WO2022091849A1 - HOT-DIP Al-Zn-Si-Mg-PLATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET - Google Patents

HOT-DIP Al-Zn-Si-Mg-PLATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET Download PDF

Info

Publication number
WO2022091849A1
WO2022091849A1 PCT/JP2021/038478 JP2021038478W WO2022091849A1 WO 2022091849 A1 WO2022091849 A1 WO 2022091849A1 JP 2021038478 W JP2021038478 W JP 2021038478W WO 2022091849 A1 WO2022091849 A1 WO 2022091849A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
steel sheet
mass
film
resin
Prior art date
Application number
PCT/JP2021/038478
Other languages
French (fr)
Japanese (ja)
Inventor
昌浩 吉田
章一郎 平
利彦 大居
純久 岩野
洋平 佐藤
史嵩 菅野
聡 安藤
Original Assignee
Jfeスチール株式会社
Jfe鋼板株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021150583A external-priority patent/JP7091535B2/en
Priority claimed from JP2021150572A external-priority patent/JP7091533B2/en
Priority claimed from JP2021150577A external-priority patent/JP7091534B2/en
Application filed by Jfeスチール株式会社, Jfe鋼板株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020237015480A priority Critical patent/KR20230082043A/en
Priority to CN202180073437.6A priority patent/CN116490635A/en
Priority to AU2021369097A priority patent/AU2021369097A1/en
Publication of WO2022091849A1 publication Critical patent/WO2022091849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a molten Al-Zn-Si-Mg-based plated steel sheet, a surface-treated steel sheet and a coated steel sheet having stable and excellent corrosion resistance.
  • hot-dip Al-Zn-based plated steel sheets represented by 55% Al-Zn-based steel sheets exhibit high corrosion resistance among hot-dip galvanized steel sheets because they have both the sacrificial corrosion resistance of Zn and the high corrosion resistance of Al. Has been done. Therefore, due to its excellent corrosion resistance, hot-dip Al-Zn plated steel sheets are mainly used in the field of building materials such as roofs and walls that are exposed to the outdoors for a long period of time, and in the field of civil engineering and construction such as guardrails, wiring pipes, and noise barriers. ..
  • the plating film of the molten Al-Zn-based plated steel sheet consists of the portion where Al containing Zn oversaturated is solidified into a dendrite ( ⁇ -Al phase) and the Zn-Al eutectic structure existing in the dendrite gap (interdrendlite). It is characterized by having a structure in which a plurality of ⁇ -Al phases are laminated in the film thickness direction of the plating film. Due to such a characteristic film structure, the corrosion progress path from the surface becomes complicated, so that the corrosion does not easily proceed, and the hot-dip Al-Zn-based plated steel sheet becomes a hot-dip galvanized steel sheet having the same plating film thickness. It is also known that better corrosion resistance can be achieved.
  • Patent Document 1 contains an Al-Zn-Si alloy containing Mg in a plating film, and the Al-Zn-Si alloy is 45 to An alloy containing 60% by weight elemental aluminum, 37-46% by weight elemental zinc and 1.2-2.3% by weight Si, wherein the Mg concentration is 1-5% by weight, molten Al-Zn-Si-. Mg-based plated steel sheets are disclosed.
  • the plating film contains at least one of 2 to 10% Mg and 0.01 to 10% Ca to improve corrosion resistance and protect the base steel sheet after it is exposed.
  • a molten Al-Zn-Si-Mg-based plated steel sheet for the purpose of enhancing the above-mentioned is disclosed.
  • Mg: 1 to 15%, Si: 2 to 15%, Zn: 11 to 25% are contained in mass%, and the balance forms a coating layer composed of Al and unavoidable impurities.
  • Molten Al-Zn-Si-Mg system with improved corrosion resistance of flat plate and end face by reducing the size of intermetallic compounds such as Mg 2 Si phase and Mg Zn 2 phase present in the plating film to 10 ⁇ m or less. Plated steel plates are disclosed.
  • Patent Document 4 discloses a molten Al-Zn-Si-Mg-based plated steel sheet in which wrinkle-like unevenness defects are suppressed by containing 0.01 to 10% Sr in the plating film.
  • Patent Document 5 also discloses a molten Al-Zn-Si-Mg-based plated steel sheet in which mottled defects are suppressed by containing 500 to 3000 ppm of Sr in the plating film.
  • Patent Document 6 discloses a molten Al-Zn-Si-Mg-based plated steel sheet in which 0.001 to 1.0% of Sr is contained in the plating film to achieve both surface appearance and corrosion resistance.
  • Patent Document 7 also describes a molten Al-Zn-Si-Mg-based plated steel sheet in which 0.001 to 1.0% of Sr is contained in the plating film to achieve both surface appearance and corrosion resistance between the flat plate portion and the processed portion. Is disclosed.
  • Patent Document 8 also discloses a molten Al-Zn-Si-Mg-based plated steel sheet that achieves both surface appearance and corrosion resistance by containing 0.01 to 0.2% Sr in the plating film. .. Further, Patent Document 9 discloses a molten Al-Zn-Si-Mg-based plated steel sheet having improved corrosion resistance by controlling the Si and Mg concentrations in the plating film at a specific ratio.
  • Patent Document 10 describes molten Al-Zn-Si in which the mass ratio of Mg in the Si-Mg phase to the total amount of Mg in the plating layer is optimized for the purpose of improving the white rust resistance of the processed portion. -Mg-based plated steel sheets are disclosed.
  • Patent Document 11 blackening resistance and white rust resistance are improved by forming a chemical conversion film containing a urethane resin on the plating film of a molten Al-Zn-Si-Mg-based plated steel sheet.
  • the technology is disclosed.
  • a coated steel sheet in which a chemical conversion film, primer coating film, topcoat coating film, etc. is formed on the surface of a molten Al-Zn-based plated steel sheet can be bent 90 degrees or 180 degrees by press forming, roll forming, or embossing. Various processing is applied, and long-term coating film durability is required.
  • the molten Al-Zn-based plated steel sheet forms a chromate-containing chemical conversion film
  • the primer coating film also contains a chromate-based rust-preventive pigment, and on top of that, a heat-curable polyester-based film.
  • Patent Document 12 describes aluminum-zinc alloy plating containing Al, Zn, Si and Mg on the surface of a steel material and adjusting the content of these elements.
  • the layer ( ⁇ ) is plated, and a film ( ⁇ ) containing at least one compound (A) selected from a titanium compound and a zirconium compound as a film-forming component is formed as an upper layer thereof, and an aluminum-zinc alloy plated layer ( ⁇ ) is formed.
  • a surface-treated hot-dip plated steel material in which the mass ratio of the Si—Mg phase in ⁇ ) to the total amount of Mg in the plating layer is adjusted to 3% or more is disclosed.
  • the technique of containing Mg in the plating film as disclosed in Patent Documents 1 to 3 does not always bring about the improvement of corrosion resistance uniquely.
  • the corrosion resistance is improved only by containing Mg in the plating component.
  • the characteristics of the intermetallic phase were not considered, and it was not possible to uniformly talk about the superiority or inferiority of corrosion resistance. Therefore, even when a molten Al-Zn-Si-Mg-based plated steel sheet is manufactured using the same plating bath composition, the corrosion resistance varies when the corrosion acceleration test is carried out, and the Al-Zn-based plated steel sheet to which Mg is not added is present.
  • Bottom dross FeAl-based compounds (bottom dross) containing iron that are unevenly distributed in the middle or bottom may be generated, and these dross adhere to the surface of the plating film and cause convex defects, which impairs the appearance of the surface of the plating film. There was also a fear.
  • the coated steel sheet has long-term coating film durability performance in a state where it has been subjected to various processing such as 90 degree bending and 180 degree bending by press forming, roll forming, embossing, etc.
  • various processing such as 90 degree bending and 180 degree bending by press forming, roll forming, embossing, etc.
  • Patent Document 12 can always obtain stable corrosion resistance and surface appearance after processing.
  • the corrosion resistance of the coated steel sheet is affected by the corrosion resistance of the plated steel sheet used as the base, and as for the surface appearance, the height difference of the unevenness of the wrinkle-like defect is as much as several tens of ⁇ m. Even if the surface is smoothed, the unevenness is not completely eliminated, and it is considered that the appearance of the coated steel sheet cannot be improved.
  • the coating film becomes thin in the convex portion, there is a concern that the corrosion resistance is locally deteriorated. Therefore, in order to obtain a coated steel sheet having excellent corrosion resistance and surface appearance, it is important to improve the corrosion resistance and surface appearance of the underlying plated steel sheet.
  • an object of the present invention to provide a molten Al-Zn-Si-Mg-based plated steel sheet having stable and excellent corrosion resistance. Another object of the present invention is to provide a surface-treated steel sheet having stable and excellent corrosion resistance and white rust resistance. Further, it is an object of the present invention to provide a coated steel sheet having stable and excellent corrosion resistance and corrosion resistance of a processed portion.
  • the present inventors have found the Mg 2 Si phase, Mg Zn 2 phase, and Si phase formed in the plating film of the molten Al-Zn-Si-Mg-based plated steel sheet. It was found that the amount of precipitation increases or decreases depending on the balance of each component in the plating film and the formation conditions of the plating film, the abundance ratio changes, and one of the phases may not precipitate depending on the balance of the composition. In addition, the corrosion resistance of the molten Al-Zn-Si-Mg-based plated steel sheet changes depending on the abundance ratio of these phases, and the corrosion resistance is stable especially when there are more MgZn 2 phases than Mg 2 Si phase or Si phase. Investigated to improve.
  • Mg 2 Si phase, Mg Zn 2 phase and Si phase a general method such as a scanning electron microscope is used to observe the plating film from the surface or cross section as a secondary electron image or a backscattered electron image. It is known that it is very difficult to discriminate the difference between the phases even if the above is performed. As a method for more detailed analysis, it is possible to obtain microscopic information by observing with a transmission electron microscope, but Mg 2 Si, MgZn 2 and MgZn 2 that influence macroscopic information such as corrosion resistance and appearance. It was not possible to grasp the abundance ratio of the Si phase.
  • the present inventors focused on the X-ray diffraction method and used the intensity ratio of specific diffraction peaks of Mg 2 Si phase, Mg Zn 2 phase and Si phase to obtain the phase. If the abundance ratio can be quantitatively defined, and if the Mg 2 Si phase and Mg Zn 2 phase satisfy a specific abundance ratio in the plating film, stable and excellent corrosion resistance can be achieved, and the occurrence of dross is suppressed. It was found that good surface appearance can be ensured. Furthermore, the present inventors control the Sr concentration in the bath after controlling the abundance ratio of Mg 2 Si phase, MgZn 2 phase, Si phase, etc. in the molten Al-Zn-Si-Mg based plated steel sheet. As a result, it was also found that a plated steel sheet with excellent surface appearance can be obtained by surely suppressing the occurrence of wrinkle-like uneven defects.
  • the present inventors also studied the chemical conversion film formed on the plating film, and formed the chemical conversion film from a specific resin and a specific metal compound to form a plating film of the chemical conversion film. It was also found that the affinity of the white rust and the rust preventive effect were enhanced, and the stable improvement of the white rust resistance was improved.
  • the present inventors have also studied the chemical conversion film and the primer coating film formed on the plating film, and while forming the chemical conversion film with a specific resin and a specific inorganic compound, the primer coating film is formed. It has also been found that, by being composed of a specific polyester resin and an inorganic compound, the barrier property and adhesion of the coating film can be enhanced, and excellent post-processing corrosion resistance can be realized even if it is chromate-free.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • 1. A molten Al-Zn-Si-Mg-based plated steel sheet with a plating film.
  • the plating film contains Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and has a composition in which the balance is Zn and unavoidable impurities.
  • a molten Al-Zn-Si-Mg-based plated steel sheet characterized in that the diffraction intensities of Mg 2 Si and Mg Zn 2 in the plating film by the X-ray diffraction method satisfy the following relationship (1).
  • Mg 2 Si (111): Diffraction intensity of Mg 2 Si (111) plane (plane spacing d 0.3668 nm)
  • MgZn 2 (100): Diffraction intensity of MgZn 2 (100) plane (plane spacing d 0.4510 nm)
  • Si (111) 0 ⁇ ⁇ ⁇ (2)
  • Si (111): Diffraction intensity of Si (111) plane (plane spacing d 0.3135 nm)
  • a surface-treated steel sheet comprising the plating film according to any one of 1 to 6 and a chemical conversion film formed on the plating film.
  • the chemical conversion film comprises at least one resin selected from epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin, and P compound and Si compound. , Co compound, Ni compound, Zn compound, Al compound, Mg compound, V compound, Mo compound, Zr compound, Ti compound and at least one metal compound selected from Ca compound. Surface treated steel plate.
  • the chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton in a total amount of 30 to 50% by mass, and contains the (a) and the (b).
  • the ratio ((a): (b)) is in the range of 3:97 to 60:40 in mass ratio, 2 to 10% by mass of vanadium compound, 40 to 60% by mass of zirconium compound and 0.5 to 0.5.
  • the coating film has at least a primer coating film, and the primer coating film contains a polyester resin having a urethane bond and an inorganic compound containing a vanadium compound, a phosphoric acid compound and magnesium oxide. , Painted steel plate.
  • the present invention it is possible to provide a molten Al-Zn-Si-Mg-based plated steel sheet having stable and excellent corrosion resistance. Further, according to the present invention, it is possible to stably provide a surface-treated steel sheet having excellent corrosion resistance and white rust resistance. Further, according to the present invention, it is possible to stably provide a coated steel sheet having excellent corrosion resistance and corrosion resistance of a processed portion.
  • the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention has a plating film on the surface of the steel sheet.
  • the plating film contains Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and has a composition in which the balance is Zn and unavoidable impurities.
  • the Al content in the plating film is 45 to 65% by mass, preferably 50 to 60% by mass, from the viewpoint of the balance between corrosion resistance and operation. This is because if the Al content in the plating film is at least 45% by mass, dendrite solidification of Al occurs, and a plating film structure mainly composed of the dendrite solidified structure of the ⁇ -Al phase can be obtained.
  • the corrosion progress path becomes complicated and the corrosion resistance of the plating film itself is improved. Further, the more the dendrite portions of the ⁇ -Al phase are laminated, the more complicated the corrosion progress path becomes, and the more difficult it is for corrosion to reach the base steel sheet.
  • the corrosion resistance is improved, and the Al content is 50 mass. % Or more is preferable.
  • the Al content in the plating film exceeds 65% by mass, most of Zn changes to a structure that is solid-dissolved in ⁇ -Al, and the dissolution reaction of the ⁇ -Al phase cannot be suppressed, so that Al-Zn -The corrosion resistance of Si-Mg plating deteriorates. Therefore, the Al content in the plating film needs to be 65% by mass or less, preferably 60% by mass or less.
  • Si in the plating film mainly suppresses the growth of the Fe-Al-based and / or Fe-Al-Si-based interfacial alloy layer generated at the interface with the underlying steel sheet, and does not deteriorate the adhesion between the plating film and the steel sheet.
  • Added for the purpose When a steel plate is actually immersed in an Al-Zn-based plating bath containing Si, Fe on the surface of the steel plate and Al or Si in the bath undergo an alloying reaction, and Fe-Al-based and / or Fe-Al-Si-based.
  • the metal-metal compound layer is formed at the base steel plate / plating film interface.
  • the Fe-Al-Si alloy has a slower growth rate than the Fe-Al alloy, so the ratio of the Fe-Al-Si alloy is high.
  • the higher the value the more the growth of the entire interfacial alloy layer is suppressed. Therefore, the Si content in the plating film needs to be 1.0% by mass or more.
  • the Si content in the plating film exceeds 4.0% by mass, not only the above-mentioned growth suppressing effect of the interfacial alloy layer is saturated, but also corrosion is promoted due to the presence of an excess Si phase in the plating film. Therefore, the Si content should be 4.0% or less.
  • the content of Si in the plating film is preferably 3.0% or less from the viewpoint of suppressing the presence of an excessive Si phase.
  • the Si content is preferably 1.0 to 3.0% by mass from the viewpoint of easily satisfying the relational expression (1) described later in relation to the Mg content described later.
  • the plating film contains 1.0 to 10.0% of Mg.
  • Mg in the plating film, the above-mentioned Si can be present in the form of an intermetallic compound of Mg 2 Si phase, and the promotion of corrosion can be suppressed.
  • MgZn 2 phase which is an intermetallic compound, is also formed in the plating film, and the effect of further improving the corrosion resistance can be obtained.
  • Mg content in the plating film is less than 1.0% by mass, Mg is used for solid solution to the ⁇ -Al phase, which is the main phase, rather than the formation of the intermetallic compounds (Mg 2 Si, MgZn 2 ). Therefore, sufficient corrosion resistance cannot be ensured.
  • the Mg content in the plating film is set to 10.0% or less.
  • the Mg content in the plating film is preferably 5.0% by mass or less from the viewpoint of suppressing the generation of dross during plating formation and facilitating the management of the plating bath. From the viewpoint of easily satisfying the relational expression (1) described later in relation to the Si content, the Mg content is preferably 3.0% by mass, and compatibility with dross suppression is taken into consideration. Then, it is more preferable to set the Mg content to 3.0 to 5.0% by mass.
  • the abundance ratio of Mg 2 Si and Mg Zn 2 in the plating film is related to the relationship (1): Mg 2 Si (111) / MgZn 2 (100) ⁇ using the diffraction peak intensity obtained by the X-ray diffraction method. It is necessary to satisfy 2.0, but when the abundance ratio of Mg 2 Si and Mg Zn 2 in the plating film does not satisfy the relationship (1), that is, when Mg 2 Si (111) / MgZn 2 (100)> 2.0. Because a large amount of Mg 2 Si is present in the metal-to-metal compound present in the plating film, the above-mentioned Mg-rich environment cannot be obtained in the vicinity of the corrosion product, and the plating film is protected.
  • the composition of the plating film tentatively satisfies the range of the present invention (Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg). : Even if it contains 1.0 to 10.0% by mass and the balance consists of Zn and unavoidable impurities), if the abundance ratio of Mg 2 Si and Mg Zn 2 does not satisfy the relationship (1), it is according to the present invention. The effect of improving the protective effect of the plating film cannot be sufficiently obtained.
  • MgZn 2 (100) is the diffraction intensity of MgZn 2 .
  • (100) Diffraction intensity of planes (plane spacing d 0.4510 nm).
  • the amount of plating film (amount to scrape off the plating film) required for powder X-ray diffraction measurement is 0.1 g from the viewpoint of accurately measuring Mg 2 Si (111) and Mg Zn 2 (100). It is sufficient if it is more than 0.3 g, and it is preferable that it is 0.3 g or more.
  • the plating film when the plating film is scraped off, steel plate components other than the plating film may be contained in the powder, but these intermetallic compound phases are contained only in the plating film, and the above-mentioned peak strength can be obtained. It has no effect. Further, the reason why the plating film is powdered and X-ray diffraction is performed is that when X-ray diffraction is performed on the plating film formed on the plated steel sheet, it is affected by the plane orientation of the solidification structure of the plating film and has the correct phase ratio. This is because it is difficult to perform the calculation.
  • the diffraction intensity of Si in the plating film by the X-ray diffraction method is as follows because the corrosion resistance can be improved more stably. It is preferable to satisfy the relationship (2).
  • Si (111) 0 ⁇ ⁇ ⁇ (2)
  • Si (111): Diffractive intensity of Si (111) plane (plane spacing d 0.3135 nm)
  • the Si phase is present as a cathode site, so that the surroundings Since it is known to promote the dissolution of the ⁇ -Al phase, reducing the Si phase is also effective from the viewpoint of suppressing the dissolution of the ⁇ -Al phase, and among them, Si as described in the relationship (2).
  • a phase-free film (setting the diffraction peak intensity of Si (111) to zero) is the most excellent for stabilizing corrosion resistance.
  • the same method as the above-mentioned method for measuring Mg 2 Si (111) and Mg Zn 2 (100) can be used.
  • the method for satisfying the above-mentioned relationship (1) and relationship (2) is not particularly limited.
  • the balance between the Si content, the Mg content and the Al content in the plating film is adjusted so that Mg 2 Si and Mg Zn 2 can be satisfied.
  • the abundance ratio of Si can be controlled.
  • the balance between the Si content, the Mg content and the Al content in the plating film does not necessarily satisfy the relationship (1) and the relationship (2) if the content ratio is set to a certain level, for example, Si. It is necessary to change the content ratio of Mg and Al depending on the content (mass%).
  • the conditions for forming the plating film (for example, cooling conditions after plating) can be adjusted.
  • the diffraction intensity of Mg 2 Si (111), MgZn 2 (100) and Si (111) can be controlled so as to satisfy the relation (1) and the relation (2).
  • the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention contains Zn and unavoidable impurities.
  • the unavoidable impurities contain Fe.
  • This Fe is inevitably contained in the plating bath due to elution of the steel sheet and the equipment in the bath, and is supplied by diffusion from the base steel sheet during the formation of the interfacial alloy layer, and as a result, it is inevitably contained in the plating film. Will be included.
  • the Fe content in the plating film is usually about 0.3 to 2.0% by mass.
  • Other unavoidable impurities include Cr, Ni, Cu and the like.
  • the total content of the unavoidable impurities is not particularly limited, but if it is excessively contained, it may affect various characteristics of the plated steel sheet, so that the total content is preferably 5.0% by mass or less.
  • the plating film contains 0.01 to 1.0% by mass of Sr.
  • Sr When the plating film contains Sr, it is possible to more reliably suppress the occurrence of surface defects such as wrinkle-like uneven defects, and it is possible to realize good surface appearance.
  • the wrinkle-like defect is a wrinkle-like uneven defect formed on the surface of the plating film, and is observed as a whitish streak on the surface of the plating film. Such wrinkle-like defects are likely to occur when a large amount of Mg is added to the plating film.
  • the abundance ratios of Mg 2 Si and Mg Zn 2 in the above-mentioned plating film satisfy the relationship (1), and the plating film is 0.01 to 1.0. It preferably contains% by weight of Sr. Thereby, the effect of improving the surface appearance by the above-mentioned Sr can be further enjoyed. Although the cause of this is not clear, it is presumed that when the amount of Mg 2 Si in the plating film increases, the oxidation of the plating surface layer is difficult to be suppressed in the first place, which affects the effect of improving the appearance when Sr is added. Will be done.
  • the Sr content in the plating film is less than 0.01% by mass, it is difficult to obtain the effect of suppressing the occurrence of the wrinkle-like defects described above, and the Sr content in the plating film exceeds 1.0% by mass.
  • the Sr content in the plating film should be 0.01 to 1.0% by mass because Sr is excessively incorporated into the interfacial alloy layer and may affect the plating adhesion more than the appearance improving effect. Is preferable.
  • the plating film can improve the stability of the corrosion product and delay the progress of corrosion in the same manner as the above-mentioned Mg, Cr and Mn in total of 0.01 to 10% by mass.
  • V, Mo, Ti, Ca, Ni, Co, Sb and B are preferably selected from one or more. The reason why the total content of the above-mentioned components is set to 0.01 to 10% by mass is that a sufficient corrosion delay effect can be obtained and the effect is not saturated.
  • the amount of the plating film adhered is preferably 45 to 120 g / m 2 per side from the viewpoint of satisfying various characteristics.
  • the adhesion amount of the plating film is 45 g / m 2 or more, sufficient corrosion resistance can be obtained even for applications that require long-term corrosion resistance such as building materials, and the adhesion amount of the plating film is 120 g / m / m. This is because when m 2 or less, excellent corrosion resistance can be realized while suppressing the occurrence of plating cracks during processing.
  • the amount of the plating film adhered is more preferably 45 to 100 g / m 2 .
  • the amount of the plating film adhered is calculated from the difference in the weight of the steel sheet before and after peeling by dissolving and peeling the plating film of a specific area with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H0401: 2013, for example. Can be derived.
  • it can be determined by sealing with tape so that the plating surface of the non-target surface is not exposed, and then performing the above-mentioned dissolution.
  • the component composition of the plating film can be confirmed, for example, by immersing the plating film in hydrochloric acid or the like to dissolve the plating film, and confirming the solution by ICP emission spectroscopic analysis, atomic absorption spectroscopy, or the like.
  • This method is merely an example, and any method can be used as long as the component composition of the plating film can be accurately quantified, and the method is not particularly limited.
  • the plating film of the molten Al-Zn-Si-Mg-based plated steel sheet obtained by the present invention has almost the same composition as the plating bath as a whole. Therefore, the composition of the plating film can be controlled accurately by controlling the composition of the plating bath.
  • the base steel sheet constituting the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention is not particularly limited, and a cold-rolled steel sheet, a hot-rolled steel sheet, or the like may be appropriately used according to the required performance and specifications. Can be used.
  • the method for obtaining the base steel plate is not particularly limited.
  • a steel sheet that has undergone a hot-rolling step and a pickling step can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by further adding a cold-rolling step.
  • the method for producing the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention is not particularly limited.
  • it can be manufactured by washing, heating, and immersing the base steel sheet in a plating bath in a continuous hot-dip plating facility.
  • recrystallization annealing is performed to control the structure of the base steel sheet itself, and in order to prevent oxidation of the steel sheet and reduce a trace amount of oxide film existing on the surface, a nitrogen-hydrogen atmosphere, etc. Heating in the reducing atmosphere of is effective.
  • the composition of the plating film is almost the same as the composition of the plating bath as a whole. Therefore, it is possible to use one containing Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and the balance having a composition of Zn, Fe and unavoidable impurities. ..
  • the bath temperature of the plating bath is not particularly limited, but is preferably in the temperature range of (melting point + 20 ° C.) to 650 ° C.
  • the lower limit of the bath temperature is set to a melting point of + 20 ° C., because the bath temperature must be equal to or higher than the freezing point in order to perform the hot-dip plating treatment. This is to prevent coagulation due to a local decrease in bath temperature.
  • the upper limit of the bath temperature is set to 650 ° C. If the temperature exceeds 650 ° C, rapid cooling of the plating film becomes difficult, and the interfacial alloy layer formed between the plating film and the steel sheet may become thick. Because.
  • the temperature of the base steel plate that penetrates into the plating bath is not particularly limited, but from the viewpoint of ensuring the plating characteristics and preventing the change in the bath temperature in the continuous hot-dip plating operation, the plating bath is described. It is preferable to control the temperature within ⁇ 20 ° C.
  • the immersion time of the steel sheet in the plating bath is 0.5 seconds or more. This is because if it takes less than 0.5 seconds, a sufficient plating film may not be formed on the surface of the base steel sheet.
  • the upper limit of the dipping time is not particularly limited, but it is preferably within 8 seconds because the interfacial alloy layer formed between the plating film and the steel sheet may become thicker if the dipping time is lengthened.
  • the molten Al-Zn-Si-Mg-based plated steel sheet can form a coating film on the plating film directly or via an intermediate layer, depending on the required performance.
  • the method for forming the coating film is not particularly limited and can be appropriately selected according to the required performance.
  • a forming method such as roll coater coating, curtain flow coating, spray coating and the like can be mentioned.
  • After painting a paint containing an organic resin it is possible to heat and dry it by means such as hot air drying, infrared heating, and induction heating to form a coating film.
  • the intermediate layer is not particularly limited as long as it is a layer formed between the plating film of the hot-dip galvanized steel sheet and the coating film.
  • the surface-treated steel sheet of the present invention includes a plating film on the surface of the steel sheet and a chemical conversion film formed on the plating film.
  • the composition of the plating film is the same as that of the above-mentioned plating film of the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention.
  • a chemical conversion film is formed on the film.
  • the chemical conversion film may be formed on at least one side of the surface-treated steel sheet, and may be formed on both sides of the surface-treated steel sheet depending on the application and required performance.
  • the chemical conversion film is selected from at least one of epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin.
  • One kind of resin and at least one kind of metal selected from P compound, Si compound, Co compound, Ni compound, Zn compound, Al compound, Mg compound, V compound, Mo compound, Zr compound, Ti compound and Ca compound. It is characterized by containing a compound and.
  • the resin constituting the chemical conversion film is selected from among epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin from the viewpoint of improving corrosion resistance. At least one selected is used. From the same viewpoint, the resin preferably contains at least one of urethane resin and acrylic resin.
  • the resin constituting the chemical conversion film also includes an addition polymer of the above-mentioned resin.
  • the epoxy resin is, for example, a glycidyl etherified epoxy resin such as bisphenol A type, bisphenol F type, or novolak type, or a bisphenol A type epoxy resin to which propylene oxide, ethylene oxide, or polyalkylene glycol is added.
  • a glycidyl etherified product, an aliphatic epoxy resin, an alicyclic epoxy resin, a polyether epoxy resin, or the like can be used.
  • urethane resin for example, an oil-modified polyurethane resin, an alkyd-based polyurethane resin, a polyester-based polyurethane resin, a polyether-based polyurethane resin, a polycarbonate-based polyurethane resin, or the like can be used.
  • acrylic resin for example, polyacrylic acid and its copolymer, polyacrylic acid ester and its copolymer, polymethacrylic acid and its copolymer, polymethacrylic acid ester and its copolymer, urethane-acrylic acid.
  • examples thereof include copolymers (or urethane-modified acrylic resins) and styrene-acrylic acid copolymers, and those obtained by modifying these resins with other alkyd resins, epoxy resins, phenol resins and the like can be used.
  • acrylic silicon resin examples include a resin having a hydrolyzable alkoxysilyl group at the side chain or the end of an acrylic copolymer as a main agent, to which a curing agent is added. Further, when an acrylic silicone resin is used, excellent weather resistance can be expected in addition to corrosion resistance.
  • an oil-modified alkyd resin for example, an oil-modified alkyd resin, a rosin-modified alkyd resin, a phenol-modified alkyd resin, a styrene-modified alkyd resin, a silicon-modified alkyd resin, an acrylic-modified alkyd resin, an oil-free alkyd resin, a high-molecular-weight oil-free alkyd resin, and the like.
  • an oil-modified alkyd resin for example, an oil-modified alkyd resin, a rosin-modified alkyd resin, a phenol-modified alkyd resin, a styrene-modified alkyd resin, a silicon-modified alkyd resin, an acrylic-modified alkyd resin, an oil-free alkyd resin, a high-molecular-weight oil-free alkyd resin, and the like.
  • the polyester resin is a polycondensate synthesized by dehydrating and condensing a polyvalent carboxylic acid and a polyalcohol to form an ester bond.
  • the polyvalent carboxylic acid include terephthalic acid, 2, 6-Naphthalenedicarboxylic acid and the like are used, and examples of the polyalcohol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like.
  • examples of the polyester include polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Further, acrylic-modified polyester resins can also be used.
  • the polyalkylene resin may be, for example, an ethylene-based copolymer such as an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or a carboxyl-modified polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer, or an ethylene-based ionomer. Further, those obtained by modifying these resins with other alkyd resins, epoxy resins, phenol resins and the like can be used.
  • an ethylene-based copolymer such as an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or a carboxyl-modified polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer, or an ethylene-based ionomer.
  • the amino resin is a thermosetting resin produced by the reaction of an amine or an amide compound with an aldehyde, and examples thereof include melamine resin, guanamine resin, and thiourea resin, but from the viewpoint of corrosion resistance, weather resistance, adhesion, and the like. , It is preferable to use a melamine resin.
  • the melamine resin is not particularly limited, and examples thereof include butylated melamine resin, methylated melamine resin, and aqueous melamine resin.
  • fluororesin examples include fluoroolefin polymers and copolymers of fluoroolefins with alkyl vinyl ethers, synchroalkyl vinyl ethers, carboxylic acid-modified vinyl esters, hydroxyalkylallyl ethers, tetrafluoropropyl vinyl ethers and the like. When these fluororesins are used, not only corrosion resistance but also excellent weather resistance and excellent hydrophobicity can be expected.
  • a curing agent for the purpose of improving corrosion resistance and processability.
  • the curing agent include urea resin (butylated urea resin, etc.), melamine resin (butylated melamine resin, butyl etherified melamine resin, etc.), butylated urea / melamine resin, amino resin such as benzoguanamine resin, blocked isocyanate, and oxazoline compound. Phenol resin or the like can be used as appropriate.
  • the metal compounds constituting the chemical conversion film among P compounds, Si compounds, Co compounds, Ni compounds, Zn compounds, Al compounds, Mg compounds, V compounds, Mo compounds, Zr compounds, Ti compounds and Ca compounds. At least one selected from is used. From the same viewpoint, the metal compound preferably contains at least one of a P compound, a Si compound and a V compound.
  • the P compound can be contained in the chemical conversion film to improve corrosion resistance and sweat resistance.
  • the P compound is a compound containing P, and can contain, for example, one or two or more selected from inorganic phosphoric acid, organic phosphoric acid and salts thereof.
  • the inorganic phosphoric acid includes phosphoric acid, primary phosphate, secondary phosphate, tertiary phosphate, pyrophosphoric acid, pyrophosphate, tripolyphosphoric acid, tripolyphosphate, phosphite, and subphosphoric acid. It is preferable to use one or more selected from acid salt, hypophosphite, and hypophosphite.
  • phosphonic acid phosphonic acid compound
  • the phosphonic acid it is preferable to use one or more selected from nitrilotris methylenephosphonic acid, phosphonobtantricarboxylic acid, methyldiphosphonic acid, methylenephosphonic acid, and ethylidene diphosphonic acid.
  • the salt is preferably a salt of Group 1 to Group 13 elements in the periodic table, more preferably a metal salt, and an alkali metal salt and an alkaline earth. It is preferably one or more selected from among the metal salts.
  • the chemical conversion treatment liquid containing the above P compound When the chemical conversion treatment liquid containing the above P compound is applied to a molten Al-Zn-Si-Mg-based plated steel sheet, the surface of the plating film is etched by the action of the P compound, and Al, Zn, which are constituent elements of the plating film, A concentrated layer in which Si and Mg are incorporated is formed on the plating film side of the chemical conversion film. By forming the concentrated layer, the bond between the chemical conversion film and the surface of the plating film is strengthened, and the adhesion of the chemical conversion film is improved.
  • the concentration of the P compound in the chemical conversion treatment liquid is not particularly limited, but may be 0.25% by mass to 5% by mass.
  • the concentration of the P compound is less than 0.25% by mass, the etching effect is insufficient and the adhesion to the plating interface is lowered, not only the corrosion resistance of the flat surface portion is lowered, but also the plating generated in the defective portion, the cut end face portion, the processing, etc. Corrosion resistance and sweat resistance of damaged parts of the film may also decrease.
  • the concentration of the P compound is preferably 0.35% by mass or more, more preferably 0.50% by mass or more.
  • the concentration of the P compound exceeds 5% by mass, not only the life of the chemical conversion treatment liquid is shortened, but also the appearance when the film is formed tends to be uneven, and the amount of P eluted from the chemical conversion film.
  • the concentration of the P compound is preferably 3.5% by mass or less, more preferably 2.5% by mass or less.
  • the content of the P compound in the chemical conversion film for example, by applying and drying a chemical conversion treatment solution having a concentration of the P compound of 0.25% by mass to 5% by mass, P adheres to the chemical conversion film after drying.
  • the amount can be 5 to 100 mg / m 2 .
  • the Si compound is a component that forms a skeleton that forms a chemical conversion film together with the resin, and can enhance the affinity with the plating film and uniformly form the chemical conversion film.
  • the Si compound is a compound containing Si, and preferably contains, for example, one or more selected from silica, trialkoxysilane, tetraalkoxysilane, and a silane coupling agent.
  • the silica is not particularly limited and any silica can be used.
  • the silica for example, at least one of wet silica and dry silica can be used.
  • the colloidal silica which is a kind of the wet silica for example, Snowtex O, C, N, S, 20, OS, OXS, NS and the like manufactured by Nissan Chemical Industries, Ltd. can be preferably used.
  • the dry silica for example, AEROSIL 50, 130, 200, 300, 380 manufactured by Nippon Aerosil Co., Ltd. can be preferably used.
  • trialkoxysilane any one can be used without particular limitation.
  • the general formula: R 1 Si (OR 2 ) 3 (in the formula, R 1 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and R 2 is an alkyl group having the same or different carbon atoms of 1 to 5 carbon atoms. ) Is preferably used.
  • Examples of such trialkoxysilanes include trimethoxysilane, triethoxysilane, and methyltriethoxysilane.
  • tetraalkoxysilane any one can be used without particular limitation.
  • R is an alkyl group having the same or different carbon atoms of 1 to 5.
  • tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
  • any one can be used without particular limitation.
  • the Si compound By containing the Si compound in the chemical conversion film, the Si compound is dehydrated and condensed to form an amorphous chemical conversion film having a siloxane bond having a high barrier effect that shields the corrosive factor. Further, by binding with the above-mentioned resin, a chemical conversion film having a higher barrier property is formed. Furthermore, in a corroded environment, dense and stable corrosion products are formed in the defective parts and damaged parts of the plating and film caused by processing, and the combined effect with the plating film also has the effect of suppressing the corrosion of the underlying steel sheet. be. From the viewpoint of having a high effect of forming a stable corrosion product, it is preferable to use at least one of colloidal silica and dry silica as the Si compound.
  • the concentration of the Si compound in the chemical conversion treatment liquid for forming the chemical conversion film is 0.2% by mass to 9.5% by mass.
  • concentration of the Si compound in the chemical conversion treatment liquid is 0.2% by mass or more, the barrier effect due to the siloxane bond can be obtained, and as a result, in addition to the corrosion resistance of the flat surface portion, the damage caused by the defective portion, the cut portion, the processing and the like can be obtained. Corrosion resistance and sweat resistance in the part are improved.
  • the concentration of the Si compound is 9.5% by mass or less, the life of the chemical conversion treatment liquid can be extended.
  • the Co compound and the Ni compound can be contained in the chemical conversion film to improve blackening resistance. It is considered that this is because Co and Ni have the effect of delaying the elution of the water-soluble component from the film in a corrosive environment. Further, the Co and the Ni are elements that are less likely to be oxidized than Al, Zn, Si, Mg and the like. Therefore, by concentrating at least one of the Co compound and the Ni compound at the interface between the chemical conversion film and the plating film (forming a concentrated layer), the concentrated layer becomes a barrier against corrosion. As a result, blackening resistance can be improved.
  • Co By using a chemical conversion treatment liquid containing the Co compound, Co can be contained in the chemical conversion film and incorporated into the concentrated layer. It is preferable to use a cobalt salt as the Co compound. As the cobalt salt, it is more preferable to use 1 or 2 or more selected from cobalt sulfate, cobalt carbonate and cobalt chloride. Further, by using a chemical conversion treatment liquid containing the Ni compound, Ni can be contained in the chemical conversion film and incorporated into the concentrated layer. It is preferable to use a nickel salt as the Ni compound. As the nickel salt, it is more preferable to use 1 or 2 or more selected from nickel sulfate, nickel carbonate and nickel chloride.
  • the concentration of the Co compound and / or the Ni compound in the chemical conversion treatment liquid is not particularly limited, but may be 0.25% by mass to 5% by mass in total.
  • concentration of the Co compound and / or the Ni compound is less than 0.25% by mass, the interfacial concentrated layer becomes non-uniform, and not only the corrosion resistance of the flat surface portion is lowered, but also the plating caused by the defective portion, the cut end face portion, the processing, etc. And the corrosion resistance of the damaged part of the film may also decrease. From the same viewpoint, it is preferably 0.5% by mass or more, more preferably 0.75% by mass or more.
  • the concentration of the Co compound and / or the Ni compound exceeds 5% by mass, the appearance when the film is formed tends to be non-uniform, and the corrosion resistance may decrease. From the same viewpoint, it is preferably 4.0% by mass or less, more preferably 3.0% by mass or less.
  • a chemical conversion treatment solution having a total concentration of the Co compound and / or Ni compound of 0.25% by mass to 5% by mass, the total amount of Co and Ni adhered to the dried chemical conversion film is 5 to 100 mg. Can be / m 2 .
  • a concentrated layer containing at least one of Al, Zn and Mg can be formed on the plating film side of the chemical conversion coating. ..
  • the formed concentrated layer can improve the corrosion resistance.
  • the Al compound, the Zn compound, and the Mg compound are not particularly limited as long as they are compounds containing Al, Zn, and Mg, respectively, but are preferably inorganic compounds, and salts, chlorides, and the like. It is preferably an oxide or a hydroxide.
  • Examples of the Al compound include one or more selected from aluminum sulfate, aluminum carbonate, aluminum chloride, aluminum oxide and aluminum hydroxide.
  • Examples of the Zn compound include one or more selected from zinc sulfate, zinc carbonate, zinc chloride, zinc oxide and zinc hydroxide.
  • Examples of the Mg compound include one or more selected from magnesium sulfate, magnesium carbonate, magnesium chloride, magnesium oxide and magnesium hydroxide.
  • the concentration of the Al compound, Zn compound and / or Mg compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.25% by mass to 5% by mass in total.
  • the total concentration is 0.25% by mass or more, the concentrated layer can be formed more effectively, and as a result, the corrosion resistance can be further improved.
  • the total concentration is 5% by mass or less, the appearance of the chemical conversion film becomes more uniform, and the corrosion resistance of the flat surface portion, the defective portion, the damaged portion of the plating or the film caused by processing, etc. is further improved.
  • V When the V compound is contained in the chemical conversion film, V is appropriately eluted in a corrosive environment and combined with zinc ions and the like of plating components that are also eluted in a corrosive environment to form a dense protective film. ..
  • the formed protective film can further enhance the corrosion resistance not only to the flat surface portion of the steel sheet but also to the defective portion, the damaged portion of the plating film caused by processing, the corrosion progressing from the cut end face to the flat surface portion, and the like.
  • the V compound is a V-containing compound, and examples thereof include one or more selected from sodium metavanadate, vanadyl sulfate, and vanadium acetylacetonate.
  • the V compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.05% by mass to 4% by mass.
  • concentration of the V compound is 0.05% by mass or more, it is easy to elute in a corrosive environment to form a protective film, and the corrosion resistance of the defective part, the cut end face part, and the damaged part of the plating film caused by processing is improved. improves.
  • concentration of the V compound exceeds 4% by mass, the appearance when the chemical conversion film is formed tends to be non-uniform, and the blackening resistance is also lowered.
  • the Mo compound is a compound containing Mo and can be obtained by adding one or both of molybdic acid and molybdate to the chemical conversion treatment liquid.
  • the molybdate include one or more selected from sodium molybdate, potassium molybdate, magnesium molybdate, and zinc molybdate.
  • the concentration of the Mo compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.01% by mass to 3% by mass.
  • concentration of the Mo compound is 0.01% by mass or more, the formation of oxygen-deficient zinc oxide is further suppressed, and the blackening resistance can be further improved.
  • concentration of the Mo compound is 3% by mass or less, the life of the chemical conversion treatment liquid is further extended, and the corrosion resistance can be further improved.
  • the corrosion factor is less likely to permeate the chemical conversion film, and the corrosion resistance can be improved.
  • the Zr compound is a compound containing Zr, and for example, one or more selected from zirconyl acetate, zirconyl sulfate, potassium zirconyl carbonate, sodium zirconyl carbonate and ammonium zirconyl carbonate can be used.
  • the organic titanium chelate compound is suitable because when the chemical conversion treatment liquid is dried to form a film, the film is densified and more excellent corrosion resistance can be obtained.
  • the Ti compound is a compound containing Ti, and is one or more selected from, for example, titanium sulfate, titanium chloride, titanium hydroxide, titanium acetylacetonate, titanium octylene glycolate, and titanium ethylacetoacetate. Can be used.
  • the concentration of the Zr compound and / or the Ti compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.2% by mass to 20% by mass in total.
  • the concentration of the Zr compound and / or the Ti compound is 0.2% by mass or more, the effect of suppressing the permeation of the corrosive factor is enhanced, and not only the corrosion resistance of the flat surface portion but also the defect portion, the cut end face portion, and the plating film damage due to processing are damaged. The corrosion resistance of the part can be further improved.
  • the total concentration of the Zr compound and / or the Ti compound is 20% by mass or less, the life of the chemical conversion treatment liquid can be further extended.
  • the Ca compound is a compound containing Ca, and examples thereof include an oxide of Ca, a nitrate of Ca, a sulfate of Ca, and an intermetallic compound containing Ca. More specifically, examples of the Ca compound include CaO, CaCO 3 , Ca (OH) 2 , Ca (NO 3 ) 2.4H 2 O, CaSO 4.2H 2 O and the like.
  • the content of the Ca compound in the chemical conversion film is not particularly limited.
  • the chemical conversion film can contain various known components usually used in the paint field, if necessary.
  • various surface conditioners such as leveling agents and defoamers, dispersants, anti-settling agents, ultraviolet absorbers, light stabilizers, silane coupling agents, various additives such as titanate coupling agents, coloring pigments, and extender pigments.
  • Various pigments such as bright materials, curing catalysts, organic solvents, lubricants and the like.
  • the chemical conversion film does not contain harmful components such as hexavalent chromium, trivalent chromium and fluorine. This is because the chemical conversion treatment liquid for forming the chemical conversion film does not contain these harmful components, so that the safety is high and the amount is small to the environment.
  • the amount of the chemical conversion film adhered is not particularly limited.
  • the adhesion amount of the chemical conversion film is preferably 0.1 to 3.0 g / m 2 , preferably 0.5 to 2.5 g / m 2 . It is more preferable to do so. Corrosion resistance can be ensured more reliably by setting the adhesion amount of the chemical conversion film to 0.1 g / m 2 or more, and cracking or peeling of the chemical conversion film by setting the adhesion amount of the chemical conversion film to 3.0 g / m 2 or less. Can be prevented.
  • the amount of the chemical conversion film adhered may be obtained by a method appropriately selected from existing methods such as a method of measuring the abundance of an element whose content in the film is known in advance by fluorescent X-ray analysis of the film. ..
  • the method for forming the chemical conversion film is not particularly limited, and can be appropriately selected according to the required performance, manufacturing equipment, and the like.
  • a chemical conversion treatment liquid is continuously applied onto the plating film with a roll coater or the like, and then, using hot air or induction heating, the plate temperature reaches about 60 to 200 ° C. (Peak Metal Temperature: PMT). It can be formed by drying.
  • PMT Peak Metal Temperature
  • a known method such as an airless spray, an electrostatic spray, a curtain flow coater or the like can be appropriately adopted in addition to the roll coater.
  • the chemical conversion film may be either a single-layer film or a multi-layer film as long as it contains the resin and the metal compound, and is not particularly limited.
  • the surface-treated steel sheet of the present invention can also form a coating film on the chemical conversion film, if necessary.
  • the coated steel sheet of the present invention is a coated steel sheet in which a coating film is formed directly on the plating film or via a chemical conversion film.
  • the composition of the plating film is the same as that of the above-mentioned plating film of the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention.
  • the coated steel sheet of the present invention can form a chemical conversion film on the plating film.
  • the chemical conversion film may be formed on at least one side of the coated steel sheet, and may be formed on both sides of the coated steel sheet depending on the application and required performance.
  • the chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton in a total amount of 30 to 50% by mass.
  • a resin component having a content ratio ((a): (b)) of a) and the (b) in the range of 3:97 to 60:40 by mass ratio, and a vanadium compound of 2 to 10% by mass, 40 to It is characterized by containing an inorganic compound containing 60% by mass of a zirconium compound and 0.5 to 5% by mass of a fluorine compound.
  • the resin component constituting the chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton.
  • the anionic polyurethane resin having the (a) ester bond a resin obtained by copolymerizing a polyester polyol with a diisocyanate or a polyisocyanate having two or more isocyanate groups and a dimethylolalkyl acid is obtained.
  • a chemical conversion treatment liquid can be obtained by dispersing it in a liquid such as water by a known method.
  • the polyester polyol includes a polyester obtained by a dehydration condensation reaction from a glycol component and an acid component such as an ester-forming derivative of hydroxylcarboxylic acid, a polyester obtained by a ring-opening polymerization reaction of a cyclic ester compound such as ⁇ -caprolactone, and these.
  • Examples of the polyisocyanate include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • aromatic polyisocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-xylene diisocyanate, diphenylmethane diisocyanate, 2,4-diphenylmethane diisocyanate, 2,2-diphenylmethane diisocyanate, and triphenyl.
  • aromatic polyisocyanate examples include methanetriisocyanate, polymethylene polyphenyl polyisocyanate, naphthalenediocyanate, and derivatives thereof (for example, prepolymers obtained by reaction with polyols, modified polyisocyanates such as carbodiimide compounds of diphenylmethane diisocyanate, etc.).
  • dimethylolalkyl acid examples include dimethylolalkyl acids having 2 to 6 carbon atoms, and more specifically, dimethylolethaneic acid, dimethylolpropaneic acid, dimethylolbutanoic acid, and dimethylolheptan. Acids and dimethylolhexaneic acid and the like can be mentioned.
  • the epoxy resin having the (b) bisphenol skeleton a known epoxy resin can be used.
  • a known epoxy resin can be used.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin and the like can be mentioned.
  • These epoxy resins can be obtained by reacting bisphenol compounds such as bisphenol A, bisphenol F, bisphenol AD, and bisphenol S with epichlorohydrin in the presence of an alkaline catalyst.
  • the component [A] preferably contains a bisphenol A type epoxy resin or a bisphenol F type epoxy resin, and more preferably contains a bisphenol A type epoxy resin.
  • the epoxy resin having the (b) bisphenol skeleton can be dispersed in a liquid such as water by a known method to obtain a chemical conversion treatment liquid.
  • the resin component acts as a binder for the chemical conversion film, but the anionic polyurethane resin having the (a) ester bond constituting the binder is flexible, so that the chemical conversion film is destroyed when processed ().
  • the effect of making it difficult to peel off) can be achieved, and the epoxy resin having the bisphenol skeleton described in (b) can have the effect of improving the adhesion to the underlying zinc-based plated steel plate and the upper primer coating film.
  • the resin component is contained in the chemical conversion film in a total amount of 30 to 50% by mass. If the content of the resin component is less than 30% by mass, the binder effect of the chemical conversion film is lowered, and if it exceeds 50% by mass, the function of the inorganic component shown below, for example, the inhibitory action is lowered. From the same viewpoint, the content of the resin component in the chemical conversion film is preferably 35 to 45% by mass.
  • the content ratio ((a): (b)) of the anionic polyurethane resin having the (a) ester bond and the epoxy resin having the (b) bisphenol skeleton is 3:97 by mass ratio. It must be in the range of ⁇ 60: 40. This is because when the above (a): (b) is out of the above range, sufficient corrosion resistance cannot be obtained due to a decrease in flexibility and adhesion as a chemical conversion coating film. From the same viewpoint, the above (a): (b) is preferably 10:90 to 55:45.
  • the resin component includes a resin (other resin component) other than the above-mentioned (a) anionic polyurethane resin having an ester bond and (b) an epoxy resin having a bisphenol skeleton, depending on the required performance. be able to.
  • the other resin components are not particularly limited, and are, for example, at least one or two or more selected from acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin. Can be used in combination.
  • the total content of the (a) anionic polyurethane resin having an ester bond and the (b) epoxy resin having a bisphenol skeleton is preferably 50% by mass or more. It is more preferably 75% by mass or more. This is to ensure that the flexibility and adhesion of the film to be treated are reduced.
  • the chemical conversion film contains 2 to 10% by mass of vanadium compound, 40 to 60% by mass of zirconium compound and 0.5 to 5% by mass of fluorine compound as inorganic compounds. By including these compounds, the corrosion resistance of the chemical conversion film can be enhanced.
  • the vanadium compound is added to the chemical conversion treatment liquid and acts as a rust preventive (inhibitor).
  • the vanadium compound is contained in the chemical conversion film, the vanadium compound is appropriately eluted in a corrosive environment and combined with zinc ions or the like of a plating component that also elutes in a corrosive environment to form a dense protective film. ..
  • the formed protective film can further enhance the corrosion resistance not only to the flat surface portion of the steel sheet but also to the defective portion, the damaged portion of the plating film caused by processing, the corrosion progressing from the cut end face to the flat surface portion, and the like.
  • vanadium compound examples include vanadium pentoxide, metavanadic acid, ammonium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, magnesium vanadate, vanadyl acetylacetonate, and vanadium acetylacetonate.
  • vanadium pentoxide metavanadic acid
  • ammonium metavanadate vanadium oxytrichloride
  • vanadium trioxide vanadium dioxide
  • magnesium vanadate vanadyl acetylacetonate
  • vanadium acetylacetonate vanadium acetylacetonate
  • the content of the vanadium compound in the chemical conversion treatment film is 2 to 10% by mass. If the content of the vanadium compound in the chemical conversion coating is less than 2% by mass, the inhibitory effect is not sufficient, resulting in a decrease in corrosion resistance. On the other hand, if the content of the vanadium compound exceeds 10% by mass, the moisture resistance of the chemical conversion coating is reduced. This is because it causes a decrease in.
  • the zirconium compound is contained in the chemical conversion coating, and can be expected to improve the strength and corrosion resistance of the chemical conversion coating by reacting with the plating metal and coexisting with the resin component. Furthermore, the zirconium compound itself is a dense chemical conversion coating. It contributes to the formation of zirconium and is rich in coating properties, so a barrier effect can be expected. Examples of the zirconium compound include neutralizing salts such as zirconium sulfate, zirconium carbonate, zirconium nitrate, zirconium lactate, zirconium acetate, and zirconium chloride.
  • the content of the zirconium compound in the chemical conversion treatment film is 40 to 60% by mass. If the content of the zirconium compound in the chemical conversion coating is less than 40% by mass, the strength and corrosion resistance of the chemical conversion coating are deteriorated, and if the content of the zirconium compound exceeds 60% by mass, the chemical conversion coating is brittle. This is because the chemical conversion treatment film is destroyed or peeled off when it is subjected to severe processing.
  • the fluorine compound is contained in the chemical conversion film and acts as an adhesive-imparting agent with the plating film. As a result, it is possible to improve the corrosion resistance of the chemical conversion film.
  • a fluoride salt such as an ammonium salt, a sodium salt or a potassium salt, or a fluorine compound such as ferrous fluoride or ferric fluoride can be used. Among these, it is preferable to use ammonium fluoride or a fluoride salt such as sodium fluoride and potassium fluoride.
  • the content of the fluorine compound in the chemical conversion treatment film is 0.5 to 5% by mass. If the content of the fluorine compound in the chemical conversion treatment film is less than 0.5% by mass, sufficient adhesion at the processed portion cannot be obtained, and if the content of the fluorine compound exceeds 5% by mass, the moisture resistance of the chemical conversion treatment film becomes high. This is because it decreases.
  • the amount of the chemical conversion film adhered is not particularly limited.
  • the amount of the chemical conversion film adhered may be obtained by a method appropriately selected from existing methods such as a method of measuring the abundance of an element whose content in the film is known in advance by fluorescent X-ray analysis of the film. ..
  • the method for forming the chemical conversion film is not particularly limited, and can be appropriately selected according to the required performance, manufacturing equipment, and the like.
  • a chemical conversion treatment liquid is continuously applied onto the plating film with a roll coater or the like, and then, using hot air or induction heating, the plate temperature reaches about 60 to 200 ° C. (Peak Metal Temperature: PMT). It can be formed by drying.
  • PMT Peak Metal Temperature
  • a known method such as an airless spray, an electrostatic spray, a curtain flow coater or the like can be appropriately adopted in addition to the roll coater.
  • the chemical conversion film may be either a single-layer film or a multi-layer film as long as it contains the resin and the metal compound, and is not particularly limited.
  • the coated steel sheet of the present invention has a coating film formed on the plating film directly or via a chemical conversion film, and the coating film has at least a primer coating film.
  • the primer coating film contains a polyester resin having a urethane bond and an inorganic compound containing a vanadium compound, a phosphoric acid compound and magnesium oxide.
  • the primer coating film contains a polyester resin having a urethane bond as a main component. Since the polyester resin having a urethane bond has both flexibility and strength, it is possible to obtain an effect that cracks are less likely to occur in the primer coating film when it is processed, and a chemical conversion treatment film containing a urethane resin is obtained. Since it has a high affinity with, it can contribute to the improvement of corrosion resistance of the processed portion.
  • the term "main component" as used herein means that the component has the highest content among the components in the primer coating film.
  • polyester resin having a urethane bond a known resin such as a resin obtained by reacting a polyester polyol with a diisocyanate or a polyisocyanate having two or more isocyanate groups can be used. Further, a resin obtained by reacting the polyester polyol with the diisocyanate or the polyisocyanate in a state of excess hydroxylate (urethane-modified polyester resin) and cured with a blocked polyisocyanate can also be used.
  • the polyester polyol can be obtained by a known method using a dehydration condensation reaction between a polyhydric alcohol component and a polybasic acid component.
  • the polyhydric alcohol include glycols and trihydric or higher polyhydric alcohols.
  • the glycols include, for example, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, hexylene glycol, 1,3-butanediol, 1,4.
  • a polyvalent carboxylic acid is usually used, but a monovalent fatty acid or the like can be used in combination if necessary.
  • the polyvalent carboxylic acid include phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, 4-methylhexahydrophthalic acid, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid, trimellitic acid, and the like.
  • polyisocyanate for example, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dimerate diisocyanate, and xylylene diisocyanate (XDI), metaxylylene diisocyanate, tolylene diisocyanate (TDI), 4, 4 -Aromatic diisocyanates such as diphenylmethane diisocyanate (MDI), cyclic aliphatic diisocyanates such as isophorone diisocyanate, hydride XDI, hydride TDI, hydride MDI, and adducts, biurets, isocyanurates and the like thereof. Will be. These polyisocyanates can be used alone or in combination of two or more.
  • aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dimerate diisocyanate, and
  • the hydroxyl value of the polyester resin having a urethane bond is not particularly limited, but is preferably 5 to 120 mgKOH / g, more preferably 7 to 100 mgKOH / g from the viewpoint of solvent resistance, processability, and the like. It is g, more preferably 10 to 80 mgKOH / g. Further, the number average molecular weight of the polyester resin having a urethane bond is preferably 500 to 15,000, more preferably 700 to 12,000, still more preferably 800 to 10,000 from the viewpoint of solvent resistance, processability and the like. Is.
  • the content of the polyester resin having a urethane bond in the primer coating film is preferably 40 to 88% by mass. If the content of the polyester resin having a urethane bond is less than 40% by mass, the binder function as a primer coating film may be deteriorated, while if the content of the polyester resin having a urethane bond exceeds 88% by mass, the binder function may be deteriorated.
  • the functions of the following inorganic substances, such as inhibitory action, may be reduced.
  • the vanadium compound which is one of the inorganic compounds, acts as an inhibitor.
  • the vanadium compound include vanadium pentoxide, metavanadic acid, ammonium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, magnesium vanadate, vanadyl acetylacetonate, and vanadium acetylacetonate.
  • the vanadium compound added to the primer coating film may be the same as or different from the vanadium compound added to the chemical conversion treatment film.
  • vanazic acid compound vanadic acid ions that gradually elute to the moisture that invades from the outside react with the ions on the surface of the galvanized steel sheet to form a passivation film with good adhesion, which protects and prevents exposed metal parts. It is believed that rusting is manifested.
  • the content of the vanadium compound in the primer coating film is not particularly limited, but is preferably 4 to 20% by mass from the viewpoint of achieving both corrosion resistance and moisture resistance. If the content of the vanadium compound is less than 4% by mass, the inhibitory effect may be lowered and the corrosion resistance may be lowered, and if the content of the vanadium compound is more than 20% by mass, the moisture resistance of the primer coating film may be lowered. There is a risk.
  • the phosphoric acid compound which is one of the inorganic compounds, also acts as an inhibitor.
  • the phosphoric acid compound for example, phosphoric acid, an ammonium salt of phosphoric acid, an alkali metal salt of phosphoric acid, an alkaline earth metal salt of phosphoric acid and the like can be used.
  • an alkali metal salt of phosphoric acid such as calcium phosphate can be preferably used.
  • the content of the phosphoric acid compound in the primer coating film is not particularly limited, but is preferably 4 to 20% by mass from the viewpoint of achieving both corrosion resistance and moisture resistance. If the content of the phosphoric acid compound is less than 4% by mass, the inhibitory effect may be lowered and the corrosion resistance may be lowered, and if the content of the phosphoric acid compound is more than 20% by mass, the moisture resistance of the primer coating film may be lowered. May be invited.
  • Magnesium oxide which is one of the above-mentioned inorganic compounds, produces a product containing Mg by initial corrosion, and has the effect of stabilizing as a sparingly soluble magnesium salt and improving corrosion resistance.
  • the content of the magnesium oxide in the primer coating film is not particularly limited, but is preferably 4 to 20% by mass from the viewpoint of achieving both corrosion resistance and corrosion resistance of the processed portion. If the magnesium oxide content is less than 4% by mass, the effect may be lowered and the corrosion resistance may be lowered, and if the magnesium oxide content is more than 20% by mass, the flexibility of the primer coating film may be deteriorated. The corrosion resistance of the processed portion may decrease due to the decrease in the amount of
  • the primer coating film may contain components other than the polyester resin having a urethane bond and the inorganic compound described above.
  • a cross-linking agent used when forming a primer coating film can be mentioned.
  • the cross-linking agent reacts with the polyester resin having a urethane bond to form a cross-linked coating film, and is, for example, an oxazoline compound, an epoxy compound, a melamine compound, an isocyanate-based compound, a carbodiimide-based compound, a silane coupling compound, or the like. It is also possible to use two or more kinds of cross-linking agents in combination.
  • a blocked polyisocyanate compound or the like can be preferably used from the viewpoint of corrosion resistance of the processed portion of the obtained coated steel sheet.
  • the blocked polyisocyanate include alcohols such as butanol, oximes such as methylethylketooxime, lactams such as ⁇ -caprolactam, and diketones such as acetoacetic acid diester, using the isocyanate group of the polyisocyanate compound.
  • examples thereof include those blocked by imidazoles such as imidazole and 2-ethylimidazole, or phenols such as m-cresol.
  • the primer coating film may contain various known components usually used in the paint field, if necessary.
  • various surface conditioners such as leveling agents and defoamers, dispersants, anti-sedimentants, ultraviolet absorbers, light stabilizers, silane coupling agents, various additives such as titanate coupling agents, etc.
  • various pigments such as coloring pigments and extender pigments, bright materials, curing catalysts, and organic solvents.
  • the thickness of the primer coating film is preferably 1.5 ⁇ m or more. By setting the thickness of the primer coating film to 1.5 ⁇ m or more, it is possible to more reliably obtain the effect of improving corrosion resistance and the effect of improving the adhesion with the chemical conversion treatment film or the top coat film formed on the primer coating film. Because it can be done.
  • the method for forming the primer coating film is not particularly limited. Further, as for the coating method of the coating composition constituting the primer coating film, the coating composition can be preferably applied by a method such as roll coater coating or curtain flow coating. After the coating composition is coated, it can be baked by heating means such as hot air heating, infrared heating, and induction heating to obtain a primer coating film. The baking treatment is usually carried out with a maximum plate temperature of about 180 to 270 ° C. and about 30 seconds to 3 minutes in this temperature range.
  • a topcoat coating film is further formed on the primer coating film.
  • the topcoat coating film can impart aesthetics such as color, luster, and surface condition to the coated steel sheet, and also has various performances such as workability, weather resistance, chemical resistance, stain resistance, water resistance, and corrosion resistance. Can be enhanced.
  • the composition of the topcoat coating film is not particularly limited, and the material, thickness, and the like can be appropriately selected according to the required performance.
  • the topcoat coating film can be formed by using a polyester resin-based paint, a silicon polyester resin-based paint, a polyurethane resin-based paint, an acrylic resin-based paint, a fluororesin-based paint, or the like.
  • the top coat is a titanium oxide, a valve handle, mica, carbon black or various other coloring pigments; metallic pigments such as aluminum powder and mica; extender pigments composed of carbonates and sulfates; silica fine particles and nylon resins.
  • Various fine particles such as beads and acrylic resin beads; a curing catalyst such as p-toluenesulfonic acid and dibutyltin dilaurate; wax; and other additives can be contained in an appropriate amount.
  • the thickness of the topcoat coating film is preferably 5 to 30 ⁇ m from the viewpoint of achieving both appearance and processability.
  • the thickness of the topcoat coating film is 5 ⁇ m or more, the color tone appearance can be more reliably stabilized, and when the thickness of the topcoat coating film is 30 ⁇ m or less, the workability is deteriorated (topcoat coating). The generation of cracks in the film) can be suppressed more reliably.
  • the coating method of the coating composition for forming the topcoat coating film is not particularly limited.
  • the coating composition can be applied by a method such as roll coater coating or curtain flow coating. After the coating composition is coated, it can be baked by heating means such as hot air heating, infrared heating, and induction heating to form a topcoat coating film.
  • the baking treatment is usually carried out with a maximum plate temperature of about 180 to 270 ° C. and about 30 seconds to 3 minutes in this temperature range.
  • Samples 1 to 44> A cold-rolled steel sheet with a thickness of 0.8 mm manufactured by a conventional method is used as a base steel sheet, and annealing and plating are performed with a hot-dip plating simulator manufactured by Resuka Co., Ltd. to obtain hot-dip plated steel sheets under the conditions shown in Table 1.
  • Samples 1-44 were prepared. Regarding the composition of the plating bath used for manufacturing the hot-dip plated steel sheet, the composition of the plating bath was Al: 30 to 75% by mass and Si: 0.5 to 4.5 so as to be the composition of the plating film of each sample shown in Table 1. It was varied in the range of% by mass, Mg: 0 to 10% by mass, and Sr: 0.00 to 0.15% by mass.
  • the bath temperature of the plating bath is 590 ° C when Al: 30 to 60% by mass and 630 ° C when Al: more than 60% by mass, and the plating penetration plate temperature of the base steel sheet is the same as the plating bath temperature. It was controlled to be. Furthermore, the plating treatment was carried out under the condition that the plate temperature was cooled to a temperature range of 520 to 500 ° C. in 3 seconds. The amount of the plating film adhered was controlled to be 85 ⁇ 5 g / m 2 per side for the samples 1 to 41 and 51 to 125 g / m 2 per side for the samples 42 to 44.
  • composition of plating film (adhesion amount, composition, X-ray diffraction intensity)
  • punch 100 mm ⁇ seal the non-measurement surface with tape, then dissolve and peel the plating with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H 0401: 2013, and the mass of the sample before and after peeling. From the difference, the amount of adhesion of the plating film was calculated. Table 1 shows the amount of adhesion of the plating film obtained as a result of the calculation. Then, the stripping solution was filtered, and the filtrate and solid content were analyzed respectively. Specifically, components other than insoluble Si were quantified by ICP emission spectroscopic analysis of the filtrate.
  • the solid content was dried and incinerated in a heating furnace at 650 ° C., and then melted by adding sodium carbonate and sodium tetraborate. Furthermore, insoluble Si was quantified by dissolving the melt with hydrochloric acid and ICP emission spectroscopic analysis of the solution.
  • the Si concentration in the plating film is the sum of the soluble Si concentration obtained by the filtrate analysis and the insoluble Si concentration obtained by the solid content analysis. Table 1 shows the composition of the plating film obtained as a result of the calculation.
  • the plating film on the evaluation symmetric plane is mechanically scraped until the underlying steel plate appears, the obtained powder is mixed well, and then 0.3 g is taken out and X is taken out.
  • Corrosion loss of 3 samples is 45 g / m 2 or less ⁇ : Corrosion loss of 3 samples is 90 g / m 2 or less ⁇ : Corrosion loss of 1 sample or more exceeds 90 g / m 2
  • each sample of the example of the present invention is superior to each sample of the comparative example in terms of corrosion resistance, surface appearance, processability, and bath stability in a well-balanced manner.
  • Example 2 Samples 1-112> (1) Plating shown in Tables 3 and 4 is performed by using a cold-rolled steel sheet with a thickness of 0.8 mm manufactured by a conventional method as a base steel sheet and performing an annealing treatment and a plating treatment with a hot-dip plating simulator manufactured by Resuka Co., Ltd. A sample of a hot-dip plated steel sheet with film conditions was prepared. Regarding the composition of the plating bath used for manufacturing the hot-dip plated steel sheet, the composition of the plating bath was Al: 30 to 75% by mass and Si: 0.5 to 4.5 so as to be the composition of the plating film of each sample shown in Table 2.
  • the bath temperature of the plating bath is 590 ° C when Al: 30 to 60% by mass and 630 ° C when Al: more than 60% by mass, and the plating penetration plate temperature of the base steel sheet is the same as the plating bath temperature. It was controlled to be. Furthermore, the plating treatment was carried out under the condition that the plate temperature was cooled to a temperature range of 520 to 500 ° C. in 3 seconds.
  • the amount of the plating film adhered was controlled to be 85 ⁇ 5 g / m 2 per side for samples 1 to 82 and 95 to 112, and 51 to 125 g / m 2 per side for samples 83 to 94.
  • a chemical conversion treatment liquid is applied on the plating film of each sample of the prepared hot-dip galvanized steel sheet with a bar coater, and dried in a hot air furnace (heating rate: 60 ° C / s, PMT: 120 ° C).
  • a chemical conversion film was formed in 1 and each sample of the surface-treated steel sheet shown in Tables 3 and 4 was prepared.
  • the chemical conversion treatment liquid surface treatment liquids A to F in which each component was dissolved in water as a solvent were prepared.
  • each component (resin, metal compound) contained in the surface treatment liquid are as follows.
  • Urethane resin Superflex 130, Superflex 126 (Daiichi Kogyo Seiyaku Co., Ltd.)
  • Acrylic resin Boncoat EC-740EF (DIC Corporation)
  • Metal compound P compound: aluminum dihydrogen dihydrogen tripolyphosphate Si compound: silica
  • V compound sodium metavanadate Mo compound: molybdic acid
  • Zr compound Zirconyl potassium carbonate
  • Table 2 shows the compositions of the prepared chemical conversion treatment liquids A to F and the amount of the formed chemical conversion film adhered.
  • the concentration of each component in Table 2 of the present specification is the concentration of solid content (mass%).
  • composition of plating film (adhesion amount, composition, X-ray diffraction intensity)
  • 100 mm ⁇ is punched out, the non-measurement surface is sealed with tape, and then the plating is melted and peeled off with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H 0401: 2013.
  • the amount of adhesion of the plating film was calculated from the mass difference.
  • the amount of adhesion of the obtained plating film is shown in Tables 3 and 4. Then, the stripping solution was filtered, and the filtrate and solid content were analyzed respectively.
  • components other than insoluble Si were quantified by ICP emission spectroscopic analysis of the filtrate.
  • the solid content was dried and incinerated in a heating furnace at 650 ° C., and then melted by adding sodium carbonate and sodium tetraborate.
  • insoluble Si was quantified by dissolving the melt with hydrochloric acid and ICP emission spectroscopic analysis of the solution.
  • the Si concentration in the plating film is the sum of the soluble Si concentration obtained by the filtrate analysis and the insoluble Si concentration obtained by the solid content analysis.
  • the composition of the plating film obtained as a result of the calculation is shown in Tables 3 and 4.
  • the plating film on the evaluation symmetric plane is mechanically scraped until the underlying steel plate appears, the obtained powder is mixed well, and then 0.3 g is taken out and X is taken out.
  • Corrosion loss of 3 samples is 30 g / m 2 or less
  • Corrosion loss of 3 samples is 70 g / m 2 or less
  • each sample of the example of the present invention is superior in balance in corrosion resistance, white rust resistance, surface appearance, processability and bath stability as compared with each sample of the comparative example. You can see that there is. Further, from the results in Table 4, it can be seen that the white rust resistance of each sample subjected to the chemical conversion treatments A to D shows particularly excellent results.
  • Example 3 Samples 1 to 44> (1)
  • the plating film conditions shown in Table 6 are obtained by using a cold-rolled steel sheet with a thickness of 0.8 mm manufactured by a conventional method as a base steel sheet and performing an annealing treatment and a plating treatment with a hot-dip plating simulator manufactured by Resuka Co., Ltd.
  • a sample of the hot-dip plated steel sheet was prepared.
  • the composition of the plating bath used for manufacturing the hot-dip plated steel sheet the composition of the plating bath was Al: 30 to 75% by mass and Si: 0.5 to 4.5 so as to be the composition of the plating film of each sample shown in Table 6.
  • the bath temperature of the plating bath is 590 ° C when Al: 30 to 60% by mass and 630 ° C when Al: more than 60% by mass, and the plating penetration plate temperature of the base steel sheet is the same as the plating bath temperature. It was controlled to be. Furthermore, the plating treatment was carried out under the condition that the plate temperature was cooled to a temperature range of 520 to 500 ° C. in 3 seconds. The amount of the plating film adhered was controlled to be 85 ⁇ 5 g / m 2 per side for the samples 1 to 41 and 42 to 125 g / m 2 per side for the samples 42 to 44.
  • the chemical conversion treatment liquid shown in Table 5 is applied on the plating film of each sample of the prepared hot-dip galvanized steel sheet with a bar coater, and dried in a hot air drying furnace (reached plate temperature: 90 ° C.). A chemical conversion-treated film having an adhesion of 0.1 g / m 2 was formed.
  • the chemical conversion treatment liquid used a chemical conversion treatment liquid having a pH of 8 to 10 prepared by dissolving each component in water as a solvent was used.
  • the types of each component (resin component, inorganic compound) contained in the chemical conversion treatment liquid are as follows.
  • a primer paint is applied on the chemical conversion film formed as described above with a bar coater, and the steel sheet is baked under the conditions of an ultimate temperature of 230 ° C. and a baking time of 35 seconds.
  • a primer coating film having the above was formed.
  • the topcoat coating composition is applied on the primer coating film formed as described above with a bar coater, and the steel sheet is baked under the conditions of reaching temperature of 230 ° C to 260 ° C and baking time of 40 seconds, as shown in Table 5.
  • a topcoat coating film having the resin conditions and film thickness shown was formed, and a coated steel sheet of each sample was produced.
  • the primer paint was obtained by mixing each component and then stirring with a ball mill for about 1 hour.
  • Resin component Urethane-modified polyester resin (a product obtained by reacting 455 parts by mass of polyester resin and 45 parts by mass of isophorone diisocyanate, having a resin acid value of 3, a number average molecular weight of 5,600, and a hydroxyl value of 36). , The one cured with blocked isocyanate was used. The urethane resin to be urethane-modified was produced under the following conditions.
  • a flask equipped with a stirrer, a rectification tower, a water separator, a cooling tube and a thermometer was charged with 320 parts by mass of isophthalic acid, 200 parts by mass of adipic acid, 60 parts by mass of trimethylolpropane and 420 parts by mass of cyclohexanedimethanenol.
  • Heat and stir, and while distilling the generated condensed water out of the system raise the temperature from 160 ° C to 230 ° C over 4 hours at a constant rate, and after reaching the temperature of 230 ° C, gradually add 20 parts by mass of xylene.
  • Resin I Melamine-cured polyester paint ("Precolor HD0030HR” manufactured by BASF Japan Ltd.)
  • Resin II Organosol-based baking-type fluororesin-based paint with a mass ratio of polyvinylidene fluoride and acrylic resin of 80:20 (“Precolor No. 8800HR” manufactured by BASF Japan Ltd.)
  • composition of plating film (adhesion amount, composition, X-ray diffraction intensity)
  • 100 mm ⁇ is punched out, the non-measurement surface is sealed with tape, and then the plating is melted and peeled off with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H 0401: 2013.
  • the amount of adhesion of the plating film was calculated from the mass difference.
  • Table 6 shows the amount of adhesion of the plating film obtained as a result of the calculation.
  • the stripping solution was filtered, and the filtrate and solid content were analyzed respectively. Specifically, components other than insoluble Si were quantified by ICP emission spectroscopic analysis of the filtrate.
  • the solid content was dried and incinerated in a heating furnace at 650 ° C., and then melted by adding sodium carbonate and sodium tetraborate. Furthermore, insoluble Si was quantified by dissolving the melt with hydrochloric acid and ICP emission spectroscopic analysis of the solution.
  • the Si concentration in the plating film is the sum of the soluble Si concentration obtained by the filtrate analysis and the insoluble Si concentration obtained by the solid content analysis. Table 6 shows the composition of the plating film obtained as a result of the calculation.
  • the plating film on the evaluation symmetric plane is mechanically scraped until the underlying steel plate appears, the obtained powder is mixed well, and then 0.3 g is taken out and X is taken out.
  • the corrosion acceleration test was started from wetting, samples were taken out every 20 cycles, washed with water and dried, and then visually observed to confirm the occurrence of red rust on the sheared end face on one side that was not tape-sealed. Then, the number of cycles when red rust was confirmed was evaluated according to the following criteria. The evaluation results are shown in Table 6. ⁇ : Number of red rust generation cycles of 3 samples ⁇ 600 cycles ⁇ : 600 cycles > Number of red rust generation cycles of 3 samples ⁇ 400 cycles ⁇ : Number of red rust generation cycles of at least 1 sample ⁇ 400 cycles
  • each sample of the example of the present invention is superior to each sample of the comparative example in terms of corrosion resistance, appearance after painting, processability after painting, and bath stability in a well-balanced manner. I understand.
  • the present invention it is possible to provide a molten Al-Zn-Si-Mg-based plated steel sheet having stable and excellent corrosion resistance. Further, according to the present invention, it is possible to stably provide a surface-treated steel sheet having excellent corrosion resistance and white rust resistance. Further, according to the present invention, it is possible to stably provide a coated steel sheet having excellent corrosion resistance and corrosion resistance of a processed portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The purpose of the present invention is to provide a hot-dip Al-Zn-Si-Mg-plated steel sheet having stably superior corrosion resistance. In order to achieve said purpose, the present invention is a hot-dip Al-Zn-Si-Mg-plated steel sheet comprising a plating film, the hot-dip Al-Zn-Si-Mg-plated steel sheet being characterized in that the plating film has a composition containing 45-65 mass% of Al, 1.0-4.0 mass% of Si, and 1.0-10.0 mass% of Mg, the remainder comprising Zn and unavoidable impurities, and the diffraction intensity of Mg2Si and MgZn2 in the plating film according to X-ray diffraction analysis satisfying relationship (1). (1): Mg2Si (111)/MgZn2 (100) ≤ 2.0

Description

溶融Al-Zn-Si-Mg系めっき鋼板、表面処理鋼板及び塗装鋼板Fused Al-Zn-Si-Mg-based plated steel sheet, surface-treated steel sheet and painted steel sheet
 本発明は、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板、表面処理鋼板及び塗装鋼板に関するものである。 The present invention relates to a molten Al-Zn-Si-Mg-based plated steel sheet, a surface-treated steel sheet and a coated steel sheet having stable and excellent corrosion resistance.
 55%Al-Zn系に代表される溶融Al-Zn系めっき鋼板は、Znの犠牲防食性とAlの高い耐食性とが両立できているため、溶融亜鉛めっき鋼板の中でも高い耐食性を示すことが知られている。そのため、溶融Al-Znめっき鋼板は、その優れた耐食性から、長期間屋外に曝される屋根や壁等の建材分野、ガードレール、配線配管、防音壁等の土木建築分野を中心に使用されている。特に、大気汚染による酸性雨や、積雪地帯での道路凍結防止用融雪剤の散布、海岸地域開発等の、より厳しい使用環境下での、耐食性に優れる材料や、メンテナンスフリー材料への要求が高まっていることから、近年、溶融Al-Zn系めっき鋼板の需要は増加している。 It is known that hot-dip Al-Zn-based plated steel sheets represented by 55% Al-Zn-based steel sheets exhibit high corrosion resistance among hot-dip galvanized steel sheets because they have both the sacrificial corrosion resistance of Zn and the high corrosion resistance of Al. Has been done. Therefore, due to its excellent corrosion resistance, hot-dip Al-Zn plated steel sheets are mainly used in the field of building materials such as roofs and walls that are exposed to the outdoors for a long period of time, and in the field of civil engineering and construction such as guardrails, wiring pipes, and noise barriers. .. In particular, there is an increasing demand for materials with excellent corrosion resistance and maintenance-free materials under harsher usage environments such as acid rain due to air pollution, spraying of snow melting agents to prevent road freezing in snowy areas, and coastal area development. Therefore, in recent years, the demand for molten Al-Zn-based plated steel sheets has been increasing.
 溶融Al-Zn系めっき鋼板のめっき皮膜は、Znを過飽和に含有したAlがデンドライト状に凝固した部分(α-Al相)と、デンドライト間隙(インターデンドライト)に存在するZn-Al共晶組織から構成され、α-Al相がめっき皮膜の膜厚方向に複数積層した構造を有することが特徴である。このような特徴的な皮膜構造により、表面からの腐食進行経路が複雑になるため、腐食が容易に進行しにくくなり、溶融Al-Zn系めっき鋼板はめっき皮膜厚が同一の溶融亜鉛めっき鋼板に比べ優れた耐食性を実現できることも知られている。 The plating film of the molten Al-Zn-based plated steel sheet consists of the portion where Al containing Zn oversaturated is solidified into a dendrite (α-Al phase) and the Zn-Al eutectic structure existing in the dendrite gap (interdrendlite). It is characterized by having a structure in which a plurality of α-Al phases are laminated in the film thickness direction of the plating film. Due to such a characteristic film structure, the corrosion progress path from the surface becomes complicated, so that the corrosion does not easily proceed, and the hot-dip Al-Zn-based plated steel sheet becomes a hot-dip galvanized steel sheet having the same plating film thickness. It is also known that better corrosion resistance can be achieved.
 このような溶融Al-Zn系めっき鋼板に対して、さらに長寿命化を図ろうとする試みがなされており、Mgを添加した溶融Al-Zn-Si-Mg系めっき鋼板が実用化されている。
 このような溶融Al-Zn-Si-Mg系めっき鋼板としては、例えば特許文献1に、めっき皮膜中にMgを含むAl-Zn-Si合金を含み、該Al-Zn-Si合金が、45~60重量%の元素アルミニウム、37~46重量%の元素亜鉛及び1.2~2.3重量%のSiを含有する合金であり、該Mgの濃度が1~5重量%である、溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 また、特許文献2には、めっき皮膜中に2~10%のMg、0.01~10%のCaの1種以上を含有させることで耐食性の向上を図るとともに、下地鋼板が露出した後の保護作用を高めることを目的とした溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 さらに、特許文献3には、質量%で、Mg:1~15%、Si:2~15%、Zn:11~25%を含有し、残部がAl及び不可避的不純物からなる被覆層を形成し、めっき皮膜中に存在するMg2Si相やMgZn2相などの金属間化合物の大きさを10μm以下とすることで、平板及び端面の耐食性の改善を図った溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
Attempts have been made to further extend the life of such hot-dip Al-Zn-based plated steel sheets, and molten Al-Zn-Si-Mg-based plated steel sheets to which Mg has been added have been put into practical use.
As such a molten Al-Zn-Si-Mg-based plated steel sheet, for example, Patent Document 1 contains an Al-Zn-Si alloy containing Mg in a plating film, and the Al-Zn-Si alloy is 45 to An alloy containing 60% by weight elemental aluminum, 37-46% by weight elemental zinc and 1.2-2.3% by weight Si, wherein the Mg concentration is 1-5% by weight, molten Al-Zn-Si-. Mg-based plated steel sheets are disclosed.
Further, in Patent Document 2, the plating film contains at least one of 2 to 10% Mg and 0.01 to 10% Ca to improve corrosion resistance and protect the base steel sheet after it is exposed. A molten Al-Zn-Si-Mg-based plated steel sheet for the purpose of enhancing the above-mentioned is disclosed.
Further, in Patent Document 3, Mg: 1 to 15%, Si: 2 to 15%, Zn: 11 to 25% are contained in mass%, and the balance forms a coating layer composed of Al and unavoidable impurities. , Molten Al-Zn-Si-Mg system with improved corrosion resistance of flat plate and end face by reducing the size of intermetallic compounds such as Mg 2 Si phase and Mg Zn 2 phase present in the plating film to 10 μm or less. Plated steel plates are disclosed.
 上述した溶融Al-Zn系めっき鋼板は、白い金属光沢のスパングル模様を有する美麗な外観であることから、塗装を施さない状態で使用されることも多く、その外観に対する要求も強いのが実状である。そのため、溶融Al-Zn系めっき鋼板の外観を改善するような技術も開発されている。
 例えば特許文献4には、めっき皮膜中に0.01~10%のSrを含有させることで、しわ状の凹凸欠陥を抑制した溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 さらに、特許文献5にも、めっき皮膜中に500~3000ppmのSrを含有させることで、まだら欠陥を抑制した溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 また、特許文献6には、めっき皮膜中に0.001~1.0%のSrを含有させることで、表面外観性と耐食性を両立させた溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 さらに、特許文献7にも、めっき皮膜中に0.001~1.0%のSrを含有させることで、表面外観性と平板部と加工部の耐食性を両立させた溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 さらにまた、特許文献8にも、めっき皮膜中に0.01~0.2%のSrを含有させることで、表面外観性と耐食性を両立させた溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 また、特許文献9には、めっき皮膜中のSiとMg濃度を特定の比率で制御することで、耐食性を向上させた溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
Since the above-mentioned molten Al-Zn-based plated steel sheet has a beautiful appearance with a spangle pattern of white metallic luster, it is often used without painting, and the actual situation is that there is a strong demand for its appearance. be. Therefore, techniques for improving the appearance of hot-dip Al-Zn-based plated steel sheets have also been developed.
For example, Patent Document 4 discloses a molten Al-Zn-Si-Mg-based plated steel sheet in which wrinkle-like unevenness defects are suppressed by containing 0.01 to 10% Sr in the plating film.
Further, Patent Document 5 also discloses a molten Al-Zn-Si-Mg-based plated steel sheet in which mottled defects are suppressed by containing 500 to 3000 ppm of Sr in the plating film.
Further, Patent Document 6 discloses a molten Al-Zn-Si-Mg-based plated steel sheet in which 0.001 to 1.0% of Sr is contained in the plating film to achieve both surface appearance and corrosion resistance.
Further, Patent Document 7 also describes a molten Al-Zn-Si-Mg-based plated steel sheet in which 0.001 to 1.0% of Sr is contained in the plating film to achieve both surface appearance and corrosion resistance between the flat plate portion and the processed portion. Is disclosed.
Furthermore, Patent Document 8 also discloses a molten Al-Zn-Si-Mg-based plated steel sheet that achieves both surface appearance and corrosion resistance by containing 0.01 to 0.2% Sr in the plating film. ..
Further, Patent Document 9 discloses a molten Al-Zn-Si-Mg-based plated steel sheet having improved corrosion resistance by controlling the Si and Mg concentrations in the plating film at a specific ratio.
 なお、上述した溶融Al-Zn系めっき鋼板については、厳しい腐食環境で使用された場合、めっき皮膜の腐食に伴う白錆が発生するという問題があった。この白錆は、鋼板の外観性低下を招くため、耐白錆性の改善を図っためっき鋼板の開発が行われている。
 例えば特許文献10には、加工部の耐白錆性を改善させることを目的として、Si-Mg相中のMgの、めっき層中のMg全量に対する質量比率を適正化した溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
 また、特許文献11には、溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜上にウレタン樹脂を含有する化成皮膜を形成することで、耐黒変性や耐白錆性の改善を図った技術が開示されている。
The above-mentioned molten Al-Zn-based plated steel sheet has a problem that white rust is generated due to corrosion of the plating film when used in a severe corrosive environment. Since this white rust causes deterioration of the appearance of the steel sheet, a plated steel sheet with improved white rust resistance has been developed.
For example, Patent Document 10 describes molten Al-Zn-Si in which the mass ratio of Mg in the Si-Mg phase to the total amount of Mg in the plating layer is optimized for the purpose of improving the white rust resistance of the processed portion. -Mg-based plated steel sheets are disclosed.
Further, in Patent Document 11, blackening resistance and white rust resistance are improved by forming a chemical conversion film containing a urethane resin on the plating film of a molten Al-Zn-Si-Mg-based plated steel sheet. The technology is disclosed.
 また、溶融Al-Zn系めっき鋼板の表面に、化成皮膜、プライマー塗膜、上塗塗膜等を形成した塗装鋼板は、プレス成形、ロール成形若しくはエンボス成形によって、90度曲げや180度曲げのような様々な加工が施され、さらに、長期の塗膜耐久性能が要求されている。これらの要求に応えるため、溶融Al-Zn系めっき鋼板は、クロメートを含有する化成皮膜を形成し、プライマー塗膜にもクロメート系防錆顔料を含有させ、その上に、熱硬化型のポリエステル系樹脂塗膜やフッ素系樹脂塗膜等の耐候性に優れた上塗塗膜を形成した塗装鋼板が知られている。
 しかし、昨今このような塗装鋼板について、環境負荷物質であるクロメートを使用することが問題視されており、クロメートフリーであっても耐食性や表面外観を改善できる塗装鋼板の開発が強く望まれている。
 これらの要求に対応した技術として、例えば特許文献12には、鋼材の表面上に、Al、Zn、Si及びMgを含み、且つ、これらの元素の含有量について調整を図ったアルミニウム・亜鉛合金めっき層(α)をめっきし、更にその上層として、チタン化合物およびジルコニウム化合物から選ばれる少なくとも1種の化合物(A)を造膜成分とする皮膜(β)を形成し、アルミニウム・亜鉛合金めっき層(α)中のSi-Mg相の、めっき層中のMg全量に対する質量比率を3%以上に調整した表面処理溶融めっき鋼材が開示されている。
In addition, a coated steel sheet in which a chemical conversion film, primer coating film, topcoat coating film, etc. is formed on the surface of a molten Al-Zn-based plated steel sheet can be bent 90 degrees or 180 degrees by press forming, roll forming, or embossing. Various processing is applied, and long-term coating film durability is required. In order to meet these demands, the molten Al-Zn-based plated steel sheet forms a chromate-containing chemical conversion film, and the primer coating film also contains a chromate-based rust-preventive pigment, and on top of that, a heat-curable polyester-based film. A coated steel sheet on which a topcoat coating film having excellent weather resistance, such as a resin coating film or a fluororesin coating film, is formed is known.
However, recently, the use of chromate, which is an environmentally hazardous substance, has been regarded as a problem for such coated steel sheets, and the development of coated steel sheets that can improve corrosion resistance and surface appearance even if they are chromate-free is strongly desired. ..
As a technique for meeting these requirements, for example, Patent Document 12 describes aluminum-zinc alloy plating containing Al, Zn, Si and Mg on the surface of a steel material and adjusting the content of these elements. The layer (α) is plated, and a film (β) containing at least one compound (A) selected from a titanium compound and a zirconium compound as a film-forming component is formed as an upper layer thereof, and an aluminum-zinc alloy plated layer (β) is formed. A surface-treated hot-dip plated steel material in which the mass ratio of the Si—Mg phase in α) to the total amount of Mg in the plating layer is adjusted to 3% or more is disclosed.
特許第5020228号公報Japanese Patent No. 5020228 特許第5000039号公報Japanese Patent No. 5000039 特開2002-12959号公報Japanese Unexamined Patent Publication No. 2002-12959 特許第3983932号公報Japanese Patent No. 3983932 特表2011-514934号公報Special Table 2011-514934 国際公開第2020/179147号International Publication No. 2020/179147 国際公開第2020/179148号International Publication No. 2020/179148 特開2020-143370号公報Japanese Unexamined Patent Publication No. 2020-143370 国際公開第2016/140370号International Publication No. 2016/140370 特許第5751093号公報Japanese Patent No. 5751093 特開2019-155872号公報Japanese Unexamined Patent Publication No. 2019-155872 特開2005-169765号公報Japanese Unexamined Patent Publication No. 2005-169765
 しかしながら、特許文献1~3に開示されたような、めっき皮膜中へMgを含有させる技術が、一意的に耐食性の向上をもたらすとは限らない。
 特許文献1~3に開示された溶融Al-Zn-Si-Mg系めっき鋼板では、めっき成分にMgを含有させることのみで耐食性の向上を図っているが、めっき皮膜を構成する金属相・金属間化合物相の特徴については考慮されておらず、耐食性の優劣について一律に語ることができなかった。そのため、同じめっき浴組成を用いて溶融Al-Zn-Si-Mg系めっき鋼板を製造した場合でも、腐食促進試験を実施するとその耐食性にばらつきが存在し、Mgを添加しないAl-Zn系めっき鋼板に対して必ずしも優位にはならない、という問題があった。
 同様に、めっき外観性の改善においても、めっき皮膜中にSrを添加したのみでは、必ずしもシワ状の凹凸欠陥を消滅させることができる訳ではなく、特許文献4~8に開示された溶融Al-Zn-Si-Mg系めっき鋼板についても、耐食性と外観を両立できていない場合があった。加えて、Mgが酸化しやすい元素であるため、めっき浴中に含有されるMgが浴面近傍に酸化物(トップドロス)を発生させたり、溶融めっきの場合、時間の経過とともにめっき浴の浴中又は底部に偏在する鉄を含んだFeAl系化合物(ボトムドロス)が発生することがあり、これらのドロスが、めっき皮膜の表面に付着して凸形状の欠陥を引き起こし、めっき皮膜表面の外観を損ねるおそれもあった。
However, the technique of containing Mg in the plating film as disclosed in Patent Documents 1 to 3 does not always bring about the improvement of corrosion resistance uniquely.
In the molten Al-Zn-Si-Mg-based plated steel sheets disclosed in Patent Documents 1 to 3, the corrosion resistance is improved only by containing Mg in the plating component. The characteristics of the intermetallic phase were not considered, and it was not possible to uniformly talk about the superiority or inferiority of corrosion resistance. Therefore, even when a molten Al-Zn-Si-Mg-based plated steel sheet is manufactured using the same plating bath composition, the corrosion resistance varies when the corrosion acceleration test is carried out, and the Al-Zn-based plated steel sheet to which Mg is not added is present. There was a problem that it did not necessarily have an advantage over.
Similarly, in order to improve the appearance of the plating, it is not always possible to eliminate the wrinkle-like unevenness defect only by adding Sr to the plating film, and the molten Al-disclosed in Patent Documents 4 to 8 can be eliminated. In some cases, the Zn-Si-Mg-based plated steel sheet could not achieve both corrosion resistance and appearance. In addition, since Mg is an element that easily oxidizes, Mg contained in the plating bath generates an oxide (top dross) near the bath surface, and in the case of hot-dip plating, the bath of the plating bath over time. FeAl-based compounds (bottom dross) containing iron that are unevenly distributed in the middle or bottom may be generated, and these dross adhere to the surface of the plating film and cause convex defects, which impairs the appearance of the surface of the plating film. There was also a fear.
 また、溶融Al-Zn-Si浴にMgを添加した浴で鋼板にめっきを施した場合、めっき皮膜中にはα-Al相に加え、Mg2Si相、MgZn2相、Si相が析出することが知られている。しかしながら、各相の析出量や存在比率が耐食性に及ぼす影響については殆ど明らかとされていなかった。
 特許文献9に開示された溶融Al-Zn-Si-Mg系めっき鋼板では、SiとMgの濃度を特定の比率で管理し、めっき皮膜中のSi相の析出を無くすことで耐食性の改善を図っているが、必ずしもSi相の抑制ができるとは言えず、めっき皮膜中におけるSi相の形成を抑制できた場合においても優れた耐食性が得られない場合がある等、技術的に不完全なものであった。
In addition, when the steel sheet is plated with a bath in which Mg is added to the molten Al-Zn-Si bath, Mg 2 Si phase, Mg Zn 2 phase, and Si phase are deposited in the plating film in addition to the α-Al phase. It is known. However, the effect of the precipitation amount and abundance ratio of each phase on the corrosion resistance has not been clarified.
In the molten Al-Zn-Si-Mg-based plated steel sheet disclosed in Patent Document 9, the concentration of Si and Mg is controlled at a specific ratio, and the corrosion resistance is improved by eliminating the precipitation of the Si phase in the plating film. However, it cannot always be said that the Si phase can be suppressed, and even if the formation of the Si phase in the plating film can be suppressed, excellent corrosion resistance may not be obtained, which is technically incomplete. Met.
 さらに、耐白錆性については、いずれの技術についても十分に改善を図ることができなかった。特許文献10の溶融Al-Zn-Si-Mg系めっき鋼板については、加工部及び加熱後の平板部における耐白錆性の改善が述べられているものの、未加熱の平板部における耐白錆性については考慮されておらず、安定した耐白錆性の実現は依然として課題であった。また、特許文献11の溶融Al-Zn-Si-Mg系めっき鋼板についても、安定的に優れた耐食性や耐白錆性が得られるとは限られず、さらなる改善が望まれていた。 Furthermore, regarding white rust resistance, it was not possible to sufficiently improve any of the technologies. Regarding the molten Al-Zn-Si-Mg-based plated steel sheet of Patent Document 10, although the improvement of the white rust resistance in the processed portion and the flat plate portion after heating is described, the white rust resistance in the unheated flat plate portion is described. Was not taken into consideration, and the realization of stable white rust resistance was still an issue. Further, the molten Al-Zn-Si-Mg-based plated steel sheet of Patent Document 11 is not always stable and excellent in corrosion resistance and white rust resistance, and further improvement has been desired.
 さらにまた、塗装鋼板については、上述したように、プレス成形、ロール成形、エンボス成形等によって、90度曲げや180度曲げのような様々な加工を施された状態で、長期の塗膜耐久性能が要求されるが、特許文献12の技術では、加工後の耐食性や表面外観性が必ずしも安定して得られるとはいえなかった。
 塗装鋼板の耐食性は、下地とするめっき鋼板の耐食性に影響されることはいうまでもなく、表面外観についても、しわ状欠陥の凹凸の高低差は数十μmにも及ぶことから、塗膜により表面が平滑化しても凹凸の完全解消には至らず、塗装鋼板としての外観改善は望めないと考えられる。さらに、凸部では塗膜が薄くなるため、局部的に耐食性が低下する懸念もある。そのため、耐食性と表面外観に優れた塗装鋼板を得るには、下地であるめっき鋼板の耐食性と表面外観を改善することが重要である。
Furthermore, as described above, the coated steel sheet has long-term coating film durability performance in a state where it has been subjected to various processing such as 90 degree bending and 180 degree bending by press forming, roll forming, embossing, etc. However, it cannot be said that the technique of Patent Document 12 can always obtain stable corrosion resistance and surface appearance after processing.
It goes without saying that the corrosion resistance of the coated steel sheet is affected by the corrosion resistance of the plated steel sheet used as the base, and as for the surface appearance, the height difference of the unevenness of the wrinkle-like defect is as much as several tens of μm. Even if the surface is smoothed, the unevenness is not completely eliminated, and it is considered that the appearance of the coated steel sheet cannot be improved. Further, since the coating film becomes thin in the convex portion, there is a concern that the corrosion resistance is locally deteriorated. Therefore, in order to obtain a coated steel sheet having excellent corrosion resistance and surface appearance, it is important to improve the corrosion resistance and surface appearance of the underlying plated steel sheet.
 かかる事情に鑑み、本発明は、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板を提供することを目的とする。
 また、本発明は、安定的に優れた耐食性及び耐白錆性を有する表面処理鋼板を提供することを目的とする。
 さらに、本発明は、安定的に優れた耐食性及び加工部耐食性を有する塗装鋼板を提供することを目的とする。
In view of such circumstances, it is an object of the present invention to provide a molten Al-Zn-Si-Mg-based plated steel sheet having stable and excellent corrosion resistance.
Another object of the present invention is to provide a surface-treated steel sheet having stable and excellent corrosion resistance and white rust resistance.
Further, it is an object of the present invention to provide a coated steel sheet having stable and excellent corrosion resistance and corrosion resistance of a processed portion.
 本発明者らは、上記の課題を解決すべく検討を行った結果、溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜中に形成するMg2Si相、MgZn2相、及びSi相について、めっき皮膜における各成分のバランスや、めっき皮膜の形成条件によって析出量が増減し、その存在比率が変化し、組成のバランスによってはいずれかの相が析出しない場合もあることがわかった。また、溶融Al-Zn-Si-Mg系めっき鋼板の耐食性が、これらの相の存在比率によって変化し、特にMg2Si相やSi相に比べ、MgZn2相が多い場合に耐食性が安定的に向上することを究明した。
 ただし、これらのMg2Si相、MgZn2相およびSi相については、一般的な手法、例えば走査型電子顕微鏡を活用し、めっき皮膜を表面または断面から二次電子像あるいは反射電子像などの観察を実施しても相の違いを判別することは非常に困難であることが知られている。より詳細な解析ができる手法として、透過型電子顕微鏡を用いて観察を行うことでミクロな情報を得ることは可能であるが、耐食性や外観といったマクロな情報を左右するMg2Si、MgZn2及びSi相の存在比率まで把握することはできなかった。
 そのため、本発明者らはさらに鋭意研究を重ねた結果、X線回折法に着目し、Mg2Si相、MgZn2相およびSi相の特定の回折ピークの強度比を利用することによって、相の存在比率を定量的に規定できること、さらに、めっき皮膜中にMg2Si相とMgZn2相が特定の存在比率を満足すると、安定的に優れた耐食性を実現できることに加え、ドロスの発生を抑えて良好な表面外観性も確保できることを見出した。
 さらにまた、本発明者らは、溶融Al-Zn-Si-Mg系めっき鋼板の、Mg2Si相、MgZn2相、Si相等の存在比率を制御した上で、浴中のSr濃度を制御することで、シワ状の凹凸欠陥の発生を確実に抑え、表面外観性に優れためっき鋼板が得られることも知見した。
As a result of studies to solve the above problems, the present inventors have found the Mg 2 Si phase, Mg Zn 2 phase, and Si phase formed in the plating film of the molten Al-Zn-Si-Mg-based plated steel sheet. It was found that the amount of precipitation increases or decreases depending on the balance of each component in the plating film and the formation conditions of the plating film, the abundance ratio changes, and one of the phases may not precipitate depending on the balance of the composition. In addition, the corrosion resistance of the molten Al-Zn-Si-Mg-based plated steel sheet changes depending on the abundance ratio of these phases, and the corrosion resistance is stable especially when there are more MgZn 2 phases than Mg 2 Si phase or Si phase. Investigated to improve.
However, for these Mg 2 Si phase, Mg Zn 2 phase and Si phase, a general method such as a scanning electron microscope is used to observe the plating film from the surface or cross section as a secondary electron image or a backscattered electron image. It is known that it is very difficult to discriminate the difference between the phases even if the above is performed. As a method for more detailed analysis, it is possible to obtain microscopic information by observing with a transmission electron microscope, but Mg 2 Si, MgZn 2 and MgZn 2 that influence macroscopic information such as corrosion resistance and appearance. It was not possible to grasp the abundance ratio of the Si phase.
Therefore, as a result of further diligent research, the present inventors focused on the X-ray diffraction method and used the intensity ratio of specific diffraction peaks of Mg 2 Si phase, Mg Zn 2 phase and Si phase to obtain the phase. If the abundance ratio can be quantitatively defined, and if the Mg 2 Si phase and Mg Zn 2 phase satisfy a specific abundance ratio in the plating film, stable and excellent corrosion resistance can be achieved, and the occurrence of dross is suppressed. It was found that good surface appearance can be ensured.
Furthermore, the present inventors control the Sr concentration in the bath after controlling the abundance ratio of Mg 2 Si phase, MgZn 2 phase, Si phase, etc. in the molten Al-Zn-Si-Mg based plated steel sheet. As a result, it was also found that a plated steel sheet with excellent surface appearance can be obtained by surely suppressing the occurrence of wrinkle-like uneven defects.
 また、本発明者らは、前記めっき皮膜上に形成された化成皮膜についても検討を行い、化成皮膜を、特定の樹脂と、特定の金属化合物とから構成することによって、化成皮膜のめっき皮膜との親和性や、防錆効果等を高め、耐白錆性の安定的な改善が向上になることも見出した。 In addition, the present inventors also studied the chemical conversion film formed on the plating film, and formed the chemical conversion film from a specific resin and a specific metal compound to form a plating film of the chemical conversion film. It was also found that the affinity of the white rust and the rust preventive effect were enhanced, and the stable improvement of the white rust resistance was improved.
 さらに、本発明者らは、前記めっき皮膜上に形成された化成皮膜及びプライマー塗膜についても検討を行い、化成皮膜を、特定の樹脂及び特定の無機化合物とから構成しつつ、プライマー塗膜を、特定のポリエステル樹脂及び無機化合物から構成することによって、塗膜のバリア性や密着性を高めることができ、クロメートフリーであっても優れた加工後耐食性を実現できることも見出した。 Furthermore, the present inventors have also studied the chemical conversion film and the primer coating film formed on the plating film, and while forming the chemical conversion film with a specific resin and a specific inorganic compound, the primer coating film is formed. It has also been found that, by being composed of a specific polyester resin and an inorganic compound, the barrier property and adhesion of the coating film can be enhanced, and excellent post-processing corrosion resistance can be realized even if it is chromate-free.
 本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.めっき皮膜を備える溶融Al-Zn-Si-Mg系めっき鋼板であって、
 前記めっき皮膜は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
 前記めっき皮膜中のMg2Si及びMgZn2のX線回折法による回折強度が、以下の関係(1)を満足することを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板。
 Mg2Si (111)/MgZn2(100)≦2.0 ・・・(1)
 Mg2Si (111):Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度、
 MgZn2 (100):MgZn2の(100)面(面間隔d=0.4510nm)の回折強度
The present invention has been made based on the above findings, and the gist thereof is as follows.
1. 1. A molten Al-Zn-Si-Mg-based plated steel sheet with a plating film.
The plating film contains Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and has a composition in which the balance is Zn and unavoidable impurities.
A molten Al-Zn-Si-Mg-based plated steel sheet characterized in that the diffraction intensities of Mg 2 Si and Mg Zn 2 in the plating film by the X-ray diffraction method satisfy the following relationship (1).
Mg 2 Si (111) / MgZn 2 (100) ≤ 2.0 ・ ・ ・ (1)
Mg 2 Si (111): Diffraction intensity of Mg 2 Si (111) plane (plane spacing d = 0.3668 nm),
MgZn 2 (100): Diffraction intensity of MgZn 2 (100) plane (plane spacing d = 0.4510 nm)
2.前記めっき皮膜中のSiのX線回折法による回折強度が、以下の関係(2)を満足することを特徴とする、前記1に記載の溶融Al-Zn-Si-Mg系めっき鋼板。
 Si (111)=0 ・・・(2)
 Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度
2. 2. The molten Al-Zn-Si-Mg-based plated steel sheet according to 1 above, wherein the diffraction intensity of Si in the plating film by the X-ray diffraction method satisfies the following relationship (2).
Si (111) = 0 ・ ・ ・ (2)
Si (111): Diffraction intensity of Si (111) plane (plane spacing d = 0.3135 nm)
3.前記めっき皮膜が、さらにSr:0.01~1.0質量%を含有することを特徴とする、前記1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板。 3. 3. The molten Al-Zn-Si-Mg-based plated steel sheet according to 1 or 2, wherein the plated film further contains Sr: 0.01 to 1.0% by mass.
4.前記めっき皮膜中のAlの含有量が、50~60質量%であることを特徴とする、前記1~3のいずれかに記載の溶融Al-Zn-Si-Mg系めっき鋼板。 4. The molten Al-Zn-Si-Mg-based plated steel sheet according to any one of 1 to 3, wherein the content of Al in the plating film is 50 to 60% by mass.
5.前記めっき皮膜中のSiの含有量が、1.0~3.0質量%であることを特徴とする、前記1~4のいずれかに記載の溶融Al-Zn-Si-Mg系めっき鋼板。 5. The molten Al-Zn-Si-Mg-based plated steel sheet according to any one of 1 to 4, wherein the content of Si in the plating film is 1.0 to 3.0% by mass.
6.前記めっき皮膜中のMgの含有量が、1.0~5.0質量%であることを特徴とする、前記1~5のいずれかに記載の溶融Al-Zn-Si-Mg系めっき鋼板。 6. The molten Al-Zn-Si-Mg-based plated steel sheet according to any one of 1 to 5, wherein the content of Mg in the plating film is 1.0 to 5.0% by mass.
7.前記1~6のいずれか1項に記載のめっき皮膜と、該めっき皮膜上に形成された化成皮膜と、を備える表面処理鋼板であって、
 前記化成皮膜は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、アクリルシリコン樹脂、アルキド樹脂、ポリエステル樹脂、ポリアルキレン樹脂、アミノ樹脂及びフッ素樹脂のうちから選択される少なくとも一種の樹脂と、P化合物、Si化合物、Co化合物、Ni化合物、Zn化合物、Al化合物、Mg化合物、V化合物、Mo化合物、Zr化合物、Ti化合物及びCa化合物のうちから選択される少なくとも一種の金属化合物と、を含有することを特徴とする、表面処理鋼板。
7. A surface-treated steel sheet comprising the plating film according to any one of 1 to 6 and a chemical conversion film formed on the plating film.
The chemical conversion film comprises at least one resin selected from epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin, and P compound and Si compound. , Co compound, Ni compound, Zn compound, Al compound, Mg compound, V compound, Mo compound, Zr compound, Ti compound and at least one metal compound selected from Ca compound. Surface treated steel plate.
8.前記1~6のいずれか1項に記載のめっき皮膜上に、直接又は化成皮膜を介して、塗膜が形成された塗装鋼板であって、
 前記化成皮膜は、(a):エステル結合を有するアニオン性ポリウレタン樹脂及び(b):ビスフェノール骨格を有するエポキシ樹脂を合計で30~50質量%含有し、該(a)と該(b)の含有比率((a):(b))が、質量比で3:97 ~60:40の範囲である樹脂成分と、2~10質量%のバナジウム化合物、40~60質量%のジルコニウム化合物及び0.5~5量%のフッ素化合物を含む無機化合物と、を含有し、
 前記塗膜は、プライマー塗膜を少なくとも有し、該プライマー塗膜が、ウレタン結合を有するポリエステル樹脂と、バナジウム化合物、リン酸化合物及び酸化マグネシウムを含む無機化合物と、を含有することを特徴とする、塗装鋼板。
8. A coated steel sheet in which a coating film is formed directly or via a chemical conversion film on the plating film according to any one of 1 to 6 above.
The chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton in a total amount of 30 to 50% by mass, and contains the (a) and the (b). The ratio ((a): (b)) is in the range of 3:97 to 60:40 in mass ratio, 2 to 10% by mass of vanadium compound, 40 to 60% by mass of zirconium compound and 0.5 to 0.5. Inorganic compounds containing 5% by weight of fluorine compounds and
The coating film has at least a primer coating film, and the primer coating film contains a polyester resin having a urethane bond and an inorganic compound containing a vanadium compound, a phosphoric acid compound and magnesium oxide. , Painted steel plate.
 本発明によれば、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板を提供できる。
 また、本発明によれば、安定的に優れた耐食性及び耐白錆性を有する表面処理鋼板を提供できる。
 さらに、本発明によれば、安定的に優れた耐食性及び加工部耐食性を有する塗装鋼板を提供できる。
According to the present invention, it is possible to provide a molten Al-Zn-Si-Mg-based plated steel sheet having stable and excellent corrosion resistance.
Further, according to the present invention, it is possible to stably provide a surface-treated steel sheet having excellent corrosion resistance and white rust resistance.
Further, according to the present invention, it is possible to stably provide a coated steel sheet having excellent corrosion resistance and corrosion resistance of a processed portion.
日本自動車規格の複合サイクル試験(JASO-CCT)の流れを説明するための図である。It is a figure for demonstrating the flow of the Japanese Automotive Standards Organization compound cycle test (JASO-CCT).
(溶融Al-Zn-Si-Mg系めっき鋼板)
 本発明の溶融Al-Zn-Si-Mg系めっき鋼板は、鋼板表面にめっき皮膜を備える。そして、該めっき皮膜は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有する。
(Fused Al-Zn-Si-Mg-based plated steel sheet)
The molten Al-Zn-Si-Mg-based plated steel sheet of the present invention has a plating film on the surface of the steel sheet. The plating film contains Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and has a composition in which the balance is Zn and unavoidable impurities.
 前記めっき皮膜中のAl含有量は、耐食性と操業面のバランスから、45~65質量%であり、好ましくは50~60質量%である。これは、前記めっき皮膜中のAl含有量が少なくとも45質量%あれば、Alのデンドライト凝固が生じ、α-Al相のデンドライト凝固組織を主体にするめっき皮膜構造を得ることができるためである。該デンドライト凝固組織がめっき皮膜の膜厚方向に積層する構造を取ることで、腐食進行経路が複雑になり、めっき皮膜自体の耐食性が向上する。またこのα-Al相のデンドライト部分が、多く積層するほど、腐食進行経路が複雑になり、腐食が容易に下地鋼板に到達しにくくなるので、耐食性が向上するため、Alの含有量を50質量%以上とすることが好ましい。一方、前記めっき皮膜中のAl含有量が65質量%を超えると、Znの殆どがα-Al中に固溶した組織に変化し、α-Al相の溶解反応が抑制できず、Al-Zn-Si-Mg系めっきの耐食性が劣化する。このため、前記めっき皮膜中のAl含有量は65質量%以下であることを要し、好ましくは60質量%以下である。 The Al content in the plating film is 45 to 65% by mass, preferably 50 to 60% by mass, from the viewpoint of the balance between corrosion resistance and operation. This is because if the Al content in the plating film is at least 45% by mass, dendrite solidification of Al occurs, and a plating film structure mainly composed of the dendrite solidified structure of the α-Al phase can be obtained. By adopting a structure in which the dendrite solidified structure is laminated in the film thickness direction of the plating film, the corrosion progress path becomes complicated and the corrosion resistance of the plating film itself is improved. Further, the more the dendrite portions of the α-Al phase are laminated, the more complicated the corrosion progress path becomes, and the more difficult it is for corrosion to reach the base steel sheet. Therefore, the corrosion resistance is improved, and the Al content is 50 mass. % Or more is preferable. On the other hand, when the Al content in the plating film exceeds 65% by mass, most of Zn changes to a structure that is solid-dissolved in α-Al, and the dissolution reaction of the α-Al phase cannot be suppressed, so that Al-Zn -The corrosion resistance of Si-Mg plating deteriorates. Therefore, the Al content in the plating film needs to be 65% by mass or less, preferably 60% by mass or less.
 前記めっき皮膜中のSiは主に下地鋼板との界面に生成するFe-Al系及び/又はFe-Al-Si系の界面合金層の成長を抑制し、めっき皮膜と鋼板の密着性を劣化させない目的で添加される。実際に、Siを含有したAl-Zn系めっき浴に鋼板を浸漬させると、鋼板表面のFeと浴中のAlやSiが合金化反応し、Fe-Al系及び/又はFe-Al-Si系の金属間化合物層が下地鋼板/めっき皮膜界面に生成するが、このときFe-Al-Si系合金はFe-Al系合金よりも成長速度が遅いので、Fe-Al-Si系合金の比率が高いほど、界面合金層全体の成長が抑制される。そのため、前記めっき皮膜中のSi含有量は1.0質量%以上とすることを要する。一方、前記めっき皮膜中のSi含有量が4.0質量%を超えると、前述した界面合金層の成長抑制効果が飽和するだけでなく、めっき皮膜中に過剰なSi相が存在することで腐食が促進されるため、Si含有量は4.0%以下とする。さらに、前記めっき皮膜中のSiの含有量は、過剰なSi相の存在抑制の観点から、好ましくは3.0%以下とする。なお、後述するMgの含有量との関係で、後述の(1)の関係式を満たしやすい観点からも、前記Siの含有量を1.0~3.0質量%とすることが好ましい。 Si in the plating film mainly suppresses the growth of the Fe-Al-based and / or Fe-Al-Si-based interfacial alloy layer generated at the interface with the underlying steel sheet, and does not deteriorate the adhesion between the plating film and the steel sheet. Added for the purpose. When a steel plate is actually immersed in an Al-Zn-based plating bath containing Si, Fe on the surface of the steel plate and Al or Si in the bath undergo an alloying reaction, and Fe-Al-based and / or Fe-Al-Si-based. The metal-metal compound layer is formed at the base steel plate / plating film interface. At this time, the Fe-Al-Si alloy has a slower growth rate than the Fe-Al alloy, so the ratio of the Fe-Al-Si alloy is high. The higher the value, the more the growth of the entire interfacial alloy layer is suppressed. Therefore, the Si content in the plating film needs to be 1.0% by mass or more. On the other hand, when the Si content in the plating film exceeds 4.0% by mass, not only the above-mentioned growth suppressing effect of the interfacial alloy layer is saturated, but also corrosion is promoted due to the presence of an excess Si phase in the plating film. Therefore, the Si content should be 4.0% or less. Further, the content of Si in the plating film is preferably 3.0% or less from the viewpoint of suppressing the presence of an excessive Si phase. The Si content is preferably 1.0 to 3.0% by mass from the viewpoint of easily satisfying the relational expression (1) described later in relation to the Mg content described later.
 前記めっき皮膜は、Mgを1.0~10.0%含有する。前記めっき皮膜中にMgを含有することで、上述したSiをMg2Si相の金属間化合物の形で存在させることができ、腐食の促進を抑制することができる。
 また、前記めっき皮膜中にMgを含有すると、めっき皮膜中に金属間化合物であるMgZn2相も形成され、より耐食性を向上させる効果が得られる。前記めっき皮膜中のMg含有量が1.0質量%未満の場合、前記金属間化合物(Mg2Si、MgZn2)の生成よりも、主要相であるα-Al相への固溶にMgが使用されるため、十分な耐食性が確保できない。一方、前記めっき皮膜中のMg含有量が多くなると、耐食性の向上効果が飽和することに加え、α-Al相の脆弱化に伴い加工性が低下するため、含有量は10.0%以下とする。さらに、前記めっき皮膜中のMg含有量は、めっき形成時のドロス発生を抑制し、めっき浴管理を容易にする観点から、5.0質量%以下とすることが好ましい。なお、前記Siの含有量との関係で、後述の(1)の関係式を満たしやすい観点からは、前記Mgの含有量を3.0質量%とすることが好ましく、ドロス抑制との両立性を考慮すると、前記Mgの含有量を3.0~5.0質量%とすることがより好ましい。
The plating film contains 1.0 to 10.0% of Mg. By containing Mg in the plating film, the above-mentioned Si can be present in the form of an intermetallic compound of Mg 2 Si phase, and the promotion of corrosion can be suppressed.
Further, when Mg is contained in the plating film, MgZn 2 phase, which is an intermetallic compound, is also formed in the plating film, and the effect of further improving the corrosion resistance can be obtained. When the Mg content in the plating film is less than 1.0% by mass, Mg is used for solid solution to the α-Al phase, which is the main phase, rather than the formation of the intermetallic compounds (Mg 2 Si, MgZn 2 ). Therefore, sufficient corrosion resistance cannot be ensured. On the other hand, when the Mg content in the plating film is large, the effect of improving the corrosion resistance is saturated and the processability is lowered due to the weakening of the α-Al phase, so the content is set to 10.0% or less. Further, the Mg content in the plating film is preferably 5.0% by mass or less from the viewpoint of suppressing the generation of dross during plating formation and facilitating the management of the plating bath. From the viewpoint of easily satisfying the relational expression (1) described later in relation to the Si content, the Mg content is preferably 3.0% by mass, and compatibility with dross suppression is taken into consideration. Then, it is more preferable to set the Mg content to 3.0 to 5.0% by mass.
 そして、本発明の溶融Al-Zn-Si-Mg系めっき鋼板では、前記めっき皮膜中のMg2Si及びMgZn2のX線回折法による回折強度が、以下の関係(1)を満足することを要する。
 Mg2Si (111)/MgZn2(100)≦2.0 ・・・(1)
 Mg2Si (111):Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度、MgZn2 (100):MgZn2の(100)面(面間隔d=0.4510nm)の回折強度
In the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention, the diffraction intensities of Mg 2 Si and Mg Zn 2 in the plating film by the X-ray diffraction method satisfy the following relationship (1). It takes.
Mg 2 Si (111) / MgZn 2 (100) ≤ 2.0 ・ ・ ・ (1)
Mg 2 Si (111): Diffraction intensity of Mg 2 Si (111) plane (plane spacing d = 0.3668nm), MgZn 2 (100): Diffraction of MgZn 2 (100) plane (plane spacing d = 0.4510nm) Strength
 上記のように、本発明では前記Mgの含有によってめっき皮膜中に生成するMg2SiやMgZn2等の金属間化合物の存在比率を、特定の割合に制御することが重要である。これらが耐食性に及ぼす影響については現在調査を継続しており不明な点も多いが、以下のようなメカニズムが推定される。 As described above, in the present invention, it is important to control the abundance ratio of intermetallic compounds such as Mg 2 Si and Mg Zn 2 produced in the plating film due to the inclusion of Mg to a specific ratio. The effects of these on corrosion resistance are currently being investigated and there are many unclear points, but the following mechanisms are presumed.
 溶融Al-Zn-Si-Mg系めっき鋼板が腐食環境に曝された場合、上記の金属間化合物は、α-Al相よりも優先的に溶解する結果、形成される腐食生成物の近傍はMgが豊富な環境となる。このようなMgリッチの環境下においては、形成される腐食生成物が分解されにくく、その結果としてめっき皮膜の保護作用効果が高まると推定している。また、このめっき皮膜の保護作用向上効果は、MgZn2の方がMg2Siよりも大きいため、前記めっき皮膜中に存在する金属間化合物におけるMgZn2の存在比率を上げることが有効であると考えられる。 When the molten Al-Zn-Si-Mg galvanized steel sheet is exposed to a corrosive environment, the above-mentioned intermetallic compound dissolves preferentially over the α-Al phase, and as a result, Mg is formed in the vicinity of the corrosive product. Will be a rich environment. It is estimated that in such an Mg-rich environment, the formed corrosion products are less likely to be decomposed, and as a result, the protective effect of the plating film is enhanced. In addition, since MgZn 2 has a greater protective effect than Mg 2 Si in this plating film, it is considered effective to increase the abundance ratio of MgZn 2 in the intermetallic compound present in the plating film. Be done.
 前記めっき皮膜中のMg2SiとMgZn2との存在比率は、X線回折法により得られた回折ピーク強度を用いて、関係(1):Mg2Si (111)/MgZn2 (100)≦2.0を満たすことを要するが、前記めっき皮膜中のMg2Si及びMgZn2の存在比率が関係(1)を満たさない、つまり、Mg2Si (111)/MgZn2 (100)>2.0の場合には、前記めっき皮膜中に存在する金属間化合物におけるMg2Siが多く存在しているため、前述したMgが豊富な環境を、腐食生成物の近傍で得ることができず、前記めっき皮膜の保護作用向上効果が得られにくくなる。
 なお、前記めっき皮膜中のMg2SiとMgZn2との存在比率については、仮にめっき皮膜の組成が本発明の範囲を満たす(Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる)場合であっても、Mg2Si及びMgZn2の存在比率が関係(1)を満たさない場合には、本発明によるめっき皮膜の保護作用向上効果を十分に得ることができない。
The abundance ratio of Mg 2 Si and Mg Zn 2 in the plating film is related to the relationship (1): Mg 2 Si (111) / MgZn 2 (100) ≤ using the diffraction peak intensity obtained by the X-ray diffraction method. It is necessary to satisfy 2.0, but when the abundance ratio of Mg 2 Si and Mg Zn 2 in the plating film does not satisfy the relationship (1), that is, when Mg 2 Si (111) / MgZn 2 (100)> 2.0. Because a large amount of Mg 2 Si is present in the metal-to-metal compound present in the plating film, the above-mentioned Mg-rich environment cannot be obtained in the vicinity of the corrosion product, and the plating film is protected. It becomes difficult to obtain the effect of improving the action.
Regarding the abundance ratio of Mg 2 Si and Mg Zn 2 in the plating film, the composition of the plating film tentatively satisfies the range of the present invention (Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg). : Even if it contains 1.0 to 10.0% by mass and the balance consists of Zn and unavoidable impurities), if the abundance ratio of Mg 2 Si and Mg Zn 2 does not satisfy the relationship (1), it is according to the present invention. The effect of improving the protective effect of the plating film cannot be sufficiently obtained.
 ここで、前記関係(1)において、Mg2Si (111)は、Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度であり、MgZn2(100)は、MgZn2の(100)面(面間隔d=0.4510nm)の回折強度である。
 前記X線回折によりMg2Si (111)及びMgZn2 (100)を測定する方法としては、前記めっき皮膜の一部を機械的に削り出し、粉末にした状態でX線回折を行うこと(粉末X線回折測定法)で算出することができる。回折強度の測定については、面間隔d=0.3668nmに相当するMg2Siの回折ピーク強度、面間隔d=0.4510nmに相当するMgZn2の回折ピーク強度を測定し、これらの比率を算出することでMg2Si (111)/MgZn2 (100)を得ることができる。
 なお、粉末X線回折測定を実施する際に必要なめっき皮膜の量(めっき皮膜を削り出す量)は、精度良くMg2Si (111)及びMgZn2 (100)を測定する観点から、0.1g以上あればよく、0.3g以上あることが好ましい。また、前記めっき皮膜を削り出す際に、めっき皮膜以外の鋼板成分が粉末に含まれる場合もあるが、これらの金属間化合物相はめっき皮膜のみに含まれるものであり、また前述したピーク強度に影響することはない。さらに、前記めっき皮膜を粉末にしてX線回折を行うのは、めっき鋼板に形成されためっき皮膜に対してX線回折を行うと、めっき皮膜凝固組織の面方位の影響を受け正しい相比率の計算を行うことが困難なためである。
Here, in the above relationship (1), Mg 2 Si (111) is the diffraction intensity of the (111) plane of Mg 2 Si (plane spacing d = 0.3668 nm), and MgZn 2 (100) is the diffraction intensity of MgZn 2 . (100) Diffraction intensity of planes (plane spacing d = 0.4510 nm).
As a method of measuring Mg 2 Si (111) and Mg Zn 2 (100) by the X-ray diffraction, a part of the plating film is mechanically scraped off and X-ray diffraction is performed in a powdered state (powder). It can be calculated by the X-ray diffraction measurement method). To measure the diffraction intensity, measure the diffraction peak intensity of Mg 2 Si corresponding to the surface spacing d = 0.3668 nm and the diffraction peak intensity of Mg Zn 2 corresponding to the surface spacing d = 0.4510 nm, and calculate these ratios. You can get Mg 2 Si (111) / MgZn 2 (100) with.
The amount of plating film (amount to scrape off the plating film) required for powder X-ray diffraction measurement is 0.1 g from the viewpoint of accurately measuring Mg 2 Si (111) and Mg Zn 2 (100). It is sufficient if it is more than 0.3 g, and it is preferable that it is 0.3 g or more. Further, when the plating film is scraped off, steel plate components other than the plating film may be contained in the powder, but these intermetallic compound phases are contained only in the plating film, and the above-mentioned peak strength can be obtained. It has no effect. Further, the reason why the plating film is powdered and X-ray diffraction is performed is that when X-ray diffraction is performed on the plating film formed on the plated steel sheet, it is affected by the plane orientation of the solidification structure of the plating film and has the correct phase ratio. This is because it is difficult to perform the calculation.
 また、本発明の溶融Al-Zn-Si-Mg系めっき鋼板では、より安定的に耐食性を向上させることができる点から、前記めっき皮膜中のSiのX線回折法による回折強度が、以下の関係(2)を満たすことが好ましい。
 Si (111)=0 ・・・(2)
 Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度
 一般的に、Al合金の水溶液中への溶解反応においては、Si相がカソードサイトとして存在することで周辺のα-Al相の溶解を促進することが知られていることから、Si相を少なくすることはα-Al相の溶解を抑制する観点でも有効であり、その中でも関係(2)のようにSi相が存在しない皮膜とすること(前記Si(111)の回折ピーク強度をゼロとすること)が耐食性の安定化のために最も優れている。
 なお、X線回折によりSiの(111)面の回折ピーク強度の測定方法は、上述したMg2Si (111)及びMgZn2 (100)を測定する方法と同様の方法を用いることができる。
Further, in the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention, the diffraction intensity of Si in the plating film by the X-ray diffraction method is as follows because the corrosion resistance can be improved more stably. It is preferable to satisfy the relationship (2).
Si (111) = 0 ・ ・ ・ (2)
Si (111): Diffractive intensity of Si (111) plane (plane spacing d = 0.3135 nm) Generally, in the dissolution reaction of Al alloy in an aqueous solution, the Si phase is present as a cathode site, so that the surroundings Since it is known to promote the dissolution of the α-Al phase, reducing the Si phase is also effective from the viewpoint of suppressing the dissolution of the α-Al phase, and among them, Si as described in the relationship (2). A phase-free film (setting the diffraction peak intensity of Si (111) to zero) is the most excellent for stabilizing corrosion resistance.
As the method for measuring the diffraction peak intensity of the (111) plane of Si by X-ray diffraction, the same method as the above-mentioned method for measuring Mg 2 Si (111) and Mg Zn 2 (100) can be used.
 ここで、上述した関係(1)や関係(2)を満たすための方法については、特に限定はされない。例えば、関係(1)や関係(2)を満たすためには、前記めっき皮膜中のSiの含有量、Mgの含有量及びAlの含有量のバランスを調整することによって、Mg2Si、MgZn2及びSiの存在比率(Mg2Si (111)、MgZn2 (100)及びSi (111)の回折強度)を制御できる。前記めっき皮膜中のSiの含有量、Mgの含有量及びAlの含有量のバランスは、必ずしも一定の含有割合に設定すれば関係(1)や関係(2)を満たせる訳ではなく、例えばSiの含有量(質量%)によってMg及びAlの含有比率を変える必要がある。
 また、前記めっき皮膜中のSiの含有量、Mgの含有量及びAlの含有量のバランスを調整する他にも、めっき皮膜形成時の条件(例えば、めっき後の冷却条件)を調整することによって、関係(1)や関係(2)を満たすように、Mg2Si (111)、MgZn2 (100)及びSi (111)の回折強度を制御できる。
Here, the method for satisfying the above-mentioned relationship (1) and relationship (2) is not particularly limited. For example, in order to satisfy the relationship (1) and the relationship (2), the balance between the Si content, the Mg content and the Al content in the plating film is adjusted so that Mg 2 Si and Mg Zn 2 can be satisfied. And the abundance ratio of Si (diffraction intensity of Mg 2 Si (111), MgZn 2 (100) and Si (111)) can be controlled. The balance between the Si content, the Mg content and the Al content in the plating film does not necessarily satisfy the relationship (1) and the relationship (2) if the content ratio is set to a certain level, for example, Si. It is necessary to change the content ratio of Mg and Al depending on the content (mass%).
In addition to adjusting the balance between the Si content, Mg content, and Al content in the plating film, the conditions for forming the plating film (for example, cooling conditions after plating) can be adjusted. , The diffraction intensity of Mg 2 Si (111), MgZn 2 (100) and Si (111) can be controlled so as to satisfy the relation (1) and the relation (2).
 なお、本発明の溶融Al-Zn-Si-Mg系めっき鋼板は、Zn及び不可避不純物を含有する。
 このうち、前記不可避的不純物はFeを含有する。このFeは、鋼板や浴中機器がめっき浴中に溶出することで不可避的に含まれるものと界面合金層の形成時に下地鋼板からの拡散によって供給される結果、前記めっき皮膜中に不可避的に含まれることとなる。前記めっき皮膜中のFe含有量は、通常0.3~2.0質量%程度である。その他の不可避的不純物としては、Cr、Ni、Cu等が挙げられる。前記不可避的不純物の総含有量については、特に限定はされないが、過剰に含有した場合、めっき鋼板の各種特性に影響を及ぼす可能性があるため、合計で5.0質量%以下であることが好ましい。
The molten Al-Zn-Si-Mg-based plated steel sheet of the present invention contains Zn and unavoidable impurities.
Of these, the unavoidable impurities contain Fe. This Fe is inevitably contained in the plating bath due to elution of the steel sheet and the equipment in the bath, and is supplied by diffusion from the base steel sheet during the formation of the interfacial alloy layer, and as a result, it is inevitably contained in the plating film. Will be included. The Fe content in the plating film is usually about 0.3 to 2.0% by mass. Other unavoidable impurities include Cr, Ni, Cu and the like. The total content of the unavoidable impurities is not particularly limited, but if it is excessively contained, it may affect various characteristics of the plated steel sheet, so that the total content is preferably 5.0% by mass or less.
 また、本発明の溶融Al-Zn-Si-Mg系鋼板では、前記めっき皮膜が、0.01~1.0質量%のSrを含有することが好ましい。前記めっき皮膜がSrを含有することで、シワ状の凹凸欠陥等の表面欠陥の発生をより確実に抑制することができ、良好な表面外観性を実現できる。
 なお、前記シワ状欠陥とは、前記めっき皮膜の表面に形成されたシワ状の凹凸になった欠陥であり、前記めっき皮膜表面において白っぽい筋として観察される。このようなシワ状欠陥は、前記めっき皮膜中にMgを多く添加した場合に、発生しやすくなる。そのため、前記溶融めっき鋼板では、前記めっき皮膜中にSrを含有させることによって、前記めっき皮膜表層においてSrをMgよりも優先的に酸化させ、Mgの酸化反応を抑制することで、前記シワ状欠陥の発生を抑えることが可能となる。
Further, in the molten Al-Zn-Si-Mg-based steel sheet of the present invention, it is preferable that the plating film contains 0.01 to 1.0% by mass of Sr. When the plating film contains Sr, it is possible to more reliably suppress the occurrence of surface defects such as wrinkle-like uneven defects, and it is possible to realize good surface appearance.
The wrinkle-like defect is a wrinkle-like uneven defect formed on the surface of the plating film, and is observed as a whitish streak on the surface of the plating film. Such wrinkle-like defects are likely to occur when a large amount of Mg is added to the plating film. Therefore, in the hot-dip galvanized steel sheet, by containing Sr in the plating film, Sr is preferentially oxidized over Mg in the surface layer of the plating film, and the oxidation reaction of Mg is suppressed, thereby causing the wrinkle-like defect. It is possible to suppress the occurrence of.
 そして、本発明の溶融Al-Zn-Si-Mg系鋼板では、上述しためっき皮膜中のMg2Si及びMgZn2の存在比率が関係(1)を満足し、且つ、前記めっき皮膜が0.01~1.0質量%のSrを含有することが好ましい。これにより、上述したSrによる表面外観性向上の効果をより享受することができる。この原因については明確ではないが、前記めっき皮膜中のMg2Siが多くなると、めっき表層の酸化がそもそも抑制されにくく、Srを添加したときの外観の改善効果に影響を及ぼすためであると推定される。なお、前記めっき皮膜中のSr含有量が0.01質量%未満である場合には、上述したシワ状欠陥の発生を抑える効果が得られにくく、前記めっき皮膜中のSr含有量が1.0質量%を超えると、Srが界面合金層に過剰に取り込まれ、外観改善効果以上にめっき密着性などに影響を及ぼすおそれがあることから、前記めっき皮膜中のSr含有量は、0.01~1.0質量%であることが好ましい。 In the molten Al-Zn-Si-Mg-based steel sheet of the present invention, the abundance ratios of Mg 2 Si and Mg Zn 2 in the above-mentioned plating film satisfy the relationship (1), and the plating film is 0.01 to 1.0. It preferably contains% by weight of Sr. Thereby, the effect of improving the surface appearance by the above-mentioned Sr can be further enjoyed. Although the cause of this is not clear, it is presumed that when the amount of Mg 2 Si in the plating film increases, the oxidation of the plating surface layer is difficult to be suppressed in the first place, which affects the effect of improving the appearance when Sr is added. Will be done. When the Sr content in the plating film is less than 0.01% by mass, it is difficult to obtain the effect of suppressing the occurrence of the wrinkle-like defects described above, and the Sr content in the plating film exceeds 1.0% by mass. The Sr content in the plating film should be 0.01 to 1.0% by mass because Sr is excessively incorporated into the interfacial alloy layer and may affect the plating adhesion more than the appearance improving effect. Is preferable.
 また、前記めっき皮膜は、上述したMgと同様に腐食生成物の安定性を向上させ、腐食の進行を遅延させる効果を奏することができる点から、合計で0.01~10質量%の、Cr、Mn、V、Mo、Ti、Ca、Ni、Co、Sb及びBのうちから選択される一種又は二種以上を、さらに含有することが好ましい。上述した成分の合計含有量を0.01~10質量%としたのは、十分な腐食遅延効果を得ることができるとともに、効果が飽和することもないためである。 Further, since the plating film can improve the stability of the corrosion product and delay the progress of corrosion in the same manner as the above-mentioned Mg, Cr and Mn in total of 0.01 to 10% by mass. , V, Mo, Ti, Ca, Ni, Co, Sb and B are preferably selected from one or more. The reason why the total content of the above-mentioned components is set to 0.01 to 10% by mass is that a sufficient corrosion delay effect can be obtained and the effect is not saturated.
 なお、前記めっき皮膜の付着量は、各種特性を満足する観点から、片面あたり45~120 g/m2であることが好ましい。前記めっき皮膜の付着量が45g/m2以上の場合には、建材などの長期間耐食性が必要となる用途に対しても十分な耐食性が得られ、また、前記めっき皮膜の付着量が120g/m2以下の場合には、加工時のめっき割れ等の発生を抑えつつ、優れた耐食性を実現できるためである。同様の観点から、前記めっき皮膜の付着量は、45~100g/m2であることがより好ましい。 The amount of the plating film adhered is preferably 45 to 120 g / m 2 per side from the viewpoint of satisfying various characteristics. When the adhesion amount of the plating film is 45 g / m 2 or more, sufficient corrosion resistance can be obtained even for applications that require long-term corrosion resistance such as building materials, and the adhesion amount of the plating film is 120 g / m / m. This is because when m 2 or less, excellent corrosion resistance can be realized while suppressing the occurrence of plating cracks during processing. From the same viewpoint, the amount of the plating film adhered is more preferably 45 to 100 g / m 2 .
 前記めっき皮膜の付着量については、例えば、JIS H 0401:2013年に示される塩酸とヘキサメチレンテトラミンの混合液で特定面積のめっき皮膜を溶解剥離し、剥離前後の鋼板重量差から算出する方法で導出することができる。この方法で片面あたりのめっき付着量を求めるには、非対象面のめっき表面が露出しないようにテープでシーリングしてから前述した溶解を実施することで求めることができる。 The amount of the plating film adhered is calculated from the difference in the weight of the steel sheet before and after peeling by dissolving and peeling the plating film of a specific area with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H0401: 2013, for example. Can be derived. In order to determine the amount of plating adhesion per one surface by this method, it can be determined by sealing with tape so that the plating surface of the non-target surface is not exposed, and then performing the above-mentioned dissolution.
 また、前記めっき皮膜の成分組成は、例えば、めっき皮膜を塩酸等に浸漬して溶解させ、その溶液をICP発光分光分析や原子吸光分析等で確認することができる。この方法はあくまでも一例であり、めっき皮膜の成分組成を正確に定量できる方法であればどのような方法でも良く、特に限定するものではない。 Further, the component composition of the plating film can be confirmed, for example, by immersing the plating film in hydrochloric acid or the like to dissolve the plating film, and confirming the solution by ICP emission spectroscopic analysis, atomic absorption spectroscopy, or the like. This method is merely an example, and any method can be used as long as the component composition of the plating film can be accurately quantified, and the method is not particularly limited.
 なお、本発明により得られた溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜は、全体としてはめっき浴の組成とほぼ同等となる。そのため、前記めっき皮膜の組成の制御は、めっき浴組成を制御することにより精度良く行うことができる。 The plating film of the molten Al-Zn-Si-Mg-based plated steel sheet obtained by the present invention has almost the same composition as the plating bath as a whole. Therefore, the composition of the plating film can be controlled accurately by controlling the composition of the plating bath.
 また、本発明の溶融Al-Zn-Si-Mg系めっき鋼板を構成する下地鋼板については、特に限定はされず、要求される性能や規格に応じて、冷延鋼板や熱延鋼板等を適宜使用することができる。 Further, the base steel sheet constituting the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention is not particularly limited, and a cold-rolled steel sheet, a hot-rolled steel sheet, or the like may be appropriately used according to the required performance and specifications. Can be used.
 さらに、前記下地鋼板を得る方法についても、特に限定はされない。例えば、前記熱延鋼板の場合、熱間圧延工程、酸洗工程を経たものを使用することができ、前記冷延鋼板の場合には、さらに冷間圧延工程を加えて製造できる。さらに、鋼板の特性を得るために溶融めっき工程の前に、再結晶焼鈍工程等を経ることも可能である。 Furthermore, the method for obtaining the base steel plate is not particularly limited. For example, in the case of the hot-rolled steel sheet, a steel sheet that has undergone a hot-rolling step and a pickling step can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by further adding a cold-rolling step. Further, in order to obtain the characteristics of the steel sheet, it is possible to go through a recrystallization annealing step or the like before the hot-dip plating step.
 なお、本発明の溶融Al-Zn-Si-Mg系めっき鋼板を製造する方法については、特に限定はされない。例えば、連続式溶融めっき設備で、前記下地鋼板を、洗浄、加熱、めっき浴浸漬することによって製造できる。鋼板の加熱工程においては、前記下地鋼板自身の組織制御のために再結晶焼鈍などを施すとともに、鋼板の酸化を防止し且つ表面に存在する微量な酸化膜を還元するため、窒素-水素雰囲気等の還元雰囲気での加熱が有効である。 The method for producing the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention is not particularly limited. For example, it can be manufactured by washing, heating, and immersing the base steel sheet in a plating bath in a continuous hot-dip plating facility. In the heating step of the steel sheet, recrystallization annealing is performed to control the structure of the base steel sheet itself, and in order to prevent oxidation of the steel sheet and reduce a trace amount of oxide film existing on the surface, a nitrogen-hydrogen atmosphere, etc. Heating in the reducing atmosphere of is effective.
 また、本発明の溶融Al-Zn-Si-Mg系めっき鋼板を製造する際に用いるめっき浴については、上述したように、前記めっき皮膜の組成が全体としてはめっき浴の組成とほぼ同等となることから、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn、Fe及び不可避的不純物からなる組成を有するものを用いることができる。 Further, as for the plating bath used when manufacturing the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention, as described above, the composition of the plating film is almost the same as the composition of the plating bath as a whole. Therefore, it is possible to use one containing Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and the balance having a composition of Zn, Fe and unavoidable impurities. ..
 さらに、前記めっき浴の浴温は、特に限定はされないが、(融点+20℃)~650℃の温度範囲とすることが好ましい。
 前記浴温の下限を、融点+20℃としたのは、溶融めっき処理を行うためには、前記浴温を凝固点以上にすることが必要であり、融点+20℃とすることで、前記めっき浴の局所的な浴温低下による凝固を防止するためである。一方、前記浴温の上限を650℃としたのは、650℃を超えると、前記めっき皮膜の急速冷却が難しくなり,めっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれがあるためである。
Further, the bath temperature of the plating bath is not particularly limited, but is preferably in the temperature range of (melting point + 20 ° C.) to 650 ° C.
The lower limit of the bath temperature is set to a melting point of + 20 ° C., because the bath temperature must be equal to or higher than the freezing point in order to perform the hot-dip plating treatment. This is to prevent coagulation due to a local decrease in bath temperature. On the other hand, the upper limit of the bath temperature is set to 650 ° C. If the temperature exceeds 650 ° C, rapid cooling of the plating film becomes difficult, and the interfacial alloy layer formed between the plating film and the steel sheet may become thick. Because.
 また、めっき浴に浸入する下地鋼板の温度(浸入板温)についても、特に限定はされないが、連前記続式溶融めっき操業におけるめっき特性の確保や浴温度の変化を防ぐ観点から、前記めっき浴の温度に対して±20℃以内に制御することが好ましい。 Further, the temperature of the base steel plate that penetrates into the plating bath (penetration plate temperature) is not particularly limited, but from the viewpoint of ensuring the plating characteristics and preventing the change in the bath temperature in the continuous hot-dip plating operation, the plating bath is described. It is preferable to control the temperature within ± 20 ° C.
 さらにまた、鋼板の前記めっき浴中の浸漬時間については、0.5秒以上である。これは0.5秒未満の場合、前記下地鋼板の表面に十分なめっき皮膜を形成できないおそれがあるためである。浸漬時間の上限については特に限定はされないが、浸漬時間を長くするとめっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれもあることから、8秒以内とすることが好ましい。 Furthermore, the immersion time of the steel sheet in the plating bath is 0.5 seconds or more. This is because if it takes less than 0.5 seconds, a sufficient plating film may not be formed on the surface of the base steel sheet. The upper limit of the dipping time is not particularly limited, but it is preferably within 8 seconds because the interfacial alloy layer formed between the plating film and the steel sheet may become thicker if the dipping time is lengthened.
 なお、溶融Al-Zn-Si-Mg系めっき鋼板は、要求される性能に応じて、前記めっき皮膜の上に、直接又は中間層を介して、塗膜を形成することができる。 The molten Al-Zn-Si-Mg-based plated steel sheet can form a coating film on the plating film directly or via an intermediate layer, depending on the required performance.
 なお、前記塗膜を形成する方法については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、ロールコーター塗装、カーテンフロー塗装、スプレー塗装等の形成方法が挙げられる。有機樹脂を含有する塗料を塗装した後、熱風乾燥、赤外線加熱、誘導加熱等の手段により加熱乾燥して塗膜を形成することが可能である。 The method for forming the coating film is not particularly limited and can be appropriately selected according to the required performance. For example, a forming method such as roll coater coating, curtain flow coating, spray coating and the like can be mentioned. After painting a paint containing an organic resin, it is possible to heat and dry it by means such as hot air drying, infrared heating, and induction heating to form a coating film.
 また、前記中間層についても、溶融めっき鋼板のめっき皮膜と前記塗膜との間に形成される層であれば特に限定はされない。 Further, the intermediate layer is not particularly limited as long as it is a layer formed between the plating film of the hot-dip galvanized steel sheet and the coating film.
(表面処理鋼板)
 本発明の表面処理鋼板は、鋼板表面にめっき皮膜と、該めっき皮膜上に形成された化成皮膜と、を備える。
 このうち、前記めっき皮膜の構成は、上述した本発明の溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜と同様である。
(Surface-treated steel sheet)
The surface-treated steel sheet of the present invention includes a plating film on the surface of the steel sheet and a chemical conversion film formed on the plating film.
Of these, the composition of the plating film is the same as that of the above-mentioned plating film of the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention.
 本発明の表面処理鋼板は、前記皮膜上に化成皮膜が形成されている。
 なお、前記化成皮膜は、表面処理鋼板の少なくとも片面に形成されればよく、用途や要求される性能に応じて、表面処理鋼板の両面に形成することもできる。
In the surface-treated steel sheet of the present invention, a chemical conversion film is formed on the film.
The chemical conversion film may be formed on at least one side of the surface-treated steel sheet, and may be formed on both sides of the surface-treated steel sheet depending on the application and required performance.
 そして、本発明の表面処理鋼板では、前記化成皮膜は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、アクリルシリコン樹脂、アルキド樹脂、ポリエステル樹脂、ポリアルキレン樹脂、アミノ樹脂及びフッ素樹脂のうちから選択される少なくとも一種の樹脂と、P化合物、Si化合物、Co化合物、Ni化合物、Zn化合物、Al化合物、Mg化合物、V化合物、Mo化合物、Zr化合物、Ti化合物及びCa化合物のうちから選択される少なくとも一種の金属化合物と、を含有することを特徴とする。
 上述した化成皮膜をめっき皮膜上に形成することよって、めっき皮膜との親和性を高め、前記めっき皮膜上に化成皮膜を均一に形成することが可能になることに加え、化成皮膜の防錆効果やバリア効果を高めることができる。その結果、本発明の表面処理鋼板の安定的な耐食性及び耐白錆性の実現が可能となる。
In the surface-treated steel plate of the present invention, the chemical conversion film is selected from at least one of epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin. One kind of resin and at least one kind of metal selected from P compound, Si compound, Co compound, Ni compound, Zn compound, Al compound, Mg compound, V compound, Mo compound, Zr compound, Ti compound and Ca compound. It is characterized by containing a compound and.
By forming the above-mentioned chemical conversion film on the plating film, the affinity with the plating film is enhanced, the chemical conversion film can be uniformly formed on the plating film, and the rust preventive effect of the chemical conversion film is achieved. And the barrier effect can be enhanced. As a result, stable corrosion resistance and white rust resistance of the surface-treated steel sheet of the present invention can be realized.
 ここで、前記化成皮膜を構成する樹脂については、耐食性向上の観点から、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、アクリルシリコン樹脂、アルキド樹脂、ポリエステル樹脂、ポリアルキレン樹脂、アミノ樹脂及びフッ素樹脂のうちから選択される少なくとも一種が用いられる。同様の観点から、前記樹脂は、ウレタン樹脂及びアクリル樹脂のうちの少なくとも一種を含有することが好ましい。なお、前記化成皮膜を構成する樹脂については、上述した樹脂の付加重合物も含まれる。 Here, the resin constituting the chemical conversion film is selected from among epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin from the viewpoint of improving corrosion resistance. At least one selected is used. From the same viewpoint, the resin preferably contains at least one of urethane resin and acrylic resin. The resin constituting the chemical conversion film also includes an addition polymer of the above-mentioned resin.
 前記エポキシ樹脂については、例えば、ビスフェノールA型、ビスフェノールF型、ノボラック型等のエポキシ樹脂をグリシジルエーテル化したもの、ビスフェノールA型のエポキシ樹脂に、プロピレンオキサイド、エチレンオキサイド若しくはポリアルキレングリコールを付加し、グリシジルエーテル化したもの、脂肪族エポキシ樹脂、脂環式エポキシ樹脂、ポリエーテル系エポキシ樹脂等を用いることができる。 The epoxy resin is, for example, a glycidyl etherified epoxy resin such as bisphenol A type, bisphenol F type, or novolak type, or a bisphenol A type epoxy resin to which propylene oxide, ethylene oxide, or polyalkylene glycol is added. A glycidyl etherified product, an aliphatic epoxy resin, an alicyclic epoxy resin, a polyether epoxy resin, or the like can be used.
 前記ウレタン樹脂については、例えば、油変性ポリウレタン樹脂、アルキド系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、ポリカーボネート系ポリウレタン樹脂等を用いることができる。 As the urethane resin, for example, an oil-modified polyurethane resin, an alkyd-based polyurethane resin, a polyester-based polyurethane resin, a polyether-based polyurethane resin, a polycarbonate-based polyurethane resin, or the like can be used.
 前記アクリル樹脂については、例えば、ポリアクリル酸及びその共重合体、ポリアクリル酸エステル及びその共重合体、ポリメタクリル酸及びその共重合体、ポリメタクリル酸エステル及びその共重合体、ウレタン-アクリル酸共重合体(またはウレタン変性アクリル樹脂)、スチレン-アクリル酸共重合体等が挙げられ、さらにこれらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂等によって変性させたものを用いることができる。 Regarding the acrylic resin, for example, polyacrylic acid and its copolymer, polyacrylic acid ester and its copolymer, polymethacrylic acid and its copolymer, polymethacrylic acid ester and its copolymer, urethane-acrylic acid. Examples thereof include copolymers (or urethane-modified acrylic resins) and styrene-acrylic acid copolymers, and those obtained by modifying these resins with other alkyd resins, epoxy resins, phenol resins and the like can be used.
 前記アクリルシリコン樹脂としては、例えば、主剤としてのアクリル系共重合体の側鎖又は末端に加水分解性アルコキシシリル基を有する樹脂に、硬化剤を添加したもの等が挙げられる。また、アクリルシリコン樹脂を用いた場合には、耐食性に加えて、優れた耐候性が期待できる。 Examples of the acrylic silicon resin include a resin having a hydrolyzable alkoxysilyl group at the side chain or the end of an acrylic copolymer as a main agent, to which a curing agent is added. Further, when an acrylic silicone resin is used, excellent weather resistance can be expected in addition to corrosion resistance.
 前記アルキド樹脂については、例えば、油変性アルキド樹脂、ロジン変性アルキド樹脂、フェノール変性アルキド樹脂、スチレン化アルキド樹脂、シリコン変性アルキド樹脂、アクリル変性アルキド樹脂、オイルフリーアルキド樹脂、高分子量オイルフリーアルキド樹脂等を挙げることができる。 Regarding the alkyd resin, for example, an oil-modified alkyd resin, a rosin-modified alkyd resin, a phenol-modified alkyd resin, a styrene-modified alkyd resin, a silicon-modified alkyd resin, an acrylic-modified alkyd resin, an oil-free alkyd resin, a high-molecular-weight oil-free alkyd resin, and the like. Can be mentioned.
 前記ポリエステル樹脂については、多価カルボン酸とポリアルコールとを、脱水縮合してエステル結合を形成させることによって合成された重縮合体であり、多価カルボン酸としては、例えば、テレフタル酸、2,6-ナフタレンジカルボン酸等が用いられ、ポリアルコールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。具体的には、前記ポリエステルは、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。また、これらのポリエステル樹脂をアクリル変性したものを用いることもできる。 The polyester resin is a polycondensate synthesized by dehydrating and condensing a polyvalent carboxylic acid and a polyalcohol to form an ester bond. Examples of the polyvalent carboxylic acid include terephthalic acid, 2, 6-Naphthalenedicarboxylic acid and the like are used, and examples of the polyalcohol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Specifically, examples of the polyester include polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Further, acrylic-modified polyester resins can also be used.
 前記ポリアルキレン樹脂については、例えば、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、カルボキシル変性ポリオレフィン樹脂などのエチレン系共重合体、エチレン-不飽和カルボン酸共重合体、エチレン系アイオノマー等が挙げられ、さらに、これらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂等によって変性させたものを用いることができる。 The polyalkylene resin may be, for example, an ethylene-based copolymer such as an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or a carboxyl-modified polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer, or an ethylene-based ionomer. Further, those obtained by modifying these resins with other alkyd resins, epoxy resins, phenol resins and the like can be used.
 前記アミノ樹脂については、アミンあるいはアミド化合物とアルデヒドの反応によって生成する熱硬化性樹脂であり、メラミン樹脂、グアナミン樹脂、チオ尿素樹脂等が挙げられるが、耐食性や耐侯性、密着性等の観点から、メラミン樹脂を用いることが好ましい。メラミン樹脂としては、特に限定はされないが、例えば、ブチル化メラミン樹脂、メチル化メラミン樹脂、水性メラミン樹脂等が挙げられる。 The amino resin is a thermosetting resin produced by the reaction of an amine or an amide compound with an aldehyde, and examples thereof include melamine resin, guanamine resin, and thiourea resin, but from the viewpoint of corrosion resistance, weather resistance, adhesion, and the like. , It is preferable to use a melamine resin. The melamine resin is not particularly limited, and examples thereof include butylated melamine resin, methylated melamine resin, and aqueous melamine resin.
 前記フッ素樹脂については、フルオロオレフィン系重合体や、フルオロオレフィンと、アルキルビニルエーテル、シンクロアルキルビニルエーテル、カルボン酸変性ビニルエステル、ヒドロキシアルキルアリルエーテル、テトラフルオロプロピルビニルエーテル等との共重合体が挙げられる。これらのフッ素樹脂を用いた場合には、耐食性だけでなく、優れた耐候性と優れた疎水性も期待できる。 Examples of the fluororesin include fluoroolefin polymers and copolymers of fluoroolefins with alkyl vinyl ethers, synchroalkyl vinyl ethers, carboxylic acid-modified vinyl esters, hydroxyalkylallyl ethers, tetrafluoropropyl vinyl ethers and the like. When these fluororesins are used, not only corrosion resistance but also excellent weather resistance and excellent hydrophobicity can be expected.
 さらに、耐食性や加工性の向上を狙いとして、特に硬化剤を用いることが好ましい。硬化剤としては、尿素樹脂(ブチル化尿素樹脂等)、メラミン樹脂(ブチル化メラミン樹脂、ブチルエーテル化メラミン樹脂等)、ブチル化尿素・メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂、ブロックイソシアネート、オキサゾリン化合物、フェノール樹脂等を適宜用いることができる。 Further, it is particularly preferable to use a curing agent for the purpose of improving corrosion resistance and processability. Examples of the curing agent include urea resin (butylated urea resin, etc.), melamine resin (butylated melamine resin, butyl etherified melamine resin, etc.), butylated urea / melamine resin, amino resin such as benzoguanamine resin, blocked isocyanate, and oxazoline compound. Phenol resin or the like can be used as appropriate.
 また、前記化成皮膜を構成する金属化合物については、P化合物、Si化合物、Co化合物、Ni化合物、Zn化合物、Al化合物、Mg化合物、V化合物、Mo化合物、Zr化合物、Ti化合物及びCa化合物のうちから選択される少なくとも一種が用いられる。同様の観点から、前記金属化合物は、P化合物、Si化合物及びV化合物のうちの少なくとも一種を含有することが好ましい。 Regarding the metal compounds constituting the chemical conversion film, among P compounds, Si compounds, Co compounds, Ni compounds, Zn compounds, Al compounds, Mg compounds, V compounds, Mo compounds, Zr compounds, Ti compounds and Ca compounds. At least one selected from is used. From the same viewpoint, the metal compound preferably contains at least one of a P compound, a Si compound and a V compound.
 ここで、前記P化合物は、前記化成皮膜中に含まれることで、耐食性や、耐汗性を向上させることができる。前記P化合物とは、Pを含有する化合物であり、例えば、無機リン酸、有機リン酸及びこれらの塩、のうちから選択される1又は2以上を含有することができる。 Here, the P compound can be contained in the chemical conversion film to improve corrosion resistance and sweat resistance. The P compound is a compound containing P, and can contain, for example, one or two or more selected from inorganic phosphoric acid, organic phosphoric acid and salts thereof.
 前記無機リン酸、有機リン酸及びこれらの塩としては、特に限定されることなく任意の化合物を用いることができる。例えば、前記無機リン酸としては、リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩、ピロリン酸、ピロリン酸塩、トリポリリン酸、トリポリリン酸塩、亜リン酸、亜リン酸塩、次亜リン酸、次亜リン酸塩のうちから選択される1つ以上を用いることが好ましい。また、前記有機リン酸としては、ホスホン酸(ホスホン酸化合物)を用いることが好ましい。さらに、前記ホスホン酸としては、ニトリロトリスメチレンホスホン酸、ホスフォノブタントリカルボン酸、メチルジホスホン酸、メチレンホスホン酸、およびエチリデンジホスホン酸のうちから選択される1つ以上を用いることが好ましい。
 なお、前記P化合物が塩である場合、当該塩は、周期表における第1族~第13族元素の塩であることが好ましく、金属塩であることがより好ましく、アルカリ金属塩及びアルカリ土類金属塩のうちから選択される1つ以上であることが好ましい。
As the inorganic phosphoric acid, the organic phosphoric acid and salts thereof, any compound can be used without particular limitation. For example, the inorganic phosphoric acid includes phosphoric acid, primary phosphate, secondary phosphate, tertiary phosphate, pyrophosphoric acid, pyrophosphate, tripolyphosphoric acid, tripolyphosphate, phosphite, and subphosphoric acid. It is preferable to use one or more selected from acid salt, hypophosphite, and hypophosphite. Further, as the organic phosphoric acid, it is preferable to use phosphonic acid (phosphonic acid compound). Further, as the phosphonic acid, it is preferable to use one or more selected from nitrilotris methylenephosphonic acid, phosphonobtantricarboxylic acid, methyldiphosphonic acid, methylenephosphonic acid, and ethylidene diphosphonic acid.
When the P compound is a salt, the salt is preferably a salt of Group 1 to Group 13 elements in the periodic table, more preferably a metal salt, and an alkali metal salt and an alkaline earth. It is preferably one or more selected from among the metal salts.
 上記P化合物を含む化成処理液を、溶融Al-Zn-Si-Mg系めっき鋼板に塗付すると、該P化合物の作用によりめっき皮膜表面がエッチングされ、めっき皮膜の構成元素であるAl、Zn、Si及びMgが取り込まれた濃化層が化成皮膜の前記めっき皮膜側に形成される。前記濃化層が形成されることにより、化成皮膜とめっき皮膜表面との結合が強固となり、化成皮膜の密着性が向上する。
 前記化成処理液中のP化合物の濃度は、特に限定はされないが、0.25質量%~5質量%とすることができる。前記P化合物の濃度が0.25質量%未満では、エッチング効果が不足してめっき界面との密着力が低下し、平面部耐食性が低下するだけでなく、欠陥部、切断端面部、加工などで生じるめっきや皮膜の損傷部の耐食性、耐汗性も低下するおそれがある。同様の観点から、P化合物の濃度は、好ましくは0.35質量%以上、より好ましくは0.50質量%以上である。一方、前記P化合物の濃度が5質量%を超えると化成処理液の寿命が短くなるだけでなく、皮膜を形成した際の外観が不均一になりやすく、また、化成皮膜からのPの溶出量が多くなり、耐黒変性が低下するおそれもある。同様の観点から、P化合物の濃度は、好ましくは3.5質量%以下、より好ましくは2.5質量%以下である。前記化成皮膜中のP化合物の含有量については、例えば、P化合物の濃度を0.25質量%~5質量%とした化成処理液を、塗布、乾燥することにより、乾燥後の化成皮膜におけるPの付着量を5~100mg/m2とすることができる。
When the chemical conversion treatment liquid containing the above P compound is applied to a molten Al-Zn-Si-Mg-based plated steel sheet, the surface of the plating film is etched by the action of the P compound, and Al, Zn, which are constituent elements of the plating film, A concentrated layer in which Si and Mg are incorporated is formed on the plating film side of the chemical conversion film. By forming the concentrated layer, the bond between the chemical conversion film and the surface of the plating film is strengthened, and the adhesion of the chemical conversion film is improved.
The concentration of the P compound in the chemical conversion treatment liquid is not particularly limited, but may be 0.25% by mass to 5% by mass. If the concentration of the P compound is less than 0.25% by mass, the etching effect is insufficient and the adhesion to the plating interface is lowered, not only the corrosion resistance of the flat surface portion is lowered, but also the plating generated in the defective portion, the cut end face portion, the processing, etc. Corrosion resistance and sweat resistance of damaged parts of the film may also decrease. From the same viewpoint, the concentration of the P compound is preferably 0.35% by mass or more, more preferably 0.50% by mass or more. On the other hand, when the concentration of the P compound exceeds 5% by mass, not only the life of the chemical conversion treatment liquid is shortened, but also the appearance when the film is formed tends to be uneven, and the amount of P eluted from the chemical conversion film. There is a possibility that the amount of blackening will increase and the blackening resistance will decrease. From the same viewpoint, the concentration of the P compound is preferably 3.5% by mass or less, more preferably 2.5% by mass or less. Regarding the content of the P compound in the chemical conversion film, for example, by applying and drying a chemical conversion treatment solution having a concentration of the P compound of 0.25% by mass to 5% by mass, P adheres to the chemical conversion film after drying. The amount can be 5 to 100 mg / m 2 .
 前記Si化合物は、前記樹脂とともに化成皮膜を形成する骨格となる成分であり、前記めっき皮膜との親和性を高め、化成皮膜を均一に形成することができる。前記Si化合物は、Siを含有する化合物であり、例えば、シリカ、トリアルコキシシラン、テトラアルコキシシラン、及びシランカップリング剤のうちから選択される1つ以上を含有することが好ましい。 The Si compound is a component that forms a skeleton that forms a chemical conversion film together with the resin, and can enhance the affinity with the plating film and uniformly form the chemical conversion film. The Si compound is a compound containing Si, and preferably contains, for example, one or more selected from silica, trialkoxysilane, tetraalkoxysilane, and a silane coupling agent.
 前記シリカとしては、とくに限定されず任意のものを用いることができる。前記シリカとしては、例えば、湿式シリカ及び乾式シリカのうちの少なくとも1つを用いることができる。前記湿式シリカの一種であるコロイダルシリカとしては、例えば、日産化学(株)製のスノーテックスO、C、N、S、20、OS、OXS、NS等を好適に用いることができる。また、前記乾式シリカとしては、例えば、日本アエロジル(株)製のAEROSIL50、130、200、300、380等を好適に用いることができる。 The silica is not particularly limited and any silica can be used. As the silica, for example, at least one of wet silica and dry silica can be used. As the colloidal silica which is a kind of the wet silica, for example, Snowtex O, C, N, S, 20, OS, OXS, NS and the like manufactured by Nissan Chemical Industries, Ltd. can be preferably used. Further, as the dry silica, for example, AEROSIL 50, 130, 200, 300, 380 manufactured by Nippon Aerosil Co., Ltd. can be preferably used.
 前記トリアルコキシシランとしては、とくに限定されることなく任意のものを用いることができる。例えば、一般式:R1Si(OR2)3(式中、R1は水素又は炭素数1~5のアルキル基であり、R2は同一のまたは異なる炭素数1~5のアルキル基である)で表されるトリアルコキシシランを用いることが好ましい。このようなトリアルコキシシランとしては、例えば、トリメトキシシラン、トリエトキシシラン、メチルトリエトキシシラン等が挙げられる。 As the trialkoxysilane, any one can be used without particular limitation. For example, the general formula: R 1 Si (OR 2 ) 3 (in the formula, R 1 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and R 2 is an alkyl group having the same or different carbon atoms of 1 to 5 carbon atoms. ) Is preferably used. Examples of such trialkoxysilanes include trimethoxysilane, triethoxysilane, and methyltriethoxysilane.
 前記テトラアルコキシシランとしては、とくに限定されることなく任意のものを用いることができる。例えば、一般式:Si(OR)4(式中、Rは同一のまたは異なる炭素数1~5のアルキル基である)で表されるテトラアルコキシシランを用いることが好ましい。このようなテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。 As the tetraalkoxysilane, any one can be used without particular limitation. For example, it is preferable to use a tetraalkoxysilane represented by the general formula: Si (OR) 4 (where R is an alkyl group having the same or different carbon atoms of 1 to 5). Examples of such tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
 前記シランカップリング剤としては、とくに限定されることなく任意のものを用いることができる。例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、およびγ-メルカプトプロピルトリメトキシシラン、ビニルトリエトキシシラン、γ-イソシアネートプロピルトリエトキシシラン等が挙げられる。 As the silane coupling agent, any one can be used without particular limitation. For example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-Aminopropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, and γ-mercaptopropyltrimethoxysilane, vinyltriethoxysilane, γ- Examples thereof include isocyanate propyltriethoxysilane.
 なお、前記Si化合物を化成皮膜に含有させることにより、該Si化合物が脱水縮合して、腐食因子を遮蔽するバリア効果の高いシロキサン結合を有する非晶質の化成皮膜が形成される。また、上述した樹脂と結合することで、より高いバリア性を有する化成皮膜が形成される。さらに、腐食環境下において、欠陥部や加工などで生じるめっきや皮膜の損傷部には緻密で安定な腐食生成物が形成され、前記めっき皮膜との複合効果によって下地鋼板の腐食を抑制する効果もある。安定な腐食生成物を形成する効果が高いという観点からは、前記Si化合物として、コロイダルシリカ及び乾式シリカのうちの少なくとも1つを用いることが好ましい。 By containing the Si compound in the chemical conversion film, the Si compound is dehydrated and condensed to form an amorphous chemical conversion film having a siloxane bond having a high barrier effect that shields the corrosive factor. Further, by binding with the above-mentioned resin, a chemical conversion film having a higher barrier property is formed. Furthermore, in a corroded environment, dense and stable corrosion products are formed in the defective parts and damaged parts of the plating and film caused by processing, and the combined effect with the plating film also has the effect of suppressing the corrosion of the underlying steel sheet. be. From the viewpoint of having a high effect of forming a stable corrosion product, it is preferable to use at least one of colloidal silica and dry silica as the Si compound.
 前記化成皮膜を形成するための化成処理液における前記Si化合物の濃度は、0.2質量%~9.5質量%とする。前記化成処理液におけるSi化合物の濃度が0.2質量%以上であれば、シロキサン結合によるバリア効果を得ることができ、その結果、平面部耐食性に加え、欠陥部、切断部及び加工等に起因した損傷部における耐食性、並びに、耐汗性が向上する。また、前記Si化合物の濃度が9.5質量%以下であれば、化成処理液の寿命を長くすることができる。Si化合物の濃度を0.2質量%~9.5質量%とした化成処理液を、塗布、乾燥することにより、乾燥後の化成皮膜におけるSi付着量を2~95mg/m2とすることができる。 The concentration of the Si compound in the chemical conversion treatment liquid for forming the chemical conversion film is 0.2% by mass to 9.5% by mass. When the concentration of the Si compound in the chemical conversion treatment liquid is 0.2% by mass or more, the barrier effect due to the siloxane bond can be obtained, and as a result, in addition to the corrosion resistance of the flat surface portion, the damage caused by the defective portion, the cut portion, the processing and the like can be obtained. Corrosion resistance and sweat resistance in the part are improved. Further, when the concentration of the Si compound is 9.5% by mass or less, the life of the chemical conversion treatment liquid can be extended. By applying and drying a chemical conversion treatment liquid having a Si compound concentration of 0.2% by mass to 9.5% by mass, the amount of Si adhered to the chemical conversion film after drying can be adjusted to 2 to 95 mg / m 2 .
 前記Co化合物及び前記Ni化合物は、前記化成皮膜中に含まれることで、耐黒変性を向上させることができる。これは、CoやNiが、腐食環境下における水溶性成分の皮膜からの溶出を遅らせる効果を有するためであると考えられる。また、前記Co及び前記Niは、Al、Zn、Si及びMg等に比べて酸化されにくい元素である。そのため、前記Co化合物及び前記Ni化合物のうちの少なくとも一方を、前記化成皮膜と前記めっき皮膜との界面に濃化させる(濃化層を形成する)ことにより、濃化層が腐食に対するバリアとなる結果、耐黒変性を改善することができる。 The Co compound and the Ni compound can be contained in the chemical conversion film to improve blackening resistance. It is considered that this is because Co and Ni have the effect of delaying the elution of the water-soluble component from the film in a corrosive environment. Further, the Co and the Ni are elements that are less likely to be oxidized than Al, Zn, Si, Mg and the like. Therefore, by concentrating at least one of the Co compound and the Ni compound at the interface between the chemical conversion film and the plating film (forming a concentrated layer), the concentrated layer becomes a barrier against corrosion. As a result, blackening resistance can be improved.
 前記Co化合物を含んだ化成処理液を用いることにより、Coを、前記化成皮膜中に含有させ、前記濃化層中に取り込ませることができる。前記Co化合物としては、コバルト塩を用いることが好ましい。前記コバルト塩としては、硫酸コバルト、炭酸コバルト及び塩化コバルトのうちから選択される1又は2以上を用いることがより好ましい。
 また、前記Ni化合物を含む化成処理液を用いることにより、Niを、前記化成皮膜中に含有させ、前記濃化層中に取り込ませることができる。前記Ni化合物としては、ニッケル塩を用いることが好ましい。前記ニッケル塩としては、硫酸ニッケル、炭酸ニッケル及び塩化ニッケルのうちから選択される1又は2以上を用いることがより好ましい。
By using a chemical conversion treatment liquid containing the Co compound, Co can be contained in the chemical conversion film and incorporated into the concentrated layer. It is preferable to use a cobalt salt as the Co compound. As the cobalt salt, it is more preferable to use 1 or 2 or more selected from cobalt sulfate, cobalt carbonate and cobalt chloride.
Further, by using a chemical conversion treatment liquid containing the Ni compound, Ni can be contained in the chemical conversion film and incorporated into the concentrated layer. It is preferable to use a nickel salt as the Ni compound. As the nickel salt, it is more preferable to use 1 or 2 or more selected from nickel sulfate, nickel carbonate and nickel chloride.
 前記化成処理液中のCo化合物及び/又はNi化合物の濃度は、特に限定はされないが、合計で0.25質量%~5質量%とすることができる。前記Co化合物及び/又はNi化合物の濃度が0.25質量%未満では界面濃化層が不均一になり、平面部の耐食性が低下するだけでなく、欠陥部、切断端面部、加工等に起因しためっきや皮膜損傷部の耐食性も低下するおそれがある。同様の観点から、好ましくは0.5質量%以上、より好ましくは0.75質量%以上である。一方、前記Co化合物及び/又はNi化合物の濃度が5質量%を超えると皮膜を形成した際の外観が不均一になりやすく、耐食性が低下するおそれがある。同様の観点から、好ましくは4.0質量%以下、より好ましくは3.0質量%以下である。前記Co化合物及び/又はNi化合物の濃度の合計が0.25質量%~5質量%である化成処理液を塗布、乾燥することにより、乾燥後の化成皮膜におけるCo及びNiの合計付着量を5~100mg/m2とすることができる。 The concentration of the Co compound and / or the Ni compound in the chemical conversion treatment liquid is not particularly limited, but may be 0.25% by mass to 5% by mass in total. When the concentration of the Co compound and / or the Ni compound is less than 0.25% by mass, the interfacial concentrated layer becomes non-uniform, and not only the corrosion resistance of the flat surface portion is lowered, but also the plating caused by the defective portion, the cut end face portion, the processing, etc. And the corrosion resistance of the damaged part of the film may also decrease. From the same viewpoint, it is preferably 0.5% by mass or more, more preferably 0.75% by mass or more. On the other hand, if the concentration of the Co compound and / or the Ni compound exceeds 5% by mass, the appearance when the film is formed tends to be non-uniform, and the corrosion resistance may decrease. From the same viewpoint, it is preferably 4.0% by mass or less, more preferably 3.0% by mass or less. By applying and drying a chemical conversion treatment solution having a total concentration of the Co compound and / or Ni compound of 0.25% by mass to 5% by mass, the total amount of Co and Ni adhered to the dried chemical conversion film is 5 to 100 mg. Can be / m 2 .
 前記Al化合物、前記Zn化合物及び前記Mg化合物については、化成処理液に含有させることで、前記化成皮膜のめっき皮膜側に、Al、Zn及びMgのうちの少なくとも一種を含む濃化層を形成できる。形成された濃化層は、耐食性を向上させることができる。
 なお、前記Al化合物、前記Zn化合物及び前記Mg化合物は、それぞれ、Al、Zn及びMgを含有する化合物のことであれば、特に限定されないが、無機化合物であることが好ましく、塩、塩化物、酸化物又は水酸化物であることが好ましい。
By containing the Al compound, the Zn compound and the Mg compound in the chemical conversion treatment liquid, a concentrated layer containing at least one of Al, Zn and Mg can be formed on the plating film side of the chemical conversion coating. .. The formed concentrated layer can improve the corrosion resistance.
The Al compound, the Zn compound, and the Mg compound are not particularly limited as long as they are compounds containing Al, Zn, and Mg, respectively, but are preferably inorganic compounds, and salts, chlorides, and the like. It is preferably an oxide or a hydroxide.
 前記Al化合物としては、例えば、硫酸アルミニウム、炭酸アルミニウム、塩化アルミニウム、酸化アルミニウム及び水酸化アルミニウムのうちから選択される1つ以上が挙げられる。
 前記Zn化合物としては、例えば、硫酸亜鉛、炭酸亜鉛、塩化亜鉛、酸化亜鉛及び水酸化亜鉛のうちから選択される1つ以上が挙げられる。
 前記Mg化合物としては、例えば、硫酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、酸化マグネシウム及び水酸化マグネシウムのうちから選択される1つ以上が挙げられる。
Examples of the Al compound include one or more selected from aluminum sulfate, aluminum carbonate, aluminum chloride, aluminum oxide and aluminum hydroxide.
Examples of the Zn compound include one or more selected from zinc sulfate, zinc carbonate, zinc chloride, zinc oxide and zinc hydroxide.
Examples of the Mg compound include one or more selected from magnesium sulfate, magnesium carbonate, magnesium chloride, magnesium oxide and magnesium hydroxide.
 前記化成皮膜を形成するための化成処理液中のAl化合物、Zn化合物及び/又はMg化合物の濃度は、合計で0.25質量%~5質量%であることが好ましい。前記合計濃度が0.25質量%以上であれば、前記濃化層をより効果的に形成することができ、その結果、耐食性をさらに向上させることができる。一方、前記合計濃度が5質量%以下であれば、化成皮膜の外観がより均一となり、平面部や欠陥部、加工などで生じるめっきや皮膜の損傷部の耐食性がさらに向上する。 The concentration of the Al compound, Zn compound and / or Mg compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.25% by mass to 5% by mass in total. When the total concentration is 0.25% by mass or more, the concentrated layer can be formed more effectively, and as a result, the corrosion resistance can be further improved. On the other hand, when the total concentration is 5% by mass or less, the appearance of the chemical conversion film becomes more uniform, and the corrosion resistance of the flat surface portion, the defective portion, the damaged portion of the plating or the film caused by processing, etc. is further improved.
 前記V化合物は、前記化成皮膜中に含まれることで、腐食環境下においてVが適度に溶出し、同じく腐食環境下で溶出するめっき成分の亜鉛イオン等と結合し、緻密な保護皮膜を形成する。形成された保護皮膜によって、鋼板の平面部だけでなく、欠陥部、加工に起因して生じるめっき皮膜の損傷部、切断端面から平面部に進行する腐食、等に対する耐食性をさらに高めることができる。 When the V compound is contained in the chemical conversion film, V is appropriately eluted in a corrosive environment and combined with zinc ions and the like of plating components that are also eluted in a corrosive environment to form a dense protective film. .. The formed protective film can further enhance the corrosion resistance not only to the flat surface portion of the steel sheet but also to the defective portion, the damaged portion of the plating film caused by processing, the corrosion progressing from the cut end face to the flat surface portion, and the like.
 前記V化合物については、Vを含有する化合物であり、例えば、メタバナジン酸ナトリウム、硫酸バナジル及びバナジウムアセチルアセトネートのうちから選択される1つ以上が挙げられる。 The V compound is a V-containing compound, and examples thereof include one or more selected from sodium metavanadate, vanadyl sulfate, and vanadium acetylacetonate.
 前記化成皮膜を形成するための化成処理液中のV化合物は、0.05質量%~4質量%であることが好ましい。前記V化合物の濃度が0.05質量%以上であれば、腐食環境下で溶出して保護皮膜を形成しやすくなり、欠陥部、切断端面部、加工に起因して生じるめっき皮膜の損傷部の耐食性が向上する。一方、前記V化合物の濃度が4質量%を超えると化成皮膜を形成した際の外観が不均一になりやすく、耐黒変性も低下する。 The V compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.05% by mass to 4% by mass. When the concentration of the V compound is 0.05% by mass or more, it is easy to elute in a corrosive environment to form a protective film, and the corrosion resistance of the defective part, the cut end face part, and the damaged part of the plating film caused by processing is improved. improves. On the other hand, when the concentration of the V compound exceeds 4% by mass, the appearance when the chemical conversion film is formed tends to be non-uniform, and the blackening resistance is also lowered.
 前記Mo化合物は、前記化成皮膜中に含まれることで、表面処理鋼板の耐黒変性を高めることができる。前記Mo化合物は、Moを含有する化合物であり、化成処理液にモリブデン酸及びモリブデン酸塩の一方または両方を添加することにより得ることができる。
 なお、前記モリブデン酸塩としては、例えば、モリブテン酸ナトリウム、モリブテン酸カリウム、モリブテン酸マグネシウム及びモリブテン酸亜鉛のうちから選択される1つ以上が挙げられる。
By containing the Mo compound in the chemical conversion film, it is possible to enhance the blackening resistance of the surface-treated steel sheet. The Mo compound is a compound containing Mo and can be obtained by adding one or both of molybdic acid and molybdate to the chemical conversion treatment liquid.
Examples of the molybdate include one or more selected from sodium molybdate, potassium molybdate, magnesium molybdate, and zinc molybdate.
 前記化成皮膜を形成するための化成処理液中のMo化合物の濃度は、0.01質量%~3質量%であることが好ましい。前記Mo化合物の濃度が0.01質量%以上であれば、酸素欠乏型酸化亜鉛の生成がさらに抑制され、耐黒変性を一層向上できる。一方、前記Mo化合物の濃度が3質量%以下であれば、化成処理液の寿命がさらに長くなることに加え、耐食性を一層向上できる。 The concentration of the Mo compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.01% by mass to 3% by mass. When the concentration of the Mo compound is 0.01% by mass or more, the formation of oxygen-deficient zinc oxide is further suppressed, and the blackening resistance can be further improved. On the other hand, when the concentration of the Mo compound is 3% by mass or less, the life of the chemical conversion treatment liquid is further extended, and the corrosion resistance can be further improved.
 前記Zr化合物及び前記Ti化合物は、前記化成皮膜中に含まれることで、化成皮膜がポーラスになるのを防ぎ、皮膜を緻密化させることができる。その結果、腐食因子が前記化成皮膜を透過しにくくなり、耐食性を高めることができる。 By containing the Zr compound and the Ti compound in the chemical conversion film, it is possible to prevent the chemical conversion film from becoming porous and to densify the film. As a result, the corrosion factor is less likely to permeate the chemical conversion film, and the corrosion resistance can be improved.
 前記Zr化合物については、Zrを含有する化合物であり、例えば、酢酸ジルコニル、硫酸ジルコニル、炭酸ジルコニルカリウム、炭酸ジルコニルナトリウム及び炭酸ジルコニルアンモニウムのうちから選択される1つ以上を用いることができる。これらの中でも、有機チタンキレート化合物は、化成処理液を乾燥して皮膜を形成する際、皮膜を緻密化し、より優れた耐食性が得られるため、好適である。 The Zr compound is a compound containing Zr, and for example, one or more selected from zirconyl acetate, zirconyl sulfate, potassium zirconyl carbonate, sodium zirconyl carbonate and ammonium zirconyl carbonate can be used. Among these, the organic titanium chelate compound is suitable because when the chemical conversion treatment liquid is dried to form a film, the film is densified and more excellent corrosion resistance can be obtained.
 前記Ti化合物については、Tiを含有する化合物であり、例えば、硫酸チタン、塩化チタン、水酸化チタン、チタンアセチルアセトナート、チタンオクチレングリコレート及びチタンエチルアセトアセテートのうちから選択される1つ以上を用いることができる。 The Ti compound is a compound containing Ti, and is one or more selected from, for example, titanium sulfate, titanium chloride, titanium hydroxide, titanium acetylacetonate, titanium octylene glycolate, and titanium ethylacetoacetate. Can be used.
 前記化成皮膜を形成するための化成処理液中のZr化合物及び/又はTi化合物の濃度は、合計で0.2量%~20質量%であることが好ましい。前記Zr化合物及び/又はTi化合物の合計濃度が0.2質量%以上であれば、腐食因子の透過抑制効果が高まり、平面部耐食性だけでなく、欠陥部、切断端面部、加工に起因しためっき皮膜損傷部の耐食性をより向上させることができる。一方、前記Zr化合物及び/又はTi化合物の合計濃度が20質量%以下であれば、前記化成処理液寿命をさらに延ばすことができる。 The concentration of the Zr compound and / or the Ti compound in the chemical conversion treatment liquid for forming the chemical conversion film is preferably 0.2% by mass to 20% by mass in total. When the total concentration of the Zr compound and / or the Ti compound is 0.2% by mass or more, the effect of suppressing the permeation of the corrosive factor is enhanced, and not only the corrosion resistance of the flat surface portion but also the defect portion, the cut end face portion, and the plating film damage due to processing are damaged. The corrosion resistance of the part can be further improved. On the other hand, when the total concentration of the Zr compound and / or the Ti compound is 20% by mass or less, the life of the chemical conversion treatment liquid can be further extended.
 前記Ca化合物は、前記化成皮膜中に含まれることで、腐食速度を低下させる効果を発現させることができる。 By containing the Ca compound in the chemical conversion film, the effect of lowering the corrosion rate can be exhibited.
 前記Ca化合物については、Caを含有する化合物であり、例えば、Caの酸化物、Caの硝酸塩、Caの硫酸塩、Caを含有する金属間化合物等が挙げられる。より具体的には、前記Ca化合物として、CaO、CaCO3、Ca(OH)2、Ca(NO3)2・4H2O、CaSO4・2H2O等が挙げられる。前記化成皮膜中の前記Ca化合物の含有量は、特に限定はされない。 The Ca compound is a compound containing Ca, and examples thereof include an oxide of Ca, a nitrate of Ca, a sulfate of Ca, and an intermetallic compound containing Ca. More specifically, examples of the Ca compound include CaO, CaCO 3 , Ca (OH) 2 , Ca (NO 3 ) 2.4H 2 O, CaSO 4.2H 2 O and the like. The content of the Ca compound in the chemical conversion film is not particularly limited.
 なお、前記化成皮膜は、必要に応じて、塗料分野で通常使用されている公知の各種成分を含有することができる。例えば、レベリング剤、消泡剤等の各種表面調整剤、分散剤、沈降防止剤、紫外線吸収剤、光安定剤、シランカップリング剤、チタネートカップリング剤等の各種添加剤、着色顔料、体質顔料、光輝材等の各種顔料、硬化触媒、有機溶剤、潤滑剤などが挙げられる。 The chemical conversion film can contain various known components usually used in the paint field, if necessary. For example, various surface conditioners such as leveling agents and defoamers, dispersants, anti-settling agents, ultraviolet absorbers, light stabilizers, silane coupling agents, various additives such as titanate coupling agents, coloring pigments, and extender pigments. , Various pigments such as bright materials, curing catalysts, organic solvents, lubricants and the like.
 なお、本発明の表面処理鋼板では、前記化成皮膜が6価クロム、3価クロム、フッ素等の有害な成分を含有しないことが好ましい。前記化成皮膜を形成するための化成処理液中に、これらの有害成分が含有しないため、安全性が高くや環境への小さくなるためである。 In the surface-treated steel sheet of the present invention, it is preferable that the chemical conversion film does not contain harmful components such as hexavalent chromium, trivalent chromium and fluorine. This is because the chemical conversion treatment liquid for forming the chemical conversion film does not contain these harmful components, so that the safety is high and the amount is small to the environment.
 また、前記化成皮膜の付着量は、特に限定はされない。例えば、より確実に耐食性を確保しつつ、化成皮膜の剥離等を防ぐ観点からは、前記化成皮膜の付着量を0.1~3.0g/m2とすることが好ましく、0.5~2.5g/m2とすることがより好ましい。前記化成皮膜の付着量を0.1 g/m2以上とすることで、より確実に耐食性を確保でき、前記化成皮膜の付着量を3.0g/m2以下とすることで、化成皮膜の割れや剥離を防ぐことができる。
 前記化成皮膜付着量は、皮膜を蛍光X 線分析して予め皮膜中の含有量が分かっている元素の存在量を測定する方法のような、既存の手法から適切に選択した方法で求めればよい。
Further, the amount of the chemical conversion film adhered is not particularly limited. For example, from the viewpoint of preventing the chemical conversion film from peeling off while ensuring corrosion resistance more reliably, the adhesion amount of the chemical conversion film is preferably 0.1 to 3.0 g / m 2 , preferably 0.5 to 2.5 g / m 2 . It is more preferable to do so. Corrosion resistance can be ensured more reliably by setting the adhesion amount of the chemical conversion film to 0.1 g / m 2 or more, and cracking or peeling of the chemical conversion film by setting the adhesion amount of the chemical conversion film to 3.0 g / m 2 or less. Can be prevented.
The amount of the chemical conversion film adhered may be obtained by a method appropriately selected from existing methods such as a method of measuring the abundance of an element whose content in the film is known in advance by fluorescent X-ray analysis of the film. ..
 なお、前記化成皮膜を形成するための方法は、特に限定はされず、要求される性能や、製造設備等に応じて適宜選択することができる。例えば、前記めっき皮膜上に、化成処理液をロールコーター等により連続的に塗布し、その後、熱風や誘導加熱等を用いて、60~200℃程度の到達板温(Peak Metal Temperature:PMT)で乾燥させることで形成することができる。前記化成処理液の塗布には、ロールコーター以外にも、エアレススプレー、静電スプレー、カーテンフローコーター等の公知の手法を適宜採用することができる。さらに、前記化成皮膜は、前記樹脂及び前記金属化合物を含むものであれば、単層膜又は複層膜のいずれであってもよく、特に限定されるものではない。 The method for forming the chemical conversion film is not particularly limited, and can be appropriately selected according to the required performance, manufacturing equipment, and the like. For example, a chemical conversion treatment liquid is continuously applied onto the plating film with a roll coater or the like, and then, using hot air or induction heating, the plate temperature reaches about 60 to 200 ° C. (Peak Metal Temperature: PMT). It can be formed by drying. For the application of the chemical conversion treatment liquid, a known method such as an airless spray, an electrostatic spray, a curtain flow coater or the like can be appropriately adopted in addition to the roll coater. Further, the chemical conversion film may be either a single-layer film or a multi-layer film as long as it contains the resin and the metal compound, and is not particularly limited.
 また、本発明の表面処理鋼板は、必要に応じて、前記化成皮膜上に塗膜を形成することもできる。 Further, the surface-treated steel sheet of the present invention can also form a coating film on the chemical conversion film, if necessary.
(塗装鋼板)
 本発明の塗装鋼板は、めっき皮膜上に、直接又は化成皮膜を介して、塗膜が形成された塗装鋼板である。
 このうち、前記めっき皮膜の構成は、上述した本発明の溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜と同様である。
(Painted steel plate)
The coated steel sheet of the present invention is a coated steel sheet in which a coating film is formed directly on the plating film or via a chemical conversion film.
Of these, the composition of the plating film is the same as that of the above-mentioned plating film of the molten Al-Zn-Si-Mg-based plated steel sheet of the present invention.
 本発明の塗装鋼板は、前記めっき皮膜上に、化成皮膜を形成することができる。
 なお、前記化成皮膜は、塗装鋼板の少なくとも片面に形成されればよく、用途や要求される性能に応じて、塗装鋼板の両面に形成することもできる。
The coated steel sheet of the present invention can form a chemical conversion film on the plating film.
The chemical conversion film may be formed on at least one side of the coated steel sheet, and may be formed on both sides of the coated steel sheet depending on the application and required performance.
 そして、本発明の塗装鋼板では、前記化成皮膜が、(a):エステル結合を有するアニオン性ポリウレタン樹脂及び(b):ビスフェノール骨格を有するエポキシ樹脂を合計で30~50質量%含有し、該(a)と該(b)の含有比率((a):(b))が、質量比で3:97 ~60:40の範囲である樹脂成分と、2~10質量%のバナジウム化合物、40~60質量%のジルコニウム化合物及び0.5~5量%のフッ素化合物を含む無機化合物と、を含有することを特徴とする。
 上述した化成皮膜をめっき皮膜上に形成することよって、化成皮膜の強度及び密着性を高めつつ、耐食性も向上させることができる。
In the coated steel plate of the present invention, the chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton in a total amount of 30 to 50% by mass. A resin component having a content ratio ((a): (b)) of a) and the (b) in the range of 3:97 to 60:40 by mass ratio, and a vanadium compound of 2 to 10% by mass, 40 to It is characterized by containing an inorganic compound containing 60% by mass of a zirconium compound and 0.5 to 5% by mass of a fluorine compound.
By forming the above-mentioned chemical conversion film on the plating film, it is possible to improve the strength and adhesion of the chemical conversion film and also improve the corrosion resistance.
 ここで、前記化成皮膜を構成する樹脂成分については、(a):エステル結合を有するアニオン性ポリウレタン樹脂及び(b):ビスフェノール骨格を有するエポキシ樹脂を含有する。 Here, the resin component constituting the chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton.
 前記(a)エステル結合を有するアニオン性ポリウレタン樹脂については、ポリエステルポリオールと、イソシアネート基を2個以上もつ、ジイソシアネート又はポリイソシアネートとの反応物に、ジメチロールアルキル酸を共重合して得られる樹脂が挙げられる。また、公知の方法により水等の液中に分散させることにより、化成処理液を得ることができる。 As for the anionic polyurethane resin having the (a) ester bond, a resin obtained by copolymerizing a polyester polyol with a diisocyanate or a polyisocyanate having two or more isocyanate groups and a dimethylolalkyl acid is obtained. Can be mentioned. Further, a chemical conversion treatment liquid can be obtained by dispersing it in a liquid such as water by a known method.
 前記ポリエステルポリオールとしては、グリコール成分と、ヒドロキシルカルボン酸のエステル形成誘導体などの酸成分とから脱水縮合反応によって得られるポリエステル、ε-カプロラクトン等の環状エステル化合物の開環重合反応によって得られるポリエステル及びこれらの共重合ポリエステルが挙げられる。
 前記ポリイソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。前記芳香族ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-キシレンジイソシアネート、ジフェニルメタンジイソシアネート、2,4-ジフェニルメタンジイソシアネート、2,2-ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ポリメチレンポリフェニルポリイソシアネート、ナフタレンジイソシアネート、およびこれらの誘導体(例えばポリオール類との反応により得られたプレポリマー類、ジフェニルメタンジイソシアネートのカルボジイミド化合物等の変性ポリイソシアネート類等)等が挙げられる。
The polyester polyol includes a polyester obtained by a dehydration condensation reaction from a glycol component and an acid component such as an ester-forming derivative of hydroxylcarboxylic acid, a polyester obtained by a ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolactone, and these. Examples of the copolymerized polyester of.
Examples of the polyisocyanate include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates. Examples of the aromatic polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-xylene diisocyanate, diphenylmethane diisocyanate, 2,4-diphenylmethane diisocyanate, 2,2-diphenylmethane diisocyanate, and triphenyl. Examples thereof include methanetriisocyanate, polymethylene polyphenyl polyisocyanate, naphthalenediocyanate, and derivatives thereof (for example, prepolymers obtained by reaction with polyols, modified polyisocyanates such as carbodiimide compounds of diphenylmethane diisocyanate, etc.). ..
 なお、前記ポリエステルポリオールと、前記ジイソシアネート又はポリイソシアネートとを反応させてウレタンを合成する際、例えば、ジメチロールアルキル酸を共重合し、自己乳化させて水溶化(水分散)させることで、前記(a)エステル結合を有するアニオン性ポリウレタン樹脂を得ることができる。この場合、ジメチロールアルキル酸としては、例えば、炭素数2~6のジメチロールアルキル酸が挙げられ、より具体的には、ジメチロールエタン酸、ジメチロールプロパン酸、ジメチロールブタン酸、ジメチロールヘプタン酸およびジメチロールヘキサン酸等が挙げられる。 When synthesizing urethane by reacting the polyester polyol with the diisocyanate or polyisocyanate, for example, by copolymerizing dimethylolalkyl acid, self-emulsifying and water-solubilizing (water-dispersing) the above (water dispersion). a) An anionic polyurethane resin having an ester bond can be obtained. In this case, examples of the dimethylolalkyl acid include dimethylolalkyl acids having 2 to 6 carbon atoms, and more specifically, dimethylolethaneic acid, dimethylolpropaneic acid, dimethylolbutanoic acid, and dimethylolheptan. Acids and dimethylolhexaneic acid and the like can be mentioned.
 また、前記(b)ビスフェノール骨格を有するエポキシ樹脂については、公知のエポキシ樹脂を用いることができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS等のビスフェノール化合物と、エピクロルヒドリンとをアルカリ触媒の存在下で反応して得ることができる。中でも、成分〔A〕は、ビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂を含むことが好ましく、ビスフェノールA型エポキシ樹脂を含むことがより好ましい。該(b)ビスフェノール骨格を有するエポキシ樹脂は、公知の方法で水等の液に分散させることにより化成処理液を得ることができる。 Further, as the epoxy resin having the (b) bisphenol skeleton, a known epoxy resin can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin and the like can be mentioned. These epoxy resins can be obtained by reacting bisphenol compounds such as bisphenol A, bisphenol F, bisphenol AD, and bisphenol S with epichlorohydrin in the presence of an alkaline catalyst. Among them, the component [A] preferably contains a bisphenol A type epoxy resin or a bisphenol F type epoxy resin, and more preferably contains a bisphenol A type epoxy resin. The epoxy resin having the (b) bisphenol skeleton can be dispersed in a liquid such as water by a known method to obtain a chemical conversion treatment liquid.
 前記樹脂成分は、前記化成皮膜のバインダーとして作用するが、バインダーを構成する前記(a)エステル結合を有するアニオン性ポリウレタン樹脂は、可撓性があるので加工を受けた際に化成皮膜が破壊(剥離)しにくくなる効果を奏することができ、前記(b)ビスフェノール骨格を有するエポキシ樹脂は、下地の亜鉛系めっき鋼板及び上層のプライマー塗膜との密着性を向上する効果を奏することができる。
 前記樹脂成分は、前記化成皮膜中に合計で30~50質量%含まれる。前記樹脂成分の含有量が30質量%未満では化成皮膜のバインダー効果が低下し、50質量%を超えると、下記に示す無機成分による機能、例えばインヒビター作用が低下する。同様の観点から、前記化成皮膜における前記樹脂成分の含有量は、35~45質量%であることが好ましい。
The resin component acts as a binder for the chemical conversion film, but the anionic polyurethane resin having the (a) ester bond constituting the binder is flexible, so that the chemical conversion film is destroyed when processed (). The effect of making it difficult to peel off) can be achieved, and the epoxy resin having the bisphenol skeleton described in (b) can have the effect of improving the adhesion to the underlying zinc-based plated steel plate and the upper primer coating film.
The resin component is contained in the chemical conversion film in a total amount of 30 to 50% by mass. If the content of the resin component is less than 30% by mass, the binder effect of the chemical conversion film is lowered, and if it exceeds 50% by mass, the function of the inorganic component shown below, for example, the inhibitory action is lowered. From the same viewpoint, the content of the resin component in the chemical conversion film is preferably 35 to 45% by mass.
 さらに、前記樹脂成分は、前記(a)エステル結合を有するアニオン性ポリウレタン樹脂と前記(b)ビスフェノール骨格を有するエポキシ樹脂の含有比率((a):(b))が、質量比で3:97 ~60:40の範囲であることを要する。前記(a):(b)が、上記範囲外の場合、化成処理皮膜としての可撓性の低下や密着性が低下に伴い、十分な耐食性が得られないためである。同様の観点から、前記(a):(b)は、10:90~55:45であることが好ましい。 Further, in the resin component, the content ratio ((a): (b)) of the anionic polyurethane resin having the (a) ester bond and the epoxy resin having the (b) bisphenol skeleton is 3:97 by mass ratio. It must be in the range of ~ 60: 40. This is because when the above (a): (b) is out of the above range, sufficient corrosion resistance cannot be obtained due to a decrease in flexibility and adhesion as a chemical conversion coating film. From the same viewpoint, the above (a): (b) is preferably 10:90 to 55:45.
 なお、前記樹脂成分については、要求される性能に応じて、上述した(a)エステル結合を有するアニオン性ポリウレタン樹脂及び(b)ビスフェノール骨格を有するエポキシ樹脂以外の樹脂(その他の樹脂成分)を含むことができる。前記その他の樹脂成分については、特に限定はされず、例えば、アクリル樹脂、アクリルシリコン樹脂、アルキド樹脂、ポリエステル樹脂、ポリアルキレン樹脂、アミノ樹脂及びフッ素樹脂のうちから選択される少なくとも一種又は2種以上を組み合わせて用いることができる。
 前記樹脂成分がその他の樹脂を含む場合、前記(a)エステル結合を有するアニオン性ポリウレタン樹脂及び前記(b)ビスフェノール骨格を有するエポキシ樹脂の合計含有量が、50質量%以上であることが好ましく、75質量%以上であることがより好ましい。成処理皮膜としての可撓性の低下や密着性をより確実に得るためである。
The resin component includes a resin (other resin component) other than the above-mentioned (a) anionic polyurethane resin having an ester bond and (b) an epoxy resin having a bisphenol skeleton, depending on the required performance. be able to. The other resin components are not particularly limited, and are, for example, at least one or two or more selected from acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin. Can be used in combination.
When the resin component contains other resins, the total content of the (a) anionic polyurethane resin having an ester bond and the (b) epoxy resin having a bisphenol skeleton is preferably 50% by mass or more. It is more preferably 75% by mass or more. This is to ensure that the flexibility and adhesion of the film to be treated are reduced.
 また、前記化成皮膜は、無機化合物として、2~10質量%のバナジウム化合物、40~60質量%のジルコニウム化合物及び0.5~5量%のフッ素化合物を含む。
 これらの化合物を含むことによって、化成皮膜の耐食性を高めることができる。
Further, the chemical conversion film contains 2 to 10% by mass of vanadium compound, 40 to 60% by mass of zirconium compound and 0.5 to 5% by mass of fluorine compound as inorganic compounds.
By including these compounds, the corrosion resistance of the chemical conversion film can be enhanced.
 前記バナジウム化合物は、化成処理液中に添加して防錆剤(インヒビター)として作用する。前記バナジウム化合物が前記化成皮膜中に含まれることで、腐食環境下においてバナジウム化合物が適度に溶出し、同じく腐食環境下で溶出するめっき成分の亜鉛イオン等と結合し、緻密な保護皮膜を形成する。形成された保護皮膜によって、鋼板の平面部だけでなく、欠陥部、加工に起因して生じるめっき皮膜の損傷部、切断端面から平面部に進行する腐食、等に対する耐食性をさらに高めることができる。
 前記バナジウム化合物については、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、オキシ三塩化バナジウム、三酸化バナジウム、二酸化バナジウム、バナジン酸マグネシウム、バナジルアセチルアセトネート、バナジウムアセチルアセトネート等が挙げられる。特に、これらの中でも、4価のバナジウム化合物又は還元若しくは酸化することによって得られる4価のバナジウム化合物を用いることが望ましい。
The vanadium compound is added to the chemical conversion treatment liquid and acts as a rust preventive (inhibitor). When the vanadium compound is contained in the chemical conversion film, the vanadium compound is appropriately eluted in a corrosive environment and combined with zinc ions or the like of a plating component that also elutes in a corrosive environment to form a dense protective film. .. The formed protective film can further enhance the corrosion resistance not only to the flat surface portion of the steel sheet but also to the defective portion, the damaged portion of the plating film caused by processing, the corrosion progressing from the cut end face to the flat surface portion, and the like.
Examples of the vanadium compound include vanadium pentoxide, metavanadic acid, ammonium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, magnesium vanadate, vanadyl acetylacetonate, and vanadium acetylacetonate. In particular, among these, it is desirable to use a tetravalent vanadium compound or a tetravalent vanadium compound obtained by reduction or oxidation.
 また、前記化成処理皮膜中のバナジウム化合物の含有量は、2~10質量%である。前記化成処理皮膜中のバナジウム化合物の含有量が2質量%未満ではインヒビター効果が十分でないため耐食性の低下を招き、一方、前記バナジウム化合物の含有量が10質量%を超えると化成処理皮膜の耐湿性の低下を招くためである。 Further, the content of the vanadium compound in the chemical conversion treatment film is 2 to 10% by mass. If the content of the vanadium compound in the chemical conversion coating is less than 2% by mass, the inhibitory effect is not sufficient, resulting in a decrease in corrosion resistance. On the other hand, if the content of the vanadium compound exceeds 10% by mass, the moisture resistance of the chemical conversion coating is reduced. This is because it causes a decrease in.
 ジルコニウム化合物は、前記化成皮膜中に含有され、めっき金属との反応や樹脂成分との共存により、化成処理皮膜としての強度向上及び耐食性向上が期待でき、さらにはジルコニウム化合物自体が緻密な化成処理皮膜の形成に寄与し、被覆性に富むことからバリア効果を期待できる。
 前記ジルコニウム化合物としては、硫酸ジルコニウム、炭酸ジルコニウム、硝酸ジルコニウム、乳酸ジルコニウム、酢酸ジルコニウム、塩化ジルコニウムなどの中和塩等が挙げられる。
The zirconium compound is contained in the chemical conversion coating, and can be expected to improve the strength and corrosion resistance of the chemical conversion coating by reacting with the plating metal and coexisting with the resin component. Furthermore, the zirconium compound itself is a dense chemical conversion coating. It contributes to the formation of zirconium and is rich in coating properties, so a barrier effect can be expected.
Examples of the zirconium compound include neutralizing salts such as zirconium sulfate, zirconium carbonate, zirconium nitrate, zirconium lactate, zirconium acetate, and zirconium chloride.
 また、前記化成処理皮膜中のジルコニウム化合物の含有量は、40~60質量%である。前記化成処理皮膜中のジルコニウム化合物の含有量が40質量%未満では、化成処理皮膜としての強度や耐食性の低下を招き、前記ジルコニウム化合物の含有量が60質量%を超えると、化成処理皮膜が脆化して、厳しい加工を受けた場合に化成処理皮膜の破壊や剥離が生じるためである。 Further, the content of the zirconium compound in the chemical conversion treatment film is 40 to 60% by mass. If the content of the zirconium compound in the chemical conversion coating is less than 40% by mass, the strength and corrosion resistance of the chemical conversion coating are deteriorated, and if the content of the zirconium compound exceeds 60% by mass, the chemical conversion coating is brittle. This is because the chemical conversion treatment film is destroyed or peeled off when it is subjected to severe processing.
 前記フッ素化合物は、前記化成皮膜中に含有され、めっき皮膜との密着性付与剤として作用する。その結果、前記化成皮膜の耐食性を高めることが可能となる。
 前記フッ素化合物としては、例えば、アンモニウム塩、ナトリウム塩、カリウム塩などのフッ化物塩、又は、フッ化第一鉄、フッ化第二鉄等のフッ素化合物を用いることができる。これらの中でも、フッ化アンモニウムや、フッ化ナトリウム及びフッ化カリウム等のフッ化物塩を用いることが好ましい。
The fluorine compound is contained in the chemical conversion film and acts as an adhesive-imparting agent with the plating film. As a result, it is possible to improve the corrosion resistance of the chemical conversion film.
As the fluorine compound, for example, a fluoride salt such as an ammonium salt, a sodium salt or a potassium salt, or a fluorine compound such as ferrous fluoride or ferric fluoride can be used. Among these, it is preferable to use ammonium fluoride or a fluoride salt such as sodium fluoride and potassium fluoride.
 また、前記化成処理皮膜中のフッ素化合物の含有量は、0.5~5質量%である。前記化成処理皮膜中のフッ素化合物の含有量が0.5質量%未満では加工部での密着性が充分に得られず、前記フッ素化合物の含有量が5質量%を超えると化成処理皮膜の耐湿性が低下するからである。 Further, the content of the fluorine compound in the chemical conversion treatment film is 0.5 to 5% by mass. If the content of the fluorine compound in the chemical conversion treatment film is less than 0.5% by mass, sufficient adhesion at the processed portion cannot be obtained, and if the content of the fluorine compound exceeds 5% by mass, the moisture resistance of the chemical conversion treatment film becomes high. This is because it decreases.
 また、前記化成皮膜の付着量は、特に限定はされない。例えば、より確実に耐食性を確保しつつ、化成皮膜の密着性等を向上させる観点から、前記化成皮膜の付着量を0.025~0.5g/m2とすることが好ましい。前記化成皮膜の付着量を0.025g/m2以上とすることで、より確実に耐食性を確保でき、前記化成皮膜の付着量を0.5g/m2以下とすることで、化成皮膜の剥離を抑えることができる。
 前記化成皮膜付着量は、皮膜を蛍光X 線分析して予め皮膜中の含有量が分かっている元素の存在量を測定する方法のような、既存の手法から適切に選択した方法で求めればよい。
Further, the amount of the chemical conversion film adhered is not particularly limited. For example, from the viewpoint of improving the adhesion of the chemical conversion film while ensuring the corrosion resistance more reliably, it is preferable to set the adhesion amount of the chemical conversion film to 0.025 to 0.5 g / m 2 . By setting the adhesion amount of the chemical conversion film to 0.025 g / m 2 or more, corrosion resistance can be ensured more reliably, and by setting the adhesion amount of the chemical conversion film to 0.5 g / m 2 or less, peeling of the chemical conversion film is suppressed. be able to.
The amount of the chemical conversion film adhered may be obtained by a method appropriately selected from existing methods such as a method of measuring the abundance of an element whose content in the film is known in advance by fluorescent X-ray analysis of the film. ..
 なお、前記化成皮膜を形成するための方法は、特に限定はされず、要求される性能や、製造設備等に応じて適宜選択することができる。例えば、前記めっき皮膜上に、化成処理液をロールコーター等により連続的に塗布し、その後、熱風や誘導加熱等を用いて、60~200℃程度の到達板温(Peak Metal Temperature:PMT)で乾燥させることで形成することができる。前記化成処理液の塗布には、ロールコーター以外にも、エアレススプレー、静電スプレー、カーテンフローコーター等の公知の手法を適宜採用することができる。さらに、前記化成皮膜は、前記樹脂及び前記金属化合物を含むものであれば、単層膜又は複層膜のいずれであってもよく、特に限定されるものではない。 The method for forming the chemical conversion film is not particularly limited, and can be appropriately selected according to the required performance, manufacturing equipment, and the like. For example, a chemical conversion treatment liquid is continuously applied onto the plating film with a roll coater or the like, and then, using hot air or induction heating, the plate temperature reaches about 60 to 200 ° C. (Peak Metal Temperature: PMT). It can be formed by drying. For the application of the chemical conversion treatment liquid, a known method such as an airless spray, an electrostatic spray, a curtain flow coater or the like can be appropriately adopted in addition to the roll coater. Further, the chemical conversion film may be either a single-layer film or a multi-layer film as long as it contains the resin and the metal compound, and is not particularly limited.
 本発明の塗装鋼板は、上述したように、めっき皮膜上に、直接又は化成皮膜を介して、塗膜が形成されており、該塗膜は、プライマー塗膜を少なくとも有する。 As described above, the coated steel sheet of the present invention has a coating film formed on the plating film directly or via a chemical conversion film, and the coating film has at least a primer coating film.
 そして、本発明は、前記プライマー塗膜が、ウレタン結合を有するポリエステル樹脂と、バナジウム化合物、リン酸化合物及び酸化マグネシウムを含む無機化合物と、を含有する。
 前記プライマー塗膜が、前記ウレタン結合を有するポリエステル樹脂と前記無機化合物を含有することによって、塗膜の密着性を高めつつ、耐食性を向上させることができる。
In the present invention, the primer coating film contains a polyester resin having a urethane bond and an inorganic compound containing a vanadium compound, a phosphoric acid compound and magnesium oxide.
By containing the polyester resin having a urethane bond and the inorganic compound in the primer coating film, it is possible to improve the adhesion of the coating film and the corrosion resistance.
 前記プライマー塗膜は、主成分として、ウレタン結合を有するポリエステル樹脂を含有する。前記ウレタン結合を有するポリエステル樹脂は、可撓性と強度を兼ね備えているため、加工を受けた際にプライマー塗膜にクラックが発生しにくい等の効果が得られ、ウレタン樹脂を含有する化成処理皮膜との親和性が高いことから、特に加工部の耐食性向上に寄与することができる。
 なお、ここでいう「主成分」とは、プライマー塗膜中の各成分中最も含有量が多い成分であることを意味する。
The primer coating film contains a polyester resin having a urethane bond as a main component. Since the polyester resin having a urethane bond has both flexibility and strength, it is possible to obtain an effect that cracks are less likely to occur in the primer coating film when it is processed, and a chemical conversion treatment film containing a urethane resin is obtained. Since it has a high affinity with, it can contribute to the improvement of corrosion resistance of the processed portion.
The term "main component" as used herein means that the component has the highest content among the components in the primer coating film.
 前記ウレタン結合を有するポリエステル樹脂としては、ポリエステルポリオールと、イソシアネート基を2個以上もつ、ジイソシアネート又はポリイソシアネートとの反応によって得られる樹脂等、公知の樹脂を使用できる。また、前記ポリエステルポリオールと、前記ジイソシアネート又は前記ポリイソシアネートとを水酸基過剰な状態で反応させた樹脂(ウレタン変性ポリエステル樹脂)を、ブロック化ポリイソシアネートで硬化させた樹脂も使用できる。 As the polyester resin having a urethane bond, a known resin such as a resin obtained by reacting a polyester polyol with a diisocyanate or a polyisocyanate having two or more isocyanate groups can be used. Further, a resin obtained by reacting the polyester polyol with the diisocyanate or the polyisocyanate in a state of excess hydroxylate (urethane-modified polyester resin) and cured with a blocked polyisocyanate can also be used.
 なお、前記ポリエステルポリオールは、多価アルコール成分と多塩基酸成分との脱水縮合反応を利用した、公知の方法により得ることができる。
 前記多価アルコールとしては、グリコール及び3価以上の多価アルコールが挙げられる。前記グリコールは、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、ヘキシレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、メチルプロパンジオール、シクロヘキサンジメタノール、3,3-ジエチル-1,5-ペンタンジオール等が挙げられる。また、前記3価以上の多価アルコールは、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。これらの多価アルコールは、単独で使用することもでき、2種以上組み合わせて使用することもできる。
 前記多塩基酸は、通常は多価カルボン酸が使用されるが、必要に応じて1価の脂肪酸などを併用することができる。前記多価カルボン酸として、例えば、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、4-メチルヘキサヒドロフタル酸、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸、トリメリット酸、アジピン酸、セバシン酸、コハク酸、アゼライン酸、フマル酸、マレイン酸、イタコン酸、ピロメリット酸、ダイマー酸など、及びこれらの酸無水物、並びに1,4-シクロヘキサンジカルボン酸、イソフタル酸、テトラヒドロイソフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸等が挙げられる。これらの多塩基酸は、単独で使用することもでき、2種以上組み合わせて使用することもできる。
The polyester polyol can be obtained by a known method using a dehydration condensation reaction between a polyhydric alcohol component and a polybasic acid component.
Examples of the polyhydric alcohol include glycols and trihydric or higher polyhydric alcohols. The glycols include, for example, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, hexylene glycol, 1,3-butanediol, 1,4. -Butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, methylpropanediol, cyclohexanedimethanol, 3,3-diethyl-1,5 -Pentylene glycol and the like can be mentioned. Examples of the trihydric or higher polyhydric alcohol include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, and dipentaerythritol. These polyhydric alcohols can be used alone or in combination of two or more.
As the polybasic acid, a polyvalent carboxylic acid is usually used, but a monovalent fatty acid or the like can be used in combination if necessary. Examples of the polyvalent carboxylic acid include phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, 4-methylhexahydrophthalic acid, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid, trimellitic acid, and the like. Adipic acid, sebacic acid, succinic acid, azelaic acid, fumaric acid, maleic acid, itaconic acid, pyromellitic acid, dimer acid, etc., and their acid anhydrides, as well as 1,4-cyclohexanedicarboxylic acid, isophthalic acid, tetrahydroisophthalic acid. Acids, hexahydroisophthalic acid, hexahydroterephthalic acid and the like can be mentioned. These polybasic acids can be used alone or in combination of two or more.
 前記ポリイソシアネートについては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネートなどの脂肪族ジイソシアネート、そして、キシリレンジイソシアネート(XDI)、メタキシリレンジイソシアネート、トリレンジイソシアネート(TDI)、4,4-ジフェニルメタンジイソシアネート(MDI)などの芳香族ジイソシアネート、さらに、イソホロンジイソシアネート、水素化XDI、水素化TDI、水素化MDIなどの環状脂肪族ジイソシアネート、及びこれらのアダクト体、ビウレット体、イソシアヌレート体等が挙げられる。これらのポリイソシアネートは、単独で使用することもでき、2種以上組み合わせて使用することもできる。 Regarding the polyisocyanate, for example, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dimerate diisocyanate, and xylylene diisocyanate (XDI), metaxylylene diisocyanate, tolylene diisocyanate (TDI), 4, 4 -Aromatic diisocyanates such as diphenylmethane diisocyanate (MDI), cyclic aliphatic diisocyanates such as isophorone diisocyanate, hydride XDI, hydride TDI, hydride MDI, and adducts, biurets, isocyanurates and the like thereof. Will be. These polyisocyanates can be used alone or in combination of two or more.
 また、前記ウレタン結合を有するポリエステル樹脂の水酸基価は、特に限定はされないが、耐溶剤性、加工性等の観点から、好ましくは5~120mgKOH/gであり、より好ましくは、7~100 mgKOH/gであり、さらに好ましくは10~80 mgKOH/gである。
 さらに、前記ウレタン結合を有するポリエステル樹脂の数平均分子量は、耐溶剤性、加工性などの点から、好ましくは500~15,000であり、より好ましくは、700~12,000であり、さらに好ましくは800~10,000である。
The hydroxyl value of the polyester resin having a urethane bond is not particularly limited, but is preferably 5 to 120 mgKOH / g, more preferably 7 to 100 mgKOH / g from the viewpoint of solvent resistance, processability, and the like. It is g, more preferably 10 to 80 mgKOH / g.
Further, the number average molecular weight of the polyester resin having a urethane bond is preferably 500 to 15,000, more preferably 700 to 12,000, still more preferably 800 to 10,000 from the viewpoint of solvent resistance, processability and the like. Is.
 前記プライマー塗膜における、前記ウレタン結合を有するポリエステル樹脂の含有量は40~88質量%であることが好ましい。前記ウレタン結合を有するポリエステル樹脂の含有量が40質量%未満では、プライマー塗膜としてのバインダー機能が低下するおそれがり、一方、前記ウレタン結合を有するポリエステル樹脂の含有量が88質量%を超えると、下記に示す無機物による機能、例えばインヒビター作用が低下するおそれがある。 The content of the polyester resin having a urethane bond in the primer coating film is preferably 40 to 88% by mass. If the content of the polyester resin having a urethane bond is less than 40% by mass, the binder function as a primer coating film may be deteriorated, while if the content of the polyester resin having a urethane bond exceeds 88% by mass, the binder function may be deteriorated. The functions of the following inorganic substances, such as inhibitory action, may be reduced.
 前記無機化合物の1つであるバナジウム化合物は、インヒビターとして作用する。前記バナジウム化合物としては、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、オキシ三塩化バナジウム、三酸化バナジウム、二酸化バナジウム、バナジン酸マグネシウム、バナジルアセチルアセトネート、バナジウムアセチルアセトネート等が挙げられる。特に、これらの中でも、4価のバナジウム化合物又は還元若しくは酸化することによって得られる4価のバナジウム化合物を用いることが望ましい。
 前記プライマー塗膜中に添加するバナジウム化合物は、前記化成処理皮膜に添加するバナジウム化合物と同種であっても異種であってもよい。バナジン酸化合物は、外部から侵入してくる水分に徐々に溶出するバナジン酸イオンと亜鉛系めっき鋼板表面のイオンが反応し、密着性の良い不働態皮膜を形成し、金属露出部を保護し防錆作用が現れると考えられている。
The vanadium compound, which is one of the inorganic compounds, acts as an inhibitor. Examples of the vanadium compound include vanadium pentoxide, metavanadic acid, ammonium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, magnesium vanadate, vanadyl acetylacetonate, and vanadium acetylacetonate. In particular, among these, it is desirable to use a tetravalent vanadium compound or a tetravalent vanadium compound obtained by reduction or oxidation.
The vanadium compound added to the primer coating film may be the same as or different from the vanadium compound added to the chemical conversion treatment film. In the vanazic acid compound, vanadic acid ions that gradually elute to the moisture that invades from the outside react with the ions on the surface of the galvanized steel sheet to form a passivation film with good adhesion, which protects and prevents exposed metal parts. It is believed that rusting is manifested.
 前記プライマー塗膜中の前記バナジウム化合物の含有量は、特に限定はされないが、耐食性と耐湿性との両立の観点から、4~20質量%であることが好ましい。前記バナジウム化合物の含有量が4量%未満ではインヒビター効果が低下して耐食性の低下を招くおそれがあり、前記バナジウム化合物の含有量が20質量%を超えるとプライマー塗膜の耐湿性の低下を招くおそれがある。 The content of the vanadium compound in the primer coating film is not particularly limited, but is preferably 4 to 20% by mass from the viewpoint of achieving both corrosion resistance and moisture resistance. If the content of the vanadium compound is less than 4% by mass, the inhibitory effect may be lowered and the corrosion resistance may be lowered, and if the content of the vanadium compound is more than 20% by mass, the moisture resistance of the primer coating film may be lowered. There is a risk.
 前記無機化合物の1つであるリン酸化合物についても、インヒビターとして作用する。前記リン酸化合物としては、例えばリン酸、リン酸のアンモニウム塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩などが使用できる。特に、リン酸カルシウムなど、リン酸のアルカリ金属塩を好適に使用できる。 The phosphoric acid compound, which is one of the inorganic compounds, also acts as an inhibitor. As the phosphoric acid compound, for example, phosphoric acid, an ammonium salt of phosphoric acid, an alkali metal salt of phosphoric acid, an alkaline earth metal salt of phosphoric acid and the like can be used. In particular, an alkali metal salt of phosphoric acid such as calcium phosphate can be preferably used.
 前記プライマー塗膜中の前記リン酸化合物の含有量は、特に限定はされないが、耐食性と耐湿性との両立の観点から、4~20質量%であることが好ましい。前記リン酸化合物の含有量が4質量%未満ではインヒビター効果が低下して耐食性の低下を招くおそれがあり、前記リン酸化合物の含有量が20質量%を超えるとプライマー塗膜の耐湿性の低下を招くおそれがある。 The content of the phosphoric acid compound in the primer coating film is not particularly limited, but is preferably 4 to 20% by mass from the viewpoint of achieving both corrosion resistance and moisture resistance. If the content of the phosphoric acid compound is less than 4% by mass, the inhibitory effect may be lowered and the corrosion resistance may be lowered, and if the content of the phosphoric acid compound is more than 20% by mass, the moisture resistance of the primer coating film may be lowered. May be invited.
 前記無機化合物の1つである酸化マグネシウムは、初期の腐食によってMgを含有する生成物を生成し、難溶性のマグネシウム塩として、安定化を図り、耐食性を向上させる効果がある。 Magnesium oxide, which is one of the above-mentioned inorganic compounds, produces a product containing Mg by initial corrosion, and has the effect of stabilizing as a sparingly soluble magnesium salt and improving corrosion resistance.
 前記プライマー塗膜中の前記酸化マグネシウムの含有量は、特に限定はされないが、耐食性と加工部耐食性との両立の観点から、4~20質量%であることが好ましい。前記酸化マグネシウムの含有量が4質量%未満では、上記効果が低下して耐食性の低下を招くおそれがあり、前記酸化マグネシウムの含有量が20質量%を超えると、前記プライマー塗膜の可撓性が低下することにより加工部の耐食性が低下することがある。 The content of the magnesium oxide in the primer coating film is not particularly limited, but is preferably 4 to 20% by mass from the viewpoint of achieving both corrosion resistance and corrosion resistance of the processed portion. If the magnesium oxide content is less than 4% by mass, the effect may be lowered and the corrosion resistance may be lowered, and if the magnesium oxide content is more than 20% by mass, the flexibility of the primer coating film may be deteriorated. The corrosion resistance of the processed portion may decrease due to the decrease in the amount of
 また、前記プライマー塗膜は、上述したウレタン結合を有するポリエステル樹脂及び無機化合物以外の成分を含有することもできる。
 例えば、プライマー塗膜を形成する際に用いられる架橋剤が挙げられる。前記架橋剤は、前記ウレタン結合を有するポリエステル樹脂と反応して架橋塗膜を形成するものであり、例えば、オキサゾリン化合物、エポキシ化合物、メラミン化合物、イソシアネート系化合物、カルボジイミド系化合物、シランカップリング化合物等が挙げられ、2種類以上の架橋剤を併用することも可能である。なかでも得られる塗装鋼板の加工部耐食性の観点から、好ましくはブロック化ポリイソシアネート化合物等を用いることができる。該ブロック化ポリイソシアネートとしては、例えば、ポリイソシアネート化合物のイソシアネート基を、例えば、ブタノールなどのアルコール類、メチルエチルケトオキシムなどのオキシム類、ε-カプロラクタム類などのラクタム類、アセト酢酸ジエステルなどのジケトン類、イミダゾール、2-エチルイミダゾールなどのイミダゾール類、又は、m-クレゾールなどのフェノール類などによりブロックしたものが挙げられる。
Further, the primer coating film may contain components other than the polyester resin having a urethane bond and the inorganic compound described above.
For example, a cross-linking agent used when forming a primer coating film can be mentioned. The cross-linking agent reacts with the polyester resin having a urethane bond to form a cross-linked coating film, and is, for example, an oxazoline compound, an epoxy compound, a melamine compound, an isocyanate-based compound, a carbodiimide-based compound, a silane coupling compound, or the like. It is also possible to use two or more kinds of cross-linking agents in combination. Among them, a blocked polyisocyanate compound or the like can be preferably used from the viewpoint of corrosion resistance of the processed portion of the obtained coated steel sheet. Examples of the blocked polyisocyanate include alcohols such as butanol, oximes such as methylethylketooxime, lactams such as ε-caprolactam, and diketones such as acetoacetic acid diester, using the isocyanate group of the polyisocyanate compound. Examples thereof include those blocked by imidazoles such as imidazole and 2-ethylimidazole, or phenols such as m-cresol.
 さらに、前記プライマー塗膜は、必要に応じて、塗料分野で通常使用されている公知の各種成分を含有させることもできる。具体的には、例えば、レベリング剤、消泡剤などの各種表面調整剤、分散剤、沈降防止剤、紫外線吸収剤、光安定剤、シランカップリング剤、チタネートカップリング剤などの各種添加剤、着色顔料、体質顔料などの各種顔料、光輝材、硬化触媒、有機溶剤などが挙げられる。 Further, the primer coating film may contain various known components usually used in the paint field, if necessary. Specifically, for example, various surface conditioners such as leveling agents and defoamers, dispersants, anti-sedimentants, ultraviolet absorbers, light stabilizers, silane coupling agents, various additives such as titanate coupling agents, etc. Examples thereof include various pigments such as coloring pigments and extender pigments, bright materials, curing catalysts, and organic solvents.
 前記プライマー塗膜の厚さは、1.5μm以上であることが好ましい。前記プライマー塗膜の厚さを1.5μm以上とすることで、耐食性の向上効果や、化成処理皮膜やプライマー塗膜の上に形成される上塗塗膜との密着性向上効果をより確実に得ることができるからである。 The thickness of the primer coating film is preferably 1.5 μm or more. By setting the thickness of the primer coating film to 1.5 μm or more, it is possible to more reliably obtain the effect of improving corrosion resistance and the effect of improving the adhesion with the chemical conversion treatment film or the top coat film formed on the primer coating film. Because it can be done.
 前記プライマー塗膜を形成するための方法については、特に限定はされない。また、前記プライマー塗膜を構成する塗料組成物の塗装方法については、好ましくは塗料組成物をロールコーター塗装、カーテンフロー塗装等の方法で塗布することができる。前記塗料組成物を塗装後、熱風加熱、赤外線加熱、誘導加熱などの加熱手段により焼き付け、プライマー塗膜を得ることができる。前記焼付処理は、通常、最高到達板温を180~270℃程度とし、この温度範囲で約30秒~3分行うことができる。 The method for forming the primer coating film is not particularly limited. Further, as for the coating method of the coating composition constituting the primer coating film, the coating composition can be preferably applied by a method such as roll coater coating or curtain flow coating. After the coating composition is coated, it can be baked by heating means such as hot air heating, infrared heating, and induction heating to obtain a primer coating film. The baking treatment is usually carried out with a maximum plate temperature of about 180 to 270 ° C. and about 30 seconds to 3 minutes in this temperature range.
 また、本発明の塗装鋼板を構成する塗膜については、前記プライマー塗膜上に、さらに上塗塗膜が形成されていることが好ましい。
 前記上塗塗膜は、塗装鋼板に色彩や光沢、表面状態等の美観を付与することができることに加え、加工性、耐候性、耐薬品性、耐汚染性、耐水性、耐食性等の各種性能を高めることができる。
Further, with respect to the coating film constituting the coated steel sheet of the present invention, it is preferable that a topcoat coating film is further formed on the primer coating film.
The topcoat coating film can impart aesthetics such as color, luster, and surface condition to the coated steel sheet, and also has various performances such as workability, weather resistance, chemical resistance, stain resistance, water resistance, and corrosion resistance. Can be enhanced.
 前記上塗塗膜の構成については、特に限定はされず、要求される性能に応じて材料や厚さ等を適宜選択することができる。
 例えば、前記上塗塗膜を、ポリエステル樹脂系塗料、シリコンポリエステル樹脂系塗料、ポリウレタン樹脂系塗料、アクリル樹脂系塗料、フッ素樹脂系塗料等を用いて形成することができる。
 さらに、前記上塗塗膜は、酸化チタン、弁柄、マイカ、カーボンブラック又はその他の各種着色顔料;アルミニウム粉やマイカなどのメタリック顔料;炭酸塩や硫酸塩等からなる体質顔料;シリカ微粒子、ナイロン樹脂ビーズ、アクリル樹脂ビーズ等の各種微粒子;p-トルエンスルホン酸、ジブチル錫ジラウレート等の硬化触媒;ワックス;その他の添加剤を適量含有することができる。
The composition of the topcoat coating film is not particularly limited, and the material, thickness, and the like can be appropriately selected according to the required performance.
For example, the topcoat coating film can be formed by using a polyester resin-based paint, a silicon polyester resin-based paint, a polyurethane resin-based paint, an acrylic resin-based paint, a fluororesin-based paint, or the like.
Further, the top coat is a titanium oxide, a valve handle, mica, carbon black or various other coloring pigments; metallic pigments such as aluminum powder and mica; extender pigments composed of carbonates and sulfates; silica fine particles and nylon resins. Various fine particles such as beads and acrylic resin beads; a curing catalyst such as p-toluenesulfonic acid and dibutyltin dilaurate; wax; and other additives can be contained in an appropriate amount.
 また、前記上塗塗膜の厚さは、外観性及び加工性の両立の観点からは、5~30μmであることが好ましい。前記上塗塗膜の厚さが5μm以上の場合には、色調外観をより確実に安定させることが可能となり、前記上塗塗膜の厚さが30μm以下の場合には、加工性の低下(上塗塗膜のクラック発生)をより確実に抑制できる。 Further, the thickness of the topcoat coating film is preferably 5 to 30 μm from the viewpoint of achieving both appearance and processability. When the thickness of the topcoat coating film is 5 μm or more, the color tone appearance can be more reliably stabilized, and when the thickness of the topcoat coating film is 30 μm or less, the workability is deteriorated (topcoat coating). The generation of cracks in the film) can be suppressed more reliably.
 前記上塗塗膜を形成するための塗料組成物の塗装方法は特に限定はされない。例えば、前記塗料組成物を、ロールコーター塗装、カーテンフロー塗装などの方法で塗布することができる。前記塗料組成物を塗装後、熱風加熱、赤外線加熱、誘導加熱などの加熱手段により焼き付け、上塗塗膜を形成できる。前記焼付処理は、通常、最高到達板温を180~270℃程度とし、この温度範囲で約30秒~3分行うことができる。 The coating method of the coating composition for forming the topcoat coating film is not particularly limited. For example, the coating composition can be applied by a method such as roll coater coating or curtain flow coating. After the coating composition is coated, it can be baked by heating means such as hot air heating, infrared heating, and induction heating to form a topcoat coating film. The baking treatment is usually carried out with a maximum plate temperature of about 180 to 270 ° C. and about 30 seconds to 3 minutes in this temperature range.
<実施例1:サンプル1~44>
 常法で製造した板厚0.8mmの冷延鋼板を下地鋼板として用い、(株)レスカ製の溶融めっきシミュレーターで、焼鈍処理、めっき処理を行うことで、表1に示す条件の溶融めっき鋼板のサンプル1~44を作製した。
 なお、溶融めっき鋼板製造に用いためっき浴の組成については、表1に示す各サンプルのめっき皮膜の組成となるように、めっき浴の組成をAl:30~75質量%、Si:0.5~4.5質量%、Mg:0~10質量%、Sr:0.00~0.15質量%の範囲で種々変化させた。また、めっき浴の浴温は、Al:30~60質量%の場合は590℃、Al:60質量%超の場合は630℃とし、下地鋼板のめっき浸入板温がめっき浴温と同温度となるように制御した。さらに、板温が520~500℃の温度域に3秒で冷却する条件でめっき処理を実施した。
 また、めっき皮膜の付着量は、サンプル1~41では、片面あたり85±5g/m2、サンプル42~44では、片面あたり51~125g/m2となるように制御した。
<Example 1: Samples 1 to 44>
A cold-rolled steel sheet with a thickness of 0.8 mm manufactured by a conventional method is used as a base steel sheet, and annealing and plating are performed with a hot-dip plating simulator manufactured by Resuka Co., Ltd. to obtain hot-dip plated steel sheets under the conditions shown in Table 1. Samples 1-44 were prepared.
Regarding the composition of the plating bath used for manufacturing the hot-dip plated steel sheet, the composition of the plating bath was Al: 30 to 75% by mass and Si: 0.5 to 4.5 so as to be the composition of the plating film of each sample shown in Table 1. It was varied in the range of% by mass, Mg: 0 to 10% by mass, and Sr: 0.00 to 0.15% by mass. The bath temperature of the plating bath is 590 ° C when Al: 30 to 60% by mass and 630 ° C when Al: more than 60% by mass, and the plating penetration plate temperature of the base steel sheet is the same as the plating bath temperature. It was controlled to be. Furthermore, the plating treatment was carried out under the condition that the plate temperature was cooled to a temperature range of 520 to 500 ° C. in 3 seconds.
The amount of the plating film adhered was controlled to be 85 ± 5 g / m 2 per side for the samples 1 to 41 and 51 to 125 g / m 2 per side for the samples 42 to 44.
(評価)
 上記のように得られた溶融めっき鋼板の各サンプルについて、以下の評価を行った。評価結果を表1に示す。
(evaluation)
The following evaluations were performed on each sample of the hot-dip galvanized steel sheet obtained as described above. The evaluation results are shown in Table 1.
(1)めっき皮膜の構成(付着量、組成、X線回折強度)
 めっき後の各サンプルについて、100mmφを打ち抜き、非測定面をテープでシーリングした後、JIS H 0401:2013に示される塩酸とヘキサメチレンテトラミンの混合液でめっきを溶解剥離し、剥離前後のサンプルの質量差から、めっき皮膜の付着量を算出した。算出の結果、得られためっき皮膜の付着量を表1に示す。
 その後、剥離液をろ過し、ろ液と固形分をそれぞれ分析した。具体的に、ろ液をICP発光分光分析することで、不溶Si以外の成分を定量化した。
 また、固形分は650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させた。さらに、塩酸で融解物を溶解し、溶解液をICP発光分光分析することで、不溶Siを定量化した。めっき皮膜中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算したものである。算出の結果、得られためっき皮膜の組成を表1に示す。
 さらに、各サンプルについて、100mm×100mmのサイズに剪断後、評価対称面のめっき皮膜を下地鋼板が現れるまで機械的に削り出し、得られた粉末をよく混ぜ合わせた後、0.3gを取出し、X線回折線装置(株式会社リガク製「SmartLab」)を用いて、使用X線:Cu-Kα(波長=1.54178Å)、Kβ線の除去:Niフィルター、管電圧:40kV、管電流:30mA、スキャニング・スピード:4°/min、サンプリング・インターバル:0.020°、発散スリット:2/3°、ソーラースリット:5°、検出器:高速一次元検出器(D/teX Ultra)の条件で、上記粉末の定性分析を行った。各ピーク強度からベース強度を差し引いた強度を各回折強度(cps)とし、Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度、MgZn2の(100)面(面間隔d=0.4510nm)の回折強度、及び、Siの(111)面(面間隔d=0.3135nm)の回折強度を測定した。測定結果を、表1に示す。
(1) Composition of plating film (adhesion amount, composition, X-ray diffraction intensity)
For each sample after plating, punch 100 mmφ, seal the non-measurement surface with tape, then dissolve and peel the plating with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H 0401: 2013, and the mass of the sample before and after peeling. From the difference, the amount of adhesion of the plating film was calculated. Table 1 shows the amount of adhesion of the plating film obtained as a result of the calculation.
Then, the stripping solution was filtered, and the filtrate and solid content were analyzed respectively. Specifically, components other than insoluble Si were quantified by ICP emission spectroscopic analysis of the filtrate.
The solid content was dried and incinerated in a heating furnace at 650 ° C., and then melted by adding sodium carbonate and sodium tetraborate. Furthermore, insoluble Si was quantified by dissolving the melt with hydrochloric acid and ICP emission spectroscopic analysis of the solution. The Si concentration in the plating film is the sum of the soluble Si concentration obtained by the filtrate analysis and the insoluble Si concentration obtained by the solid content analysis. Table 1 shows the composition of the plating film obtained as a result of the calculation.
Furthermore, for each sample, after shearing to a size of 100 mm × 100 mm, the plating film on the evaluation symmetric plane is mechanically scraped until the underlying steel plate appears, the obtained powder is mixed well, and then 0.3 g is taken out and X is taken out. Using a line diffraction line device ("SmartLab" manufactured by Rigaku Co., Ltd.), X-ray used: Cu-Kα (wavelength = 1.54178Å), Kβ ray removal: Ni filter, tube voltage: 40kV, tube current: 30mA, scanning・ Speed: 4 ° / min, sampling interval: 0.020 °, divergence slit: 2/3 °, solar slit: 5 °, detector: high-speed one-dimensional detector (D / teX Ultra), under the conditions of the above powder A qualitative analysis was performed. The intensity obtained by subtracting the base intensity from each peak intensity is defined as each diffraction intensity (cps), and the diffraction intensity of the (111) plane (plane spacing d = 0.3668 nm) of Mg 2 Si and the (100) plane (plane spacing d) of Mg Zn 2 . The diffraction intensity of (= 0.4510 nm) and the diffraction intensity of the (111) plane of Si (plane spacing d = 0.3135 nm) were measured. The measurement results are shown in Table 1.
(2)耐食性評価
 得られた溶融めっき鋼板の各サンプルについて、120mm×120mmのサイズに剪断後、評価対象面の各エッジから10mmの範囲、及び、サンプルの端面と評価非対象面をテープでシーリングし、評価対象面を100mm×100mmのサイズで露出させた状態のものを、評価用サンプルとして用いた。なお、該評価用サンプルは同じものを3つ作製した。
 上記のように作製した3つの評価用サンプルに対して、いずれも図1に示すサイクルで腐食促進試験を実施した。腐食促進試験を湿潤からスタートし、300サイクル後まで行った後、各サンプルの腐食減量をJIS Z 2383及びISO8407に記載の方法で測定し、下記の基準で評価した。評価結果を表1に示す。
◎:サンプル3個の腐食減量が全て45g/m2以下
○:サンプル3個の腐食減量が全て90g/m2以下
×:サンプル1個以上の腐食減量が90g/m2越え
(2) Corrosion resistance evaluation After shearing each sample of the obtained hot-dip galvanized steel sheet to a size of 120 mm × 120 mm, the range of 10 mm from each edge of the evaluation target surface, and the end face of the sample and the evaluation non-target surface are sealed with tape. The surface to be evaluated was exposed to a size of 100 mm × 100 mm and used as an evaluation sample. Three identical evaluation samples were prepared.
Corrosion acceleration tests were carried out in the cycle shown in FIG. 1 for all three evaluation samples prepared as described above. The corrosion acceleration test was started from wetting and continued until after 300 cycles, and then the corrosion weight loss of each sample was measured by the method described in JIS Z 2383 and ISO 8407, and evaluated according to the following criteria. The evaluation results are shown in Table 1.
⊚: Corrosion loss of 3 samples is 45 g / m 2 or less ○: Corrosion loss of 3 samples is 90 g / m 2 or less ×: Corrosion loss of 1 sample or more exceeds 90 g / m 2
(3)表面外観性
 得られた溶融めっき鋼板の各サンプルについて、目視によって、めっき皮膜の表面を観察した。
 そして、観察結果を、以下の基準に従って評価した。評価結果を表1に示す。
 ◎:シワ状欠陥が全く観察されなかった
 ○:エッジから50mmの範囲のみにシワ状欠陥が観察された
 ×:エッジから50mmの範囲以外でシワ状欠陥が観察された
(3) Surface appearance The surface of the plated film was visually observed for each sample of the obtained hot-dip galvanized steel sheet.
Then, the observation results were evaluated according to the following criteria. The evaluation results are shown in Table 1.
⊚: No wrinkle-like defect was observed ○: Wrinkle-like defect was observed only in the range of 50 mm from the edge ×: Wrinkle-like defect was observed in the range other than 50 mm from the edge.
(4)加工性
 得られた溶融めっき鋼板の各サンプルについて、70mm×150mmのサイズに剪断後、同板厚の板を内側に8枚挟んで180°曲げの加工(8T曲げ)を施した。折り曲げ後の曲げ部外面にセロテープ(登録商標)を強く貼りつけた後、引き剥がした。曲げ部外面のめっき皮膜の表面状態、及び、使用したテープの表面におけるめっき皮膜の付着(剥離)の有無を目視で観察し、下記の基準で加工性を評価した。評価結果を表1に示す。
〇:めっき皮膜にクラックと剥離が共に認められない
△:めっき皮膜にクラックがあるが、剥離が認められない
×:めっき皮膜にクラックと剥離が共に認められる
(4) Workability After shearing each sample of the obtained hot-dip galvanized steel sheet to a size of 70 mm × 150 mm, eight plates of the same thickness were sandwiched inside and subjected to 180 ° bending (8T bending). Cellotape (registered trademark) was strongly attached to the outer surface of the bent portion after bending, and then peeled off. The surface condition of the plating film on the outer surface of the bent portion and the presence or absence of adhesion (peeling) of the plating film on the surface of the used tape were visually observed, and the workability was evaluated according to the following criteria. The evaluation results are shown in Table 1.
〇: Both cracks and peeling are not observed in the plating film △: There are cracks in the plating film, but peeling is not observed ×: Both cracks and peeling are observed in the plating film
(5)浴安定性
溶融めっき鋼板の各サンプルの製造時、めっき浴の浴面の状態を目視で確認し、溶融Al-Zn系めっき鋼板を製造する際に用いるめっき浴の浴面(Mg含有酸化物のない浴面)と比較した。評価は、以下の基準で行い、評価結果を表1に示す。
〇:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)と同程度
△:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)に比べて白色酸化物が多い
×:めっき浴中に黒色酸化物の形成が認められる
(5) Bath stability When manufacturing each sample of hot-dip galvanized steel sheet, the condition of the bath surface of the plating bath is visually confirmed, and the bath surface (Mg-containing) of the plating bath used when manufacturing the hot-dip Al-Zn-based plated steel sheet. The bath surface without oxide) was compared. The evaluation is performed according to the following criteria, and the evaluation results are shown in Table 1.
〇: Similar to the molten Al-Zn-based plating bath (55% by mass Al-remaining Zn-1.6% by mass bath) △: For the molten Al-Zn-based plating bath (55% by mass Al-remaining Zn-1.6% by mass bath) Compared to more white oxide ×: Formation of black oxide is observed in the plating bath
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明例の各サンプルは、比較例の各サンプルに比べて、耐食性、表面外観性、加工性及び浴安定性のいずれについてもバランスよく優れていることがわかる。 From the results in Table 1, it can be seen that each sample of the example of the present invention is superior to each sample of the comparative example in terms of corrosion resistance, surface appearance, processability, and bath stability in a well-balanced manner.
<実施例2:サンプル1~112>
(1)常法で製造した板厚0.8mmの冷延鋼板を下地鋼板として用い、(株)レスカ製の溶融めっきシミュレーターで、焼鈍処理、めっき処理を行うことで、表3及び4に示すめっき皮膜条件の溶融めっき鋼板のサンプルを作製した。
 なお、溶融めっき鋼板製造に用いためっき浴の組成については、表2に示す各サンプルのめっき皮膜の組成となるように、めっき浴の組成をAl:30~75質量%、Si:0.5~4.5質量%、Mg:0~10質量%、Sr:0.00~0.15質量%の範囲で種々変化させた。また、めっき浴の浴温は、Al:30~60質量%の場合は590℃、Al:60質量%超の場合は630℃とし、下地鋼板のめっき浸入板温がめっき浴温と同温度となるように制御した。さらに、板温が520~500℃の温度域に3秒で冷却する条件でめっき処理を実施した。
 また、めっき皮膜の付着量は、サンプル1~82、95~112では、片面あたり85±5g/m2、サンプル83~94では、片面あたり51~125g/m2となるように制御した。
(2)その後、作製した溶融めっき鋼板の各サンプルのめっき皮膜上に、バーコーターで化成処理液を塗布し、熱風炉で乾燥(昇温速度:60℃/s、PMT:120℃)させることで化成皮膜を形成し、表3及び4に示す表面処理鋼板の各サンプルを作製した。
 なお、化成処理液は、各成分を溶媒としての水に溶解させた表面処理液A~Fを調製した。表面処理液に含有する各成分(樹脂、金属化合物)の種類については、以下のとおりである。
(樹脂)
ウレタン樹脂:スーパーフレックス130、スーパーフレックス126(第一工業製薬株式会社)
アクリル樹脂:ボンコートEC-740EF(DIC株式会社)
(金属化合物)
P化合物:トリポリリン酸二水素アルミニウム
Si化合物:シリカ
V化合物:メタバナジン酸ナトリウム
Mo化合物:モリブデン酸
Zr化合物:炭酸ジルコニルカリウム
 調製した化成処理液A~Fの組成及び形成された化成皮膜の付着量を表2に示す。なお、本明細書の表2における各成分の濃度は、固形分の濃度(質量%)である。
<Example 2: Samples 1-112>
(1) Plating shown in Tables 3 and 4 is performed by using a cold-rolled steel sheet with a thickness of 0.8 mm manufactured by a conventional method as a base steel sheet and performing an annealing treatment and a plating treatment with a hot-dip plating simulator manufactured by Resuka Co., Ltd. A sample of a hot-dip plated steel sheet with film conditions was prepared.
Regarding the composition of the plating bath used for manufacturing the hot-dip plated steel sheet, the composition of the plating bath was Al: 30 to 75% by mass and Si: 0.5 to 4.5 so as to be the composition of the plating film of each sample shown in Table 2. It was varied in the range of% by mass, Mg: 0 to 10% by mass, and Sr: 0.00 to 0.15% by mass. The bath temperature of the plating bath is 590 ° C when Al: 30 to 60% by mass and 630 ° C when Al: more than 60% by mass, and the plating penetration plate temperature of the base steel sheet is the same as the plating bath temperature. It was controlled to be. Furthermore, the plating treatment was carried out under the condition that the plate temperature was cooled to a temperature range of 520 to 500 ° C. in 3 seconds.
The amount of the plating film adhered was controlled to be 85 ± 5 g / m 2 per side for samples 1 to 82 and 95 to 112, and 51 to 125 g / m 2 per side for samples 83 to 94.
(2) After that, a chemical conversion treatment liquid is applied on the plating film of each sample of the prepared hot-dip galvanized steel sheet with a bar coater, and dried in a hot air furnace (heating rate: 60 ° C / s, PMT: 120 ° C). A chemical conversion film was formed in 1 and each sample of the surface-treated steel sheet shown in Tables 3 and 4 was prepared.
As the chemical conversion treatment liquid, surface treatment liquids A to F in which each component was dissolved in water as a solvent were prepared. The types of each component (resin, metal compound) contained in the surface treatment liquid are as follows.
(resin)
Urethane resin: Superflex 130, Superflex 126 (Daiichi Kogyo Seiyaku Co., Ltd.)
Acrylic resin: Boncoat EC-740EF (DIC Corporation)
(Metal compound)
P compound: aluminum dihydrogen dihydrogen tripolyphosphate
Si compound: silica
V compound: sodium metavanadate
Mo compound: molybdic acid
Zr compound: Zirconyl potassium carbonate Table 2 shows the compositions of the prepared chemical conversion treatment liquids A to F and the amount of the formed chemical conversion film adhered. The concentration of each component in Table 2 of the present specification is the concentration of solid content (mass%).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価)
 上記のように得られた溶融めっき鋼板及び表面処理鋼板の各サンプルについて、以下の評価を行った。評価結果を表3及び4に示す。
(evaluation)
The following evaluations were performed on each sample of the hot-dip galvanized steel sheet and the surface-treated steel sheet obtained as described above. The evaluation results are shown in Tables 3 and 4.
(1)めっき皮膜の構成(付着量、組成、X線回折強度)
 溶融めっき鋼板の各サンプルについて、100mmφを打ち抜き、非測定面をテープでシーリングした後、JIS H 0401:2013に示される塩酸とヘキサメチレンテトラミンの混合液でめっきを溶解剥離し、剥離前後のサンプルの質量差から、めっき皮膜の付着量を算出した。算出の結果、得られためっき皮膜の付着量を表3及び4に示す。
 その後、剥離液をろ過し、ろ液と固形分をそれぞれ分析した。具体的に、ろ液をICP発光分光分析することで、不溶Si以外の成分を定量化した。
 また、固形分は650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させた。さらに、塩酸で融解物を溶解し、溶解液をICP発光分光分析することで、不溶Siを定量化した。めっき皮膜中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算したものである。算出の結果、得られためっき皮膜の組成を表3及び4に示す。
 さらに、各サンプルについて、100mm×100mmのサイズに剪断後、評価対称面のめっき皮膜を下地鋼板が現れるまで機械的に削り出し、得られた粉末をよく混ぜ合わせた後、0.3gを取出し、X線回折線装置(株式会社リガク製「SmartLab」)を用いて、使用X線:Cu-Kα(波長=1.54178Å)、Kβ線の除去:Niフィルター、管電圧:40kV、管電流:30mA、スキャニング・スピード:4°/min、サンプリング・インターバル:0.020°、発散スリット:2/3°、ソーラースリット:5°、検出器:高速一次元検出器(D/teX Ultra)の条件で、上記粉末の定性分析を行った。各ピーク強度からベース強度を差し引いた強度を各回折強度(cps)とし、Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度、MgZn2の(100)面(面間隔d=0.4510nm)の回折強度、及び、Siの(111)面(面間隔d=0.3135nm)の回折強度を測定した。測定結果を、表3及び表4に示す。
(1) Composition of plating film (adhesion amount, composition, X-ray diffraction intensity)
For each sample of hot-dip galvanized steel sheet, 100 mmφ is punched out, the non-measurement surface is sealed with tape, and then the plating is melted and peeled off with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H 0401: 2013. The amount of adhesion of the plating film was calculated from the mass difference. As a result of the calculation, the amount of adhesion of the obtained plating film is shown in Tables 3 and 4.
Then, the stripping solution was filtered, and the filtrate and solid content were analyzed respectively. Specifically, components other than insoluble Si were quantified by ICP emission spectroscopic analysis of the filtrate.
The solid content was dried and incinerated in a heating furnace at 650 ° C., and then melted by adding sodium carbonate and sodium tetraborate. Furthermore, insoluble Si was quantified by dissolving the melt with hydrochloric acid and ICP emission spectroscopic analysis of the solution. The Si concentration in the plating film is the sum of the soluble Si concentration obtained by the filtrate analysis and the insoluble Si concentration obtained by the solid content analysis. The composition of the plating film obtained as a result of the calculation is shown in Tables 3 and 4.
Furthermore, for each sample, after shearing to a size of 100 mm × 100 mm, the plating film on the evaluation symmetric plane is mechanically scraped until the underlying steel plate appears, the obtained powder is mixed well, and then 0.3 g is taken out and X is taken out. Using a line diffraction line device ("SmartLab" manufactured by Rigaku Co., Ltd.), X-ray used: Cu-Kα (wavelength = 1.54178Å), Kβ ray removal: Ni filter, tube voltage: 40kV, tube current: 30mA, scanning・ Speed: 4 ° / min, sampling interval: 0.020 °, divergence slit: 2/3 °, solar slit: 5 °, detector: high-speed one-dimensional detector (D / teX Ultra), under the conditions of the above powder A qualitative analysis was performed. The intensity obtained by subtracting the base intensity from each peak intensity is defined as each diffraction intensity (cps), and the diffraction intensity of the (111) plane (plane spacing d = 0.3668 nm) of Mg 2 Si and the (100) plane (plane spacing d) of Mg Zn 2 . The diffraction intensity of (= 0.4510 nm) and the diffraction intensity of the (111) plane of Si (plane spacing d = 0.3135 nm) were measured. The measurement results are shown in Tables 3 and 4.
(2)耐食性評価
 溶融めっき鋼板及び表面処理鋼板の各サンプルについて、120mm×120mmのサイズに剪断後、評価対象面の各エッジから10mmの範囲、及び、サンプルの端面と評価非対象面をテープでシーリングし、評価対象面を100mm×100mmのサイズで露出させた状態のものを、評価用サンプルとして用いた。なお、該評価用サンプルは同じものを3つ作製した。
 上記のように作製した3つの評価用サンプルに対して、いずれも図1に示すサイクルで腐食促進試験を実施した。腐食促進試験を湿潤からスタートし、300サイクル後まで行った後、各サンプルの腐食減量をJIS Z 2383及びISO8407に記載の方法で測定し、下記の基準で評価した。評価結果を表3及び4に示す。
◎:サンプル3個の腐食減量が全て30g/m2以下
○:サンプル3個の腐食減量が全て70g/m2以下
×:サンプル1個以上の腐食減量が70g/m2越え
(2) Corrosion resistance evaluation After shearing each sample of hot-dip galvanized steel sheet and surface-treated steel sheet to a size of 120 mm × 120 mm, the range of 10 mm from each edge of the evaluation target surface, and the end face and evaluation non-target surface of the sample are taped. The sample to be evaluated was used after sealing and exposing the surface to be evaluated in a size of 100 mm × 100 mm. Three identical evaluation samples were prepared.
Corrosion acceleration tests were carried out in the cycle shown in FIG. 1 for all three evaluation samples prepared as described above. The corrosion acceleration test was started from wetting and continued until after 300 cycles, and then the corrosion weight loss of each sample was measured by the method described in JIS Z 2383 and ISO 8407, and evaluated according to the following criteria. The evaluation results are shown in Tables 3 and 4.
⊚: Corrosion loss of 3 samples is 30 g / m 2 or less ○: Corrosion loss of 3 samples is 70 g / m 2 or less ×: Corrosion loss of 1 sample or more exceeds 70 g / m 2
(3)耐白錆性
 溶融めっき鋼板及び表面処理鋼板の各サンプルについて、120mm×120mmのサイズに剪断後、評価対象面の各エッジから10mmの範囲、及び、サンプルの端面と評価非対象面をテープでシーリングし、評価対象面を100mm×100mmのサイズで露出させた状態のものを、評価用サンプルとして用いた。
 上記評価用サンプルを用いて、JIS Z 2371に記載の塩水噴霧試験を90時間実施し、下記の基準で評価した。評価結果を表3及び4に示す。
◎:平板部に白錆なし
○:平板部の白錆発生面積10%未満
×:平板部の白錆発生面積10%以上
(3) White rust resistance For each sample of hot-dip galvanized steel sheet and surface-treated steel sheet, after shearing to a size of 120 mm × 120 mm, the range of 10 mm from each edge of the evaluation target surface, and the end face and evaluation non-target surface of the sample are The sample to be evaluated was used after sealing with tape and exposing the surface to be evaluated in a size of 100 mm × 100 mm.
Using the above evaluation sample, the salt spray test described in JIS Z 2371 was carried out for 90 hours and evaluated according to the following criteria. The evaluation results are shown in Tables 3 and 4.
◎: No white rust on the flat plate ○: White rust area on the flat plate is less than 10% ×: White rust area on the flat plate is 10% or more
(4)表面外観性
 溶融めっき鋼板の各サンプルについて、目視によって、めっき皮膜の表面を観察した。
 そして、観察結果を、以下の基準に従って評価した。評価結果を表3及び4に示す。
 ◎:シワ状欠陥が全く観察されなかった
 ○:エッジから50mmの範囲のみにシワ状欠陥が観察された
 ×:エッジから50mmの範囲以外でシワ状欠陥が観察された
(4) Surface appearance The surface of the plating film was visually observed for each sample of the hot-dip galvanized steel sheet.
Then, the observation results were evaluated according to the following criteria. The evaluation results are shown in Tables 3 and 4.
⊚: No wrinkle-like defect was observed ○: Wrinkle-like defect was observed only in the range of 50 mm from the edge ×: Wrinkle-like defect was observed in the range other than 50 mm from the edge.
(5)加工性
 溶融めっき鋼板の各サンプルについて、70mm×150mmのサイズに剪断後、同板厚の板を内側に8枚挟んで180°曲げの加工(8T曲げ)を施した。折り曲げ後の曲げ部外面にセロテープ(登録商標)を強く貼りつけた後、引き剥がした。曲げ部外面のめっき皮膜の表面状態、及び、使用したテープの表面におけるめっき皮膜の付着(剥離)の有無を目視で観察し、下記の基準で加工性を評価した。評価結果を表3及び4に示す。
〇:めっき皮膜にクラックと剥離が共に認められない
△:めっき皮膜にクラックがあるが、剥離が認められない
×:めっき皮膜にクラックと剥離が共に認められる
(5) Workability Each sample of the hot-dip galvanized steel sheet was sheared to a size of 70 mm × 150 mm, and then subjected to 180 ° bending (8T bending) by sandwiching eight plates of the same thickness inside. Cellotape (registered trademark) was strongly attached to the outer surface of the bent portion after bending, and then peeled off. The surface condition of the plating film on the outer surface of the bent portion and the presence or absence of adhesion (peeling) of the plating film on the surface of the used tape were visually observed, and the workability was evaluated according to the following criteria. The evaluation results are shown in Tables 3 and 4.
〇: Both cracks and peeling are not observed in the plating film △: There are cracks in the plating film, but peeling is not observed ×: Both cracks and peeling are observed in the plating film
(5)浴安定性
 溶融めっき時、めっき浴の浴面の状態を目視で確認し、溶融Al-Zn系めっき鋼板を製造する際に用いるめっき浴の浴面(Mg含有酸化物のない浴面)と比較した。評価は、以下の基準で行い、評価結果を表3及び4に示す。
〇:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)と同程度
△:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)に比べて白色酸化物が多い
×:めっき浴中に黒色酸化物の形成が認められる
(5) Bath stability During hot-dip plating, the condition of the hot-dip bath surface is visually confirmed, and the hot-dip Al-Zn-based plated steel sheet is used to manufacture the hot-dip Al-Zn-based plated steel sheet. ). The evaluation is performed according to the following criteria, and the evaluation results are shown in Tables 3 and 4.
〇: Similar to the molten Al-Zn-based plating bath (55% by mass Al-remaining Zn-1.6% by mass bath) △: For the molten Al-Zn-based plating bath (55% by mass Al-remaining Zn-1.6% by mass bath) Compared to more white oxide ×: Formation of black oxide is observed in the plating bath
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び4の結果から、本発明例の各サンプルは、比較例の各サンプルに比べて、耐食性、耐白錆性、表面外観性、加工性及び浴安定性のいずれについてもバランスよく優れていることがわかる。
 また、表4の結果から、化成処理A~Dを実施した各サンプルの耐白錆性が特に優れた結果を示すことがわかる。
From the results in Tables 3 and 4, each sample of the example of the present invention is superior in balance in corrosion resistance, white rust resistance, surface appearance, processability and bath stability as compared with each sample of the comparative example. You can see that there is.
Further, from the results in Table 4, it can be seen that the white rust resistance of each sample subjected to the chemical conversion treatments A to D shows particularly excellent results.
<実施例3:サンプル1~44>
(1)常法で製造した板厚0.8mmの冷延鋼板を下地鋼板として用い、(株)レスカ製の溶融めっきシミュレーターで、焼鈍処理、めっき処理を行うことで、表6に示すめっき皮膜条件の溶融めっき鋼板のサンプルを作製した。
 なお、溶融めっき鋼板製造に用いためっき浴の組成については、表6に示す各サンプルのめっき皮膜の組成となるように、めっき浴の組成をAl:30~75質量%、Si:0.5~4.5質量%、Mg:0~10質量%、Sr:0.00~0.15質量%の範囲で種々変化させた。また、めっき浴の浴温は、Al:30~60質量%の場合は590℃、Al:60質量%超の場合は630℃とし、下地鋼板のめっき浸入板温がめっき浴温と同温度となるように制御した。さらに、板温が520~500℃の温度域に3秒で冷却する条件でめっき処理を実施した。
 また、めっき皮膜の付着量は、サンプル1~41では、片面あたり85±5g/m2、サンプル42~44では、片面あたり42~125g/m2となるように制御した。
<Example 3: Samples 1 to 44>
(1) The plating film conditions shown in Table 6 are obtained by using a cold-rolled steel sheet with a thickness of 0.8 mm manufactured by a conventional method as a base steel sheet and performing an annealing treatment and a plating treatment with a hot-dip plating simulator manufactured by Resuka Co., Ltd. A sample of the hot-dip plated steel sheet was prepared.
Regarding the composition of the plating bath used for manufacturing the hot-dip plated steel sheet, the composition of the plating bath was Al: 30 to 75% by mass and Si: 0.5 to 4.5 so as to be the composition of the plating film of each sample shown in Table 6. It was varied in the range of% by mass, Mg: 0 to 10% by mass, and Sr: 0.00 to 0.15% by mass. The bath temperature of the plating bath is 590 ° C when Al: 30 to 60% by mass and 630 ° C when Al: more than 60% by mass, and the plating penetration plate temperature of the base steel sheet is the same as the plating bath temperature. It was controlled to be. Furthermore, the plating treatment was carried out under the condition that the plate temperature was cooled to a temperature range of 520 to 500 ° C. in 3 seconds.
The amount of the plating film adhered was controlled to be 85 ± 5 g / m 2 per side for the samples 1 to 41 and 42 to 125 g / m 2 per side for the samples 42 to 44.
(2)その後、作製した溶融めっき鋼板の各サンプルのめっき皮膜上に、バーコーターで表5に示す化成処理液を塗布し、熱風乾燥炉で乾燥(到達板温:90℃)させることで、付着量が0.1g/m2の化成処理皮膜を形成した。
 なお、用いた化成処理液は、各成分を溶媒としての水に溶解させて調製したpHが8~10の化成処理液を用いた。化成処理液に含有する各成分(樹脂成分、無機化合物)の種類については、以下のとおりである。
(樹脂成分)
樹脂A:(a)エステル結合を有するアニオン性ポリウレタン樹脂(第一工業製薬(株)製「スーパーフレックス210」と、(b)ビスフェノール骨格を有するエポキシ樹脂(吉村油化学(株)製「ユカレジンRE-1050」)とを、含有質量比(a):(b)=50:50で混合したもの
樹脂B:アクリル樹脂(DIC(株)製「ボンコートEC-740EF」)
(無機化合物)
バナジウム化合物:アセチルアセトンでキレート化した有機バナジウム化合物
ジルコニウム化合物:炭酸ジルコニウムアンモニウム
フッ素化合物:フッ化アンモニウム
(2) After that, the chemical conversion treatment liquid shown in Table 5 is applied on the plating film of each sample of the prepared hot-dip galvanized steel sheet with a bar coater, and dried in a hot air drying furnace (reached plate temperature: 90 ° C.). A chemical conversion-treated film having an adhesion of 0.1 g / m 2 was formed.
As the chemical conversion treatment liquid used, a chemical conversion treatment liquid having a pH of 8 to 10 prepared by dissolving each component in water as a solvent was used. The types of each component (resin component, inorganic compound) contained in the chemical conversion treatment liquid are as follows.
(Resin component)
Resin A: (a) Anionic polyurethane resin having an ester bond (“Superflex 210” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. and (b) Epoxy resin having a bisphenol skeleton (“Yukaresin RE” manufactured by Yoshimura Oil Chemical Co., Ltd.) -1050 ") mixed at a content mass ratio (a): (b) = 50: 50 Resin B: Acrylic resin ("Boncoat EC-740EF "manufactured by DIC Co., Ltd.)
(Inorganic compound)
Vanadium compound: Organic vanadium compound chelated with acetylacetone Zirconium compound: Zirconium ammonium carbonate Fluorine compound: Ammonium fluoride
(3)そして、上記の通り形成した化成皮膜上に、プライマー塗料をバーコーターで塗布し、鋼板の到達温度230℃ 、焼き付け時間35秒の条件で焼き付けを行うことで、表5に示す成分組成を有するプライマー塗膜を形成した。その後、上記の通り形成したプライマー塗膜上に、上塗り塗料組成物をバーコーターで塗布し、鋼板の到達温度230℃~260℃、焼き付け時間40秒の条件で焼き付けを行うことで、表5に示す樹脂条件及び膜厚を有する上塗り塗膜を形成し、各サンプルの塗装鋼板を作製した。
 なお、プライマー塗料については、各成分を混合した後、ボールミルで約1時間攪拌することにより得た。プライマー塗膜を構成する樹脂成分及び無機化合物は、以下のものを用いた。
(樹脂成分)
樹脂α:ウレタン変性ポリエステル樹脂(ポリエステル樹脂455質量部、イソホロンジイソシアネート45質量部を反応させて得たものであり、樹脂酸価は3、数平均分子量は5,600、水酸基価は36である。)を、ブロック化イソシアネートで硬化させたものを用いた。
 なお、ウレタン変性させるポリエステル樹脂については、次の条件で作製した。攪拌機、精留塔、水分離器、冷却管及び温度計を備えたフラスコに、イソフタル酸320質量部、アジピン酸200量部、トリメチロールプロパン60質量部、シクロヘキサンジメタンノール420質量部を仕込み、加熱、攪拌し、生成する縮合水を系外へ留去させながら、160℃ から230℃ まで一定速度で4時間かけて昇温させ、温度230℃ に到達した後、キシレン20質量部を徐々に添加し、温度を230℃ に維持した状態で縮合反応を続け、酸価が5以下になった時に反応を終了させ、100℃まで冷却した後、ソルベッソ100(エクソンモービル社製、商品名、高沸点芳香族炭化水素系溶剤) 120質量部、ブチルセロソルブ100質量部を加えることで、ポリエステル樹脂溶液を得た。
樹脂β:ウレタン硬化ポリエステル樹脂(関西ペイント(株)製「エバクラッド4900」)
(無機化合物)
バナジウム化合物:バナジン酸マグネシウム
リン酸化合物:リン酸カルシウム
酸化マグネシウム化合物:酸化マグネシウム
 また、上塗塗膜に用いた樹脂については、以下の塗料を用いた。
樹脂I: メラミン硬化ポリエステル塗料(BASFジャパン(株)製「プレカラーHD0030HR」)
樹脂II: ポリフッ化ビニリデンとアクリル樹脂が質量比で80:20であるオルガノゾル系焼付型フッ素樹脂系塗料(BASFジャパン(株)製「プレカラーNo.8800HR」)
(3) Then, a primer paint is applied on the chemical conversion film formed as described above with a bar coater, and the steel sheet is baked under the conditions of an ultimate temperature of 230 ° C. and a baking time of 35 seconds. A primer coating film having the above was formed. Then, the topcoat coating composition is applied on the primer coating film formed as described above with a bar coater, and the steel sheet is baked under the conditions of reaching temperature of 230 ° C to 260 ° C and baking time of 40 seconds, as shown in Table 5. A topcoat coating film having the resin conditions and film thickness shown was formed, and a coated steel sheet of each sample was produced.
The primer paint was obtained by mixing each component and then stirring with a ball mill for about 1 hour. The following resin components and inorganic compounds were used to form the primer coating film.
(Resin component)
Resin α: Urethane-modified polyester resin (a product obtained by reacting 455 parts by mass of polyester resin and 45 parts by mass of isophorone diisocyanate, having a resin acid value of 3, a number average molecular weight of 5,600, and a hydroxyl value of 36). , The one cured with blocked isocyanate was used.
The urethane resin to be urethane-modified was produced under the following conditions. A flask equipped with a stirrer, a rectification tower, a water separator, a cooling tube and a thermometer was charged with 320 parts by mass of isophthalic acid, 200 parts by mass of adipic acid, 60 parts by mass of trimethylolpropane and 420 parts by mass of cyclohexanedimethanenol. Heat and stir, and while distilling the generated condensed water out of the system, raise the temperature from 160 ° C to 230 ° C over 4 hours at a constant rate, and after reaching the temperature of 230 ° C, gradually add 20 parts by mass of xylene. Add and continue the condensation reaction while maintaining the temperature at 230 ° C, terminate the reaction when the acid value drops to 5 or less, cool to 100 ° C, and then Solbesso 100 (manufactured by Exxon Mobile, trade name, high). A polyester resin solution was obtained by adding 120 parts by mass of a boiling aromatic hydrocarbon solvent and 100 parts by mass of butyl cellosolve.
Resin β: Urethane-cured polyester resin ("Evaclad 4900" manufactured by Kansai Paint Co., Ltd.)
(Inorganic compound)
Vanadium compound: Magnesium vanadate Phosphate compound: Calcium phosphate Magnesium oxide compound: Magnesium oxide The following paints were used as the resin used for the topcoat.
Resin I: Melamine-cured polyester paint ("Precolor HD0030HR" manufactured by BASF Japan Ltd.)
Resin II: Organosol-based baking-type fluororesin-based paint with a mass ratio of polyvinylidene fluoride and acrylic resin of 80:20 ("Precolor No. 8800HR" manufactured by BASF Japan Ltd.)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(評価)
 上記のように得られた塗装鋼板の各サンプルについて、以下の評価を行った。評価結果を表6に示す。
(evaluation)
The following evaluations were performed on each sample of the coated steel sheet obtained as described above. The evaluation results are shown in Table 6.
(1)めっき皮膜の構成(付着量、組成、X線回折強度)
 溶融めっき鋼板の各サンプルについて、100mmφを打ち抜き、非測定面をテープでシーリングした後、JIS H 0401:2013に示される塩酸とヘキサメチレンテトラミンの混合液でめっきを溶解剥離し、剥離前後のサンプルの質量差から、めっき皮膜の付着量を算出した。算出の結果、得られためっき皮膜の付着量を表6に示す。
 その後、剥離液をろ過し、ろ液と固形分をそれぞれ分析した。具体的に、ろ液をICP発光分光分析することで、不溶Si以外の成分を定量化した。
 また、固形分は650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させた。さらに、塩酸で融解物を溶解し、溶解液をICP発光分光分析することで、不溶Siを定量化した。めっき皮膜中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算したものである。算出の結果、得られためっき皮膜の組成を表6に示す。
 さらに、各サンプルについて、100mm×100mmのサイズに剪断後、評価対称面のめっき皮膜を下地鋼板が現れるまで機械的に削り出し、得られた粉末をよく混ぜ合わせた後、0.3gを取出し、X線回折線装置(株式会社リガク製「SmartLab」)を用いて、使用X線:Cu-Kα(波長=1.54178Å)、Kβ線の除去:Niフィルター、管電圧:40kV、管電流:30mA、スキャニング・スピード:4°/min、サンプリング・インターバル:0.020°、発散スリット:2/3°、ソーラースリット:5°、検出器:高速一次元検出器(D/teX Ultra)の条件で、上記粉末の定性分析を行った。各ピーク強度からベース強度を差し引いた強度を各回折強度(cps)とし、Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度、MgZn2の(100)面(面間隔d=0.4510nm)の回折強度、及び、Siの(111)面(面間隔d=0.3135nm)の回折強度を測定した。測定結果を、表6に示す。
(1) Composition of plating film (adhesion amount, composition, X-ray diffraction intensity)
For each sample of hot-dip galvanized steel sheet, 100 mmφ is punched out, the non-measurement surface is sealed with tape, and then the plating is melted and peeled off with a mixed solution of hydrochloric acid and hexamethylenetetramine shown in JIS H 0401: 2013. The amount of adhesion of the plating film was calculated from the mass difference. Table 6 shows the amount of adhesion of the plating film obtained as a result of the calculation.
Then, the stripping solution was filtered, and the filtrate and solid content were analyzed respectively. Specifically, components other than insoluble Si were quantified by ICP emission spectroscopic analysis of the filtrate.
The solid content was dried and incinerated in a heating furnace at 650 ° C., and then melted by adding sodium carbonate and sodium tetraborate. Furthermore, insoluble Si was quantified by dissolving the melt with hydrochloric acid and ICP emission spectroscopic analysis of the solution. The Si concentration in the plating film is the sum of the soluble Si concentration obtained by the filtrate analysis and the insoluble Si concentration obtained by the solid content analysis. Table 6 shows the composition of the plating film obtained as a result of the calculation.
Furthermore, for each sample, after shearing to a size of 100 mm × 100 mm, the plating film on the evaluation symmetric plane is mechanically scraped until the underlying steel plate appears, the obtained powder is mixed well, and then 0.3 g is taken out and X is taken out. Using a line diffraction line device ("SmartLab" manufactured by Rigaku Co., Ltd.), X-ray used: Cu-Kα (wavelength = 1.54178Å), Kβ ray removal: Ni filter, tube voltage: 40kV, tube current: 30mA, scanning・ Speed: 4 ° / min, sampling interval: 0.020 °, divergence slit: 2/3 °, solar slit: 5 °, detector: high-speed one-dimensional detector (D / teX Ultra), under the conditions of the above powder A qualitative analysis was performed. The intensity obtained by subtracting the base intensity from each peak intensity is defined as each diffraction intensity (cps), and the diffraction intensity of the (111) plane (plane spacing d = 0.3668 nm) of Mg 2 Si and the (100) plane (plane spacing d) of Mg Zn 2 . The diffraction intensity of (= 0.4510 nm) and the diffraction intensity of the (111) plane of Si (plane spacing d = 0.3135 nm) were measured. The measurement results are shown in Table 6.
(2)耐食性評価
 塗装鋼板の各サンプルについて、120mm×120mmのサイズに剪断後、評価対象面の任意に選んだ3辺のエッジから10mmの範囲、及び、サンプルの同3辺の端面と評価非対象面をテープでシーリングし、評価対象面を100mm×100mmのサイズで露出させた状態のものを、評価用サンプルとして用いた。なお、該評価用サンプルは同じものを3つ作製した。
 上記のように作製した3つの評価用サンプルに対して、いずれも図1に示すサイクルで腐食促進試験を実施した。腐食促進試験を湿潤からスタートし、20サイクル毎にサンプルを取出し、水洗及び乾燥させた後に目視により観察し、テープシールしていない1辺の剪断端面に赤錆の発生について確認を行った。
 そして、赤錆が確認されたときのサイクル数を、下記の基準に従って評価した。評価結果を表6に示す。
◎:サンプル3個の赤錆発生サイクル数≧600サイクル
○:600サイクル>サンプル3個の赤錆発生サイクル数≧400サイクル
×:少なくとも1個のサンプルの赤錆発生サイクル数<400サイクル
(2) Corrosion resistance evaluation After shearing each sample of coated steel sheet to a size of 120 mm × 120 mm, it is evaluated as a range of 10 mm from the edges of three arbitrarily selected sides of the evaluation target surface and the end faces of the same three sides of the sample. The target surface was sealed with tape and the evaluation target surface was exposed in a size of 100 mm × 100 mm, which was used as an evaluation sample. Three identical evaluation samples were prepared.
Corrosion acceleration tests were carried out in the cycle shown in FIG. 1 for all three evaluation samples prepared as described above. The corrosion acceleration test was started from wetting, samples were taken out every 20 cycles, washed with water and dried, and then visually observed to confirm the occurrence of red rust on the sheared end face on one side that was not tape-sealed.
Then, the number of cycles when red rust was confirmed was evaluated according to the following criteria. The evaluation results are shown in Table 6.
⊚: Number of red rust generation cycles of 3 samples ≧ 600 cycles ○: 600 cycles > Number of red rust generation cycles of 3 samples ≧ 400 cycles ×: Number of red rust generation cycles of at least 1 sample <400 cycles
(3)塗装後の外観性
 塗装鋼板の各サンプルについて、目視によって表面を観察した。
 そして、観察結果を、以下の基準に従って評価した。評価結果を表6に示す。
 ◎:シワ状欠陥が全く観察されなかった
 ○:エッジから50mmの範囲のみにシワ状欠陥が観察された
 ×:エッジから50mmの範囲以外でシワ状欠陥が観察された
(3) Appearance after painting The surface of each sample of painted steel sheet was visually observed.
Then, the observation results were evaluated according to the following criteria. The evaluation results are shown in Table 6.
⊚: No wrinkle-like defect was observed ○: Wrinkle-like defect was observed only in the range of 50 mm from the edge ×: Wrinkle-like defect was observed in the range other than 50 mm from the edge.
(5)塗装後の加工性
 塗装鋼板の各サンプルについて、70mm×150mmのサイズに剪断後、同板厚の板を内側に8枚挟んで180°曲げの加工(8T曲げ)を施した。折り曲げ後の曲げ部外面にセロテープ(登録商標)を強く貼りつけた後、引き剥がした。曲げ部外面の塗膜の表面状態、及び、使用したテープの表面における塗膜の付着(剥離)の有無を目視で観察し、下記の基準で加工性を評価した。評価結果を表6に示す。
〇:めっき皮膜にクラックと剥離が共に認められない
△:めっき皮膜にクラックがあるが、剥離が認められない
×:めっき皮膜にクラックと剥離が共に認められる
(5) Workability after painting Each sample of painted steel plate was sheared to a size of 70 mm × 150 mm, and then eight plates of the same thickness were sandwiched inside and bent by 180 ° (8T bending). Cellotape (registered trademark) was strongly attached to the outer surface of the bent portion after bending, and then peeled off. The surface condition of the coating film on the outer surface of the bent portion and the presence or absence of adhesion (peeling) of the coating film on the surface of the used tape were visually observed, and the processability was evaluated according to the following criteria. The evaluation results are shown in Table 6.
〇: Both cracks and peeling are not observed in the plating film △: There are cracks in the plating film, but peeling is not observed ×: Both cracks and peeling are observed in the plating film
(5)浴安定性
 溶融めっき時、めっき浴の浴面の状態を目視で確認し、溶融Al-Zn系めっき鋼板を製造する際に用いるめっき浴の浴面(Mg含有酸化物のない浴面)と比較した。評価は、以下の基準で行い、評価結果を表6に示す。
〇:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)と同程度
△:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)に比べて白色酸化物が多い
×:めっき浴中に黒色酸化物の形成が認められる
(5) Bath stability During hot-dip plating, the condition of the hot-dip bath surface is visually confirmed, and the hot-dip Al-Zn-based plated steel sheet is used to manufacture the hot-dip Al-Zn-based plated steel sheet. ). The evaluation is performed according to the following criteria, and the evaluation results are shown in Table 6.
〇: Similar to the molten Al-Zn-based plating bath (55% by mass Al-remaining Zn-1.6% by mass bath) △: For the molten Al-Zn-based plating bath (55% by mass Al-remaining Zn-1.6% by mass bath) Compared to more white oxide ×: Formation of black oxide is observed in the plating bath
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果から、本発明例の各サンプルは、比較例の各サンプルに比べて、耐食性、塗装後の外観性、塗装後の加工性及び浴安定性のいずれについてもバランスよく優れていることがわかる。 From the results shown in Table 6, each sample of the example of the present invention is superior to each sample of the comparative example in terms of corrosion resistance, appearance after painting, processability after painting, and bath stability in a well-balanced manner. I understand.
 本発明によれば、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板を提供できる。
 また、本発明によれば、安定的に優れた耐食性及び耐白錆性を有する表面処理鋼板を提供できる。
 さらに、本発明によれば、安定的に優れた耐食性及び加工部耐食性を有する塗装鋼板を提供できる。
According to the present invention, it is possible to provide a molten Al-Zn-Si-Mg-based plated steel sheet having stable and excellent corrosion resistance.
Further, according to the present invention, it is possible to stably provide a surface-treated steel sheet having excellent corrosion resistance and white rust resistance.
Further, according to the present invention, it is possible to stably provide a coated steel sheet having excellent corrosion resistance and corrosion resistance of a processed portion.

Claims (8)

  1.  めっき皮膜を備える溶融Al-Zn-Si-Mg系めっき鋼板であって、
     前記めっき皮膜は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
     前記めっき皮膜中のMg2Si及びMgZn2のX線回折法による回折強度が、以下の関係(1)を満足することを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板。
     Mg2Si (111)/MgZn2(100)≦2.0 ・・・(1)
     Mg2Si (111):Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度、
     MgZn2 (100):MgZn2の(100)面(面間隔d=0.4510nm)の回折強度
    A molten Al-Zn-Si-Mg-based plated steel sheet with a plating film.
    The plating film contains Al: 45 to 65% by mass, Si: 1.0 to 4.0% by mass and Mg: 1.0 to 10.0% by mass, and has a composition in which the balance is Zn and unavoidable impurities.
    A molten Al-Zn-Si-Mg-based plated steel sheet characterized in that the diffraction intensities of Mg 2 Si and Mg Zn 2 in the plating film by the X-ray diffraction method satisfy the following relationship (1).
    Mg 2 Si (111) / MgZn 2 (100) ≤ 2.0 ・ ・ ・ (1)
    Mg 2 Si (111): Diffraction intensity of Mg 2 Si (111) plane (plane spacing d = 0.3668 nm),
    MgZn 2 (100): Diffraction intensity of MgZn 2 (100) plane (plane spacing d = 0.4510 nm)
  2.  前記めっき皮膜中のSiのX線回折法による回折強度が、以下の関係(2)を満足することを特徴とする、請求項1に記載の溶融Al-Zn-Si-Mg系めっき鋼板。
     Si (111)=0 ・・・(2)
     Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度
    The molten Al-Zn-Si-Mg-based plated steel sheet according to claim 1, wherein the diffraction intensity of Si in the plating film by the X-ray diffraction method satisfies the following relationship (2).
    Si (111) = 0 ・ ・ ・ (2)
    Si (111): Diffraction intensity of Si (111) plane (plane spacing d = 0.3135 nm)
  3.  前記めっき皮膜が、さらにSr:0.01~1.0質量%を含有することを特徴とする、請求項1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板。 The molten Al-Zn-Si-Mg-based plated steel sheet according to claim 1 or 2, wherein the plated film further contains Sr: 0.01 to 1.0% by mass.
  4.  前記めっき皮膜中のAlの含有量が、50~60質量%であることを特徴とする、請求項1~3のいずれか1項に記載の溶融Al-Zn-Si-Mg系めっき鋼板。 The molten Al-Zn-Si-Mg-based plated steel sheet according to any one of claims 1 to 3, wherein the Al content in the plating film is 50 to 60% by mass.
  5.  前記めっき皮膜中のSiの含有量が、1.0~3.0質量%であることを特徴とする、請求項1~4のいずれか1項に記載の溶融Al-Zn-Si-Mg系めっき鋼板。 The molten Al-Zn-Si-Mg-based plated steel sheet according to any one of claims 1 to 4, wherein the content of Si in the plating film is 1.0 to 3.0% by mass.
  6.  前記めっき皮膜中のMgの含有量が、1.0~5.0質量%であることを特徴とする、請求項1~5のいずれか1項に記載の溶融Al-Zn-Si-Mg系めっき鋼板。 The molten Al-Zn-Si-Mg-based plated steel sheet according to any one of claims 1 to 5, wherein the content of Mg in the plating film is 1.0 to 5.0% by mass.
  7.  請求項1~6のいずれか1項に記載のめっき皮膜と、該めっき皮膜上に形成された化成皮膜と、を備える表面処理鋼板であって、
     前記化成皮膜は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、アクリルシリコン樹脂、アルキド樹脂、ポリエステル樹脂、ポリアルキレン樹脂、アミノ樹脂及びフッ素樹脂のうちから選択される少なくとも一種の樹脂と、P化合物、Si化合物、Co化合物、Ni化合物、Zn化合物、Al化合物、Mg化合物、V化合物、Mo化合物、Zr化合物、Ti化合物及びCa化合物のうちから選択される少なくとも一種の金属化合物と、を含有することを特徴とする、表面処理鋼板。
    A surface-treated steel sheet comprising the plating film according to any one of claims 1 to 6 and a chemical conversion film formed on the plating film.
    The chemical conversion film comprises at least one resin selected from epoxy resin, urethane resin, acrylic resin, acrylic silicon resin, alkyd resin, polyester resin, polyalkylene resin, amino resin and fluororesin, and P compound and Si compound. , Co compound, Ni compound, Zn compound, Al compound, Mg compound, V compound, Mo compound, Zr compound, Ti compound and at least one metal compound selected from Ca compound. Surface treated steel plate.
  8.  請求項1~6のいずれか1項に記載のめっき皮膜上に、直接又は化成皮膜を介して、塗膜が形成された塗装鋼板であって、
     前記化成皮膜は、(a):エステル結合を有するアニオン性ポリウレタン樹脂及び(b):ビスフェノール骨格を有するエポキシ樹脂を合計で30~50質量%含有し、該(a)と該(b)の含有比率((a):(b))が、質量比で3:97 ~60:40の範囲である樹脂成分と、2~10質量%のバナジウム化合物、40~60質量%のジルコニウム化合物及び0.5~5量%のフッ素化合物を含む無機化合物と、を含有し、
     前記塗膜は、プライマー塗膜を少なくとも有し、該プライマー塗膜が、ウレタン結合を有するポリエステル樹脂と、バナジウム化合物、リン酸化合物及び酸化マグネシウムを含む無機化合物と、を含有することを特徴とする、塗装鋼板。
     
    A coated steel sheet in which a coating film is formed directly or via a chemical conversion film on the plating film according to any one of claims 1 to 6.
    The chemical conversion film contains (a): an anionic polyurethane resin having an ester bond and (b): an epoxy resin having a bisphenol skeleton in a total amount of 30 to 50% by mass, and contains the (a) and the (b). The ratio ((a): (b)) is in the range of 3:97 to 60:40 in mass ratio, 2 to 10% by mass of vanadium compound, 40 to 60% by mass of zirconium compound and 0.5 to 0.5. Inorganic compounds containing 5% by weight of fluorine compounds and
    The coating film has at least a primer coating film, and the primer coating film contains a polyester resin having a urethane bond and an inorganic compound containing a vanadium compound, a phosphoric acid compound and magnesium oxide. , Painted steel plate.
PCT/JP2021/038478 2020-10-30 2021-10-18 HOT-DIP Al-Zn-Si-Mg-PLATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET WO2022091849A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237015480A KR20230082043A (en) 2020-10-30 2021-10-18 Hot-dip Al-Zn-Si-Mg coated steel sheet, surface treated steel sheet and painted steel sheet
CN202180073437.6A CN116490635A (en) 2020-10-30 2021-10-18 Hot dip Al-Zn-Si-Mg-based plated steel sheet, surface treated steel sheet and coated steel sheet
AU2021369097A AU2021369097A1 (en) 2020-10-30 2021-10-18 HOT-DIP Al-Zn-Si-Mg COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND PRE-PAINTED STEEL SHEET

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2020183277 2020-10-30
JP2020-183280 2020-10-30
JP2020183270 2020-10-30
JP2020-183277 2020-10-30
JP2020183280 2020-10-30
JP2020-183270 2020-10-30
JP2021-150572 2021-09-15
JP2021-150577 2021-09-15
JP2021150583A JP7091535B2 (en) 2020-10-30 2021-09-15 Painted steel sheet
JP2021150572A JP7091533B2 (en) 2020-10-30 2021-09-15 Fused Al-Zn-Si-Mg based plated steel sheet
JP2021-150583 2021-09-15
JP2021150577A JP7091534B2 (en) 2020-10-30 2021-09-15 Surface-treated steel sheet

Publications (1)

Publication Number Publication Date
WO2022091849A1 true WO2022091849A1 (en) 2022-05-05

Family

ID=81382606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038478 WO2022091849A1 (en) 2020-10-30 2021-10-18 HOT-DIP Al-Zn-Si-Mg-PLATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET

Country Status (4)

Country Link
KR (1) KR20230082043A (en)
AU (1) AU2021369097A1 (en)
TW (1) TW202223118A (en)
WO (1) WO2022091849A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132327A1 (en) * 2022-01-06 2023-07-13 Jfeスチール株式会社 HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME
WO2023166858A1 (en) * 2022-03-04 2023-09-07 Jfeスチール株式会社 HOT-DIP Al-Zn PLATED STEEL SHEET, METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514934A (en) * 2008-03-13 2011-05-12 ブルースコープ・スティール・リミテッド Metal coated steel strip
CN105483594A (en) * 2016-01-14 2016-04-13 上海大学 Method for plating surface of steel with Al-Zn-Mg-Si alloy plating layer in continuous hot-dipping manner
WO2020067678A1 (en) * 2018-09-27 2020-04-02 주식회사 포스코 Highly corrosion-resistant plated steel sheet having excellent plating adhesion and resistance to liquid metal embrittlement
KR20200075778A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Alloy-coated steel sheet and manufacturing method of the same
JP6715399B1 (en) * 2019-03-01 2020-07-01 Jfe鋼板株式会社 Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same
JP6715400B1 (en) * 2019-03-01 2020-07-01 Jfe鋼板株式会社 Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020228B1 (en) 1970-08-12 1975-07-12
JPS5039B1 (en) 1970-11-25 1975-01-06
JPS5751093U (en) 1980-09-05 1982-03-24
JP3983932B2 (en) 1999-05-19 2007-09-26 日新製鋼株式会社 High corrosion resistance Mg-containing hot-dip Zn-Al alloy plated steel sheet with good surface appearance
JP2002012959A (en) 2000-04-26 2002-01-15 Nippon Steel Corp Steel sheet plated with al based metal with corrosion resistance in plated part and end face
JP4312583B2 (en) 2003-12-10 2009-08-12 日新製鋼株式会社 Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance
WO2016140370A1 (en) 2015-03-02 2016-09-09 Jfe鋼板株式会社 MOLTEN Al-Zn-Mg-Si-PLATED STEEL SHEET AND MANUFACTURING METHOD THEREFOR
JP6796101B2 (en) 2018-03-16 2020-12-02 日鉄鋼板株式会社 Manufacturing method of coated plated steel sheet and coated plated steel sheet
WO2020179147A1 (en) 2019-03-01 2020-09-10 Jfe鋼板株式会社 Hot-dip al-zn-mg-si-sr-plated steel sheet and method for manufacturing same
JP2020143370A (en) 2019-03-01 2020-09-10 Jfe鋼板株式会社 HOT-DIP Al-Zn-Mg-Si BASED PLATING STEEL SHEET AND MANUFACTURING METHOD THEREOF, AND COATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
SG11202109473SA (en) 2019-03-01 2021-09-29 Jfe Galvanizing & Coating Co Ltd HOT-DIP Al-Zn-Mg-Si-Sr COATED STEEL SHEET AND METHOD OF PRODUCING SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514934A (en) * 2008-03-13 2011-05-12 ブルースコープ・スティール・リミテッド Metal coated steel strip
CN105483594A (en) * 2016-01-14 2016-04-13 上海大学 Method for plating surface of steel with Al-Zn-Mg-Si alloy plating layer in continuous hot-dipping manner
WO2020067678A1 (en) * 2018-09-27 2020-04-02 주식회사 포스코 Highly corrosion-resistant plated steel sheet having excellent plating adhesion and resistance to liquid metal embrittlement
KR20200075778A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Alloy-coated steel sheet and manufacturing method of the same
JP6715399B1 (en) * 2019-03-01 2020-07-01 Jfe鋼板株式会社 Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same
JP6715400B1 (en) * 2019-03-01 2020-07-01 Jfe鋼板株式会社 Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132327A1 (en) * 2022-01-06 2023-07-13 Jfeスチール株式会社 HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME
WO2023166858A1 (en) * 2022-03-04 2023-09-07 Jfeスチール株式会社 HOT-DIP Al-Zn PLATED STEEL SHEET, METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET

Also Published As

Publication number Publication date
KR20230082043A (en) 2023-06-08
AU2021369097A1 (en) 2023-06-08
TW202223118A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2022091849A1 (en) HOT-DIP Al-Zn-Si-Mg-PLATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
WO2022091850A1 (en) HOT DIPPED Al-Zn-Si-Mg COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
WO2022091851A1 (en) HOT DIPPED Al-Zn-Si-Mg-Sr COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
KR101622681B1 (en) Aluminum-zinc plated steel sheet and method for producing the same
WO2022191213A1 (en) Hod dipped al-zn-si-mg coated steel sheet and method for producing same, surface-treated steel sheet and method for producing same, and coated steel sheet and method for producing same
KR20190076099A (en) Coating composition for hot dip galvanized steel sheet having excellent corrosion-resistance and blackening-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
JP7201128B2 (en) Surface treated steel plate
WO2023132327A1 (en) HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME
JP7091535B2 (en) Painted steel sheet
JP7097493B2 (en) Painted steel sheet
JP7097492B2 (en) Painted steel sheet
WO2023166858A1 (en) HOT-DIP Al-Zn PLATED STEEL SHEET, METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
JP7091534B2 (en) Surface-treated steel sheet
JP7097490B2 (en) Surface-treated steel sheet
JP7097491B2 (en) Surface-treated steel sheet
CN116490635A (en) Hot dip Al-Zn-Si-Mg-based plated steel sheet, surface treated steel sheet and coated steel sheet
CN116507754A (en) Hot dip Al-Zn-Si-Mg-Sr-based plated steel sheet, surface-treated steel sheet, and coated steel sheet
CN116490636A (en) Hot dip Al-Zn-Si-Mg series steel sheet, surface treated steel sheet and coated steel sheet
CN116888298A (en) Molten Al-Zn-Si-Mg-based plated steel sheet and method for producing same, surface-treated steel sheet and method for producing same, and coated steel sheet and method for producing same
JP2023036983A (en) Coated steel sheet and method for manufacturing the same
JP2022140249A (en) Coated steel sheet and method for manufacturing the same
JP2023100557A (en) Coated steel sheet and method for producing the same
JP2023100556A (en) Surface-treated steel sheet and method for producing the same
US20240043981A1 (en) Surface-treated steel
JP2023038245A (en) Surface treated steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180073437.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237015480

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021369097

Country of ref document: AU

Date of ref document: 20211018

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21885968

Country of ref document: EP

Kind code of ref document: A1