WO2022091732A1 - Aqueous epoxy resin composition, fiber sizing agent, fiber bundle, molding material, and molded article - Google Patents

Aqueous epoxy resin composition, fiber sizing agent, fiber bundle, molding material, and molded article Download PDF

Info

Publication number
WO2022091732A1
WO2022091732A1 PCT/JP2021/037088 JP2021037088W WO2022091732A1 WO 2022091732 A1 WO2022091732 A1 WO 2022091732A1 JP 2021037088 W JP2021037088 W JP 2021037088W WO 2022091732 A1 WO2022091732 A1 WO 2022091732A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
mass
resin composition
aqueous
fiber
Prior art date
Application number
PCT/JP2021/037088
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 後藤
定 永浜
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022558963A priority Critical patent/JP7276622B2/en
Priority to CN202180063593.4A priority patent/CN116194533A/en
Publication of WO2022091732A1 publication Critical patent/WO2022091732A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins

Definitions

  • the present invention relates to an aqueous epoxy resin composition, a fiber sizing agent, a fiber bundle, a molding material, and a molded product.
  • matrix resins such as epoxy resin and vinyl ester resin and fiber reinforced plastics containing glass fiber and carbon fiber are used.
  • the glass fiber or carbon fiber used for the fiber reinforced plastic usually, from the viewpoint of imparting high strength, a fiber material that has been focused to about several thousand to tens of thousands by a fiber sizing agent is often used.
  • a fiber sizing agent characterized by containing an epoxy resin, a urethane resin having an alkoxypolyoxyalkylene structure and an epoxy group, a polyester resin having a sulfonic acid base, and an aqueous medium is known. (See, for example, Patent Document 1).
  • this fiber sizing agent may have insufficient adhesiveness to the matrix resin, and the mechanical strength of the obtained molded product may be inferior. Further, since the fiber sizing agent is required to have compounding stability when a silane coupling agent is compounded, a material having excellent compounding stability, long-term storage stability, and adhesiveness to a matrix resin has been required. ..
  • An object to be solved by the present invention is to provide an aqueous resin composition which can be used for producing a fiber bundle capable of imparting excellent strength to a molded product and has excellent long-term storage stability and compounding stability.
  • an aqueous epoxy resin composition containing an epoxy resin, a polyester resin having a sulfonic acid base, an aromatic nonionic surfactant, and an aqueous medium.
  • the present invention was completed by finding that the present invention can be solved.
  • the present invention is an aqueous epoxy resin composition containing an epoxy resin (A), a polyester resin (B) having a sulfonic acid base, an aromatic nonionic surfactant (C), and an aqueous medium.
  • the present invention relates to an aqueous epoxy resin composition, wherein the content of the epoxy resin (A) is 75 to 95% by mass in the total solid content.
  • the aqueous epoxy resin composition of the present invention can be used for producing a fiber bundle capable of imparting excellent strength to a molded product, and is excellent in long-term storage stability and compounding stability. It can be suitably used as a sizing agent.
  • the aqueous epoxy resin composition of the present invention is an aqueous epoxy resin composition containing an epoxy resin (A), a polyester resin having a sulfonic acid base (B), an aromatic nonionic surfactant (C), and an aqueous medium.
  • the content of the epoxy resin (A) is 75 to 95% by mass in the total solid content.
  • the epoxy resin (A) will be described.
  • examples of the epoxy resin (A) include cresol novolak type epoxy resins such as orthocresol novolak type epoxy resin; phenol novolac type epoxy resin, ethylphenol novolak type epoxy resin, butylphenol novolak type epoxy resin, octylphenol novolak type epoxy resin and the like.
  • Phenol novolak type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol A novolak type epoxy resin
  • examples thereof include bisphenol F novolak type epoxy resin, bisphenol AD novolak type epoxy resin, bisphenol S novolak type epoxy resin, etc.
  • cresol novolak because the heat resistance and mechanical strength of the obtained molded product are further improved.
  • a type epoxy resin, a phenol novolac type epoxy resin, a bisphenol A type epoxy resin, a bisphenol A novolak type epoxy resin, and a dicyclopentadiene type epoxy resin are preferable. These epoxy resins (A) can be used alone or in combination of two or more.
  • the epoxy equivalent of the epoxy resin (A) is preferably in the range of 100 to 3000 g / equivalent, and more preferably in the range of 100 to 1000 g / equivalent.
  • polyester resin (B) having a sulfonic acid base for example, an aromatic polyester resin, an aliphatic polyester resin, or the like can be used, but since the adhesive strength with the matrix resin and the storage stability are further improved. , It is preferable to use an aromatic polyester resin.
  • polyester resin (B) Since the polyester resin (B) has a sulfonic acid base, it can also function as a dispersant in water.
  • the sulfonic acid base contained in the polyester resin (B) preferably exists in the polyester resin (C) in the range of 0.1 to 1.0 mol / kg because the long-term storage stability is further improved. , 0.2 to 0.6 mol / kg, more preferably present.
  • the polyester resin (B) preferably has a weight average molecular weight of 5,000 to 30,000, preferably 5,000 to 15, because the mechanical strength and storage stability of the obtained molded product are further improved. More preferably, it is in the range of 000.
  • polyester resin (B) it is preferable to use a polyester resin (B) having a glass transition temperature of ⁇ 20 to 80 ° C. because the mechanical strength of the obtained molded product is further improved.
  • polyester resin (B) one obtained by reacting a polyol (b1) with a polycarboxylic acid (b2) can be used.
  • the sulfonic acid base contained in the polyester resin (B) is a part of the polyol (b1) or the polycarboxylic acid (b2), for example, a polyol having a sulfonic acid base or a polycarboxylic acid having a sulfonic acid base.
  • a compound having a sulfonate such as, it can be introduced into the polyester resin (B).
  • polyol (b1) examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,5-pentane.
  • a polyol having a sulfonic acid base can be used as a compound having a sulfonic acid base in a part or all thereof, and for example, 2-butene-1,4-diol and the like can be used.
  • a polyol having a sulfonic acid base obtained by sulfonation of a polyol having a saturated group can be used.
  • polycarboxylic acid (b2) examples include aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and biphenyldicarboxylic acid; oxalic acid, succinic acid, anhydrous succinic acid, adipic acid and azeline.
  • aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and biphenyldicarboxylic acid
  • oxalic acid succinic acid, anhydrous succinic acid, adipic acid and azeline.
  • Saturated or unsaturated aliphatic poly such as acid, sebacic acid, dodecanedioic acid, hydrogenated dimeric acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid anhydride, citraconic acid, citraconic acid an
  • Carboxylic acid fatty acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornnedicarboxylic acid and its anhydride, tetrahydrophthalic acid and its anhydride.
  • a polycarboxylic acid having a cyclic structure or the like can be used. Among these, it is preferable to use an aromatic polycarboxylic acid, and it is more preferable to use terephthalic acid or isophthalic acid, because the storage stability is further improved.
  • polycarboxylic acids (b2) trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, trimesic acid, etc.
  • Those having three or more carboxyl groups such as ethylene glycol bis (anhydrotrimeritate), glyceroltris (anhydrotrimeritate), 1,2,3,4-butanetetracarboxylic acid can also be used.
  • polycarboxylic acid (b2) a polycarboxylic acid having a sulfonic acid base in a part or all of the polycarboxylic acid can be used.
  • metal salts such as 4-sulfoisophthalic acid, 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid and the like can be mentioned.
  • an esterified product of 5-sodium sulfoisophthalic acid such as 5-sodium sulfoisophthalic acid and dimethyl 5-sodium sulfoisophthalate, because the storage stability is further improved, and 5-sodium is preferable. It is more preferred to use dimethyl sulfoisophthalate.
  • the polyester resin (B) can be produced by subjecting the polyol (b1) and the polycarboxylic acid (b2) to an esterification reaction by a conventionally known method under a solvent-free or organic solvent.
  • the polyol (b1) and the polycarboxylic acid (b2) are heated to 180 to 300 ° C. in the presence or absence of a catalyst in an inert gas atmosphere. It can be carried out by a method of esterification or transesterification reaction, and then polycondensation under reduced pressure.
  • the total of the polyol (b1) and the polycarboxylic acid (b2) is 3 It is preferable to use it in the range of about 30% by mass.
  • aromatic nonionic surfactant (C) examples include polyoxyalkylene alkyl phenyl ethers such as polyoxyethylene nonylphenyl ether; polyoxyethylene monostyrene phenyl ethers, polyoxyethylene distyrene phenyl ethers, and polys.
  • Polyoxyethylene styrene phenyl ether such as oxyethylene tristyrene phenyl ether; Polyoxyalkylene styrene phenyl ether such as polyoxyethylene polyoxypropylene tristyrene phenyl ether; Polyoxyalkylene benzyl such as polyoxyethylene benzyl phenyl ether Phenyl ether; Polyoxyalkylene cumyl phenyl ether such as polyoxyethylene cumyl phenyl ether; Polyoxyalkylene naphthyl phenyl ether such as polyoxyethylene naphthyl phenyl ether; Polyoxyalkylene such as polyoxyethylene styrene (methyl phenyl ether) Examples thereof include styrene formation (alkyl phenyl ether).
  • aromatic nonionic surfactants (C) can be used alone or in combination of two or more.
  • aqueous epoxy resin composition of the present invention may be used in combination with other surfactants other than the aromatic nonionic surfactant (C), but has storage stability and silane coupling agent compounding stability. It is preferable that the amount of other surfactant in the surfactant is less than 10%, because the amount of the surfactant is further improved.
  • Examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • the organic solvent miscible with water include methanol, ethanol, and n-. And alcohol compounds such as isopropanol; ketone compounds such as acetone and methyl ethyl ketone; polyalkylene glycol compounds such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ether compounds of polyalkylene glycol; lactam compounds such as N-methyl-2-pyrrolidone, etc. Can be mentioned.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and environmental load, water alone or a mixture of water and an organic solvent miscible with water is preferable, and water alone is particularly preferable.
  • the aqueous epoxy resin composition of the present invention is prepared, for example, by mixing and stirring the epoxy resin (A), the polyester resin (B), the aromatic nonionic surfactant (C), and a solvent, and then with the mixture thereof. It can be obtained by mixing with an aqueous medium and removing the solvent if necessary.
  • the epoxy resin (A) in the solid content of the aqueous epoxy resin composition of the present invention is 75 to 95% by mass, but 80 to 95% by mass because the interlayer shear strength of the obtained molded product is further improved. Is preferable.
  • the polyester resin (B) in the solid content of the aqueous epoxy resin composition of the present invention is preferably 0.5 to 10% by mass, preferably 0.5 to 5% by mass, because dispersion stability and compounding stability are further improved. More preferably by mass.
  • the aromatic nonionic surfactant (C) in the solid content of the aqueous epoxy resin composition of the present invention is preferably 1 to 25% by mass, because the compounding stability and the mechanical strength of the molded product are further improved. 2 to 20% by mass is more preferable.
  • the mass ratio (B / C) of the polyester resin (B) to the aromatic nonionic surfactant (C) in the solid content of the fiber sizing agent of the present invention is the compounding stability and the molded product. 0.1 to 0.75 is preferable because the durability is further improved.
  • the solid content in the aqueous epoxy resin composition of the present invention is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, from the viewpoint of storage stability and economy.
  • the aqueous medium in the aqueous epoxy resin composition of the present invention is preferably 30 to 60% by mass, more preferably 35 to 55% by mass, from the viewpoint of storage stability and economy.
  • the viscosity of the aqueous epoxy resin composition of the present invention is preferably 1000 mPa ⁇ s or less, and more preferably 500 mPa ⁇ s or less, because it is easy to handle such as taking it out of the container at the time of use.
  • the viscosity is a value when the temperature of the aqueous epoxy resin composition is measured at 25 ° C. using a rotary viscometer.
  • the volume average particle size of the aqueous epoxy resin composition of the present invention is 0. It is preferably 1 to 1.0 ⁇ m, more preferably 0.1 to 0.5 ⁇ m.
  • the volume average particle diameter is a value measured using a laser diffraction type particle size distribution meter.
  • aqueous epoxy resin composition of the present invention can be used as a silane coupling agent, a curing catalyst, a lubricant, a filler, a thixo-imparting agent, a tackifier, a wax, a heat stabilizer, a light-resistant stabilizer, and a fluorescence increase, if necessary.
  • Additives such as whitening agents and foaming agents, pH adjusters, leveling agents, antigelling agents, dispersion stabilizers, antioxidants, radical trapping agents, heat resistance imparting agents, inorganic fillers, organic fillers, plastics, Reinforcing agents, catalysts, antibacterial agents, fungicides, rust preventives, thermoplastic resins, thermosetting resins, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture permeability improvers, water repellents, oil repellents, Hollow foam, crystalline water-containing compound, flame retardant, water absorbent, hygroscopic agent, deodorant, foam stabilizer, antifoaming agent, fungicide, antiseptic, algae-proofing agent, pigment dispersant, blocking inhibitor, water A decomposition inhibitor can be used in combination.
  • aqueous epoxy resin composition of the present invention When used as a sizing agent for glass fibers, it is preferable to use a silane coupling agent in combination in order to further improve the adhesive strength of the sizing agent to the glass fibers.
  • silane coupling agent examples include ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-hydroxylethyl) aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltriethoxy.
  • the silane coupling agent is preferably used in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the solid content of the aqueous epoxy resin composition of the present invention.
  • the aqueous epoxy resin composition of the present invention is, for example, an emulsion such as vinegar-based, ethylene vinegar-based, acrylic-based, epoxy-based, urethane-based, polyester-based, polyamide-based; styrene-butadiene-based, acrylonitrile-butadiene-based. , Acrylic-butadiene-based latex, and further, it can be used in combination with a water-soluble resin such as polyvinyl alcohol and cellulose.
  • an emulsion such as vinegar-based, ethylene vinegar-based, acrylic-based, epoxy-based, urethane-based, polyester-based, polyamide-based; styrene-butadiene-based, acrylonitrile-butadiene-based. , Acrylic-butadiene-based latex, and further, it can be used in combination with a water-soluble resin such as polyvinyl alcohol and cellulose.
  • the fiber sizing agent of the present invention contains the aqueous epoxy resin composition of the present invention, and for the purpose of preventing yarn breakage, fluffing, etc. of glass fibers, carbon fibers, etc., for example, a plurality of fibers. Can be used for focusing and surface treatment.
  • Examples of the fiber material that can be treated using the fiber sizing agent of the present invention include glass fiber, carbon fiber, silicon carbide fiber, pulp, linen, cotton, nylon, polyester, acrylic, polyurethane, polyimide, Kevlar, Nomex and the like.
  • Examples thereof include polyamide fibers made of aramid and the like.
  • glass fiber and carbon fiber are preferably used because of their high strength.
  • the glass fiber that can be treated using the fiber sizing agent for example, those obtained by using alkali-containing glass, low-alkali glass, non-alkali glass or the like as raw materials can be used, but the deterioration with time is particularly small. It is preferable to use non-alkali glass (E glass) having stable mechanical properties.
  • E glass non-alkali glass
  • the carbon fiber that can be treated using the fiber sizing agent generally, a polyacrylonitrile-based carbon fiber, a pitch-based carbon fiber, or the like can be used.
  • a polyacrylonitrile-based carbon fiber it is preferable to use a polyacrylonitrile-based carbon fiber from the viewpoint of imparting excellent strength.
  • the carbon fiber from the viewpoint of imparting even better strength and the like, it is preferable to use one having a single yarn diameter of 0.5 to 20 ⁇ m, and it is more preferable to use one having a single yarn diameter of 2 to 15 ⁇ m. preferable.
  • the carbon fiber for example, twisted yarn, spun, spun processed, and non-woven can be used. Further, as the carbon fiber, filaments, yarns, rovings, strands, chopped strands, felts, needle punches, cloths, roving cloths, milled fibers and the like can be used.
  • a fiber sizing agent is used in a kiss coater method or a roller.
  • a method of uniformly applying the fiber sizing agent to the fiber surface by a method, a dipping method, a spray method, a brush, or another known method.
  • the fiber sizing agent contains an aqueous medium or an organic solvent as a solvent, it is preferable to heat and dry the fiber using a heating roller, hot air, a hot plate or the like after the coating.
  • the amount of the film formed on the surface of the fiber material is preferably 0.1 to 5% by mass, preferably 0.3 to 1% by mass, based on the total mass of the bundled and surface-treated fiber bundle. It is more preferably 5.5% by mass.
  • the focused and surface-treated fiber material obtained by the above method is used in combination with the matrix resin (D) described later to produce a high-strength molded product.
  • the fiber material surface-treated with the fiber sizing agent of the present invention is used in combination with the matrix resin (D) to form a molded product or the like, and the interface between the fiber and the matrix resin (D) adheres to each other. Since the properties can be remarkably improved, the strength of the molded product can be improved.
  • thermosetting resin (D1) a thermosetting resin (D1) or a thermoplastic resin (D2) can be used.
  • thermosetting resin (D1) a phenol resin, a polyimide resin, a bismaleimide resin, an unsaturated polyester resin, an epoxy resin, a vinyl ester resin and the like can be used.
  • thermoplastic resin (D2) include saturated polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and polyamide resins such as polypropylene, polystyrene, polycarbonate, polyphenylene sulfide, polyphenylene oxide, 6-nylon and 6,6-nylon. Acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyacetal, polyetherimide, polyether ether ketone and the like can be used.
  • the fibers bundled using the fiber sizing agent of the present invention include epoxy resins, unsaturated polyester resins, polyamide resins such as 6-nylon and 6,6-nylon, polyphenylene sulfide, polybutylene terephthalate, polycarbonate, and polyether. It is more preferable to use it in combination with a matrix resin of ether ketone in order to obtain a high-strength molded product.
  • Examples of the molding material containing the surface-treated fiber material, the matrix resin (D), and if necessary, a polymerizable monomer and the like include prepreg and sheet molding compound (SMC).
  • the prepreg is obtained by, for example, applying the matrix resin (D) on a release paper, placing a surface-treated fiber material on the coated surface, and pressing and impregnating the prepreg with a roller or the like as necessary. Can be manufactured.
  • the prepreg When producing the prepreg, it is preferable to use a bisphenol A type epoxy resin, a glycidylamine type epoxy resin such as tetraglycidylaminodiphenylmethane, or an epoxy resin such as a novolak type epoxy resin as the matrix resin (D). ..
  • the sheet molding compound is processed into a sheet by sufficiently impregnating the surface-treated fiber material with a mixture of, for example, the matrix resin (D1) and a polymerizable unsaturated monomer such as styrene. It can be manufactured by equalizing.
  • the matrix resin (D1) it is preferable to use an unsaturated polyester resin or a vinyl ester resin as the matrix resin (D1).
  • Curing of the molding material proceeds by, for example, radical polymerization under pressure or normal pressure, heating or light irradiation.
  • a known thermosetting agent, photocuring agent, or the like can be used in combination.
  • examples of the molding material include those obtained by kneading the thermoplastic resin (D2) and the surface-treated fiber material under heating. Such a molding material can be used for secondary processing by, for example, an injection molding method.
  • the prepreg made of the thermoplastic resin (D2) can be produced, for example, by placing a surface-treated fiber material on a sheet and impregnating the molten thermoplastic resin (D2).
  • the prepreg made of the thermoplastic resin (D2) can be used for secondary processing, for example, by laminating one or more sheets and then heating and molding under pressure or normal pressure.
  • the molded product obtained by using the molding material has high strength, it can be used for, for example, an automobile member, an aircraft member, an industrial member, or the like.
  • the average molecular weight of the resin was measured under the following GPC measurement conditions.
  • Measuring device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series and used. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection volume: 100 ⁇ L (sample concentration 4 mg / mL tetrahydrofuran solution) Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.
  • Example 1 Production and evaluation of aqueous epoxy resin composition (1)
  • 180 parts by mass of cresol novolac type epoxy resin epoxy equivalent 209 g / equivalent, softening point 75 ° C.; hereinafter abbreviated as "epoxy resin (A-1)”
  • epoxy resin (A-1) cresol novolac type epoxy resin
  • B-1 polyester resin
  • C-1 aromatic nonionic surfactant
  • Example 2 Production and evaluation of aqueous epoxy resin composition (2)
  • aqueous epoxy resin composition (2) 184 parts by mass of phenol novolac type epoxy resin (epoxy equivalent 182 g / equivalent, semi-solid type; hereinafter abbreviated as "epoxy resin (A-2)) in a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler.
  • epoxy resin (A-2) phenol novolac type epoxy resin
  • B-1 polyester resin
  • C-3 aromatic nonionic surfactant
  • polyoxyethylene polyoxypropylene tristyrene phenyl ether (oxyethylene average addition mole number 21, oxypropylene average addition mole number 4; hereinafter abbreviated as "aromatic nonionic surfactant (C-4)").
  • aromatic nonionic surfactant (C-4) oxyethylene average addition mole number 21, oxypropylene average addition mole number 4; hereinafter abbreviated as "aromatic nonionic surfactant (C-4)").
  • aromatic nonionic surfactant (C-4) oxyethylene polyoxypropylene tristyrene phenyl ether
  • Example 3 Production and evaluation of aqueous epoxy resin composition (3)
  • 188 parts by mass of bisphenol A type epoxy resin epoxy equivalent 475 g / equivalent, softening point 70 ° C; hereinafter abbreviated as "epoxy resin (A-3)"
  • epoxy resin (A-3) bisphenol A type epoxy resin
  • reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler.
  • Polyester resin (B-1) 4 parts by mass, polyoxyethylene tristyrene phenyl ether (oxyethylene average addition molar number 40; hereinafter abbreviated as "aromatic nonionic surfactant (C-5)") 8 81 parts by mass and 81 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 520 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 55% by mass to obtain an aqueous epoxy resin composition (3).
  • aromatic nonionic surfactant (C-5)) 8 81 parts by mass and 81 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 520
  • Example 4 Production and evaluation of aqueous epoxy resin composition (4)
  • 180 mass of bisphenol A novolak type epoxy resin epoxy equivalent 210 g / equivalent, softening point 85 ° C; hereinafter abbreviated as "epoxy resin (A-4)
  • epoxy resin (A-4) bisphenol A novolak type epoxy resin
  • reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler.
  • Non-volatile content [(W 3 -W 1 ) / (W 2 -W 1 )] ⁇ 100 W 1 ; Mass of metal petri dish (g) W 2 ; mass of metal petri dish + mass of weighed sample (g) W 3 ; mass of metal petri dish + mass of sample after drying (g)
  • Bisphenol A type liquid epoxy resin (epoxy equivalent 188 g / equivalent) 50 parts by mass, bisphenol A type solid epoxy resin (epoxy equivalent 475 g / equivalent, softening point 70 ° C) 20 parts by mass, cresol novolac type epoxy resin (epoxy equivalent 209 g / equivalent) , 4 parts by mass of dicyandiamide and 4 parts by mass of N- (3,4-dichlorophenyl) -N', N'-dimethylurea were prepared in 30 parts by mass (softening point 75 ° C.) and applied onto a release paper.
  • the carbon fiber bundles obtained above were arranged and arranged in one direction on the coated resin film at equal intervals, and then heated to impregnate the epoxy resin to prepare a prepreg having a carbon fiber content of 60% by volume.
  • the prepared prepregs were laminated and treated under pressure at 150 ° C. for 1 hour and then at 140 ° C. for 4 hours to obtain a molded product.
  • interlayer shear strength of epoxy molded products The interlayer shear strength of the test plate having a thickness of 2.5 mm and a width of 6.0 mm was measured by a method according to ASTM D-2344. Further, the interlayer shear strength of the same test plate after being boiled in distilled water for 72 hours was also measured in the same manner.
  • the tensile strength was measured for each test piece according to the measurement method of ISO527.
  • a dumbbell type tensile test piece having a total length of 170 mm, a narrow parallel portion length of 80 mm, a narrow parallel portion width of 10 mm, a wide parallel portion distance of 109 mm, a wide parallel portion width of 20 mm, and a thickness of 4 mm was used.
  • Table 1 shows the compositions and evaluation results of Examples 1 to 4 above.
  • Table 2 shows the compositions and evaluation results of Comparative Examples 1 to 4 above.
  • aqueous epoxy resin compositions of the present invention of Examples 1 to 4 are excellent in storage stability and compounding stability, and that the molded product obtained by using the aqueous epoxy resin composition is excellent in interlayer shear strength and tensile strength. rice field.
  • Comparative Example 1 is an example in which the aromatic nonionic surfactant (C), which is an essential component of the present invention, is not contained, but the compounding stability is inferior and the interlayer shear strength of the molded product is insufficient. Was confirmed.
  • Comparative Example 2 is an example in which the content of the epoxy resin (A) is less than the lower limit of the present invention, but it was confirmed that the interlayer shear strength of the molded product and the tensile strength after the moisture resistance heat test were insufficient.
  • Comparative Examples 3 and 4 are examples that do not contain the polyester resin (B) having a sulfonic acid group, which is an essential component of the present invention, but it was confirmed that the storage stability was insufficient.

Abstract

The present invention provides an aqueous epoxy resin composition which contains (A) an epoxy resin, (B) a polyester resin that has a sulfonate group, (C) an aromatic nonionic surfactant, and an aqueous medium, and which is characterized in that the content of the epoxy resin (A) in the total solid content is from 75% to 95% by mass. This aqueous epoxy resin composition is suitable for use in a fiber sizing agent since this aqueous epoxy resin composition is able to be used for the production of a fiber bundle that is capable of imparting a molded article with excellent strength, while having excellent long-term storage stability and excellent blending stability.

Description

水性エポキシ樹脂組成物、繊維集束剤、繊維束、成形材料、及び成形品Aqueous epoxy resin compositions, fiber sizing agents, fiber bundles, molding materials, and molded products
 本発明は、水性エポキシ樹脂組成物、繊維集束剤、繊維束、成形材料、及び成形品に関する。 The present invention relates to an aqueous epoxy resin composition, a fiber sizing agent, a fiber bundle, a molding material, and a molded product.
 高強度で優れた耐久性の求められる自動車部材や航空機部材等としては、例えばエポキシ樹脂やビニルエステル樹脂等のマトリックス樹脂と、ガラス繊維や炭素繊維等を含む繊維強化プラスチックが使用されている。 As automobile parts and aircraft parts that are required to have high strength and excellent durability, for example, matrix resins such as epoxy resin and vinyl ester resin and fiber reinforced plastics containing glass fiber and carbon fiber are used.
 前記繊維強化プラスチックに使用するガラス繊維や炭素繊維としては、通常、高強度を付与する観点から、繊維集束剤によって概ね数千~数万程度に集束された繊維材料を使用することが多い。 As the glass fiber or carbon fiber used for the fiber reinforced plastic, usually, from the viewpoint of imparting high strength, a fiber material that has been focused to about several thousand to tens of thousands by a fiber sizing agent is often used.
 前記繊維集束剤としては、エポキシ樹脂、アルコキシポリオキシアルキレン構造とエポキシ基とを有するウレタン樹脂、スルホン酸塩基を有するポリエステル樹脂、及び水性媒体を含有することを特徴とする繊維集束剤が知られている(例えば、特許文献1参照。)。 As the fiber sizing agent, a fiber sizing agent characterized by containing an epoxy resin, a urethane resin having an alkoxypolyoxyalkylene structure and an epoxy group, a polyester resin having a sulfonic acid base, and an aqueous medium is known. (See, for example, Patent Document 1).
 しかしながら、この繊維集束剤はマトリックス樹脂との接着性が不十分な場合があり、得られる成形品の機械的強度が劣る場合があった。また、繊維集束剤には、シランカップリング剤を配合した際の配合安定性が求められることから、配合安定性、長期保存安定性、及びマトリックス樹脂との接着性に優れる材料が求められていた。 However, this fiber sizing agent may have insufficient adhesiveness to the matrix resin, and the mechanical strength of the obtained molded product may be inferior. Further, since the fiber sizing agent is required to have compounding stability when a silane coupling agent is compounded, a material having excellent compounding stability, long-term storage stability, and adhesiveness to a matrix resin has been required. ..
特開2016-160567号公報Japanese Unexamined Patent Publication No. 2016-160567
 本発明が解決しようとする課題は、成形品に優れた強度を付与可能な繊維束の製造に使用可能で、長期保存安定性及び配合安定性に優れる水性樹脂組成物を提供することである。 An object to be solved by the present invention is to provide an aqueous resin composition which can be used for producing a fiber bundle capable of imparting excellent strength to a molded product and has excellent long-term storage stability and compounding stability.
 本発明者等は、前記課題を解決すべく検討した結果、エポキシ樹脂、スルホン酸塩基を有するポリエステル樹脂、芳香族非イオン界面活性剤、及び水性媒体を含有する水性エポキシ樹脂組成物が、前記課題を解決できることを見出し、本発明を完成した。 As a result of studies to solve the above problems, the present inventors have found an aqueous epoxy resin composition containing an epoxy resin, a polyester resin having a sulfonic acid base, an aromatic nonionic surfactant, and an aqueous medium. The present invention was completed by finding that the present invention can be solved.
 すなわち、本発明は、エポキシ樹脂(A)、スルホン酸塩基を有するポリエステル樹脂(B)、芳香族非イオン界面活性剤(C)、及び水性媒体を含有する水性エポキシ樹脂組成物であって、前記エポキシ樹脂(A)の含有量が全固形分中の75~95質量%であることを特徴とする水性エポキシ樹脂組成物に関するものである。 That is, the present invention is an aqueous epoxy resin composition containing an epoxy resin (A), a polyester resin (B) having a sulfonic acid base, an aromatic nonionic surfactant (C), and an aqueous medium. The present invention relates to an aqueous epoxy resin composition, wherein the content of the epoxy resin (A) is 75 to 95% by mass in the total solid content.
 本発明の水性エポキシ樹脂組成物は、成形品に優れた強度を付与可能な繊維束の製造に使用可能で、かつ、長期保存安定性及び配合安定性に優れることから、ガラス繊維や炭素繊維の集束剤に好適に使用することができる。 The aqueous epoxy resin composition of the present invention can be used for producing a fiber bundle capable of imparting excellent strength to a molded product, and is excellent in long-term storage stability and compounding stability. It can be suitably used as a sizing agent.
 本発明の水性エポキシ樹脂組成物は、エポキシ樹脂(A)、スルホン酸塩基を有するポリエステル樹脂(B)、芳香族非イオン界面活性剤(C)、及び水性媒体を含有する水性エポキシ樹脂組成物であって、前記エポキシ樹脂(A)の含有量が全固形分中の75~95質量%であるものである。 The aqueous epoxy resin composition of the present invention is an aqueous epoxy resin composition containing an epoxy resin (A), a polyester resin having a sulfonic acid base (B), an aromatic nonionic surfactant (C), and an aqueous medium. The content of the epoxy resin (A) is 75 to 95% by mass in the total solid content.
 前記エポキシ樹脂(A)について説明する。前記エポキシ樹脂(A)としては、例えば、オルソクレゾールノボラック型エポキシ樹脂等のクレゾールノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、エチルフェノールノボラック型エポキシ樹脂、ブチルフェノールノボラック型エポキシ樹脂、オクチルフェノールノボラック型エポキシ樹脂等のフェノールノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ビスフェノールADノボラック型エポキシ樹脂、ビスフェノールSノボラック型エポキシ樹脂などが挙げられるが、これらの中でも、得られる成形品の耐熱性及び機械的強度がより向上することから、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましい。これらのエポキシ樹脂(A)は、単独で用いることも2種以上併用することもできる。 The epoxy resin (A) will be described. Examples of the epoxy resin (A) include cresol novolak type epoxy resins such as orthocresol novolak type epoxy resin; phenol novolac type epoxy resin, ethylphenol novolak type epoxy resin, butylphenol novolak type epoxy resin, octylphenol novolak type epoxy resin and the like. Phenol novolak type epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol A novolak type epoxy resin, Examples thereof include bisphenol F novolak type epoxy resin, bisphenol AD novolak type epoxy resin, bisphenol S novolak type epoxy resin, etc. Among these, cresol novolak because the heat resistance and mechanical strength of the obtained molded product are further improved. A type epoxy resin, a phenol novolac type epoxy resin, a bisphenol A type epoxy resin, a bisphenol A novolak type epoxy resin, and a dicyclopentadiene type epoxy resin are preferable. These epoxy resins (A) can be used alone or in combination of two or more.
 また、得られる成形品の強度がより向上することから、前記エポキシ樹脂(A)のエポキシ当量は、100~3000g/当量の範囲が好ましく、100~1000g/当量の範囲がより好ましい。 Further, since the strength of the obtained molded product is further improved, the epoxy equivalent of the epoxy resin (A) is preferably in the range of 100 to 3000 g / equivalent, and more preferably in the range of 100 to 1000 g / equivalent.
 前記スルホン酸塩基を有するポリエステル樹脂(B)としては、例えば、芳香族ポリエステル樹脂や脂肪族ポリエステル樹脂等を使用することができるが、マトリックス樹脂との接着強さや保存安定性がより向上することから、芳香族ポリエステル樹脂を使用することが好ましい。 As the polyester resin (B) having a sulfonic acid base, for example, an aromatic polyester resin, an aliphatic polyester resin, or the like can be used, but since the adhesive strength with the matrix resin and the storage stability are further improved. , It is preferable to use an aromatic polyester resin.
 前記ポリエステル樹脂(B)はスルホン酸塩基を有することから、水への分散剤としても機能することができる。 Since the polyester resin (B) has a sulfonic acid base, it can also function as a dispersant in water.
 前記ポリエステル樹脂(B)の有するスルホン酸塩基は、長期保存安定性がより向上することから、前記ポリエステル樹脂(C)中に、0.1~1.0mol/kgの範囲で存在することが好ましく、0.2~0.6mol/kgの範囲で存在することがより好ましい。 The sulfonic acid base contained in the polyester resin (B) preferably exists in the polyester resin (C) in the range of 0.1 to 1.0 mol / kg because the long-term storage stability is further improved. , 0.2 to 0.6 mol / kg, more preferably present.
 前記ポリエステル樹脂(B)としては、得られる成形品の機械的強度や保存安定性がより向上することから、5,000~30,000の重量平均分子量を有するものが好ましく、5,000~15,000の範囲であることがより好ましい。 The polyester resin (B) preferably has a weight average molecular weight of 5,000 to 30,000, preferably 5,000 to 15, because the mechanical strength and storage stability of the obtained molded product are further improved. More preferably, it is in the range of 000.
 前記ポリエステル樹脂(B)としては、得られる成形品の機械的強度がより向上することから、-20~80℃のガラス転移温度を有するものを使用することが好ましい。 As the polyester resin (B), it is preferable to use a polyester resin (B) having a glass transition temperature of −20 to 80 ° C. because the mechanical strength of the obtained molded product is further improved.
 前記ポリエステル樹脂(B)としては、ポリオール(b1)とポリカルボン酸(b2)とを反応させて得られるものを使用することができる。 As the polyester resin (B), one obtained by reacting a polyol (b1) with a polycarboxylic acid (b2) can be used.
 また、前記ポリエステル樹脂(B)の有するスルホン酸塩基は、前記ポリオール(b1)や前記ポリカルボン酸(b2)の一部に、例えば、スルホン酸塩基を有するポリオールやスルホン酸塩基を有するポリカルボン酸等のスルホン酸塩を有する化合物を使用することによって、前記ポリエステル樹脂(B)中に導入することができる。 Further, the sulfonic acid base contained in the polyester resin (B) is a part of the polyol (b1) or the polycarboxylic acid (b2), for example, a polyol having a sulfonic acid base or a polycarboxylic acid having a sulfonic acid base. By using a compound having a sulfonate such as, it can be introduced into the polyester resin (B).
 前記ポリオール(b1)としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール等の脂肪族環式構造を有するジオール;グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の水酸基を3以上有するポリオールなどを使用することができる。 Examples of the polyol (b1) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,5-pentane. Diol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, diethylene glycol, triethylene glycol, dipropylene glycol And other aliphatic diols; diols having an aliphatic ring structure such as 1,4-cyclohexanedimethanol; polyols having 3 or more hydroxyl groups such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol and the like can be used. can.
 また、前記ポリオール(b1)としては、その一部または全部にスルホン酸塩基を有する化合物としてスルホン酸塩基を有するポリオールを使用することもでき、例えば、2-ブテン-1,4-ジオール等の不飽和基を有するポリオールをスルホン化することによって得られるスルホン酸塩基を有するポリオールを使用することができる。 Further, as the polyol (b1), a polyol having a sulfonic acid base can be used as a compound having a sulfonic acid base in a part or all thereof, and for example, 2-butene-1,4-diol and the like can be used. A polyol having a sulfonic acid base obtained by sulfonation of a polyol having a saturated group can be used.
 前記ポリカルボン酸(b2)としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等の芳香族ポリカルボン酸;シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、水添ダイマー酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の飽和又は不飽和の脂肪族ポリカルボン酸;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸及びその無水物、テトラヒドロフタル酸及びその無水物等の脂肪族環式構造を有するポリカルボン酸などを使用することができる。これらの中でも、保存安定性がより向上することから、芳香族ポリカルボン酸を使用することが好ましく、テレフタル酸やイソフタル酸を使用することがより好ましい。 Examples of the polycarboxylic acid (b2) include aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and biphenyldicarboxylic acid; oxalic acid, succinic acid, anhydrous succinic acid, adipic acid and azeline. Saturated or unsaturated aliphatic poly such as acid, sebacic acid, dodecanedioic acid, hydrogenated dimeric acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid anhydride, citraconic acid, citraconic acid anhydride, dimeric acid, etc. Carboxylic acid; fatty acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornnedicarboxylic acid and its anhydride, tetrahydrophthalic acid and its anhydride. A polycarboxylic acid having a cyclic structure or the like can be used. Among these, it is preferable to use an aromatic polycarboxylic acid, and it is more preferable to use terephthalic acid or isophthalic acid, because the storage stability is further improved.
 また、前記ポリカルボン酸(b2)としては、前記したものの他に、トリメリット
酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、1,2,3,4-ブタンテトラカルボン酸等の3以上のカルボキシル基を有するものを使用することもできる。
In addition to the above-mentioned polycarboxylic acids (b2), trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, trimesic acid, etc. Those having three or more carboxyl groups such as ethylene glycol bis (anhydrotrimeritate), glyceroltris (anhydrotrimeritate), 1,2,3,4-butanetetracarboxylic acid can also be used.
 前記ポリカルボン酸(b2)としては、その一部または全部にスルホン酸塩基を有するポリカルボン酸を使用することができる。例えば、4-スルホイソフタル酸、5-スルホイソフタル酸、スルホテレフタル酸、4-スルホナフタレン-2,7-ジカルボン酸等の金属塩などが挙げられる。これらの中でも、保存安定性がより向上することから、5-ナトリウムスルホイソフタル酸や、5-ナトリウムスルホイソフタル酸ジメチル等の5-ナトリウムスルホイソフタル酸のエステル化物を使用することが好ましく、5-ナトリウムスルホイソフタル酸ジメチルを使用することがより好ましい。 As the polycarboxylic acid (b2), a polycarboxylic acid having a sulfonic acid base in a part or all of the polycarboxylic acid can be used. For example, metal salts such as 4-sulfoisophthalic acid, 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid and the like can be mentioned. Among these, it is preferable to use an esterified product of 5-sodium sulfoisophthalic acid such as 5-sodium sulfoisophthalic acid and dimethyl 5-sodium sulfoisophthalate, because the storage stability is further improved, and 5-sodium is preferable. It is more preferred to use dimethyl sulfoisophthalate.
 前記ポリエステル樹脂(B)は、無溶剤下または有機溶剤下で、前記ポリオール(b1)と前記ポリカルボン酸(b2)とを、従来知られる方法でエステル化反応することによって製造することができる。 The polyester resin (B) can be produced by subjecting the polyol (b1) and the polycarboxylic acid (b2) to an esterification reaction by a conventionally known method under a solvent-free or organic solvent.
 前記エステル化反応は、具体的には、不活性ガス雰囲気中で触媒の存在下または不存在下に、前記ポリオール(b1)と前記ポリカルボン酸(b2)とを180~300℃に加熱してエステル化あるいはエステル交換反応させ、次いで減圧下に重縮合させる方法で行うことができる。 Specifically, in the esterification reaction, the polyol (b1) and the polycarboxylic acid (b2) are heated to 180 to 300 ° C. in the presence or absence of a catalyst in an inert gas atmosphere. It can be carried out by a method of esterification or transesterification reaction, and then polycondensation under reduced pressure.
 また、前記ポリエステル樹脂(B)を製造する際に使用するスルホン酸塩基を有する化合物は、保存安定性がより向上することから、前記ポリオール(b1)及び前記ポリカルボン酸(b2)の合計の3~30質量%の範囲で使用することが好ましい。 Further, since the compound having a sulfonic acid base used in producing the polyester resin (B) has further improved storage stability, the total of the polyol (b1) and the polycarboxylic acid (b2) is 3 It is preferable to use it in the range of about 30% by mass.
 前記芳香族非イオン界面活性剤(C)としては、例えば、ポリオキシエチレンノニルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレンモノスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化フェニルエーテル等のポリオキシエチレンスチレン化フェニルエーテル;ポリオキシエチレンポリオキシプロピレントリスチレン化フェニルエーテル等のポリオキシアルキレンスチレン化フェニルエーテル;ポリオキシエチレンベンジルフェニルエーテル等のポリオキシアルキレンベンジルフェニルエーテル;ポリオキシエチレンクミルフェニルエーテル等のポリオキシアルキレンクミルフェニルエーテル;ポリオキシエチレンナフチルフェニルエーテル等のポリオキシアルキレンナフチルフェニルエーテル;ポリオキシエチレンスチレン化(メチルフェニルエーテル)等のポリオキシアルキレンスチレン化(アルキルフェニルエーテル)などが挙げられる。これらの中でも、保存安定性及びシランカップリング剤配合安定性がより向上することから、オキシエチレン単位を40以上有するものが好ましく、オキシエチレン単位を40以上有するポリオキシエチレンスチレン化フェニルエーテルがより好ましい。これらの芳香族非イオン界面活性剤(C)は、単独で用いることも2種以上併用することもできる。 Examples of the aromatic nonionic surfactant (C) include polyoxyalkylene alkyl phenyl ethers such as polyoxyethylene nonylphenyl ether; polyoxyethylene monostyrene phenyl ethers, polyoxyethylene distyrene phenyl ethers, and polys. Polyoxyethylene styrene phenyl ether such as oxyethylene tristyrene phenyl ether; Polyoxyalkylene styrene phenyl ether such as polyoxyethylene polyoxypropylene tristyrene phenyl ether; Polyoxyalkylene benzyl such as polyoxyethylene benzyl phenyl ether Phenyl ether; Polyoxyalkylene cumyl phenyl ether such as polyoxyethylene cumyl phenyl ether; Polyoxyalkylene naphthyl phenyl ether such as polyoxyethylene naphthyl phenyl ether; Polyoxyalkylene such as polyoxyethylene styrene (methyl phenyl ether) Examples thereof include styrene formation (alkyl phenyl ether). Among these, those having 40 or more oxyethylene units are preferable, and polyoxyethylene styrenated phenyl ethers having 40 or more oxyethylene units are more preferable, because storage stability and silane coupling agent compounding stability are further improved. .. These aromatic nonionic surfactants (C) can be used alone or in combination of two or more.
 また、本発明の水性エポキシ樹脂組成物には、前記芳香族非イオン界面活性剤(C)以外のその他の界面活性剤を併用することができるが、保存安定性及びシランカップリング剤配合安定性がより向上することから、界面活性剤中のその他の界面活性剤は10%未満であることが好ましい。 Further, the aqueous epoxy resin composition of the present invention may be used in combination with other surfactants other than the aromatic nonionic surfactant (C), but has storage stability and silane coupling agent compounding stability. It is preferable that the amount of other surfactant in the surfactant is less than 10%, because the amount of the surfactant is further improved.
 前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-
及びイソプロパノール等のアルコール化合物;アセトン、メチルエチルケトン等のケトン化合物;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール化合物;ポリアルキレングリコールのアルキルエーテル化合物;N-メチル-2-ピロリドン等のラクタム化合物、などが挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、又は、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。
Examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof. Examples of the organic solvent miscible with water include methanol, ethanol, and n-.
And alcohol compounds such as isopropanol; ketone compounds such as acetone and methyl ethyl ketone; polyalkylene glycol compounds such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ether compounds of polyalkylene glycol; lactam compounds such as N-methyl-2-pyrrolidone, etc. Can be mentioned. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and environmental load, water alone or a mixture of water and an organic solvent miscible with water is preferable, and water alone is particularly preferable.
 本発明の水性エポキシ樹脂組成物は、例えば、前記エポキシ樹脂(A)、前記ポリエステル樹脂(B)、芳香族非イオン界面活性剤(C)、溶剤を混合、撹拌し、次いで、それらの混合物と水性媒体とを混合し、必要に応じて脱溶剤することによって得ることができる。 The aqueous epoxy resin composition of the present invention is prepared, for example, by mixing and stirring the epoxy resin (A), the polyester resin (B), the aromatic nonionic surfactant (C), and a solvent, and then with the mixture thereof. It can be obtained by mixing with an aqueous medium and removing the solvent if necessary.
 本発明の水性エポキシ樹脂組成物の固形分中の前記エポキシ樹脂(A)は、75~95質量%であるが、得られる成形品の層間せん断強度がより向上することから、80~95質量%が好ましい。 The epoxy resin (A) in the solid content of the aqueous epoxy resin composition of the present invention is 75 to 95% by mass, but 80 to 95% by mass because the interlayer shear strength of the obtained molded product is further improved. Is preferable.
 本発明の水性エポキシ樹脂組成物の固形分中の前記ポリエステル樹脂(B)は、分散安定性と配合安定性がより向上することから、0.5~10質量%が好ましく、0.5~5質量%がより好ましい。 The polyester resin (B) in the solid content of the aqueous epoxy resin composition of the present invention is preferably 0.5 to 10% by mass, preferably 0.5 to 5% by mass, because dispersion stability and compounding stability are further improved. More preferably by mass.
 本発明の水性エポキシ樹脂組成物の固形分中の前記芳香族非イオン界面活性剤(C)は、配合安定性と成形品の機械強度がより向上することから、1~25質量%が好ましく、2~20質量%がより好ましい。 The aromatic nonionic surfactant (C) in the solid content of the aqueous epoxy resin composition of the present invention is preferably 1 to 25% by mass, because the compounding stability and the mechanical strength of the molded product are further improved. 2 to 20% by mass is more preferable.
 また、本発明の繊維集束剤の固形分中の、前記ポリエステル樹脂(B)と記芳香族非イオン界面活性剤(C)との質量比(B/C)は、配合安定性と成形品の耐久性がより向上することから、0.1~0.75が好ましい。 Further, the mass ratio (B / C) of the polyester resin (B) to the aromatic nonionic surfactant (C) in the solid content of the fiber sizing agent of the present invention is the compounding stability and the molded product. 0.1 to 0.75 is preferable because the durability is further improved.
 本発明の水性エポキシ樹脂組成物の中の固形分は、保存安定性及び経済的な観点から、40~70質量%が好ましく、45~65質量%であることがより好ましい。 The solid content in the aqueous epoxy resin composition of the present invention is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, from the viewpoint of storage stability and economy.
 本発明の水性エポキシ樹脂組成物の中の前記水性媒体は、保存安定性及び経済的な観点から、30~60質量%が好ましく、35~55質量%であることがより好ましい。 The aqueous medium in the aqueous epoxy resin composition of the present invention is preferably 30 to 60% by mass, more preferably 35 to 55% by mass, from the viewpoint of storage stability and economy.
 本発明の水性エポキシ樹脂組成物の粘度は、使用時の容器からの取り出しなどの取り扱いが容易となることから、1000mPa・s以下が好ましく、500mPa・s以下であることがより好ましい。なお、粘度は、回転式粘度計を用い、水性エポキシ樹脂組成物の温度が25℃で測定した時の値である。 The viscosity of the aqueous epoxy resin composition of the present invention is preferably 1000 mPa · s or less, and more preferably 500 mPa · s or less, because it is easy to handle such as taking it out of the container at the time of use. The viscosity is a value when the temperature of the aqueous epoxy resin composition is measured at 25 ° C. using a rotary viscometer.
 本発明の水性エポキシ樹脂組成物の体積平均粒子径は、貯蔵中の粒子の沈降速度が減少し、長期間均一性が保たれること、繊維に対する粒子の付着が均一になることから、0.1~1.0μmが好ましく、0.1~0.5μmであることがより好ましい。なお、体積平均粒子径は、レーザー回折式の粒度分布計を用い測定した値である。 The volume average particle size of the aqueous epoxy resin composition of the present invention is 0. It is preferably 1 to 1.0 μm, more preferably 0.1 to 0.5 μm. The volume average particle diameter is a value measured using a laser diffraction type particle size distribution meter.
 また、本発明の水性エポキシ樹脂組成物は、必要に応じてシランカップリング剤、硬化触媒、潤滑剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤等の添加剤、pH調整剤、レベリング剤、ゲル化防止剤、分散安定剤、酸化防止剤、ラジカル捕捉剤、耐熱性付与剤、無機充填剤、有機充填剤、可塑剤、補強剤、触媒、抗菌剤、防カビ剤、防錆剤、熱可塑性樹脂、熱硬化性樹脂、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、結晶水含有化合物、難燃剤、吸水剤、吸湿剤、消臭剤、整泡剤、消泡剤、防黴剤、防腐剤、防藻剤、顔料分散剤、ブロッキング防止剤、加水分解防止剤を併用することができる。 Further, the aqueous epoxy resin composition of the present invention can be used as a silane coupling agent, a curing catalyst, a lubricant, a filler, a thixo-imparting agent, a tackifier, a wax, a heat stabilizer, a light-resistant stabilizer, and a fluorescence increase, if necessary. Additives such as whitening agents and foaming agents, pH adjusters, leveling agents, antigelling agents, dispersion stabilizers, antioxidants, radical trapping agents, heat resistance imparting agents, inorganic fillers, organic fillers, plastics, Reinforcing agents, catalysts, antibacterial agents, fungicides, rust preventives, thermoplastic resins, thermosetting resins, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture permeability improvers, water repellents, oil repellents, Hollow foam, crystalline water-containing compound, flame retardant, water absorbent, hygroscopic agent, deodorant, foam stabilizer, antifoaming agent, fungicide, antiseptic, algae-proofing agent, pigment dispersant, blocking inhibitor, water A decomposition inhibitor can be used in combination.
 本発明の水性エポキシ樹脂組成物をガラス繊維の集束剤に使用する場合には、ガラス繊維に対する集束剤の接着強さをより一層向上するうえでシランカップリング剤を組み合わせ使用することが好ましい。 When the aqueous epoxy resin composition of the present invention is used as a sizing agent for glass fibers, it is preferable to use a silane coupling agent in combination in order to further improve the adhesive strength of the sizing agent to the glass fibers.
 前記シランカップリング剤としては、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルメチルジメトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルメチルジエトキシシランまたはγ-(N,N-ジ-2-ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシランまたはγ-(N-フェニル)アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトフェニルトリメトキシシラン等を使用することができる。 Examples of the silane coupling agent include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-hydroxylethyl) aminopropyltrimethoxysilane, and γ- (2-aminoethyl) aminopropyltriethoxy. Silane, γ- (2-hydroxylethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane , Γ- (2-hydroxylethyl) aminopropylmethyldimethoxysilane, γ- (2-hydroxylethyl) aminopropylmethyldiethoxysilane or γ- (N, N-di-2-hydroxylethyl) aminopropyltriethoxysilane, γ-Aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane or γ- (N-phenyl) aminopropyltrimethoxysilane, γ-mercaptopropyl Trimethoxysilane, γ-mercaptophenyltrimethoxysilane and the like can be used.
 前記シランカップリング剤は、本発明の水性エポキシ樹脂組成物の固形分100質量部に対して1~30質量部の範囲で使用することが好ましい。 The silane coupling agent is preferably used in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the solid content of the aqueous epoxy resin composition of the present invention.
 また、本発明の水性エポキシ樹脂組成物は、例えば、酢ビ系、エチレン酢ビ系、アクリル系、エポキシ系、ウレタン系、ポリエステル系、ポリアミド系等のエマルジョン;スチレン-ブタジエン系、アクリロニトリル-ブタジエン系、アクリル-ブタジエン系等のラテックス、更には、ポリビニルアルコールやセルロース等の水溶性樹脂等と組み合わせ使用することもできる。 The aqueous epoxy resin composition of the present invention is, for example, an emulsion such as vinegar-based, ethylene vinegar-based, acrylic-based, epoxy-based, urethane-based, polyester-based, polyamide-based; styrene-butadiene-based, acrylonitrile-butadiene-based. , Acrylic-butadiene-based latex, and further, it can be used in combination with a water-soluble resin such as polyvinyl alcohol and cellulose.
 本発明の繊維集束剤は、本発明の水性エポキシ樹脂組成物を含有するものであるが、例えば、ガラス繊維や炭素繊維等の糸切れや毛羽立ち等を防止することを目的として、複数の繊維の集束や表面処理に使用できる。 The fiber sizing agent of the present invention contains the aqueous epoxy resin composition of the present invention, and for the purpose of preventing yarn breakage, fluffing, etc. of glass fibers, carbon fibers, etc., for example, a plurality of fibers. Can be used for focusing and surface treatment.
 本発明の繊維集束剤を用いて処理可能な繊維材料としては、例えば、ガラス繊維や炭素繊維、シリコンカーバイド繊維、パルプ、麻、綿、ナイロン、ポリエステル、アクリル、ポリウレタン、ポリイミド、あるいはケブラー、ノーメックス等のアラミド等からなるポリアミド繊維等が挙げられる。これらの中でもガラス繊維や炭素繊維は、高強度であることから使用することが好ましい。 Examples of the fiber material that can be treated using the fiber sizing agent of the present invention include glass fiber, carbon fiber, silicon carbide fiber, pulp, linen, cotton, nylon, polyester, acrylic, polyurethane, polyimide, Kevlar, Nomex and the like. Examples thereof include polyamide fibers made of aramid and the like. Among these, glass fiber and carbon fiber are preferably used because of their high strength.
 前記繊維集束剤を用いて処理可能なガラス繊維としては、例えば含アルカリガラス、低アルカリガラス、無アルカリガラス等を原料にして得られたものを使用することができるが、特に、経時劣化も少なく機械的特性が安定している無アルカリガラス(Eガラス)を使用することが好ましい。 As the glass fiber that can be treated using the fiber sizing agent, for example, those obtained by using alkali-containing glass, low-alkali glass, non-alkali glass or the like as raw materials can be used, but the deterioration with time is particularly small. It is preferable to use non-alkali glass (E glass) having stable mechanical properties.
 また、前記繊維集束剤を用いて処理可能な炭素繊維としては、一般にポリアクリロニトリル系、ピッチ系等の炭素繊維を使用することができる。なかでも、前記炭素繊維としては、優れた強度を付与する観点から、ポリアクリロニトリル系の炭素繊維を使用することが好ましい。 Further, as the carbon fiber that can be treated using the fiber sizing agent, generally, a polyacrylonitrile-based carbon fiber, a pitch-based carbon fiber, or the like can be used. Among them, as the carbon fiber, it is preferable to use a polyacrylonitrile-based carbon fiber from the viewpoint of imparting excellent strength.
 また、前記炭素繊維としては、より一層優れた強度等を付与する観点から、0.5~20μmの単糸径を有するものを使用することが好ましく、2~15μmのものを使用することがより好ましい。 Further, as the carbon fiber, from the viewpoint of imparting even better strength and the like, it is preferable to use one having a single yarn diameter of 0.5 to 20 μm, and it is more preferable to use one having a single yarn diameter of 2 to 15 μm. preferable.
 前記炭素繊維としては、例えば撚糸、紡糸、紡績加工、不織加工したものを使用することができる。また、前記炭素繊維としてはフィラメント、ヤーン、ロービング、ストランド、チョップドストランド、フェルト、ニードルパンチ、クロス、ロービングクロス、ミルドファイバー等のものを使用することができる。 As the carbon fiber, for example, twisted yarn, spun, spun processed, and non-woven can be used. Further, as the carbon fiber, filaments, yarns, rovings, strands, chopped strands, felts, needle punches, cloths, roving cloths, milled fibers and the like can be used.
 前記ガラス繊維や炭素繊維を、本発明の繊維集束剤を用いて集束化し、前記ガラス繊維束や炭素繊維束の表面に、皮膜を形成する方法としては、例えば、繊維集束剤をキスコーター法、ローラー法、浸漬法、スプレー法、刷毛などその他公知の方法で、繊維表面に繊維集束剤を均一に塗布する方法が挙げられる。前記繊維集束剤が溶媒として水性媒体や有機溶剤を含む場合には、前記塗布後に加熱ローラーや熱風、熱板等を用いて、加熱乾燥することが好ましい。 As a method of bundling the glass fiber or carbon fiber using the fiber sizing agent of the present invention and forming a film on the surface of the glass fiber bundle or carbon fiber bundle, for example, a fiber sizing agent is used in a kiss coater method or a roller. Examples thereof include a method of uniformly applying the fiber sizing agent to the fiber surface by a method, a dipping method, a spray method, a brush, or another known method. When the fiber sizing agent contains an aqueous medium or an organic solvent as a solvent, it is preferable to heat and dry the fiber using a heating roller, hot air, a hot plate or the like after the coating.
 前記繊維材料の表面に形成された皮膜の付着量は、集束化され表面処理の施された繊維束の全質量に対して0.1~5質量%であることが好ましく、0.3~1.5質量%であることがより好ましい。 The amount of the film formed on the surface of the fiber material is preferably 0.1 to 5% by mass, preferably 0.3 to 1% by mass, based on the total mass of the bundled and surface-treated fiber bundle. It is more preferably 5.5% by mass.
 前記方法で得られた集束化され表面処理の施された繊維材料、特にガラス繊維や炭素繊維は、後述するマトリックス樹脂(D)等と組み合わせ使用することによって、高強度な成形品を製造するための成形材料に使用することができる。 The focused and surface-treated fiber material obtained by the above method, particularly glass fiber or carbon fiber, is used in combination with the matrix resin (D) described later to produce a high-strength molded product. Can be used as a molding material for.
 特に、本発明の繊維集束剤によって表面処理の施された繊維材料は、マトリックス樹脂(D)と組み合わせ使用し成形品等を形成した際に、前記繊維とマトリックス樹脂(D)との界面の密着性を著しく向上できるため、成形品の強度を向上することが可能である。 In particular, the fiber material surface-treated with the fiber sizing agent of the present invention is used in combination with the matrix resin (D) to form a molded product or the like, and the interface between the fiber and the matrix resin (D) adheres to each other. Since the properties can be remarkably improved, the strength of the molded product can be improved.
 前記マトリックス樹脂(D)としては、例えば熱硬化性樹脂(D1)または熱可塑性樹脂(D2)を使用することができる。前記熱硬化性樹脂(D1)としてはフェノール樹脂、ポリイミド樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂等を使用することができる。前記熱可塑性樹脂(D2)としては、例えば、ポリエチレンテレフタレートやポリブチレンテレフタレート等の飽和ポリエステル樹脂、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリフェニレンサルファイド、ポリフェニレンオキサイド、6-ナイロン、6,6-ナイロン等のポリアミド樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリアセタール、ポリエーテルイミド、ポリエーテルエーテルケトン等を使用することができる。 As the matrix resin (D), for example, a thermosetting resin (D1) or a thermoplastic resin (D2) can be used. As the thermosetting resin (D1), a phenol resin, a polyimide resin, a bismaleimide resin, an unsaturated polyester resin, an epoxy resin, a vinyl ester resin and the like can be used. Examples of the thermoplastic resin (D2) include saturated polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and polyamide resins such as polypropylene, polystyrene, polycarbonate, polyphenylene sulfide, polyphenylene oxide, 6-nylon and 6,6-nylon. Acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyacetal, polyetherimide, polyether ether ketone and the like can be used.
 本発明の繊維集束剤を用いて集束化等された繊維は、エポキシ樹脂、不飽和ポリエステル樹脂、6-ナイロン、6,6-ナイロン等のポリアミド樹脂、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルエーテルケトンのマトリックス樹脂と組み合わせ使用することが、高強度な成形品を得る上でより好ましい。 The fibers bundled using the fiber sizing agent of the present invention include epoxy resins, unsaturated polyester resins, polyamide resins such as 6-nylon and 6,6-nylon, polyphenylene sulfide, polybutylene terephthalate, polycarbonate, and polyether. It is more preferable to use it in combination with a matrix resin of ether ketone in order to obtain a high-strength molded product.
 前記表面処理の施された繊維材料と前記マトリックス樹脂(D)と、必要に応じて重合性単量体等とを含む成形材料としては、例えばプリプレグやシートモールディングコンパウンド(SMC)等が挙げられる。 Examples of the molding material containing the surface-treated fiber material, the matrix resin (D), and if necessary, a polymerizable monomer and the like include prepreg and sheet molding compound (SMC).
 前記プリプレグは、例えば前記マトリックス樹脂(D)を離型紙上に塗布し、その塗布面に表面処理の施された繊維材料を載置し、必要に応じてローラー等を用いて押圧含浸することによって製造することができる。 The prepreg is obtained by, for example, applying the matrix resin (D) on a release paper, placing a surface-treated fiber material on the coated surface, and pressing and impregnating the prepreg with a roller or the like as necessary. Can be manufactured.
 前記プリプレグを製造する際には、前記マトリックス樹脂(D)として、ビスフェノールA型エポキシ樹脂や、テトラグリシジルアミノジフェニルメタン等のグリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂を使用することが好ましい。 When producing the prepreg, it is preferable to use a bisphenol A type epoxy resin, a glycidylamine type epoxy resin such as tetraglycidylaminodiphenylmethane, or an epoxy resin such as a novolak type epoxy resin as the matrix resin (D). ..
 また、前記シートモールディングコンパウンドは、例えば前記マトリックス樹脂(D1)と、スチレン等の重合性不飽和単量体との混合物を、前記表面処理の施された繊維材料に十分含浸し、シート状に加工等することによって製造することができる。前記シートモールディングコンパウンドを製造する際には、前記マトリックス樹脂(D1)として、不飽和ポリエステル樹脂や、ビニルエステル樹脂を使用することが好ましい。 Further, the sheet molding compound is processed into a sheet by sufficiently impregnating the surface-treated fiber material with a mixture of, for example, the matrix resin (D1) and a polymerizable unsaturated monomer such as styrene. It can be manufactured by equalizing. When producing the sheet molding compound, it is preferable to use an unsaturated polyester resin or a vinyl ester resin as the matrix resin (D1).
 前記成形材料の硬化は、例えば加圧または常圧下、加熱または光照射によってラジカル重合させることによって進行する。かかる場合には、公知の熱硬化剤や光硬化剤等を組み合わせ使用することができる。 Curing of the molding material proceeds by, for example, radical polymerization under pressure or normal pressure, heating or light irradiation. In such a case, a known thermosetting agent, photocuring agent, or the like can be used in combination.
 また、前記成形材料としては、例えば前記熱可塑性樹脂(D2)と前記表面処理の施された繊維材料とを加熱下で混練等したものが挙げられる。かかる成形材料は、例えば射出成形法等による二次加工に使用することができる。 Further, examples of the molding material include those obtained by kneading the thermoplastic resin (D2) and the surface-treated fiber material under heating. Such a molding material can be used for secondary processing by, for example, an injection molding method.
 また、前記熱可塑性樹脂(D2)によるプリプレグは、例えば表面処理の施された繊維材料をシート状に載置し、溶融した前記熱可塑性樹脂(D2)を含浸することによって製造することができる。 Further, the prepreg made of the thermoplastic resin (D2) can be produced, for example, by placing a surface-treated fiber material on a sheet and impregnating the molten thermoplastic resin (D2).
前記熱可塑性樹脂(D2)によるプリプレグは、例えば1枚以上積層し、次いで加圧または常圧下、加熱し成形すること等による二次加工に使用することができる。 The prepreg made of the thermoplastic resin (D2) can be used for secondary processing, for example, by laminating one or more sheets and then heating and molding under pressure or normal pressure.
 前記成形材料を用いて得られた成形品は、高強度であることから、例えば自動車部材や航空機部材、産業用部材等に使用することができる。 Since the molded product obtained by using the molding material has high strength, it can be used for, for example, an automobile member, an aircraft member, an industrial member, or the like.
 以下、実施例により本発明をより具体的に説明する。なお、樹脂の平均分子量は、下記のGPC測定条件で測定したものである。 Hereinafter, the present invention will be described more specifically by way of examples. The average molecular weight of the resin was measured under the following GPC measurement conditions.
[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measuring device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection volume: 100 μL (sample concentration 4 mg / mL tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.
(単分散ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Polystyrene monodisperse)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
(製造例1:ポリエステル樹脂(B-1)の製造)
 180℃に調整した反応容器にエチレングリコール558質量部、ジエチレングリコール478質量部、テレフタル酸896質量部、イソフタル酸478質量部、ブチルヒドロキシ錫オキシド0.5質量部を仕込み4時間かけて240℃まで昇温し、その後240℃で反応を続けて約260質量部の溜出液をトラップした。次いで、180℃まで冷却後、5-ナトリウムスルホイソフタル酸ジメチル213質量部、テトライソプロピルチタネート0.5質量部を仕込み、更に、260℃まで昇温し水銀柱2.0mmの減圧下で1時間重縮合反応することによって、重量平均分子量8,900、ガラス転移温度44℃であるポリエステル樹脂(B-1)を得た。このポリエステル(B-1)のスルホン酸塩基濃度は0.31mol/kg、カルボキシル基濃度は0.05mmol/gであった。
(Manufacturing Example 1: Production of polyester resin (B-1))
In a reaction vessel adjusted to 180 ° C, 558 parts by mass of ethylene glycol, 478 parts by mass of diethylene glycol, 896 parts by mass of terephthalic acid, 478 parts by mass of isophthalic acid, and 0.5 part by mass of butyl hydroxytin oxide were charged and raised to 240 ° C over 4 hours. After warming, the reaction was continued at 240 ° C. to trap about 260 parts by mass of distillate. Then, after cooling to 180 ° C., 213 parts by mass of dimethyl 5-sodium sulfoisophthalate and 0.5 part by mass of tetraisopropyl titanate were charged, further heated to 260 ° C., and polycondensed for 1 hour under a reduced pressure of 2.0 mm in a mercury column. By the reaction, a polyester resin (B-1) having a weight average molecular weight of 8,900 and a glass transition temperature of 44 ° C. was obtained. The sulfonic acid base concentration of this polyester (B-1) was 0.31 mol / kg, and the carboxyl group concentration was 0.05 mmol / g.
(製造例2:ポリエステル樹脂(RB-1)の製造)
製造例1で使用した5-ナトリウムスルホイソフタル酸ジメチルの全量の代わりにトリメリット酸53質量部を用いること以外は、製造例1と同様の方法で重縮合反応することによって、ポリエステル樹脂(RB-1)を得た。このポリエステル(RB-1)の重量平均分子量は11,000、カルボキシル基濃度は0.31mmol/gであった。
(Manufacturing Example 2: Production of polyester resin (RB-1))
The polyester resin (RB-) was subjected to a polycondensation reaction in the same manner as in Production Example 1 except that 53 parts by mass of trimellitic acid was used instead of the total amount of dimethyl 5-sodium sulfoisophthalate used in Production Example 1. 1) was obtained. The weight average molecular weight of this polyester (RB-1) was 11,000, and the carboxyl group concentration was 0.31 mmol / g.
(実施例1:水性エポキシ樹脂組成物(1)の製造及び評価)
 攪拌機、温度計、還流冷却器を備えた反応容器に、クレゾールノボラック型エポキシ樹脂(エポキシ当量209g/当量、軟化点75℃;以下「エポキシ樹脂(A-1)」と略記する。)180質量部、ポリエステル樹脂(B-1)4質量部、ポリオキシエチレンスチレン化フェニルエーテル(オキシエチレン平均付加モル数40;以下「芳香族非イオン界面活性剤(C-1)」と略記する。)8質量部、ポリオキシエチレンジスチレン化フェニルエーテル(オキシエチレン平均付加モル数18;以下「芳香族非イオン界面活性剤(C-2)」と略記する。)8質量部及びメチルエチルケトン77質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水530質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分60%に濃縮することによって水性エポキシ樹脂組成物(1)を得た。
(Example 1: Production and evaluation of aqueous epoxy resin composition (1))
180 parts by mass of cresol novolac type epoxy resin (epoxy equivalent 209 g / equivalent, softening point 75 ° C.; hereinafter abbreviated as "epoxy resin (A-1)") in a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler. , 4 parts by mass of polyester resin (B-1), polyoxyethylene styrene phenyl ether (average number of added moles of oxyethylene 40; hereinafter abbreviated as "aromatic nonionic surfactant (C-1)") 8 mass. Add 8 parts by mass of polyoxyethylene distyrene phenyl ether (average number of moles of oxyethylene added; hereinafter abbreviated as "aromatic nonionic surfactant (C-2)") and 77 parts by mass of methyl ethyl ketone. After melting at 75 ° C., it was cooled to 40 ° C. Then, 530 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 60% to obtain an aqueous epoxy resin composition (1).
 (実施例2:水性エポキシ樹脂組成物(2)の製造及び評価)
 攪拌機、温度計、還流冷却器を備えた反応容器に、フェノールノボラック型エポキシ樹脂(エポキシ当量182g/当量、半固形型;以下「エポキシ樹脂(A-2)」と略記する。)184質量部、ポリエステル樹脂(B-1)2質量部、ポリオキシエチレンジスチレン化フェニルエーテル(オキシエチレン平均付加モル数60;以下「芳香族非イオン界面活性剤(C-3)」と略記する。)10質量部、ポリオキシエチレンポリオキシプロピレントリスチレン化フェニルエーテル(オキシエチレン平均付加モル数21、オキシプロピレン平均付加モル数4;以下「芳香族非イオン界面活性剤(C-4)」と略記する。))4質量部及びメチルエチルケトン79質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水530質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分50質量%に濃縮することによって水性エポキシ樹脂組成物(2)を得た。
(Example 2: Production and evaluation of aqueous epoxy resin composition (2))
184 parts by mass of phenol novolac type epoxy resin (epoxy equivalent 182 g / equivalent, semi-solid type; hereinafter abbreviated as "epoxy resin (A-2)") in a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler. 2 parts by mass of polyester resin (B-1), 10 mass by weight of polyoxyethylene distyrene phenyl ether (average number of added moles of oxyethylene 60; hereinafter abbreviated as "aromatic nonionic surfactant (C-3)"). Part, polyoxyethylene polyoxypropylene tristyrene phenyl ether (oxyethylene average addition mole number 21, oxypropylene average addition mole number 4; hereinafter abbreviated as "aromatic nonionic surfactant (C-4)"). ) 4 parts by mass and 79 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 530 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 50% by mass to obtain an aqueous epoxy resin composition (2).
 (実施例3:水性エポキシ樹脂組成物(3)の製造及び評価)
攪拌機、温度計、還流冷却器を備えた反応容器に、ビスフェノールA型エポキシ樹脂(エポキシ当量475g/当量、軟化点70℃;以下「エポキシ樹脂(A-3)」と略記する。)188質量部、ポリエステル樹脂(B-1)4質量部、ポリオキシエチレントリスチレン化フェニルエーテル(オキシエチレン平均付加モル数40;以下「芳香族非イオン界面活性剤(C-5)」と略記する。)8質量部及びメチルエチルケトン81質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水520質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分55質量%に濃縮することによって水性エポキシ樹脂組成物(3)を得た。
(Example 3: Production and evaluation of aqueous epoxy resin composition (3))
188 parts by mass of bisphenol A type epoxy resin (epoxy equivalent 475 g / equivalent, softening point 70 ° C; hereinafter abbreviated as "epoxy resin (A-3)") in a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler. , Polyester resin (B-1) 4 parts by mass, polyoxyethylene tristyrene phenyl ether (oxyethylene average addition molar number 40; hereinafter abbreviated as "aromatic nonionic surfactant (C-5)") 8 81 parts by mass and 81 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 520 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 55% by mass to obtain an aqueous epoxy resin composition (3).
(実施例4:水性エポキシ樹脂組成物(4)の製造及び評価)
攪拌機、温度計、還流冷却器を備えた反応容器に、ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210g/当量、軟化点85℃;以下「エポキシ樹脂(A-4)」と略記する。)180質量部、ポリエステル樹脂(B-1)6質量部、芳香族非イオン界面活性剤(C-3)8質量部、芳香族非イオン界面活性剤(C-4)4質量部、ポリオキシエチレンポリオキシプロピレンブロックポリマー(重量平均分子量17000、オキシエチレン成分80質量%)2質量部及びメチルエチルケトン77質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水511質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分50質量%に濃縮することによって水性エポキシ樹脂組成物(4)を得た。
(Example 4: Production and evaluation of aqueous epoxy resin composition (4))
180 mass of bisphenol A novolak type epoxy resin (epoxy equivalent 210 g / equivalent, softening point 85 ° C; hereinafter abbreviated as "epoxy resin (A-4)") in a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler. Parts, 6 parts by mass of polyester resin (B-1), 8 parts by mass of aromatic nonionic surfactant (C-3), 4 parts by mass of aromatic nonionic surfactant (C-4), polyoxyethylene polyoxy 2 parts by mass of a propylene block polymer (weight average molecular weight 17,000, 80% by mass of oxyethylene component) and 77 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 511 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 50% by mass to obtain an aqueous epoxy resin composition (4).
(比較例1:水性エポキシ樹脂組成物(R1)の製造及び評価)
攪拌機、温度計、還流冷却器を備えた反応容器に、エポキシ樹脂(A-1)200質量部及びポリエステル樹脂(B-1)200質量部、N-メチル-2-ピロリドン130質量部及びメチルエチルケトン50質量部を加え、75℃で溶解した後、60℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水1000質量部を徐々に加え水分散体を得た。この水分散体からメチルエチルケトンを減圧留去し、不揮発分35質量%に濃縮することによって水性エポキシ樹脂組成物(R1)を得た。
(Comparative Example 1: Production and Evaluation of Aqueous Epoxy Resin Composition (R1))
In a reaction vessel equipped with a stirrer, a thermometer, and a reflux condenser, 200 parts by mass of epoxy resin (A-1), 200 parts by mass of polyester resin (B-1), 130 parts by mass of N-methyl-2-pyrrolidone, and 50 parts of methyl ethyl ketone. A mass portion was added, and the mixture was melted at 75 ° C. and then cooled to 60 ° C. Then, 1000 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. Methyl ethyl ketone was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 35% by mass to obtain an aqueous epoxy resin composition (R1).
(比較例2:水性エポキシ樹脂組成物(R2)の製造及び評価)
攪拌機、温度計、還流冷却器を備えた反応容器に、エポキシ樹脂(A-2)70質量部、ポリエステル(B-1)6質量部、芳香族非イオン界面活性剤(C-3)60質量部、芳香族非イオン界面活性剤(C-2)64質量部及びメチルエチルケトン30質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水570質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分35質量%に濃縮することによって水性エポキシ樹脂組成物(R2)を得た。
(Comparative Example 2: Production and Evaluation of Aqueous Epoxy Resin Composition (R2))
70 parts by mass of epoxy resin (A-2), 6 parts by mass of polyester (B-1), 60 parts by mass of aromatic nonionic surfactant (C-3) in a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler. A portion, 64 parts by mass of an aromatic nonionic surfactant (C-2) and 30 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 570 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 35% by mass to obtain an aqueous epoxy resin composition (R2).
(比較例3:水性エポキシ樹脂組成物(R3)の製造及び評価)
攪拌機、温度計、還流冷却器を備えた反応容器に、エポキシ樹脂(A-2)180質量部、ポリエステル(RB-1)4質量部、芳香族非イオン界面活性剤(C-3)8質量部、芳香族非イオン界面活性剤(C-2)8質量部及びメチルエチルケトン77質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、トリエチルアミン6.2質量部を加えて均一になるまで撹拌、混合した。次いで、イオン交換水530質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分35質量%に濃縮することによって水性エポキシ樹脂組成物(R3)を得た。
(Comparative Example 3: Production and Evaluation of Aqueous Epoxy Resin Composition (R3))
In a reaction vessel equipped with a stirrer, a thermometer, and a reflux cooler, 180 parts by mass of epoxy resin (A-2), 4 parts by mass of polyester (RB-1), and 8 parts by mass of aromatic nonionic surfactant (C-3). A portion, 8 parts by mass of an aromatic nonionic surfactant (C-2) and 77 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 6.2 parts by mass of triethylamine was added, and the mixture was stirred and mixed until uniform. Then, 530 parts by mass of ion-exchanged water was gradually added to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 35% by mass to obtain an aqueous epoxy resin composition (R3).
(比較例4:水性エポキシ樹脂組成物(R4)の製造及び評価)
攪拌機、温度計、還流冷却器を備えた反応容器に、エポキシ樹脂(A-1)180質量部、芳香族非イオン界面活性剤(C-1)10質量部、芳香族非イオン界面活性剤(C-2)10質量部及びメチルエチルケトン77質量部を加え、75℃で溶解した後、40℃に冷却した。次いで、ホモミキサーで撹拌しながらイオン交換水530質量部を徐々に加え水分散体を得た。この水分散体から溶剤を減圧留去し、不揮発分40質量%に濃縮することによって水性エポキシ樹脂組成物(R4)を得た。
(Comparative Example 4: Production and Evaluation of Aqueous Epoxy Resin Composition (R4))
In a reaction vessel equipped with a stirrer, a thermometer, and a reflux condenser, 180 parts by mass of epoxy resin (A-1), 10 parts by mass of aromatic nonionic surfactant (C-1), and aromatic nonionic surfactant ( C-2) 10 parts by mass and 77 parts by mass of methyl ethyl ketone were added, dissolved at 75 ° C., and then cooled to 40 ° C. Then, 530 parts by mass of ion-exchanged water was gradually added while stirring with a homomixer to obtain an aqueous dispersion. The solvent was distilled off under reduced pressure from this aqueous dispersion and concentrated to a non-volatile content of 40% by mass to obtain an aqueous epoxy resin composition (R4).
[不揮発分の測定方法]
 風袋を予め小数点以下4桁目まで精秤しておいた金属シャーレ(内径65mm、深さ14mm)に、上記で得た水性エポキシ樹脂組成物の約1gを、小数点以下4桁目まで精秤し、イオン交換水5ml加えて、熱風循環式乾燥機内で107℃/1.5時間乾燥した後の試料の残量から不揮発分を求めた。以下に不揮発分の算出式を示す。
 不揮発分(質量%)=[(W-W)/(W-W)]×100
 W;金属シャーレの質量(g)
 W;金属シャーレの質量+秤取した試料の質量(g)
 W;金属シャーレの質量+乾燥後の試料の質量(g)
[Measurement method of non-volatile content]
Approximately 1 g of the water-based epoxy resin composition obtained above is precisely weighed to the 4th digit after the decimal point on a metal petri dish (inner diameter 65 mm, depth 14 mm) in which the tare has been precisely weighed to the 4th digit after the decimal point. , 5 ml of ion-exchanged water was added, and the non-volatile content was determined from the remaining amount of the sample after drying in a hot air circulation type dryer at 107 ° C./1.5 hours. The formula for calculating the non-volatile content is shown below.
Non-volatile content (% by mass) = [(W 3 -W 1 ) / (W 2 -W 1 )] × 100
W 1 ; Mass of metal petri dish (g)
W 2 ; mass of metal petri dish + mass of weighed sample (g)
W 3 ; mass of metal petri dish + mass of sample after drying (g)
[粘度の測定方法]
 上記で得た製造直後の水性エポキシ樹脂組成物について、下記の測定機器を用いて測定した。
 測定機器;VISCOMETER MODEL RB100L(東機産業株式会社製)、測定温度;25℃、ローター回転数;60rpm、測定時間;60秒
[Viscosity measurement method]
The water-based epoxy resin composition immediately after production obtained above was measured using the following measuring equipment.
Measuring equipment; VISCOMETER MODEL RB100L (manufactured by Toki Sangyo Co., Ltd.), measuring temperature; 25 ° C, rotor rotation speed; 60 rpm, measuring time; 60 seconds
[平均粒子径の測定方法]
 上記で得た製造直後の水性エポキシ樹脂組成物について、エポキシ樹脂の濃度が数十~数百ppmの範囲となるように、イオン交換水を用いて希釈したものを測定溶液として用い、下記測定機器を用いて体積平均粒子径を測定した。
 測定機器;SALD-2300(株式会社島津製作所製)、測定温度;23℃ 
[Measurement method of average particle size]
The aqueous epoxy resin composition immediately after production obtained above was diluted with ion-exchanged water so that the concentration of the epoxy resin was in the range of several tens to several hundreds of ppm, and the solution was used as the measurement solution. Was used to measure the volume average particle size.
Measuring equipment; SALD-2300 (manufactured by Shimadzu Corporation), measuring temperature; 23 ° C
[保存安定性(外観)の評価]
上記で得た水性エポキシ樹脂組成物を40℃で30日間保存し、沈殿物の発生や液の固化現象の有無を目視で確認し、下記の基準により保存安定性を評価した。
○:変化なし
 △:若干の沈殿物あり 
×:沈殿物の発生が激しい、または固化
[Evaluation of storage stability (appearance)]
The aqueous epoxy resin composition obtained above was stored at 40 ° C. for 30 days, and the presence or absence of precipitation and liquid solidification was visually confirmed, and the storage stability was evaluated according to the following criteria.
○: No change △: There is some precipitate
×: Severe precipitation or solidification
[保存安定性(エポキシ基残存率)の評価]
上記で得た水性エポキシ樹脂組成物を40℃で30日間保存し、保存前後のエポキシ当量を塩酸ピリジン法によって測定し、エポキシ基の残存率を算出した。
「エポキシ基の残存率(%)」=「保存前のエポキシ当量(g/当量)」/「保存後のエポキシ当量(g/当量)」×100
[Evaluation of storage stability (epoxy group residual ratio)]
The aqueous epoxy resin composition obtained above was stored at 40 ° C. for 30 days, the epoxy equivalent before and after storage was measured by the pyridine hydrochloride method, and the residual ratio of epoxy groups was calculated.
"Residual rate of epoxy group (%)" = "Epoxy equivalent before storage (g / equivalent)" / "Epoxy equivalent after storage (g / equivalent)" x 100
[配合安定性の評価]
上記で得た水性エポキシ樹脂組成物にイオン交換水及びγ-アミノプロピルトリエトキシシランを加え、エポキシ樹脂/γ-アミノプロピルトリエトキシシラン=10/1(固形分比)の不揮発分20質量%水希釈液を作製した。次いで、40℃で3日間静置し、凝集物の発生や液の固化現象の有無を目視で確認し、下記の基準により配合安定性を評価した。
○:変化なし 
△:若干の沈殿物あり 
×:沈殿物の発生が激しい、または固化
[Evaluation of compounding stability]
Ion-exchanged water and γ-aminopropyltriethoxysilane are added to the aqueous epoxy resin composition obtained above, and epoxy resin / γ-aminopropyltriethoxysilane = 10/1 (solid content ratio) non-volatile content 20% by mass water. A diluted solution was prepared. Then, the mixture was allowed to stand at 40 ° C. for 3 days, and the presence or absence of agglomerates and solidification of the liquid was visually confirmed, and the compounding stability was evaluated according to the following criteria.
○: No change
Δ: There is some precipitate
×: Severe precipitation or solidification
[炭素繊維の集束剤処理]
 ポリアクリロニトリル系炭素繊維(直径7μm/7000本)のノーサイズ糸を束ね、上記で得た水性エポキシ樹脂組成物をイオン交換水で不揮発分5質量%に希釈したものを浸漬法で含浸し、ローラーで絞ることで有効成分の付着量を1質量%に調整し、次いで、150℃で30分間熱処理することによって、水性エポキシ樹脂組成物によって表面処理の施された炭素繊維束を得た。
[Carbon fiber sizing agent treatment]
No-sized yarns of polyacrylonitrile-based carbon fibers (diameter 7 μm / 7,000) are bundled, and the aqueous epoxy resin composition obtained above is diluted with ion-exchanged water to a non-volatile content of 5% by mass and impregnated by a dipping method. The amount of the active ingredient adhered was adjusted to 1% by mass by squeezing with, and then heat-treated at 150 ° C. for 30 minutes to obtain a carbon fiber bundle surface-treated with the aqueous epoxy resin composition.
[エポキシ成形品の作製]
 ビスフェノールA型液状エポキシ樹脂(エポキシ当量188g/当量)50質量部、ビスフェノールA型固形エポキシ樹脂(エポキシ当量475g/当量、軟化点70℃)20質量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量209g/当量、軟化点75℃)30質量部に、ジシアンジアミド4質量部及びN-(3,4-ジクロロフェニル)-N’,N’-ジメチルウレア4質量部を調合し離型紙上に塗布した。塗布した樹脂フィルム上に上記で得た炭素繊維束を等間隔で一方向に引き揃え並べた後、加熱してエポキシ樹脂を含浸し、炭素繊維含有率が60体積%のプリプレグを作成した。作成したプリプレグを積層し、150℃加圧下で1時間、続いて140℃で4時間処理することによって、成形品を得た。
[Manufacturing of epoxy molded products]
Bisphenol A type liquid epoxy resin (epoxy equivalent 188 g / equivalent) 50 parts by mass, bisphenol A type solid epoxy resin (epoxy equivalent 475 g / equivalent, softening point 70 ° C) 20 parts by mass, cresol novolac type epoxy resin (epoxy equivalent 209 g / equivalent) , 4 parts by mass of dicyandiamide and 4 parts by mass of N- (3,4-dichlorophenyl) -N', N'-dimethylurea were prepared in 30 parts by mass (softening point 75 ° C.) and applied onto a release paper. The carbon fiber bundles obtained above were arranged and arranged in one direction on the coated resin film at equal intervals, and then heated to impregnate the epoxy resin to prepare a prepreg having a carbon fiber content of 60% by volume. The prepared prepregs were laminated and treated under pressure at 150 ° C. for 1 hour and then at 140 ° C. for 4 hours to obtain a molded product.
[エポキシ成形品の層間せん断強度の評価]
 成形品の厚さ2.5mm、幅6.0mmの試験板について、ASTM D-2344に準拠した方法で層間せん断強度を測定した。また、同様の試験板を蒸留水中で72時間煮沸処理した後のものについても、同様に層間せん断強度を測定した。
[Evaluation of interlayer shear strength of epoxy molded products]
The interlayer shear strength of the test plate having a thickness of 2.5 mm and a width of 6.0 mm was measured by a method according to ASTM D-2344. Further, the interlayer shear strength of the same test plate after being boiled in distilled water for 72 hours was also measured in the same manner.
[炭素繊維チョップドストランドの作製]
ポリアクリロニトリル系炭素繊維(直径7μm/6000本)のノーサイズ糸を束ね、上記で得た水性エポキシ樹脂組成物をイオン交換水で不揮発分5質量%に希釈したものを浸漬法で含浸し、ローラーで絞ることで有効成分の付着量を1質量%に調整した。次いで、炭素繊維束を約4mmの長さに裁断し、150℃で30分間熱処理することによって、炭素繊維集束剤によって表面処理の施された炭素繊維チョップドストランドを得た。
[Making carbon fiber chopped strands]
No-sized yarns of polyacrylonitrile-based carbon fibers (diameter 7 μm / 6000) are bundled, and the aqueous epoxy resin composition obtained above is diluted with ion-exchanged water to a non-volatile content of 5% by mass and impregnated by a dipping method. The amount of the active ingredient attached was adjusted to 1% by mass by squeezing with. Then, the carbon fiber bundle was cut to a length of about 4 mm and heat-treated at 150 ° C. for 30 minutes to obtain a carbon fiber chopped strand surface-treated with a carbon fiber sizing agent.
[PPS成形品の作製]
 上記で得られた炭素繊維チョップドストランド30質量部またはガラス繊維チョップドストランド30質量部とポリフェニレンスルフィド(PPS)70質量部とを均一に混合した。次いで、ベント付き2軸押出機に前記配合材料を投入し、設定樹脂温度330℃で溶融混練して樹脂組成物のペレットを得た。このペレットを用いて射出成形機にて成形し、PPS成形品を得た。
[Manufacturing of PPS molded products]
30 parts by mass of the carbon fiber chopped strand or 30 parts by mass of the glass fiber chopped strand obtained above and 70 parts by mass of polyphenylene sulfide (PPS) were uniformly mixed. Next, the compounding material was put into a twin-screw extruder with a vent and melt-kneaded at a set resin temperature of 330 ° C. to obtain pellets of a resin composition. These pellets were molded by an injection molding machine to obtain a PPS molded product.
[PPS成形品の引張強度の測定]
 ISO527の測定方法に準拠して、各試験片について引張強度を測定した。試験片は、全長170mm、狭い平行部長さ80mm、狭い平行部幅10mm、広い平行部分の距離109mm、広い平行部幅20mm、厚さ4mmのダンベル型引張試験片を用いた。
[Measurement of tensile strength of PPS molded products]
The tensile strength was measured for each test piece according to the measurement method of ISO527. As the test piece, a dumbbell type tensile test piece having a total length of 170 mm, a narrow parallel portion length of 80 mm, a narrow parallel portion width of 10 mm, a wide parallel portion distance of 109 mm, a wide parallel portion width of 20 mm, and a thickness of 4 mm was used.
[PPS成形品の耐湿熱性の測定]
各試験片を140℃の高温下でエチレングリコール水溶液(50質量%)に3000時間浸漬した後、ISO527の測定方法に準拠して、各試験片について引張強度を測定した。
[Measurement of moisture resistance and heat resistance of PPS molded products]
After immersing each test piece in an aqueous ethylene glycol solution (50% by mass) at a high temperature of 140 ° C. for 3000 hours, the tensile strength of each test piece was measured according to the measurement method of ISO527.
 上記の実施例1~4の組成及び評価結果を表1に示す。 Table 1 shows the compositions and evaluation results of Examples 1 to 4 above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の比較例1~4の組成及び評価結果を表2に示す。 Table 2 shows the compositions and evaluation results of Comparative Examples 1 to 4 above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の水性エポキシ樹脂組成物である実施例1~4のものは、保存安定性及び配合安定性に優れ、これを用いて得られる成形品は層間せん断強度及び引張強度に優れることが確認された。 It has been confirmed that the aqueous epoxy resin compositions of the present invention of Examples 1 to 4 are excellent in storage stability and compounding stability, and that the molded product obtained by using the aqueous epoxy resin composition is excellent in interlayer shear strength and tensile strength. rice field.
 一方、比較例1は、本発明の必須成分である芳香族非イオン界面活性剤(C)を含有しない例であるが、配合安定性が劣り、成形品の層間せん断強度も不十分であることが確認された。 On the other hand, Comparative Example 1 is an example in which the aromatic nonionic surfactant (C), which is an essential component of the present invention, is not contained, but the compounding stability is inferior and the interlayer shear strength of the molded product is insufficient. Was confirmed.
 比較例2は、エポキシ樹脂(A)の含有量が本願発明の下限より少ない例であるが、成形品の層間せん断強度及び耐湿熱試験後の引張強度が不十分であることが確認された。 Comparative Example 2 is an example in which the content of the epoxy resin (A) is less than the lower limit of the present invention, but it was confirmed that the interlayer shear strength of the molded product and the tensile strength after the moisture resistance heat test were insufficient.
 比較例3及び4は、本発明の必須成分であるスルホン酸基を有するポリエステル樹脂(B)を含有しない例であるが、保存安定性が不十分であることが確認された。 Comparative Examples 3 and 4 are examples that do not contain the polyester resin (B) having a sulfonic acid group, which is an essential component of the present invention, but it was confirmed that the storage stability was insufficient.

Claims (7)

  1.  エポキシ樹脂(A)、スルホン酸塩基を有するポリエステル樹脂(B)、芳香族非イオン界面活性剤(C)、及び水性媒体を含有する水性エポキシ樹脂組成物であって、前記エポキシ樹脂(A)の含有量が全固形分中の75~95質量%であることを特徴とする水性エポキシ樹脂組成物。 An aqueous epoxy resin composition containing an epoxy resin (A), a polyester resin (B) having a sulfonic acid base, an aromatic nonionic surfactant (C), and an aqueous medium, which is the same as the epoxy resin (A). An aqueous epoxy resin composition having a content of 75 to 95% by mass in the total solid content.
  2.  前記芳香族非イオン界面活性剤(C)が、オキシエチレン単位を40以上有する界面活性剤を含むものである請求項1記載の水性エポキシ樹脂組成物。 The aqueous epoxy resin composition according to claim 1, wherein the aromatic nonionic surfactant (C) contains a surfactant having 40 or more oxyethylene units.
  3.  前記ポリエステル樹脂(B)のスルホン酸塩基濃度が0.2~0.6mol/kgである請求項1又は2記載の水性エポキシ樹脂組成物。 The aqueous epoxy resin composition according to claim 1 or 2, wherein the polyester resin (B) has a sulfonic acid base concentration of 0.2 to 0.6 mol / kg.
  4.  請求項1~3いずれか1項記載の水性エポキシ樹脂組成物を含有することを特徴とする繊維集束剤。 A fiber sizing agent comprising the aqueous epoxy resin composition according to any one of claims 1 to 3.
  5.  請求項4記載の繊維集束剤によって集束されたことを特徴とする繊維束。 A fiber bundle characterized by being focused by the fiber sizing agent according to claim 4.
  6.  請求項5記載の繊維束、及びマトリックス樹脂を含有することを特徴とする成形材料。 A molding material containing the fiber bundle according to claim 5 and a matrix resin.
  7.  請求項6記載の成形材料の硬化物であることを特徴とする成形品。 A molded product characterized by being a cured product of the molding material according to claim 6.
PCT/JP2021/037088 2020-10-27 2021-10-07 Aqueous epoxy resin composition, fiber sizing agent, fiber bundle, molding material, and molded article WO2022091732A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022558963A JP7276622B2 (en) 2020-10-27 2021-10-07 Aqueous epoxy resin composition, fiber sizing agent, fiber bundle, molding material, and molded article
CN202180063593.4A CN116194533A (en) 2020-10-27 2021-10-07 Aqueous epoxy resin composition, fiber bundling agent, fiber bundle, molding material and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179488 2020-10-27
JP2020179488 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091732A1 true WO2022091732A1 (en) 2022-05-05

Family

ID=81382405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037088 WO2022091732A1 (en) 2020-10-27 2021-10-07 Aqueous epoxy resin composition, fiber sizing agent, fiber bundle, molding material, and molded article

Country Status (3)

Country Link
JP (1) JP7276622B2 (en)
CN (1) CN116194533A (en)
WO (1) WO2022091732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107004A (en) * 2005-10-13 2007-04-26 Xerox Corp Emulsion containing epoxy resin and toner
JP2010194807A (en) * 2009-02-24 2010-09-09 Ajinomoto Co Inc Sheet with metallic film and resin sheet with metallic film
JP2016117886A (en) * 2014-12-18 2016-06-30 ゼロックス コーポレイションXerox Corporation Single solvent formulation for preparation of crystalline polyester latex via phase inversion emulsification
JP2016160567A (en) * 2015-03-05 2016-09-05 Dic株式会社 Fiber sizing agent, bundled glass fiber and carbon fiber
JP2016204641A (en) * 2015-04-24 2016-12-08 ゼロックス コーポレイションXerox Corporation Hybrid latex via phase inversion emulsification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107004A (en) * 2005-10-13 2007-04-26 Xerox Corp Emulsion containing epoxy resin and toner
JP2010194807A (en) * 2009-02-24 2010-09-09 Ajinomoto Co Inc Sheet with metallic film and resin sheet with metallic film
JP2016117886A (en) * 2014-12-18 2016-06-30 ゼロックス コーポレイションXerox Corporation Single solvent formulation for preparation of crystalline polyester latex via phase inversion emulsification
JP2016160567A (en) * 2015-03-05 2016-09-05 Dic株式会社 Fiber sizing agent, bundled glass fiber and carbon fiber
JP2016204641A (en) * 2015-04-24 2016-12-08 ゼロックス コーポレイションXerox Corporation Hybrid latex via phase inversion emulsification

Also Published As

Publication number Publication date
CN116194533A (en) 2023-05-30
JP7276622B2 (en) 2023-05-18
JPWO2022091732A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP2016160567A (en) Fiber sizing agent, bundled glass fiber and carbon fiber
EP1103578B1 (en) Water-dispersible films and fibers based on sulfopolyesters
JP2015175065A (en) fiber sizing agent
JP2013249562A (en) Fiber sizing agent and bundled glass fiber and carbon fiber
KR20140044917A (en) Fiber sizing agent composition
JP5110237B1 (en) Epoxy resin composition, fiber sizing agent, fiber material and molding material
JP4989790B2 (en) Reinforcing fiber sizing agents, synthetic fiber strands and fiber reinforced composites
JP7147107B1 (en) Sizing agent for reinforcing fiber and use thereof
JP6511987B2 (en) Carbon fiber sizing agent and carbon fiber
KR20190140035A (en) Textile binding agents, textile materials, molding materials and molded products
WO2019111746A1 (en) Polyester resin, polyester resin water dispersion, and method for preparing polyester resin water dispersion
JP6163485B2 (en) Molding material, molded body thereof, and method for producing the molded body
WO2020054340A1 (en) Epoxy resin composition, molding material for fiber-reinforced composite material, and fiber-reinforced composite material
US20030220035A1 (en) Reinforced unsaturated polyester resin compositions
WO2022004872A1 (en) Chopped carbon fiber bundle and production method for chopped carbon fiber bundle
WO2022091732A1 (en) Aqueous epoxy resin composition, fiber sizing agent, fiber bundle, molding material, and molded article
JP6626875B2 (en) Sizing agent composition for fibers
JP2013155237A (en) Aqueous resin composition, and coating agent, adhesive, and fiber-sizing agent containing the aqueous resin composition
JP7052916B2 (en) Aqueous epoxy resin compositions, fiber sizing agents, fiber materials, molding materials, and coating agents
JP5423693B2 (en) Carbon fiber bundle
JP3089695B2 (en) Aqueous sizing agent for glass fiber
Al Azad et al. Effect of alkalization on fabrication and mechanical properties of jute fiber reinforced jute-polyester resin hybrid epoxy composite
JPH1077350A (en) Chopped strand of carbon fiber
EP3129433B1 (en) Sizing compositions for carbon fibers
JPH0737338B2 (en) Aqueous sizing agent for glass fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885851

Country of ref document: EP

Kind code of ref document: A1