WO2022091958A1 - 力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法 - Google Patents

力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法 Download PDF

Info

Publication number
WO2022091958A1
WO2022091958A1 PCT/JP2021/039063 JP2021039063W WO2022091958A1 WO 2022091958 A1 WO2022091958 A1 WO 2022091958A1 JP 2021039063 W JP2021039063 W JP 2021039063W WO 2022091958 A1 WO2022091958 A1 WO 2022091958A1
Authority
WO
WIPO (PCT)
Prior art keywords
force sense
virtual object
internal drive
external
drive body
Prior art date
Application number
PCT/JP2021/039063
Other languages
English (en)
French (fr)
Inventor
真生 近藤
惇一 清水
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/250,270 priority Critical patent/US20240019935A1/en
Publication of WO2022091958A1 publication Critical patent/WO2022091958A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/211Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/40Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment
    • A63F13/42Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
    • A63F13/428Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1037Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted for converting control signals received from the game device into a haptic signal, e.g. using force feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/013Force feedback applied to a game

Definitions

  • the present disclosure relates to a force sense device, a force sense device control device, and a force sense device control method.
  • Patent Document 1 a game device that controls the movement of an object in a virtual space by using a controller of the game device is known (see, for example, Patent Document 1).
  • the game apparatus is corrected so that the displacement amount calculated based on the position information of the controller becomes zero.
  • the game device suppresses vibration such as camera shake that may occur in the object in the virtual space even when the position accuracy of the controller acquired from the controller is low.
  • an input device such as a controller may be used as a force sense device that presents a force sense to an operator.
  • a force sense device that presents a force sense regarding the behavior of a virtual object to an operator a force sense device that presents a behavior in a grip portion of a virtual object is not known.
  • the virtual object is, for example, a fishing rod, a golf club, or the like, and the behavior in the grip portion is a torsional deformation between an external structure such as a grip and an internal structure such as a shaft.
  • a force sense device a force sense device control device, and a force sense device control method capable of presenting a force sense regarding the behavior of a virtual object in a grip portion to an operator.
  • the force sense device is formed as a grip portion of a virtual object, and is provided on an outer external grip body gripped by an operator and the external grip body.
  • An motion detection unit that detects the motion of the external grip body, and an external grip body that is provided inside the external grip body and is connected to the external grip body, and is connected to the external grip body based on the detection result of the motion detection unit. It includes an internal drive body that moves relative to the relative.
  • control device for the force sense device is a control device for the force sense device that controls the force sense device, and acquires a physical quantity related to the virtual object, and the motion detection unit.
  • the detection result of the above is acquired, and based on the acquired physical quantity and the detection result, a control signal of the internal drive body for reproducing the behavior of the virtual object is generated, and based on the generated control signal.
  • a control signal of the internal drive body for reproducing the behavior of the virtual object is generated, and based on the generated control signal.
  • control method of the force sense device is the control method of the force sense device for controlling the force sense device, in which a physical quantity related to the virtual object is acquired and the motion detection unit is used.
  • the detection result of the above is acquired, and based on the acquired physical quantity and the detection result, a control signal of the internal drive body for reproducing the behavior of the virtual object is generated, and based on the generated control signal.
  • a control signal of the internal drive body for reproducing the behavior of the virtual object is generated, and based on the generated control signal.
  • the force sense device 10 and the control device 11 behave in a grip portion of a virtual object (hereinafter, also referred to as a virtual object) 1 with respect to an operator who operates the force sense device 10. Present a sense of force to reproduce. Prior to the description of the force sense device 10 and the control device 11, the virtual object 1 will be described.
  • a virtual object hereinafter, also referred to as a virtual object
  • FIG. 1 is a diagram showing an example of a grip portion in the virtual object of the present disclosure.
  • the object shown in FIG. 1 is a virtual object 1 having a grip portion 5, and is, for example, a long object such as a golf club or a fishing rod.
  • the virtual object 1 is not limited to a long object, and is not particularly limited as long as it has a grip portion 5.
  • the virtual object 1 may be, for example, a sword, a pendulum, a throttle of a motorcycle, a control stick of an aircraft, or the like.
  • the virtual object 1 may be an object having a large bulge at one end (the end opposite to the grip portion) such as a badminton racket.
  • the grip portion 5 of the virtual object 1 in the first embodiment has an outer grip 6 and a shaft 7 provided inside the grip 6.
  • the shaft 7 is a long one extending in the longitudinal direction in the axial direction.
  • the grip 6 is provided so as to cover the outer circumference of the shaft 7, and is provided over the entire circumference of the shaft 7.
  • the behavior of the reproduced virtual object 1 in the grip portion is the torsional deformation of the grip 6 with respect to the shaft 7.
  • FIG. 2 is an example diagram relating to the behavior of the grip portion in a virtual object.
  • the virtual object 1 is a long bar.
  • the force sense regarding the behavior of the grip portion 5 when the tip of the rod collides with the wall is presented to the operator by the force sense device 10.
  • the virtual object 1 is a fishing rod.
  • the force sense regarding the behavior of the grip portion 5 when the fishing rod is bent is presented to the operator by the force sense device 10.
  • the virtual object 1 is a long bar.
  • the force sense regarding the behavior of the grip portion 5 when the longitudinal direction of the rod is balanced in the vertical direction is presented to the operator by the force sense device 10.
  • the pattern P4 in FIG. 2 is a sphere in which the virtual object 1 moves in a rod shape with a long rod.
  • the force sense device 10 presents the force sense regarding the behavior of the grip portion 5 when the sphere is moved with the longitudinal direction of the rod as the horizontal direction.
  • the virtual object 1 is a rifle.
  • the force sense regarding the behavior of the grip portion 5 at the time of shot of the rifle is presented to the operator by the force sense device 10.
  • the force sense system 100 including the following force sense device 10 and the control device 11 is used.
  • FIG. 3 is a diagram relating to the operation of the force sensor according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing a force sense device according to the first embodiment of the present disclosure.
  • FIG. 5 is a block diagram showing a force sense device and a control device according to the first embodiment of the present disclosure.
  • the force sense system 100 includes a force sense device 10 operated by an operator and a control device 11 for controlling the force sense device 10.
  • the force sense device 10 and the control device 11 are connected so as to enable bidirectional communication.
  • the force sense device 10 and the control device 11 are connected so as to be capable of wired communication or wireless communication.
  • the communication connection between the force sensor 10 and the control device 11 may be made via the server.
  • the force sense device 10 is a device that presents a force sense regarding the behavior of the grip portion 5 of the virtual object 1 to the operator.
  • the force sense device 10 is, for example, a device for use in a VR (Virtual Reality) game.
  • the force sense device 10 may be used in VR other than games, or may be used in AR (Augmented Reality).
  • the force sense device 10 has an external grip body 21, an internal drive body 22, and an motion detection unit 23.
  • FIG. 4 is a diagram schematically showing the internal structure of the force sensation device 10 when viewed from the front, the upper surface, and the side surface.
  • the external grip body 21 is a portion corresponding to the grip 6 of the virtual object 1.
  • the external gripping body 21 is an outer structure gripped by the operator.
  • the external gripping body 21 is provided so as to cover the internal driving body 22 described later, and is provided so as to extend in the longitudinal direction.
  • the external grip 21 is made of, for example, an elastomer resin. Therefore, the external gripping body 21 has elasticity as compared with the internal driving body 22.
  • the internal drive body 22 is a portion corresponding to the shaft 7 of the virtual object 1.
  • the internal drive body 22 is provided inside the external grip body 21 and is provided so as to extend in the longitudinal direction.
  • the internal drive body 22 is connected to the external grip body 21 via a connecting shaft 24.
  • the internal drive body 22 is movable relative to the external grip body 21. Specifically, the internal drive body 22 is rotatable with respect to the external grip body 21 about the connecting shaft 24.
  • Both ends of the connecting shaft 24 in the axial direction are fixed to the external gripping body 21.
  • the axial direction of the connecting shaft 24 is orthogonal to the longitudinal direction of the external gripping body 21.
  • the connecting shaft 24 is provided with a connecting gear 25 that meshes with the motor gear 36 of the internal drive body 22, which will be described later.
  • the connecting gear 25 is, for example, a bevel gear.
  • the internal drive body 22 has a case 31, a motor 34, a motor gear 36, and a motor control unit 35.
  • the case 31 is formed by using a hard resin that is harder than the external gripping body 21.
  • the inside of the case 31 is a hollow space.
  • the case 31 is rotatably connected to the connecting shaft 24, and houses the connecting gear 25 provided on the connecting shaft 24 inside the case 31.
  • the motor 34 is a drive source for rotating the internal drive body 22 around the connecting shaft 24 with respect to the external grip body 21.
  • the motor 34 is fixed inside the case 31.
  • the motor 34 is provided so that the axial direction of its rotation axis is the same as the longitudinal direction of the internal drive body 22.
  • the motor gear 36 is connected to the output shaft of the motor 34 and is provided so as to mesh with the connecting gear 25.
  • the motor gear 36 transmits the output of the motor 34 to the connecting shaft 24.
  • the motor gear 36 is, for example, a bevel gear.
  • As the motor 34 for example, a servo motor is applied.
  • the motor 34 is connected to the motor control unit 35 and is driven and controlled by the motor control unit 35.
  • the motor control unit 35 controls the motor 34 and is connected to the control device 11.
  • the motor control unit 35 drives and controls the motor 34 based on the control signal input from the control device 11.
  • the motion detection unit 23 detects the motion of the external grip body 21 by the operator, and for example, an acceleration sensor such as a 3-axis acceleration sensor or a gyro sensor is applied.
  • the motion detection unit 23 may be any sensor as long as it detects the motion of the external grip 21.
  • the motion detection unit 23 is fixedly provided inside the external grip body 21 and is provided on one side of the external grip body 21 in the longitudinal direction. That is, a space for providing the motion detection unit 23 is formed between the external grip body 21 and the internal drive body 22, and the motion detection unit 23 is arranged in this space. Further, the motion detection unit 23 is connected to the control device 11 and outputs the detection result to the control device 11.
  • the external gripping body 21 and the internal driving body 22 may be provided in contact with each other without a gap as long as a space for providing the motion detecting unit 23 is formed, or the gap may be provided. It may be provided open.
  • the operation of the haptic device 10 will be described with reference to FIG.
  • the positional relationship between the external grip body 21 and the internal drive body 22 is in the initial state.
  • the motion detection unit 23 provided on the external grip body 21 detects the motion of the external grip body 21 and outputs the detection result to the control device 11.
  • the motor control unit 35 reproduces the behavior of the virtual object 1 in the grip portion 5 by controlling the motor 34 based on the control signal.
  • the sense of power to do so is presented to the operator. Specifically, the motor control unit 35 drives the motor 34 and rotates the motor gear 36 to relatively rotate the connecting gear 25.
  • the motor control unit 35 rotates the internal drive body 22 around the connecting shaft 24 with respect to the external grip body 21.
  • the internal drive body 22 of the force sense device 10 appropriately rotates with respect to the external grip body 21 about the connecting shaft 24, so that the external grip body 21 and the internal drive body 21 and the internal drive body 21 are appropriately rotated.
  • a twisting deformation is generated between the 22 and the 22.
  • the control device 11 generates a control signal of the motor 34 for reproducing the behavior of the grip portion 5 of the virtual object 1 based on the detection result of the motion detection unit 23.
  • the control device 11 has a calculation unit 41 and a storage unit 42.
  • the control device 11 is, for example, a game device.
  • the arithmetic unit 41 is configured by using, for example, an integrated circuit such as a CPU (Central Processing Unit). By executing the physics engine, the calculation unit 41 calculates the behavior of the virtual object 1 in the grip unit 5 based on the detection result of the motion detection unit 23.
  • a CPU Central Processing Unit
  • the storage unit 42 stores programs and data. Further, the storage unit 42 may also be used as a work area for temporarily storing the processing result of the calculation unit 41.
  • the storage unit 42 includes, for example, a volatile memory such as RAM (Random Access Memory), a non-volatile memory such as ROM (Read Only Memory), a semiconductor storage device, and an arbitrary storage device such as a magnetic storage device. good. Further, the storage unit 42 may include a plurality of types of storage devices. Further, the storage unit 42 may include a combination of a portable storage medium such as a memory card and a reading device for the storage medium.
  • the storage unit 42 stores the physical quantity data D1 relating to the virtual object 1 and the data D2 relating to the detection result of the motion detecting unit 23 as data.
  • the data D1 includes information on the shape of the virtual object 1, the material of the virtual object 1, and the like as physical quantities related to the virtual object 1.
  • the shape of the virtual object 1 is the length of the virtual object 1 in the longitudinal direction and the like.
  • the material of the virtual object 1 is the elastic modulus of the material or the like.
  • the data D1 is data that has been input in advance and stored in the storage unit 42.
  • the data D2 is information on the time change of acceleration when the motion detection unit 23 is an acceleration sensor.
  • the data D2 is data acquired in real time from the motion detection unit 23.
  • the calculation unit 41 when the detection result of the motion detection unit 23 is input from the force sense device 10, the calculation unit 41 has the data D1 stored in the storage unit 42 and the detection result of the motion detection unit 23. And the data D2 which is.
  • the calculation unit 41 uses the data D1 and the data D2 as inputs to perform a physical calculation by the physics engine, and calculates the behavior of the virtual object 1 to be reproduced and the behavior of the grip unit 5 based on the behavior of the virtual object 1. , The relative displacement between the grip 6 and the shaft 7 in the grip 5 as the behavior of the grip 5 of the virtual object 1 is acquired.
  • the calculation unit 41 generates a signal relating to the relative displacement of the grip unit 5 to be reproduced as a control signal, and outputs the control signal to the motor control unit 35 of the force sense device 10.
  • FIGS. 6 and 7 are diagrams showing an example of the operation of the force sensor and the operation of the internal drive body.
  • a fishing rod is applied as the virtual object 1, and the behavior of the fishing rod is reproduced.
  • FIG. 6 is a diagram that reproduces the behavior of the grip of the fishing rod during casting
  • FIG. 7 is a diagram that reproduces the behavior of the grip of the fishing rod during fishing.
  • time elapses from the left side to the right side.
  • the grip 6 of the fishing rod corresponds to the external grip body 21
  • the shaft (rod) 7 of the fishing rod corresponds to the internal drive body 22.
  • the time T1 in FIG. 6 is the initial state of the fishing rod, that is, the initial state of the force sense device 10.
  • the time T2 in FIG. 6 is the time when the fishing rod is swung up and stopped.
  • the time T3 in FIG. 6 is the time when the fishing rod is swung down and cast.
  • the external grip body 21 reaches the peak of the acceleration due to the large displacement of the acceleration due to the swinging up of the force sense device 10, and after reaching the peak, the displacement of the acceleration becomes small, and the motion detection unit 23 at the time T2 The detected acceleration becomes zero.
  • the displacement of the internal drive body 22 of the force sense device 10 with respect to the external grip body 21 becomes zero at the time T1.
  • the internal drive body 22 lags behind the movement of the external grip body 21, so that a displacement relative to the external grip body 21 occurs.
  • the displacement of the internal drive body 22 with respect to the external grip body 21 becomes zero in the vicinity of the peak of the acceleration of the external grip body 21.
  • the internal drive body 22 moves ahead of the external grip body 21 due to inertia, so that the displacement is relative to the external grip body 21. Occurs.
  • the acceleration detected by the motion detecting unit 23 in the time T2 becomes zero in the external gripping body 21.
  • the external grip body 21 reaches the peak of the acceleration due to the large displacement of the acceleration due to the swinging down of the force sense device 10, and after reaching the peak, the displacement of the acceleration becomes small, and the motion detection unit 23 at the time T3.
  • the acceleration detected by is zero.
  • the displacement of the internal drive body 22 of the force sense device 10 with respect to the external grip body 21 becomes zero at the time T2.
  • the internal drive body 22 lags behind the movement of the external grip body 21, so that a displacement relative to the external grip body 21 occurs.
  • the displacement of the internal drive body 22 with respect to the external grip body 21 becomes zero in the vicinity of the peak of the acceleration of the external grip body 21.
  • the internal drive body 22 moves ahead of the external grip body 21 due to inertia, so that the displacement is relative to the external grip body 21. Occurs.
  • the time T4 in FIG. 7 is the initial state of the fishing rod after casting, that is, the initial state of the force sense device 10, and the time T5 in FIG. 7 is the time when the fishing rod is hit.
  • the time T6 in FIG. 7 is the time when the fishing rod is caught and stopped with the reel provided on the fishing rod fixed.
  • the time T7 in FIG. 7 is the time when the fishing rod is hung down and stopped while winding the reel.
  • the time T8 in FIG. 7 is the time when the fishing rod is caught and stopped.
  • the acceleration detected by the motion detecting unit 23 in the time T4 becomes zero in the external gripping body 21. Further, the acceleration detected by the motion detection unit 23 of the external grip body 21 becomes zero even at the time T5. After that, the external grip body 21 has a large acceleration due to the fishing of the force sense device 10, reaches the peak of the acceleration, and after reaching the peak, the acceleration becomes small, and the acceleration detected by the motion detection unit 23 at the time T6. Becomes zero.
  • the external grip body 21 has a large acceleration due to the hanging of the force sense device 10, reaches the peak of the acceleration, and after reaching the peak, the acceleration becomes small, and is detected by the motion detection unit 23 at the time T7. Acceleration becomes zero.
  • Time T5 to time T7 are repeated from time T5 to fishing. Then, in the external grip body 21, the force sense device 10 is in a fishing state at the time T8, and the acceleration detected by the motion detection unit 23 becomes zero.
  • the internal drive body 22 of the force sense device 10 has a relative displacement of zero from the external grip body 21 from the time T4 to the time T5. After that, when the external grip body 21 reaches the time T5, the internal drive body 22 moves prior to the movement of the external grip body 21, so that a relative forward displacement with respect to the external grip body 21 occurs. When the internal drive body 22 transitions from the time T5 to the time T6, the internal drive body 22 exerts a force to stay, so that the relative forward displacement with respect to the external grip body 21 becomes large.
  • FIG. 8 is a flowchart relating to the control method of the force sensor according to the first embodiment of the present disclosure.
  • the calculation unit 41 of the control device 11 acquires the data D1 relating to the physical quantity of the virtual object 1 from the storage unit 42 (step S1). Subsequently, the calculation unit 41 acquires the operation of the force sense device 10, which is the detection result of the operation detection unit 23 (step S2). After that, the calculation unit 41 executes a physical calculation for reproducing the behavior of the virtual object 1 based on the data D1 and the data D2 (step S3). In step S3, the behavior of the virtual object 1 in the grip portion 5 is also calculated by performing the physical calculation of the behavior of the virtual object 1.
  • the calculation unit 41 generates a control signal of the motor 34 based on the calculation result of the physical calculation, and outputs the generated control signal to the motor control unit 35 of the force sense device 10.
  • the motor control unit 35 acquires the control signal
  • the motor control unit 35 generates a control value for driving and controlling the motor 34 based on the control signal. That is, the motor control unit 35 converts the calculation result of the physical calculation into the control value of the motor 34 (step S4). After that, the motor control unit 35 executes the drive control of the motor 34 based on the control value (step S5).
  • the force sense device 10 presents the operator a force sense regarding the behavior of the virtual object 1 in the grip portion 5.
  • the connecting shaft 24 can be oriented orthogonal to the longitudinal direction of the external gripping body 21 and the internal driving body 22. Therefore, the force sense can be suitably presented to the operator by a simple operation of rotating the internal drive body 22 with respect to the external grip body 21.
  • the elastomer resin for the external gripping body 21 even if the external gripping body 21 is in contact with the internal driving body 22, torsional deformation or the like is caused between the external gripping body 21 and the internal driving body 22. Displacement can occur.
  • the acceleration sensor as the motion detection unit 23 the motion of the external gripping body 21 can be detected as the acceleration.
  • the external gripping body 21 is made of an elastomer resin in the first embodiment, it may be made of a hard resin as in the case 31 of the internal driving body 22. In this case, it is preferable to leave a gap between the external gripping body 21 and the internal driving body 22 so that a relative displacement is possible between the external gripping body 21 and the internal driving body 22.
  • FIG. 9 is a diagram showing a force sense device according to the second embodiment of the present disclosure.
  • the axial direction of the connecting shaft 24 is the same as the longitudinal direction of the external gripping body 21 and the internal driving body 22. That is, the connecting shaft 24 is provided so that its axial direction extends in the longitudinal direction of the external gripping body 21, and both ends in the axial direction are fixed to the external gripping body 21.
  • the internal drive body 22 is rotatable with respect to the connecting shaft 24.
  • the connecting gear 25 and the motor gear 36 may have a gear arrangement in which the connecting shaft 24 can rotate. For example, by using a spur gear, the output shaft of the motor 34 and the connecting shaft 24 may be in a parallel state. , The output of the motor 34 may be configured to be transmittable.
  • the connecting shaft 24 can be in the same direction with respect to the longitudinal direction of the external gripping body 21 and the internal driving body 22. Therefore, the operator can be presented with a force sense different from that of the first embodiment by a simple operation of rotating the internal drive body 22 with respect to the external grip body 21.
  • the present invention is not limited to the above embodiments.
  • the components in the embodiment include those that can be easily replaced by those skilled in the art, or those that are substantially the same.
  • the components described below can be appropriately combined, and when there are a plurality of embodiments, each embodiment can be combined.
  • the first embodiment and the second embodiment may be combined. That is, the connecting shaft 24 may be 1 or more. That is, by using a plurality of connecting shafts 24, a multi-axis configuration may be used. In this case, the axial direction of the connecting shaft 24 may be the same direction or different directions, and is not particularly limited. If the axial direction of the connecting shaft 24 is set to a different direction, the internal driving body 22 can rotate three-dimensionally with respect to the external gripping body 21.
  • the force sense device 10 and the control device 11 are separate bodies, but the force sense device 10 and the control device 11 may be integrated. That is, the force sense device 10 may be configured to include a control unit that functions as a control device 11.
  • the present disclosure may also have the following structure.
  • An outer external grip that is formed as a grip of a virtual object and gripped by the operator, An operation detection unit provided on the external grip body and detecting the operation of the external grip body, An internal drive body provided inside the external grip body, connected to the external grip body, and moving relative to the external grip body based on the detection result of the motion detection unit.
  • Force sense device equipped with (2)
  • the external grip body and the internal drive body are connected via a connecting shaft and are provided so as to extend in the longitudinal direction.
  • the force sensor according to (1) above, wherein the connecting axis is in a direction orthogonal to the longitudinal direction.
  • the external grip body and the internal drive body are connected via a connecting shaft and are provided so as to extend in the longitudinal direction.
  • a control unit for controlling the internal drive body is further provided. The control unit Obtain the physical quantity related to the virtual object and Acquire the detection result of the motion detection unit, Based on the acquired physical quantity and the detection result, a control signal of the internal drive body for reproducing the behavior of the virtual object is generated.
  • a control device for a force sense device that controls the force sense device according to (1) above Obtain the physical quantity related to the virtual object and Acquire the detection result of the motion detection unit, Based on the acquired physical quantity and the detection result, a control signal of the internal drive body for reproducing the behavior of the virtual object is generated.
  • the method for controlling a force sense device according to (1) above, wherein the force sense device is controlled. Obtain the physical quantity related to the virtual object and Acquire the detection result of the motion detection unit, Based on the acquired physical quantity and the detection result, a control signal of the internal drive body for reproducing the behavior of the virtual object is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

力覚デバイスは、仮想的な物体の把持部として形成され、操作者が把持する外側の外部把持体と、前記外部把持体に設けられ、前記外部把持体の動作を検出する動作検出部と、前記外部把持体の内部に設けられると共に、前記外部把持体と連結され、前記動作検出部の検出結果に基づいて、前記外部把持体に対して相対的に移動する内部駆動体と、を備える。

Description

力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法
 本開示は、力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法に関する。
 従来、ゲーム装置のコントローラを用いて、仮想空間のオブジェクトの動きをコントロールするゲーム装置が知られている(例えば、特許文献1参照)。特許文献1では、ゲーム装置が、コントローラの位置情報に基づいて算出される変位量がゼロとなるように補正している。これにより、ゲーム装置は、コントローラから取得されるコントローラの位置精度が低い場合であっても、仮想空間のオブジェクトに生じ得る手振れのような振動を抑制している。
特開2008-113845号公報
 ところで、コントローラ等の入力デバイスは、操作者に対して力覚を提示する力覚デバイスとして用いられる場合がある。しかしながら、仮想的な物体の挙動に関する力覚を、操作者に対して提示する力覚デバイスとして、仮想的な物体の把持部における挙動を提示する力覚デバイスは知られていない。仮想的な物体としては、例えば、釣り竿、ゴルフクラブ等であり、把持部における挙動としては、グリップ等の外部側の構造体と、シャフト等の内部側の構造体とのねじれ変形等である。
 そこで、本開示では、仮想的な物体の把持部における挙動に関する力覚を、操作者に提示することができる力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法を提案する。
 上記の課題を解決するために、本開示に係る一形態の力覚デバイスは、仮想的な物体の把持部として形成され、操作者が把持する外側の外部把持体と、前記外部把持体に設けられ、前記外部把持体の動作を検出する動作検出部と、前記外部把持体の内部に設けられると共に、前記外部把持体と連結され、前記動作検出部の検出結果に基づいて、前記外部把持体に対して相対的に移動する内部駆動体と、を備える。
 また、本開示に係る一形態の力覚デバイスの制御装置は、上記の力覚デバイスを制御する力覚デバイスの制御装置であって、前記仮想的な物体に関する物理量を取得し、前記動作検出部の検出結果を取得し、取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、生成した前記制御信号に基づいて、前記内部駆動体を制御する。
 また、本開示に係る一形態の力覚デバイスの制御方法は、上記の力覚デバイスを制御する力覚デバイスの制御方法であって、前記仮想的な物体に関する物理量を取得し、前記動作検出部の検出結果を取得し、取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、生成した前記制御信号に基づいて、前記内部駆動体を制御する。
本開示の仮想的な物体における把持部の一例を示す図である。 仮想的な物体における把持部の挙動に関する一例の図である。 本開示の第1実施形態に係る力覚デバイスの操作に関する図である。 本開示の第1実施形態に係る力覚デバイスを示す図である。 本開示の第1実施形態に係る力覚デバイスと制御装置とを示すブロック図である。 力覚デバイスの操作と内部駆動体との動作を示す一例の図である。 力覚デバイスの操作と内部駆動体との動作を示す一例の図である。 本開示の第1実施形態に係る力覚デバイスの制御方法に関するフローチャートである。 本開示の第2実施形態に係る力覚デバイスを示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
(第1実施形態)
 本開示の第1実施形態に係る力覚デバイス10及び制御装置11は、力覚デバイス10を操作する操作者に対して、仮想的な物体(以下、仮想物体ともいう)1の把持部における挙動を再現するように力覚を提示する。力覚デバイス10及び制御装置11の説明に先立ち、仮想物体1について説明する。
(仮想的な長尺の物体)
 図1は、本開示の仮想的な物体における把持部の一例を示す図である。図1に示す物体は、把持部5を有する仮想物体1であり、例えば、ゴルフクラブまたは釣り竿等の長尺の物体となっている。なお、仮想物体1は、長尺の物体に限らず、把持部5を有するものであれば、特に限定されない。仮想物体1は、例えば、剣、振り子、バイクのスロットル、航空機の操縦桿等であってもよい。また、仮想物体1は、バトミントンのラケット等、一方の端部(把持部とは反対側の端部)に大きな膨らみを有する物体であってもよい。第1実施形態における仮想物体1の把持部5は、外側のグリップ6と、グリップ6の内部に設けられるシャフト7と、を有する。シャフト7は、軸方向を長手方向として延在する長尺のものとなっている。グリップ6は、シャフト7の外周を被覆するように設けられ、シャフト7の全周に亘って設けられる。再現される仮想物体1の把持部における挙動とは、シャフト7に対するグリップ6のねじれ変形である。
 ここで、図2を参照して、仮想物体1の把持部5における挙動について例示する。図2は、仮想的な物体における把持部の挙動に関する一例の図である。図2のパターンP1は、仮想物体1が長尺の棒である。パターンP1では、棒の先端が壁に衝突したときの把持部5の挙動に関する力覚を、力覚デバイス10により操作者に提示している。図2のパターンP2は、仮想物体1が釣り竿である。パターンP2では、釣り竿がしなるときの把持部5の挙動に関する力覚を、力覚デバイス10により操作者に提示している。図2のパターンP3は、仮想物体1が長尺の棒である。パターンP3では、棒の長手方向を鉛直方向にバランスさせたときの把持部5の挙動に関する力覚を、力覚デバイス10により操作者に提示している。図2のパターンP4は、仮想物体1が長尺の棒と棒状を移動する球体である。パターンP4では、棒の長手方向を水平方向として球体を移動させたときの把持部5の挙動に関する力覚を、力覚デバイス10により操作者に提示している。図2のパターンP5は、仮想物体1がライフルである。パターンP5では、ライフルのショット時における把持部5の挙動に関する力覚を、力覚デバイス10により操作者に提示している。
 上記した仮想物体1の把持部5における挙動を、操作者に対する力覚として提示すべく、第1実施形態では、下記のような力覚デバイス10及び制御装置11を備える力覚システム100としている。
(力覚システム)
 次に、図3から図5を参照して、力覚デバイス10と制御装置11とを備える力覚システム100について説明する。図3は、本開示の第1実施形態に係る力覚デバイスの操作に関する図である。図4は、本開示の第1実施形態に係る力覚デバイスを示す図である。図5は、本開示の第1実施形態に係る力覚デバイスと制御装置とを示すブロック図である。
 力覚システム100は、図5に示すように、操作者によって操作される力覚デバイス10と、力覚デバイス10を制御する制御装置11とを備える。力覚デバイス10と制御装置11とは、双方向通信が可能となるように接続されている。力覚デバイス10と制御装置11とは、有線通信または無線通信が可能に接続されている。なお、力覚デバイス10と制御装置11との通信接続は、サーバを介して行われていてもよい。
(力覚デバイス)
 力覚デバイス10は、図4に示すように、操作者に対して、仮想物体1の把持部5における挙動に関する力覚を提示するデバイスなっている。力覚デバイス10は、例えば、VR(Virtual Reality)ゲームで使用するためのデバイスである。なお、力覚デバイス10は、ゲーム以外のVRで使用されてもよいし、AR(Augmented Reality)で使用されてもよい。力覚デバイス10は、外部把持体21と、内部駆動体22と、動作検出部23と、を有している。なお、図4は、正面、上面、側面から見たときの力覚デバイス10の内部構造を模式的に示す図となっている。
 外部把持体21は、仮想物体1のグリップ6に対応する部位となっている。外部把持体21は、操作者が把持する外側の構造体である。外部把持体21は、後述する内部駆動体22を被覆するように設けられ、長手方向に延在して設けられる。外部把持体21は、例えば、エラストマー樹脂により形成されている。このため、外部把持体21は、内部駆動体22に比して弾性を有するものとなっている。
 内部駆動体22は、仮想物体1のシャフト7に対応する部位となっている。内部駆動体22は、外部把持体21の内部に設けられ、長手方向に延在して設けられる。内部駆動体22は、連結軸24を介して外部把持体21と連結されている。内部駆動体22は、外部把持体21に対して相対的に移動可能となっている。具体的に、内部駆動体22は、連結軸24を中心として、外部把持体21に対して回動可能となっている。
 連結軸24は、軸方向の両端部が、外部把持体21に固定されている。連結軸24は、その軸方向が、外部把持体21の長手方向に直交する方向となっている。連結軸24には、後述する内部駆動体22のモータギア36と噛み合う連結ギア25が設けられている。連結ギア25は、例えば、傘歯車となっている。
 内部駆動体22は、ケース31と、モータ34と、モータギア36と、モータ制御部35と、を有する。
 ケース31は、外部把持体21に比して硬質な硬質樹脂を用いて形成されている。ケース31は、その内部が中空空間となっている。ケース31は、連結軸24に対して回転自在に連結されており、その内部に連結軸24に設けられる連結ギア25を格納している。
 モータ34は、外部把持体21に対して、連結軸24周りに内部駆動体22を回動させる駆動源となっている。モータ34は、ケース31内部に固定されている。モータ34は、その回転軸の軸方向が、内部駆動体22の長手方向と同じ方向となるように設けられている。モータギア36は、モータ34の出力軸に接続され、連結ギア25と噛み合うように設けられる。モータギア36は、モータ34の出力を連結軸24に伝達する。モータギア36は、例えば、傘歯車となっている。モータ34は、例えば、サーボモータが適用される。また、モータ34は、モータ制御部35に接続されており、モータ制御部35によって駆動制御される。
 モータ制御部35は、モータ34を制御しており、制御装置11に接続されている。モータ制御部35は、制御装置11から入力される制御信号に基づいて、モータ34を駆動制御する。
 動作検出部23は、操作者による外部把持体21の動作を検出するものであり、例えば、3軸加速度センサーまたはジャイロセンサー等の加速度センサーが適用される。動作検出部23は、外部把持体21の動作を検出するものであれば、いずれのセンサーであってもよい。動作検出部23は、外部把持体21の内部に固定して設けられると共に、外部把持体21の長手方向の一方側に設けられている。つまり、外部把持体21と内部駆動体22との間には、動作検出部23を設けるための空間が形成されており、この空間に、動作検出部23が配置される。また、動作検出部23は、制御装置11に接続されており、検出結果を制御装置11へ向けて出力している。
 なお、外部把持体21と内部駆動体22とは、動作検出部23を設けるための空間が形成されていれば、それ以外の部位は、隙間なく接して設けられていてもよいし、隙間を空けて設けてもよい。
 次に、図3を参照して、力覚デバイス10の操作について説明する。操作者に把持された操作前の力覚デバイス10は、外部把持体21と内部駆動体22との位置関係が初期状態となっている。力覚デバイス10を操作者が把持して操作すると、外部把持体21に設けられた動作検出部23は、外部把持体21の動作を検出し、検出結果を制御装置11へ向けて出力する。この後、制御装置11から力覚デバイス10へ制御信号が入力されると、モータ制御部35は、制御信号に基づいてモータ34を制御することにより、仮想物体1の把持部5における挙動を再現するための力覚を、操作者に対して提示する。具体的に、モータ制御部35は、モータ34を駆動させ、モータギア36を回転させることで、連結ギア25を相対的に回転させる。そして、モータ制御部35は、外部把持体21に対して内部駆動体22を連結軸24周りに回動させる。これにより、図3に示すように、力覚デバイス10の内部駆動体22は、外部把持体21に対して、連結軸24を中心に適宜回動することで、外部把持体21と内部駆動体22との間にねじれ変形を発生させる。
(制御装置)
 次に、図5を参照して、制御装置11について説明する。制御装置11は、動作検出部23の検出結果に基づいて、仮想物体1の把持部5における挙動を再現するためのモータ34の制御信号を生成している。制御装置11は、演算部41と、記憶部42とを有する。制御装置11は、例えば、ゲーム装置である。
 演算部41は、例えば、CPU(Central Processing Unit)等の集積回路を用いて構成されている。演算部41は、物理演算エンジンを実行することで、動作検出部23の検出結果に基づく仮想物体1の把持部5における挙動を演算する。
 記憶部42は、プログラム及びデータを記憶する。また、記憶部42は、演算部41の処理結果を一時的に記憶する作業領域としても利用してもよい。記憶部42は、例えば、RAM(Random Access Memory)等の揮発性メモリ、ROM(Read Only Memory)等の不揮発性メモリの他、半導体記憶デバイス、及び磁気記憶デバイス等の任意の記憶デバイスを含んでよい。また、記憶部42は、複数の種類の記憶デバイスを含んでもよい。また、記憶部42は、メモリカード等の可搬の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでもよい。
 記憶部42は、データとして、仮想物体1に関する物理量のデータD1と、動作検出部23の検出結果に関するデータD2とを記憶する。データD1は、仮想物体1に関する物理量として、仮想物体1の形状、仮想物体1の材質等に関する情報を含む。仮想物体1の形状は、仮想物体1の長手方向における長さ等である。仮想物体1の材質は、材質の弾性係数等である。データD1は、予め入力され、記憶部42に記憶されたデータとなっている。データD2は、動作検出部23が加速度センサーである場合、加速度の時間変化に関する情報となっている。データD2は、動作検出部23からリアルタイムに取得されるデータとなっている。
 上記のような制御装置11において、力覚デバイス10から動作検出部23の検出結果が入力されると、演算部41は、記憶部42に記憶されたデータD1と、動作検出部23の検出結果であるデータD2とを取得する。演算部41は、データD1及びデータD2を入力として、物理演算エンジンによる物理演算を行って、再現される仮想物体1の挙動と、仮想物体1の挙動に基づく把持部5の挙動とを演算し、仮想物体1の把持部5の挙動としての、把持部5におけるグリップ6とシャフト7との相対変位を取得する。演算部41は、再現される把持部5の相対変位に関する信号を制御信号として生成し、制御信号を力覚デバイス10のモータ制御部35へ向けて出力する。
(力覚デバイスの動作)
 次に、図6及び図7を参照して、力覚デバイス10の操作と、内部駆動体22の動きとについて説明する。図6及び図7は、力覚デバイスの操作と内部駆動体との動作を示す一例の図である。図6及び図7では、仮想物体1として釣り竿を適用しており、釣り竿の挙動を再現している。具体的に、図6は、キャスティング時における釣り竿のグリップの挙動を再現する図となっており、図7は、釣り上げ時における釣り竿のグリップの挙動を再現する図となっている。図6及び図7は、左側から右側へ向かって時間が経過している。ここで、釣り竿のグリップ6は、外部把持体21に対応し、釣り竿のシャフト(ロッド)7は、内部駆動体22に対応するものとなっている。
 図6におけるタイムT1は、釣り竿の初期状態、つまり、力覚デバイス10の初期状態となっている。図6におけるタイムT2は、釣り竿を振り上げて停止したときの時間となっている。図6におけるタイムT3は、釣り竿を振り下げてキャスティングしたときの時間となっている。力覚デバイス10の外部把持体21が、タイムT1からタイムT2に遷移する場合、外部把持体21は、タイムT1において動作検出部23で検出される加速度がゼロとなる。この後、外部把持体21は、力覚デバイス10の振り上げによる加速度の変位が大きくなって、加速度のピークに到達し、ピーク到達後、加速度の変位が小さくなり、タイムT2において動作検出部23で検出される加速度がゼロとなる。
 このとき、力覚デバイス10の内部駆動体22は、タイムT1において、外部把持体21との相対的な変位はゼロとなる。この後、外部把持体21がタイムT1からタイムT2に遷移すると、内部駆動体22は、外部把持体21の動きに遅れることで、外部把持体21に対して相対的な遅れの変位が生じる。そして、内部駆動体22は、外部把持体21の加速度のピーク近辺において、外部把持体21との相対的な変位はゼロとなる。この後、外部把持体21の加速度がゼロに向かうことで、内部駆動体22は、慣性により、外部把持体21に先んじて動くことにより、外部把持体21に対して相対的な先進みの変位が生じる。
 力覚デバイス10の外部把持体21が、タイムT2からタイムT3に遷移する場合、外部把持体21は、タイムT2において動作検出部23で検出される加速度がゼロとなる。この後、外部把持体21は、力覚デバイス10の振り下げによる加速度の変位が大きくなって、加速度のピークに到達し、ピーク到達後、加速度の変位が小さくなり、タイムT3において動作検出部23で検出される加速度がゼロとなる。
 このとき、力覚デバイス10の内部駆動体22は、タイムT2において、外部把持体21との相対的な変位はゼロとなる。この後、外部把持体21がタイムT1からタイムT2に遷移すると、内部駆動体22は、外部把持体21の動きに遅れることで、外部把持体21に対して相対的な遅れの変位が生じる。そして、内部駆動体22は、外部把持体21の加速度のピーク近辺において、外部把持体21との相対的な変位はゼロとなる。この後、外部把持体21の加速度がゼロに向かうことで、内部駆動体22は、慣性により、外部把持体21に先んじて動くことにより、外部把持体21に対して相対的な先進みの変位が生じる。
 図7におけるタイムT4は、キャスティング後における釣り竿の初期状態、つまり、力覚デバイス10の初期状態となっている、図7におけるタイムT5は、釣り竿にヒットがあったときの時間となっている。図7におけるタイムT6は、釣り竿に設けられるリールを固定した状態で釣り竿を釣り上げて停止したときの時間となっている。図7におけるタイムT7は、リールを巻きながら釣り竿を釣り下げて停止したときの時間となっている。図7におけるタイムT8は、釣り竿を釣り上げて停止したときの時間となっている。
 力覚デバイス10の外部把持体21が、タイムT4からタイムT5に遷移する場合、外部把持体21は、タイムT4において動作検出部23で検出される加速度がゼロとなる。また、外部把持体21は、タイムT5においても動作検出部23で検出される加速度がゼロとなる。この後、外部把持体21は、力覚デバイス10の釣り上げによる加速度が大きくなって、加速度のピークに到達し、ピーク到達後、加速度が小さくなり、タイムT6において動作検出部23で検出される加速度がゼロとなる。続いて、外部把持体21は、力覚デバイス10の釣り下げによる加速度が大きくなって、加速度のピークに到達し、ピーク到達後、加速度が小さくなり、タイムT7において動作検出部23で検出される加速度がゼロとなる。タイムT5からタイムT7は、釣り上げまで繰り返し行われる。そして、外部把持体21は、タイムT8において、力覚デバイス10が釣り上げの状態となり、動作検出部23で検出される加速度がゼロとなる。
 このとき、力覚デバイス10の内部駆動体22は、タイムT4からタイムT5に至るまで、外部把持体21との相対的な変位はゼロとなる。この後、外部把持体21がタイムT5となると、内部駆動体22は、外部把持体21の動きに先んじて動くことで、外部把持体21に対して相対的な先進みの変位が生じる。内部駆動体22は、タイムT5からタイムT6に遷移すると、内部駆動体22は、留まろうとする力が作用するため、外部把持体21に対する相対的な先進みの変位が大きくなる。内部駆動体22は、タイムT6からタイムT7に遷移すると、釣り竿に作用する力が小さくなり、外部把持体21に対する相対的な変位が小さくなることで、外部把持体21に対して相対的な遅れの変位が生じる。内部駆動体22は、タイムT7からタイムT8に遷移すると、内部駆動体22は、釣り竿に作用する力が大きくなるため、タイムT6と同様に、外部把持体21の動きに先んじて動くことで、外部把持体21に対して相対的な先進みの変位が生じる。
(力覚デバイスの制御方法)
 次に、図8を参照して、力覚デバイス10の制御方法について説明する。図8は、本開示の第1実施形態に係る力覚デバイスの制御方法に関するフローチャートである。
 力覚デバイス10の制御方法では、先ず、制御装置11の演算部41が、仮想物体1の物理量に関するデータD1を記憶部42から取得する(ステップS1)。続いて、演算部41は、動作検出部23の検出結果である力覚デバイス10の動作を取得する(ステップS2)。この後、演算部41は、データD1とデータD2とに基づいて、仮想物体1の挙動を再現するための物理演算を実行する(ステップS3)。ステップS3では、仮想物体1の挙動の物理演算を行うことで、仮想物体1の把持部5における挙動も演算している。そして、演算部41は、物理演算の演算結果に基づくモータ34の制御信号を生成し、生成した制御信号を力覚デバイス10のモータ制御部35へ出力する。モータ制御部35は、制御信号を取得すると、制御信号に基づいて、モータ34を駆動制御するための制御値を生成する。つまり、モータ制御部35は、物理演算の演算結果をモータ34の制御値に変換する(ステップS4)。この後、モータ制御部35は、制御値に基づいて、モータ34の駆動制御を実行する(ステップS5)。以上により、力覚デバイス10は、操作者に対して仮想物体1の把持部5における挙動に関する力覚を提示する。
 以上のように、第1実施形態によれば、操作者に対して、仮想的な物体となる仮想物体1の把持部5における挙動に関する力覚を提示することができる。
 また、第1実施形態では、外部把持体21及び内部駆動体22の長手方向に対して、連結軸24を直交する方向とすることができる。このため、外部把持体21に対して内部駆動体22を回動させる簡易な動作により、操作者に対して力覚を好適に提示することができる。
 また、第1実施形態では、外部把持体21をエラストマー樹脂とすることで、内部駆動体22と接した状態であっても、外部把持体21と内部駆動体22との間にねじり変形等の変位を生じさせることができる。
 また、第1実施形態では、動作検出部23として加速度センサーを適用することにより、外部把持体21の動作を、加速度として検出することができる。
 なお、第1実施形態では、外部把持体21をエラストマー樹脂としたが、内部駆動体22のケース31と同様に、硬質樹脂としてもよい。この場合、外部把持体21と内部駆動体22との間において相対的な変位が可能なように、外部把持体21と内部駆動体22との間に隙間を空けることが好ましい。
(第2実施形態)
 次に、図9を参照して、実施形態2に係る力覚デバイス50について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図9は、本開示の第2実施形態に係る力覚デバイスを示す図である。
 第2実施形態の力覚デバイス50は、外部把持体21及び内部駆動体22の長手方向に対して、連結軸24の軸方向を同じ方向としたものとなっている。つまり、連結軸24は、その軸方向が、外部把持体21の長手方向に延在して設けられ、軸方向の両端部が、外部把持体21に固定されている。内部駆動体22は、連結軸24に対して回転自在となっている。なお、連結ギア25及びモータギア36は、連結軸24を回転可能なギア配列としてもよく、例えば、平歯車を用いることで、モータ34の出力軸と連結軸24とが平行な状態であっても、モータ34の出力を伝達可能に構成してもよい。
 以上のように、第2実施形態では、外部把持体21及び内部駆動体22の長手方向に対して、連結軸24を同じ方向とすることができる。このため、外部把持体21に対して内部駆動体22を回動させる簡易な動作により、操作者に対して実施形態1とは異なる力覚を提示することができる。
 なお、以上の実施形態によりこの発明が限定されるものではない。また、実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
 例えば、第1実施形態と第2実施形態とを組み合わせてもよい。つまり、連結軸24は、1以上としてもよい。つまり、複数の連結軸24を用いることで、多軸の構成としてもよい。この場合、連結軸24の軸方向は、同じ方向としてもよいし、異なる方向としてもよく、特に限定されない。連結軸24の軸方向を異なる方向にすれば、内部駆動体22は、外部把持体21に対して3次元的に回動可能となる。
 また、第1実施形態及び第2実施形態では、力覚デバイス10と制御装置11とが別体となっていたが、力覚デバイス10と制御装置11とが一体となっていてもよい。すなわち、力覚デバイス10が、制御装置11として機能する制御部を備える構成としてもよい。
 以上のように、本開示は以下のような構成も取ることができる。
(1)
 仮想的な物体の把持部として形成され、操作者が把持する外側の外部把持体と、
 前記外部把持体に設けられ、前記外部把持体の動作を検出する動作検出部と、
 前記外部把持体の内部に設けられると共に、前記外部把持体と連結され、前記動作検出部の検出結果に基づいて、前記外部把持体に対して相対的に移動する内部駆動体と、
 を備える力覚デバイス。
(2)
 前記外部把持体及び前記内部駆動体は、連結軸を介して連結されると共に、長手方向に延在して設けられ、
 前記連結軸は、前記長手方向に直交する方向となっている
 前記(1)に記載の力覚デバイス。
(3)
 前記外部把持体及び前記内部駆動体は、連結軸を介して連結されると共に、長手方向に延在して設けられ、
 前記連結軸は、前記長手方向と同じ方向となっている
 前記(1)に記載の力覚デバイス。
(4)
 前記外部把持体は、エラストマー樹脂を含む
 前記(1)に記載の力覚デバイス。
(5)
 前記外部把持体は、硬質樹脂を含む
 前記(1)に記載の力覚デバイス。
(6)
 前記動作検出部は、加速度センサーである
 前記(1)に記載の力覚デバイス。
(7)
 前記内部駆動体を制御する制御する制御部を、さらに備え、
 前記制御部は、
 前記仮想的な物体に関する物理量を取得し、
 前記動作検出部の検出結果を取得し、
 取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、
 生成した前記制御信号に基づいて、前記内部駆動体を制御する
 前記(1)に記載の力覚デバイス。
(8)
 前記(1)に記載の力覚デバイスを制御する力覚デバイスの制御装置であって、
 前記仮想的な物体に関する物理量を取得し、
 前記動作検出部の検出結果を取得し、
 取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、
 生成した前記制御信号に基づいて、前記内部駆動体を制御する
 力覚デバイスの制御装置。
(9)
 前記(1)に記載の力覚デバイスを制御する力覚デバイスの制御方法であって、
 前記仮想的な物体に関する物理量を取得し、
 前記動作検出部の検出結果を取得し、
 取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、
 生成した前記制御信号に基づいて、前記内部駆動体を制御する
 力覚デバイスの制御方法。
 1 仮想物体
 5 把持部
 10、50 力覚デバイス
 11 制御装置
 21 外部把持体
 22 内部駆動体
 23 動作検出部
 24 連結軸
 34 モータ
 35 モータ制御部
 41 演算部
 42 記憶部

Claims (9)

  1.  仮想的な物体の把持部として形成され、操作者が把持する外側の外部把持体と、
     前記外部把持体に設けられ、前記外部把持体の動作を検出する動作検出部と、
     前記外部把持体の内部に設けられると共に、前記外部把持体と連結され、前記動作検出部の検出結果に基づいて、前記外部把持体に対して相対的に移動する内部駆動体と、
     を備える力覚デバイス。
  2.  前記外部把持体及び前記内部駆動体は、連結軸を介して連結されると共に、長手方向に延在して設けられ、
     前記連結軸は、前記長手方向に直交する方向となっている
     請求項1に記載の力覚デバイス。
  3.  前記外部把持体及び前記内部駆動体は、連結軸を介して連結されると共に、長手方向に延在して設けられ、
     前記連結軸は、前記長手方向と同じ方向となっている
     請求項1に記載の力覚デバイス。
  4.  前記外部把持体は、エラストマー樹脂を含む
     請求項1に記載の力覚デバイス。
  5.  前記外部把持体は、硬質樹脂を含む
     請求項1に記載の力覚デバイス。
  6.  前記動作検出部は、加速度センサーである
     請求項1に記載の力覚デバイス。
  7.  前記内部駆動体を制御する制御する制御部を、さらに備え、
     前記制御部は、
     前記仮想的な物体に関する物理量を取得し、
     前記動作検出部の検出結果を取得し、
     取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、
     生成した前記制御信号に基づいて、前記内部駆動体を制御する
     請求項1に記載の力覚デバイス。
  8.  請求項1に記載の力覚デバイスを制御する力覚デバイスの制御装置であって、
     前記仮想的な物体に関する物理量を取得し、
     前記動作検出部の検出結果を取得し、
     取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、
     生成した前記制御信号に基づいて、前記内部駆動体を制御する
     力覚デバイスの制御装置。
  9.  請求項1に記載の力覚デバイスを制御する力覚デバイスの制御方法であって、
     前記仮想的な物体に関する物理量を取得し、
     前記動作検出部の検出結果を取得し、
     取得した前記物理量と前記検出結果とに基づいて、前記仮想的な物体の挙動を再現するための前記内部駆動体の制御信号を生成し、
     生成した前記制御信号に基づいて、前記内部駆動体を制御する
     力覚デバイスの制御方法。
PCT/JP2021/039063 2020-11-02 2021-10-22 力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法 WO2022091958A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/250,270 US20240019935A1 (en) 2020-11-02 2021-10-22 Haptic device, control device for haptic device, and control method for haptic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-183837 2020-11-02
JP2020183837 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022091958A1 true WO2022091958A1 (ja) 2022-05-05

Family

ID=81383857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039063 WO2022091958A1 (ja) 2020-11-02 2021-10-22 力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法

Country Status (2)

Country Link
US (1) US20240019935A1 (ja)
WO (1) WO2022091958A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214155A (ja) * 1997-01-30 1998-08-11 Sega Enterp Ltd 入力装置およびゲーム処理装置、その方法および記録媒体
JP2000308756A (ja) * 1999-04-27 2000-11-07 Taito Corp ゲーム装置の入力制御装置
WO2002073385A1 (fr) * 2001-03-08 2002-09-19 National Institute Of Advanced Industrial Science And Technology Procede et unite servant a presenter une force interieure au moyen d'un gyroscope
US20050017454A1 (en) * 2003-06-09 2005-01-27 Shoichi Endo Interactive gaming systems with haptic feedback
JP2010225155A (ja) * 2009-03-24 2010-10-07 Immersion Corp 触覚フィードバックを有する携帯コンピュータインタフェース
US20110121953A1 (en) * 2009-11-24 2011-05-26 Immersion Corporation Handheld Computer Interface with Haptic Feedback
WO2016116182A1 (en) * 2015-11-06 2016-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Flexible device for guiding a user
JP2018507490A (ja) * 2014-11-28 2018-03-15 ハプテック,インコーポレーテッド 触覚システムのための方法および装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214155A (ja) * 1997-01-30 1998-08-11 Sega Enterp Ltd 入力装置およびゲーム処理装置、その方法および記録媒体
JP2000308756A (ja) * 1999-04-27 2000-11-07 Taito Corp ゲーム装置の入力制御装置
WO2002073385A1 (fr) * 2001-03-08 2002-09-19 National Institute Of Advanced Industrial Science And Technology Procede et unite servant a presenter une force interieure au moyen d'un gyroscope
US20050017454A1 (en) * 2003-06-09 2005-01-27 Shoichi Endo Interactive gaming systems with haptic feedback
JP2010225155A (ja) * 2009-03-24 2010-10-07 Immersion Corp 触覚フィードバックを有する携帯コンピュータインタフェース
US20110121953A1 (en) * 2009-11-24 2011-05-26 Immersion Corporation Handheld Computer Interface with Haptic Feedback
JP2018507490A (ja) * 2014-11-28 2018-03-15 ハプテック,インコーポレーテッド 触覚システムのための方法および装置
WO2016116182A1 (en) * 2015-11-06 2016-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Flexible device for guiding a user

Also Published As

Publication number Publication date
US20240019935A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
KR20190000309A (ko) 회전 햅틱 효과를 출력하기 위한 복수의 세그먼트를 갖는 디바이스
JP2015002910A5 (ja)
KR20140148298A (ko) 운동 해석 방법 및 운동 해석 장치
US10698490B2 (en) Haptic feedback device, method and system
JP2000308756A (ja) ゲーム装置の入力制御装置
US20140065586A1 (en) Method of recording a motion for robotic playback
JPWO2002073385A1 (ja) ジャイロを用いた力覚呈示方法及び装置
WO2017192376A1 (en) Golf clubs and golf club heads having a plurality of sensors for detecting one or more swing parameters
US11880528B2 (en) Stimulus transmission device
TWI674134B (zh) 沉浸式系統、控制方法及非暫態電腦可讀取媒體
JP7482871B2 (ja) ジャイロ運動フィードバック装置
WO2019165588A1 (zh) 无人机的教学方法和无人机的遥控器
KR100953369B1 (ko) 실시간으로 가상 인물의 응답 움직임을 동적으로 생성하기 위한 장치 및 방법과, 그에 대한 컴퓨터 판독가능 기록 매체
WO2022091958A1 (ja) 力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法
US20220152486A1 (en) Device including movable mass body provided in housing
WO2021149563A1 (ja) ロボットシミュレーション装置
JP4923796B2 (ja) スウィングシミュレーション方法およびゴルフクラブの設計方法
JP2000176150A (ja) ゲーム機の入力操作装置
WO2022091911A1 (ja) 力覚デバイス、力覚デバイスの制御装置及び力覚デバイスの制御方法
US9536319B2 (en) Motion analysis method, motion analysis display method, and motion analysis device
US10101157B2 (en) Free-space force feedback system
JP6652789B2 (ja) 選択支援方法及び選択支援装置
JPH08173632A (ja) Tvゲーム装置
WO2024090137A1 (ja) 操作装置
JP6034928B1 (ja) ゲームシステム、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18250270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP