WO2022092012A1 - Method for simultaneously detecting plurality of target nucleic acids - Google Patents

Method for simultaneously detecting plurality of target nucleic acids Download PDF

Info

Publication number
WO2022092012A1
WO2022092012A1 PCT/JP2021/039267 JP2021039267W WO2022092012A1 WO 2022092012 A1 WO2022092012 A1 WO 2022092012A1 JP 2021039267 W JP2021039267 W JP 2021039267W WO 2022092012 A1 WO2022092012 A1 WO 2022092012A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
nucleic acid
probe
target nucleic
base
Prior art date
Application number
PCT/JP2021/039267
Other languages
French (fr)
Japanese (ja)
Inventor
真史 道渕
佳子 上倉
広道 鈴木
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022559114A priority Critical patent/JPWO2022092012A1/ja
Priority to CN202180074034.3A priority patent/CN116391039A/en
Publication of WO2022092012A1 publication Critical patent/WO2022092012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Definitions

  • the present invention relates to a method for simultaneously detecting a plurality of target nucleic acids contained in a sample by a simple method, a reagent composition used thereto, and the like.
  • chlamydia infection and gonococcal infection which are sexually transmitted diseases, have very similar symptoms, and their differentiation is clinically important. Therefore, a method for simultaneously differentiating by various test methods including the PCR method has been developed.
  • Examples of situations where it is necessary to measure multiple target genes at the same time in a genetic test such as the PCR method include not only chlamydia and gonorrhea, which are sexually transmitted diseases as described above, but also influenza A and B. Be done. In the tests for infectious diseases with very similar clinical symptoms, it is required to be able to distinguish them at the same time by genetic tests from the same sample.
  • Patent Document 1 a method of performing measurements separately using different reaction solutions
  • Patent Document 2 a method of performing measurements separately using labeled substances having different wavelengths for each detection.
  • Patent Document 2 A method for identification (Patent Document 2) and the like are widely used.
  • Patent Document 3 a method of simultaneously detecting a plurality of nucleic acids using a single fluorescent label in one reaction vessel by combining the annealing temperature condition setting of the probe and the temperature change profile.
  • Patent Document 3 a method of simultaneously detecting a plurality of nucleic acids using a single fluorescent label in one reaction vessel by combining the annealing temperature condition setting of the probe and the temperature change profile.
  • the present invention has been made against the background of the above-mentioned conventional problems. That is, the purpose is to develop a new method that can simultaneously identify a plurality of target nucleic acids at a simple and low cost.
  • the present inventor surprisingly, if the detection temperatures of a plurality of target probes are designed to be separated from each other by a certain degree in the melting curve analysis using the probe, they are labeled with a labeled substance that can detect them at the same wavelength. Even in this case, it was found that two peaks indicated by the first-order differential value of the fluorescence / quenching change amount of each target probe were clearly observed, and that multiple target nucleic acids could be identified by detecting the same wavelength.
  • the present invention has been further studied and completed based on this finding. That is, the outline of the present invention is as follows.
  • a method for detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, a first target probe for detecting the first target nucleic acid and a second target for detecting the second target nucleic acid Including the step of adding the probe to the reaction solution, the first target probe and the second target probe satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2. Moreover, the method is characterized in that each is labeled with a labeled substance that can be detected at the same wavelength.
  • [Item 2] One or more primary target primers capable of amplifying a region containing a sequence of the first target nucleic acid to which the first target probe can bind, and a second target to which the second target probe can bind.
  • Item 2. The method according to Item 1, further comprising a step of amplifying the first target nucleic acid and the second target nucleic acid with one or more second target primers capable of amplifying the region containing the nucleic acid sequence.
  • [Item 3] The method according to Item 1 or 2, wherein the labeled substance of the first target probe and the labeled substance of the second target probe are the same labeled substance.
  • [Item 4] The method according to any one of Items 1 to 3, wherein the second target probe contains a mismatched base.
  • [Item 5] The method according to any one of Items 1 to 4, wherein the mismatched base is at least one selected from the group consisting of an adenine base, a cytosine base, a guanine base, a thymine base, and a universal base.
  • the mismatched base is at least one selected from the group consisting of an adenine base, a cytosine base, a guanine base, a thymine base, and a universal base.
  • the universal base is at least one selected from the group consisting of hypoxanthine, nebulaline, and 5-nitroindole.
  • the first target probe does not contain a mismatched base, and the second target probe contains a mismatched base, so that the detection temperature T1 of the first target probe is higher than that of the second target probe in the melting curve analysis.
  • [Item 10] The method according to any one of Items 1 to 10, wherein the labeled substance of the first target probe and the labeled substance of the second target probe are Qprobe (registered trademark) or Eprobe (registered trademark).
  • [Item 11] The method according to any one of Items 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in the Chlamydia endogenous plasmid and the other is the target nucleic acid in the gonococcus.
  • Item 12 The method according to any one of Items 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in the nuc gene and the other is the target nucleic acid in the mecA gene.
  • a nucleic acid detection kit used for detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, the first target probe for detecting the first target nucleic acid and the second target nucleic acid.
  • the first target probe and the second target probe are designed to satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2.
  • One or more primary target primers capable of amplifying a region containing a sequence of the first target nucleic acid to which the first target probe can bind, and a second target to which the second target probe can bind.
  • the kit of Item 14 further comprising one or more secondary targeting primers capable of amplifying the region containing the sequence of nucleic acid.
  • the present invention eliminates the need for designing and setting conditions for complicated probes that require high cost and long time, which were conventionally required when identifying a plurality of target nucleic acids by genetic testing, and is simpler and cheaper. It will be possible to measure multiple target nucleic acids at the same time.
  • Example 1 It is a figure which shows the result of Example 1.
  • FIG. 2 The results of comparing the detection temperatures of those with and without mismatch in the probe, targeting gonococci, are shown. It is a figure which shows the result of Example 2.
  • FIG. 3 The results of simultaneous detection of Chlamydia endogenous plasmid and Neisseria gonorrhoeae as target nucleic acids are shown. It is a figure which shows the result of Example 3.
  • FIG. The results of simultaneous detection of the mecA gene and the nuc gene as target nucleic acids are shown. It is a figure which shows the result of Example 4.
  • FIG. The results of simultaneous detection of influenza A gene and influenza B gene as target nucleic acids are shown.
  • One of the embodiments of the present invention is a method of detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, a first target probe for detecting the first target nucleic acid and a second target nucleic acid. At least the step of adding the probe for the second target to detect is added to the reaction solution, where the probe for the first target and the probe for the second target are used when the detection temperatures in the melting curve analysis are T1 and T2, respectively. It is a method characterized in that T1> T2 is satisfied and each of them is labeled with a labeled substance that can be detected at the same wavelength. According to the method of the present invention, it may be unnecessary to detect a plurality of reaction solutions, a plurality of labeled wavelengths, and design a complicated probe, which are conventionally considered necessary for simultaneous detection of a plurality of target nucleic acids.
  • the method of the present invention has the following features: In melting curve analysis using a probe, multiple target nucleic acids that can be contained in a sample can be detected simultaneously in one reaction solution, and a label for detecting the first target nucleic acid and a label for detecting the second target nucleic acid can be detected. It is characterized in that the labeled substance is a labeled substance detected at the same wavelength.
  • the labeled substance that can be detected at the same wavelength may include all labeled substances that can be measured by the same fluorescence detection channel in the measuring instrument used for melting curve analysis.
  • the difference between the maximum fluorescence wavelengths is 40 nm or less, preferably 30 nm or less, and more preferably 25 nm or less, the labeled substance can be detected at the same wavelength.
  • the difference in the maximum fluorescence wavelength of each labeled substance may be, for example, within 20 nm, within 15 nm, within 10 nm or within 5 nm, and the labeled substances that can be detected at the same wavelength have substantially the maximum fluorescence wavelength of each other. They may be the same and have no difference.
  • Rotor-Gene-Q As a specific example, taking Rotor-Gene-Q (QIAGEN) as an example, Rotor-Gene-Q has six types of fluorescence detection channels, each of which has a different detection wavelength. Then, a plurality of fluorescent dyes can be detected for each detection wavelength. Specifically, it is as shown in Table 1.
  • the labels having the same wavelength include ROX TM , CAL Fluor Red 610, and Cy (registered). Trademarks) 3.5, Texas Red, Alexa Fluor 568 and the like.
  • FAM and SYBR Green I are detected on the same fluorescence channel.
  • the maximum fluorescence wavelength of FAM is 520 nm
  • the maximum fluorescence wavelength of SYBR Green I is 521 nm
  • the maximum fluorescence wavelength of Eva Green is 525 nm, but these fluorescent dyes are not distinguished when fluorescence is detected.
  • FAM, SYBR Green I, and Eva Green can be detected at the same wavelength.
  • a group of labeled substances that can be detected in each channel as shown in Table 1 above can be used as labeled substances that can be detected at the same wavelength, but the present invention is not limited to these, and an equivalent maximum fluorescence wavelength can be used. Any labeled substance having can be used, and those skilled in the art can arbitrarily select a labeled substance that can be detected at the same wavelength depending on the detection wavelength selected.
  • the same labeled material is used as the labeled material that can be detected at the same wavelength. By using the same labeled substance, it may be possible to carry out the present invention efficiently at a lower cost.
  • a plurality of target nucleic acids can be detected with one reaction solution even if the analyzer is not equipped with many types of fluorescence detection channels. It can be possible. Further, since only one fluorescence detection channel is required to detect a plurality of target probes of the present invention, in the case of an analyzer equipped with many types of fluorescence detection channels, another fluorescence detection channel can be used as another target nucleic acid. There is a merit that it can be used more effectively for the detection of.
  • the method of the present invention further has the following features: When the detection temperature of the first target probe in the melting curve analysis is T1 and the detection temperature of the second target probe is T2, the condition of T1> T2 is satisfied. That is, in the method of the present invention, in the melting curve analysis, the detection temperature of the first target probe and the second target probe is set to have a certain difference in the detection temperature, and the detection temperature of the second target probe is set to the second. (1) Design each probe so that it is on the lower temperature side than the detection temperature of the target probe.
  • the first target probe and the second target probe are not particularly limited as long as they satisfy the above conditions, such as the base sequence and the base length constituting them.
  • the detection temperature in the melting curve analysis of the target probe containing the mismatched base is higher than the detection temperature of the other target probe. It can be adjusted to the low temperature side.
  • detection in the melting curve analysis of the first target probe and the second target probe by any method such as making a difference in the lengths of the base sequences of the first target probe and the second target probe. It is possible to provide a difference in temperature.
  • at least one of the first target probe and the second target probe is preferable because it does not require complicated probe design and the condition setting in nucleic acid amplification and melting curve analysis is less likely to be complicated. It is preferably designed to contain mismatched bases.
  • the second target probe contains a mismatched base from the viewpoint of providing a difference in the detection temperature between the two target probes by a simpler method, and the effect of the present invention can be obtained more reliably.
  • the probe for the first target does not contain a mismatched base
  • the probe for the second target contains a mismatched base, so that the probe for the second target is used for the second target rather than the detection temperature T1 of the probe for the first target in the melting curve analysis.
  • the detection temperature T2 of the probe is adjusted to be on the low temperature side.
  • mismatched base means that the base sequence of the target nucleic acid (if the target nucleic acid is double-stranded, the double-stranded dissociated one of the single strands). It means that it contains a base that is not complementary to the base sequence of nucleic acid).
  • the base at the position corresponding to the cytosine base in the target probe is a base other than guanine (for example, an adenine base, a cytosine base, a thymine base, and a universal base). It means that it is.
  • the mismatched base in the first target probe and / or the second target probe is any of an adenine base, a cytosine base, a guanine base, a thymine base, and a universal base (for example, hypoxanthine, nebulaline, 5-nitroindole, etc.).
  • a universal base for example, hypoxanthine, nebulaline, 5-nitroindole, etc.
  • a universal base can be selected at the position of the target probe corresponding to the easily mutated base.
  • the position where the mismatch is inserted is not particularly limited as long as the effect of the present invention is not impaired. From the viewpoint of making it easier to detect the target nucleic acid more reliably, it is preferable that it is not the terminal base of each probe.
  • the position of the mismatched base is preferably within 8 mer from the center of the total length of the base sequence constituting the second target probe to the front and back, and within 5 mer from the center of the total length to the front and back. More preferred.
  • One of the features of the method of the present invention is to allow a certain degree of difference in the detection temperature in the melting curve analysis between the probe for the first target and the probe for the second target. If there is no difference in the detection temperature in the melting curve analysis between the first target probe and the second target probe in this way, both detection peaks overlap, so that the first target nucleic acid and the second target It has been verified that it is not possible to identify which of the nucleic acids was detected or both were detected. From the viewpoint of being able to discriminate between the first target nucleic acid and the second target nucleic acid with higher sensitivity, for example, the difference between the detection temperature T1 of the first target probe and the detection temperature T2 of the second target probe in the melting curve analysis can be determined. It is preferably 5 ° C.
  • the upper limit of the temperature difference between T1 and T2 is not particularly limited, but the temperature range in the melting curve analysis can be suppressed to a certain range, and the time required for nucleic acid detection in the melting curve analysis can be shortened. From this point of view, it is preferably 30 ° C. or lower, and more preferably 25 ° C. or lower.
  • the difference in base length between the probe for the first target and the probe for the second target used in the present invention is not particularly limited as long as the effect of the present invention is obtained.
  • the base length of a probe affects the optimum annealing temperature for a target nucleic acid. Therefore, if the base lengths of a plurality of probes are extremely different, the optimum annealing temperature of each probe will be significantly different. Therefore, if multiple probes with significantly different base lengths are used in one reaction solution, it is necessary to set multiple annealing temperatures, which not only complicates the reaction conditions but also increases the overall reaction time. There's a problem.
  • the first targeting probe and the second targeting probe do not need to set a plurality of annealing temperatures of each probe. It is preferable that there is no extreme difference in base length between the probe and the probe. From this point of view, the difference between the base length of the first target probe and the base length of the second target probe is preferably 8 mer or less, and the base length of the first target probe and the base of the second target probe. The difference in length is more preferably 5 mer or less, and further preferably 3 mer or less. The lower limit of the difference in base length between the first target probe and the second target probe may be 0 mer with no difference in base length, 1 mer or more, or 2 mer or more. May be good.
  • One of the embodiments of the present invention is a method for detecting a plurality of target nucleic acids that can be contained in a sample, and is characterized by carrying out at least the following steps (1) to (3): (1) A sample that can contain a plurality of target nucleic acids (for example, a sample that can contain a chlamydia endogenous plasmid and / or a gonococcus, a sample that can contain influenza A and / or influenza B, etc.) is mixed with a nucleic acid amplification reagent.
  • a sample that can contain a chlamydia endogenous plasmid and / or a gonococcus a sample that can contain influenza A and / or influenza B, etc.
  • Steps to prepare the reaction solution (2) A step of performing a nucleic acid amplification reaction using the reaction solution, and (3) The amplification product obtained in step (2) is hybridized with a probe for a first target and a probe for a second target labeled with a labeled substance that can be detected at the same wavelength, and the reaction solution is fluorescent by melting curve analysis. The process of measuring strength.
  • One of the features of the present invention is to include the steps of adding the first target probe and the second target probe to the reaction solution as described above.
  • the timing of adding the first target probe and the second target probe may be at least added in the reaction solution of the step (3), for example, before the nucleic acid amplification reaction of the step (1) or (2). It may be added to the reaction solution of the above step (2) from the beginning, or it may be added to the reaction solution during the nucleic acid amplification reaction of the step (2), or the step after the nucleic acid amplification reaction of the step (2) is completed. It may be added to the reaction solution in (3). Further, it is not necessary to add the probe for the first target and the probe for the second target at the same time, and they may be added to the reaction solution separately.
  • the first target probe and the second target probe in the reaction solution in the step (1). It is preferable to add it.
  • the nucleic acid probe is added before the nucleic acid amplification reaction as described above, it is preferable to add a fluorescent dye or a phosphate group to the 3'end thereof, for example.
  • a nucleic acid amplification product in a solvent.
  • a solvent examples include conventionally known solvents such as a buffer solution such as Tris-HCl, a solvent containing KCl, MgCl 2 , ⁇ 4 , glycerol and the like, and a PCR reaction solution.
  • the method of the invention for detecting multiple target nucleic acids is one or more primary targets capable of amplifying a region containing a sequence of primary target nucleic acids to which the primary target probe can bind.
  • Primer (or primer set) and one or more secondary target primers (or primer set) capable of amplifying the region containing the sequence of the second target nucleic acid to which the second target probe can bind. It may further include the step of amplifying one target nucleic acid and a second target nucleic acid.
  • the first target primer and the second target primer are two single strands in which the double strands are dissociated when both the first target nucleic acid and the second target nucleic acid are double strands.
  • first target primers that can be amplified so as to sandwich the region of the first target nucleic acid or the second target nucleic acid to which the first target probe or the second target probe can bind and 2 Use a set of one or more second target primers.
  • a method for detecting a plurality of nucleic acids including at least the following steps (i) to (vii) can be exemplified, but the method is not limited thereto.
  • step (Iv) A step of preparing a reaction solution containing a sample containing a plurality of target nucleic acids, the first target primer, the second target primer, the first target probe, and the second target probe.
  • step (V) A step of amplifying the first target nucleic acid and the second target nucleic acid in the sample using the reaction solution.
  • step (Vi) The nucleic acid amplification product obtained by step (v) is hybridized with a first target probe and / or a second target probe designed to form a complex with a part of the nucleic acid amplification product.
  • the process of soaking and forming a complex, as well as (Vii) A step of detecting the complex obtained in the step (vi).
  • the order of the steps (i) to (iii) does not matter.
  • the method for detecting a plurality of target nucleic acids of the present invention is derived from each of the plurality of infectious microorganisms in a test for a plurality of infectious microorganisms having very similar symptoms or conditions and not easy to distinguish. It may be useful for detecting the first target nucleic acid and the second target nucleic acid to be obtained.
  • Examples of multiple target nucleic acids that can be derived from such multiple pathogenic microorganisms include, for example, the target nucleic acid in the Chlamydia endogenous plasmid and the target nucleic acid in gonococcus; the target nucleic acid in influenza A and the target nucleic acid in influenza B; Target nucleic acid in corona virus and target nucleic acid in influenza virus; target nucleic acid in tuberculosis bacterium, target nucleic acid in non-tuberculous acid bacillus, and the like, but are not limited thereto.
  • the present invention makes it possible to discriminate infectious diseases having very similar symptoms or conditions as described above by a simple method, so that the risk of overlooking one of the infections in cases where co-infection occurs is reduced, and the risk of overlooking one of the infections is reduced. It can also lead to the treatment of the disease and the prevention of the spread of infection to the surrounding area.
  • the method for detecting a plurality of target nucleic acids of the present invention is also useful in detecting a plurality of target nucleic acids that may be derived from one microorganism or the like.
  • target nucleic acids include, for example, a target nucleic acid in the nuc gene (nuclease gene) derived from staphylococcus aureus and a target nucleic acid in the mecA gene (methicillin resistance gene); tcdA derived from Clostridioides per.
  • Target nucleic acid in the gene and target nucleic acid in the tcdB gene target nucleic acid in the vanA gene derived from vancomycin-resistant bacillus, target nucleic acid in the vanB gene, and the like, but are not limited thereto.
  • sample The sample that can be used in the present invention is not particularly limited as long as it may contain a plurality of target nucleic acids. For example, not only biological samples, foods, and environmental samples, but also purified nucleic acids and the like can be mentioned.
  • the sample may also be subjected to nucleic acid extraction and some pretreatment. Nucleic acid extraction and pretreatment of samples are commonly performed in the art. Examples of the pretreatment include, but are not limited to, filtration, centrifugation, dilution treatment, heat treatment, acid treatment, alkali treatment, organic solvent treatment, suspension treatment, crushing treatment, and grinding treatment.
  • biological samples include, but are not limited to, animal and plant tissues, body fluids, excrement, cells, bacteria, viruses and the like. Further, blood, blood culture medium, urine, pus, spinal fluid, pleural fluid, pharyngeal swab, nasal swab, sputum, tissue section, skin, vomitus, feces, isolated culture colony, catheter lavage fluid, cervical scraping , Urethral scrapes, male urethral scrapes, urine and the like.
  • Examples of foods include water, alcoholic beverages, soft drinks, processed foods, vegetables, livestock products, marine products, eggs, dairy products, raw meat, raw fish, prepared foods and the like.
  • a food is used as a measurement sample, not only a part or all of the food can be used, but also a food whose surface has been wiped off can be used. Further, a material for wiping off a cooking utensil or a doorknob or a cleaning liquid for cleaning them can also be used as a sample.
  • Examples of environmental samples include water, ice, soil, air and aerosols.
  • Examples of water here include tap water, seawater, and water collected from rivers, waterfalls, lakes, ponds, and the like.
  • a cleaning solution obtained by wiping the wall surface, floor surface, equipment / equipment, toilet bowl, etc. of the facility or cleaning them can also be used as a sample.
  • any sample as described above can be used in the present invention, but the present invention is particularly directed to a sample collected from a subject or subject suspected of being infected or co-infected with any of a plurality of infectious microorganisms. Is valid.
  • the type of sample to be collected it is preferable to select an appropriate sample each time based on the symptoms of the infectious disease of the subject, the condition of the subject, and the like.
  • biological samples eg, animal and plant tissues, body fluids, excreta, pharyngeal swabs, tissue sections, cervical scrapes, urethral scrapes, male urethral scrapes.
  • biological samples eg, animal and plant tissues, body fluids, excreta, pharyngeal swabs, tissue sections, cervical scrapes, urethral scrapes, male urethral scrapes.
  • Urine, vomitus, urine, isolated cultured colony is preferred, excrement, urine, cervical scraped material, urethral scraped material, male urethral scraped urine, fractionated cultured colony is more preferable, and urine.
  • Cervical scrapes, urethral scrapes, male urethral scrapes urine, pharyngeal swabs are more preferred.
  • biological samples such as nasopharyngeal swab, nasal swab, sputum, and saliva.
  • a biological sample such as a blood culture medium. According to the present invention, a plurality of target nucleic acids can be simultaneously detected even when such a sample is used, and a plurality of target nucleic acids can be simultaneously detected at low cost with a single reaction vessel with simple condition setting. It is possible.
  • the method for collecting a sample, the method for preparing a sample, and the like are not particularly limited, and a known method can be used depending on the type and purpose of the sample.
  • nucleic acid amplification reaction any nucleic acid amplification method known in the art can be used for nucleic acid amplification.
  • nucleic acid amplification methods include PCR method, LAMP method, LCR method, TMA method, SDA method, RT-PCR method, RT-LAMP method, NASBA method, TRC method, TMA method and the like. These techniques have already been established in the relevant technical field, and the method can be selected according to the purpose.
  • the nucleic acid amplification method performed in the present invention is preferably, but is not limited to, the PCR method (including the RT-PCR method) from the viewpoint that a higher effect can be more reliably obtained.
  • the PCR reaction is a reaction mainly catalyzed by DNA polymerase, [1] DNA denaturation by heat treatment (dissociation from double-stranded DNA to single-stranded DNA), and [2] primer to template single-stranded DNA.
  • the three steps of annealing and [3] extension of the primer using DNA polymerase are set as one cycle, and the target nucleic acid is amplified by repeating this cycle.
  • the DNA polymerase include Taq, Tth, Bst, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEPVENT and their variants. From the viewpoint of enabling simpler and more specific nucleic acid amplification, it is preferable to use a DNA polymerase belonging to Family B in the present invention.
  • the variant of DNA polymerase is, for example, 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably, with respect to the amino acid sequence of the wild-type DNA polymerase from which it is derived.
  • the amino acid sequence of the wild-type DNA polymerase refers to those having 98% or more, particularly preferably 99% or more of sequence identity, and having an activity of amplifying DNA in the same manner as wild-type DNA polymerase.
  • a method for calculating the identity of the amino acid sequence any means known in the art can be used. For example, it can be calculated using analysis tools available on the market or through telecommunications lines (Internet), for example, the National Center for Biotechnology Information (NCBI) homology algorithm BLAST (Basic local alignment search tool) http.
  • NCBI National Center for Biotechnology Information
  • the mutant that can be used in the present invention has one or several amino acids substituted, deleted, inserted and / or added in the amino acid sequence of the wild-type DNA polymerase from which it is derived. It may be a polypeptide consisting of an amino acid sequence (also referred to as “mutation”) and may have an activity of amplifying DNA in the same manner as wild-type DNA polymerase.
  • 1 or several may be, for example, 1 to 80, preferably 1 to 40, more preferably 1 to 10, and even more preferably 1 to 5, but the number is not particularly limited.
  • the DNA polymerase used in the present invention is preferably, but is not limited to, a DNA polymerase belonging to Family B.
  • the DNA polymerase belonging to the family B is not particularly limited, but is preferably a DNA polymerase derived from archaea.
  • DNA polymerase derived from archaea examples include DNA polymerases isolated from bacteria of the genus Pyrococcus and Thermococcus.
  • the present invention also includes variants thereof that have not lost their DNA polymerase activity from archaea belonging to Family B.
  • Variants of DNA polymerase include, but are not limited to, mutants for the purpose of enhancing polymerase activity, deficiency of exonuclease activity, adjusting substrate specificity, and the like.
  • Examples of the DNA polymerase derived from the genus Pyrococcus include Pyrococcus furiosus and Pyrococcus sp.
  • Examples of the DNA polymerase derived from the genus Thermococcus include Thermococcus kodakaraensis, Thermococcus gogonarius, Thermococcus litoralis, and Thermococcus sp. JDF-3, Thermococcus sp. 9 degrees North-7 (Thermococcus sp.
  • DNA polymerase isolated from Thermococcus siculi and variants thereof that have not lost their DNA polymerase activity, but are not limited thereto.
  • PCR enzymes using these DNA polymerases are commercially available, Pfu (Staragene), KOD (Toyobo), Pfx (Life Technologies), Vent (New England Biolabs), DeepBent (New) , Tgo (Roche), Pwo (Roche) and the like, all of which can be used in the present invention.
  • KOD DNA polymerase having excellent extensibility and thermal stability and a variant thereof are preferable.
  • KOD DNA polymerase is superior in accuracy, amplification efficiency, extensibility, and crude sample resistance to Taq DNA polymerase, which is a DNA polymerase belonging to Family A.
  • Taq DNA polymerase which is a DNA polymerase belonging to Family A.
  • detection using a mismatched detection probe is also possible, and simultaneous detection of a plurality of target nucleic acids is possible. Become.
  • the conditions of the nucleic acid amplification step may be optimized in combination with the nucleic acid primer or the hybridization condition of the nucleic acid probe. If there is, it can be set as appropriate.
  • the nucleic acid amplification reagent used for the nucleic acid amplification reaction can be appropriately selected according to the nucleic acid amplification reaction to be carried out.
  • the nucleic acid amplification reagent contains the above-mentioned characteristics in addition to the first target primer and the second target primer, the first target probe and the second target probe, and the components necessary for the nucleic acid amplification reaction.
  • the components required for the nucleic acid amplification reaction differ depending on the nucleic acid amplification reaction to be carried out, and known components can be used for each.
  • the oligonucleotide probe (first target probe or second target probe) is preferably 0.1 to 1 ⁇ M, more preferably 0.2 to 0.5 ⁇ M.
  • the DNA polymerase is preferably 0.01 to 1 U / uL, more preferably 0.1 to 0.5 U / uL.
  • the oligonucleotide primer (primer for first target or primer for second target) is preferably 0.1 to 10 ⁇ M.
  • Deoxyribonucleoside triphosphates (dNTPs) are preferably 0.02 to 1 mM, more preferably 0.1 to 0.5 mM.
  • the inorganic salt such as magnesium salt is preferably 0.1 to 6 mM, more preferably 1 to 5 mM.
  • the nucleic acid amplification reagent may further contain additives and the like known in the art for the purpose of suppressing non-specific amplification and promoting the reaction.
  • additives for the purpose of suppressing non-specific amplification include anti-DNA polymerase antibodies and phosphoric acid.
  • Additives aimed at promoting the reaction include bovine serum albumin (BSA), protease inhibitors, single strand binding protein (SSB), T4 gene 32 protein, tRNA, sulfur or acetic acid-containing compounds, dimethylsulfoxide (DMSO), glycerol, Ethylene glycol, propylene glycol, trimethylene glycol, formamide, acetamide, betaine, ectin, trehalose, dextran, polyvinylpyrrolidone (PVP), gelatin, tetramethylammonium chloride (TMC), tetramethylammonium hydroxide (TMAH), tetramethylacetate Examples thereof include ammonium (TMA), polyethylene glycol, Triton, Tween 20 and Nonidet P40. In the present invention, one or more of these additives may be used in combination, but the present invention is not limited thereto.
  • BSA bovine serum albumin
  • SSB single strand binding protein
  • T4 gene 32 protein t
  • the thermal cycle conditions are not particularly limited and may be appropriately set by those skilled in the art.
  • the first thermal deformation step is 80 to 100 ° C. for 10 seconds to 15 minutes
  • the repeated thermal deformation step is 80 to 100 ° C. for 0.5 to 300 seconds
  • Annie Link is 40 to 80 ° C.
  • the extension reaction step is preferably carried out at 60 to 85 ° C. for about 1 to 300 seconds, and this repetition is preferably repeated 30 to 70 times.
  • Melting curve analysis is widely used in the analysis of target nucleic acids.
  • the temperature at which half of the double-stranded nucleic acid becomes single-stranded is called the melting temperature. Since the melting temperature basically depends on the content of the base contained in the nucleic acid, the predetermined base sequence has a unique melting temperature depending on the content of the base contained therein.
  • Melting curve analysis is an analysis method that utilizes the property that nucleic acids dissociate from double strands to single strands in response to temperature changes.
  • the labeled probe monitors the intensity of the fluorescence or quenching signal associated with dissociation from the target sequence in real time with respect to temperature changes. Then, when the first derivative value obtained by differentiating the change in the emission or extinguishing signal intensity with the rise in temperature by the value of the temperature change is plotted, the melting temperature is displayed as a peak in the obtained melting curve (temperature-first derivative curve). You will be able to do it.
  • the melting temperature displayed as a peak when the melting curve analysis is performed using a predetermined target probe is referred to as the detection temperature of the target probe.
  • a target nucleic acid for example, SNP analysis
  • PCR is performed to form a double-stranded gene with a mismatched portion.
  • the double-stranded gene having a mismatched portion easily undergoes denaturation (dissociation) of the double-stranded structure, and the detection temperature is lower than that of the wild-type gene in the melting curve analysis. Therefore, when a mutation occurs in the target nucleic acid, a change in the detection temperature can be detected.
  • the use of conventional melting curve analysis as described above has been useful for detecting the presence of mismatched bases on the target nucleic acid side.
  • the present invention is different from the conventional one in that the detection temperature of the melting curve analysis is adjusted by adding the mismatched base to the target probe side, not due to the presence of the mismatched base in the target nucleic acid.
  • the nucleic acid amplification product can be detected by any analysis method as long as it is a melting curve analysis using a probe, for example, Qprobe (registered trademark) (also referred to as Q-probe), Eprobe (registered trademark). (Also referred to as an E probe), a TaqMan probe, a molecular beacon probe, a FRET hybridization probe, a scorpion probe, or a method in which these are arbitrarily combined can be used for detection. From the viewpoint of enabling simultaneous detection of multiple target nucleic acids with higher sensitivity, it is preferable to detect by melting curve analysis using Q probe or E probe, and in particular, detection by melting curve analysis using Q probe. Is more preferable.
  • the Q probe (also referred to as "guanine quenching probe”) is a fluorescent probe (fluorescent quenching probe) developed by KURATA et al. (Patent No. 5354216). This probe is a hybridization probe labeled with a fluorescent quenching dye whose at least one terminal base is quenched by interaction with guanine.
  • the fluorescent extinguishing dye used in the Q probe is not particularly limited, but is fluorescein or a derivative thereof (for example, fluorescein isothiocyanate), rhodamine or a derivative thereof (for example, tetramethylrhodamine, tetramethylrhodamine isothiocyanate, carboxylodamine, x).
  • fluorescein or a derivative thereof for example, fluorescein isothiocyanate
  • rhodamine or a derivative thereof for example, tetramethylrhodamine, tetramethylrhodamine isothiocyanate, carboxylodamine, x.
  • BODIPY or derivatives thereof (eg, BODIPY-FL, BODIPY-FL / C3, BODIPY-FL / C6, BODIPY-5-FAM, BODIPY-TMR, BODIPY-TR, BODIPY-R6G , BODIPY-564, BODIPY-581, BODIPY-591, BODIPY-630, BODIPY-650, BODIPY-665) and the like. Details of the fluorescent quenching dye are described in Japanese Patent No. 581263 and the like, and the present invention can also refer to the technique.
  • a probe having a base sequence in which at least one terminal base is cytosine and cytosine at the terminal base is labeled with the fluorescent quenching dye is preferable.
  • a probe hybridizes to an amplification product it can be quenched by forming a base pair with the guanine base in the amplification product and interacting with it, so it is very easy to measure changes in the fluorescence intensity of the reaction solution. can do.
  • the fluorescence can be quenched if the distance between the bases is short.
  • details are described in Japanese Patent No. 5354216, and the present invention can also refer to the technique. That is, when the probe hybridizes, it can be extinguished if the guanine base in the amplification product is present in the range of, for example, 1 to 3 bases with respect to the cytosine base of the probe (forms a base pair with the cytosine base). Base is 1).
  • the base sequence of the first target probe and / or the second target probe is a part of the amplification product of the first target nucleic acid and / or the second target nucleic acid.
  • the complex is not particularly limited as long as it can be formed.
  • the detection temperature of the second target nucleic acid is adjusted to the low temperature side, and as a result, simultaneous detection of a plurality of target nucleic acids becomes possible.
  • a nucleic acid detection kit used for detecting a plurality of target nucleic acids by melting curve analysis in one reaction solution.
  • the kit of the present invention includes at least a first target probe for detecting a first target nucleic acid and a second target probe for detecting a second target nucleic acid, and the first target probe and the second target probe are included. It is designed to satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2, and is characterized by being labeled with a labeled substance that can be detected at the same wavelength.
  • the kit of the present invention further comprises one or more primary target primers (or primer sets) capable of amplifying the region containing the sequence of the primary target nucleic acid to which the primary target probe can bind, as described above. It is preferred to include one or more second target primers (or primer sets) capable of amplifying the region containing the sequence of the second target nucleic acid to which the second target probe can bind.
  • a kit of the present invention is not particularly limited as long as it is configured so that a plurality of target nucleic acids can be simultaneously detected by the detection temperature in the melting curve analysis.
  • the kit further comprises Taq, Tth, Bst, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEPVENT and variants thereof for efficient and highly specific nucleic acid amplification. It is preferable to further contain a component suitable for a nucleic acid amplification reaction such as at least one DNA polymerase selected from the group.
  • Example 1 Change in detected temperature when mismatch is added to the probe and when it is not added (1-1)
  • Method A melting curve analysis was performed using the following targeting primers and probes (probe without mismatch and probe with mismatch) targeting gonococci. In the table below, the shaded bases are mismatched bases.
  • reaction solution A reaction solution containing the components shown below was prepared using the primers and probes shown in Table 2 using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.). 0.3 ⁇ M SNG F 2.0 ⁇ M SNG R 0.3 ⁇ M SNG QP (probe without mismatch or probe with mismatch) (1-3) Reaction Using GENECUBE (registered trademark), the reaction solution was reacted in the following temperature cycle to perform nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.
  • FIG. 1 shows the results of melting curve analysis.
  • the base lengths of the probe without mismatch and the probe with mismatch used in this test example are the same. Normally, in the case of probes with almost the same base length, the detection temperatures in the melting curve analysis tend to be close to each other, but even if only one mismatched base is added, the detection temperature can be adjusted to the low temperature side. I understand.
  • Example 2 Simultaneous detection of Chlamydia endogenous plasmid and Neisseria gonorrhoeae (2-1) Method
  • a gene in the Chlamydia endogenous plasmid was used as the first target nucleic acid
  • a gene in gonococcus was used as the second target nucleic acid
  • simultaneous detection was attempted in the melting curve analysis at the same wavelength.
  • the primers for the first target and the primer for the second target, the probe for the first target and the probe for the second target used in the PCR method in this example are as follows.
  • the probe for the first target was labeled with BODIPY-FL at the 3'end
  • the probe for the second target was labeled with BODIPY-FL at the end of 5'and phosphorylated at the end of 3'.
  • the SNG QP contains a mismatch. Shaded bases are mismatched bases.
  • reaction solution was prepared by adding the primers and probes shown in Table 3 at the concentrations shown below using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.).
  • GeneCube registered trademark
  • Test Basic manufactured by Toyobo Co., Ltd.
  • 0.5 ⁇ M SCT F 2.5 ⁇ M SCT R 0.3 ⁇ M SCT QP 0.3 ⁇ M SNG F 2.0 ⁇ M SNG R 0.3 ⁇ M SNG QP
  • GENECUBE registered trademark
  • the reaction solution was reacted in the following temperature cycle to perform nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.
  • FIG. 2 shows the results of melting curve analysis.
  • the detection peak was observed at around 62 ° C in the first target probe (SCT QP, chlamydia detection probe) containing no mismatched base, whereas the detection peak was observed at around 62 ° C., whereas the second target containing a mismatched base was used.
  • SCT QP chlamydia detection probe
  • the difference in base length between the probe for the first target and the probe for the second target is about 2 mer, but not only the difference in the detection temperature in the melting curve analysis is widened to about 16 ° C, but also it can be detected at the same wavelength. Even in the labeled product, both genes could be distinguished as clear peaks in the melting curve analysis. From this result, the detection temperature was adjusted to the low temperature side by adding a mismatch to the probe for gonococcal target, and the target nucleic acid in Chlamydia endogenous plasmid and the target nucleic acid in gonococcus were simultaneously detected by melting curve analysis according to the detection temperature, and the same wavelength. It turned out that it is possible to identify by the label.
  • Example 3 Simultaneous detection of mecA gene and nuc gene (3-1) Method
  • the first target nucleic acid was the nuc gene and the second target nucleic acid was the mecA gene.
  • the primers for the first target and the primer for the second target, the probe for the first target and the probe for the second target used in the PCR method in this example are as follows.
  • both the first target probe and the second target probe were labeled with BODIPY-FL at the 3'end.
  • the mecA QP contains a mismatch. Shaded bases are mismatched bases.
  • reaction solution was prepared by adding the primers and probes shown in Table 4 at the concentrations shown below using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.). 4.0 ⁇ M nuc F 0.9 ⁇ M nuc R 1.2 ⁇ M nuc QP 2.0 ⁇ M mecA F 0.4 ⁇ M mecA R 0.2 ⁇ M mecA QP (3-3) Reaction Using GENECUBE (registered trademark), the reaction solution was reacted in the following temperature cycle to perform nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.
  • FIG. 3 shows the results of melting curve analysis. As shown in FIG. 3, the detection peak was observed at around 58 ° C. in the first target probe (nuc QP, nuc gene detection probe) containing no mismatched base, whereas the second target containing the mismatched base was observed. A detection peak was observed at around 45 ° C. for the probe (mecA QP, mecA gene detection probe).
  • the difference in the detection temperature in the melting curve analysis is widened to about 13 ° C, and even labeled substances that can be detected at the same wavelength can be detected in the melting curve analysis. Both target genes could be clearly distinguished. From this result, the detection temperature is adjusted to the low temperature side by adding a mismatch to the probe for targeting the mecA gene, and the nuc gene and the mecA gene are simultaneously detected by melting curve analysis according to the detection temperature and identified by the labeled substance having the same wavelength. Turned out to be possible.
  • Example 4 Simultaneous detection of influenza A gene and influenza B gene (4-1) Method
  • the first target nucleic acid was an influenza A gene
  • the second target nucleic acid was an influenza B gene.
  • the primers for the first target and the primer for the second target, the probe for the first target and the probe for the second target used in the PCR method in this example are as follows.
  • the probe for the first target was labeled with BODIPY-FL at the 3'end
  • the probe for the second target was labeled with BODIPY-FL at the end of 5'and phosphorylated at the end of 3'.
  • the FluB QP contains a mismatch. Shaded bases are mismatched bases.
  • reaction solution was prepared by adding the primers and probes shown in Table 5 at the concentrations shown below using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.) and RiverTra Ace (registered trademark).
  • GeneCube registered trademark
  • Test Basic manufactured by Toyobo Co., Ltd.
  • RiverTra Ace registered trademark
  • 0.5 ⁇ M FluB F 3.0 ⁇ M FluB R 0.3 ⁇ M FluB QP (4-3) Reaction
  • GENECUBE registered trademark
  • the reaction solution was reacted in the following temperature cycle to perform reverse transcription and nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.
  • FIG. 4 shows the results of melting curve analysis. As shown in FIG. 4, the detection peak was observed at around 60 ° C. in the first target probe (FluA QP, influenza A gene detection probe) containing no mismatched base, whereas the number containing the mismatched base was observed. In the two target probes (FluB QP, influenza B gene detection probe), a detection peak was observed at around 46 ° C.
  • FluA QP influenza A gene detection probe
  • the difference in base length between the probe for the first target and the probe for the second target is about 2 mer, but the difference in the detection temperature in the melting curve analysis is widened to about 14 ° C, and even labeled substances that can be detected at the same wavelength are melted. Both target genes could be clearly distinguished in the curve analysis. From this result, the detection temperature is adjusted to the low temperature side by adding a mismatch to the probe for influenza B gene target, and it is possible to simultaneously detect and distinguish the influenza A gene and the influenza B gene according to the detection temperature. I understand.

Abstract

The present invention addresses the problem of providing a simple, low-cost method capable of simultaneously differentiating a plurality of target nucleic acids. The present invention provides a method for detecting a plurality of target nucleic acids by melting curve analysis in a one reaction solution, the method being characterized by including a process for adding, to the reaction solution, a first target probe for detecting a first target nucleic acid and a second target probe for detecting a second target nucleic acid, wherein the first target probe and the second target probe satisfy T1>T2 when the detection temperatures in the melting curve analysis are T1 and T2, respectively, and each of the target probes is labeled with a label that can be detected at the same wavelength.

Description

複数の標的核酸の同時検出方法Simultaneous detection method for multiple target nucleic acids

 本発明は、試料中に含まれる複数の標的核酸を簡便な手法で同時に検出する方法及びそれに用いる試薬組成物等に関する。

The present invention relates to a method for simultaneously detecting a plurality of target nucleic acids contained in a sample by a simple method, a reagent composition used thereto, and the like.

 様々な感染症の中には、臨床症状が酷似しており、その鑑別が容易ではないものも多い。例えば、性感染症のクラミジア感染症と淋菌感染症等は症状が酷似しており、その鑑別が臨床上重要となっている。そこで、PCR法をはじめとする様々な検査法で同時に鑑別する方法が開発されてきた。

Many of the various infectious diseases have very similar clinical symptoms and are not easy to distinguish. For example, chlamydia infection and gonococcal infection, which are sexually transmitted diseases, have very similar symptoms, and their differentiation is clinically important. Therefore, a method for simultaneously differentiating by various test methods including the PCR method has been developed.

 PCR法などの遺伝子検査において、複数の標的遺伝子を同時に測定することが必要な場面としては、例えば、上記のような性感染症のクラミジアと淋菌だけでなく、インフルエンザA型とB型などが挙げられる。このような臨床症状が酷似している感染症の検査では、同一検体からの遺伝子検査によって同時に鑑別できることが求められている。

Examples of situations where it is necessary to measure multiple target genes at the same time in a genetic test such as the PCR method include not only chlamydia and gonorrhea, which are sexually transmitted diseases as described above, but also influenza A and B. Be done. In the tests for infectious diseases with very similar clinical symptoms, it is required to be able to distinguish them at the same time by genetic tests from the same sample.

 その理由の一つとして、上記のような複数の感染症は症状が酷似しているために、共感染が発生した場合に一方の感染の見落としも生じさせる恐れがある。この場合、治療が遅れるだけでなく、周囲への感染が広がることも懸念される。このようなときに症状が酷似する病原性微生物を同時に鑑別することが可能になると早期治療ができるだけでなく、周囲への感染を防ぐことにも繋がる。

One of the reasons is that the symptoms of multiple infectious diseases as described above are very similar, and therefore, when co-infection occurs, one of the infections may be overlooked. In this case, not only the treatment is delayed, but also there is a concern that the infection spreads to the surroundings. In such a case, if it becomes possible to simultaneously distinguish pathogenic microorganisms having similar symptoms, not only early treatment can be performed, but also infection to the surroundings can be prevented.

 これまでに、複数の標的核酸を同時に検出する方法として、別々の反応液を用いて別々に測定を実施する方法(特許文献1)、若しくは、それぞれの検出に異なる波長の標識物を用いることで識別をする方法(特許文献2)等が広く行われている。

So far, as a method for simultaneously detecting a plurality of target nucleic acids, a method of performing measurements separately using different reaction solutions (Patent Document 1), or by using labeled substances having different wavelengths for each detection. A method for identification (Patent Document 2) and the like are widely used.

 しかしながら、特許文献1のように別々の反応液を用いて別々に測定をする場合には、分析用試薬の調製の準備の時間や試薬のコストが倍になってしまうなどの課題がある。

However, when the measurement is performed separately using different reaction solutions as in Patent Document 1, there is a problem that the time for preparing the preparation of the analytical reagent and the cost of the reagent are doubled.

 また、特許文献2のようにそれぞれの検出に異なる波長の標識物を用いて測定をする場合には、多種類の蛍光検出チャンネルを備えた分析装置の選定や検出する波長の設定などで時間とコストがかかる。

Further, in the case of measuring using a labeled substance having a different wavelength for each detection as in Patent Document 2, it takes time to select an analyzer equipped with various types of fluorescence detection channels and set the wavelength to be detected. costly.

 さらに、プローブのアニーリング温度条件設定と温度変化プロファイルを組み合わることで1つの反応容器で単一蛍光標識を用いて複数核酸を同時に検出する方法も知られている(特許文献3)。しかしながら、この方法では、プローブの塩基長をプローブ毎に大きく変える必要があるなど、プローブの設計や条件設定などが複雑化し、コストがかかってしまうという課題があった。

Further, there is also known a method of simultaneously detecting a plurality of nucleic acids using a single fluorescent label in one reaction vessel by combining the annealing temperature condition setting of the probe and the temperature change profile (Patent Document 3). However, this method has a problem that the design of the probe and the setting of conditions are complicated and costly because it is necessary to greatly change the base length of the probe for each probe.

特開2002-136300号公報Japanese Unexamined Patent Publication No. 2002-136300 特開2004-203号公報Japanese Unexamined Patent Publication No. 2004-203 特開2017-521758号公報Japanese Unexamined Patent Publication No. 2017-521758

 本発明は、上記従来の課題を背景になされたものである。すなわち、簡便でより低コストに複数の標的核酸を同時に識別できる新たな手法を開発することを目的とする。

The present invention has been made against the background of the above-mentioned conventional problems. That is, the purpose is to develop a new method that can simultaneously identify a plurality of target nucleic acids at a simple and low cost.

 本発明者は鋭意研究の結果、意外にも、プローブを用いる融解曲線分析において複数の標的用プローブの検出温度が互いに一定程度離れるように設計すれば、それらを同一波長で検出できる標識物で標識した場合でも、それぞれの標的用プローブの蛍光/消光変化量の一次微分値で示される2つのピークが明確に認められ、同じ波長の検出で複数の標的核酸を識別できることを見出した。標的用プローブの検出温度が互いに一定程度離れるように設計するためには、例えば、複数の標的用プローブのいずれか一方にミスマッチ塩基を導入することによって可能になり得る。本発明は、この知見に基づいて、更に検討を重ねて完成したものである。

即ち、本発明の概要は以下の通りである。

As a result of diligent research, the present inventor surprisingly, if the detection temperatures of a plurality of target probes are designed to be separated from each other by a certain degree in the melting curve analysis using the probe, they are labeled with a labeled substance that can detect them at the same wavelength. Even in this case, it was found that two peaks indicated by the first-order differential value of the fluorescence / quenching change amount of each target probe were clearly observed, and that multiple target nucleic acids could be identified by detecting the same wavelength. In order to design the detection temperatures of the target probes to be separated from each other by a certain degree, it may be possible, for example, by introducing a mismatched base into one of a plurality of target probes. The present invention has been further studied and completed based on this finding.

That is, the outline of the present invention is as follows.

 [項1] 一つの反応液で複数の標的核酸を融解曲線分析で検出する方法であって、第一の標的核酸を検出する第一標的用プローブ及び第二の標的核酸を検出する第二標的用プローブを反応液中に添加する工程を含み、ここで第一標的用プローブ及び第二標的用プローブは、融解曲線分析におけるそれぞれの検出温度をT1及びT2とした場合にT1>T2を満たし、且つ、同一波長で検出できる標識物でそれぞれ標識されていることを特徴とする、方法。

 [項2] 第一標的用プローブが結合可能な第一標的核酸の配列を含む領域を増幅可能な1つ以上の第一標的用プライマー、及び、第二標的用プローブが結合可能な第二標的核酸の配列を含む領域を増幅可能な1つ以上の第二標的用プライマーにより、第一標的核酸及び第二標的核酸を増幅する工程を更に含む、項1に記載の方法。

 [項3] 第一標的用プローブの標識物及び第二標的用プローブの標識物が同一の標識物である、項1又は2に記載の方法。

 [項4] 第二標的用プローブがミスマッチ塩基を含む、項1~3のいずれかに記載の方法。

 [項5] ミスマッチ塩基が、アデニン塩基、シトシン塩基、グアニン塩基、チミン塩基、及びユニバーサル塩基からなる群より選択される少なくとも1種である、項1~4のいずれかに記載の方法。

 [項6] ユニバーサル塩基が、ヒポキサンチン、ネブラリン、及び5-ニトロインドールからなる群より選択される少なくとも1種である、項1~5のいずれかに記載の方法。

 [項7] 第一標的用プローブはミスマッチ塩基を含まず、第二標的用プローブがミスマッチ塩基を含むことにより、融解曲線分析において第一標的用プローブの検出温度T1よりも第二標的用プローブの検出温度T2が低温側になるように調整される、項1~6のいずれかに記載の方法。

 [項8] 融解曲線分析において、第一標的用プローブの検出温度T1と、第二標的用プローブの検出温度T2との温度差が5~30℃である、項1~7のいずれかに記載の方法。

 [項9] 第一標的用プローブの核酸塩基の長さと第二標的用プローブの核酸塩基の長さとの差が8mer以下である、項1~8のいずれかに記載の方法。

 [項10] 第一標的用プローブの標識物及び第二標的用プローブの標識物が、Qprobe(登録商標)又はEprobe(登録商標)である、項1~10のいずれかに記載の方法。

 [項11] 第一標的核酸及び第二標的核酸のいずれか一方がクラミジア内在性プラスミドにおける標的核酸であり、他方が淋菌における標的核酸である、項1~10のいずれかに記載の方法。

 [項12] 第一標的核酸及び第二標的核酸のいずれか一方がnuc遺伝子における標的核酸であり、他方がmecA遺伝子における標的核酸である、項1~10のいずれかに記載の方法。

 [項13] 第一標的核酸及び第二標的核酸のいずれか一方がA型インフルエンザにおける標的核酸であり、他方がB型インフルエンザにおける標的核酸である、項1~10のいずれかに記載の方法。

 [項14] 一つの反応液で複数の標的核酸を融解曲線分析で検出するために用いられる核酸検出キットであって、第一の標的核酸を検出する第一標的用プローブ及び第二の標的核酸を検出する第二標的用プローブを少なくとも含み、第一標的用プローブ及び第二標的用プローブは、融解曲線分析におけるそれぞれの検出温度をT1及びT2とした場合にT1>T2を満たすように設計されており、且つ同一波長で検出できる標識物でそれぞれ標識されていることを特徴とする、キット。

 [項15] 第一標的用プローブが結合可能な第一標的核酸の配列を含む領域を増幅可能な1つ以上の第一標的用プライマー、及び、第二標的用プローブが結合可能な第二標的核酸の配列を含む領域を増幅可能な1つ以上の第二標的用プライマーを更に含む、項14に記載のキット。

[Item 1] A method for detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, a first target probe for detecting the first target nucleic acid and a second target for detecting the second target nucleic acid. Including the step of adding the probe to the reaction solution, the first target probe and the second target probe satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2. Moreover, the method is characterized in that each is labeled with a labeled substance that can be detected at the same wavelength.

[Item 2] One or more primary target primers capable of amplifying a region containing a sequence of the first target nucleic acid to which the first target probe can bind, and a second target to which the second target probe can bind. Item 2. The method according to Item 1, further comprising a step of amplifying the first target nucleic acid and the second target nucleic acid with one or more second target primers capable of amplifying the region containing the nucleic acid sequence.

[Item 3] The method according to Item 1 or 2, wherein the labeled substance of the first target probe and the labeled substance of the second target probe are the same labeled substance.

[Item 4] The method according to any one of Items 1 to 3, wherein the second target probe contains a mismatched base.

[Item 5] The method according to any one of Items 1 to 4, wherein the mismatched base is at least one selected from the group consisting of an adenine base, a cytosine base, a guanine base, a thymine base, and a universal base.

[Item 6] The method according to any one of Items 1 to 5, wherein the universal base is at least one selected from the group consisting of hypoxanthine, nebulaline, and 5-nitroindole.

[Item 7] The first target probe does not contain a mismatched base, and the second target probe contains a mismatched base, so that the detection temperature T1 of the first target probe is higher than that of the second target probe in the melting curve analysis. Item 6. The method according to any one of Items 1 to 6, wherein the detection temperature T2 is adjusted to be on the low temperature side.

[Item 8] Item 2. The item 1 to 7, wherein the temperature difference between the detection temperature T1 of the first target probe and the detection temperature T2 of the second target probe in the melting curve analysis is 5 to 30 ° C. the method of.

[Item 9] The method according to any one of Items 1 to 8, wherein the difference between the length of the nucleobase of the first target probe and the length of the nucleobase of the second target probe is 8 mer or less.

[Item 10] The method according to any one of Items 1 to 10, wherein the labeled substance of the first target probe and the labeled substance of the second target probe are Qprobe (registered trademark) or Eprobe (registered trademark).

[Item 11] The method according to any one of Items 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in the Chlamydia endogenous plasmid and the other is the target nucleic acid in the gonococcus.

Item 12. The method according to any one of Items 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in the nuc gene and the other is the target nucleic acid in the mecA gene.

[Item 13] The method according to any one of Items 1 to 10, wherein either one of the first target nucleic acid and the second target nucleic acid is the target nucleic acid in influenza A and the other is the target nucleic acid in influenza B.

[Item 14] A nucleic acid detection kit used for detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, the first target probe for detecting the first target nucleic acid and the second target nucleic acid. The first target probe and the second target probe are designed to satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2. A kit characterized by being labeled with a labeled substance that can be detected at the same wavelength.

[Item 15] One or more primary target primers capable of amplifying a region containing a sequence of the first target nucleic acid to which the first target probe can bind, and a second target to which the second target probe can bind. Item 12. The kit of Item 14, further comprising one or more secondary targeting primers capable of amplifying the region containing the sequence of nucleic acid.

 本発明により、複数の標的核酸を遺伝子検査で識別する際に従来必要とされていた、高コストや長時間を要する複雑なプローブの設計や条件設定などが不必要となり、簡便でより低コストに複数の標的核酸を同時に測定できるようになる。

The present invention eliminates the need for designing and setting conditions for complicated probes that require high cost and long time, which were conventionally required when identifying a plurality of target nucleic acids by genetic testing, and is simpler and cheaper. It will be possible to measure multiple target nucleic acids at the same time.

実施例1の結果を示す図である。淋菌を標的とし、プローブにミスマッチが有るものと無いものの検出温度を比較した結果を示す。It is a figure which shows the result of Example 1. FIG. The results of comparing the detection temperatures of those with and without mismatch in the probe, targeting gonococci, are shown. 実施例2の結果を示す図である。クラミジア内在性プラスミド及び淋菌を標的核酸として同時に検出した結果を示す。It is a figure which shows the result of Example 2. FIG. The results of simultaneous detection of Chlamydia endogenous plasmid and Neisseria gonorrhoeae as target nucleic acids are shown. 実施例3の結果を示す図である。mecA遺伝子及びnuc遺伝子を標的核酸として同時に検出した結果を示すIt is a figure which shows the result of Example 3. FIG. The results of simultaneous detection of the mecA gene and the nuc gene as target nucleic acids are shown. 実施例4の結果を示す図である。インフルエンザA型遺伝子及びインフルエンザB型遺伝子を標的核酸として同時に検出した結果を示す。It is a figure which shows the result of Example 4. FIG. The results of simultaneous detection of influenza A gene and influenza B gene as target nucleic acids are shown.

 以下、本発明の実施形態を示しつつ、本発明についてさらに詳説するが、本発明はこれらに限定されない。

Hereinafter, the present invention will be described in more detail while showing embodiments of the present invention, but the present invention is not limited thereto.

 [複数の標的核酸の同時検出方法]

 本発明の実施態様の一つは、一つの反応液で複数の標的核酸を融解曲線分析で検出する方法であって、第一の標的核酸を検出する第一標的用プローブ及び第二の標的核酸を検出する第二標的用プローブを反応液中に添加する工程を少なくとも含み、ここで第一標的用プローブ及び第二標的用プローブは、融解曲線分析におけるそれぞれの検出温度をT1及びT2とした場合にT1>T2を満たし、且つ、同一波長で検出できる標識物でそれぞれ標識されていることを特徴とする方法である。

 本発明の方法によれば、複数の標的核酸の同時検出において従来必要と考えられていた複数の反応液、複数の標識波長の検出、複雑なプローブの設計などが不要になり得る。

[Simultaneous detection method for multiple target nucleic acids]

One of the embodiments of the present invention is a method of detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, a first target probe for detecting the first target nucleic acid and a second target nucleic acid. At least the step of adding the probe for the second target to detect is added to the reaction solution, where the probe for the first target and the probe for the second target are used when the detection temperatures in the melting curve analysis are T1 and T2, respectively. It is a method characterized in that T1> T2 is satisfied and each of them is labeled with a labeled substance that can be detected at the same wavelength.

According to the method of the present invention, it may be unnecessary to detect a plurality of reaction solutions, a plurality of labeled wavelengths, and design a complicated probe, which are conventionally considered necessary for simultaneous detection of a plurality of target nucleic acids.

 本発明の前記方法は、以下の特徴を有する:

 プローブを用いる融解曲線解析において、1つの反応液中で試料中に含まれ得る複数の標的核酸を同時に検出することができ、第一標的核酸検出の為の標識物と第二標的核酸検出の為の標識物とが同一波長で検出される標識物であることを特徴とする。

The method of the present invention has the following features:

In melting curve analysis using a probe, multiple target nucleic acids that can be contained in a sample can be detected simultaneously in one reaction solution, and a label for detecting the first target nucleic acid and a label for detecting the second target nucleic acid can be detected. It is characterized in that the labeled substance is a labeled substance detected at the same wavelength.

 本明細書において、同一波長で検出できる標識物とは、融解曲線分析に用いられる測定機器において同一の蛍光検出チャンネルで測定できるすべての標識物を含み得る。例えば、互いの最大蛍光波長の差が40nm以内、好ましくは30nm以内、より好ましくは25nm以内である場合に、同一波長で検出できる標識物という。また、各標識物の最大蛍光波長の差は、例えば、20nm以内、15nm以内、10nm以内、5nm以内であってもよいし、同一波長で検出できる標識物は、互いの最大蛍光波長が実質的に同一で差が無いものであってもよい。具体例として、Rotor-Gene-Q(QIAGEN社)を例にとると、Rotor-Gene-Qは6種類の蛍光検出用チャンネルを有しており、それぞれ異なる検出波長を備えている。そして、検出波長ごとに複数の蛍光色素が検出可能である。具体的には表1の通りである。

As used herein, the labeled substance that can be detected at the same wavelength may include all labeled substances that can be measured by the same fluorescence detection channel in the measuring instrument used for melting curve analysis. For example, when the difference between the maximum fluorescence wavelengths is 40 nm or less, preferably 30 nm or less, and more preferably 25 nm or less, the labeled substance can be detected at the same wavelength. Further, the difference in the maximum fluorescence wavelength of each labeled substance may be, for example, within 20 nm, within 15 nm, within 10 nm or within 5 nm, and the labeled substances that can be detected at the same wavelength have substantially the maximum fluorescence wavelength of each other. They may be the same and have no difference. As a specific example, taking Rotor-Gene-Q (QIAGEN) as an example, Rotor-Gene-Q has six types of fluorescence detection channels, each of which has a different detection wavelength. Then, a plurality of fluorescent dyes can be detected for each detection wavelength. Specifically, it is as shown in Table 1.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 例えば、Rotor-Gene-Q(ロータージーンQ MDx 5plex HRM)等を使用し、検出波長として610±5nmを選択する場合の同一波長の標識物としては、ROXTM、CAL Fluor Red 610、Cy(登録商標)3.5、Texas Red、Alexa Fluor 568等が挙げられる。また例えばFAMとSYBR Green Iは同じ蛍光チャンネルで検出される。FAMの最大蛍光波長は520nm、SYBR Green Iの最大蛍光波長は521nm、Eva Greenの最大蛍光波長は525nmであるが、蛍光が検出されるときにこれらの蛍光色素は区別されない。この場合にFAM、SYBR Green I、Eva Greenは同一波長で検出できることになる。本発明では、上記表1に示されるような各チャンネルで検出可能な標識物の群を同一波長で検出できる標識物として使用することができるが、これらに限定されず、同等の最大蛍光波長を有する任意の標識物を用いることが可能であり、選択する検出波長によって当業者は同一波長で検出できる標識物を任意に選択することができる。特定の好ましい実施形態では、同一波長で検出できる標識物として同一の標識物を用いる。同一の標識物を用いることで、より低コストに効率よく本発明を実施することが可能となり得る。本発明のように同一波長で検出できる標識物を複数の標的用プローブに使うことで、多種類の蛍光検出チャンネルを備えた分析装置でなくても、一つの反応液で複数の標的核酸を検出できるようになり得る。また、本発明の複数の標的用プローブの検出に要する蛍光検出チャンネルが1つで済むので、多種類の蛍光検出チャンネルを備えた分析装置の場合には、他の蛍光検出チャンネルを他の標的核酸の検出のために更に有効活用できるというメリットがある。

For example, when Rotor-Gene-Q (Rotor Gene-Q MDx 5plex HRM) or the like is used and 610 ± 5 nm is selected as the detection wavelength, the labels having the same wavelength include ROX TM , CAL Fluor Red 610, and Cy (registered). Trademarks) 3.5, Texas Red, Alexa Fluor 568 and the like. Also, for example, FAM and SYBR Green I are detected on the same fluorescence channel. The maximum fluorescence wavelength of FAM is 520 nm, the maximum fluorescence wavelength of SYBR Green I is 521 nm, and the maximum fluorescence wavelength of Eva Green is 525 nm, but these fluorescent dyes are not distinguished when fluorescence is detected. In this case, FAM, SYBR Green I, and Eva Green can be detected at the same wavelength. In the present invention, a group of labeled substances that can be detected in each channel as shown in Table 1 above can be used as labeled substances that can be detected at the same wavelength, but the present invention is not limited to these, and an equivalent maximum fluorescence wavelength can be used. Any labeled substance having can be used, and those skilled in the art can arbitrarily select a labeled substance that can be detected at the same wavelength depending on the detection wavelength selected. In certain preferred embodiments, the same labeled material is used as the labeled material that can be detected at the same wavelength. By using the same labeled substance, it may be possible to carry out the present invention efficiently at a lower cost. By using a labeled substance that can be detected at the same wavelength as in the present invention for a plurality of target probes, a plurality of target nucleic acids can be detected with one reaction solution even if the analyzer is not equipped with many types of fluorescence detection channels. It can be possible. Further, since only one fluorescence detection channel is required to detect a plurality of target probes of the present invention, in the case of an analyzer equipped with many types of fluorescence detection channels, another fluorescence detection channel can be used as another target nucleic acid. There is a merit that it can be used more effectively for the detection of.

 本発明の前記方法は、更に以下の特徴を有する:

 融解曲線分析における第一標的用プローブの検出温度をT1とし、第二標的用プローブの検出温度をT2とした場合に、T1>T2の条件を満たす。 つまり、本発明の方法では、融解曲線分析において、第一標的用プローブと第二標的用プローブとの間の検出温度に一定程度の差が生じるようにし、第二標的用プローブの検出温度を第一標的用プローブの検出温度よりも低温側になるように各プローブを設計する。

The method of the present invention further has the following features:

When the detection temperature of the first target probe in the melting curve analysis is T1 and the detection temperature of the second target probe is T2, the condition of T1> T2 is satisfied. That is, in the method of the present invention, in the melting curve analysis, the detection temperature of the first target probe and the second target probe is set to have a certain difference in the detection temperature, and the detection temperature of the second target probe is set to the second. (1) Design each probe so that it is on the lower temperature side than the detection temperature of the target probe.

 第一標的用プローブ及び第二標的用プローブは、前記のような条件を満たすものであれば、それらを構成する塩基配列や塩基長等は特に制限されない。例えば、第一標的用プローブ若しくは第二標的用プローブの少なくとも一方がミスマッチ塩基を含むことで、ミスマッチ塩基を含む標的用プローブの融解曲線分析における検出温度がもう一方の標的用プローブの検出温度よりも低温側に調整され得る。他にも、第一標的用プローブと第二標的用プローブの塩基配列の長さに差を設けることなどの任意の手法で、第一標的用プローブと第二標的用プローブの融解曲線分析における検出温度に差を設けることが可能である。好ましくは、複雑なプローブ設計を必要とせず、核酸増幅及び融解曲線分析における条件設定も複雑になる恐れが低いという観点から、好ましくは、第一標的用プローブ又は第二標的用プローブの少なくとも一方がミスマッチ塩基を含むように設計するのが好ましい。

The first target probe and the second target probe are not particularly limited as long as they satisfy the above conditions, such as the base sequence and the base length constituting them. For example, when at least one of the first target probe and the second target probe contains a mismatched base, the detection temperature in the melting curve analysis of the target probe containing the mismatched base is higher than the detection temperature of the other target probe. It can be adjusted to the low temperature side. In addition, detection in the melting curve analysis of the first target probe and the second target probe by any method such as making a difference in the lengths of the base sequences of the first target probe and the second target probe. It is possible to provide a difference in temperature. Preferably, at least one of the first target probe and the second target probe is preferable because it does not require complicated probe design and the condition setting in nucleic acid amplification and melting curve analysis is less likely to be complicated. It is preferably designed to contain mismatched bases.

 特定の実施形態では、より簡便な手法で2つの標的用プローブの検出温度に差を設けるという観点から、第二標的用プローブがミスマッチ塩基を含むことが好ましく、より確実に本発明の効果が得られ易いという観点から、第一標的用プローブはミスマッチ塩基を含まず、第二標的用プローブがミスマッチ塩基を含むことにより、融解曲線分析において第一標的用プローブの検出温度T1よりも第二標的用プローブの検出温度T2が低温側になるように調整されることが好ましい。

In a specific embodiment, it is preferable that the second target probe contains a mismatched base from the viewpoint of providing a difference in the detection temperature between the two target probes by a simpler method, and the effect of the present invention can be obtained more reliably. From the viewpoint of easy susceptibility, the probe for the first target does not contain a mismatched base, and the probe for the second target contains a mismatched base, so that the probe for the second target is used for the second target rather than the detection temperature T1 of the probe for the first target in the melting curve analysis. It is preferable that the detection temperature T2 of the probe is adjusted to be on the low temperature side.

 本明細書において、ミスマッチ塩基(又は単に「ミスマッチ」ともいう)を含むとは、標的核酸の塩基配列(標的核酸が二本鎖である場合は、二本鎖が解離したいずれか一本鎖の核酸の塩基配列)と相補的ではない塩基を含むことをいう。例えば、標的核酸の塩基配列にシトシン塩基が存在する場合において、標的用プローブにおける当該シトシン塩基に対応する位置の塩基がグアニン以外の塩基(例えば、アデニン塩基、シトシン塩基、チミン塩基、及びユニバーサル塩基)となっていることをいう。第一標的用プローブ及び/又は第二標的用プローブにおけるミスマッチ塩基は、アデニン塩基、シトシン塩基、グアニン塩基、チミン塩基、ユニバーサル塩基(例えば、ヒポキサンチン、ネブラリン、5-ニトロインドール等)のいずれであってもよく、当業者は相補的でない塩基を適宜選択してプローブを設計することができる。例えば、変異し易い標的核酸を検出する場合には、変異し易い塩基に対応する標的プローブの位置にユニバーサル塩基を選択することができる。

As used herein, the term "mismatched base" (or simply referred to as "mismatch") means that the base sequence of the target nucleic acid (if the target nucleic acid is double-stranded, the double-stranded dissociated one of the single strands). It means that it contains a base that is not complementary to the base sequence of nucleic acid). For example, when a cytosine base is present in the base sequence of a target nucleic acid, the base at the position corresponding to the cytosine base in the target probe is a base other than guanine (for example, an adenine base, a cytosine base, a thymine base, and a universal base). It means that it is. The mismatched base in the first target probe and / or the second target probe is any of an adenine base, a cytosine base, a guanine base, a thymine base, and a universal base (for example, hypoxanthine, nebulaline, 5-nitroindole, etc.). However, those skilled in the art can design the probe by appropriately selecting a non-complementary base. For example, when detecting a easily mutated target nucleic acid, a universal base can be selected at the position of the target probe corresponding to the easily mutated base.

 第一標的用プローブ及び/又は第二標的用プローブがミスマッチ塩基を含む場合、ミスマッチを入れる位置は、本発明の効果を阻害しない限り特に限定されない。より確実に標的核酸を検出し易くなるという観点からは、各プローブの末端塩基ではないことが好ましい。例えば、第二標的用プローブがミスマッチ塩基を含む場合、ミスマッチ塩基の位置は、第二標的用プローブを構成する塩基配列全長の中央から前後に8mer以内が好ましく、全長の中央から前後に5mer以内がより好ましい。

When the first target probe and / or the second target probe contains a mismatched base, the position where the mismatch is inserted is not particularly limited as long as the effect of the present invention is not impaired. From the viewpoint of making it easier to detect the target nucleic acid more reliably, it is preferable that it is not the terminal base of each probe. For example, when the probe for the second target contains a mismatched base, the position of the mismatched base is preferably within 8 mer from the center of the total length of the base sequence constituting the second target probe to the front and back, and within 5 mer from the center of the total length to the front and back. More preferred.

 本発明の方法では、第一標的用プローブと第二標的用プローブとの間で融解曲線分析における検出温度に一定程度の差が生じるようにすることを一つの特徴とする。このように第一標的用プローブと第二標的用プローブとの間で融解曲線分析における検出温度に差を設けない場合、両方の検出ピークが重なってしまうために、第一標的核酸と第二標的核酸のどちらが検出されたのか又は両方検出されたのか識別できないことが検証されている。より高感度に第一標的核酸と第二標的核酸を識別できるという観点から、例えば、融解曲線分析における第一標的用プローブの検出温度T1と第二標的用プローブの検出温度T2との差が、5℃以上であることが好ましく、7℃以上であることがより好ましく、10℃以上であることが更に好ましい。T1とT2の温度の差の上限は、特に制限されないが、融解曲線分析における温度域を一定範囲に抑えることができ、融解曲線分析での核酸検出に要する時間をより短時間にすることができるという観点から、30℃以下であることが好ましく、25℃以下となるように調整されることがより好ましい。

One of the features of the method of the present invention is to allow a certain degree of difference in the detection temperature in the melting curve analysis between the probe for the first target and the probe for the second target. If there is no difference in the detection temperature in the melting curve analysis between the first target probe and the second target probe in this way, both detection peaks overlap, so that the first target nucleic acid and the second target It has been verified that it is not possible to identify which of the nucleic acids was detected or both were detected. From the viewpoint of being able to discriminate between the first target nucleic acid and the second target nucleic acid with higher sensitivity, for example, the difference between the detection temperature T1 of the first target probe and the detection temperature T2 of the second target probe in the melting curve analysis can be determined. It is preferably 5 ° C. or higher, more preferably 7 ° C. or higher, and even more preferably 10 ° C. or higher. The upper limit of the temperature difference between T1 and T2 is not particularly limited, but the temperature range in the melting curve analysis can be suppressed to a certain range, and the time required for nucleic acid detection in the melting curve analysis can be shortened. From this point of view, it is preferably 30 ° C. or lower, and more preferably 25 ° C. or lower.

 本発明に用いられる第一標的用プローブと第二標的用プローブの塩基長の差は、本発明の効果を奏する限り特に限定されない。一般にプローブの塩基長は、標的核酸への最適なアニーリング温度に影響するため、複数のプローブの塩基長が極端に異なると、各プローブの最適なアニーリング温度が大きく異なることになる。従って、一つの反応液で、塩基長が大きく異なる複数のプローブを用いると、複数のアニーリング温度を設定する必要があり、反応条件が複雑化するだけでなく、全体の反応時間が長くなり得るという問題がある。従って、一つの反応液で複数の標的核酸を検出する複数の標的用プローブを用いる本発明においては、各プローブのアニーリング温度を複数設定する必要がないように、第一標的用プローブと第二標的用プローブとの間で塩基長に極端な差が無いことが好ましい。このような観点から、第一標的用プローブの塩基長と第二標的用プローブの塩基長の差が8mer以下であることが好ましく、第一標的用プローブの塩基長と第二標的用プローブの塩基長の差が5mer以下であることがより好ましく3mer以下が更に好ましい。第一標的用プローブと第二標的用プローブの塩基長の差の下限値としては、塩基長に差がない0merであってもよいし、1mer以上であってもよいし、2mer以上であってもよい。

The difference in base length between the probe for the first target and the probe for the second target used in the present invention is not particularly limited as long as the effect of the present invention is obtained. In general, the base length of a probe affects the optimum annealing temperature for a target nucleic acid. Therefore, if the base lengths of a plurality of probes are extremely different, the optimum annealing temperature of each probe will be significantly different. Therefore, if multiple probes with significantly different base lengths are used in one reaction solution, it is necessary to set multiple annealing temperatures, which not only complicates the reaction conditions but also increases the overall reaction time. There's a problem. Therefore, in the present invention using a plurality of targeting probes that detect a plurality of target nucleic acids in one reaction solution, the first targeting probe and the second targeting probe do not need to set a plurality of annealing temperatures of each probe. It is preferable that there is no extreme difference in base length between the probe and the probe. From this point of view, the difference between the base length of the first target probe and the base length of the second target probe is preferably 8 mer or less, and the base length of the first target probe and the base of the second target probe. The difference in length is more preferably 5 mer or less, and further preferably 3 mer or less. The lower limit of the difference in base length between the first target probe and the second target probe may be 0 mer with no difference in base length, 1 mer or more, or 2 mer or more. May be good.

 [複数標的核酸の検出方法]

 本発明の実施態様の一つは、試料中に含まれ得る複数の標的核酸を検出する方法であって、少なくとも以下の工程(1)~(3)を行うことを特徴とする:

(1)複数の標的核酸を含みうる試料(例えばクラミジア内在性プラスミド及び/又は淋菌を含み得る試料、A型インフルエンザ及び/又はB型インフルエンザを含み得る試料等)を核酸増幅用試薬と混合して反応液を調製する工程、

(2)前記反応液を用いて核酸増幅反応を行う工程、及び

(3)工程(2)で得られうる増幅産物に、同一波長で検出できる標識物で標識した第一標的用プローブ及び第二標的用プローブをハイブリダイズさせ、融解曲線分析によって該反応液の蛍光強度を測定する工程。

[Method for detecting multiple target nucleic acids]

One of the embodiments of the present invention is a method for detecting a plurality of target nucleic acids that can be contained in a sample, and is characterized by carrying out at least the following steps (1) to (3):

(1) A sample that can contain a plurality of target nucleic acids (for example, a sample that can contain a chlamydia endogenous plasmid and / or a gonococcus, a sample that can contain influenza A and / or influenza B, etc.) is mixed with a nucleic acid amplification reagent. Steps to prepare the reaction solution,

(2) A step of performing a nucleic acid amplification reaction using the reaction solution, and

(3) The amplification product obtained in step (2) is hybridized with a probe for a first target and a probe for a second target labeled with a labeled substance that can be detected at the same wavelength, and the reaction solution is fluorescent by melting curve analysis. The process of measuring strength.

 本発明においては、前記のような第一標的用プローブ及び第二標的用プローブを反応液中に添加する工程を包含することを一つの特徴とする。第一標的用プローブ及び第二標的用プローブを添加するタイミングは、少なくとも前記工程(3)の反応液において添加されていればよく、例えば、前記工程(1)又は(2)の核酸増幅反応前の反応液に最初から添加していてもよいし、前記工程(2)の核酸増幅反応途中の反応液に添加してもよいし、前記工程(2)の核酸増幅反応を終えた後の工程(3)における反応液に添加してもよい。また、第一標的用プローブと第二標的用プローブを同時に添加する必要はなく、別々に反応液に添加してもよい。増幅反応と検出反応を連続的に行うことができ、より簡便な操作が可能になるという観点からは、好ましくは前記工程(1)における反応液に第一標的用プローブ及び第二標的用プローブを添加することが好ましい。このように核酸増幅反応前に核酸プローブを添加する場合は、例えば、その3’末端に蛍光色素を付加したり、リン酸基を付加したりすることが好ましい。

One of the features of the present invention is to include the steps of adding the first target probe and the second target probe to the reaction solution as described above. The timing of adding the first target probe and the second target probe may be at least added in the reaction solution of the step (3), for example, before the nucleic acid amplification reaction of the step (1) or (2). It may be added to the reaction solution of the above step (2) from the beginning, or it may be added to the reaction solution during the nucleic acid amplification reaction of the step (2), or the step after the nucleic acid amplification reaction of the step (2) is completed. It may be added to the reaction solution in (3). Further, it is not necessary to add the probe for the first target and the probe for the second target at the same time, and they may be added to the reaction solution separately. From the viewpoint that the amplification reaction and the detection reaction can be continuously performed and a simpler operation is possible, it is preferable to use the first target probe and the second target probe in the reaction solution in the step (1). It is preferable to add it. When the nucleic acid probe is added before the nucleic acid amplification reaction as described above, it is preferable to add a fluorescent dye or a phosphate group to the 3'end thereof, for example.

 特定の実施形態では、溶媒中で核酸増幅産物と混合してもよい。このような溶媒としては、特に制限されず、例えば、Tris-HCl等の緩衝液、KCl、MgCl、MgSO、グリセロール等を含む溶媒、PCR反応液等、従来公知のものがあげられる。

In certain embodiments, it may be mixed with a nucleic acid amplification product in a solvent. Examples of such a solvent are not particularly limited, and examples thereof include conventionally known solvents such as a buffer solution such as Tris-HCl, a solvent containing KCl, MgCl 2 , ו 4 , glycerol and the like, and a PCR reaction solution.

 特定の好ましい実施形態では、複数の標的核酸を検出する本発明の方法は、前記第一標的用プローブが結合可能な第一標的核酸の配列を含む領域を増幅可能な1つ以上の第一標的用プライマー(又はプライマーセット)、及び、前記第二標的用プローブが結合可能な第二標的核酸の配列を含む領域を増幅可能な1つ以上の第二標的用プライマー(又はプライマーセット)により、第一標的核酸及び第二標的核酸を増幅する工程を更に含むのがよい。ここで、第一標的用プライマー及び第二標的用プライマーは、第一標的核酸又は第二標的核酸が共に二本鎖である場合に、それらの二本鎖が解離した2本の一本鎖のいずれかに特異的に結合し、前記第一標的用プローブ又は第二標的用プローブが結合可能な第一標的核酸又は第二標的核酸の領域を増幅する。好ましくは、前記第一標的用プローブ又は第二標的用プローブが結合可能な第一標的核酸又は第二標的核酸の領域を挟むように増幅し得る2つ以上の第一標的用プライマーのセットと2つ以上の第二標的用プライマーのセットを用いる。

In certain preferred embodiments, the method of the invention for detecting multiple target nucleic acids is one or more primary targets capable of amplifying a region containing a sequence of primary target nucleic acids to which the primary target probe can bind. Primer (or primer set) and one or more secondary target primers (or primer set) capable of amplifying the region containing the sequence of the second target nucleic acid to which the second target probe can bind. It may further include the step of amplifying one target nucleic acid and a second target nucleic acid. Here, the first target primer and the second target primer are two single strands in which the double strands are dissociated when both the first target nucleic acid and the second target nucleic acid are double strands. It specifically binds to either and amplifies the region of the first target nucleic acid or the second target nucleic acid to which the first target probe or the second target probe can bind. Preferably, a set of two or more first target primers that can be amplified so as to sandwich the region of the first target nucleic acid or the second target nucleic acid to which the first target probe or the second target probe can bind and 2 Use a set of one or more second target primers.

 本発明による複数核酸の検出方法の一つの具体的態様として、少なくとも以下の工程(i)~(vii)を包含する方法を例示することができるが、これに限定されない。

 (i)第一標的核酸が解離した2本の1本鎖のいずれかに特異的に結合する1つ以上の第一標的用プライマーを用意する工程、

 (ii)第二標的核酸が解離した2本の1本鎖のいずれかに特異的に結合する1つ以上の第二標的用プライマーを用意する工程、

 (iii)融解曲線分析での検出の為の標識物が同一波長で発光し得る第一標的用プローブ及び第二標的用プローブを用意する工程、

 (iv)複数の標的核酸を含み得る試料、前記第一標的用プライマー、第二標的用プライマー、第一標的用プローブ及び第二標的用プローブを含む反応液を調製する工程、

 (v)前記反応液を用いて試料中の第一標的核酸及び第二標的核酸を増幅する工程、

 (vi)工程(v)によって得られうる核酸増幅産物と、該核酸増幅産物の一部と複合体を形成せしめるように設計された第一標的用プローブ及び/又は第二標的用プローブとをハイブリダイズさせ複合体を形成せしめる工程、並びに

 (vii)工程(vi)で得られた複合体を検出する工程。

 なお、前記方法において(i)~(iii)の工程の順序は問わない。

As a specific embodiment of the method for detecting a plurality of nucleic acids according to the present invention, a method including at least the following steps (i) to (vii) can be exemplified, but the method is not limited thereto.

(I) A step of preparing one or more primary target primers that specifically bind to any of the two single strands in which the first target nucleic acid is dissociated.

(Ii) A step of preparing one or more secondary target primers that specifically bind to any of the two single strands in which the second target nucleic acid is dissociated.

(Iii) A step of preparing a probe for a first target and a probe for a second target capable of emitting light at the same wavelength as a label for detection in melting curve analysis.

(Iv) A step of preparing a reaction solution containing a sample containing a plurality of target nucleic acids, the first target primer, the second target primer, the first target probe, and the second target probe.

(V) A step of amplifying the first target nucleic acid and the second target nucleic acid in the sample using the reaction solution.

(Vi) The nucleic acid amplification product obtained by step (v) is hybridized with a first target probe and / or a second target probe designed to form a complex with a part of the nucleic acid amplification product. The process of soaking and forming a complex, as well as

(Vii) A step of detecting the complex obtained in the step (vi).

In the above method, the order of the steps (i) to (iii) does not matter.

 一つの実施形態において、本発明の複数の標的核酸の検出方法は、症状又は状態が酷似しており鑑別が容易ではない複数の感染性微生物の検査において、その複数の感染性微生物にそれぞれ由来し得る第一の標的核酸及び第二の標的核酸を検出するために有用であり得る。このような複数の病原性微生物に由来し得る複数の標的核酸の例としては、例えば、クラミジア内在性プラスミドにおける標的核酸及び淋菌における標的核酸;A型インフルエンザにおける標的核酸及びB型インフルエンザにおける標的核酸;コロナウイルスにおける標的核酸及びインフルエンザウイルスにおける標的核酸;結核菌における標的核酸及び非結核性抗酸菌における標的核酸等が挙げられるがこれらに限定されない。本発明は簡便な方法で、前記のような症状又は状態が酷似した感染症の判別が可能になるので、共感染が発生している症例等で一方の感染を見落とすリスク等が低減し、早期の治療、周囲への感染拡大防止にもつながり得る。

In one embodiment, the method for detecting a plurality of target nucleic acids of the present invention is derived from each of the plurality of infectious microorganisms in a test for a plurality of infectious microorganisms having very similar symptoms or conditions and not easy to distinguish. It may be useful for detecting the first target nucleic acid and the second target nucleic acid to be obtained. Examples of multiple target nucleic acids that can be derived from such multiple pathogenic microorganisms include, for example, the target nucleic acid in the Chlamydia endogenous plasmid and the target nucleic acid in gonococcus; the target nucleic acid in influenza A and the target nucleic acid in influenza B; Target nucleic acid in corona virus and target nucleic acid in influenza virus; target nucleic acid in tuberculosis bacterium, target nucleic acid in non-tuberculous acid bacillus, and the like, but are not limited thereto. The present invention makes it possible to discriminate infectious diseases having very similar symptoms or conditions as described above by a simple method, so that the risk of overlooking one of the infections in cases where co-infection occurs is reduced, and the risk of overlooking one of the infections is reduced. It can also lead to the treatment of the disease and the prevention of the spread of infection to the surrounding area.

 他の実施形態において、本発明の複数の標的核酸の検出方法は、一つの微生物等に由来し得る複数の標的核酸の検出においても有用である。このような複数の標的核酸の例としては、例えば、黄色ブドウ球菌に由来するnuc遺伝子(ヌクレアーゼ遺伝子)における標的核酸及びmecA遺伝子(メチシリン耐性遺伝子)における標的核酸;クロストリディオイデスディフィシルに由来するtcdA遺伝子における標的核酸及びtcdB遺伝子における標的核酸;バンコマイシン耐性球菌に由来するvanA遺伝子における標的核酸及びvanB遺伝子における標的核酸等が挙げられるがこれらに限定されない。

In another embodiment, the method for detecting a plurality of target nucleic acids of the present invention is also useful in detecting a plurality of target nucleic acids that may be derived from one microorganism or the like. Examples of such a plurality of target nucleic acids include, for example, a target nucleic acid in the nuc gene (nuclease gene) derived from staphylococcus aureus and a target nucleic acid in the mecA gene (methicillin resistance gene); tcdA derived from Clostridioides dificil. Target nucleic acid in the gene and target nucleic acid in the tcdB gene; target nucleic acid in the vanA gene derived from vancomycin-resistant bacillus, target nucleic acid in the vanB gene, and the like, but are not limited thereto.

 [試料]

 本発明において使用できる試料は複数の標的核酸を含む可能性のあるものであれば特に限定されない。例えば、生体試料や食品、環境試料だけでなく、精製核酸等が挙げられる。また、試料は核酸抽出やいくつかの前処理を行ってもよい。試料の核酸抽出や前処理は、当該技術分野で一般的に行われている。前処理としては、ろ過、遠心分離、希釈処理、加熱処理、酸処理、アルカリ処理、有機溶媒処理、懸濁処理、破砕処理、磨砕処理等が挙げられるが、本発明ではこれらに限定されない。

[sample]

The sample that can be used in the present invention is not particularly limited as long as it may contain a plurality of target nucleic acids. For example, not only biological samples, foods, and environmental samples, but also purified nucleic acids and the like can be mentioned. The sample may also be subjected to nucleic acid extraction and some pretreatment. Nucleic acid extraction and pretreatment of samples are commonly performed in the art. Examples of the pretreatment include, but are not limited to, filtration, centrifugation, dilution treatment, heat treatment, acid treatment, alkali treatment, organic solvent treatment, suspension treatment, crushing treatment, and grinding treatment.

 生体試料の例として、特に制限されないが、動植物組織、体液、排泄物、細胞、細菌、ウイルス等が挙げられる。さらに挙げると、血液、血液培養液、尿、膿、髄液、胸水、咽頭拭い液、鼻腔拭い液、喀痰、組織切片、皮膚、吐瀉物、糞便、分離培養コロニー、カテーテル洗浄液、子宮頸管擦過物、尿道擦過物、男性尿道擦過物尿等が挙げられる。

Examples of biological samples include, but are not limited to, animal and plant tissues, body fluids, excrement, cells, bacteria, viruses and the like. Further, blood, blood culture medium, urine, pus, spinal fluid, pleural fluid, pharyngeal swab, nasal swab, sputum, tissue section, skin, vomitus, feces, isolated culture colony, catheter lavage fluid, cervical scraping , Urethral scrapes, male urethral scrapes, urine and the like.

 食品の例として、水、アルコール飲料、清涼飲料水、加工食品、野菜、畜産物、海産物、卵、乳製品、生肉、生魚、惣菜等が挙げられる。また、食品を測定試料とする場合、その食品の一部あるいは全部を使用できるだけでなく、食品表面を拭き取ったものも使用できる。さらに、調理器具やドアノブを拭き取った材料あるいはそれらを洗浄した洗浄液も試料として用いることができる。

Examples of foods include water, alcoholic beverages, soft drinks, processed foods, vegetables, livestock products, marine products, eggs, dairy products, raw meat, raw fish, prepared foods and the like. When a food is used as a measurement sample, not only a part or all of the food can be used, but also a food whose surface has been wiped off can be used. Further, a material for wiping off a cooking utensil or a doorknob or a cleaning liquid for cleaning them can also be used as a sample.

 環境試料の例として、水、氷、土壌、空気やエアゾール等が挙げられる。ここでいう水とは、例として、水道水、海水あるいは川や滝、湖、池等から採取した水等が挙げられる。また、施設の壁面、床面、設備や備品、便器等を拭き取ったものあるいはそれらを洗浄した洗浄液も試料として用いることができる。

Examples of environmental samples include water, ice, soil, air and aerosols. Examples of water here include tap water, seawater, and water collected from rivers, waterfalls, lakes, ponds, and the like. Further, a cleaning solution obtained by wiping the wall surface, floor surface, equipment / equipment, toilet bowl, etc. of the facility or cleaning them can also be used as a sample.

 本発明には上記のようないずれの試料も用いることができるが、複数の感染性微生物のうちのいずれかの感染又は共感染が疑われる被験者又は被験物から採取した試料に対して特に本発明は有効である。採取する試料の種類としては、被験者の感染症の症状又は被験物の状態等から、適切な試料をその都度選択することが好ましい。例えば、クラミジア内在性プラスミド及び/又は淋菌を標的核酸として検出する場合、生体試料(例えば、動植物組織、体液、排泄物、咽頭拭い液、組織切片、子宮頸管擦過物、尿道擦過物、男性尿道擦過物尿、吐瀉物、尿、分離培養コロニー)を用いるのが好ましく、排泄物、尿、子宮頸管擦過物、尿道擦過物、男性尿道擦過物尿、分理培養コロニーを用いるのがより好ましく、尿、子宮頸管擦過物、尿道擦過物、男性尿道擦過物尿、咽頭拭い液を用いるのが更に好ましい。また例えば、A型インフルエンザ及び/又はB型インフルエンザを標的核酸として検出する場合、鼻咽頭拭い液、鼻腔拭い液、喀痰、唾液等の生体試料を用いるのが好ましい。また例えば、nuc遺伝子及び/又はmecA遺伝子を標的核酸として検出する場合、血液培養液等の生体試料を用いるのが好ましい。本発明によれば、このような試料を用いる場合であっても複数の標的核酸を同時に検出することができ、1つの反応容器で簡便な条件設定で低コストに複数の標的核酸を同時に検出することが可能である。

Any sample as described above can be used in the present invention, but the present invention is particularly directed to a sample collected from a subject or subject suspected of being infected or co-infected with any of a plurality of infectious microorganisms. Is valid. As the type of sample to be collected, it is preferable to select an appropriate sample each time based on the symptoms of the infectious disease of the subject, the condition of the subject, and the like. For example, when detecting Chlamydia endogenous plasmids and / or gonococci as target nucleic acids, biological samples (eg, animal and plant tissues, body fluids, excreta, pharyngeal swabs, tissue sections, cervical scrapes, urethral scrapes, male urethral scrapes). (Urine, vomitus, urine, isolated cultured colony) is preferred, excrement, urine, cervical scraped material, urethral scraped material, male urethral scraped urine, fractionated cultured colony is more preferable, and urine. , Cervical scrapes, urethral scrapes, male urethral scrapes urine, pharyngeal swabs are more preferred. Further, for example, when detecting influenza A and / or influenza B as a target nucleic acid, it is preferable to use biological samples such as nasopharyngeal swab, nasal swab, sputum, and saliva. Further, for example, when the nuc gene and / or the mecA gene is detected as a target nucleic acid, it is preferable to use a biological sample such as a blood culture medium. According to the present invention, a plurality of target nucleic acids can be simultaneously detected even when such a sample is used, and a plurality of target nucleic acids can be simultaneously detected at low cost with a single reaction vessel with simple condition setting. It is possible.

 試料の採取方法、調製方法等は、特に制限されず、試料の種類、目的に応じて公知の方法を用いることができる。

The method for collecting a sample, the method for preparing a sample, and the like are not particularly limited, and a known method can be used depending on the type and purpose of the sample.

 [核酸増幅反応]

 前記工程(2)において、核酸の増幅は、当該分野で公知の任意の核酸増幅法を用いることができる。そのような核酸増幅法としてはPCR法、LAMP法、LCR法、TMA法、SDA法、RT-PCR法、RT-LAMP法、NASBA法、TRC法、TMA法等が挙げられる。これらの技術は既に当該技術分野において確立されており、目的に合わせて方法を選択することができる。より確実に高い効果が得られ易いという観点から、本発明で行う核酸増幅法はPCR法(RT-PCR法を含む)が好ましいが、これに限定されない。

[Nucleic acid amplification reaction]

In the step (2), any nucleic acid amplification method known in the art can be used for nucleic acid amplification. Examples of such nucleic acid amplification methods include PCR method, LAMP method, LCR method, TMA method, SDA method, RT-PCR method, RT-LAMP method, NASBA method, TRC method, TMA method and the like. These techniques have already been established in the relevant technical field, and the method can be selected according to the purpose. The nucleic acid amplification method performed in the present invention is preferably, but is not limited to, the PCR method (including the RT-PCR method) from the viewpoint that a higher effect can be more reliably obtained.

 [PCR法]

 PCR反応は、主にDNAポリメラーゼによって触媒される反応であり、[1]熱処理によるDNA変性(2本鎖DNAから1本鎖DNAへの乖離)、[2]鋳型1本鎖DNAへのプライマーのアニーリング、[3]DNAポリメラーゼを用いた前記プライマーの伸長、という3ステップを1サイクルとし、このサイクルを繰り返すことによって標的核酸を増幅する。DNAポリメラーゼとしては、Taq、Tth、Bst、KOD、Pfu、Pwo、Tbr、Tfi、Tfl、Tma、Tne、Vent、DEEPVENTやその変異体が挙げられる。より簡便で特異性の高い核酸増幅を可能にできるという観点から、本発明では、ファミリーBに属するDNAポリメラーゼを用いることが好ましい。

[PCR method]

The PCR reaction is a reaction mainly catalyzed by DNA polymerase, [1] DNA denaturation by heat treatment (dissociation from double-stranded DNA to single-stranded DNA), and [2] primer to template single-stranded DNA. The three steps of annealing and [3] extension of the primer using DNA polymerase are set as one cycle, and the target nucleic acid is amplified by repeating this cycle. Examples of the DNA polymerase include Taq, Tth, Bst, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEPVENT and their variants. From the viewpoint of enabling simpler and more specific nucleic acid amplification, it is preferable to use a DNA polymerase belonging to Family B in the present invention.

 なお、本明細書において、DNAポリメラーゼの変異体とは、その由来である野生型DNAポリメラーゼのアミノ酸配列に対して、例えば85%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、なかでも好ましくは99%以上の配列同一性を有し、且つ、野生型DNAポリメラーゼと同様にDNAを増幅する活性を有するものをいう。ここで、アミノ酸配列の同一性を算出する方法としては、当該分野で公知の任意の手段で行うことができる。例えば、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、一例として、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/においてデフォルト(初期設定)のパラメータを用いることにより、アミノ酸配列の同一性を算出することが可能である。また、本発明に用いられ得る変異体は、その由来である野生型DNAポリメラーゼのアミノ酸配列において、1又は数個のアミノ酸が置換、欠失、挿入および/または付加(以下、これらを纏めて「変異」ともいう)したアミノ酸配列からなるポリペプチドであり、且つ、野生型DNAポリメラーゼと同様にDNAを増幅する活性を有するものであってもよい。ここで1又は数個とは、例えば、1~80個、好ましくは1~40個、よりこのましくは1~10個、さらに好ましくは1~5個であり得るが、特に限定されない。

In the present specification, the variant of DNA polymerase is, for example, 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably, with respect to the amino acid sequence of the wild-type DNA polymerase from which it is derived. Refers to those having 98% or more, particularly preferably 99% or more of sequence identity, and having an activity of amplifying DNA in the same manner as wild-type DNA polymerase. Here, as a method for calculating the identity of the amino acid sequence, any means known in the art can be used. For example, it can be calculated using analysis tools available on the market or through telecommunications lines (Internet), for example, the National Center for Biotechnology Information (NCBI) homology algorithm BLAST (Basic local alignment search tool) http. : // www. ncbi. nlm. nih. By using the default (initial setting) parameters in gov / BLAST /, it is possible to calculate the identity of the amino acid sequence. In addition, the mutant that can be used in the present invention has one or several amino acids substituted, deleted, inserted and / or added in the amino acid sequence of the wild-type DNA polymerase from which it is derived. It may be a polypeptide consisting of an amino acid sequence (also referred to as “mutation”) and may have an activity of amplifying DNA in the same manner as wild-type DNA polymerase. Here, 1 or several may be, for example, 1 to 80, preferably 1 to 40, more preferably 1 to 10, and even more preferably 1 to 5, but the number is not particularly limited.

 [ファミリーBに属するDNAポリメラーゼ]

 本発明で用いるDNAポリメラーゼは、ファミリーBに属するDNAポリメラーゼが好ましいが、これに限定されない。前記ファミリーBに属するDNAポリメラーゼは、特に制限されないが、好ましくは古細菌(Archea)由来のDNAポリメラーゼである。

[DNA polymerase belonging to Family B]

The DNA polymerase used in the present invention is preferably, but is not limited to, a DNA polymerase belonging to Family B. The DNA polymerase belonging to the family B is not particularly limited, but is preferably a DNA polymerase derived from archaea.

 [古細菌由来のDNAポリメラーゼ]

 ファミリーBに属する古細菌由来のDNAポリメラーゼとしては、パイロコッカス(Pyrococcus)属およびサーモコッカス(Thermococcus)属の細菌から単離されるDNAポリメラーゼが挙げられる。また、本発明には、ファミリーBに属する古細菌由来のDNAポリメラーゼ活性を失っていないその変異体も含まれる。DNAポリメラーゼの変異体には、ポリメラーゼ活性の増強、エキソヌクレアーゼ活性の欠損、基質特異性の調整等を目的とした変異体が挙げられるが、これらに限定されない。

 パイロコッカス属由来のDNAポリメラーゼとしては、Pyrococcus furiosus、Pyrococcus sp.GB-D、Pyrococcus woesei、Pyrococcus abyssi、Pyrococcus horikoshiiから単離されたDNAポリメラーゼ、及びこれらに由来するDNAポリメラーゼ活性を失っていないその変異体を含むが、これらに限定されない。

 サーモコッカス属に由来するDNAポリメラーゼとしては、Thermococcus kodakaraensis、Thermococcus gorgonarius、Thermococcus litoralis、Thermococcus sp.JDF-3、Thermococcus sp.9degrees North-7(Thermococcus sp.9°N-7)、Thermococcus siculiから単離されたDNAポリメラーゼ、及びこれらに由来するDNAポリメラーゼ活性を失っていないその変異体を含むが、これらに限定されない。

 これらのDNAポリメラーゼを用いたPCR酵素は市販されており、Pfu(Staragene社)、KOD(Toyobo社)、Pfx(Life Technologies社)、Vent(New England Biolabs社)、Deep Vent(New England Biolabs社)、Tgo(Roche社)、Pwo(Roche社)などが挙げられ、そのいずれもが本発明に用いられ得る。

[DNA polymerase derived from archaea]

Examples of archaeal-derived DNA polymerases belonging to Family B include DNA polymerases isolated from bacteria of the genus Pyrococcus and Thermococcus. The present invention also includes variants thereof that have not lost their DNA polymerase activity from archaea belonging to Family B. Variants of DNA polymerase include, but are not limited to, mutants for the purpose of enhancing polymerase activity, deficiency of exonuclease activity, adjusting substrate specificity, and the like.

Examples of the DNA polymerase derived from the genus Pyrococcus include Pyrococcus furiosus and Pyrococcus sp. DNA polymerases isolated from GB-D, Pyrococcus womeni, Pyrococcus abyssi, Pyrococcus horikoshii, and variants thereof that have not lost their DNA polymerase activity, but are not limited thereto.

Examples of the DNA polymerase derived from the genus Thermococcus include Thermococcus kodakaraensis, Thermococcus gogonarius, Thermococcus litoralis, and Thermococcus sp. JDF-3, Thermococcus sp. 9 degrees North-7 (Thermococcus sp. 9 ° N-7), DNA polymerase isolated from Thermococcus siculi, and variants thereof that have not lost their DNA polymerase activity, but are not limited thereto.

PCR enzymes using these DNA polymerases are commercially available, Pfu (Staragene), KOD (Toyobo), Pfx (Life Technologies), Vent (New England Biolabs), DeepBent (New) , Tgo (Roche), Pwo (Roche) and the like, all of which can be used in the present invention.

 なかでも、伸長性や熱安定性の優れたKOD DNAポリメラーゼ及びその変異体(例えば、3’→5’エキソヌクレアーゼ活性を欠失させたKOD DNAポリメラーゼ等)が好ましい。

Among them, KOD DNA polymerase having excellent extensibility and thermal stability and a variant thereof (for example, KOD DNA polymerase lacking 3'→ 5'exonuclease activity) are preferable.

 KOD DNAポリメラーゼは、ファミリーAに属するDNAポリメラーゼであるTaq DNAポリメラーゼに比べて、正確性、増幅効率、伸長性、クルードサンプル耐性に優れている。本発明では、このようなKOD DNAポリメラーゼを使用することで、後述の実施例に示すように、ミスマッチを加えた検出用プローブを用いた検出も可能にし、複数の標的核酸の同時検出が可能となる。

KOD DNA polymerase is superior in accuracy, amplification efficiency, extensibility, and crude sample resistance to Taq DNA polymerase, which is a DNA polymerase belonging to Family A. In the present invention, by using such a KOD DNA polymerase, as shown in Examples described later, detection using a mismatched detection probe is also possible, and simultaneous detection of a plurality of target nucleic acids is possible. Become.

 核酸増幅工程の条件(例えば、温度、pH、陽イオン濃度、溶液中の有機溶媒の存在等)は、核酸プライマー又は核酸プローブのハイブリダイズ条件等と合わせて至適化すればよく、当業者であれば適宜設定可能である。

The conditions of the nucleic acid amplification step (for example, temperature, pH, cation concentration, presence of organic solvent in the solution, etc.) may be optimized in combination with the nucleic acid primer or the hybridization condition of the nucleic acid probe. If there is, it can be set as appropriate.

 [核酸増幅用試薬]

 本発明において核酸増幅反応を行う場合、核酸増幅反応に用いられる核酸増幅用試薬は、実施する核酸増幅反応に応じて適宜選択され得る。例えば、核酸増幅用試薬は、前述の特徴を第一標的用プライマー及び第二標的用プライマー、第一標的用プローブ及び第二標的用プローブに加えて、核酸増幅反応に必要な成分を含む。核酸増幅反応に必要な成分は、実施する核酸増幅反応によって異なっており、それぞれ公知の成分を用いることができる。例えば、PCR法を用いて試料中に含まれる複数の標的核酸を検出する場合、DNAポリメラーゼ、デオキシリボヌクレオシド三リン酸(dNTPs)、マグネシウム塩等の無機塩を少なくとも含むことが好ましい。各成分の濃度は適宜調整できるが、例えば、オリゴヌクレオチドプローブ(第一標的用プローブ又は第二標的用プローブ)は0.1~1μMが好ましく、0.2~0.5μMがより好ましい。DNAポリメラーゼは0.01~1U/uLが好ましく、0.1~0.5U/uLがより好ましい。オリゴヌクレオチドプライマー(第一標的用プライマー又は第二標的用プライマー)は、0.1~10μMが好ましい。デオキシリボヌクレオシド三リン酸(dNTPs)は0.02~1mMが好ましく、0.1~0.5mMがより好ましい。マグネシウム塩等の無機塩は0.1~6mMが好ましく、1~5mMがより好ましい。

[Nucleic acid amplification reagent]

When the nucleic acid amplification reaction is carried out in the present invention, the nucleic acid amplification reagent used for the nucleic acid amplification reaction can be appropriately selected according to the nucleic acid amplification reaction to be carried out. For example, the nucleic acid amplification reagent contains the above-mentioned characteristics in addition to the first target primer and the second target primer, the first target probe and the second target probe, and the components necessary for the nucleic acid amplification reaction. The components required for the nucleic acid amplification reaction differ depending on the nucleic acid amplification reaction to be carried out, and known components can be used for each. For example, when detecting a plurality of target nucleic acids contained in a sample by using the PCR method, it is preferable to contain at least an inorganic salt such as DNA polymerase, deoxyribonucleoside triphosphates (dNTPs), and magnesium salt. The concentration of each component can be adjusted as appropriate, but for example, the oligonucleotide probe (first target probe or second target probe) is preferably 0.1 to 1 μM, more preferably 0.2 to 0.5 μM. The DNA polymerase is preferably 0.01 to 1 U / uL, more preferably 0.1 to 0.5 U / uL. The oligonucleotide primer (primer for first target or primer for second target) is preferably 0.1 to 10 μM. Deoxyribonucleoside triphosphates (dNTPs) are preferably 0.02 to 1 mM, more preferably 0.1 to 0.5 mM. The inorganic salt such as magnesium salt is preferably 0.1 to 6 mM, more preferably 1 to 5 mM.

 核酸増幅用試薬はさらに、非特異増幅の抑制や反応促進を目的として、当該技術分野で知られる添加物等を加えてもよい。非特異増幅の抑制を目的とする添加物として、抗DNAポリメラーゼ抗体やリン酸等が挙げられる。反応促進を目的とする添加物として、ウシ血清アルブミン(BSA)、プロテアーゼインヒビター、シングルストランド結合タンパク質(SSB)、T4遺伝子32タンパク質、tRNA、硫黄または酢酸含有化合物類、ジメチルスルホキシド(DMSO)、グリセロール、エチレングリコール、プロピレングリコール、トリメチレングリコール、ホルムアミド、アセトアミド、ベタイン、エクトイン、トレハロース、デキストラン、ポリビニルピロリドン(PVP)、ゼラチン、塩化テトラメチルアンモニウム(TMAC)、水酸化テトラメチルアンモニウム(TMAH)、酢酸テトラメチルアンモニウム(TMAA)、ポリエチレングリコール、トリトン(Triton)、ツイーン(Tween20)、ノニデットP40などが挙げられる。本発明では、これらの添加物を1種類以上組み合わせて使用してもよいが、これらに限定されない。

The nucleic acid amplification reagent may further contain additives and the like known in the art for the purpose of suppressing non-specific amplification and promoting the reaction. Examples of additives for the purpose of suppressing non-specific amplification include anti-DNA polymerase antibodies and phosphoric acid. Additives aimed at promoting the reaction include bovine serum albumin (BSA), protease inhibitors, single strand binding protein (SSB), T4 gene 32 protein, tRNA, sulfur or acetic acid-containing compounds, dimethylsulfoxide (DMSO), glycerol, Ethylene glycol, propylene glycol, trimethylene glycol, formamide, acetamide, betaine, ectin, trehalose, dextran, polyvinylpyrrolidone (PVP), gelatin, tetramethylammonium chloride (TMC), tetramethylammonium hydroxide (TMAH), tetramethylacetate Examples thereof include ammonium (TMA), polyethylene glycol, Triton, Tween 20 and Nonidet P40. In the present invention, one or more of these additives may be used in combination, but the present invention is not limited thereto.

 また核酸増幅工程をPCR法で行う場合、熱サイクル条件は特に限定されず、当業者により適宜設定され得る。一例として、核酸増幅反応は、最初の熱変形工程が80~100℃で10秒~15分、繰り返しの熱変形工程が80~100℃で0.5~300秒、アニーリンクが40~80℃で1~300秒、伸長反応工程が60~85℃で1~300秒程度行い、この繰り返しを30~70回繰り返すことが好ましい。

Further, when the nucleic acid amplification step is carried out by the PCR method, the thermal cycle conditions are not particularly limited and may be appropriately set by those skilled in the art. As an example, in the nucleic acid amplification reaction, the first thermal deformation step is 80 to 100 ° C. for 10 seconds to 15 minutes, the repeated thermal deformation step is 80 to 100 ° C. for 0.5 to 300 seconds, and Annie Link is 40 to 80 ° C. The extension reaction step is preferably carried out at 60 to 85 ° C. for about 1 to 300 seconds, and this repetition is preferably repeated 30 to 70 times.

 [融解曲線分析]

 融解曲線分析は、標的核酸の分析において広く利用されている。2本鎖の核酸のうち半分が1本鎖になる温度を融解温度と呼ぶ。融解温度は、基本的に、その核酸に含まれている塩基の含量に依存しているため、所定の塩基配列はそこに含まれる塩基の含量に応じた固有の融解温度を有する。融解曲線分析は温度変化に応じて核酸が2本鎖から1本鎖に解離するという性質を利用した解析方法である。

[Melting curve analysis]

Melting curve analysis is widely used in the analysis of target nucleic acids. The temperature at which half of the double-stranded nucleic acid becomes single-stranded is called the melting temperature. Since the melting temperature basically depends on the content of the base contained in the nucleic acid, the predetermined base sequence has a unique melting temperature depending on the content of the base contained therein. Melting curve analysis is an analysis method that utilizes the property that nucleic acids dissociate from double strands to single strands in response to temperature changes.

 [融解曲線分析における検出温度]

 融解曲線分析では、温度変化に対して標識プローブが標的配列からの解離に伴い生じる蛍光又は消光シグナルの強度をリアルタイムでモニタリングする。そして、温度の上昇に伴う発光又は消光シグナル強度の変化を温度変化の値で微分した一次微分値をプロットすると、得られる融解曲線(温度-一次微分値曲線)において、融解温度をピークとして表示することができるようになる。本発明では、所定の標的用プローブを用いて融解曲線分析に行った場合にピークとして表示される融解温度のことを、当該標的用プローブの検出温度という。

[Detected temperature in melting curve analysis]

In melting curve analysis, the labeled probe monitors the intensity of the fluorescence or quenching signal associated with dissociation from the target sequence in real time with respect to temperature changes. Then, when the first derivative value obtained by differentiating the change in the emission or extinguishing signal intensity with the rise in temperature by the value of the temperature change is plotted, the melting temperature is displayed as a peak in the obtained melting curve (temperature-first derivative curve). You will be able to do it. In the present invention, the melting temperature displayed as a peak when the melting curve analysis is performed using a predetermined target probe is referred to as the detection temperature of the target probe.

 従来、融解曲線分析の特徴を利用した具体的な応用方法として、標的核酸における変異の検出(例えば、SNP解析)などが行われてきた。標的核酸に変異が生じると、PCRを実施することでミスマッチの部分をもつ2本鎖遺伝子を形成する。このようにミスマッチ部分をもつ2本鎖遺伝子は、2本鎖構造の変性(解離)が容易に起き、融解曲線分析の際に野生型の遺伝子より検出温度が低くなる。従って、標的核酸に変異が生じると、検出温度の変化が検出され得る。

Conventionally, as a specific application method utilizing the characteristics of melting curve analysis, detection of mutation in a target nucleic acid (for example, SNP analysis) has been performed. When a mutation occurs in the target nucleic acid, PCR is performed to form a double-stranded gene with a mismatched portion. As described above, the double-stranded gene having a mismatched portion easily undergoes denaturation (dissociation) of the double-stranded structure, and the detection temperature is lower than that of the wild-type gene in the melting curve analysis. Therefore, when a mutation occurs in the target nucleic acid, a change in the detection temperature can be detected.

 前記のような従来の融解曲線分析の利用は、標的核酸側においてミスマッチ塩基が存在する場合の検出に対して有用であった。本発明は、標的核酸におけるミスマッチ塩基の存在によるのではなく、標的用プローブ側にミスマッチ塩基を加えることで融解曲線分析の検出温度を調整するという点で従来とは異なる。

The use of conventional melting curve analysis as described above has been useful for detecting the presence of mismatched bases on the target nucleic acid side. The present invention is different from the conventional one in that the detection temperature of the melting curve analysis is adjusted by adding the mismatched base to the target probe side, not due to the presence of the mismatched base in the target nucleic acid.

 本発明において、核酸増幅産物は、プローブを用いた融解曲線分析である限り、任意の解析法により検出することができ、例えば、Qprobe(登録商標)(Qプローブともいう)、Eprobe(登録商標)(Eプローブともいう)、TaqManプローブ、モレキュラービーコンプローブ、FRETハイブリダイゼーションプローブ、スコーピオンプローブ、又はこれらを任意に組み合わせた方法等により検出可能である。より高感度に複数の標的核酸の同時検出が可能であるという観点からは、Qプローブ又はEプローブを用いる融解曲線分析で検出することが好ましく、なかでもQプローブを用いる融解曲線分析で検出することがより好ましい。

In the present invention, the nucleic acid amplification product can be detected by any analysis method as long as it is a melting curve analysis using a probe, for example, Qprobe (registered trademark) (also referred to as Q-probe), Eprobe (registered trademark). (Also referred to as an E probe), a TaqMan probe, a molecular beacon probe, a FRET hybridization probe, a scorpion probe, or a method in which these are arbitrarily combined can be used for detection. From the viewpoint of enabling simultaneous detection of multiple target nucleic acids with higher sensitivity, it is preferable to detect by melting curve analysis using Q probe or E probe, and in particular, detection by melting curve analysis using Q probe. Is more preferable.

 Qプローブ(「グアニン消光プローブ」ともいう)は、KURATAらにより開発された蛍光プローブ(蛍光消光プローブ)である(特許第5354216号公報)。このプローブは、少なくとも一方の末端塩基がグアニンとの相互作用により消光する蛍光消光色素で標識されているハイブリダイゼーションプローブである。

The Q probe (also referred to as "guanine quenching probe") is a fluorescent probe (fluorescent quenching probe) developed by KURATA et al. (Patent No. 5354216). This probe is a hybridization probe labeled with a fluorescent quenching dye whose at least one terminal base is quenched by interaction with guanine.

 例えば、Qプローブで用いられる蛍光消光色素としては特に限定されないが、フルオレセインまたはその誘導体(例えば、フルオレセインイソチオシアネート)、ローダミンまたはその誘導体(例えば、テトラメチルローダミン、テトラメチルローダミンイソチオシアネート、カルボキシローダミン、x-ローダミン、スルホローダミン101酸クロリド)、BODIPYまたはその誘導体(例えば、BODIPY-FL、BODIPY-FL/C3、BODIPY-FL/C6、BODIPY-5-FAM、BODIPY-TMR、BODIPY-TR、BODIPY-R6G、BODIPY-564、BODIPY-581、BODIPY-591、BODIPY-630、BODIPY-650、BODIPY-665)等が挙げられる。蛍光消光色素の詳細は、特許第5813263号公報等に記載があり、本発明も該技術を参照できる。

For example, the fluorescent extinguishing dye used in the Q probe is not particularly limited, but is fluorescein or a derivative thereof (for example, fluorescein isothiocyanate), rhodamine or a derivative thereof (for example, tetramethylrhodamine, tetramethylrhodamine isothiocyanate, carboxylodamine, x). -Rhodamine, Rhodamine 101 Acid Chloride), BODIPY or derivatives thereof (eg, BODIPY-FL, BODIPY-FL / C3, BODIPY-FL / C6, BODIPY-5-FAM, BODIPY-TMR, BODIPY-TR, BODIPY-R6G , BODIPY-564, BODIPY-581, BODIPY-591, BODIPY-630, BODIPY-650, BODIPY-665) and the like. Details of the fluorescent quenching dye are described in Japanese Patent No. 581263 and the like, and the present invention can also refer to the technique.

 本発明において標識物としてQプローブを用いる場合、少なくとも一つの末端塩基がシトシンである塩基配列からなり、当該末端塩基のシトシンが前記蛍光消光色素で標識されているプローブが好ましい。このようなプローブは、増幅産物にハイブリダイズした際に、増幅産物中のグアニン塩基と塩基対を形成して相互作用することで消光できるため、非常に簡便に反応液の蛍光強度の変化を測定することができる。

When a Q probe is used as a labeled substance in the present invention, a probe having a base sequence in which at least one terminal base is cytosine and cytosine at the terminal base is labeled with the fluorescent quenching dye is preferable. When such a probe hybridizes to an amplification product, it can be quenched by forming a base pair with the guanine base in the amplification product and interacting with it, so it is very easy to measure changes in the fluorescence intensity of the reaction solution. can do.

 なお、該プローブがハイブリダイズした際に、該プローブのシトシン塩基と増幅産物中のグアニン塩基が塩基対を形成しなくとも、それらの塩基同士の距離が近ければ蛍光は消光できる。例えば、詳細は特許第5354216号公報に記載があり、本発明も該技術を参照できる。即ち、該プローブがハイブリダイズした際に、該プローブのシトシン塩基に対して、増幅産物中のグアニン塩基が例えば1~3塩基の範囲内に存在すれば消光できる(シトシン塩基と塩基対を形成する塩基を1とする)。

When the probe hybridizes, even if the cytosine base of the probe and the guanine base in the amplification product do not form a base pair, the fluorescence can be quenched if the distance between the bases is short. For example, details are described in Japanese Patent No. 5354216, and the present invention can also refer to the technique. That is, when the probe hybridizes, it can be extinguished if the guanine base in the amplification product is present in the range of, for example, 1 to 3 bases with respect to the cytosine base of the probe (forms a base pair with the cytosine base). Base is 1).

 本発明の複数の標的核酸を同時に検出する方法において、第一標的用プローブ及び/又は第二標的用プローブの塩基配列は、第一標的核酸及び/又は第二標的核酸の増幅産物の一部と複合体を形成可能な限り特に限定されない。好ましくは、第二標的用プローブの塩基配列においてミスマッチを含むプローブを用いることにより、第二標的核酸の検出温度が低温側に調整される結果、複数の標的核酸の同時検出が可能となる。

In the method of simultaneously detecting a plurality of target nucleic acids of the present invention, the base sequence of the first target probe and / or the second target probe is a part of the amplification product of the first target nucleic acid and / or the second target nucleic acid. The complex is not particularly limited as long as it can be formed. Preferably, by using a probe containing a mismatch in the base sequence of the second target nucleic acid, the detection temperature of the second target nucleic acid is adjusted to the low temperature side, and as a result, simultaneous detection of a plurality of target nucleic acids becomes possible.

 [複数の標的核酸を同時に検出するためのキット]

 さらに、本発明の別の実施態様として、一つの反応液で複数の標的核酸を融解曲線分析で検出するために用いられる核酸検出キットを提供する。この本発明のキットは、第一の標的核酸を検出する第一標的用プローブ及び第二の標的核酸を検出する第二標的用プローブを少なくとも含み、第一標的用プローブ及び第二標的用プローブは、融解曲線分析におけるそれぞれの検出温度をT1及びT2とした場合にT1>T2を満たすように設計されており、且つ同一波長で検出できる標識物でそれぞれ標識されていることを特徴とする。本発明のキットは更に、前記のような第一標的用プローブが結合可能な第一標的核酸の配列を含む領域を増幅可能な1つ以上の第一標的用プライマー(又はプライマーセット)、及び、第二標的用プローブが結合可能な第二標的核酸の配列を含む領域を増幅可能な1つ以上の第二標的用プライマー(又はプライマーセット)を含むことが好ましい。このような本発明のキットは、複数の標的核酸を融解曲線分析において検出温度によって同時に検出できるよう構成されていれば特に限定されない。本キットはさらに、効率よく特異性の高い核酸増幅を行うために、Taq、Tth、Bst、KOD、Pfu、Pwo、Tbr、Tfi、Tfl、Tma、Tne、Vent、DEEPVENT及びそれらの変異体からなる群より選択される少なくとも1種のDNAポリメラーゼ等の核酸増幅反応に適した成分を更に含むことが好ましい。

[Kit for detecting multiple target nucleic acids at the same time]

Furthermore, as another embodiment of the present invention, there is provided a nucleic acid detection kit used for detecting a plurality of target nucleic acids by melting curve analysis in one reaction solution. The kit of the present invention includes at least a first target probe for detecting a first target nucleic acid and a second target probe for detecting a second target nucleic acid, and the first target probe and the second target probe are included. It is designed to satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2, and is characterized by being labeled with a labeled substance that can be detected at the same wavelength. The kit of the present invention further comprises one or more primary target primers (or primer sets) capable of amplifying the region containing the sequence of the primary target nucleic acid to which the primary target probe can bind, as described above. It is preferred to include one or more second target primers (or primer sets) capable of amplifying the region containing the sequence of the second target nucleic acid to which the second target probe can bind. Such a kit of the present invention is not particularly limited as long as it is configured so that a plurality of target nucleic acids can be simultaneously detected by the detection temperature in the melting curve analysis. The kit further comprises Taq, Tth, Bst, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEPVENT and variants thereof for efficient and highly specific nucleic acid amplification. It is preferable to further contain a component suitable for a nucleic acid amplification reaction such as at least one DNA polymerase selected from the group.

 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。

Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.

実施例1:プローブにミスマッチを加えた場合と加えない場合の検出温度の変化

 (1-1)方法

 淋菌を標的として、以下の標的用プライマー、プローブ(ミスマッチを加えないプローブ及びミスマッチを加えたプローブ)を用いて、融解曲線分析を行った。下表において網掛けの塩基がミスマッチ塩基である。

Example 1: Change in detected temperature when mismatch is added to the probe and when it is not added

(1-1) Method

A melting curve analysis was performed using the following targeting primers and probes (probe without mismatch and probe with mismatch) targeting gonococci. In the table below, the shaded bases are mismatched bases.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 (1-2)反応液

 ジーンキューブ(登録商標)テストベーシック(東洋紡社製)を使用して表2に示したプライマー及びプローブを使用して以下に示される成分を含む反応液を調製した。

0.3μM SNG F

2.0μM SNG R

0.3μM SNG QP(ミスマッチ無しプローブ又はミスマッチ有りプローブ)

 (1-3)反応

 GENECUBE(登録商標)を用いて、前記反応液を以下の温度サイクルで反応させ、核酸増幅を行った。核酸増幅反応後に以下の条件による融解曲線分析を行った。

94℃ 30秒、

97℃ 1秒-58℃ 5秒-63℃ 2秒(サイクル数60回)

94℃ 30秒 39℃ 30秒 40-75℃ 0.09℃/sec

 (1-4)結果

 図1に、融解曲線分析の結果を示す。本試験例で用いたミスマッチ無しのプローブとミスマッチ有りのプローブの塩基長は同一である。通常、このように塩基の長さがほぼ同じプローブの場合は融解曲線分析における検出温度が近接し易い傾向があるが、1つのミスマッチ塩基を入れただけでも検出温度が大きく低温側に調整され得ることがわかった。

(1-2) Reaction solution

A reaction solution containing the components shown below was prepared using the primers and probes shown in Table 2 using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.).

0.3μM SNG F

2.0 μM SNG R

0.3μM SNG QP (probe without mismatch or probe with mismatch)

(1-3) Reaction

Using GENECUBE (registered trademark), the reaction solution was reacted in the following temperature cycle to perform nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.

94 ° C for 30 seconds,

97 ° C 1 second-58 ° C 5 seconds -63 ° C 2 seconds (60 cycles)

94 ° C 30 seconds 39 ° C 30 seconds 40-75 ° C 0.09 ° C / sec

(1-4) Result

FIG. 1 shows the results of melting curve analysis. The base lengths of the probe without mismatch and the probe with mismatch used in this test example are the same. Normally, in the case of probes with almost the same base length, the detection temperatures in the melting curve analysis tend to be close to each other, but even if only one mismatched base is added, the detection temperature can be adjusted to the low temperature side. I understand.

 実施例2:クラミジア内在性プラスミド及び淋菌の同時検出

 (2-1)方法

 本実施例では、第一標的核酸としてクラミジア内在性プラスミドにおける遺伝子、第二標的核酸として淋菌における遺伝子を使用し、同一波長での融解曲線分析における同時検出を試みた。本実施例でPCR法に用いた第一標的用プライマー及び第二標的用プライマー、第一標的用プローブ及び第二標的用プローブは以下のとおりである。ここで、第一標的用プローブは、3’末端をBODIPY-FLで標識し、第二標的用プローブは5’末端をBODIPY-FLで標識、3’末端をリン酸化した。本実施例の場合、SNG QPにミスマッチを含んでいる。網掛けの塩基がミスマッチ塩基である。

Example 2: Simultaneous detection of Chlamydia endogenous plasmid and Neisseria gonorrhoeae

(2-1) Method

In this example, a gene in the Chlamydia endogenous plasmid was used as the first target nucleic acid, and a gene in gonococcus was used as the second target nucleic acid, and simultaneous detection was attempted in the melting curve analysis at the same wavelength. The primers for the first target and the primer for the second target, the probe for the first target and the probe for the second target used in the PCR method in this example are as follows. Here, the probe for the first target was labeled with BODIPY-FL at the 3'end, and the probe for the second target was labeled with BODIPY-FL at the end of 5'and phosphorylated at the end of 3'. In the case of this embodiment, the SNG QP contains a mismatch. Shaded bases are mismatched bases.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 (2-2)反応液

 ジーンキューブ(登録商標)テストベーシック(東洋紡社製)を使用して表3に示したプライマー及びプローブを以下に示される濃度で添加して反応液を調製した。

0.5μM SCT F

2.5μM SCT R

0.3μM SCT QP

0.3μM SNG F

2.0μM SNG R

0.3μM SNG QP

 (2-3)反応

 GENECUBE(登録商標)を用いて、前記反応液を以下の温度サイクルで反応させ、核酸増幅を行った。核酸増幅反応後に以下の条件による融解曲線分析を行った。

94℃ 30秒、

97℃ 1秒-58℃ 5秒-63℃ 2秒(サイクル数60回)

94℃ 30秒 39℃ 30秒 40-75℃ 0.09℃/sec

 (2-4)結果

 図2に、融解曲線分析の結果を示す。図2に示されるように、ミスマッチ塩基を含まない第一標的用プローブ(SCT QP、クラミジア検出プローブ)では約62℃付近で検出ピークが認められたのに対し、ミスマッチ塩基を含む第二標的用プローブ(SNG QP、淋菌検出プローブ)では約46℃付近で検出ピークが認められた。第一標的用プローブと第二標的用プローブとの塩基長の差は2mer程度であるが、融解曲線分析における検出温度の差を約16℃程度まで広げただけでなく、同一波長で検出可能な標識物でも融解曲線分析において両遺伝子を明確なピークとして識別可能であった。この結果より、淋菌標的用プローブにミスマッチを加えることで検出温度が低温側に調整され、クラミジア内在性プラスミドにおける標的核酸と淋菌における標的核酸を検出温度によって融解曲線分析で同時に検出し、同一波長の標識物で識別することが可能であることがわかった。

(2-2) Reaction solution

A reaction solution was prepared by adding the primers and probes shown in Table 3 at the concentrations shown below using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.).

0.5 μM SCT F

2.5 μM SCT R

0.3 μM SCT QP

0.3μM SNG F

2.0 μM SNG R

0.3μM SNG QP

(2-3) Reaction

Using GENECUBE (registered trademark), the reaction solution was reacted in the following temperature cycle to perform nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.

94 ° C for 30 seconds,

97 ° C 1 second-58 ° C 5 seconds -63 ° C 2 seconds (60 cycles)

94 ° C 30 seconds 39 ° C 30 seconds 40-75 ° C 0.09 ° C / sec

(2-4) Result

FIG. 2 shows the results of melting curve analysis. As shown in FIG. 2, the detection peak was observed at around 62 ° C in the first target probe (SCT QP, chlamydia detection probe) containing no mismatched base, whereas the detection peak was observed at around 62 ° C., whereas the second target containing a mismatched base was used. With the probe (SNG QP, gonococcal detection probe), a detection peak was observed at around 46 ° C. The difference in base length between the probe for the first target and the probe for the second target is about 2 mer, but not only the difference in the detection temperature in the melting curve analysis is widened to about 16 ° C, but also it can be detected at the same wavelength. Even in the labeled product, both genes could be distinguished as clear peaks in the melting curve analysis. From this result, the detection temperature was adjusted to the low temperature side by adding a mismatch to the probe for gonococcal target, and the target nucleic acid in Chlamydia endogenous plasmid and the target nucleic acid in gonococcus were simultaneously detected by melting curve analysis according to the detection temperature, and the same wavelength. It turned out that it is possible to identify by the label.

 実施例3:mecA遺伝子及びnuc遺伝子の同時検出

(3-1)方法

 本実施例では、第一標的核酸をnuc遺伝子、第二標的核酸をmecA遺伝子とした。本実施例でPCR法に用いた第一標的用プライマー及び第二標的用プライマー、第一標的用プローブ及び第二標的用プローブは以下のとおりである。ここで、第一標的用プローブ及び第二標的用プローブは共に、3’末端をBODIPY-FLで標識した。本実施例の場合、mecA QPにミスマッチを含んでいる。網掛けの塩基がミスマッチ塩基である。

Example 3: Simultaneous detection of mecA gene and nuc gene

(3-1) Method

In this example, the first target nucleic acid was the nuc gene and the second target nucleic acid was the mecA gene. The primers for the first target and the primer for the second target, the probe for the first target and the probe for the second target used in the PCR method in this example are as follows. Here, both the first target probe and the second target probe were labeled with BODIPY-FL at the 3'end. In the case of this embodiment, the mecA QP contains a mismatch. Shaded bases are mismatched bases.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 (3-2)反応液

 ジーンキューブ(登録商標)テストベーシック(東洋紡社製)を使用して表4に示したプライマー及びプローブを以下に示される濃度で添加して反応液を調製した。

4.0μM nuc F

0.9μM nuc R

1.2μM nuc QP

2.0μM mecA F

0.4μM mecA R

0.2μM mecA QP

 (3-3)反応

 GENECUBE(登録商標)を用いて、前記反応液を以下の温度サイクルで反応させ、核酸増幅を行った。核酸増幅反応後に以下の条件による融解曲線分析を行った。

94℃ 30秒、

97℃ 1秒-58℃ 3秒-63℃ 5秒(サイクル数60回)

94℃ 30秒 39℃ 30秒 40-75℃ 0.09℃/sec

 (3-4)結果

 図3に、融解曲線分析の結果を示す。図3に示されるように、ミスマッチ塩基を含まない第一標的用プローブ(nuc QP、nuc遺伝子検出プローブ)では約58℃付近で検出ピークが認められたのに対し、ミスマッチ塩基を含む第二標的用プローブ(mecA QP、mecA遺伝子検出プローブ)では約45℃付近で検出ピークが認められた。第一標的用プローブと第二標的用プローブとの塩基長は同じであるが、融解曲線分析における検出温度の差を約13℃程度まで広げ、同一波長で検出可能な標識物でも融解曲線分析において両標的遺伝子を明確に識別可能であった。この結果より、mecA遺伝子標的用プローブにミスマッチを加えることで検出温度が低温側に調整され、nuc遺伝子とmecA遺伝子を検出温度によって融解曲線分析で同時に検出し、同一波長の標識物で識別することが可能であることがわかった。

(3-2) Reaction solution

A reaction solution was prepared by adding the primers and probes shown in Table 4 at the concentrations shown below using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.).

4.0 μM nuc F

0.9 μM nuc R

1.2 μM nuc QP

2.0 μM mecA F

0.4 μM mecA R

0.2 μM mecA QP

(3-3) Reaction

Using GENECUBE (registered trademark), the reaction solution was reacted in the following temperature cycle to perform nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.

94 ° C for 30 seconds,

97 ° C 1 second-58 ° C 3 seconds -63 ° C 5 seconds (60 cycles)

94 ° C 30 seconds 39 ° C 30 seconds 40-75 ° C 0.09 ° C / sec

(3-4) Result

FIG. 3 shows the results of melting curve analysis. As shown in FIG. 3, the detection peak was observed at around 58 ° C. in the first target probe (nuc QP, nuc gene detection probe) containing no mismatched base, whereas the second target containing the mismatched base was observed. A detection peak was observed at around 45 ° C. for the probe (mecA QP, mecA gene detection probe). Although the base lengths of the first target probe and the second target probe are the same, the difference in the detection temperature in the melting curve analysis is widened to about 13 ° C, and even labeled substances that can be detected at the same wavelength can be detected in the melting curve analysis. Both target genes could be clearly distinguished. From this result, the detection temperature is adjusted to the low temperature side by adding a mismatch to the probe for targeting the mecA gene, and the nuc gene and the mecA gene are simultaneously detected by melting curve analysis according to the detection temperature and identified by the labeled substance having the same wavelength. Turned out to be possible.

 実施例4:インフルエンザA型遺伝子及びインフルエンザB型遺伝子の同時検出

(4-1)方法

 本実施例では、第一標的核酸をインフルエンザA型遺伝子、第二標的核酸をインフルエンザB型遺伝子とした。本実施例でPCR法に用いた第一標的用プライマー及び第二標的用プライマー、第一標的用プローブ及び第二標的用プローブは以下のとおりである。ここで、第一標的用プローブは、3’末端をBODIPY-FLで標識し、第二標的用プローブは5’末端をBODIPY-FLで標識、3’末端をリン酸化した。本実施例の場合、FluB QPにミスマッチを含んでいる。網掛けの塩基がミスマッチ塩基である。

Example 4: Simultaneous detection of influenza A gene and influenza B gene

(4-1) Method

In this example, the first target nucleic acid was an influenza A gene and the second target nucleic acid was an influenza B gene. The primers for the first target and the primer for the second target, the probe for the first target and the probe for the second target used in the PCR method in this example are as follows. Here, the probe for the first target was labeled with BODIPY-FL at the 3'end, and the probe for the second target was labeled with BODIPY-FL at the end of 5'and phosphorylated at the end of 3'. In the case of this embodiment, the FluB QP contains a mismatch. Shaded bases are mismatched bases.

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 (4-2)反応液

 ジーンキューブ(登録商標)テストベーシック(東洋紡社製)及びReverTra Ace(登録商標)を使用して表5に示したプライマー及びプローブを以下に示される濃度で添加して反応液を調製した。

0.5μM FluA F

3.0μM FluA R

0.3μM FluA QP

0.5μM FluB F

3.0μM FluB R

0.3μM FluB QP

 (4-3)反応

 GENECUBE(登録商標)を用いて、前記反応液を以下の温度サイクルで反応させ、逆転写、核酸増幅を行った。核酸増幅反応後に以下の条件による融解曲線分析を行った。

42℃ 120秒、

97℃ 15秒、

97℃ 1秒-58℃ 3秒-63℃ 5秒(サイクル数50回)

94℃ 30秒 39℃ 30秒 40-75℃ 0.09℃/sec

 (4-4)結果

 図4に、融解曲線分析の結果を示す。図4に示されるように、ミスマッチ塩基を含まない第一標的用プローブ(FluA QP、インフルエンザA型遺伝子検出プローブ)では約60℃付近で検出ピークが認められたのに対し、ミスマッチ塩基を含む第二標的用プローブ(FluB QP、インフルエンザB型遺伝子検出プローブ)では約46℃付近で検出ピークが認められた。第一標的用プローブと第二標的用プローブとの塩基長の差は2mer程度であるが、融解曲線分析における検出温度の差を約14℃程度まで広げ、同一波長で検出可能な標識物でも融解曲線分析において両標的遺伝子を明確に識別可能であった。この結果より、インフルエンザB型遺伝子標的用プローブにミスマッチを加えることで検出温度が低温側に調整され、インフルエンザA型遺伝子とインフルエンザB型遺伝子を検出温度によって同時に検出し、識別することが可能であることがわかった。

(4-2) Reaction solution

A reaction solution was prepared by adding the primers and probes shown in Table 5 at the concentrations shown below using GeneCube (registered trademark) Test Basic (manufactured by Toyobo Co., Ltd.) and RiverTra Ace (registered trademark).

0.5 μM FluA F

3.0 μM FluA R

0.3μM FluA QP

0.5 μM FluB F

3.0 μM FluB R

0.3μM FluB QP

(4-3) Reaction

Using GENECUBE (registered trademark), the reaction solution was reacted in the following temperature cycle to perform reverse transcription and nucleic acid amplification. After the nucleic acid amplification reaction, melting curve analysis was performed under the following conditions.

42 ° C for 120 seconds,

97 ° C for 15 seconds,

97 ° C 1 second-58 ° C 3 seconds -63 ° C 5 seconds (50 cycles)

94 ° C 30 seconds 39 ° C 30 seconds 40-75 ° C 0.09 ° C / sec

(4-4) Result

FIG. 4 shows the results of melting curve analysis. As shown in FIG. 4, the detection peak was observed at around 60 ° C. in the first target probe (FluA QP, influenza A gene detection probe) containing no mismatched base, whereas the number containing the mismatched base was observed. In the two target probes (FluB QP, influenza B gene detection probe), a detection peak was observed at around 46 ° C. The difference in base length between the probe for the first target and the probe for the second target is about 2 mer, but the difference in the detection temperature in the melting curve analysis is widened to about 14 ° C, and even labeled substances that can be detected at the same wavelength are melted. Both target genes could be clearly distinguished in the curve analysis. From this result, the detection temperature is adjusted to the low temperature side by adding a mismatch to the probe for influenza B gene target, and it is possible to simultaneously detect and distinguish the influenza A gene and the influenza B gene according to the detection temperature. I understand.

Claims (15)


  1.  一つの反応液で複数の標的核酸を融解曲線分析で検出する方法であって、第一の標的核酸を検出する第一標的用プローブ及び第二の標的核酸を検出する第二標的用プローブを反応液中に添加する工程を含み、ここで第一標的用プローブ及び第二標的用プローブは、融解曲線分析におけるそれぞれの検出温度をT1及びT2とした場合にT1>T2を満たし、且つ、同一波長で検出できる標識物でそれぞれ標識されていることを特徴とする、方法。

    A method of detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, in which a first target probe for detecting the first target nucleic acid and a second target probe for detecting the second target nucleic acid are reacted. Including the step of adding to the liquid, the first target probe and the second target probe satisfy T1> T2 when the respective detection temperatures in the melting curve analysis are T1 and T2, and have the same wavelength. A method, characterized in that each is labeled with a label that can be detected in.

  2.  第一標的用プローブが結合可能な第一標的核酸の配列を含む領域を増幅可能な1つ以上の第一標的用プライマー、及び、第二標的用プローブが結合可能な第二標的核酸の配列を含む領域を増幅可能な1つ以上の第二標的用プライマーにより、第一標的核酸及び第二標的核酸を増幅する工程を更に含む、請求項1に記載の方法。

    One or more primary target primers capable of amplifying the region containing the sequence of the first target nucleic acid to which the first target probe can bind, and the sequence of the second target nucleic acid to which the second target probe can bind. The method of claim 1, further comprising the step of amplifying the first target nucleic acid and the second target nucleic acid with one or more second target primers capable of amplifying the containing region.

  3.  第一標的用プローブの標識物及び第二標的用プローブの標識物が同一の標識物である、請求項1又は2に記載の方法。

    The method according to claim 1 or 2, wherein the labeled substance of the first target probe and the labeled substance of the second target probe are the same labeled substance.

  4.  第二標的用プローブがミスマッチ塩基を含む、請求項1~3のいずれかに記載の方法。

    The method according to any one of claims 1 to 3, wherein the probe for the second target contains a mismatched base.

  5.  ミスマッチ塩基が、アデニン塩基、シトシン塩基、グアニン塩基、チミン塩基、及びユニバーサル塩基からなる群より選択される少なくとも1種である、請求項1~4のいずれかに記載の方法。

    The method according to any one of claims 1 to 4, wherein the mismatched base is at least one selected from the group consisting of an adenine base, a cytosine base, a guanine base, a thymine base, and a universal base.

  6.  ユニバーサル塩基が、ヒポキサンチン、ネブラリン、及び5-ニトロインドールからなる群より選択される少なくとも1種である、請求項1~5のいずれかに記載の方法。

    The method according to any one of claims 1 to 5, wherein the universal base is at least one selected from the group consisting of hypoxanthine, nebulaline, and 5-nitroindole.

  7.  第一標的用プローブはミスマッチ塩基を含まず、第二標的用プローブがミスマッチ塩基を含むことにより、融解曲線分析において第一標的用プローブの検出温度T1よりも第二標的用プローブの検出温度T2が低温側になるように調整される、請求項1~6のいずれかに記載の方法。

    Since the first target probe does not contain a mismatched base and the second target probe contains a mismatched base, the detection temperature T2 of the second target probe is higher than the detection temperature T1 of the first target probe in the melting curve analysis. The method according to any one of claims 1 to 6, which is adjusted to be on the low temperature side.

  8.  融解曲線分析において、第一標的用プローブの検出温度T1と、第二標的用プローブの検出温度T2との温度差が5~30℃である、請求項1~7のいずれかに記載の方法。

    The method according to any one of claims 1 to 7, wherein in the melting curve analysis, the temperature difference between the detection temperature T1 of the first target probe and the detection temperature T2 of the second target probe is 5 to 30 ° C.

  9.  第一標的用プローブの核酸塩基の長さと第二標的用プローブの核酸塩基の長さとの差が8mer以下である、請求項1~8のいずれかに記載の方法。

    The method according to any one of claims 1 to 8, wherein the difference between the length of the nucleobase of the first target probe and the length of the nucleobase of the second target probe is 8 mer or less.

  10.  第一標的用プローブの標識物及び第二標的用プローブの標識物が、Qprobe(登録商標)又はEprobe(登録商標)である、請求項1~10のいずれかに記載の方法。

    The method according to any one of claims 1 to 10, wherein the labeled substance of the first target probe and the labeled substance of the second target probe are Qprobe (registered trademark) or Eprobe (registered trademark).

  11.  第一標的核酸及び第二標的核酸のいずれか一方がクラミジア内在性プラスミドにおける標的核酸であり、他方が淋菌における標的核酸である、請求項1~10のいずれかに記載の方法。

    The method according to any one of claims 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in the Chlamydia endogenous plasmid and the other is the target nucleic acid in Neisseria gonorrhoeae.

  12.  第一標的核酸及び第二標的核酸のいずれか一方がnuc遺伝子における標的核酸であり、他方がmecA遺伝子における標的核酸である、請求項1~10のいずれかに記載の方法。

    The method according to any one of claims 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in the nuc gene and the other is the target nucleic acid in the mecA gene.

  13.  第一標的核酸及び第二標的核酸のいずれか一方がA型インフルエンザにおける標的核酸であり、他方がB型インフルエンザにおける標的核酸である、請求項1~10のいずれかに記載の方法。

    The method according to any one of claims 1 to 10, wherein either the first target nucleic acid or the second target nucleic acid is the target nucleic acid in influenza A and the other is the target nucleic acid in influenza B.

  14.  一つの反応液で複数の標的核酸を融解曲線分析で検出するために用いられる核酸検出キットであって、第一の標的核酸を検出する第一標的用プローブ及び第二の標的核酸を検出する第二標的用プローブを少なくとも含み、第一標的用プローブ及び第二標的用プローブは、融解曲線分析におけるそれぞれの検出温度をT1及びT2とした場合にT1>T2を満たすように設計されており、且つ同一波長で検出できる標識物でそれぞれ標識されていることを特徴とする、キット。

    A nucleic acid detection kit used for detecting a plurality of target nucleic acids in one reaction solution by melting curve analysis, the first target probe for detecting the first target nucleic acid and the second target nucleic acid for detecting the second target nucleic acid. (2) The target probe includes at least the target probe, and the first target probe and the second target probe are designed to satisfy T1> T2 when the detection temperatures in the melting curve analysis are T1 and T2, respectively. A kit characterized by being labeled with a labeled substance that can be detected at the same wavelength.

  15.  第一標的用プローブが結合可能な第一標的核酸の配列を含む領域を増幅可能な1つ以上の第一標的用プライマー、及び、第二標的用プローブが結合可能な第二標的核酸の配列を含む領域を増幅可能な1つ以上の第二標的用プライマーを更に含む、請求項14に記載のキット。

    One or more primary target primers capable of amplifying the region containing the sequence of the first target nucleic acid to which the first target probe can bind, and the sequence of the second target nucleic acid to which the second target probe can bind. 15. The kit of claim 14, further comprising one or more second target primers capable of amplifying the containing region.
PCT/JP2021/039267 2020-10-30 2021-10-25 Method for simultaneously detecting plurality of target nucleic acids WO2022092012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022559114A JPWO2022092012A1 (en) 2020-10-30 2021-10-25
CN202180074034.3A CN116391039A (en) 2020-10-30 2021-10-25 Method for simultaneous detection of multiple target nucleic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020183003 2020-10-30
JP2020-183003 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092012A1 true WO2022092012A1 (en) 2022-05-05

Family

ID=81382501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039267 WO2022092012A1 (en) 2020-10-30 2021-10-25 Method for simultaneously detecting plurality of target nucleic acids

Country Status (3)

Country Link
JP (1) JPWO2022092012A1 (en)
CN (1) CN116391039A (en)
WO (1) WO2022092012A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024035A (en) * 2002-06-21 2004-01-29 Tosoh Corp Method for detecting nucleic acid
JP2011519570A (en) * 2008-05-06 2011-07-14 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Simultaneous detection of multiple nucleic acid sequences in a reaction
JP2012504389A (en) * 2008-09-22 2012-02-23 ダイセルナ ファーマシューティカルズ, インコーポレイテッド Compositions and methods for specific inhibition of gene expression by dsRNA with modifications
WO2015077242A1 (en) * 2013-11-19 2015-05-28 Brandeis University Multiplex target detection assay
JP2016533171A (en) * 2013-10-01 2016-10-27 エピスタム リミテッド Mutation analysis using melting temperature and universal base

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024035A (en) * 2002-06-21 2004-01-29 Tosoh Corp Method for detecting nucleic acid
JP2011519570A (en) * 2008-05-06 2011-07-14 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Simultaneous detection of multiple nucleic acid sequences in a reaction
JP2012504389A (en) * 2008-09-22 2012-02-23 ダイセルナ ファーマシューティカルズ, インコーポレイテッド Compositions and methods for specific inhibition of gene expression by dsRNA with modifications
JP2016533171A (en) * 2013-10-01 2016-10-27 エピスタム リミテッド Mutation analysis using melting temperature and universal base
WO2015077242A1 (en) * 2013-11-19 2015-05-28 Brandeis University Multiplex target detection assay

Also Published As

Publication number Publication date
JPWO2022092012A1 (en) 2022-05-05
CN116391039A (en) 2023-07-04

Similar Documents

Publication Publication Date Title
KR20090078341A (en) Detection of bacterium by utilizing dnaj gene and use thereof
AU2016211132B2 (en) Method and product for preventing false positives in methods employing ddNTPs
JP7315053B2 (en) Methods for detecting RNA and reagents for detecting RNA
JP2011083286A (en) Method for quick detection of nucleic acid
JP2018108054A (en) Oligonucleotide probe for detecting Norovirus G1 type
CN107002146B (en) Compositions and methods for detecting drug-resistant mycobacterium tuberculosis
WO2022092012A1 (en) Method for simultaneously detecting plurality of target nucleic acids
KR102091284B1 (en) Genetic Marker for Discrimination and Detection of Vibriosis in fish and Method for Discrimination and Detection of Vibriosis in fish Using the Same
JP2015128400A (en) Method of detecting mycoplasma pneumonia
WO2022092013A1 (en) Nucleic acid probe set comprising multiple nucleic acid probes
JP2023547536A (en) Multiplex detection of bacterial respiratory pathogens
US20120252029A1 (en) Simultaneous quantitative multiple primer detection of clostridium difficile
JP7176266B2 (en) Oligonucleotide probe for detecting toxin B gene (tcdB)
JP2022021905A (en) Oligonucleotide for sars-cov-2 detection and applications thereof
JP2021153392A (en) Primers for detecting toxin b gene (tcdb)
JP6728657B2 (en) Nucleic acid amplification method
EP3438280A1 (en) Haemoplasma detection method
JP2024018236A (en) Oligonucleotides for detecting Trichomonas parasites and their uses
KR102091283B1 (en) Genetic Marker for Discrimination and Detection of Vibriosis in fish and Method for Discrimination and Detection of Vibriosis in fish Using the Same
JP2023130663A (en) Probe for detecting mycoplasma genitalium and use thereof
JP2022073185A (en) Oligonucleotide for detecting influenza virus, and application of the same
JP2023097825A (en) Probe for detecting rs virus, and application of the same
JP6911308B2 (en) Method for detecting CTX-M type substrate specificity dilated β-lactamase gene
JP2021158989A (en) Methods for detecting pathogenic chlamydophila species
JP2021069336A (en) Methods for detecting bordetella bacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886130

Country of ref document: EP

Kind code of ref document: A1