WO2022091583A1 - Container temperature adjustment device - Google Patents

Container temperature adjustment device Download PDF

Info

Publication number
WO2022091583A1
WO2022091583A1 PCT/JP2021/032750 JP2021032750W WO2022091583A1 WO 2022091583 A1 WO2022091583 A1 WO 2022091583A1 JP 2021032750 W JP2021032750 W JP 2021032750W WO 2022091583 A1 WO2022091583 A1 WO 2022091583A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
lid
groove
unit
temperature control
Prior art date
Application number
PCT/JP2021/032750
Other languages
French (fr)
Japanese (ja)
Inventor
龍太 渋谷
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022558894A priority Critical patent/JPWO2022091583A1/ja
Publication of WO2022091583A1 publication Critical patent/WO2022091583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present disclosure relates to a container temperature control device that raises and lowers the temperature of a container containing a sample to be analyzed (blood, urine, nasopharyngeal swab, biological sample such as saliva, etc.).
  • a sample to be analyzed blood, urine, nasopharyngeal swab, biological sample such as saliva, etc.
  • PCR polymerase chain reaction
  • PCR is typically performed on a device that performs reagent transfer, temperature control, and optical detection in multiple containers. Genes are amplified by raising or lowering the temperature of the container containing the sample.
  • the lid of the container is used to prevent the sample from evaporating in the container and change the reaction conditions, and because the lid of the container is the optical path for fluorescence measurement and the water droplets condensed on the lid do not block the optical path.
  • a heat lid for heating the portion to a predetermined temperature is provided. In the conventional device, the operator manually presses the heat lid against the lid, but in order to improve work efficiency and reduce the risk of infection of the operator, it is considered to automate the movement of the heat lid. ing.
  • a container temperature control device that can reduce the burden on the drive unit that moves the heat lid and reduce the risk of device failure is proposed.
  • the container temperature control device includes a container holding unit, a heat lid, a driving unit, and a power transmission unit.
  • the container holder holds the container.
  • the container has a container main body and a lid portion that can be opened and closed with respect to the container main body.
  • the container holder also raises and lowers the temperature of the container.
  • the heat lid comes into contact with the lid portion in which the container body is closed to heat the lid portion.
  • the drive unit generates a driving force that moves the heat lid relative to the container holding unit.
  • the power transmission unit transmits the driving force generated by the driving unit to the heat lid.
  • the power transmission unit has a groove-forming member in which a groove is formed, and a movable member that is engaged with the groove and can move in the groove. The horizontal movement of the movable member causes the heat lid to press the lid toward the container body.
  • the heat lid presses the lid of the container toward the container body due to the horizontal movement of the movable member, so that even if the drive of the heat lid is stopped by the drive unit, the heat lid is used as the lid. It is possible to continue to generate a pressing force. It is not necessary to keep the drive unit driven while raising and lowering the temperature of the container, and the load on the drive unit can be reduced, so that power consumption can be reduced and the risk of malfunction or failure of the drive unit due to heat generation can be reduced. be able to.
  • FIG. 1 It is a figure which shows the example of the structure of the analysis system schematically. It is a figure which looked at the holding device in a state where a container is installed from the direction along the Z axis. It is a figure which shows typically each process of the analysis process by an analysis apparatus. It is a perspective view which shows the schematic structure of the conveyor of a heat lid. It is a perspective view of the heat lid conveyor seen from the angle different from FIG. It is a schematic diagram of the plate member shown in FIG. It is the first figure which shows the relative movement of a heat lid with respect to a temperature control part. It is a schematic diagram which shows the relative position of a plate member and a roller in the arrangement of FIG.
  • FIG. 1 is a diagram schematically showing an example of the configuration of the analysis system 1 according to the present embodiment.
  • the analysis system 1 is a device capable of fully automatic processing of measuring and analyzing gene amplification by PCR over time (real time).
  • the direction along the vertical direction is the "Z-axis direction”
  • the directions perpendicular to the vertical direction and orthogonal to each other are the "X-axis direction” and Also referred to as "Y-axis direction”.
  • the analysis system 1 includes an analysis device 2 and a terminal 3 capable of communicating with the analysis device 2.
  • the terminal 3 is a general personal computer provided with a display, which is operated by an operator.
  • the analysis device 2 includes an inspection device 10, a control device 20, a temperature control device 30, and mobile devices 4 and 5.
  • the temperature control device 30 includes a holding device (holder) 40 configured to hold a plurality of containers 50 and the like.
  • the holding device 40 includes a temperature control unit 41 and a holding unit 42.
  • the temperature control unit 41 has a temperature control function (heating function and cooling function) by a temperature source 44 represented by a Pelche element, a heater, a cooling device, and the heat lid 45.
  • the holding portion 42 does not have a temperature control function.
  • the moving device 4 includes an actuator (not shown) that moves the inspection device 10 in the horizontal direction (XY axis direction).
  • the moving device 5 includes an actuator (not shown) that moves the holding device 40 in the horizontal direction (XY axis direction).
  • the actuators of the moving devices 4 and 5 operate according to a command from the control device 20. By horizontally moving at least one of the inspection device 10 and the holding device 40 by the moving devices 4 and 5, the horizontal relative distance between the inspection device 10 and the holding device 40 can be adjusted. It should be noted that either one of the moving devices 4 and 5 may be omitted.
  • the inspection device 10 includes an optical unit 11, a dispensing unit 12, an opening / closing unit 14, and an irradiation unit 16.
  • the dispensing unit 12 is provided with a syringe 13 to which a nozzle extending in the Z-axis direction is attached to the tip. Inside the nozzle, a plunger (not shown) that can move along the Z-axis direction is provided.
  • the syringe 13 is configured to suck an amount of liquid corresponding to the stroke amount in the positive direction of the Z axis of the plunger and discharge a liquid amount corresponding to the stroke amount in the negative direction of the Z axis of the plunger.
  • the dispensing unit 12 includes an actuator (not shown) for moving the syringe 13 in the Z-axis direction and an actuator (not shown) for stroking the plunger in the nozzle in the Z-axis direction. These actuators operate according to a command from the control device 20.
  • the opening / closing unit 14 includes an opening / closing mechanism having a protrusion for automatically opening / closing the lid of the container 50 by touching the lid of the container 50 held by the holding device 40.
  • the opening / closing unit 14 operates according to a command from the control device 20.
  • the irradiation unit 16 considers that when the opening / closing unit 14 opens / closes the lid of the container 50, the sample may adhere to the protrusion of the opening / closing unit 14 and be mixed (contaminate) with the next sample. Contamination is prevented by irradiating the periphery of the protrusion with UV light (ultraviolet rays).
  • the optical unit 11 is a device that analyzes an infectious disease virus or a gene contained in a sample by detecting the fluorescence emitted from the sample when the sample in the container 50 is irradiated with excitation light.
  • the optical unit 11 performs fluorescence detection for each of the three wavelengths of red (R), green (G), and blue (B), and outputs the result to the control device 20.
  • the optical unit 11 includes a light source that emits light (light emitting diode, etc.), a lens for irradiating the sample with light from the light source and collecting fluorescence of the sample, and a digital capable of detecting and analyzing the fluorescence emitted from the sample. Includes photodiodes that convert to data. A known configuration can be adopted for the optical unit 11.
  • control device 20 includes a CPU (Central Processing Unit), a memory, an input / output buffer, and the like.
  • CPU Central Processing Unit
  • each part of the analysis device 2 (each unit in the inspection device 10, mobile devices 4 and 5, temperature source 44 of the temperature control device 30, and heat lid 45) is preliminarily pressed.
  • the infectious disease virus or gene contained in the sample is analyzed by controlling according to a predetermined procedure.
  • the control device 20 displays the analysis result by the analysis device 2 on the display of the terminal 3.
  • FIG. 2 is a view of the holding device 40 with the container 50 installed as viewed from the direction along the Z axis.
  • the holding device 40 extends along the XY plane and has an array surface in which a plurality of containers 50 are arranged in a two-dimensional manner.
  • the inspection device 10 and the holding device 40 are configured to be relatively movable two-dimensionally along the arrangement plane of the holding device 40 by the moving devices 4 and 5.
  • the containers 50 arranged on the arrangement surface of the holding device 40 include a PCR container (reaction container) 51 containing a liquid (a sample to which each reagent is added) to be a target of a thermal cycle, and a reagent container 52 containing each reagent. And a sample container 54 containing a single sample.
  • the PCR container 51 is arranged in four sets in the Y-axis direction, with four PCR containers 51a, 51b, 51c, and 51d arranged one-dimensionally along the X-axis direction as one set.
  • the reagent container 52 is arranged in four sets in the Y-axis direction, with four reagent containers 52a, 52b, 52c, 52d arranged one-dimensionally along the X-axis direction as one set.
  • the reagent container 52a contains a sample treatment liquid in advance.
  • the reaction solution is pre-filled in the reagent container 52b.
  • the reagent container 52c is preliminarily filled with a primer / probe liquid (a liquid containing the primer and the probe).
  • the reagent container 52d is pre-filled with an enzyme solution.
  • the four reagent containers 52a, 52b, 52c, and 52d are provided (commercially available) as a set of reagents in a state in which at least the amount of reagents required for analysis of one sample is pre-encapsulated.
  • Four sample containers 54 are arranged one-dimensionally along the Y-axis direction.
  • four samples can be analyzed at one time by putting different samples in the four sample containers 54 arranged in the Y-axis direction.
  • each container 50 (PCR container 51, reagent container 52, sample container 54) is arranged in the holding device 40, a step (hole or recess) into which a part of each container 50 can be inserted along the Z-axis direction is inserted. ) Is formed.
  • a dispensing tip 53 for dispensing the sample and the reagent is arranged in the region between the reagent container 52 and the sample container 54 in the holding device 40.
  • the dispensing tip 53 is used by being attached to the nozzle of the syringe 13.
  • the dispensing tip 53 includes a long tip 53a used for the sample container 54 and a short tip (trace tip) 53b used for the PCR container 51 and the reagent container 52.
  • the dispensing tip 53 is arranged in four sets in the Y-axis direction, with one long tip 53a and two short tips 53b arranged one-dimensionally along the X-axis direction as one set.
  • the PCR container 51 to be the target of the thermal cycle is arranged in the temperature control section 41 having a temperature control function, and the other reagent container 52, the dispensing tip 53, and the sample container 54 are arranged in the holding section 42 having no temperature control function. Will be done.
  • the holding device 40 is provided with a tip disposal unit 43 for discarding the used dispensing tip 53.
  • a tip disposal unit 43 for discarding the used dispensing tip 53.
  • each container 50 has a container main body and a lid portion that can be opened and closed with respect to the container main body.
  • Each container 50 is a resin molded product in which the lid and the container body are integrated.
  • ⁇ Analysis processing> The operator sets each container 50 (PCR container 51, reagent container 52 and sample container 54) and the dispensing chip 53 (long chip 53a and short chip 53b) in the holding device 40, and starts analysis for starting analysis.
  • the command is input to the terminal 3, the analysis process by the analysis device 2 is started.
  • FIG. 3 is a diagram schematically showing each process of analysis processing by the analysis device 2. In the analysis process, steps S1 to S6 are executed in this order.
  • step S1 a process (sample injection) of dispensing 5 ⁇ L of the sample into the PCR container 51b is performed.
  • the control device 20 first mounts a long tip 53a on the nozzle of the syringe 13, collects 25 ⁇ L of the sample from the sample container 54, and dispenses 25 ⁇ L of the sample into the PCR container 51a. 12 and mobile devices 4 and 5 are controlled.
  • control device 20 controls the dispensing unit 12 and the moving devices 4 and 5 so that the long tip 53a is discarded by the tip disposal unit 43.
  • control device 20 attaches the short tip 53b to the nozzle of the syringe 13, collects 5 ⁇ L of the sample from the PCR container 51a, and dispenses the sample 5 ⁇ L into the PCR container 51b. , 5 is controlled.
  • the plunger provided inside the nozzle of the syringe 13 is thin because it basically corresponds to the short tip 53b that dispenses a small amount, and with the same stroke amount, the dispensing accuracy is high when the long tip 53a is used. It may be reduced and accurate results may not be obtained.
  • a sample is once collected with the long chip 53a, 25 ⁇ L, which is more than 5 ⁇ L, is dispensed into the PCR container 51a different from the PCR container 51b, and then replaced with the short chip 53b.
  • Exactly 5 ⁇ L is collected from the PCR container 51a and dispensed into the PCR container 51b.
  • a small amount of 5 ⁇ L of the sample can be accurately dispensed into the PCR container 51b.
  • a process of adding 5 ⁇ L of the sample treatment solution to the PCR container 51b is performed.
  • the control device 20 first collects 5 ⁇ L of the sample treatment liquid from the reagent container 52a, dispenses 5 ⁇ L of the sample treatment liquid into the PCR container 51b, and reciprocates (up and down) the syringe 13 to enter the PCR container 51b.
  • the dispensing unit 12 and the moving devices 4 and 5 are controlled so as to stir.
  • control device 20 controls the dispensing unit 12 and the moving devices 4 and 5 so that the short tip 53b is discarded by the tip discarding unit 43.
  • a process of heating and quenching the PCR container 51b is performed. Specifically, the control device 20 heats the PCR container 51b to maintain the sample temperature in the PCR container 51b at 90 ° C. for 5 minutes, and then quenchs the PCR container 51b to control the sample temperature in the PCR container 51b.
  • the temperature control unit 41 is controlled so as to return to 20 ° C. (normal temperature).
  • the PCR container 51b is inserted into a step in which the upper surface of the temperature control portion 41 is recessed.
  • the temperature control portion 41 is a metal plate having excellent thermal conductivity, and is made of, for example, aluminum.
  • the temperature control unit 41 is in thermal contact with the temperature source 44.
  • the temperature source 44 heats and cools the temperature control unit 41 according to a preset program, whereby the sample temperature in the PCR container 51b is controlled. This allows the sample to be subjected to a predetermined temperature profile suitable for the reaction.
  • the heat lid 45 is in thermal contact with the lid of the PCR container 51b with the container body closed.
  • the heat lid 45 is a metal plate to which a heating source such as a seat heater is attached. When the heating source heats the lid, the liquid is vaporized in the PCR container 51b to change the reaction conditions and prevent dew condensation from occurring on the lid.
  • the control device 20 first collects 7.8 ⁇ L of the reaction solution from the reagent container 52b and moves it to the dispensing unit 12 so as to dispense it into the reagent container 52d containing 2.4 ⁇ L of the enzyme in advance. It controls the devices 4 and 5.
  • control device 20 collects 7.8 ⁇ L of the primer / probe solution from the reagent container 52c, dispenses it into the reagent container 52d, and stirs the inside of the reagent container 52d by reciprocating (up and down movement) of the syringe 13. Note Controls the unit 12 and the moving devices 4 and 5. At this point, the amount of the reagent mixture contained in the reagent container 52d is 18 ⁇ L.
  • control device 20 collects 15 ⁇ L of the reagent mixture from the reagent container 52d, dispenses 15 ⁇ L of the reagent mixture into the PCR container 51b, and stirs the inside of the PCR container 51b by reciprocating (up and down) the syringe 13. , Controls the dispensing unit 12 and the moving devices 4 and 5.
  • the thermal cycle treatment of the PCR container 51b is performed. Specifically, the control device 20 maintains the liquid temperature in the PCR container 51b at 42 ° C. for 10 minutes to cause a reverse transfer reaction, and then maintains the liquid temperature in the PCR container 51b at 95 ° C. for 1 minute.
  • the temperature control unit 41 is controlled so as to activate the enzyme.
  • control device 20 maintains the liquid temperature in the PCR container 51b at 95 ° C. for 5 seconds and then maintains the liquid temperature in the PCR container 51b at 60 ° C. for 30 seconds to perform an amplification process for amplifying the gene.
  • the temperature control unit 41 is controlled. This amplification process is carried out for 45 cycles.
  • the control device 20 is a temperature control unit so as to perform three-wavelength fluorescence detection on the liquid in the PCR container 51b in a state where the liquid temperature in the PCR container 51b is 60 ° C. after the amplification treatment. It controls 41 and the optical unit 11.
  • the three-wavelength fluorescence detection is performed every time the amplification process is performed.
  • the result of the three-wavelength fluorescence detection (the result of the analysis process by the analysis device 2) is displayed on the display of the terminal 3.
  • FIG. 4 is a perspective view showing a schematic configuration of a conveyor for the heat lid 45.
  • FIG. 5 is a perspective view of the conveyor of the heat lid 45 as viewed from a different angle from that of FIG.
  • the conveyor of the heat lid 45 mainly includes an X-axis drive motor 61, an X-axis moving unit 62, a Z-axis drive motor 65, and a Z-axis moving unit 66.
  • the X-axis drive motor 61 generates a driving force that moves the heat lid 45 in the X-axis direction.
  • the X-axis drive motor 61 may be, for example, a servo motor.
  • the X-axis moving portion 62 has a rack portion 64.
  • the rack portion 64 meshes with a pinion gear connected to the output shaft of the X-axis drive motor 61.
  • the pinion gear rotates in response to the driving force generated by the X-axis drive motor 61, and the rack portion 64 moves in the X-axis direction.
  • the rack portion 64 moves in the X-axis direction
  • the X-axis moving portion 62 moves in the X-axis direction as a whole.
  • the Z-axis drive motor 65 generates a driving force that moves the heat lid 45 in the Z-axis direction.
  • the Z-axis drive motor 65 may be, for example, a servo motor.
  • the Z-axis drive motor 65 may be the same motor as the X-axis drive motor 61, or may be a motor different from the X-axis drive motor 61.
  • the Z-axis moving portion 66 has a rack portion 68.
  • the rack portion 68 meshes with a pinion gear connected to the output shaft of the Z-axis drive motor 65.
  • the pinion gear rotates in response to the driving force generated by the Z-axis drive motor 65, and the rack portion 68 moves in the Z-axis direction.
  • the Z-axis moving portion 66 moves in the Z-axis direction as a whole.
  • the temperature control unit 41 corresponds to the container holding unit in the embodiment that holds the container 50 and raises or lowers the temperature of the container 50.
  • the X-axis drive motor 61 and the Z-axis drive motor 65 correspond to the drive unit in the embodiment in which the heat lid 45 is relatively moved with respect to the temperature control unit 41.
  • a guide hole 63 extending in the Z-axis direction is formed in the X-axis moving portion 62.
  • the Z-axis moving portion 66 has a fitting portion 67 that fits into the guide hole 63.
  • the fitting portion 67 moves in the Z-axis direction along the guide hole 63.
  • the guide hole 63 and the fitting portion 67 guide the movement of the Z-axis moving portion 66 in the Z-axis direction.
  • FIG. 6 is a schematic view of the plate member 70 shown in FIG.
  • the plate member 70 is formed with an L-shaped groove 71 having a substantially L-shape.
  • the L-shaped groove 71 shown in FIG. 6 penetrates the plate member 70 in the thickness direction, but the L-shaped groove 71 does not necessarily have to penetrate the plate member 70.
  • the L-shaped groove 71 may have a groove shape in which the surface of the plate member 70 is recessed.
  • the plate member 70 corresponds to the groove forming member of the embodiment.
  • the L-shaped groove 71 has a first groove portion 73 substantially extending along the X-axis direction and a second groove portion 74 substantially extending along the Z-axis direction.
  • the second groove portion 74 extends substantially along the vertical direction.
  • the first groove portion 73 extends substantially along the X-axis direction perpendicular to the vertical direction, and substantially extends in the horizontal direction.
  • the lower end of the second groove 74 communicates with the first groove 73, whereby the L-shaped groove 71 has a substantially L-shaped shape.
  • a part of the floor surface of the first groove portion 73 is inclined upward with respect to the horizontal direction.
  • the L-shaped groove 71, more particularly the first groove portion 73 has an inclined floor surface 75 that is inclined upward with respect to the horizontal direction.
  • the roller 72 shown in FIG. 6 is provided on the Z-axis moving portion 66.
  • the roller 72 is rotatably attached to a metal plate constituting the Z-axis moving portion 66.
  • the roller 72 is engaged with the L-shaped groove 71.
  • the roller 72 is arranged in the L-shaped groove 71.
  • the roller 72 shown in FIG. 6 is located at the upper end of the second groove portion 74 of the L-shaped groove 71.
  • the roller 72 is movable relative to the plate member 70 in the X-axis direction by the driving force generated by the X-axis drive motor 61.
  • the roller 72 is movable relative to the plate member 70 in the Z-axis direction by the driving force generated by the Z-axis drive motor 65.
  • the roller 72 can move in the L-shaped groove 71.
  • the roller 72 is configured to be movable relative to the plate member 70 along the L-shaped groove 71.
  • the roller 72 is rotatable relative to the plate member 70.
  • the roller 72 corresponds to the movable member in the embodiment.
  • a pair of plate members 70 are attached to two facing edges of the heat lid 45.
  • a roller 72 is engaged with each plate member 70 as in FIG.
  • the power transmission unit has a pair of plate members 70 and rollers 72.
  • a pair of plate members 70 and rollers 72 support the heat lid 45 from both sides.
  • FIG. 7 is a first diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41.
  • FIG. 8 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG. 7.
  • the heat lid 45 has a heater portion 46, a support portion 47, and a spring portion 48.
  • the heater portion 46 is a main body portion of the heat lid 45 that comes into contact with the lid portion of the container 50 to heat the lid portion as described later.
  • the support portion 47 supports the heater portion 46 from above via the spring portion 48.
  • the heater portion 46 is suspended from the support portion 47 by a spring portion 48.
  • the conveyor of the heat lid 45 described with reference to FIGS. 4 and 5 exerts a driving force on the support portion 47 to move the support portion 47 in the X-axis direction and the Z-axis direction.
  • the control device 20 transmits a control signal to the Z-axis drive motor 65 to drive the Z-axis drive motor 65.
  • the Z-axis moving unit 66 moves upward in response to the driving force generated by the Z-axis drive motor 65.
  • the roller 72 moves upward together with the Z-axis moving portion 66.
  • the roller 72 exerts an upward stress on the plate member 70, so that the plate member 70 moves upward.
  • the heat lid 45 moves upward together with the plate member 70.
  • the heat lid 45 shown in FIGS. 4 and 5 is arranged below the upper end of the temperature control unit 41.
  • the upwardly moved heat lid 45 shown in FIG. 7 is arranged above the upper end of the container held by the temperature control unit 41.
  • the roller 72 remains positioned at the upper end of the second groove portion 74 of the L-shaped groove 71, as shown in FIG.
  • the roller 72 By suppressing the relative movement of the roller 72 with respect to the plate member 70, it is possible to stably move the heat lid 45 in the upward direction.
  • FIG. 9 is a second diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41.
  • FIG. 10 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG.
  • the heat lid 45 moves in the horizontal direction.
  • the control device 20 transmits a control signal to the X-axis drive motor 61 to drive the X-axis drive motor 61.
  • the X-axis moving unit 62 moves in the horizontal direction in response to the driving force generated by the X-axis drive motor 61.
  • the Z-axis moving portion 66 and the roller 72 move in the horizontal direction.
  • the roller 72 exerts a horizontal stress on the plate member 70, so that the plate member 70 moves in the horizontal direction.
  • the heat lid 45 moves horizontally together with the plate member 70.
  • the heat lid 45 that has moved in the horizontal direction is arranged above the temperature control unit 41. Since the heat lid 45 moves upward above the upper end of the temperature control unit 41 and above the upper end of the container, the horizontal movement of the heat lid 45 with the temperature control unit 41 or the container It is not hindered by the interference of.
  • the roller 72 remains positioned at the upper end of the second groove 74 of the L-shaped groove 71, as shown in FIG.
  • the roller 72 By suppressing the relative movement of the roller 72 with respect to the plate member 70, it is possible to stably move the heat lid 45 in the horizontal direction.
  • FIG. 11 is a third diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41.
  • FIG. 12 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG.
  • the heat lid 45 moves downward.
  • the control device 20 transmits a control signal to the Z-axis drive motor 65 to drive the Z-axis drive motor 65.
  • the Z-axis moving unit 66 moves downward in response to the driving force generated by the Z-axis drive motor 65.
  • the roller 72 moves downward together with the Z-axis moving portion 66. As shown in FIG. 12, the roller 72 moves from the upper end to the lower end of the second groove portion 74 of the L-shaped groove 71.
  • the roller 72 located at the lower end of the second groove portion 74 of the L-shaped groove 71 exerts a downward stress on the plate member 70, so that the plate member 70 moves downward.
  • the heat lid 45 moves downward together with the plate member 70.
  • the downwardly moved heat lid 45 specifically the heater portion 46, shown in FIG. 11 is in contact with the lid portion of the container.
  • the heater portion 46 is mounted on the lid portion of the container by its own weight.
  • the heater portion 46 is maintained in a state of being suspended from the support portion 47 by the spring portion 48.
  • the relative position of the heater portion 46 with respect to the support portion 47 does not change.
  • FIG. 13 is a fourth diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41.
  • FIG. 14 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG.
  • the control device 20 transmits a control signal to the X-axis drive motor 61 to drive the X-axis drive motor 61.
  • the X-axis moving unit 62 moves in the horizontal direction in response to the driving force generated by the X-axis drive motor 61.
  • the Z-axis moving portion 66 and the roller 72 move in the horizontal direction.
  • the roller 72 moves relative to the plate member 70 along the first groove portion 73 of the L-shaped groove 71.
  • the inclined floor surface 75 of the first groove portion 73 is inclined upward with respect to the moving direction of the roller 72 moving in the first groove portion 73.
  • a force in the Z-axis direction from the roller 72 that moves in the horizontal direction to the plate member 70 as the roller 72 passes through the inclined floor surface 75 so that the roller 72 rises on the inclined floor surface 75 of the first groove portion 73. works. Specifically, a downward force acts on the plate member 70. By the action of this force, the plate member 70 moves downward. The support portion 47 moves downward together with the plate member 70.
  • the horizontal movement of the roller 72 causes the plate member 70 and the support portion 47 to move downward, so that the relative position of the heater portion 46 with respect to the support portion 47 changes.
  • the support portion 47 is close to the heater portion 46, and the spring portion 48 is contracted.
  • a downward elastic force acts from the spring portion 48 to the heater portion 46.
  • the heat lid 45 shown in FIG. 13, specifically, the heater portion 46 is pressed against the container.
  • the heat lid 45 (heater portion 46) presses the lid portion of the container downward.
  • the heat lid 45 (heater portion 46) presses the lid portion of the container toward the container body.
  • the moving direction of the roller 72 due to the driving force of the X-axis drive motor 61 and the direction in which the heat lid 45 (heater portion 46) presses the lid portion of the container toward the container body are different.
  • Both the X-axis drive motor 61 and the Z-axis drive motor 65 stop in the state shown in FIG. 14 in which the roller 72 has passed the inclined floor surface 75.
  • the X-axis drive motor 61 and the Z-axis drive motor 65 have a locking function of holding the output shaft while stopped. It is avoided that the position of the heat lid 45 shifts while the X-axis drive motor 61 and the Z-axis drive motor 65 are stopped. As a result, with the drive of the heat lid 45 by the X-axis drive motor 61 and the Z-axis drive motor 65 stopped, the force of the heat lid 45 pressing the lid portion of the container toward the container main body remains acting.
  • the container temperature control device includes a container holding unit, a heat lid, a driving unit, and a power transmission unit.
  • the container holder holds the container.
  • the container has a container main body and a lid portion that can be opened and closed with respect to the container main body.
  • the container holder also raises and lowers the temperature of the container.
  • the heat lid comes into contact with the lid portion in which the container body is closed to heat the lid portion.
  • the drive unit generates a driving force that moves the heat lid relative to the container holding unit.
  • the power transmission unit transmits the driving force generated by the driving unit to the heat lid.
  • the power transmission unit includes a groove-forming member in which a groove is formed and a movable member that is engaged with the groove and can move in the groove. The horizontal movement of the movable member causes the heat lid to press the lid toward the container body.
  • the horizontal movement of the movable member causes the heat lid to press the lid of the container toward the container body, so that even if the drive of the heat lid is stopped by the drive unit, a force that presses the heat lid against the lid is generated. You can continue. It is not necessary to keep the drive unit driven while raising and lowering the temperature of the container, and the load on the drive unit can be reduced, so that power consumption can be reduced and the risk of malfunction or failure of the drive unit due to heat generation can be reduced. be able to.
  • the groove may have an inclined floor surface that inclines upward with respect to the horizontal movement direction of the movable member.
  • the groove forming member moves downward relative to the movable member.
  • a downward force acts on the heat lid due to the movement of the groove forming member.
  • the heat lid can press the lid of the container toward the container body.
  • the movable member may be rotatable relative to the groove forming member.
  • the frictional force generated between the movable member and the groove forming member can be reduced, and the movable member can move smoothly in the groove.
  • the energy loss due to the relative displacement of the movable member with respect to the groove forming member can be reduced, and the heat lid can be efficiently moved by the driving force generated by the driving unit.
  • the power transmission unit has a pair of groove forming members and a movable member, and the pair of groove forming members and the movable member hold a heat lid from both sides. You may support it.
  • the power transmission unit can stably support the heat lid from both sides.
  • the groove has a first groove portion extending in the horizontal direction and a second groove portion extending in the vertical direction, and the lower end portion of the second groove portion is the first. It may have an L-shaped shape that communicates with the groove portion.
  • the movable member When the heat lid is moved upward and when the heat lid is moved horizontally, the movable member is located at the upper end of the second groove portion, so that the relative displacement of the movable member with respect to the groove forming member can be suppressed. As a result, the heat lid can be moved stably.
  • 1 analysis system 1 analysis system, 2 analysis device, 3 terminal, 4, 5 mobile device, 10 inspection device, 11 optical unit, 12 dispensing unit, 13 syringe, 14 opening / closing unit, 16 irradiation unit, 20 control device, 30 temperature control device, 40 holding device, 41 temperature control part, 42 holding part, 43 chip disposal part, 44 temperature source, 45 heat lid, 46 heater part, 47 support part, 48 spring part, 50 container, 51 PCR container, 52 reagent container, 53 Dispensing chip, 54 sample container, 61 X-axis drive motor, 62 X-axis moving part, 63 guide hole, 64, 68 rack part, 65 Z-axis drive motor, 66 Z-axis moving part, 67 fitting part, 70 plate member , 71 L-shaped groove, 72 rollers, 73 1st groove, 74 2nd groove, 75 inclined floor surface.

Abstract

Provided is a container temperature adjustment device in which a load on a drive part for moving a heating lid is reduced, whereby a risk that the device becomes out of order can be reduced. According to the present invention, a container-holding part holds a container. The container has a container body, and a lid part that is openable and closeable with respect to the container body. The container-holding part causes the temperature of the container to rise and fall. The heating lid is brought into contact with the lid part in a state in which the container body is closed, to heat the lid part. The drive part generates a drive force for moving the heating lid relative to the container-holding part. A motive power transmission part transmits the drive force generated by the drive part to the heating lid. The motive power transmission part has: a plate member (70) on which L-shaped grooves (71) are formed; and rollers (72) that are fitted into the L-shaped grooves (71) and can be moved in the L-shaped grooves (71). The movement of the rollers (72) in a horizontal direction allows the heating lid to press the lid part against the container body.

Description

容器温調装置Container temperature control device
 本開示は、分析対象となる検体(血液、尿、鼻咽頭拭い液、唾液等の生体由来サンプルなど)を入れる容器の温度を昇降させる容器温調装置に関する。 The present disclosure relates to a container temperature control device that raises and lowers the temperature of a container containing a sample to be analyzed (blood, urine, nasopharyngeal swab, biological sample such as saliva, etc.).
 従来、ポリメラーゼ連鎖反応(Polymerase Chain Reaction、以下「PCR」ともいう)を用いて検体に含まれる遺伝子の解析を行なうための装置が存在する(たとえば特許第4785862号公報)。 Conventionally, there is an apparatus for analyzing genes contained in a sample using a polymerase chain reaction (hereinafter also referred to as “PCR”) (for example, Japanese Patent No. 4785862).
特許第4785862号公報Japanese Patent No. 4785862
 PCRは、典型的には、多数の容器での試薬移動、温度制御、および光学的検出を行なう装置で行なわれる。試料を入れた容器の温度を昇降させることにより、遺伝子を増幅させる。容器内で試料が気化して反応条件が変わることを防止するため、および、容器の蓋部が蛍光測定時の光路であり、蓋部で結露した水滴が光路を遮らないために、容器の蓋部を所定温度に加熱するヒートリッドが設けられている。従来の装置では、ヒートリッドを蓋部に押し付ける動作を作業者が手動で行なっていたが、作業の効率化および作業者の感染リスク低減のために、ヒートリッドの移動を自動化することが検討されている。 PCR is typically performed on a device that performs reagent transfer, temperature control, and optical detection in multiple containers. Genes are amplified by raising or lowering the temperature of the container containing the sample. The lid of the container is used to prevent the sample from evaporating in the container and change the reaction conditions, and because the lid of the container is the optical path for fluorescence measurement and the water droplets condensed on the lid do not block the optical path. A heat lid for heating the portion to a predetermined temperature is provided. In the conventional device, the operator manually presses the heat lid against the lid, but in order to improve work efficiency and reduce the risk of infection of the operator, it is considered to automate the movement of the heat lid. ing.
 ヒートリッドを蓋部に押し付ける動作を電動アクチュエータを駆動させて行なうことが考えられる。しかし、PCRでは長時間の温度制御が必要であり、その間電動アクチュエータを駆動させたままとすると、消費電力が増大するとともに、発熱による電動アクチュエータの誤作動または故障が発生する可能性がある。 It is conceivable to drive the electric actuator to press the heat lid against the lid. However, PCR requires temperature control for a long period of time, and if the electric actuator is left driven during that period, power consumption increases and the electric actuator may malfunction or fail due to heat generation.
 本開示では、ヒートリッドを移動させる駆動部の負担を軽減し装置故障リスクを低減できる、容器温調装置が提案される。 In this disclosure, a container temperature control device that can reduce the burden on the drive unit that moves the heat lid and reduce the risk of device failure is proposed.
 本開示に係る容器温調装置は、容器保持部と、ヒートリッドと、駆動部と、動力伝達部とを備えている。容器保持部は、容器を保持する。容器は、容器本体と、容器本体に対して開閉可能な蓋部とを有している。容器保持部はまた、容器の温度を昇降させる。ヒートリッドは、容器本体を閉じている状態の蓋部に接触して、蓋部を加熱する。駆動部は、ヒートリッドを容器保持部に対して相対移動させる駆動力を発生する。動力伝達部は、駆動部の発生する駆動力をヒートリッドへ伝達する。動力伝達部は、溝が形成された溝形成部材と、溝に係合され溝内を移動可能な可動部材とを有している。可動部材の水平方向の移動によって、ヒートリッドが蓋部を容器本体側へ押圧する。 The container temperature control device according to the present disclosure includes a container holding unit, a heat lid, a driving unit, and a power transmission unit. The container holder holds the container. The container has a container main body and a lid portion that can be opened and closed with respect to the container main body. The container holder also raises and lowers the temperature of the container. The heat lid comes into contact with the lid portion in which the container body is closed to heat the lid portion. The drive unit generates a driving force that moves the heat lid relative to the container holding unit. The power transmission unit transmits the driving force generated by the driving unit to the heat lid. The power transmission unit has a groove-forming member in which a groove is formed, and a movable member that is engaged with the groove and can move in the groove. The horizontal movement of the movable member causes the heat lid to press the lid toward the container body.
 本開示においては、可動部材の水平方向の移動によって、ヒートリッドが容器の蓋部を容器本体側へ押圧することで、駆動部によるヒートリッドの駆動を停止させても、ヒートリッドを蓋部に押し付ける力を発生させ続けることができる。容器の温度を昇降させる間に駆動部を駆動させたままとしなくてもよく、駆動部の負担を軽減できるので、消費電力を低減でき、発熱による駆動部の誤作動または故障のリスクを低減することができる。 In the present disclosure, the heat lid presses the lid of the container toward the container body due to the horizontal movement of the movable member, so that even if the drive of the heat lid is stopped by the drive unit, the heat lid is used as the lid. It is possible to continue to generate a pressing force. It is not necessary to keep the drive unit driven while raising and lowering the temperature of the container, and the load on the drive unit can be reduced, so that power consumption can be reduced and the risk of malfunction or failure of the drive unit due to heat generation can be reduced. be able to.
解析システムの構成の一例を概略的に示す図である。It is a figure which shows the example of the structure of the analysis system schematically. 容器が設置された状態の保持装置をZ軸に沿う方向から視た図である。It is a figure which looked at the holding device in a state where a container is installed from the direction along the Z axis. 解析装置による解析処理の各工程を模式的に示す図である。It is a figure which shows typically each process of the analysis process by an analysis apparatus. ヒートリッドの運搬装置の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the conveyor of a heat lid. 図4とは異なる角度から見た、ヒートリッドの運搬装置の斜視図である。It is a perspective view of the heat lid conveyor seen from the angle different from FIG. 図4に示されるプレート部材の模式図である。It is a schematic diagram of the plate member shown in FIG. 温調部に対するヒートリッドの相対移動を示す第1の図である。It is the first figure which shows the relative movement of a heat lid with respect to a temperature control part. 図7の配置におけるプレート部材とコロとの相対位置を示す模式図である。It is a schematic diagram which shows the relative position of a plate member and a roller in the arrangement of FIG. 温調部に対するヒートリッドの相対移動を示す第2の図である。It is the 2nd figure which shows the relative movement of a heat lid with respect to a temperature control part. 図9の配置におけるプレート部材とコロとの相対位置を示す模式図である。It is a schematic diagram which shows the relative position of a plate member and a roller in the arrangement of FIG. 温調部に対するヒートリッドの相対移動を示す第3の図である。It is a 3rd figure which shows the relative movement of a heat lid with respect to a temperature control part. 図11の配置におけるプレート部材とコロとの相対位置を示す模式図である。It is a schematic diagram which shows the relative position of a plate member and a roller in the arrangement of FIG. 温調部に対するヒートリッドの相対移動を示す第4の図である。It is a 4th figure which shows the relative movement of a heat lid with respect to a temperature control part. 図13の配置におけるプレート部材とコロとの相対位置を示す模式図である。It is a schematic diagram which shows the relative position of a plate member and a roller in the arrangement of FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 <解析システム1の構成>
 図1は、本実施の形態による解析システム1の構成の一例を概略的に示す図である。解析システム1は、PCRによる遺伝子の増幅を経時的(リアルタイム)に測定して解析する処理を全自動で行なうことができる装置である。以下では、図1に示すように、鉛直方向(図1においては上下方向)に沿う方向を「Z軸方向」、鉛直方向に垂直であってかつ互いに直交する方向をそれぞれ「X軸方向」および「Y軸方向」とも称する。
<Configuration of analysis system 1>
FIG. 1 is a diagram schematically showing an example of the configuration of the analysis system 1 according to the present embodiment. The analysis system 1 is a device capable of fully automatic processing of measuring and analyzing gene amplification by PCR over time (real time). In the following, as shown in FIG. 1, the direction along the vertical direction (vertical direction in FIG. 1) is the "Z-axis direction", and the directions perpendicular to the vertical direction and orthogonal to each other are the "X-axis direction" and Also referred to as "Y-axis direction".
 解析システム1は、解析装置2と、解析装置2と通信可能な端末3とを含む。端末3は、作業者によって操作される、ディスプレイを備えた一般的なパーソナルコンピュータである。 The analysis system 1 includes an analysis device 2 and a terminal 3 capable of communicating with the analysis device 2. The terminal 3 is a general personal computer provided with a display, which is operated by an operator.
 解析装置2は、検査装置10と、制御装置20と、温調装置30と、移動装置4,5とを含む。温調装置30は、複数の容器50等を保持可能に構成される保持装置(ホルダ)40を含む。保持装置40は、温調部41と、保持部42とを含む。温調部41は、ペルチェ素子、ヒーター、冷却装置などに代表される温度源44、およびヒートリッド45による温調機能(加熱機能および冷却機能)を有する。保持部42は、温調機能を有さない。 The analysis device 2 includes an inspection device 10, a control device 20, a temperature control device 30, and mobile devices 4 and 5. The temperature control device 30 includes a holding device (holder) 40 configured to hold a plurality of containers 50 and the like. The holding device 40 includes a temperature control unit 41 and a holding unit 42. The temperature control unit 41 has a temperature control function (heating function and cooling function) by a temperature source 44 represented by a Pelche element, a heater, a cooling device, and the heat lid 45. The holding portion 42 does not have a temperature control function.
 移動装置4は、検査装置10を水平方向(XY軸方向)に移動させるアクチュエータ(図示せず)を含む。移動装置5は、保持装置40を水平方向(XY軸方向)に移動させるアクチュエータ(図示せず)を含む。移動装置4,5のアクチュエータは、制御装置20からの指令によって動作する。移動装置4,5によって検査装置10および保持装置40の少なくとも一方を水平方向に移動させることによって、検査装置10と保持装置40との水平方向の相対距離を調整することができる。なお、移動装置4,5のどちらか一方を省略するようにしてもよい。 The moving device 4 includes an actuator (not shown) that moves the inspection device 10 in the horizontal direction (XY axis direction). The moving device 5 includes an actuator (not shown) that moves the holding device 40 in the horizontal direction (XY axis direction). The actuators of the moving devices 4 and 5 operate according to a command from the control device 20. By horizontally moving at least one of the inspection device 10 and the holding device 40 by the moving devices 4 and 5, the horizontal relative distance between the inspection device 10 and the holding device 40 can be adjusted. It should be noted that either one of the moving devices 4 and 5 may be omitted.
 検査装置10は、光学ユニット11と、分注ユニット12と、開閉ユニット14と、照射ユニット16とを含む。 The inspection device 10 includes an optical unit 11, a dispensing unit 12, an opening / closing unit 14, and an irradiation unit 16.
 分注ユニット12には、Z軸方向に延在するノズルが先端に取り付けられたシリンジ13が備えられる。ノズルの内部には、Z軸方向に沿って移動可能なプランジャ(図示せず)が備えられる。シリンジ13は、プランジャのZ軸正方向のストローク量に応じた量の液体を吸引し、プランジャのZ軸負方向のストローク量に応じた量の液体を排出するように構成される。分注ユニット12は、シリンジ13をZ軸方向に移動させるためのアクチュエータ(図示せず)と、ノズル内のプランジャをZ軸方向にストロークさせるためのアクチュエータ(図示せず)とを備える。これらのアクチュエータは、制御装置20からの指令によって動作する。 The dispensing unit 12 is provided with a syringe 13 to which a nozzle extending in the Z-axis direction is attached to the tip. Inside the nozzle, a plunger (not shown) that can move along the Z-axis direction is provided. The syringe 13 is configured to suck an amount of liquid corresponding to the stroke amount in the positive direction of the Z axis of the plunger and discharge a liquid amount corresponding to the stroke amount in the negative direction of the Z axis of the plunger. The dispensing unit 12 includes an actuator (not shown) for moving the syringe 13 in the Z-axis direction and an actuator (not shown) for stroking the plunger in the nozzle in the Z-axis direction. These actuators operate according to a command from the control device 20.
 開閉ユニット14は、保持装置40に保持されている容器50の蓋に触れて容器50の蓋を自動開閉するための突起部を有する開閉機構を備える。開閉ユニット14は、制御装置20からの指令によって動作する。 The opening / closing unit 14 includes an opening / closing mechanism having a protrusion for automatically opening / closing the lid of the container 50 by touching the lid of the container 50 held by the holding device 40. The opening / closing unit 14 operates according to a command from the control device 20.
 照射ユニット16は、開閉ユニット14が容器50の蓋を開閉する際に開閉ユニット14の突起部に検体が付着して次の検体に混入(コンタミネーション)するおそれがあることに鑑み、開閉ユニット14の突起部周辺にUV光(紫外線)を照射することによってコンタミネーションを予防する。 The irradiation unit 16 considers that when the opening / closing unit 14 opens / closes the lid of the container 50, the sample may adhere to the protrusion of the opening / closing unit 14 and be mixed (contaminate) with the next sample. Contamination is prevented by irradiating the periphery of the protrusion with UV light (ultraviolet rays).
 光学ユニット11は、励起用の光を容器50内の検体に照射したときに検体から放出される蛍光を検出することによって、検体に含まれる感染症ウィルスあるいは遺伝子を解析する装置である。光学ユニット11は、赤(R)、緑(G)、青(B)の3つの波長に対する蛍光検出をそれぞれ行ない、その結果を制御装置20に出力する。光学ユニット11には、光を発する光源(発光ダイオードなど)、光源からの光を検体に照射したり検体の蛍光を集めたりするためのレンズ、検体から放射される蛍光を検出し解析可能なデジタルデータに変換するフォトダイオードなどが含まれる。なお、光学ユニット11については公知の構成を採用することができる。 The optical unit 11 is a device that analyzes an infectious disease virus or a gene contained in a sample by detecting the fluorescence emitted from the sample when the sample in the container 50 is irradiated with excitation light. The optical unit 11 performs fluorescence detection for each of the three wavelengths of red (R), green (G), and blue (B), and outputs the result to the control device 20. The optical unit 11 includes a light source that emits light (light emitting diode, etc.), a lens for irradiating the sample with light from the light source and collecting fluorescence of the sample, and a digital capable of detecting and analyzing the fluorescence emitted from the sample. Includes photodiodes that convert to data. A known configuration can be adopted for the optical unit 11.
 制御装置20は、いずれも図示しないが、CPU(Central Processing Unit)、メモリ、入出力バッファ等を含んで構成される。制御装置20は、分析開始指令を端末3から受けると、解析装置2の各部(検査装置10内の各ユニット、移動装置4,5、温調装置30の温度源44およびヒートリッド45)を予め決められた手順に沿って制御することによって、検体に含まれる感染症ウィルスまたは遺伝子を解析する。制御装置20は、解析装置2による解析結果を端末3のディスプレイに表示させる。 Although not shown, the control device 20 includes a CPU (Central Processing Unit), a memory, an input / output buffer, and the like. When the control device 20 receives the analysis start command from the terminal 3, each part of the analysis device 2 (each unit in the inspection device 10, mobile devices 4 and 5, temperature source 44 of the temperature control device 30, and heat lid 45) is preliminarily pressed. The infectious disease virus or gene contained in the sample is analyzed by controlling according to a predetermined procedure. The control device 20 displays the analysis result by the analysis device 2 on the display of the terminal 3.
 図2は、容器50が設置された状態の保持装置40をZ軸に沿う方向から視た図である。保持装置40は、XY平面に沿って延在し、複数の容器50が2次元状に配列される配列面を有している。検査装置10および保持装置40は、移動装置4,5によって、保持装置40の配列面に沿って2次元状に相対移動可能に構成される。 FIG. 2 is a view of the holding device 40 with the container 50 installed as viewed from the direction along the Z axis. The holding device 40 extends along the XY plane and has an array surface in which a plurality of containers 50 are arranged in a two-dimensional manner. The inspection device 10 and the holding device 40 are configured to be relatively movable two-dimensionally along the arrangement plane of the holding device 40 by the moving devices 4 and 5.
 保持装置40の配列面に配列される容器50には、サーマルサイクルの対象となる液体(各試薬が添加された検体)が入るPCR容器(反応容器)51と、各試薬の入った試薬容器52と、検体単体が入った検体容器54とが含まれる。 The containers 50 arranged on the arrangement surface of the holding device 40 include a PCR container (reaction container) 51 containing a liquid (a sample to which each reagent is added) to be a target of a thermal cycle, and a reagent container 52 containing each reagent. And a sample container 54 containing a single sample.
 PCR容器51は、X軸方向に沿って1次元状に配列される4つのPCR容器51a,51b,51c,51dを1セットとして、Y軸方向に4セット配置される。 The PCR container 51 is arranged in four sets in the Y-axis direction, with four PCR containers 51a, 51b, 51c, and 51d arranged one-dimensionally along the X-axis direction as one set.
 試薬容器52は、X軸方向に沿って1次元状に配列される4つの試薬容器52a,52b,52c,52dを1セットとして、Y軸方向に4セット配置される。試薬容器52aには、検体処理液が予め入れられている。試薬容器52bには、反応液が予め入れられている。試薬容器52cには、プライマー/プローブ液(プライマーとプローブとを含む液)が予め入れられている。試薬容器52dには、酵素液が予め入れられている。なお、4つの試薬容器52a,52b,52c,52dは、少なくとも1検体の分析に必要な量の試薬が予め封入された状態で1セットで試薬キットとして提供(市販)されている。 The reagent container 52 is arranged in four sets in the Y-axis direction, with four reagent containers 52a, 52b, 52c, 52d arranged one-dimensionally along the X-axis direction as one set. The reagent container 52a contains a sample treatment liquid in advance. The reaction solution is pre-filled in the reagent container 52b. The reagent container 52c is preliminarily filled with a primer / probe liquid (a liquid containing the primer and the probe). The reagent container 52d is pre-filled with an enzyme solution. The four reagent containers 52a, 52b, 52c, and 52d are provided (commercially available) as a set of reagents in a state in which at least the amount of reagents required for analysis of one sample is pre-encapsulated.
 検体容器54は、Y軸方向に沿って1次元状に4つ配列される。本実施の形態による解析装置2においては、Y軸方向に配列された4つの検体容器54にそれぞれ異なる検体を入れておくことによって、1度に4つの検体を分析することができる。 Four sample containers 54 are arranged one-dimensionally along the Y-axis direction. In the analysis device 2 according to the present embodiment, four samples can be analyzed at one time by putting different samples in the four sample containers 54 arranged in the Y-axis direction.
 保持装置40における、各容器50(PCR容器51、試薬容器52、検体容器54)が配置される箇所には、各容器50の一部をZ軸方向に沿って挿入可能な段差(穴または窪み)が形成されている。各容器50が対応する段差に挿入されることによって、各容器50のX軸方向およびY軸方向の位置が固定される。 At the place where each container 50 (PCR container 51, reagent container 52, sample container 54) is arranged in the holding device 40, a step (hole or recess) into which a part of each container 50 can be inserted along the Z-axis direction is inserted. ) Is formed. By inserting each container 50 into the corresponding step, the positions of each container 50 in the X-axis direction and the Y-axis direction are fixed.
 保持装置40における試薬容器52と検体容器54との間の領域には、検体および試薬を分注するための分注チップ53が配置される。分注チップ53は、シリンジ13のノズルに取り付けられて使用される。 A dispensing tip 53 for dispensing the sample and the reagent is arranged in the region between the reagent container 52 and the sample container 54 in the holding device 40. The dispensing tip 53 is used by being attached to the nozzle of the syringe 13.
 本実施の形態においては、分注チップ53として、検体容器54に用いられるロングチップ53aと、PCR容器51および試薬容器52に用いられるショートチップ(微量チップ)53bとが含まれる。分注チップ53は、X軸方向に沿って1次元状に配列される1つのロングチップ53aおよび2つのショートチップ53bを1セットとして、Y軸方向に4セット配置される。 In the present embodiment, the dispensing tip 53 includes a long tip 53a used for the sample container 54 and a short tip (trace tip) 53b used for the PCR container 51 and the reagent container 52. The dispensing tip 53 is arranged in four sets in the Y-axis direction, with one long tip 53a and two short tips 53b arranged one-dimensionally along the X-axis direction as one set.
 サーマルサイクルの対象となるPCR容器51は温調機能を有する温調部41に配置され、その他の試薬容器52、分注チップ53、検体容器54は温調機能を有さない保持部42に配置される。 The PCR container 51 to be the target of the thermal cycle is arranged in the temperature control section 41 having a temperature control function, and the other reagent container 52, the dispensing tip 53, and the sample container 54 are arranged in the holding section 42 having no temperature control function. Will be done.
 さらに、保持装置40には、使用済みの分注チップ53を廃棄するためのチップ廃棄部43が備えられる。シリンジ13のノズルに嵌合された分注チップ53をノズルから取り外す際には、分注チップ53の上端をチップ廃棄部43の凹部下面に引っかけた状態でノズルを上方に移動させることによって、ノズルから分注チップ53が取り外されて廃棄される。 Further, the holding device 40 is provided with a tip disposal unit 43 for discarding the used dispensing tip 53. When the dispensing tip 53 fitted to the nozzle of the syringe 13 is removed from the nozzle, the nozzle is moved upward by hooking the upper end of the dispensing tip 53 on the lower surface of the recess of the tip discarding portion 43. The dispensing tip 53 is removed from and discarded.
 なお、図2には示されていないが、各容器50は、容器本体と、容器本体に対して開閉可能な蓋部とを有している。各容器50は、蓋と容器本体とが一体となった樹脂成型品である。 Although not shown in FIG. 2, each container 50 has a container main body and a lid portion that can be opened and closed with respect to the container main body. Each container 50 is a resin molded product in which the lid and the container body are integrated.
 <解析処理>
 作業者が、各容器50(PCR容器51、試薬容器52および検体容器54)および分注チップ53(ロングチップ53aおよびショートチップ53b)を保持装置40にセットし、分析を開始するための分析開始指令を端末3に入力すると、解析装置2による解析処理が開始される。
<Analysis processing>
The operator sets each container 50 (PCR container 51, reagent container 52 and sample container 54) and the dispensing chip 53 (long chip 53a and short chip 53b) in the holding device 40, and starts analysis for starting analysis. When the command is input to the terminal 3, the analysis process by the analysis device 2 is started.
 図3は、解析装置2による解析処理の各工程を模式的に示す図である。解析処理においては、工程S1~S6がこの順に実行される。 FIG. 3 is a diagram schematically showing each process of analysis processing by the analysis device 2. In the analysis process, steps S1 to S6 are executed in this order.
 まず、工程S1では、検体5μLをPCR容器51bに分注する処理(サンプル注入)が行なわれる。具体的には、制御装置20は、まず、シリンジ13のノズルにロングチップ53aを装着し、検体容器54から検体25μLを採取してPCR容器51aへ検体25μLを分注するように、分注ユニット12および移動装置4,5を制御する。 First, in step S1, a process (sample injection) of dispensing 5 μL of the sample into the PCR container 51b is performed. Specifically, the control device 20 first mounts a long tip 53a on the nozzle of the syringe 13, collects 25 μL of the sample from the sample container 54, and dispenses 25 μL of the sample into the PCR container 51a. 12 and mobile devices 4 and 5 are controlled.
 次いで、制御装置20は、ロングチップ53aをチップ廃棄部43にて廃棄するように分注ユニット12および移動装置4,5を制御する。 Next, the control device 20 controls the dispensing unit 12 and the moving devices 4 and 5 so that the long tip 53a is discarded by the tip disposal unit 43.
 次いで、制御装置20は、シリンジ13のノズルにショートチップ53bを装着し、PCR容器51aから検体5μLを採取してPCR容器51bへ検体5μLを分注するように、分注ユニット12および移動装置4,5を制御する。 Next, the control device 20 attaches the short tip 53b to the nozzle of the syringe 13, collects 5 μL of the sample from the PCR container 51a, and dispenses the sample 5 μL into the PCR container 51b. , 5 is controlled.
 なお、ロングチップ53aで検体を25μL採取して一時的にPCR容器51aに分注しておき、その後にショートチップ53bに替えてPCR容器51aから検体5μLを採取してPCR容器51bに分注するのは、検体5μLを正確にPCR容器51bに分注するためである。すなわち、シリンジ13のノズルの内部に備えられるプランジャは基本的に微量の分注を行うショートチップ53bに対応させているために細く、同じストローク量では、ロングチップ53aの使用時において分注精度が低下し正確な結果が得られない場合が生じ得る。そこで、本実施の形態においては、ロングチップ53aで一度検体を採取してPCR容器51bとは別のPCR容器51aに5μLよりも多い25μLを分注しておき、その後にショートチップ53bに替えてPCR容器51aから正確に5μLを採取してPCR容器51bへ分注する。これにより、5μLの微量の検体を正確にPCR容器51bに分注することができる。 In addition, 25 μL of the sample is collected with the long chip 53a and temporarily dispensed into the PCR container 51a, and then 5 μL of the sample is collected from the PCR container 51a instead of the short chip 53b and dispensed into the PCR container 51b. This is to accurately dispense 5 μL of the sample into the PCR container 51b. That is, the plunger provided inside the nozzle of the syringe 13 is thin because it basically corresponds to the short tip 53b that dispenses a small amount, and with the same stroke amount, the dispensing accuracy is high when the long tip 53a is used. It may be reduced and accurate results may not be obtained. Therefore, in the present embodiment, a sample is once collected with the long chip 53a, 25 μL, which is more than 5 μL, is dispensed into the PCR container 51a different from the PCR container 51b, and then replaced with the short chip 53b. Exactly 5 μL is collected from the PCR container 51a and dispensed into the PCR container 51b. As a result, a small amount of 5 μL of the sample can be accurately dispensed into the PCR container 51b.
 次の工程S2では、PCR容器51bに検体処理液5μLを添加する処理が行なわれる。具体的には、制御装置20は、まず、試薬容器52aから検体処理液5μLを採取してPCR容器51bへ検体処理液5μLを分注し、シリンジ13の往復(上下動作)によってPCR容器51b内を攪拌するように、分注ユニット12および移動装置4,5を制御する。 In the next step S2, a process of adding 5 μL of the sample treatment solution to the PCR container 51b is performed. Specifically, the control device 20 first collects 5 μL of the sample treatment liquid from the reagent container 52a, dispenses 5 μL of the sample treatment liquid into the PCR container 51b, and reciprocates (up and down) the syringe 13 to enter the PCR container 51b. The dispensing unit 12 and the moving devices 4 and 5 are controlled so as to stir.
 次いで、制御装置20は、ショートチップ53bをチップ廃棄部43にて廃棄するように分注ユニット12および移動装置4,5を制御する。 Next, the control device 20 controls the dispensing unit 12 and the moving devices 4 and 5 so that the short tip 53b is discarded by the tip discarding unit 43.
 次の工程S3では、PCR容器51bを加熱および急冷する処理が行なわれる。具体的には、制御装置20は、PCR容器51bを加熱してPCR容器51b内の検体温度を90℃に5分維持し、その後、PCR容器51bを急冷してPCR容器51b内の検体温度を20℃(常温)に戻すように、温調部41を制御する。 In the next step S3, a process of heating and quenching the PCR container 51b is performed. Specifically, the control device 20 heats the PCR container 51b to maintain the sample temperature in the PCR container 51b at 90 ° C. for 5 minutes, and then quenchs the PCR container 51b to control the sample temperature in the PCR container 51b. The temperature control unit 41 is controlled so as to return to 20 ° C. (normal temperature).
 PCR容器51bは、温調部41の上面が窪んだ段差に挿し込まれている。温調部41は、熱伝導性に優れた金属板であり、たとえばアルミニウム製である。温調部41は、温度源44と熱的に接触している。温度源44によって、予め設定されていたプログラムに従って温調部41が加熱および冷却されることにより、PCR容器51b内の検体温度が制御される。これにより検体が、反応に適した所定の温度プロファイルに供される。 The PCR container 51b is inserted into a step in which the upper surface of the temperature control portion 41 is recessed. The temperature control portion 41 is a metal plate having excellent thermal conductivity, and is made of, for example, aluminum. The temperature control unit 41 is in thermal contact with the temperature source 44. The temperature source 44 heats and cools the temperature control unit 41 according to a preset program, whereby the sample temperature in the PCR container 51b is controlled. This allows the sample to be subjected to a predetermined temperature profile suitable for the reaction.
 PCR容器51bの、容器本体を閉じている状態の蓋には、ヒートリッド45が熱的に接触している。ヒートリッド45は金属板であり、シートヒーターなどの加熱源が取り付けられている。加熱源が蓋を加熱することで、PCR容器51b内で液体が気化して反応条件が変わったり、蓋において結露が発生したりすることが防止されている。 The heat lid 45 is in thermal contact with the lid of the PCR container 51b with the container body closed. The heat lid 45 is a metal plate to which a heating source such as a seat heater is attached. When the heating source heats the lid, the liquid is vaporized in the PCR container 51b to change the reaction conditions and prevent dew condensation from occurring on the lid.
 次の工程S4では、PCR容器51bに各試薬を添加する処理が行なわれる。具体的には、制御装置20は、まず、試薬容器52bから反応液7.8μLを採取し、酵素2.4μLが予め入っている試薬容器52dへ分注するように、分注ユニット12および移動装置4,5を制御する。 In the next step S4, a process of adding each reagent to the PCR container 51b is performed. Specifically, the control device 20 first collects 7.8 μL of the reaction solution from the reagent container 52b and moves it to the dispensing unit 12 so as to dispense it into the reagent container 52d containing 2.4 μL of the enzyme in advance. It controls the devices 4 and 5.
 次いで、制御装置20は、試薬容器52cからプライマー/プローブ液7.8μLを採取して試薬容器52dへ分注し、シリンジ13の往復(上下動作)によって試薬容器52d内を攪拌するように、分注ユニット12および移動装置4,5を制御する。この時点での試薬容器52dに入っている試薬混合液の量は18μLとなる。 Next, the control device 20 collects 7.8 μL of the primer / probe solution from the reagent container 52c, dispenses it into the reagent container 52d, and stirs the inside of the reagent container 52d by reciprocating (up and down movement) of the syringe 13. Note Controls the unit 12 and the moving devices 4 and 5. At this point, the amount of the reagent mixture contained in the reagent container 52d is 18 μL.
 次いで、制御装置20は、試薬容器52dから試薬混合液15μLを採取し、PCR容器51bへ試薬混合液15μLを分注し、シリンジ13の往復(上下動作)によってPCR容器51b内を攪拌するように、分注ユニット12および移動装置4,5を制御する。 Next, the control device 20 collects 15 μL of the reagent mixture from the reagent container 52d, dispenses 15 μL of the reagent mixture into the PCR container 51b, and stirs the inside of the PCR container 51b by reciprocating (up and down) the syringe 13. , Controls the dispensing unit 12 and the moving devices 4 and 5.
 次の工程S5では、PCR容器51bのサーマルサイクル処理が行なわれる。具体的には、制御装置20は、PCR容器51b内の液温度を42℃に10分維持して逆転写反応を生じさせ、その後、PCR容器51b内の液温度を95℃に1分維持して酵素を活性させるように、温調部41を制御する。 In the next step S5, the thermal cycle treatment of the PCR container 51b is performed. Specifically, the control device 20 maintains the liquid temperature in the PCR container 51b at 42 ° C. for 10 minutes to cause a reverse transfer reaction, and then maintains the liquid temperature in the PCR container 51b at 95 ° C. for 1 minute. The temperature control unit 41 is controlled so as to activate the enzyme.
 次いで、制御装置20は、PCR容器51b内の液温度を95℃に5秒間維持した後にPCR容器51b内の液温度を60℃に30秒間維持して遺伝子を増幅させる増幅処理を行なうように、温調部41を制御する。なお、この増幅処理は45サイクル実施される。 Next, the control device 20 maintains the liquid temperature in the PCR container 51b at 95 ° C. for 5 seconds and then maintains the liquid temperature in the PCR container 51b at 60 ° C. for 30 seconds to perform an amplification process for amplifying the gene. The temperature control unit 41 is controlled. This amplification process is carried out for 45 cycles.
 次の工程S6では、3波長蛍光検出が行なわれる。具体的には、制御装置20は、増幅処理後に、PCR容器51b内の液温度を60℃にした状態で、PCR容器51b内の液に対して3波長蛍光検出を行なうように、温調部41および光学ユニット11を制御する。なお、3波長蛍光検出は、増幅処理が行なわれる毎に実施される。3波長蛍光検出の結果(解析装置2による解析処理の結果)は、端末3のディスプレイに表示される。 In the next step S6, three-wavelength fluorescence detection is performed. Specifically, the control device 20 is a temperature control unit so as to perform three-wavelength fluorescence detection on the liquid in the PCR container 51b in a state where the liquid temperature in the PCR container 51b is 60 ° C. after the amplification treatment. It controls 41 and the optical unit 11. The three-wavelength fluorescence detection is performed every time the amplification process is performed. The result of the three-wavelength fluorescence detection (the result of the analysis process by the analysis device 2) is displayed on the display of the terminal 3.
 <ヒートリッド45の運搬装置の構成>
 次に、ヒートリッド45を温調部41に対して相対移動させる運搬装置について説明する。図4は、ヒートリッド45の運搬装置の概略構成を示す斜視図である。図5は、図4とは異なる角度から見た、ヒートリッド45の運搬装置の斜視図である。
<Conveyor configuration of heat lid 45>
Next, a conveyor that moves the heat lid 45 relative to the temperature control unit 41 will be described. FIG. 4 is a perspective view showing a schematic configuration of a conveyor for the heat lid 45. FIG. 5 is a perspective view of the conveyor of the heat lid 45 as viewed from a different angle from that of FIG.
 ヒートリッド45の運搬装置は、X軸駆動モータ61と、X軸移動部62と、Z軸駆動モータ65と、Z軸移動部66とを主に備えている。 The conveyor of the heat lid 45 mainly includes an X-axis drive motor 61, an X-axis moving unit 62, a Z-axis drive motor 65, and a Z-axis moving unit 66.
 X軸駆動モータ61は、ヒートリッド45をX軸方向に移動させる駆動力を発生する。X軸駆動モータ61は、たとえばサーボモータであってもよい。X軸移動部62は、ラック部64を有している。ラック部64は、X軸駆動モータ61の出力軸に連結されているピニオンギヤと噛み合っている。X軸駆動モータ61の発生する駆動力を受けてピニオンギヤが回転し、ラック部64がX軸方向に移動する。ラック部64のX軸方向の移動に伴って、X軸移動部62は全体としてX軸方向に移動する。 The X-axis drive motor 61 generates a driving force that moves the heat lid 45 in the X-axis direction. The X-axis drive motor 61 may be, for example, a servo motor. The X-axis moving portion 62 has a rack portion 64. The rack portion 64 meshes with a pinion gear connected to the output shaft of the X-axis drive motor 61. The pinion gear rotates in response to the driving force generated by the X-axis drive motor 61, and the rack portion 64 moves in the X-axis direction. As the rack portion 64 moves in the X-axis direction, the X-axis moving portion 62 moves in the X-axis direction as a whole.
 Z軸駆動モータ65は、ヒートリッド45をZ軸方向に移動させる駆動力を発生する。Z軸駆動モータ65は、たとえばサーボモータであってもよい。Z軸駆動モータ65は、X軸駆動モータ61と同じモータであってもよく、X軸駆動モータ61とは異なるモータであってもよい。Z軸移動部66は、ラック部68を有している。ラック部68は、Z軸駆動モータ65の出力軸に連結されているピニオンギヤと噛み合っている。Z軸駆動モータ65の発生する駆動力を受けてピニオンギヤが回転し、ラック部68がZ軸方向に移動する。ラック部68のZ軸方向の移動に伴って、Z軸移動部66は全体としてZ軸方向に移動する。 The Z-axis drive motor 65 generates a driving force that moves the heat lid 45 in the Z-axis direction. The Z-axis drive motor 65 may be, for example, a servo motor. The Z-axis drive motor 65 may be the same motor as the X-axis drive motor 61, or may be a motor different from the X-axis drive motor 61. The Z-axis moving portion 66 has a rack portion 68. The rack portion 68 meshes with a pinion gear connected to the output shaft of the Z-axis drive motor 65. The pinion gear rotates in response to the driving force generated by the Z-axis drive motor 65, and the rack portion 68 moves in the Z-axis direction. As the rack portion 68 moves in the Z-axis direction, the Z-axis moving portion 66 moves in the Z-axis direction as a whole.
 温調部41は、容器50を保持するとともに容器50の温度を昇降させる、実施の形態における容器保持部に相当する。X軸駆動モータ61とZ軸駆動モータ65とは、ヒートリッド45を温調部41に対して相対移動させる、実施の形態における駆動部に相当する。 The temperature control unit 41 corresponds to the container holding unit in the embodiment that holds the container 50 and raises or lowers the temperature of the container 50. The X-axis drive motor 61 and the Z-axis drive motor 65 correspond to the drive unit in the embodiment in which the heat lid 45 is relatively moved with respect to the temperature control unit 41.
 X軸移動部62には、Z軸方向に延びる案内孔63が形成されている。Z軸移動部66は、案内孔63に嵌合する嵌合部67を有している。嵌合部67は、案内孔63に沿って、Z軸方向に移動する。案内孔63および嵌合部67によって、Z軸移動部66のZ軸方向への移動が案内される。 A guide hole 63 extending in the Z-axis direction is formed in the X-axis moving portion 62. The Z-axis moving portion 66 has a fitting portion 67 that fits into the guide hole 63. The fitting portion 67 moves in the Z-axis direction along the guide hole 63. The guide hole 63 and the fitting portion 67 guide the movement of the Z-axis moving portion 66 in the Z-axis direction.
 ヒートリッド45には、平板状のプレート部材70が取り付けられている。プレート部材70は、ヒートリッド45に固定されている。プレート部材70は、ヒートリッド45と一体的に移動可能に構成されている。図6は、図4に示されるプレート部材70の模式図である。 A flat plate member 70 is attached to the heat lid 45. The plate member 70 is fixed to the heat lid 45. The plate member 70 is configured to be movable integrally with the heat lid 45. FIG. 6 is a schematic view of the plate member 70 shown in FIG.
 プレート部材70には、略L字形状のL字溝71が形成されている。図6に示されるL字溝71は、プレート部材70を厚み方向に貫通しているが、L字溝71は必ずしもプレート部材70を貫通していなくてもよい。L字溝71は、プレート部材70の表面が窪んだ溝形状を有していてもよい。プレート部材70は、実施の形態の溝形成部材に相当する。 The plate member 70 is formed with an L-shaped groove 71 having a substantially L-shape. The L-shaped groove 71 shown in FIG. 6 penetrates the plate member 70 in the thickness direction, but the L-shaped groove 71 does not necessarily have to penetrate the plate member 70. The L-shaped groove 71 may have a groove shape in which the surface of the plate member 70 is recessed. The plate member 70 corresponds to the groove forming member of the embodiment.
 L字溝71は、X軸方向に沿って略延びる第1溝部73と、Z軸方向に沿って略延びる第2溝部74とを有している。第2溝部74は、鉛直方向に沿って略延びている。第1溝部73は、鉛直方向に垂直なX軸方向に沿って略延びており、水平方向に略延びている。第2溝部74の下端部が第1溝部73に連通しており、これによりL字溝71は略L字状の形状を有している。第1溝部73の床面の一部分が、水平方向に対して上向きに傾斜している。L字溝71、より詳細には第1溝部73は、水平方向に対して上向きに傾斜する傾斜床面75を有している。 The L-shaped groove 71 has a first groove portion 73 substantially extending along the X-axis direction and a second groove portion 74 substantially extending along the Z-axis direction. The second groove portion 74 extends substantially along the vertical direction. The first groove portion 73 extends substantially along the X-axis direction perpendicular to the vertical direction, and substantially extends in the horizontal direction. The lower end of the second groove 74 communicates with the first groove 73, whereby the L-shaped groove 71 has a substantially L-shaped shape. A part of the floor surface of the first groove portion 73 is inclined upward with respect to the horizontal direction. The L-shaped groove 71, more particularly the first groove portion 73, has an inclined floor surface 75 that is inclined upward with respect to the horizontal direction.
 図6に示されるコロ72は、Z軸移動部66に設けられている。コロ72は、Z軸移動部66を構成する金属板に、回転可能に取り付けられている。コロ72は、L字溝71に係合されている。コロ72は、L字溝71内に配置されている。図6に示されるコロ72は、L字溝71の第2溝部74の上端に位置している。 The roller 72 shown in FIG. 6 is provided on the Z-axis moving portion 66. The roller 72 is rotatably attached to a metal plate constituting the Z-axis moving portion 66. The roller 72 is engaged with the L-shaped groove 71. The roller 72 is arranged in the L-shaped groove 71. The roller 72 shown in FIG. 6 is located at the upper end of the second groove portion 74 of the L-shaped groove 71.
 コロ72は、X軸駆動モータ61の発生する駆動力によって、プレート部材70に対してX軸方向に相対移動可能とされている。コロ72は、Z軸駆動モータ65の発生する駆動力によって、プレート部材70に対してZ軸方向に相対移動可能とされている。コロ72は、L字溝71内を移動可能である。コロ72は、L字溝71に沿って、プレート部材70に対して相対移動可能に構成されている。コロ72は、プレート部材70に対し相対回転可能である。コロ72は、実施の形態における可動部材に相当する。 The roller 72 is movable relative to the plate member 70 in the X-axis direction by the driving force generated by the X-axis drive motor 61. The roller 72 is movable relative to the plate member 70 in the Z-axis direction by the driving force generated by the Z-axis drive motor 65. The roller 72 can move in the L-shaped groove 71. The roller 72 is configured to be movable relative to the plate member 70 along the L-shaped groove 71. The roller 72 is rotatable relative to the plate member 70. The roller 72 corresponds to the movable member in the embodiment.
 X軸移動部62、Z軸移動部66、プレート部材70およびコロ72は、X軸駆動モータ61およびZ軸駆動モータ65の発生する駆動力をヒートリッド45に伝達する、実施の形態における動力伝達部を構成している。 The power transmission in the embodiment in which the X-axis moving unit 62, the Z-axis moving unit 66, the plate member 70, and the roller 72 transmit the driving force generated by the X-axis drive motor 61 and the Z-axis drive motor 65 to the heat lid 45. It constitutes a part.
 図4および図5に示されるように、ヒートリッド45の互いに対向する2つの縁部分に、一対のプレート部材70が取り付けられている。各プレート部材70に、図6と同様に、コロ72が係合している。動力伝達部は、一対のプレート部材70とコロ72とを有している。一対のプレート部材70とコロ72とが、ヒートリッド45を両側から支持している。 As shown in FIGS. 4 and 5, a pair of plate members 70 are attached to two facing edges of the heat lid 45. A roller 72 is engaged with each plate member 70 as in FIG. The power transmission unit has a pair of plate members 70 and rollers 72. A pair of plate members 70 and rollers 72 support the heat lid 45 from both sides.
 <温調部41に対するヒートリッド45の相対移動>
 次に、温調部41に対するヒートリッド45の相対移動について説明する。図7は、温調部41に対するヒートリッド45の相対移動を示す第1の図である。図8は、図7の配置におけるプレート部材70とコロ72との相対位置を示す模式図である。
<Relative movement of heat lid 45 with respect to temperature control unit 41>
Next, the relative movement of the heat lid 45 with respect to the temperature control unit 41 will be described. FIG. 7 is a first diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41. FIG. 8 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG. 7.
 図7に示されるように、ヒートリッド45は、ヒータ部46と、支持部47と、ばね部48とを有している。ヒータ部46は、後述するように容器50の蓋部に接触して蓋部を加熱する、ヒートリッド45の本体部分である。支持部47は、ばね部48を介して、上方からヒータ部46を支持する。ヒータ部46は、支持部47からばね部48によって吊り下げられている。図4,5を参照して説明したヒートリッド45の運搬装置は、支持部47に、X軸方向およびZ軸方向に移動させる駆動力を作用する。 As shown in FIG. 7, the heat lid 45 has a heater portion 46, a support portion 47, and a spring portion 48. The heater portion 46 is a main body portion of the heat lid 45 that comes into contact with the lid portion of the container 50 to heat the lid portion as described later. The support portion 47 supports the heater portion 46 from above via the spring portion 48. The heater portion 46 is suspended from the support portion 47 by a spring portion 48. The conveyor of the heat lid 45 described with reference to FIGS. 4 and 5 exerts a driving force on the support portion 47 to move the support portion 47 in the X-axis direction and the Z-axis direction.
 図4,5に示される配置から、ヒートリッド45は、上方向に移動する。制御装置20(図1)は、Z軸駆動モータ65に制御信号を送信して、Z軸駆動モータ65を駆動させる。Z軸駆動モータ65の発生する駆動力を受けて、Z軸移動部66が上方向に移動する。Z軸移動部66と共に、コロ72が上方向に移動する。コロ72がプレート部材70に上方向の応力を作用することで、プレート部材70が上方向に移動する。プレート部材70と共に、ヒートリッド45が上方向に移動する。 From the arrangement shown in FIGS. 4 and 5, the heat lid 45 moves upward. The control device 20 (FIG. 1) transmits a control signal to the Z-axis drive motor 65 to drive the Z-axis drive motor 65. The Z-axis moving unit 66 moves upward in response to the driving force generated by the Z-axis drive motor 65. The roller 72 moves upward together with the Z-axis moving portion 66. The roller 72 exerts an upward stress on the plate member 70, so that the plate member 70 moves upward. The heat lid 45 moves upward together with the plate member 70.
 図4,5に示されるヒートリッド45は、温調部41の上端よりも下方に配置されている。図7に示される、上方向に移動したヒートリッド45は、温調部41に保持された容器の上端よりも上方に配置されている。 The heat lid 45 shown in FIGS. 4 and 5 is arranged below the upper end of the temperature control unit 41. The upwardly moved heat lid 45 shown in FIG. 7 is arranged above the upper end of the container held by the temperature control unit 41.
 図7に示されるヒートリッド45の上方向への移動の間、コロ72は、図8に示されるように、L字溝71の第2溝部74の上端に位置したままである。プレート部材70に対するコロ72の相対移動が抑制されていることで、ヒートリッド45の上方向への移動を安定して行なうことが可能とされている。 During the upward movement of the heat lid 45 shown in FIG. 7, the roller 72 remains positioned at the upper end of the second groove portion 74 of the L-shaped groove 71, as shown in FIG. By suppressing the relative movement of the roller 72 with respect to the plate member 70, it is possible to stably move the heat lid 45 in the upward direction.
 図9は、温調部41に対するヒートリッド45の相対移動を示す第2の図である。図10は、図9の配置におけるプレート部材70とコロ72との相対位置を示す模式図である。 FIG. 9 is a second diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41. FIG. 10 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG.
 図7に示される配置から、ヒートリッド45は、水平方向に移動する。制御装置20は、X軸駆動モータ61に制御信号を送信して、X軸駆動モータ61を駆動させる。X軸駆動モータ61の発生する駆動力を受けて、X軸移動部62が水平方向に移動する。X軸移動部62と共に、Z軸移動部66およびコロ72が水平方向に移動する。コロ72がプレート部材70に水平方向の応力を作用することで、プレート部材70が水平方向に移動する。プレート部材70と共に、ヒートリッド45が水平方向に移動する。 From the arrangement shown in FIG. 7, the heat lid 45 moves in the horizontal direction. The control device 20 transmits a control signal to the X-axis drive motor 61 to drive the X-axis drive motor 61. The X-axis moving unit 62 moves in the horizontal direction in response to the driving force generated by the X-axis drive motor 61. Along with the X-axis moving portion 62, the Z-axis moving portion 66 and the roller 72 move in the horizontal direction. The roller 72 exerts a horizontal stress on the plate member 70, so that the plate member 70 moves in the horizontal direction. The heat lid 45 moves horizontally together with the plate member 70.
 水平方向に移動したヒートリッド45は、温調部41の上方に配置されている。ヒートリッド45が温調部41の上端よりも上方かつ容器の上端よりも上方にまで上方向に移動していることで、ヒートリッド45の水平方向への移動が、温調部41または容器との干渉によって妨げられることがない。 The heat lid 45 that has moved in the horizontal direction is arranged above the temperature control unit 41. Since the heat lid 45 moves upward above the upper end of the temperature control unit 41 and above the upper end of the container, the horizontal movement of the heat lid 45 with the temperature control unit 41 or the container It is not hindered by the interference of.
 図9に示されるヒートリッド45の水平方向の移動の間、コロ72は、図10に示されるように、L字溝71の第2溝部74の上端に位置したままである。プレート部材70に対するコロ72の相対移動が抑制されていることで、ヒートリッド45の水平方向の移動を安定して行なうことが可能とされている。 During the horizontal movement of the heat lid 45 shown in FIG. 9, the roller 72 remains positioned at the upper end of the second groove 74 of the L-shaped groove 71, as shown in FIG. By suppressing the relative movement of the roller 72 with respect to the plate member 70, it is possible to stably move the heat lid 45 in the horizontal direction.
 図11は、温調部41に対するヒートリッド45の相対移動を示す第3の図である。図12は、図11の配置におけるプレート部材70とコロ72との相対位置を示す模式図である。 FIG. 11 is a third diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41. FIG. 12 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG.
 図9に示される配置から、ヒートリッド45は、下方向に移動する。制御装置20は、Z軸駆動モータ65に制御信号を送信して、Z軸駆動モータ65を駆動させる。Z軸駆動モータ65の発生する駆動力を受けて、Z軸移動部66が下方向に移動する。Z軸移動部66と共に、コロ72が下方向に移動する。コロ72は、図12に示されるように、L字溝71の第2溝部74の上端から下端へ移動する。L字溝71の第2溝部74の下端に位置するコロ72が、プレート部材70に下方向の応力を作用することで、プレート部材70が下方向に移動する。プレート部材70と共に、ヒートリッド45が下方向に移動する。 From the arrangement shown in FIG. 9, the heat lid 45 moves downward. The control device 20 transmits a control signal to the Z-axis drive motor 65 to drive the Z-axis drive motor 65. The Z-axis moving unit 66 moves downward in response to the driving force generated by the Z-axis drive motor 65. The roller 72 moves downward together with the Z-axis moving portion 66. As shown in FIG. 12, the roller 72 moves from the upper end to the lower end of the second groove portion 74 of the L-shaped groove 71. The roller 72 located at the lower end of the second groove portion 74 of the L-shaped groove 71 exerts a downward stress on the plate member 70, so that the plate member 70 moves downward. The heat lid 45 moves downward together with the plate member 70.
 図11に示される、下方向に移動したヒートリッド45、具体的にはヒータ部46は、容器の蓋部に接触している。ヒータ部46は、容器の蓋部の上に自重で載っている。図7~図11に示されるヒートリッド45の移動の間、ヒータ部46は、支持部47からばね部48によって吊り下げられた状態を維持している。図7~図11に示されるヒートリッド45の移動の間、支持部47に対するヒータ部46の相対位置が不変である。 The downwardly moved heat lid 45, specifically the heater portion 46, shown in FIG. 11 is in contact with the lid portion of the container. The heater portion 46 is mounted on the lid portion of the container by its own weight. During the movement of the heat lid 45 shown in FIGS. 7 to 11, the heater portion 46 is maintained in a state of being suspended from the support portion 47 by the spring portion 48. During the movement of the heat lid 45 shown in FIGS. 7 to 11, the relative position of the heater portion 46 with respect to the support portion 47 does not change.
 図13は、温調部41に対するヒートリッド45の相対移動を示す第4の図である。図14は、図13の配置におけるプレート部材70とコロ72との相対位置を示す模式図である。 FIG. 13 is a fourth diagram showing the relative movement of the heat lid 45 with respect to the temperature control unit 41. FIG. 14 is a schematic view showing the relative positions of the plate member 70 and the rollers 72 in the arrangement of FIG.
 制御装置20は、X軸駆動モータ61に制御信号を送信して、X軸駆動モータ61を駆動させる。X軸駆動モータ61の発生する駆動力を受けて、X軸移動部62が水平方向に移動する。X軸移動部62と共に、Z軸移動部66およびコロ72が水平方向に移動する。コロ72は、L字溝71の第1溝部73に沿って、プレート部材70に対して相対移動する。 The control device 20 transmits a control signal to the X-axis drive motor 61 to drive the X-axis drive motor 61. The X-axis moving unit 62 moves in the horizontal direction in response to the driving force generated by the X-axis drive motor 61. Along with the X-axis moving portion 62, the Z-axis moving portion 66 and the roller 72 move in the horizontal direction. The roller 72 moves relative to the plate member 70 along the first groove portion 73 of the L-shaped groove 71.
 第1溝部73の傾斜床面75は、第1溝部73内を移動するコロ72の移動方向に対して上向きに傾斜している。コロ72が第1溝部73の傾斜床面75を昇るようにしてコロ72が傾斜床面75を通過することにより、水平方向に移動するコロ72からプレート部材70に対して、Z軸方向の力が作用する。具体的には、プレート部材70に対して、下向きの力が作用する。この力の作用によって、プレート部材70が下方向に移動する。プレート部材70と共に、支持部47が下方向に移動する。 The inclined floor surface 75 of the first groove portion 73 is inclined upward with respect to the moving direction of the roller 72 moving in the first groove portion 73. A force in the Z-axis direction from the roller 72 that moves in the horizontal direction to the plate member 70 as the roller 72 passes through the inclined floor surface 75 so that the roller 72 rises on the inclined floor surface 75 of the first groove portion 73. Works. Specifically, a downward force acts on the plate member 70. By the action of this force, the plate member 70 moves downward. The support portion 47 moves downward together with the plate member 70.
 コロ72の水平方向の移動によって、プレート部材70および支持部47が下方向に移動することで、支持部47に対するヒータ部46の相対位置が変化している。支持部47がヒータ部46に接近しており、ばね部48が縮んでいる。ばね部48の長さが小さくなることで、ばね部48からヒータ部46に下向きの弾性力が作用する。図13に示されるヒートリッド45、具体的にはヒータ部46は、容器に押し付けられている。ヒートリッド45(ヒータ部46)は、容器の蓋部を下方向に押圧している。ヒートリッド45(ヒータ部46)は、容器の蓋部を容器本体側へ押圧している。X軸駆動モータ61の駆動力によるコロ72の移動方向と、ヒートリッド45(ヒータ部46)が容器の蓋部を容器本体側へ押圧する方向とが、異なっている。 The horizontal movement of the roller 72 causes the plate member 70 and the support portion 47 to move downward, so that the relative position of the heater portion 46 with respect to the support portion 47 changes. The support portion 47 is close to the heater portion 46, and the spring portion 48 is contracted. As the length of the spring portion 48 becomes smaller, a downward elastic force acts from the spring portion 48 to the heater portion 46. The heat lid 45 shown in FIG. 13, specifically, the heater portion 46 is pressed against the container. The heat lid 45 (heater portion 46) presses the lid portion of the container downward. The heat lid 45 (heater portion 46) presses the lid portion of the container toward the container body. The moving direction of the roller 72 due to the driving force of the X-axis drive motor 61 and the direction in which the heat lid 45 (heater portion 46) presses the lid portion of the container toward the container body are different.
 コロ72が傾斜床面75を通過した図14に示される状態で、X軸駆動モータ61とZ軸駆動モータ65との両方が停止する。X軸駆動モータ61とZ軸駆動モータ65とは、停止中に出力軸を保持するロック機能を有している。X軸駆動モータ61およびZ軸駆動モータ65の停止中に、ヒートリッド45の位置がずれることが回避されている。これにより、X軸駆動モータ61およびZ軸駆動モータ65によるヒートリッド45の駆動を停止させた状態で、ヒートリッド45が容器の蓋部を容器本体側へ押圧する力が作用したままになる。 Both the X-axis drive motor 61 and the Z-axis drive motor 65 stop in the state shown in FIG. 14 in which the roller 72 has passed the inclined floor surface 75. The X-axis drive motor 61 and the Z-axis drive motor 65 have a locking function of holding the output shaft while stopped. It is avoided that the position of the heat lid 45 shifts while the X-axis drive motor 61 and the Z-axis drive motor 65 are stopped. As a result, with the drive of the heat lid 45 by the X-axis drive motor 61 and the Z-axis drive motor 65 stopped, the force of the heat lid 45 pressing the lid portion of the container toward the container main body remains acting.
 [態様]
 上述した例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the above-described exemplary embodiments are specific examples of the following embodiments.
 (第1項) 一態様に係る容器温調装置は、容器保持部と、ヒートリッドと、駆動部と、動力伝達部とを備えている。容器保持部は、容器を保持する。容器は、容器本体と、容器本体に対して開閉可能な蓋部とを有している。容器保持部はまた、容器の温度を昇降させる。ヒートリッドは、容器本体を閉じている状態の蓋部に接触して、蓋部を加熱する。駆動部は、ヒートリッドを容器保持部に対して相対移動させる駆動力を発生する。動力伝達部は、駆動部の発生する駆動力をヒートリッドへ伝達する。動力伝達部は、動力伝達部は、溝が形成された溝形成部材と、溝に係合され溝内を移動可能な可動部材とを有している。可動部材の水平方向の移動によって、ヒートリッドが蓋部を容器本体側へ押圧する。 (Clause 1) The container temperature control device according to one aspect includes a container holding unit, a heat lid, a driving unit, and a power transmission unit. The container holder holds the container. The container has a container main body and a lid portion that can be opened and closed with respect to the container main body. The container holder also raises and lowers the temperature of the container. The heat lid comes into contact with the lid portion in which the container body is closed to heat the lid portion. The drive unit generates a driving force that moves the heat lid relative to the container holding unit. The power transmission unit transmits the driving force generated by the driving unit to the heat lid. The power transmission unit includes a groove-forming member in which a groove is formed and a movable member that is engaged with the groove and can move in the groove. The horizontal movement of the movable member causes the heat lid to press the lid toward the container body.
 可動部材の水平方向の移動によって、ヒートリッドが容器の蓋部を容器本体側へ押圧することで、駆動部によるヒートリッドの駆動を停止させても、ヒートリッドを蓋部に押し付ける力を発生させ続けることができる。容器の温度を昇降させる間に駆動部を駆動させたままとしなくてもよく、駆動部の負担を軽減できるので、消費電力を低減でき、発熱による駆動部の誤作動または故障のリスクを低減することができる。 The horizontal movement of the movable member causes the heat lid to press the lid of the container toward the container body, so that even if the drive of the heat lid is stopped by the drive unit, a force that presses the heat lid against the lid is generated. You can continue. It is not necessary to keep the drive unit driven while raising and lowering the temperature of the container, and the load on the drive unit can be reduced, so that power consumption can be reduced and the risk of malfunction or failure of the drive unit due to heat generation can be reduced. be able to.
 (第2項) 第1項に記載の容器温調装置において、溝は、可動部材の水平移動方向に対して上向きに傾斜する傾斜床面を有していてもよい。 (Item 2) In the container temperature control device according to item 1, the groove may have an inclined floor surface that inclines upward with respect to the horizontal movement direction of the movable member.
 可動部材が水平方向に移動して傾斜床面を通過するときに、溝形成部材は、可動部材に対して相対的に下方向に移動する。この溝形成部材の移動によって、ヒートリッドに下向きの力が作用する。これによりヒートリッドは、容器の蓋部を容器本体側へ押圧することができる。 When the movable member moves horizontally and passes through the inclined floor surface, the groove forming member moves downward relative to the movable member. A downward force acts on the heat lid due to the movement of the groove forming member. As a result, the heat lid can press the lid of the container toward the container body.
 (第3項) 第2項に記載の容器温調装置において、可動部材は、溝形成部材に対し相対回転可能であってもよい。 (Section 3) In the container temperature control device according to paragraph 2, the movable member may be rotatable relative to the groove forming member.
 可動部材を溝形成部材に対して摺動させるのではなく回転移動させることにより、可動部材と溝形成部材との間に発生する摩擦力を低減でき、可動部材が溝内をスムーズに移動できる。溝形成部材に対する可動部材の相対変位に伴うエネルギー損失を低減でき、駆動部の発生する駆動力でヒートリッドを効率的に移動させることができる。 By rotating the movable member instead of sliding it with respect to the groove forming member, the frictional force generated between the movable member and the groove forming member can be reduced, and the movable member can move smoothly in the groove. The energy loss due to the relative displacement of the movable member with respect to the groove forming member can be reduced, and the heat lid can be efficiently moved by the driving force generated by the driving unit.
 (第4項) 第2項に記載の容器温調装置において、動力伝達部は、一対の溝形成部材と可動部材とを有し、一対の溝形成部材と可動部材とがヒートリッドを両側から支持してもよい。 (Item 4) In the container temperature control device according to item 2, the power transmission unit has a pair of groove forming members and a movable member, and the pair of groove forming members and the movable member hold a heat lid from both sides. You may support it.
 このように溝形成部材と可動部材とを配置することで、動力伝達部は、ヒートリッドを両側から安定して支持することができる。 By arranging the groove forming member and the movable member in this way, the power transmission unit can stably support the heat lid from both sides.
 (第5項) 第1項に記載の容器温調装置において、溝は、水平方向に延びる第1溝部と、鉛直方向に延びる第2溝部とを有し、第2溝部の下端部が第1溝部に連通するL字状の形状を有していてもよい。 (Clause 5) In the container temperature control device according to paragraph 1, the groove has a first groove portion extending in the horizontal direction and a second groove portion extending in the vertical direction, and the lower end portion of the second groove portion is the first. It may have an L-shaped shape that communicates with the groove portion.
 ヒートリッドを上方向へ移動させるとき、およびヒートリッドを水平移動させるときに、可動部材が第2溝部の上端に位置していることで、可動部材の溝形成部材に対する相対変位を抑制できる。これにより、ヒートリッドを安定して移動させることができる。 When the heat lid is moved upward and when the heat lid is moved horizontally, the movable member is located at the upper end of the second groove portion, so that the relative displacement of the movable member with respect to the groove forming member can be suppressed. As a result, the heat lid can be moved stably.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 解析システム、2 解析装置、3 端末、4,5 移動装置、10 検査装置、11 光学ユニット、12 分注ユニット、13 シリンジ、14 開閉ユニット、16 照射ユニット、20 制御装置、30 温調装置、40 保持装置、41 温調部、42 保持部、43 チップ廃棄部、44 温度源、45 ヒートリッド、46 ヒータ部、47 支持部、48 ばね部、50 容器、51 PCR容器、52 試薬容器、53 分注チップ、54 検体容器、61 X軸駆動モータ、62 X軸移動部、63 案内孔、64,68 ラック部、65 Z軸駆動モータ、66 Z軸移動部、67 嵌合部、70 プレート部材、71 L字溝、72 コロ、73 第1溝部、74 第2溝部、75 傾斜床面。 1 analysis system, 2 analysis device, 3 terminal, 4, 5 mobile device, 10 inspection device, 11 optical unit, 12 dispensing unit, 13 syringe, 14 opening / closing unit, 16 irradiation unit, 20 control device, 30 temperature control device, 40 holding device, 41 temperature control part, 42 holding part, 43 chip disposal part, 44 temperature source, 45 heat lid, 46 heater part, 47 support part, 48 spring part, 50 container, 51 PCR container, 52 reagent container, 53 Dispensing chip, 54 sample container, 61 X-axis drive motor, 62 X-axis moving part, 63 guide hole, 64, 68 rack part, 65 Z-axis drive motor, 66 Z-axis moving part, 67 fitting part, 70 plate member , 71 L-shaped groove, 72 rollers, 73 1st groove, 74 2nd groove, 75 inclined floor surface.

Claims (5)

  1.  容器本体と前記容器本体に対して開閉可能な蓋部とを有する容器を保持するとともに、前記容器の温度を昇降させる容器保持部と、
     前記容器本体を閉じている状態の前記蓋部に接触して前記蓋部を加熱するヒートリッドと、
     前記ヒートリッドを前記容器保持部に対して相対移動させる駆動力を発生する駆動部と、
     前記駆動部の発生する駆動力を前記ヒートリッドへ伝達する動力伝達部とを備え、
     前記動力伝達部は、溝が形成された溝形成部材と、前記溝に係合され前記溝内を移動可能な可動部材とを有し、
     前記可動部材の水平方向の移動によって、前記ヒートリッドが前記蓋部を前記容器本体側へ押圧する、容器温調装置。
    A container holding portion that holds a container having a container body and a lid that can be opened and closed with respect to the container body, and raises and lowers the temperature of the container.
    A heat lid that heats the lid by contacting the lid with the container body closed.
    A driving unit that generates a driving force for moving the heat lid relative to the container holding unit, and a driving unit.
    It is provided with a power transmission unit that transmits the driving force generated by the drive unit to the heat lid.
    The power transmission unit has a groove-forming member in which a groove is formed and a movable member that is engaged with the groove and can move in the groove.
    A container temperature control device in which the heat lid presses the lid portion toward the container body by the horizontal movement of the movable member.
  2.  前記溝は、前記可動部材の水平移動方向に対して上向きに傾斜する傾斜床面を有する、請求項1に記載の容器温調装置。 The container temperature control device according to claim 1, wherein the groove has an inclined floor surface that inclines upward with respect to the horizontal movement direction of the movable member.
  3.  前記可動部材は、前記溝形成部材に対し相対回転可能である、請求項2に記載の容器温調装置。 The container temperature control device according to claim 2, wherein the movable member can rotate relative to the groove forming member.
  4.  前記動力伝達部は、一対の前記溝形成部材と前記可動部材とを有し、
     一対の前記溝形成部材と前記可動部材とが前記ヒートリッドを両側から支持する、請求項2または請求項3に記載の容器温調装置。
    The power transmission unit has a pair of the groove forming member and the movable member.
    The container temperature control device according to claim 2 or 3, wherein the pair of the groove forming member and the movable member support the heat lid from both sides.
  5.  前記溝は、水平方向に延びる第1溝部と、鉛直方向に延びる第2溝部とを有し、前記第2溝部の下端部が前記第1溝部に連通するL字状の形状を有する、請求項1から請求項4のいずれか1項に記載の容器温調装置。 The groove has a first groove portion extending in the horizontal direction and a second groove portion extending in the vertical direction, and the lower end portion of the second groove portion has an L-shaped shape communicating with the first groove portion. The container temperature control device according to any one of claims 1 to 4.
PCT/JP2021/032750 2020-10-26 2021-09-07 Container temperature adjustment device WO2022091583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022558894A JPWO2022091583A1 (en) 2020-10-26 2021-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020179185 2020-10-26
JP2020-179185 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022091583A1 true WO2022091583A1 (en) 2022-05-05

Family

ID=81384051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032750 WO2022091583A1 (en) 2020-10-26 2021-09-07 Container temperature adjustment device

Country Status (2)

Country Link
JP (1) JPWO2022091583A1 (en)
WO (1) WO2022091583A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050867A (en) * 1998-05-04 2000-02-22 F Hoffmann La Roche Ag Thermal cycle test machine having automatically arrangeable lid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050867A (en) * 1998-05-04 2000-02-22 F Hoffmann La Roche Ag Thermal cycle test machine having automatically arrangeable lid

Also Published As

Publication number Publication date
JPWO2022091583A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US9823109B2 (en) Chemical analyzer
KR101917402B1 (en) Automatic response/light measurement device and method therefor
JP5513487B2 (en) Method and apparatus for specimen processing
US8703070B1 (en) Apparatus for immunoassay
US20050042138A1 (en) Sample analyzer, nucleic acid detector and nucleic acid detection method
CN110997147B (en) Automated analyzer and method for performing chemical, biochemical and/or immunochemical analyses
US20060110287A1 (en) Automatic pipetting and analyzing device
JPH05240868A (en) Automatic analyzer for specimen
US20090016931A1 (en) Chemical analysis device
JP2008532048A (en) Automatic analyzer
WO2008044329A1 (en) Spectrophotometer
JP6546374B2 (en) Automatic analyzer
CN112041076B (en) Automatic analyzer and optical measuring method for obtaining a measuring signal from a liquid medium
EP2320238B1 (en) Automatic analyzing device
JP2003322656A (en) Method for calibrating clinical analyzer and method for automatically aligning dispenser of the same
US8333930B2 (en) Reaction kit treating equipment
WO2007139056A1 (en) Dispensing tip, reaction kit using the same, and dispensing tip drive mechanism
EP3674694A1 (en) Analysis method and analysis device
JP4591409B2 (en) Dispensing tip and reaction kit using the same
JP2022070138A (en) Analyzer and reagent kit
WO2022091583A1 (en) Container temperature adjustment device
WO2015189695A1 (en) Nucleic acid amplification device
WO2022217397A1 (en) Fully automated immunoassay analyzer convenient for feeding and discharging
JP6371101B2 (en) Nucleic acid analyzer
EP3636739A1 (en) Reaction treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885702

Country of ref document: EP

Kind code of ref document: A1