 프리폼의 기공도는 상기 프리폼의 부피와 무게를 측정하여 산출하였다.As a reinforcing material of the titanium boride-aluminum composite material, titanium boride (TiB 2 ) powder (Kojundo Chemical Laboratory Co., Ltd., Saitama, Japan) was used. The titanium boride powder had an average particle size in the range of 2 μm to 3 μm. The titanium boride powder was compressed at a uniaxial pressure of 80 MPa to form a titanium boride compressed material, and then the titanium boride compressed material was sintered at 1000° C. for 60 minutes in an argon atmosphere to form a titanium boride preform. Accordingly, the titanium boride preform had a porous structure having a diameter of 50 mm and a height of 20 mm. The porosity of the titanium boride preform was calculated by measuring the volume and weight of the preform.
이어서, 용융가압함침 공정을 이용하여 붕화티타늄-알루미늄 복합재를 형성하였다. 용융된 알루미늄을 정수압을 이용하여 상기 붕화티타늄 프리폼에 함침시켰다. 이에 따라, 상기 붕화티타늄 프리폼의 기공에 알루미늄이 충진될 수 있다. 다시 말하면, 상기 붕화티타늄-알루미늄 복합재에서, 금속 기지인 알루미늄 내에 강화재인 붕화티타늄을 균일하게 분산시킬 수 있다. Then, a titanium boride-aluminum composite material was formed using a melt pressure impregnation process. Molten aluminum was impregnated into the titanium boride preform using hydrostatic pressure. Accordingly, aluminum may be filled in the pores of the titanium boride preform. In other words, in the titanium boride-aluminum composite material, titanium boride, which is a reinforcing material, may be uniformly dispersed in aluminum, which is a metal matrix.
상기 용융가압함침 공정은 다음과 같이 수행될 수 있다. 상기 붕화티타늄 프리폼과 상기 알루미늄을 마그네슘 산화물(MgO) 도가니에 장입시키고, 진공 분위기 (2.8 x 10 -1 torr)에서 10℃/분의 가열 속도로 1000℃로 가열시켰다. 상기 온도에서 1 시간 동안 유지시킨 후에, 10 bar의 압력의 아르곤 가스를 상기 용융된 알루미늄에 주입하여 상기 다공성 붕화티타늄 프리폼 내에 상기 용융된 알루미늄을 함침시켜, 이에 따라 상기 붕화티타늄-알루미늄 복합재를 제조하였다.The melt pressure impregnation process may be performed as follows. The titanium boride preform and the aluminum were charged into a magnesium oxide (MgO) crucible, and heated to 1000° C. in a vacuum atmosphere (2.8×10 −1 torr) at a heating rate of 10° C./min. After maintaining at the temperature for 1 hour, argon gas at a pressure of 10 bar was injected into the molten aluminum to impregnate the molten aluminum in the porous titanium boride preform, thereby preparing the titanium boride-aluminum composite. .
붕화티타늄-알루미늄 복합재의 특성 분석Characterization of titanium boride-aluminum composites
상기 용융가압함침 공정으로 제조한 상기 붕화티타늄-알루미늄 복합재의 미세구조를 주사전자현미경(SEM, JSM-6610LV, JEOL, Tokyo, Japan), 투과전자현미경 (TEM, JEM-ARM200F, JEOL, Tokyo, Japan), 및 전자탐침 미세분석기(EPMA, JXA-8530F, JEOL, Tokyo, Japan). X-선 회절 분석기(30 kV 및 250 mA에서 Cu Kα 방사)(XRD, D/Max-2500, Rigaku, Tokyo, Japan)를 이용하여 분석하였다. 상기 붕화티타늄-알루미늄 복합재의 상대적인 밀도를 측정하기 위하여, 아르키메데스(Archimedes) 방법을 이용하였으며, 이론 밀도와 비교하였다.A scanning electron microscope (SEM, JSM-6610LV, JEOL, Tokyo, Japan), a transmission electron microscope (TEM, JEM-ARM200F, JEOL, Tokyo, Japan), the microstructure of the titanium boride-aluminum composite prepared by the melt pressure impregnation process ), and electron probe microanalyzer (EPMA, JXA-8530F, JEOL, Tokyo, Japan). Analysis was performed using an X-ray diffraction analyzer (Cu Kα radiation at 30 kV and 250 mA) (XRD, D/Max-2500, Rigaku, Tokyo, Japan). In order to measure the relative density of the titanium boride-aluminum composite material, the Archimedes method was used and compared with the theoretical density.
상기 붕화티타늄-알루미늄 복합재의 열팽창 계수(CTE)를 딜라토미터(DIL 402C, NETZSCH, Selb, Germany)를 이용하여 상온에서 400℃의 온도에서 측정하였다.The coefficient of thermal expansion (CTE) of the titanium boride-aluminum composite was measured at a temperature of 400° C. at room temperature using a dilatometer (DIL 402C, NETZSCH, Selb, Germany).
상기 붕화티타늄-알루미늄 복합재의 상온 인장 및 압축 특성을 범용 시험기(5882 model, INSTRON, Norwood, MA, USA)를 이용하여 5x10 -4 의 변형 속도로 측정하였다. 상기 붕화티타늄-알루미늄 복합재 및 상기 Al1050 알루미늄 합금의 경도를 비커스 경도 측정기(FM-700, Future-tech, Kanagawa, Japan)를 이용하여 300 KgF에서 10초로 하중을 인가하여 측정하였다.Room temperature tensile and compression properties of the titanium boride-aluminum composite were measured at a strain rate of 5×10 −4 using a general-purpose tester (5882 model, INSTRON, Norwood, MA, USA). The hardness of the titanium boride-aluminum composite material and the Al1050 aluminum alloy was measured by applying a load at 300 KgF for 10 seconds using a Vickers hardness measuring instrument (FM-700, Future-tech, Kanagawa, Japan).
특성 분석의 신회성을 확보하기 위하여 5 개의 인장 시편, 5 개의 압축 시편, 및 3 개의 비커스 경도 시편을 사용하였다.Five tensile specimens, five compression specimens, and three Vickers hardness specimens were used to ensure reliability of characterization.
결과 및 분석Results and analysis
붕화티타늄과 알루미늄 사이의 접촉각 분석Analysis of the contact angle between titanium boride and aluminum
금속 기지 복합재를 제조하는 경우에, 온도, 분위기 등과 같은 공정 조건을 제어하는 것은 매우 중요하다. 따라서, 붕화티타늄과 알루미늄 사이의 젖음성 특성을 진공에서 온도를 증가시키면서 검토하였다. 구체적으로, 진공에서 상온에서 1000℃까지 온도를 증가시키면서 상기 붕화티타늄과 상기 알루미늄 사이의 접촉각을 측정하였다.In the case of manufacturing a metal matrix composite, it is very important to control process conditions such as temperature, atmosphere, and the like. Therefore, the wettability properties between titanium boride and aluminum were investigated while increasing the temperature in vacuum. Specifically, the contact angle between the titanium boride and the aluminum was measured while increasing the temperature from room temperature to 1000° C. in vacuum.
도 4는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 적용되는 붕화티타늄과 알루미늄 사이의 접촉각을 나타내는 그래프이다.4 is a graph showing a contact angle between titanium boride and aluminum applied to the method of manufacturing a solid-area aluminum composite material according to an embodiment of the present invention.
도 5는 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 적용되는 붕화티타늄과 알루미늄 사이의 접촉 형태를 나타내는 사진들이다.5 is a photograph showing the contact form between titanium boride and aluminum applied to the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
도 4 및 도 5를 참조하면, 진공에서 700℃, 800℃, 900℃, 및 1000℃에서의 접촉각 및 접촉 형태가 나타나있다. 붕화티타늄 평판 상에 구형의 알루미늄을 배치한 후 온도를 상승시켜 상기 알루미늄이 완전히 융해되어 상기 붕화티타늄 평판 상에 넓게 퍼질 때까지 접촉각을 측정하였다.4 and 5 , contact angles and contact forms at 700° C., 800° C., 900° C., and 1000° C. in vacuum are shown. After disposing spherical aluminum on the titanium boride plate, the temperature was increased to measure the contact angle until the aluminum was completely melted and spread widely on the titanium boride plate.
700℃와 800℃에서는, 상기 붕화티타늄 평판과 상기 알루미늄 사이의 접촉각은 6000초가 경과할 때까지도 100도 이상을 나타내었다. 이러한 결과로부터, 상기 붕화티타늄 프리폼의 내부로 용융된 알루미늄이 자발적으로 함침되기 어려운 것을 알 수 있다.At 700°C and 800°C, the contact angle between the titanium boride plate and the aluminum was 100 degrees or more until 6000 seconds had elapsed. From these results, it can be seen that it is difficult to spontaneously impregnate the molten aluminum into the inside of the titanium boride preform.
반면, 900℃와 1000℃에서는, 상기 붕화티타늄 평판과 상기 알루미늄 사이의 접촉각은 40도 이하를 나타내었다. 특히, 1000℃에서는 94초가 경과한 후에 접촉각이 90도 이하로 저하되었다. 이는 상기 붕화티타늄과 상기 알루미늄 사이의 젖음성이 급격하게 증가됨을 의미한다. 이러한 결과로부터, 1000℃에서는 상대적으로 짧은 시간에 용융된 알루미늄이 다공성 붕화티타늄 내로의 함침이 용이함을 알 수 있다.On the other hand, at 900°C and 1000°C, the contact angle between the titanium boride plate and the aluminum was 40 degrees or less. In particular, at 1000°C, the contact angle decreased to 90 degrees or less after 94 seconds had elapsed. This means that the wettability between the titanium boride and the aluminum is rapidly increased. From these results, it can be seen that at 1000° C., it is easy to impregnate molten aluminum into porous titanium boride in a relatively short time.
이러한 결과에 의하여, 상기 붕화티타늄-알루미늄 복합재는 1000℃에서 용융가압함침을 수행하여 제조하였다.According to these results, the titanium boride-aluminum composite material was prepared by performing melt pressure impregnation at 1000 °C.
붕화티타늄 프리폼의 표면 형상 분석Analysis of surface shape of titanium boride preform
복합재 내에서 강화재가 균일하게 분산되면, 용융 금속 합금을 효과적으로 함침시킬 수 있고, 이에 따라 금속 기지 복합재의 기계적 특성을 향상시킬 수 있다. 이와 같이 균일하게 분산된 동질의 붕화티타늄-알루미늄 복합재를 제조하기 위하여, 붕화티타늄 프리폼은 다공성 구조로 제조되었다. 또한, 후속의 용융가압함침 공정에 의하여 용융된 알루미늄이 효과적으로 함침되기 위하여는 붕화티타늄 프리폼이 다공성 구조를 가질 뿐만 아니라, 붕화티타늄 입자들이 결정 성장을 하지 않고 약하게 결합되는 것이 바람직하다.When the reinforcing material is uniformly dispersed in the composite, it is possible to effectively impregnate the molten metal alloy, thereby improving the mechanical properties of the metal matrix composite. In order to prepare a homogeneous titanium boride-aluminum composite material uniformly dispersed in this way, a titanium boride preform was prepared in a porous structure. In addition, in order to effectively impregnate the molten aluminum by the subsequent melt pressure impregnation process, it is preferable that the titanium boride preform not only have a porous structure, but also that the titanium boride particles are weakly bonded without crystal growth.
도 6은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법을 수행하기 위한 붕화티타늄 분말을 나타내는 주사전자현미경 사진들이다.6 is a scanning electron microscope photograph showing a titanium boride powder for carrying out the manufacturing method of the solid area aluminum composite material according to an embodiment of the present invention.
도 6을 참조하면, 붕화티타늄 분말이 나타나있다. 상기 붕화티타늄 분말은 2 μm 내지 3 μm 범위의 입자크기를 가지고, 또한, 5 μm의 상대적으로 큰 입자들과 다양한 크기의 작은 파편 입자들을 포함하고 있다.Referring to FIG. 6 , a titanium boride powder is shown. The titanium boride powder has a particle size in the range of 2 μm to 3 μm, and also includes relatively large particles of 5 μm and small fragments of various sizes.
도 7은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법을 수행하여 형성한 붕화티타늄 프리폼을 나타내는 주사전자현미경 사진들이다.7 is a scanning electron microscope photograph showing a titanium boride preform formed by performing the manufacturing method of the solid area ratio aluminum composite material according to an embodiment of the present invention.
도 7을 참조하면, 붕화티타늄 프리폼이 나타나있다. 상기 붕화티타늄 프리폼은 붕화티타늄 분말을 1000℃에서 소결하여 제조하였다. 상기 1000℃의 온도는 일반적인 붕화티타늄 세라믹의 소결 온도에 비하여는 매우 낮은 온도이다. 따라서, 상기 붕화티타늄 프리폼은 상대적으로 약하게 결합된 구조를 가지는 것으로 분석된다. 상기 붕화티타늄 프리폼은 2 μm 내지 3 μm 크기의 붕화티타늄 입자들로 구성된 다공성 미세구조를 가지고 있고, 따라서 1000℃의 소결에서 결정 성장이 발생하지 않은 것으로 분석된다. 즉, 상기 붕화티타늄 입자들은 서로 약하게 결합되어, 최초 형상들을 유지하고 있으며, 약 35 부피%의 기공도를 가질 수 있다. 따라서, 가열 온도에서, 상기 붕화티타늄 프리폼 내에 균일하게 형성된 개방 기공들 내로 용융된 알루미늄이 효과적으로 함침될 수 있다.Referring to FIG. 7 , a titanium boride preform is shown. The titanium boride preform was prepared by sintering titanium boride powder at 1000°C. The temperature of 1000° C. is very low compared to the sintering temperature of general titanium boride ceramics. Therefore, it is analyzed that the titanium boride preform has a relatively weakly bonded structure. The titanium boride preform has a porous microstructure composed of titanium boride particles having a size of 2 μm to 3 μm, and therefore it is analyzed that crystal growth does not occur during sintering at 1000°C. That is, the titanium boride particles are weakly bonded to each other, maintain their original shapes, and may have a porosity of about 35% by volume. Therefore, at the heating temperature, the molten aluminum can be effectively impregnated into the open pores uniformly formed in the titanium boride preform.
도 7의 내부 사진을 참조하면, 1000℃에서 소결된 상기 붕화티타늄 프리폼의 외형 사진으로서, 상기 붕화티타늄 프리폼은 직경 50 mm와 높이 20 mm를 가짐을 알 수 있다.Referring to the internal photograph of FIG. 7 , as an external photograph of the titanium boride preform sintered at 1000° C., it can be seen that the titanium boride preform has a diameter of 50 mm and a height of 20 mm.
붕화티타늄-알루미늄 복합재의 미세구조Microstructure of titanium boride-aluminum composites
도 8은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 단계에 따른 외형 사진들이다.8 is a titanium boride-formed by the method of manufacturing a solid area ratio aluminum composite material according to an embodiment of the present invention - are external photos according to the steps of the aluminum composite material.
도 8을 참조하면, 붕화티타늄-알루미늄 복합재의 단계에 따른 외형 사진들이 나타나있다. 1000℃에서 용융가압함침하는 경우에, 붕화티타늄 프리폼에 알루미늄이 균일하고 완전하게 함침됨을 알 수 있다.Referring to FIG. 8 , external photos according to stages of the titanium boride-aluminum composite are shown. In the case of melt pressure impregnation at 1000° C., it can be seen that aluminum is uniformly and completely impregnated in the titanium boride preform.
도 9는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 미세조직을 나타내는 주사전자현미경 사진이다.9 is a scanning electron microscope photograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 9를 참조하면, 내부 사진에 나타난 바와 같이, 용융된 알루미늄이 함침된 후에는, 회색의 상기 붕화티타늄 프리폼은 은색의 붕화티타늄-알루미늄 복합재로, 색상의 변화가 발생하였다.Referring to FIG. 9 , as shown in the interior photograph, after the molten aluminum was impregnated, the gray titanium boride preform was a silver titanium boride-aluminum composite material, and a change in color occurred.
상기 용융가압함침 공정 동안에, 가스 압력을 인가하여 상기 다공성 붕화티타늄 프리폼 내로 용융된 알루미늄이 효과적으로 함침되었고, 상기 붕화티타늄 입자들은 응집되지 않고, 알루미늄 기지 내에 개별적으로 분산되었다.During the melt pressure impregnation process, molten aluminum was effectively impregnated into the porous titanium boride preform by applying a gas pressure, and the titanium boride particles were individually dispersed in the aluminum matrix without agglomeration.
상기 붕화티타늄-알루미늄 복합재의 중심 영역과 측 영역에서 취득한 주사전자현미경 사진을 이미지 제이 프로그램(Image J program)을 이용하여, 상기 붕화티타늄 프리폼의 부피 분율을 분석하였다. 상기 붕화티타늄 프리폼의 부피 분율은 약 65%로 나타났다. 상술한 바와 같이, 상기 붕화티타늄 프리폼의 기공도가 약 35% 이므로, 상기 붕화티타늄 프리폼에 알루미늄이 효과적으로 함침된 것으로 분석된다.The volume fraction of the titanium boride preform was analyzed using a scanning electron microscope image obtained from the central region and the side region of the titanium boride-aluminum composite material using an Image J program. The volume fraction of the titanium boride preform was found to be about 65%. As described above, since the porosity of the titanium boride preform is about 35%, it is analyzed that aluminum is effectively impregnated into the titanium boride preform.
또한, 상기 용융가압함침 공정에 의하여 제조된 상기 붕화티타늄-알루미늄 복합재에서, 상기 붕화티타늄의 입자 크기는 제조되기 전의 붕화티타늄 분말의 입자 크기와 유사하게 나타났다. 따라서, 1000℃의 온도에서 상기 용융가압함침 공정을 수행하는 동안에, 상기 붕화티타늄 입자들의 결정 성장은 발생하지 않은 것으로 분석된다.In addition, in the titanium boride-aluminum composite manufactured by the melt pressure impregnation process, the particle size of the titanium boride was similar to that of the titanium boride powder before being manufactured. Therefore, it is analyzed that crystal growth of the titanium boride particles did not occur while the melt pressure impregnation process was performed at a temperature of 1000°C.
도 10은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 EPMA 맵핑 사진들이다.10 is an EPMA mapping photograph of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 10을 참조하면, 상기 붕화티타늄-알루미늄 복합재는 알루미늄 영역과 붕화티타늄 영역이 명확하게 구분되어 있다. 티타늄 원자와 보론 원자는 붕화티타늄 입자에서만 대부분 관찰되었다. 따라서, 상기 붕화티타늄은 높은 부피비를 가지면서도, 응집되지 않고 균일하게 분산되어 있다.Referring to FIG. 10 , in the titanium boride-aluminum composite material, an aluminum region and a titanium boride region are clearly separated. Titanium and boron atoms were mostly observed only in titanium boride particles. Therefore, the titanium boride is uniformly dispersed without agglomeration while having a high volume ratio.
상기 알루미늄에 대한 맵핑 사진을 분석하면, 2 μm 내지 3 μm의 평균 입자 크기를 가지는 상기 붕화티타늄 사이에 구비된 마이크로 미터 크기의 공간에 상기 알루미늄이 함침되었다. 이와 더불어, 상기 붕화티타늄 사이의 서브 마이크로 미터 크기의 좁은 공간에도 상기 알루미늄이 효과적으로 함침되었다.When the mapping picture for the aluminum was analyzed, the aluminum was impregnated in the micrometer-sized space provided between the titanium boride having an average particle size of 2 μm to 3 μm. In addition, the aluminum was effectively impregnated even in a narrow space of a sub-micrometer size between the titanium boride.
세라믹 강화재와 금속 기지 사이의 젖음성이 낮은 경우에는, 상기 세라믹 강화재의 부피 분율이 작은 경우에 비하여, 상기 세라믹 강화재가 부피 분율이 큰 경우에 용융 금속의 함침이 더 어렵게 된다. 그 이유는, 세라믹 강화제와 금속 사이의 계면 면적이 증가되고, 높은 표면 에너지를 가지기 때문이다. 그러나, 본 발명에서는 젖음성 분석에서 상술한 바와 같이 높은 젖음성을 제공할 수 있는 온도, 예를 들어 1000℃의 공정 온도에서 공정을 수행하였고, 이와 같이 상기 붕화티타늄과 알루미늄 사이의 높은 젖음성에 의하여 상기 붕화티타늄의 부피 분율이 큰 붕화티타늄-알루미늄 복합재를 제조할 수 있다.When the wettability between the ceramic reinforcement and the metal matrix is low, impregnation of the molten metal is more difficult when the ceramic reinforcement has a large volume fraction than when the volume fraction of the ceramic reinforcement is small. The reason is that the interfacial area between the ceramic reinforcing agent and the metal is increased, and it has a high surface energy. However, in the present invention, as described above in the wettability analysis, the process was performed at a temperature that can provide high wettability, for example, a process temperature of 1000 ° C. As such, the boride by the high wettability between the titanium boride and aluminum A titanium boride-aluminum composite material having a large volume fraction of titanium may be prepared.
반면, 상기 붕화티타늄-알루미늄 복합재의 미세구조에서 마그네슘 산화물도 확인되었다. 상기 마그네슘 산화물은 제조 시 사용된 마그네슘 산화물 도가니로부터 제공된 마그네슘과 산소와 알루미늄의 부원소들의 반응에 의한 것으로 분석된다. 그러나, 상기 마그네슘 산화물의 양은 매우 적으므로 기계적 특성에의 영향은 무시할 정도로 분석된다.On the other hand, magnesium oxide was also confirmed in the microstructure of the titanium boride-aluminum composite material. The magnesium oxide is analyzed to be due to the reaction of magnesium, oxygen, and sub-elements of aluminum provided from a magnesium oxide crucible used for manufacturing. However, since the amount of the magnesium oxide is very small, the effect on the mechanical properties is analyzed to be negligible.
도 11은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 X-선 회절 패턴을 나타내는 그래프이다.11 is a graph showing an X-ray diffraction pattern of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 11을 참조하면, 상기 붕화티타늄-알루미늄 복합재에서는 알루미늄에 상응하는 피크와 붕화티타늄에 대응하는 피크 만이 관찰되었다. 상기 EPMA 맵핑 사진에서는 마그네슘 산화물이 발견되었으나, 매우 소량이므로 X-선 회절 패턴에서는 발견되지 않았다. 일반적으로, 붕화티타늄(TiB 2)은 AlB 2 및 Al 3Ti와 같은 금속간 화합물들과 B 4C 및 TiC와 같은 세라믹들에 비하여 열역학적으로 안정적이다. 따라서, 용융가압함침을 수행하는 동안에, 상기 붕화티타늄과 상기 알루미늄 사이의 계면 반응은 발생하지 않은 것으로 분석된다.Referring to FIG. 11 , in the titanium boride-aluminum composite material, only a peak corresponding to aluminum and a peak corresponding to titanium boride were observed. Magnesium oxide was found in the EPMA mapping photograph, but was not found in the X-ray diffraction pattern because it was very small. In general, titanium boride (TiB 2 ) is thermodynamically stable compared to intermetallic compounds such as AlB 2 and Al 3 Ti and ceramics such as B 4 C and TiC. Therefore, it is analyzed that the interfacial reaction between the titanium boride and the aluminum did not occur during the melt pressure impregnation.
도 12는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 미세구조를 나타내는 투과전자현미경 사진들이다.12 is a transmission electron microscope photograph showing the microstructure of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 12를 참조하면, 상기 붕화티타늄(TiB 2)과 알루미늄(Al) 사이의 계면은 공공들 또는 결함들을 포함하지 않고, 매우 매끄러운 경계를 이루고 있는 것이 관찰되었다. 상기 붕화티타늄과 상기 알루미늄 사이의 계면은 준-정합(semi-coherent) 특성을 가지는 것으로 분석된다. 이러한 결과로부터, 상기 붕화티타늄 프리폼 내로 용융된 알루미늄이 효과적으로 함침된 것으로 분석된다.Referring to FIG. 12 , it was observed that the interface between the titanium boride (TiB 2 ) and aluminum (Al) does not include voids or defects and forms a very smooth boundary. The interface between the titanium boride and the aluminum is analyzed to have a semi-coherent characteristic. From these results, it is analyzed that the molten aluminum is effectively impregnated into the titanium boride preform.
또한, 상기 붕화티타늄의 열팽창 계수는 6 ppmK -1 ~ 8 ppmK -1 이고, 상기 알루미늄의 열팽창 계수는 26 ppmK -1 ~ 28 ppmK -1 이므로, 두 물질의 열팽창 계수가 상당히 차이가 있음에도, 제조 공정 동안에 상기 붕화티타늄 입자들은 파손되지 않고 매끄럽운 계면을 형성함을 알 수 있다.In addition, since the thermal expansion coefficient of the titanium boride is 6 ppmK -1 to 8 ppmK -1 , and the thermal expansion coefficient of the aluminum is 26 ppmK -1 to 28 ppmK -1 , although the thermal expansion coefficients of the two materials are significantly different, the manufacturing process During the period, it can be seen that the titanium boride particles are not broken and form a smooth interface.
도 12의 상기 계면에서의 에너지 분산 X-선 분광(EDS) 원소 맵핑 사진을 참조하면, 상기 계면에서의 화학 복합물들의 형성 여부를 분석할 수 있다. 상기 붕화티타늄은 화학적으로 매우 안정하므로, 1000℃의 제조 공정 동안에 화학 복합물들을 형성하지 않을 것으로 예상되며, EDS 분석결과 확인되었다. 즉, 화학 반응에 의하여 형성될 수 있는 Al 3Ti 또는 AlB 2 와 같은 매우 취성이 높은 복합물들이 형성되지 않았다.Referring to the energy dispersive X-ray spectroscopy (EDS) element mapping photograph at the interface of FIG. 12 , whether chemical complexes are formed at the interface may be analyzed. Since the titanium boride is chemically very stable, it is expected not to form chemical complexes during the manufacturing process at 1000° C., which was confirmed by EDS analysis. That is, very brittle complexes such as Al 3 Ti or AlB 2 that can be formed by chemical reaction were not formed.
따라서, 상기 용융가압함침 공정에 의하여 제조된 상기 붕화티타늄-알루미늄 복합재는 취성 복합물들이 없는 매끄럽고 우수한 미세구조를 가지며, 따라서 다른 엑스-시츄 공정에 의하여 제조된 경우에 비하여 우수한 기계적 특성을 가질 것으로 예상된다.Therefore, the titanium boride-aluminum composite produced by the melt pressure impregnation process has a smooth and excellent microstructure without brittle complexes, and is therefore expected to have superior mechanical properties compared to the case prepared by other ex-situ processes. .
붕화티타늄-알루미늄 복합재의 기계적 특성 분석Analysis of mechanical properties of titanium boride-aluminum composites
도 13은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 상온에서의 응력-변형률 그래프이다.13 is a stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 14은 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 상온에서의 압축 응력-변형률 그래프이다.14 is a compressive stress-strain graph at room temperature of a titanium boride-aluminum composite material formed by the method for manufacturing a solid area aluminum composite material according to an embodiment of the present invention.
도 13 및 도 14에서, 상기 붕화티타늄-알루미늄(TiB 2- Al1050) 복합재는 흑색 실선으로 표시되어 있고, 비교예로서 Al1050 알루미늄 합금은 적색 점선으로 표시되어 있다. 내부 사진들은 시험 전과 후의 TiB 2-알루미늄 복합재의 시험시편 사진이다.13 and 14, the titanium boride-aluminum (TiB 2 - Al1050) composite material is indicated by a black solid line, and the Al1050 aluminum alloy as a comparative example is indicated by a red dotted line. The internal photos are photos of the test specimen of TiB 2 -aluminum composite before and after the test.
도 13 및 도 14를 참조하면, Al1050 알루미늄 합금과 비교하면, 상기 붕화티타늄-알루미늄 복합재의 인장 강도 및 압축 강도가 매우 크게 증가하였고, 연신율은 감소하였다. 이는 상기 붕화티타늄의 강도와 취성이 높은 것에 기인한다. 상기 인장 응력-변형률의 기울기로부터 산출된 탄성 계수는 상기 Al1050 알루미늄 합금에 비하여 두드러지게 증가되었고, 이는 상기 붕화티타늄이 530 GPa의 높은 탄성 계수를 가지기 때문으로 분석된다.13 and 14 , compared to the Al1050 aluminum alloy, the tensile strength and compressive strength of the titanium boride-aluminum composite material were greatly increased, and the elongation rate was decreased. This is due to the high strength and brittleness of the titanium boride. The elastic modulus calculated from the tensile stress-strain gradient was significantly increased compared to the Al1050 aluminum alloy, which is analyzed because the titanium boride has a high elastic modulus of 530 GPa.
일반적으로, 세라믹은 취성 특성을 가지므로 상온에서 인장 시험 중에 탄성 변형 영역에 파괴를 나타내므로, 인장 강도를 측정하기가 어렵다. 높은 부피 분율을 가지는 세라믹 강화 금속 기지 복합재들도 일반적인 세라믹과 동일한 파괴 거동을 나타낸다. 따라서, 일반적인 금속 기지 복합재의 응력-변형률 그래프에서는 탄성 변형 영역에서 파괴가 발생하는 것일 일반적이다. 그러나, 상기 용융가압함침 공정으로 제조된 상기 붕화티타늄-알루미늄 복합재는 인장 시험 중에 약간의 소성 변형을 나타내며, 특히 압축 시험에서는 명백한 소성 변형 거동을 나타낸다. 이러한 현상은 매우 흥미롭고 정밀한 분석이 요구된다.In general, since ceramics have brittle properties, fractures occur in the elastic deformation region during a tensile test at room temperature, so it is difficult to measure the tensile strength. Ceramic-reinforced metal matrix composites with a high volume fraction also exhibit the same fracture behavior as general ceramics. Therefore, in the stress-strain graph of a general metal matrix composite, it is common that fracture occurs in the elastic deformation region. However, the titanium boride-aluminum composite prepared by the melt pressure impregnation process exhibits slight plastic deformation during the tensile test, and in particular, a clear plastic deformation behavior in the compression test. This phenomenon is very interesting and requires precise analysis.
복합재에서 금속 기지에 미세한 강화재가 균일하게 분산되고, 상기 기지와 매끄러운 계면 상태를 유지하는 경우에는, 상기 복합재의 인장 강도는 연신율의 심각한 저하없이 증가될 수 있다. 이러한 결과로부터, 용융가압함침 공정으로 제조한 상기 붕화티타늄-알루미늄 복합재는 증가된 함침 온도와 인가 가스 압력의 도움으로 미세한 붕화티타늄 입자가 알루미늄 금속 기지에 분산되고, 매끄러운 계면을 형성함을 증명할 수 있다.In the composite material, if the fine reinforcement is uniformly dispersed in the metal matrix and maintains a smooth interface state with the matrix, the tensile strength of the composite material can be increased without significantly lowering the elongation. From these results, it can be proved that the titanium boride-aluminum composite prepared by the melt pressure impregnation process has fine titanium boride particles dispersed in the aluminum metal matrix with the help of increased impregnation temperature and applied gas pressure, and a smooth interface is formed. .
표 2는 TiB 2-알루미늄 복합재와 Al1050 알루미늄 합금의 기계적 및 물리적 특성을 나타낸다.Table 2 shows the mechanical and physical properties of TiB 2 -aluminum composite and Al1050 aluminum alloy.
구분division 밀도
(g/cm 3)
density
(g/cm 3 )
UTS
(MPa)
UTS
(MPa)
CYS
(MPa)
CYS
(MPa)
경도
(Hv)
Hardness
(Hv)
CTE
(ppmK -1)
CTE
(ppmK -1 )
TiB 2-알루미늄 복합재TiB 2 -Aluminum Composite 3.843.84 471.5471.5 500.4500.4 194.4194.4 12.9712.97
Al1050 알루미늄 합금Al1050 aluminum alloy 2.712.71 67.167.1 59.459.4 23.223.2 26.2826.28
표 2를 참조하면, 상기 붕화티타늄(TiB 2) 의 밀도는 4.52 g/cm 3 로서 알루미늄에 비하여 상대적으로 높으므로, 상기 붕화티타늄-알루미늄 복합재의 밀도는 상기 Al1050 알루미늄 합금에 비하여 1.4 배 증가하였다.그러나, 상기 붕화티타늄-알루미늄 복합재의 상온에서의 인장 강도(UTS)는 471.5 MPa 로서, 67.1 MPa의 상기 Al1050 알루미늄 합금에 비하여 7.0 배로 매우 크게 증가하였다. 또한, 상기 붕화티타늄-알루미늄 복합재의 상온에서의 압축 항복 강도(CYS)와 비커스 경도(hardness)는 상기 Al1050 알루미늄 합금에 비하여 각각 8.4 배로 매우 크게 증가하였다.Referring to Table 2, since the density of the titanium boride (TiB 2 ) is 4.52 g/cm 3 , which is relatively higher than that of aluminum, the density of the titanium boride-aluminum composite material is increased by 1.4 times compared to the Al1050 aluminum alloy. However, the tensile strength (UTS) at room temperature of the titanium boride-aluminum composite material was 471.5 MPa, which was significantly increased by 7.0 times compared to the Al1050 aluminum alloy of 67.1 MPa. In addition, the compressive yield strength (CYS) and Vickers hardness (hardness) at room temperature of the titanium boride-aluminum composite material were significantly increased by 8.4 times, respectively, compared to the Al1050 aluminum alloy.
상기 붕화티타늄-알루미늄 복합재의 열팽창 계수는 상온에서 100℃ 사이의 온도에서 12.97 ppmK -1 이었다. 이는 상기 Al1050 알루미늄 합금에 비하여 49% 낮은 수치이다.The thermal expansion coefficient of the titanium boride-aluminum composite material was 12.97 ppmK -1 at a temperature between room temperature and 100 °C. This is 49% lower than the Al1050 aluminum alloy.
복합재의 특성은 하기의 식 1의 혼합 법칙(rule of mixtures, ROM)을 이용하여 대략적으로 추산할 수 있다. 이러한 혼합 법칙에 의하여 혼합된 물질의 특성과 조성을 예측할 수 있다.The properties of the composite material can be roughly estimated using the rule of mixtures (ROM) of Equation 1 below. According to this mixing law, the properties and composition of the mixed material can be predicted.
<식 1><Equation 1>
Figure PCTKR2020014987-appb-img-000001
Figure PCTKR2020014987-appb-img-000001
상기 용융가압함침 공정을 이용하여 제조된 상기 붕화티타늄-알루미늄 복합재의 측정된 특성들 대부분은 상기 혼합 법칙에서 예측된 수치와 일치하였다.Most of the measured properties of the titanium boride-aluminum composite manufactured using the melt pressure impregnation process were consistent with the values predicted by the mixing law.
그러나, 상기 붕화티타늄-알루미늄 복합재의 인장 강도는 벌크 붕화티타늄과 알루미늄의 혼합 법칙에서 예측된 수치에 비하여 매우 높게 나타났다. 이러한 현상은 매우 흥미로우며, 상기 붕화티타늄-알루미늄 복합재의 응력-변형률 그래프에서 나타난 소성 변형 거동과 관련된 것으로 분석된다. 벌크 세라믹의 인장 강도는 파괴 거동에 의하여 매우 낮으며, 세라믹의 강도는 입자 크기와 결함들의 분포에 의존하므로, 표준 수치를 가지지 못한다. 따라서, 상기 붕화티타늄-알루미늄 복합재의 상기 붕화티타늄 및 상기 알루미늄의 우수한 미세구조와 매끄러운 계면의 혼합 효과로 분석된다.However, the tensile strength of the titanium boride-aluminum composite material was very high compared to the value predicted by the mixing law of bulk titanium boride and aluminum. This phenomenon is very interesting and is analyzed to be related to the plastic deformation behavior shown in the stress-strain graph of the titanium boride-aluminum composite material. The tensile strength of bulk ceramics is very low due to fracture behavior, and the strength of ceramics depends on the particle size and distribution of defects, so it does not have a standard value. Therefore, the effect of mixing the excellent microstructure and smooth interface of the titanium boride and the aluminum of the titanium boride-aluminum composite is analyzed.
인장 하중이 인가되면, 공공과 같은 결함들에서 파괴가 시작되는 것이 일반적이다. 세라믹 강화 금속 기지 복합재의 경우에는, 낮은 강도의 알루미늄을 가지는 복합재에 수직방향으로 인장 하중이 인가되면, 상기 복합재는 인장되고, 강화재들과 기지의 계면에서 형성된 결함들에서 파괴가 성장하게 된다. 이러한 계면이 매끄럽지 않으면, 상기 강화재와 기지 사이의 계면은 공공 등과 같은 결함들을 형성시키는 주요한 위치로서 작용하게 된다. 따라서, 낮은 품질의 계면을 가지는 복합재의 경우에는 계면 박리에 의하여 낮은 기계적 특성을 나타나게 된다.When a tensile load is applied, failure usually begins at defects such as voids. In the case of a ceramic-reinforced metal matrix composite, when a tensile load is applied in the vertical direction to the composite having low strength aluminum, the composite is stretched, and fractures grow in the defects formed at the interface between the reinforcement and the matrix. If this interface is not smooth, the interface between the reinforcement and the matrix acts as a major location for forming defects such as voids. Therefore, in the case of a composite material having a low-quality interface, low mechanical properties are exhibited due to interfacial delamination.
도 15a, 도 15b, 및 도 15c는 본 발명의 일 실시예에 따른 고체적율 알루미늄 복합재의 제조방법에 의하여 형성한 붕화티타늄-알루미늄 복합재의 인장 시험 후의 파괴 표면을 나타내는 주사전자현미경 사진들이다.15A, 15B, and 15C are scanning electron micrographs showing the fracture surface after a tensile test of a titanium boride-aluminum composite formed by the method for manufacturing a solid-area aluminum composite according to an embodiment of the present invention.
도 15a를 참조하면, Al1050 알루미늄 합금의 파괴 표면이 나타나있다. 상기 Al1050 알루미늄 합금 시편에 하중이 수직 방향으로 인가되면, 수십 마이크로 크기의 거친 딤플들이 형성되면서 상기 Al1050 알루미늄 합금 시편이 파괴됨을 알 수 있다.Referring to Figure 15a, the fracture surface of the Al1050 aluminum alloy is shown. It can be seen that when a load is applied to the Al1050 aluminum alloy specimen in a vertical direction, rough dimples having a size of several tens of micrometers are formed and the Al1050 aluminum alloy specimen is destroyed.
도 15b 및 도 15c를 참조하면, 상기 붕화티타늄-알루미늄 복합재의 파괴 표면이 나타나있다. 상기 알루미늄과 비교하면, 미세 구조가 매우 미세해짐을 알 수 있다. 이는 미세한 붕화티타늄 강화재의 존재와 알루미늄 기지의 입자가 더 미세하게 형성되었기 때문이다.15B and 15C , the fracture surface of the titanium boride-aluminum composite is shown. Compared with the aluminum, it can be seen that the microstructure is very fine. This is because of the presence of fine titanium boride reinforcement and the formation of finer particles of the aluminum matrix.
도 15c를 참조하면, 상기 붕화티타늄-알루미늄 복합재의 파괴 표면을 분석하기 위하여 고해상도 사진이 나타나있다. 매우 미세한 딤플들이 형성되어 있고, 붕화티타늄 입자들이 파괴되어 있음을 알 수 있다. 이러한 파괴 거동은 연한 알루미늄 기지에서 형성된 크랙이 강한 붕화티타늄 입자로 전달된 것으로 분석된다.Referring to FIG. 15C , a high-resolution photograph is shown to analyze the fracture surface of the titanium boride-aluminum composite. It can be seen that very fine dimples are formed and the titanium boride particles are destroyed. It is analyzed that this fracture behavior is that the cracks formed on the soft aluminum matrix are transferred to the strong titanium boride particles.
이러한 현상을 통하여, 상기 용융가압함침 공정으로 제조된 상기 붕화티타늄-알루미늄 복합재는, 상기 붕화티타늄의 취성 파괴와 알루미늄의 연성 파괴가 혼합된 혼합 파괴 거동을 나타낸다. 특히 상기 붕화티타늄과 상기 알루미늄 사이의 계면에서 계면 박리를 발생시키지 않고 파괴되며, 따라서 연한 알루미늄 기지로부터 높은 강도의 붕화티타늄 강화재로 효과적으로 하중이 전달됨을 알 수 있다.Through this phenomenon, the titanium boride-aluminum composite manufactured by the melt pressure impregnation process exhibits a mixed fracture behavior in which the brittle fracture of the titanium boride and the ductile fracture of aluminum are mixed. In particular, it is destroyed without causing interfacial delamination at the interface between the titanium boride and the aluminum, and thus it can be seen that the load is effectively transferred from the soft aluminum matrix to the high strength titanium boride reinforcing material.
결론적으로, 상기 용융가압함침 공정을 이용하여 1000℃의 온도와 가스 압력의 도움을 통하여 제조된 상기 붕화티타늄-알루미늄 복합재는 알루미늄에 높은 부피 분율의 미세한 붕화티타늄을 이용하여 강화시켰고, 매우 증가된 안장 강도와 충분한 연신율을 나타낸다.In conclusion, the titanium boride-aluminum composite manufactured through the aid of a temperature and gas pressure of 1000° C. using the melt pressure impregnation process was strengthened using a high volume fraction of fine titanium boride in aluminum, and the saddle was greatly increased. It shows strength and sufficient elongation.
결론conclusion
본 발명에서는, 엑스-시츄 방법을 이용하여 제조된 복합재의 불안정한 계면을 보상하기 위하여 개선된 기계적 특성 및 미세구조를 가지는 붕화티타늄-알루미늄 복합재를 제조하였다. 온도가 증가됨에 따라 붕화티타늄과 알루미늄 사이의 개선된 젖음성의 장점을 이용하여, 약 65% 부피비로 균일하게 분산된 미세한 붕화티타늄 강화재를 가지는 상기 붕화티타늄-알루미늄 복합재를 고온에서 가스 압력을 인가하는 용융가압함침 공정을 이용하여 성공적으로 제조되었다. 1000℃의 고온에서, 알루미늄 합금 용탕은 붕화티타늄 입자들 사이의 서브 마이크로 크기의 영역에도 잘 함침되었다. 상기 붕화티타늄과 알루미늄 기지 사이의 우수한 젖음성과 가스 압력으로 계면 결함은 발견되지 않았다.In the present invention, a titanium boride-aluminum composite material having improved mechanical properties and microstructure was prepared in order to compensate for the unstable interface of the composite material manufactured by using the ex-situ method. Melting the titanium boride-aluminum composite with a fine titanium boride reinforcement uniformly dispersed in about 65% volume ratio by applying a gas pressure at a high temperature, taking advantage of the improved wettability between titanium boride and aluminum as the temperature increases It was successfully prepared using the pressure impregnation process. At a high temperature of 1000°C, the aluminum alloy molten metal was well impregnated even in the sub-micro-sized regions between the titanium boride particles. No interfacial defects were found due to excellent wettability and gas pressure between the titanium boride and aluminum matrix.
상기 붕화티타늄-알루미늄 복합재의 밀도는 3.84 g/cm 3 로서 상기 Al1050 알루미늄 합금에 비하여 1.4 배이었다. 상기 붕화티타늄-알루미늄 복합재의 인장 강도, 압축 항복 강도, 및 비커스 경도는 각각 471.5 MPa, 500.4 MPa, 및 194.4 Hv으로서, 상기 Al1050 알루미늄 합금에 비하여 7.0배, 8.4배, 및 8.4배로 크게 나타났다. 상기 붕화티타늄-알루미늄 복합재의 열팽창 계수는 상온에서 100℃ 사이의 온도에서 12.97 ppmK -1 이었고, 이는 상기 Al1050 알루미늄 합금에 비하여 49% 낮은 수치이다.The density of the titanium boride-aluminum composite material was 3.84 g/cm 3 , which was 1.4 times that of the Al1050 aluminum alloy. Tensile strength, compressive yield strength, and Vickers hardness of the titanium boride-aluminum composite material were 471.5 MPa, 500.4 MPa, and 194.4 Hv, respectively, which were 7.0 times, 8.4 times, and 8.4 times larger than that of the Al1050 aluminum alloy. The thermal expansion coefficient of the titanium boride-aluminum composite material was 12.97 ppmK -1 at a temperature between room temperature and 100° C., which is 49% lower than that of the Al1050 aluminum alloy.
상기 붕화티타늄-알루미늄 복합재 내에 취성 특성의 금속간 화합물이 없고, 계면 결함들이 없으므로, 상기 붕화티타늄-알루미늄 복합재에 인가된 하중은 연한 알루미늄 기지로부터 높은 강도의 붕화티타늄 강화재로 효과적으로 전달되고, 따라서 연성 파괴와 취성 파괴의 혼합 파괴 거동을 나타낸다. 이러한 이유에 의하여, 상기 붕화티타늄-알루미늄 복합재의 강도 및 연신율은, 다른 엑스-시츄 방법에 의하여 제조된 종래의 높은 부피 분율의 금속 기지 복합재에 비하여 매우 높게 나타났다. Since there is no brittle intermetallic compound in the titanium boride-aluminum composite material and there are no interfacial defects, the load applied to the titanium boride-aluminum composite material is effectively transferred from the soft aluminum matrix to the high strength titanium boride reinforcement material, and thus ductile fracture and the mixed fracture behavior of brittle fracture. For this reason, the strength and elongation of the titanium boride-aluminum composite material were found to be very high compared to the conventional high volume fraction metal matrix composite prepared by other ex-situ methods.
따라서, 상기 용융가압함침 공정에 의하여 제조된 상기 붕화티타늄-알루미늄 복합재는 우수한 기계적 및 물리적 특성을 가지므로, 자동차 분야, 항공우주 분야, 및 방위산업 분야 등과 같은 다양한 분야에 응용될 수 있다.Therefore, the titanium boride-aluminum composite material manufactured by the melt pressure impregnation process has excellent mechanical and physical properties, and thus can be applied to various fields such as automobile field, aerospace field, and defense industry field.
이상에서 설명한 본 발명의 기술적 사상이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명의 기술적 사상이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The technical spirit of the present invention described above is not limited to the above-described embodiments and the accompanying drawings, and it is the technical spirit of the present invention that various substitutions, modifications and changes are possible within the scope without departing from the technical spirit of the present invention. It will be apparent to those of ordinary skill in the art to which this belongs.
본 발명의 실시예에 따르면, 상기 붕화티타늄-알루미늄 복합재는 자동차 분야, 항공우주 분야, 및 방위산업 분야 등과 같은 다양한 산업 분야에 적용될 수 있다.According to an embodiment of the present invention, the titanium boride-aluminum composite material may be applied to various industrial fields such as automobile fields, aerospace fields, and defense industries.

Claims (17)

  1. 붕화티타늄 프리폼을 형성하는 단계;forming a titanium boride preform;
    상기 붕화티타늄 프리폼 상에 고상의 알루미늄을 배치하는 단계;disposing solid aluminum on the titanium boride preform;
    상기 알루미늄을 가열하여 용융시키는 단계;heating the aluminum to melt;
    상기 용융된 알루미늄이 상기 붕화티타늄 프리폼 내로 함침되도록, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계; 및pressurizing the molten aluminum using a gas so that the molten aluminum is impregnated into the titanium boride preform; and
    상기 용융된 알루미늄이 함침된 상기 붕화티타늄 프리폼을 냉각하여, 알루미늄 복합재를 형성하는 단계;를 포함하는,Containing; by cooling the titanium boride preform impregnated with the molten aluminum to form an aluminum composite;
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 붕화티타늄 프리폼을 형성하는 단계는,Forming the titanium boride preform comprises:
    붕화티타늄 분말을 압축하여 붕화티타늄 압축재를 형성하는 단계; 및compressing the titanium boride powder to form a titanium boride compressed material; and
    상기 붕화티타늄 압축재를 소결하여 상기 붕화티타늄 프리폼을 형성하는 단계;를 포함하는,Including; sintering the titanium boride compression material to form the titanium boride preform;
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 붕화티타늄 분말은,The titanium boride powder,
    2 μm 내지 3 μm 범위의 평균 입자크기를 가지는,having an average particle size in the range of 2 μm to 3 μm,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  4. 제 2 항에 있어서,3. The method of claim 2,
    상기 붕화티타늄 분말의 압축은,The compression of the titanium boride powder is,
    60 MPa 내지 100 MPa 범위의 단축 압력으로 수행되는,carried out with a uniaxial pressure ranging from 60 MPa to 100 MPa,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  5. 제 2 항에 있어서,3. The method of claim 2,
    상기 붕화티타늄 압축재의 소결은,The sintering of the titanium boride compression material is,
    불활성 가스 분위기에서, 900℃ 내지 1100℃ 범위의 온도에서, 10분 내지 120분 동안 수행되는, carried out in an inert gas atmosphere, at a temperature in the range of 900°C to 1100°C, for 10 minutes to 120 minutes,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 알루미늄을 가열하여 용융시키는 단계는,The step of melting the aluminum by heating,
    진공 분위기에서 900℃ 내지 1800℃ 범위의 온도로 수행되는,carried out at a temperature in the range of 900°C to 1800°C in a vacuum atmosphere,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계는, The step of pressurizing the molten aluminum using a gas,
    1 bar 내지 20 bar의 압력의 불활성 가스를 상기 용융된 알루미늄에 주입하여 수행되는,It is performed by injecting an inert gas at a pressure of 1 bar to 20 bar into the molten aluminum,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 알루미늄을 가열하여 용융시키는 단계와 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계는, 동시에 수행되는, The heating and melting of the aluminum and the pressing of the molten aluminum using a gas are performed simultaneously,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 알루미늄은,The aluminum is
    순수한 알루미늄 또는 알루미늄 합금을 포함하는,containing pure aluminum or aluminum alloy,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 의하여 제조된 고체적율 알루미늄 복합재로서,10. A high-volume aluminum composite prepared according to any one of claims 1 to 9,
    붕화티타늄 프리폼; 및titanium boride preform; and
    상기 붕화티타늄 프리폼 내에 함침된 알루미늄;을 포함하는,Including; aluminum impregnated in the titanium boride preform
    고체적율 알루미늄 복합재.A high-volume aluminum composite.
  11. 제 10 항에 있어서,11. The method of claim 10,
    상기 붕화티타늄 프리폼은,The titanium boride preform,
    20 부피% 내지 50 부피%의 기공도의 기공들을 가지고, 상기 기공들의 적어도 일부에 상기 알루미늄이 충진된,Having pores having a porosity of 20% by volume to 50% by volume, at least some of the pores are filled with the aluminum,
    고체적율 알루미늄 복합재.A high-volume aluminum composite.
  12. 제 10 항에 있어서,11. The method of claim 10,
    상기 고체적율 알루미늄 복합재는,The solid area ratio aluminum composite material,
    상기 붕화티타늄의 취성 파괴와 알루미늄의 연성 파괴가 혼합된 혼합 파괴 거동을 나타내는, Representing a mixed fracture behavior in which the brittle fracture of the titanium boride and the ductile fracture of aluminum are mixed,
    고체적율 알루미늄 복합재.A high-volume aluminum composite.
  13. 제 10 항에 있어서,11. The method of claim 10,
    상기 고체적율 알루미늄 복합재는,The solid area ratio aluminum composite material,
    3.0 g/cm 3 내지 4.2 g/cm 3 의 밀도를 가지는,having a density of 3.0 g/cm 3 to 4.2 g/cm 3 ,
    고체적율 알루미늄 복합재.A high-volume aluminum composite.
  14. 제 10 항에 있어서,11. The method of claim 10,
    상기 고체적율 알루미늄 복합재는,The solid area ratio aluminum composite material,
    100 MPa 내지 500 MPa의 인장 강도, 100 MPa 내지 600 MPa의 압축 항복 강도, 및 40 Hv 내지 250 Hv의 비커스 경도를 가지는,having a tensile strength of 100 MPa to 500 MPa, a compressive yield strength of 100 MPa to 600 MPa, and a Vickers hardness of 40 Hv to 250 Hv;
    고체적율 알루미늄 복합재.A high-volume aluminum composite.
  15. 제 10 항에 있어서,11. The method of claim 10,
    상기 고체적율 알루미늄 복합재는,The solid area ratio aluminum composite material,
    11 ppmK -1 내지 17 ppmK -1 의 열팽창 계수를 가지는,having a coefficient of thermal expansion of 11 ppmK -1 to 17 ppmK -1 ,
    고체적율 알루미늄 복합재.A high-volume aluminum composite.
  16. 세라믹 프리폼을 형성하는 단계;forming a ceramic preform;
    상기 세라믹 프리폼 상에 고상의 알루미늄을 배치하는 단계;disposing solid aluminum on the ceramic preform;
    상기 알루미늄을 가열하여 용융시키는 단계;heating the aluminum to melt;
    상기 용융된 알루미늄이 상기 세라믹 프리폼 내로 함침되도록, 상기 용융된 알루미늄을 가스를 이용하여 가압하는 단계; 및pressing the molten aluminum with a gas so that the molten aluminum is impregnated into the ceramic preform; and
    상기 용융된 알루미늄이 함침된 상기 세라믹 프리폼을 냉각하여, 알루미늄 복합재를 형성하는 단계;를 포함하는,Containing; by cooling the ceramic preform impregnated with the molten aluminum to form an aluminum composite material;
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
  17. 제 16 항에 있어서,17. The method of claim 16,
    상기 세라믹 프리폼은, Al 2O 3, B 4C, SiC, 및 TiC 중 적어도 어느 하나를 포함하는,The ceramic preform includes at least one of Al 2 O 3 , B 4 C, SiC, and TiC,
    고체적율 알루미늄 복합재의 제조방법.A method for manufacturing a high-volume aluminum composite.
PCT/KR2020/014987 2020-10-28 2020-10-30 High-volume aluminum composite and method of manufacturing same WO2022092361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200141162A KR102444652B1 (en) 2020-10-28 2020-10-28 high volume reinforced aluminum composite and method of manufacturing the same
KR10-2020-0141162 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022092361A1 true WO2022092361A1 (en) 2022-05-05

Family

ID=81383992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014987 WO2022092361A1 (en) 2020-10-28 2020-10-30 High-volume aluminum composite and method of manufacturing same

Country Status (2)

Country Link
KR (1) KR102444652B1 (en)
WO (1) WO2022092361A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990018885A (en) * 1997-08-28 1999-03-15 이구택 Method for producing alumina / aluminum composite
KR20090036934A (en) * 2007-10-10 2009-04-15 한국기계연구원 Amorphous metal matrix composites
KR20160072761A (en) * 2014-12-15 2016-06-23 이건배 A method of fabricating an aluminum matrix composite and an aluminum matrix composite fabricated by the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011347A (en) 1999-07-27 2001-02-15 윤태호 Computer booting control system using a biometric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990018885A (en) * 1997-08-28 1999-03-15 이구택 Method for producing alumina / aluminum composite
KR20090036934A (en) * 2007-10-10 2009-04-15 한국기계연구원 Amorphous metal matrix composites
KR20160072761A (en) * 2014-12-15 2016-06-23 이건배 A method of fabricating an aluminum matrix composite and an aluminum matrix composite fabricated by the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHO SEUNGCHAN, LEE YEONG-HWAN, KO SEONGMIN, HYEON, PARK JAE, LEE DONGHYUN, SHIN SANGMIN, JO ILGUK, LEE SANG-KWAN, LEE SANG-BOK: "Fabrication of Ceramic Particulate Reinforced Steel Composites by Liquid Pressing Infiltration Process", COMPOSITES RESEARCH, vol. 31, no. 4, 1 January 2018 (2018-01-01), pages 117 - 121, XP055927283, ISSN: 2288-2103, DOI: 10.7234/composres.2018.31.4.117 *
CHO SEUNGCHAN, LEE YEONG-HWAN, KO SEONGMIN, PARK HYEONJAE, LEE DONGHYUN, SHIN SANGMIN, JO ILGUK, LEE SANG-BOK, LEE SANG-KWAN: " Microstructure and Properties of TiC-Inconel 718 Metal Matrix Composites Fabricated by Liquid Pressing Infiltration Process", COMPOSITES RESEARCH, vol. 32, no. 3, 1 January 2019 (2019-01-01), pages 158 - 162, XP055927284, ISSN: 2288-2103, DOI: 10.7234/composres.2019.32.3.158 *

Also Published As

Publication number Publication date
KR20220056507A (en) 2022-05-06
KR102444652B1 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2017069525A1 (en) Method for molding aluminum and aluminum alloy powder
Chokshi et al. Creep deformation of an alumina matrix composite reinforced with silicon carbide whiskers
EP0798280B1 (en) Ceramic matrix composite and method of manufacturing the same
KR0134958B1 (en) Method for preparing a self support having controlled pores and graded properties
Lai et al. Superior high-temperature resistance of aluminium nitride particle-reinforced aluminium compared to silicon carbide or alumina particle-reinforced aluminium
WO2016010226A1 (en) Cermet and method for preparing same
EP0531378A1 (en) Reaction-bonded mullite-containing ceramic, its formation and use.
WO2020213753A1 (en) Method for manufacturing aluminum-based clad heat sink, and aluminum-based clad heat sink manufactured thereby
WO2012128506A9 (en) Method for producing aluminum matrix composites, and aluminum matrix composites produced by the method
CN112939603A (en) Method for sintering yttrium oxide ceramic crucible at low temperature
CN116287911A (en) Double-scale ceramic particle reinforced aluminum matrix composite material and preparation method thereof
WO2022092361A1 (en) High-volume aluminum composite and method of manufacturing same
RU2712999C1 (en) Method of producing composite material with ceramic matrix
WO2014038802A1 (en) Method for preparing aluminum matrix composite using no pressure infiltration
FAN et al. Interface structure and properties of spray-forming (SiCp+ β-LiAlSiO4)/6092Al matrix composites
WO2020196982A1 (en) Method for manufacturing aluminum-based clad frame member, and aluminum-based clad frame member manufactured using same
JPH01188454A (en) High strength composite ceramic sintered body
Chiou et al. Characterization of metal-matrix composites fabricated by vacuum infiltration of a liquid metal under an inert gas pressure
KR101635792B1 (en) The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
Fang et al. Microstructures, mechanical and oxidation behaviors of C/C composites modified by NiAl alloy
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
JP6807013B2 (en) Manufacturing method of aluminum alloy-ceramic composite material
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
WO2020213754A1 (en) Method for preparing plastic working billets for composite material manufacture, and billets prepared thereby
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959978

Country of ref document: EP

Kind code of ref document: A1