WO2022091443A1 - Rfid communication system - Google Patents

Rfid communication system Download PDF

Info

Publication number
WO2022091443A1
WO2022091443A1 PCT/JP2021/008202 JP2021008202W WO2022091443A1 WO 2022091443 A1 WO2022091443 A1 WO 2022091443A1 JP 2021008202 W JP2021008202 W JP 2021008202W WO 2022091443 A1 WO2022091443 A1 WO 2022091443A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
communication system
rfid communication
control unit
antenna cable
Prior art date
Application number
PCT/JP2021/008202
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 本嶋
修一 松井
祐介 三輪
新 片岡
英克 野上
健太 川上
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to DE112021005687.5T priority Critical patent/DE112021005687T5/en
Priority to CN202180064417.2A priority patent/CN116210000A/en
Publication of WO2022091443A1 publication Critical patent/WO2022091443A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10198Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes
    • G06K7/10217Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes parameter settings controlling the transmission power of the interrogator
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Definitions

  • the present invention relates to an RFID communication system.
  • the RFID communication system includes an antenna control device having a transmission circuit for supplying high-frequency power for carrying a required signal to the antenna device.
  • the antenna device and the antenna control device are connected by an antenna cable equipped with a coaxial line that transmits high-frequency power.
  • an antenna cable may also be wired to a movable part and used, and a technique capable of predicting damage such as disconnection of the antenna cable has been desired.
  • One aspect of the present invention is to realize an RFID communication system in which at least one of the occurrence of failure of the transmission circuit or the occurrence of unnecessary radiation due to the breakage of the antenna cable is suppressed.
  • the present invention adopts the following configuration in order to solve the above-mentioned problems.
  • the RFID communication system includes an antenna device having an antenna circuit that performs wireless transmission to an RFID tag, a transmission circuit that outputs high-frequency power for the antenna circuit to perform wireless transmission, and the transmission.
  • An antenna control device having a control unit for controlling a circuit, an antenna cable for connecting the antenna device and the antenna control device, and a coaxial line for transmitting the high frequency power and the coaxial line.
  • An antenna cable having an outer cover to be covered, an electric wire contained in the outer cover, and a member for detecting a disconnection of the electric wire are provided, and the control unit detects the disconnection of the electric wire.
  • the transmission circuit is controlled so as to stop or weaken the output of the high frequency power.
  • an RFID communication system in which at least one of the occurrence of failure of the transmission circuit or the occurrence of unnecessary radiation due to the disconnection of the antenna cable is suppressed.
  • the RFID communication system according to the application example of the present invention is applied to a management system that manages an object by using a large number of RFID tags, for example, a production management system in a factory or the like, an article management system in a warehouse or the like, or the like. ..
  • FIG. 1 is a diagram schematically showing a configuration of an RFID communication system 1A according to an application example of the first embodiment.
  • the RFID communication system 1A includes an antenna control device 10A, an antenna device 20A, and an antenna cable 30A.
  • the antenna device 20A has an antenna circuit 22 that performs wireless transmission to the RFID tag.
  • the antenna control device 10A includes a transmission / reception circuit 12 and a control unit 14A that controls the transmission / reception circuit 12.
  • the transmission / reception circuit 12 is an example of a transmission circuit in which the antenna circuit 22 generates high-frequency power for wireless transmission.
  • the antenna control device 10A has a voltage source Vs, and a resistor 13 is connected to the voltage source Vs. As a result, the potential of the terminal on the voltage source Vs side of the resistor 13 is fixed to the first potential V1.
  • the antenna cable 30A connects the antenna device 20A and the antenna control device 10A.
  • the antenna cable 30A has a coaxial line 34 for transmitting the high frequency power generated by the transmission / reception circuit 12 to the antenna circuit 22.
  • the antenna cable 30A has an outer cover 35 (sheath) that covers the coaxial line 34, and the outer cover 35 includes a predictive electric wire 36 (electric wire).
  • the predictive wire 36 is configured to be more prone to disconnection due to movement, for example, bending or rotation of the antenna cable 30A than the coaxial line 34, thereby predicting damage to the coaxial line 34. Used.
  • the antenna control device 10A also has a first connection line 16 having one end connected to a terminal on the opposite side of the resistor 13 from the voltage source Vs and the other end connected to the predictive wire 36.
  • the antenna device 20A has a second connecting line 26 having one end connected to the predictive wire 36 and the other end connected to the ground E. That is, the other end of the second connecting line 26 is set to a second potential V2 having a potential of 0V.
  • the second potential V2 at the other end of the second connecting line 26 is not limited to 0V, and may be a predetermined potential different from the first potential V1.
  • the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is usually close to the second potential V2.
  • the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is also the potential of the first connection line 16.
  • the potential of the first connection line 16 monitored by the control unit 14A is determined by the voltage source Vs. It becomes the given first potential V1.
  • control unit 14A monitors the potential of the first connection line 16 and detects the disconnection of the predictive wire 36, the control unit 14A controls the transmission / reception circuit 12 to generate high-frequency power for the antenna circuit 22 to perform wireless transmission. To stop. Then, the control unit 14A prevents the transmission / reception circuit 12 from providing the high frequency power to the antenna circuit 22.
  • the RFID communication system 1A of this application example deterioration of the antenna cable 30A can be detected before the coaxial line 34 is damaged. Further, in a state where the coaxial line 34 is damaged, the transmission / reception circuit 12 continues to provide high frequency power toward the antenna circuit 22, so that the situation where the transmission / reception circuit 12 fails can be avoided. Alternatively, it is possible to avoid a situation in which the RFID communication system 1A generates unnecessary radiation by continuing to provide high frequency power to the antenna circuit 22 in a state where the coaxial line 34 is damaged.
  • the RFID communication system 1A according to the configuration example of the first embodiment also includes an antenna control device 10A, an antenna device 20A, and an antenna cable 30A. As described above, the RFID communication system 1A is an antenna-separated RFID communication system. The RFID communication system 1A is also referred to as an RFID reader / writer.
  • the antenna device 20A has an antenna circuit 22 for transmitting and receiving radio waves to and from the RFID tag. That is, the antenna circuit 22 performs wireless transmission to the RFID tag.
  • the antenna device 20A also has an antenna cable connecting connector 21A for connecting the antenna cable 30A.
  • the antenna control device 10A includes a transmission / reception circuit 12 and a control unit 14A that controls the transmission / reception circuit 12.
  • the transmission / reception circuit 12 is an example of a transmission circuit in which the antenna circuit 22 generates high-frequency power for wireless transmission.
  • the reception circuit 12 takes out a transmitted reception signal from the high-frequency signal received from the RFID tag by the antenna circuit 22. But it is also.
  • the antenna control device 10A has a voltage source Vs, and a resistor 13 is connected to the voltage source Vs. As a result, the potential of the terminal on the voltage source Vs side of the resistor 13 is fixed to the first potential V1.
  • the antenna control device 10A also has an antenna cable connecting connector 11A for connecting the antenna cable 30A.
  • the antenna cable 30A connects the antenna device 20A and the antenna control device 10A.
  • the antenna cable 30A has a connector 37A on the antenna control device side joined to the antenna cable connection connector 11A of the antenna control device 10A at the end thereof. Further, the antenna cable 30A has a connector 38A on the antenna device side to be joined to the antenna cable connection connector 21A of the antenna device 20A at the other end.
  • the antenna cable 30A has a coaxial line 34 for transmitting the high frequency power generated by the transmission / reception circuit 12 to the antenna circuit 22.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the antenna cable 30A.
  • the antenna cable 30A has an internal conductor 31 at the center thereof, and an insulator 33 coaxially around the internal conductor 31.
  • An outer conductor 32 is coaxially formed around the insulator 33. In this way, the inner conductor 31, the insulator 33, and the outer conductor 32 form the coaxial line 34.
  • the antenna cable 30A has an outer cover 35 that covers the coaxial line 34 around the outer conductor 32.
  • the outer cover 35 includes a predictive electric wire 36 so as to be insulated from the outer conductor 32. Therefore, the predictive wire 36 may be arranged so as to be separated from the outer conductor 32. In that case, an insulator made of a material different from that of the outer cover 35 may be wound around the outside of the outer conductor 32.
  • the predictive wire 36 may be composed of an insulated conductor.
  • the predictive wire 36 is configured to be composed of relatively thin conductors so that the wire breaks before the coaxial line 34 is damaged due to the movement of the antenna cable 30A, for example, bending or rotation. There is. Alternatively, the predictive wire 36 may be made of a material having less flexibility than the inner conductor 31 or the outer conductor 32 so that disconnection is likely to occur.
  • the predictive wire 36 may be arranged so as to be spirally wound around the outer conductor 32. By doing so, the predictive wire 36 can be easily broken against the stress of being twisted around the axis of the antenna cable 30A, and the antenna cable 30A is damaged by such stress. Will be able to accurately predict. Further, the predictive wire 36 itself may be configured to have a resistance component. Alternatively, a resistance element may be provided on the line of the predictive wire 36. The resistance element may be arranged in the connector 38A on the antenna device side.
  • the antenna control device 10A also has a first connection line 16 having one end connected to a terminal on the opposite side of the resistor 13 from the voltage source Vs and the other end connected to the predictive wire 36.
  • a resistance element may be provided on the line of the first connection line 16.
  • the antenna device 20A has a second connecting line 26 having one end connected to the predictive wire 36 and the other end connected to the ground E.
  • the other end of the second connecting line 26 is set to a second potential V2 having a potential of 0V.
  • the second potential V2 at the other end of the second connecting line 26 is not limited to 0V, and may be a predetermined potential different from the first potential V1.
  • a resistance element may be provided on the line of the second connecting line 26.
  • the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is usually closer to the second potential V2.
  • the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is also the potential of the first connection line 16.
  • the potential of the first connection line 16 monitored by the control unit 14A is determined by the voltage source Vs.
  • the value becomes closer to the given first potential V1.
  • the value closer to the second potential V2 and the value closer to the first potential V1 mean a relative relationship with each other.
  • the values of the first potential V1 and the second potential V2, and the resistance values of each part from the voltage source Vs to the resistor 13, the first connection wire 16, the predictive wire 36, and the second conductive wire are in the following states. Is set appropriately.
  • the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is the potential recognized by the control unit 14A as high level or low level depending on the presence or absence of disconnection of the prediction wire 36. Make sure to switch between. In this way, the control unit 14A can detect that the predictive wire 36 is broken by monitoring the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13.
  • Step S11 The control unit 14A of the antenna control device 10A determines whether or not a transmission / reception command to the effect that transmission / reception with the RFID tag should be executed has been received from the host system. If it is determined that the signal has been received (YES in S11), the flow proceeds to step S12. Otherwise (NO in S11), the flow returns to step S11.
  • Step S12 The control unit 14A acquires the value of the potential to be monitored.
  • Step S13 Subsequently, the control unit 14A determines from the acquired potential value whether or not the prediction wire 36 is broken. If it is determined that the wire is broken (YES in S13), the flow proceeds to step S14. Otherwise (NO in S13), the flow proceeds to step S16.
  • Step S14 The control unit 14A shifts the state of the RFID communication system 1A to the transmission stop mode. That is, the control unit 14A stores that the state of the RFID communication system 1A is the transmission stop mode. In the transmission stop mode, the transmission / reception circuit 12 does not transmit high frequency power to the antenna circuit 22 for communicating with the RFID tag. That is, the transmission stop mode is a state of the antenna control device 10A that does not transmit the radio signal to the RFID tag. The transmission stop mode is canceled when the RFID communication system 1A shuts down. Alternatively, the antenna control device 10A may be configured so that the transmission stop mode is canceled by a command from the host system.
  • Step S15 Subsequently, the control unit 14A executes an abnormality notification to the host system to the effect that the antenna cable 30A has deteriorated.
  • the abnormality notification may be executed by the notification function for the user (not shown in FIG. 1) provided in the antenna control device 10A itself, or may be executed together with the notification to the host system.
  • the notification function to the user for example, a known method such as a visual notification function such as a lamp display and a display display, and an auditory notification function such as voice or machine sound can be appropriately applied. Then the flow ends.
  • Step S16 The control unit 14A controls the transmission / reception circuit 12 according to the transmission / reception command, and transmits high-frequency power for carrying the required signal to the RFID tag to the antenna circuit 22. This is because the disconnection of the predictive wire 36 has not been detected, so that even if the transmission / reception circuit 12 outputs high frequency power, no trouble such as a failure occurs.
  • the high frequency power is sent to the antenna circuit 22 through the coaxial line 34 of the antenna cable 30A. Then, wireless transmission from the antenna circuit 22 to the RFID tag is executed. Then the flow ends.
  • the high frequency power transmitted from the transmission / reception circuit toward the antenna circuit may be reflected and returned to the transmission / reception circuit.
  • the transmission / reception circuit since high-frequency electromagnetic waves are radiated from the antenna device, relatively high-frequency high-frequency waves are transmitted from the transmission / reception circuit, so if the high-frequency power returns to the transmission / reception circuit, the transmission / reception circuit may fail. ..
  • the antenna cable 30A is deteriorated before the coaxial line 34 of the antenna cable 30A is damaged by detecting the disconnection of the prediction electric wire provided in the antenna cable 30A. Can be detected. Then, in the RFID communication system 1A, when it is detected that the antenna cable 30A has deteriorated, high frequency power is not transmitted from the transmission / reception circuit to the antenna circuit.
  • the generation of unnecessary radiation due to the breakage of the antenna cable 30A can be suppressed.
  • the occurrence of failure of the transmission / reception circuit due to the breakage of the antenna cable 30A can be suppressed.
  • FIG. 4 is a diagram schematically showing the configuration of the RFID communication system 1B according to the second embodiment.
  • the RFID communication system 1B includes an antenna control device 10B, an antenna device 20B, and an antenna cable 30B.
  • the antenna cable 30B of the RFID communication system 1B has a plurality of predictive wires 36, unlike the antenna cable 30A of the configuration example of the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing the structure of the antenna cable 30B.
  • the outer cover 35 includes a plurality of predictive electric wires 36.
  • the antenna cable 30C shown in FIG. 6 may be used instead of the antenna cable 30B shown in FIG.
  • the antenna cable 30C has, as a plurality of predictive wires, a predictive wire 36a having different diameters and a predictive wire 36b.
  • the predictive wire 36b has a smaller diameter than the predictive wire 36a so that the wire can be easily broken.
  • the antenna control device 10B has a first connection line 16 connected to each predictive wire 36 and a first connection line 16 for each. It has a resistor 13 connected to each of the connection lines 16. Then, the control unit 14B of the antenna control device 10B is configured to monitor the potential of each prediction electric wire 36. Further, the antenna device 20B has a second connection line 26 connected to each prediction electric wire 36.
  • the RFID communication system 1B has a plurality of sets of a resistor 13, a first connection line 16, a prediction electric wire 36, and a second connection line 26 connected in series.
  • the control unit 14B can monitor the potentials of the terminals on the opposite side of the voltage source Vs side of the resistor 13 for each set, and can detect the presence or absence of disconnection in each prediction electric wire 36.
  • Step S21 The control unit 14B of the antenna control device 10B determines whether or not a transmission / reception command to the effect that transmission / reception with the RFID tag should be executed has been received from the host system. If it is determined that the signal has been received (YES in S21), the flow proceeds to step S22. Otherwise (NO in S21), the flow returns to step S21.
  • Step S22 The control unit 14B acquires the value of each potential to be monitored.
  • Step S23 Subsequently, the control unit 14B determines from the acquired potential values whether or not the prediction wire 36 is broken. If it is determined that at least one predictive wire is broken (YES in S23), the flow proceeds to step S24. Otherwise (NO in S23), the flow proceeds to step S29.
  • Step S24 The control unit 14B determines the deterioration level from the acquired potential values depending on how many predictive wires 36 are broken. At that time, the control unit 14B determines that the more the predictive wire 36 is broken, the higher the deterioration level.
  • Step S25 Subsequently, the control unit 14B determines whether or not the deterioration level is equal to or higher than the preset level. If it is determined that the level is equal to or higher than the preset level (YES in S25), the flow proceeds to step S26. Otherwise (NO in S25), the flow proceeds to step S28.
  • Step S26 The control unit 14B shifts the state of the RFID communication system 1B to the transmission stop mode. That is, the control unit 14B stores that the state of the RFID communication system 1B is the transmission stop mode. In the transmission stop mode, the transmission / reception circuit 12 does not transmit high frequency power to the antenna circuit 22 for communicating with the RFID tag. That is, the transmission stop mode is a state of the antenna control device 10B that does not transmit the radio signal to the RFID tag. The transmission stop mode is canceled when the RFID communication system 1B shuts down. Alternatively, the antenna control device 10B may be configured so that the transmission stop mode is canceled by a command from the host system.
  • Step S27 Subsequently, the control unit 14B executes an abnormality notification to the host system to the effect that the antenna cable 30B has deteriorated.
  • the abnormality notification may be executed by the notification function to the user (not shown in FIG. 1) provided in the antenna control device 10B itself, or may be executed together with the notification to the host system. Then the flow ends.
  • Step S28 The control unit 14B notifies the host system of the deterioration level of the antenna cable 30B.
  • the deterioration level notification may be executed by the notification function for the user (not shown in FIG. 4) provided in the antenna control device 10B itself, or may be executed together with the notification to the host system.
  • the flow proceeds to step S29.
  • Step S29 The control unit 14B controls the transmission / reception circuit 12 according to the transmission / reception command, and transmits high-frequency power for carrying a required signal to the RFID tag to the antenna circuit 22. This is because it is determined that the antenna cable 30B has not deteriorated more than a predetermined value.
  • the high frequency power is sent to the antenna circuit 22 through the coaxial line 34 of the antenna cable 30B. Then, wireless transmission from the antenna circuit 22 to the RFID tag is executed. Then the flow ends.
  • the antenna cable 30B is provided with a plurality of predictive wires, so that the deterioration level of the antenna cable 30B is determined and notified according to the number of the broken predictive wires. To. Therefore, in the RFID communication system 1B, the user can be urged to replace the antenna cable 30B before the RFID communication system 1B reaches the deteriorated state of the antenna cable 30B in the transmission stop mode.
  • the RFID communication system 1B when it is determined that the coaxial line 34 of the antenna cable 30A is at least a predetermined deterioration level, high frequency power is not transmitted from the transmission / reception circuit to the antenna circuit. Therefore, it is possible to suppress the occurrence of problems that high frequency power is output from the transmission / reception circuit 12 in a state where the antenna cable 30A is damaged, the transmission / reception circuit 12 fails, or unnecessary radiation is emitted from the RFID communication system 1B.
  • the antenna cables when the antenna cables have electric wires having different thicknesses, or when the antenna cables have electric wires having different materials, the antenna cables can have electric wires having different susceptibility to disconnection. It will be like. Therefore, it becomes possible to realize an RFID communication system that can distinguish and detect the deterioration state over a wide range of the deterioration state due to the mechanical stress on the antenna cable.
  • FIG. 8 is a diagram schematically showing the configuration of the RFID communication system 1D according to the third embodiment.
  • the RFID communication system 1D includes an antenna control device 10D, an antenna device 20D, and an antenna cable 30D.
  • the RFID communication system 1D differs from the RFID communication system 1B of the second embodiment in the following points.
  • the antenna cable 30D of the RFID communication system 1D is provided with a resistance element R on the line of each prediction electric wire 36.
  • the resistance element R on the line of the predictive wire 36 may be arranged in the connector 38D on the antenna device side. However, it may be arranged in the connector 37D on the antenna control device side, or may be arranged in the outer cover 35 of the antenna cable 30D.
  • the predictive wire 36 itself may have a relatively large resistance component and may be configured to perform substantially the same function as the resistance element R.
  • the antenna control device 10D of the RFID communication system 1D has a single resistor 13 connected to the voltage source Vs. Then, each first connection line 16 is connected to a terminal on the opposite side of the voltage source Vs of the resistor 13.
  • the control unit 14D monitors the potential of the terminal on the opposite side of the voltage source Vs of the resistor 13 via the A / D converter 15.
  • the resistance value when the antenna cable 30D side is viewed from the terminal portion on the opposite side of the voltage source Vs of the resistor 13 changes according to the number of broken wires among the plurality of predictive wires 36. ..
  • the resistance value also changes according to the resistance magnitude. Therefore, the control unit 14D can detect the disconnection status of the plurality of predictive wires 36 from the change in the potential of the terminal on the opposite side of the voltage source Vs of the resistor 13 caused by the change in the resistance value. ..
  • the method of detecting the disconnection status of the plurality of predictive wires 36 is different from the RFID communication system 1B according to the second embodiment, but it is shown in the flowchart of FIG. The operation is similar to the operation in the second embodiment. As a result, in the RFID communication system 1D according to the third embodiment, the same effect as that of the second embodiment can be obtained.
  • FIG. 8 is a diagram schematically showing the configuration of the RFID communication system 1E according to the fourth embodiment.
  • the RFID communication system 1E includes an antenna control device 10E, an antenna device 20E, and an antenna cable 30E.
  • the RFID communication system 1E differs from the RFID communication system 1D of the third embodiment in the following points.
  • the resistance element R provided on the line of the prediction electric wire 36 in the antenna cable 30D is the first in the antenna device 20E in the RFID communication system 1E according to the fourth embodiment. 2 Moved to the top of the track and placed.
  • the RFID communication system 1E operates in the same manner as the RFID communication system 1D according to the third embodiment only by changing the arrangement position of the resistance element R.
  • the same effect as that of the third embodiment can be obtained. Further, by providing the resistance element R not in the antenna cable but in the antenna device 20E, there is an advantage that the resistance element R can be easily arranged.
  • the control blocks (particularly the control units 14A to 14E) of the RFID communication systems 1A to 1E may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. good.
  • the RFID communication systems 1A to 1E include a computer that executes a program instruction, which is software that realizes each function.
  • This computer is equipped with, for example, one or more processors and a computer-readable recording medium in which the above program is stored. Then, in the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided.
  • ROM Read Only Memory
  • RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • an arbitrary transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the means for detecting the disconnection of the predictive wire 36 is configured as follows.
  • a resistor 13 provided in the antenna control devices 10A to 10E having one end having a predetermined first potential V1 and one end connected to the other end of the resistor 13 and the other end connected to the prediction electric wire 36.
  • First connection line 16 A second connecting line 26 provided in the antenna devices 20A to 20E, one end of which is connected to the predictive wire 36 and the other end of which is set to a predetermined second potential V2. Then, the control units 14A to 14E detect the disconnection of the predictive wire 36 by monitoring the potential of the other end of the resistor 13.
  • the means for detecting the disconnection of the predictive wire of the present invention may be another method.
  • two predictive wires are used to loop back between the antenna control device and the antenna device.
  • a method of transmitting a signal for example, a pulse signal from the antenna control device, and determining whether or not the signal returned via the two predictive wires can be correctly received can be mentioned.
  • a method of detecting the presence or absence of a current and detecting the disconnection of the predictive wire by detecting the magnetic field in which the current flowing through the predictive wire is generated may be used.
  • a method of detecting whether or not a current is flowing in the predictive wire by an induced current may be used.
  • control units 14A to 14E detect one of the predictive wires 36 or a disconnection of a predetermined number or more is as follows.
  • the control units 14A to 14E control the transmission / reception circuit 12 so as to stop the output of the high frequency power toward the antenna devices 20A to 20E.
  • control units 14A to 14E may control the transmission / reception circuit 12 so as to weaken the output of the high frequency power toward the antenna devices 20A to 20E.
  • weakening the output of high-frequency power it is possible to suppress the occurrence of the problem that the transmission / reception circuit 12 fails or unnecessary radiation is emitted from the RFID communication systems 1A to 1E.
  • the RFID communication system may further include a spare antenna device having an antenna circuit for wireless transmission to the RFID tag, and a spare antenna cable connecting the spare antenna device and the antenna control device. ..
  • the control unit detects a disconnection of one of the predictive wires or a predetermined number or more, the output of the high frequency power to the antenna device is stopped and the output of the high frequency power to the spare antenna device is output.
  • the transmission circuit may be controlled so as to be performed. With such a configuration, even if the antenna cable is damaged, the spare antenna device can be used to maintain communication with the RFID tag.
  • the RFID communication system includes an antenna device having an antenna circuit that performs wireless transmission to an RFID tag, a transmission circuit that outputs high-frequency power for the antenna circuit to perform wireless transmission, and the transmission.
  • An antenna control device having a control unit for controlling a circuit, an antenna cable for connecting the antenna device and the antenna control device, and a coaxial line for transmitting the high frequency power and the coaxial line.
  • An antenna cable having an outer cover to be covered, an electric wire contained in the outer cover, and a member for detecting a disconnection of the electric wire are provided, and the control unit detects the disconnection of the electric wire.
  • the transmission circuit is controlled so as to stop or weaken the output of the high frequency power.
  • the member for detecting the disconnection of the electric wire includes a resistor provided in the antenna control device having a predetermined first potential at one end and the resistor at one end.
  • a first connection line connected to the other end of the wire and the other end connected to the electric wire, and one end connected to the electric wire provided in the antenna device and the other end having a predetermined second potential. It may be configured by a second connecting wire, and the control unit may detect the disconnection of the electric wire by monitoring the potential of the other end of the resistor.
  • the member for detecting the disconnection of the electric wire can be specifically configured.
  • the RFID communication system further includes a spare antenna device having an antenna circuit for wireless transmission to the RFID tag, and a spare antenna cable for connecting the antenna device and the antenna control device.
  • the control unit controls the transmission circuit so as to stop the output of the high-frequency power and output the high-frequency power to the spare antenna device when the disconnection of the electric wire is detected. May be provided. According to the above configuration, communication with the RFID tag can be maintained even if the antenna cable is damaged.
  • the antenna cable has a plurality of the electric wires
  • the antenna control device has the first connection line and the resistor for each of the electric wires.
  • the antenna cable has a plurality of the electric wires
  • the antenna control device has the first connection line for each of the electric wires, and the first connection line is provided.
  • the one end of the connecting wire is connected to the other end of the single resistor, and the control unit monitors the change in the potential of the other end of the resistor in the plurality of electric wires.
  • the control unit may control the transmission circuit so as to stop or weaken the output of the high-frequency power when the number of disconnections is detected and the disconnection of the wires of a predetermined number or more is detected. good.
  • the antenna cable has a connector at an end for connecting to the antenna device, and a resistance element provided on the line of each of the electric wires is inserted in the connector. You may have.
  • the control unit specifically configures an antenna cable that can detect the number of broken wires in a plurality of electric wires by monitoring the change in the potential of the other end of the resistor. be able to.
  • the antenna device has the second connection line for each of the electric wires, and further, a resistance element provided on the line of each of the second connection lines. May have.
  • the control unit can detect the number of broken wires in a plurality of electric wires by monitoring the change in the potential of the other end of the resistor without complicating the structure of the antenna cable. It is possible to configure an RFID communication system such as.
  • control unit may be configured to notify an abnormality when it detects a disconnection of at least one of the plurality of electric wires. According to the above configuration, the user can be urged to replace the antenna cable before the RFID communication system reaches the deteriorated state of the antenna cable in which the transmission is stopped.
  • the antenna cable may have the electric wires having different thicknesses.
  • the antenna cable can have electric wires having different susceptibility to disconnection, and an RFID communication system capable of distinguishing and detecting the deteriorated state over a wide range of the deteriorated state due to the stress of the antenna cable is realized. You will be able to.
  • the antenna cable may have the electric wires made of different materials.
  • the antenna cable can have electric wires having different susceptibility to disconnection, and an RFID communication system capable of distinguishing and detecting the deteriorated state over a wide range of the deteriorated state due to the stress of the antenna cable is realized. You will be able to.
  • a part of the RFID communication system according to each aspect of the present invention may be realized by a computer.
  • a control program of the RFID communication system that realizes a part of the RFID communication system by the computer by operating the computer as a control unit included in the RFID communication system, and a computer-readable record that records the control program.
  • the medium also falls within the scope of the present invention.
  • RFID communication system 10A to 10E Antenna controller 11A to 11E Antenna cable connection connector 12 Transmission / reception circuit (transmission circuit) 13 Resistor 14A-14E Control unit 15 A / D converter 16 1st connection line Vs Voltage source 20A-20E Antenna device 21A-21E Antenna cable connection connector 22 Antenna circuit 26 2nd connection line E Earth 30A-30E Antenna cable 31 Internal conductor 32 External conductor 33 Insulator 34 Coaxial line 35 Outer cover 36 Prediction wire (electric wire) 37A-37E Connector on the antenna control device side 38A-38E Connector on the antenna device side R Resistance element

Landscapes

  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

According to the present invention, the occurrence of failure in a transmission circuit or the occurrence of unnecessary radiation due to damage to an antenna cable is reduced. An RFID communication system (1A) comprises: an antenna cable (30A) including an outer cover (35) covering a coaxial line (34) for transmitting high-frequency power and an electric wire contained in the outer cover (predictive electric wire 36); and a control unit (14B) which controls a transmission circuit (transmission/reception circuit 12) so as to stop the generation of high-frequency power, when a disconnection of an electric wire is detected.

Description

RFID通信システムRFID communication system
 本発明はRFID通信システムに関する。 The present invention relates to an RFID communication system.
 近年、RFID(Radio Frequency Identification)タグを利用して対象物を管理する手法が普及しており、例えば工場における生産管理、倉庫や物流における物品管理など、多業種に亘って使用されている。一方、工場等において可動部への配線に用いられるケーブルに関して、ケーブルの損傷の予知用電線をケーブル内に有し、予知用電線の断線を検知することで、信号を伝達する導線の損傷前にケーブルの劣化を報知することができる技術が開示されている。 In recent years, a method of managing an object by using an RFID (Radio Frequency Identification) tag has become widespread, and is used in various industries such as production control in factories and goods management in warehouses and logistics. On the other hand, regarding cables used for wiring to moving parts in factories, etc., a wire for predicting damage to the cable is held in the cable, and by detecting the disconnection of the predictive wire, before the conductor that transmits the signal is damaged. A technique capable of notifying the deterioration of a cable is disclosed.
日本国特開2006-318698公報Japanese Patent Application Laid-Open No. 2006-318698
 RFIDタグとの間で通信を行うRFID通信システムでは、例えばUHF(Ultra High Frequency)帯といった高周波の電磁波をアンテナ装置から放射する。そのためRFID通信システムでは、所要の信号を搬送する高周波の電力をアンテナ装置に供給するための送信回路を有するアンテナ制御装置を備えている。 In an RFID communication system that communicates with an RFID tag, high-frequency electromagnetic waves such as the UHF (Ultra High Frequency) band are radiated from the antenna device. Therefore, the RFID communication system includes an antenna control device having a transmission circuit for supplying high-frequency power for carrying a required signal to the antenna device.
 アンテナ装置とアンテナ制御装置との間は、高周波の電力を伝送する同軸線路を備えたアンテナケーブルで接続される。工場等においては、このようなアンテナケーブルもまた可動部に配線されて用いられることがあり、アンテナケーブルの断線等の損傷の予知をすることができる技術が望まれていた。 The antenna device and the antenna control device are connected by an antenna cable equipped with a coaxial line that transmits high-frequency power. In factories and the like, such an antenna cable may also be wired to a movable part and used, and a technique capable of predicting damage such as disconnection of the antenna cable has been desired.
 またRFID通信システムでは、不要輻射を回避しつつ、高周波の電磁波をアンテナ装置から放射するために、送信回路からアンテナ回路までをインピーダンス整合を取った状態とした上で、大きい電力の高周波が送信回路からアンテナ回路に伝送される。しかし、アンテナケーブルの同軸線路に、断線あるいは断線に至らないまでも重大な破損が生じた場合に、破損個所から高周波の電力が反射されて送信回路に戻されることがある。 In RFID communication systems, in order to radiate high-frequency electromagnetic waves from the antenna device while avoiding unnecessary radiation, impedance matching is performed from the transmission circuit to the antenna circuit, and then high-frequency high-frequency waves with large power are transmitted. Is transmitted to the antenna circuit. However, if the coaxial line of the antenna cable is severely damaged even if it is not broken, high-frequency power may be reflected from the damaged part and returned to the transmission circuit.
 すると、送信回路が故障してしまうことがあり、破損したアンテナケーブルを交換するだけでは、RFID通信システムが復旧せず、RFID通信システムの運用上の大きな問題となる怖れがあった。あるいは、インピーダンス整合が取れなくなって不要輻射が発生し、周囲の機器に誤動作等の悪影響を与える怖れがあった。本発明の一態様は、アンテナケーブルの破損に起因する送信回路の故障発生または不要輻射の発生の少なくともいずれかが抑えられるRFID通信システムを実現することを目的とする。 Then, the transmission circuit may break down, and the RFID communication system cannot be restored simply by replacing the damaged antenna cable, and there is a fear that it will become a big problem in the operation of the RFID communication system. Alternatively, there is a risk that impedance matching will not be achieved and unnecessary radiation will be generated, which will adversely affect surrounding equipment such as malfunction. One aspect of the present invention is to realize an RFID communication system in which at least one of the occurrence of failure of the transmission circuit or the occurrence of unnecessary radiation due to the breakage of the antenna cable is suppressed.
 本発明は、上述の課題を解決するために、以下の構成を採用する。本発明の一側面に係るRFID通信システムは、RFIDタグへの無線送信を行うアンテナ回路を有するアンテナ装置と、前記アンテナ回路が前記無線送信をするための高周波電力を出力する送信回路と、前記送信回路を制御する制御部と、を有するアンテナ制御装置と、前記アンテナ装置と、前記アンテナ制御装置とを接続するアンテナケーブルであって、前記高周波電力を伝送するための同軸線路と、前記同軸線路を被覆する外被と、前記外被に内包された電線と、を有するアンテナケーブルと、前記電線の断線を検出するための部材と、を備え、前記制御部は、前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御する。 The present invention adopts the following configuration in order to solve the above-mentioned problems. The RFID communication system according to one aspect of the present invention includes an antenna device having an antenna circuit that performs wireless transmission to an RFID tag, a transmission circuit that outputs high-frequency power for the antenna circuit to perform wireless transmission, and the transmission. An antenna control device having a control unit for controlling a circuit, an antenna cable for connecting the antenna device and the antenna control device, and a coaxial line for transmitting the high frequency power and the coaxial line. An antenna cable having an outer cover to be covered, an electric wire contained in the outer cover, and a member for detecting a disconnection of the electric wire are provided, and the control unit detects the disconnection of the electric wire. In addition, the transmission circuit is controlled so as to stop or weaken the output of the high frequency power.
 本発明の一態様によれば、アンテナケーブルの断線に起因する送信回路の故障発生または不要輻射の発生の、少なくともいずれかが抑えられるRFID通信システムを実現することができる。 According to one aspect of the present invention, it is possible to realize an RFID communication system in which at least one of the occurrence of failure of the transmission circuit or the occurrence of unnecessary radiation due to the disconnection of the antenna cable is suppressed.
本発明の実施形態1に係るRFID通信システムの構成を、模式的に示す図である。It is a figure which shows typically the structure of the RFID communication system which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るRFID通信システムのアンテナケーブルの模式断面図である。It is a schematic cross-sectional view of the antenna cable of the RFID communication system which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るRFID通信システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the RFID communication system which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るRFID通信システムの構成を、模式的に示す図である。It is a figure which shows typically the structure of the RFID communication system which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係るRFID通信システムのアンテナケーブルの一例を示す模式断面図である。It is a schematic sectional drawing which shows an example of the antenna cable of the RFID communication system which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係るRFID通信システムのアンテナケーブルの別の事例を示す模式断面図であるIt is a schematic sectional drawing which shows another example of the antenna cable of the RFID communication system which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係るRFID通信システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the RFID communication system which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るRFID通信システムの構成を、模式的に示す図である。It is a figure which shows typically the structure of the RFID communication system which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係るRFID通信システムの構成を、模式的に示す図である。It is a figure which shows typically the structure of the RFID communication system which concerns on Embodiment 4 of this invention.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
 〔実施形態1〕
 §1 適用例
 まず、本発明が適用される場面の一例が説明される。本発明の適用例に係るRFID通信システムは、多数のRFIDタグを利用して対象物を管理する管理システム、例えば、工場等における生産管理システム、倉庫等や物流における物品管理システムなどに適用される。
[Embodiment 1]
§1 Application example First, an example of a situation in which the present invention is applied will be described. The RFID communication system according to the application example of the present invention is applied to a management system that manages an object by using a large number of RFID tags, for example, a production management system in a factory or the like, an article management system in a warehouse or the like, or the like. ..
 図1は、実施形態1の適用例に係るRFID通信システム1Aの構成を模式的に示す図である。RFID通信システム1Aは、アンテナ制御装置10Aと、アンテナ装置20Aと、アンテナケーブル30Aと、を備えている。アンテナ装置20Aは、RFIDタグへの無線送信を行うアンテナ回路22を有している。 FIG. 1 is a diagram schematically showing a configuration of an RFID communication system 1A according to an application example of the first embodiment. The RFID communication system 1A includes an antenna control device 10A, an antenna device 20A, and an antenna cable 30A. The antenna device 20A has an antenna circuit 22 that performs wireless transmission to the RFID tag.
 アンテナ制御装置10Aは、送受信回路12と、送受信回路12を制御する制御部14Aと、を有している。送受信回路12は、アンテナ回路22が無線送信をするための高周波電力を発生する送信回路の一例である。アンテナ制御装置10Aは、電圧源Vsを有しており、電圧源Vsには抵抗器13が接続されている。これによって抵抗器13の電圧源Vs側の端子は、電位が第1電位V1に固定されている。 The antenna control device 10A includes a transmission / reception circuit 12 and a control unit 14A that controls the transmission / reception circuit 12. The transmission / reception circuit 12 is an example of a transmission circuit in which the antenna circuit 22 generates high-frequency power for wireless transmission. The antenna control device 10A has a voltage source Vs, and a resistor 13 is connected to the voltage source Vs. As a result, the potential of the terminal on the voltage source Vs side of the resistor 13 is fixed to the first potential V1.
 アンテナケーブル30Aは、アンテナ装置20Aと、アンテナ制御装置10Aとを接続する。アンテナケーブル30Aは、送受信回路12が発生させた高周波電力を、アンテナ回路22に伝送するための同軸線路34を有している。また、アンテナケーブル30Aは、同軸線路34を被覆する外被35(シース)を有しており、外被35には、予知用電線36(電線)が内包されている。予知用電線36は、同軸線路34よりも、アンテナケーブル30Aの動き、例えば屈曲や回転に起因して、断線が起こりやすいように構成され、それによって同軸線路34の損傷を未然に予知するために用いられる。 The antenna cable 30A connects the antenna device 20A and the antenna control device 10A. The antenna cable 30A has a coaxial line 34 for transmitting the high frequency power generated by the transmission / reception circuit 12 to the antenna circuit 22. Further, the antenna cable 30A has an outer cover 35 (sheath) that covers the coaxial line 34, and the outer cover 35 includes a predictive electric wire 36 (electric wire). The predictive wire 36 is configured to be more prone to disconnection due to movement, for example, bending or rotation of the antenna cable 30A than the coaxial line 34, thereby predicting damage to the coaxial line 34. Used.
 アンテナ制御装置10Aはまた、一端が抵抗器13の電圧源Vsと反対側の端子に接続され、他端が予知用電線36に接続される第1接続線16を有している。アンテナ装置20Aは、一端が予知用電線36に接続され、他端がアースEに接続される第2接続線26を有している。すなわち第2接続線26の当該他端は、電位が0Vである第2電位V2にされている。しかし、第2接続線26の当該他端の第2電位V2は、0Vであることに限られるものではなく、第1電位V1とは異なる所定の電位であってもよい。 The antenna control device 10A also has a first connection line 16 having one end connected to a terminal on the opposite side of the resistor 13 from the voltage source Vs and the other end connected to the predictive wire 36. The antenna device 20A has a second connecting line 26 having one end connected to the predictive wire 36 and the other end connected to the ground E. That is, the other end of the second connecting line 26 is set to a second potential V2 having a potential of 0V. However, the second potential V2 at the other end of the second connecting line 26 is not limited to 0V, and may be a predetermined potential different from the first potential V1.
 以上の構成により、制御部14Aが監視する抵抗器13の電圧源Vsとは反対側の端子の電位は、通常時には、第2電位V2に近い値となる。なおここで、制御部14Aが監視する抵抗器13の電圧源Vsとは反対側の端子の電位は、第1接続線16の電位でもある。一方、アンテナケーブル30Aの動きが繰り返されたことによって、アンテナケーブル30Aの劣化が進行し、予知用電線36が断線すると、制御部14Aが監視する第1接続線16の電位は、電圧源Vsによって与えられた第1電位V1となる。 With the above configuration, the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is usually close to the second potential V2. Here, the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is also the potential of the first connection line 16. On the other hand, as the movement of the antenna cable 30A is repeated, the deterioration of the antenna cable 30A progresses, and when the prediction electric wire 36 is disconnected, the potential of the first connection line 16 monitored by the control unit 14A is determined by the voltage source Vs. It becomes the given first potential V1.
 制御部14Aは、第1接続線16の電位を監視することで、予知用電線36の断線を検知すると、送受信回路12を制御して、アンテナ回路22が無線送信をするための高周波電力の発生を停止させる。そうして制御部14Aは、送受信回路12によるアンテナ回路22に向けた高周波電力の提供を行わないようにさせる。 When the control unit 14A monitors the potential of the first connection line 16 and detects the disconnection of the predictive wire 36, the control unit 14A controls the transmission / reception circuit 12 to generate high-frequency power for the antenna circuit 22 to perform wireless transmission. To stop. Then, the control unit 14A prevents the transmission / reception circuit 12 from providing the high frequency power to the antenna circuit 22.
 このようして、本適用例のRFID通信システム1Aでは、アンテナケーブル30Aの劣化を、同軸線路34が損傷する前に検出することができる。また、同軸線路34が損傷した状態で、送受信回路12がアンテナ回路22に向けて高周波電力を提供し続けることで、送受信回路12が故障する事態を避けることができる。あるいは、同軸線路34が損傷した状態で、送受信回路12がアンテナ回路22に向けて高周波電力を提供し続けることで、RFID通信システム1Aが不要輻射を発生させてしまう事態を避けることができる。 In this way, in the RFID communication system 1A of this application example, deterioration of the antenna cable 30A can be detected before the coaxial line 34 is damaged. Further, in a state where the coaxial line 34 is damaged, the transmission / reception circuit 12 continues to provide high frequency power toward the antenna circuit 22, so that the situation where the transmission / reception circuit 12 fails can be avoided. Alternatively, it is possible to avoid a situation in which the RFID communication system 1A generates unnecessary radiation by continuing to provide high frequency power to the antenna circuit 22 in a state where the coaxial line 34 is damaged.
 §2 構成例
 <RFID通信システム1Aの構成>
 次に、構成がより具体化された実施形態1の適用例が図1を参照しつつ説明される。実施形態1の構成例に係るRFID通信システム1Aもまた、アンテナ制御装置10Aと、アンテナ装置20Aと、アンテナケーブル30Aと、を備えている。このように、RFID通信システム1Aはアンテナ分離型のRFID通信システムである。RFID通信システム1Aは、RFIDリーダ/ライタとも称される。
§2 Configuration example <Configuration of RFID communication system 1A>
Next, an application example of the first embodiment in which the configuration is more concrete will be described with reference to FIG. The RFID communication system 1A according to the configuration example of the first embodiment also includes an antenna control device 10A, an antenna device 20A, and an antenna cable 30A. As described above, the RFID communication system 1A is an antenna-separated RFID communication system. The RFID communication system 1A is also referred to as an RFID reader / writer.
 アンテナ装置20Aは、RFIDタグとの間で電波の送受信を行うアンテナ回路22を有している。すなわち、アンテナ回路22はRFIDタグへの無線送信を行う。アンテナ装置20Aはまた、アンテナケーブル30Aを接続するためのアンテナケーブル接続用コネクタ21Aを有している。 The antenna device 20A has an antenna circuit 22 for transmitting and receiving radio waves to and from the RFID tag. That is, the antenna circuit 22 performs wireless transmission to the RFID tag. The antenna device 20A also has an antenna cable connecting connector 21A for connecting the antenna cable 30A.
 アンテナ制御装置10Aは、送受信回路12と、送受信回路12を制御する制御部14Aと、を有している。送受信回路12は、アンテナ回路22が無線送信をするための高周波電力を発生する送信回路の一例であるが、アンテナ回路22がRFIDタグから受け取った高周波信号から、搬送された受信信号を取り出す受信回路でもある。 The antenna control device 10A includes a transmission / reception circuit 12 and a control unit 14A that controls the transmission / reception circuit 12. The transmission / reception circuit 12 is an example of a transmission circuit in which the antenna circuit 22 generates high-frequency power for wireless transmission. The reception circuit 12 takes out a transmitted reception signal from the high-frequency signal received from the RFID tag by the antenna circuit 22. But it is also.
 アンテナ制御装置10Aは、電圧源Vsを有しており、電圧源Vsには抵抗器13が接続されている。これによって抵抗器13の電圧源Vs側の端子は、電位が第1電位V1に固定されている。アンテナ制御装置10Aはまた、アンテナケーブル30Aを接続するためのアンテナケーブル接続用コネクタ11Aを有している。 The antenna control device 10A has a voltage source Vs, and a resistor 13 is connected to the voltage source Vs. As a result, the potential of the terminal on the voltage source Vs side of the resistor 13 is fixed to the first potential V1. The antenna control device 10A also has an antenna cable connecting connector 11A for connecting the antenna cable 30A.
 アンテナケーブル30Aは、アンテナ装置20Aと、アンテナ制御装置10Aとを接続する。アンテナケーブル30Aは、端部にアンテナ制御装置10Aのアンテナケーブル接続用コネクタ11Aに接合するアンテナ制御装置側のコネクタ37Aを有している。また、アンテナケーブル30Aは、もう一方の端部にアンテナ装置20Aのアンテナケーブル接続用コネクタ21Aに接合するアンテナ装置側のコネクタ38Aを有している。 The antenna cable 30A connects the antenna device 20A and the antenna control device 10A. The antenna cable 30A has a connector 37A on the antenna control device side joined to the antenna cable connection connector 11A of the antenna control device 10A at the end thereof. Further, the antenna cable 30A has a connector 38A on the antenna device side to be joined to the antenna cable connection connector 21A of the antenna device 20A at the other end.
 アンテナケーブル30Aは、送受信回路12が発生させた高周波電力を、アンテナ回路22に伝送するための同軸線路34を有している。図2はアンテナケーブル30Aの構造を模式的に示す断面図である。アンテナケーブル30Aは中心部に内部導体31を有し、その周囲に絶縁体33を同軸に有している。絶縁体33の周囲には、外部導体32が同軸に形成されている。こうして、内部導体31、絶縁体33、外部導体32が同軸線路34を構成している。 The antenna cable 30A has a coaxial line 34 for transmitting the high frequency power generated by the transmission / reception circuit 12 to the antenna circuit 22. FIG. 2 is a cross-sectional view schematically showing the structure of the antenna cable 30A. The antenna cable 30A has an internal conductor 31 at the center thereof, and an insulator 33 coaxially around the internal conductor 31. An outer conductor 32 is coaxially formed around the insulator 33. In this way, the inner conductor 31, the insulator 33, and the outer conductor 32 form the coaxial line 34.
 アンテナケーブル30Aは、外部導体32の周囲に、同軸線路34を被覆する外被35を有している。外被35には、予知用電線36が外部導体32からは絶縁されるように内包されている。そのため、予知用電線36は外部導体32から離間するように配置されているとよい。その場合に、外部導体32の外側には外被35とは別素材の絶縁体が巻きつけられているように構成されていてもよい。あるいは、予知用電線36が絶縁導線から構成されていてもよい。 The antenna cable 30A has an outer cover 35 that covers the coaxial line 34 around the outer conductor 32. The outer cover 35 includes a predictive electric wire 36 so as to be insulated from the outer conductor 32. Therefore, the predictive wire 36 may be arranged so as to be separated from the outer conductor 32. In that case, an insulator made of a material different from that of the outer cover 35 may be wound around the outside of the outer conductor 32. Alternatively, the predictive wire 36 may be composed of an insulated conductor.
 予知用電線36は、比較的細い導線で構成されることで、アンテナケーブル30Aの動き、例えば、屈曲や回転に起因して、同軸線路34が損傷される以前に断線が起こるように構成されている。またあるいは、予知用電線36は、内部導体31あるいは外部導体32と比較して、柔軟性に乏しい材質で構成されることにより、断線が発生しやすいようにされていてもよい。 The predictive wire 36 is configured to be composed of relatively thin conductors so that the wire breaks before the coaxial line 34 is damaged due to the movement of the antenna cable 30A, for example, bending or rotation. There is. Alternatively, the predictive wire 36 may be made of a material having less flexibility than the inner conductor 31 or the outer conductor 32 so that disconnection is likely to occur.
 予知用電線36はスパイラル状に外部導体32の周りに巻かれるように配置されていてもよい。このようにすることで、アンテナケーブル30Aに軸周りに捩じられるようなストレスに対して、予知用電線36が断線しやすくすることができるようになり、そのようなストレスによるアンテナケーブル30Aの損傷を的確に予知できるようになる。また、予知用電線36は、それ自体が抵抗成分を持つように構成されていてもよい。あるいは、予知用電線36の線路上に抵抗素子が設けられてもよい。当該抵抗素子は、アンテナ装置側のコネクタ38A内に配置されていてもよい。 The predictive wire 36 may be arranged so as to be spirally wound around the outer conductor 32. By doing so, the predictive wire 36 can be easily broken against the stress of being twisted around the axis of the antenna cable 30A, and the antenna cable 30A is damaged by such stress. Will be able to accurately predict. Further, the predictive wire 36 itself may be configured to have a resistance component. Alternatively, a resistance element may be provided on the line of the predictive wire 36. The resistance element may be arranged in the connector 38A on the antenna device side.
 アンテナ制御装置10Aはまた、一端が抵抗器13の電圧源Vsと反対側の端子に接続され、他端が予知用電線36に接続される第1接続線16を有している。第1接続線16の線路上には抵抗素子が設けられていてもよい。アンテナ装置20Aは、一端が予知用電線36に接続され、他端がアースEに接続される第2接続線26を有している。 The antenna control device 10A also has a first connection line 16 having one end connected to a terminal on the opposite side of the resistor 13 from the voltage source Vs and the other end connected to the predictive wire 36. A resistance element may be provided on the line of the first connection line 16. The antenna device 20A has a second connecting line 26 having one end connected to the predictive wire 36 and the other end connected to the ground E.
 すなわち第2接続線26の当該他端は、電位が0Vである第2電位V2にされている。しかし、第2接続線26の当該他端の第2電位V2は、0Vであることに限られるものではなく、第1電位V1とは異なる所定の電位であってもよい。第2接続線26の線路上には抵抗素子が設けられていてもよい。 That is, the other end of the second connecting line 26 is set to a second potential V2 having a potential of 0V. However, the second potential V2 at the other end of the second connecting line 26 is not limited to 0V, and may be a predetermined potential different from the first potential V1. A resistance element may be provided on the line of the second connecting line 26.
 以上の構成により、制御部14Aが監視する抵抗器13の電圧源Vsとは反対側の端子の電位は、通常時には、第2電位V2に、より近い値となる。なおここで、制御部14Aが監視する抵抗器13の電圧源Vsとは反対側の端子の電位は、第1接続線16の電位でもある。 With the above configuration, the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is usually closer to the second potential V2. Here, the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is also the potential of the first connection line 16.
 一方、アンテナケーブル30Aの動きが繰り返されたことによって、アンテナケーブル30Aの劣化が進行し、予知用電線36が断線すると、制御部14Aが監視する第1接続線16の電位は、電圧源Vsによって与えられた第1電位V1に、より近い値となる。ここで、第2電位V2により近い値、第1電位V1により近い値とは、互いに相対的な関係を意味する。 On the other hand, as the movement of the antenna cable 30A is repeated, the deterioration of the antenna cable 30A progresses, and when the prediction electric wire 36 is disconnected, the potential of the first connection line 16 monitored by the control unit 14A is determined by the voltage source Vs. The value becomes closer to the given first potential V1. Here, the value closer to the second potential V2 and the value closer to the first potential V1 mean a relative relationship with each other.
 第1電位V1と第2電位V2の値、及び、電圧源Vsから、抵抗器13、第1接続線16、予知用電線36、第2導電線に至る各部の抵抗値が以下の状態となるように適宜に設定される。制御部14Aが監視する抵抗器13の電圧源Vsとは反対側の端子の電位が、予知用電線36の断線の有無によって、制御部14Aがハイレベルと認識する電位またはローレベルと認識する電位の間で切り替わるようにする。制御部14Aは、このようにして、抵抗器13の電圧源Vsとは反対側の端子の電位を監視することで、予知用電線36が断線したことを検知することができる。 The values of the first potential V1 and the second potential V2, and the resistance values of each part from the voltage source Vs to the resistor 13, the first connection wire 16, the predictive wire 36, and the second conductive wire are in the following states. Is set appropriately. The potential of the terminal on the side opposite to the voltage source Vs of the resistor 13 monitored by the control unit 14A is the potential recognized by the control unit 14A as high level or low level depending on the presence or absence of disconnection of the prediction wire 36. Make sure to switch between. In this way, the control unit 14A can detect that the predictive wire 36 is broken by monitoring the potential of the terminal on the side opposite to the voltage source Vs of the resistor 13.
 <RFID通信システム1Aの動作>
 次に、実施形態1の適用例に係るRFID通信システム1Aの動作が、図3のフローチャートを参照しつつ説明される。RFID通信システム1Aは、RFID通信システム1Aの状態が送信停止モードではない場合に、図3のフローチャートに示されるフローを繰り返し実行する。
<Operation of RFID communication system 1A>
Next, the operation of the RFID communication system 1A according to the application example of the first embodiment will be described with reference to the flowchart of FIG. The RFID communication system 1A repeatedly executes the flow shown in the flowchart of FIG. 3 when the state of the RFID communication system 1A is not the transmission stop mode.
 ステップS11:アンテナ制御装置10Aの制御部14Aは、RFIDタグとの送受信を実行すべき旨の、送受信コマンドを上位システムから受信しているか否かを判断する。受信していると判断される場合(S11でYES)、フローはステップS12に進む。それ以外の場合(S11でNO)、フローはステップS11に戻る。 Step S11: The control unit 14A of the antenna control device 10A determines whether or not a transmission / reception command to the effect that transmission / reception with the RFID tag should be executed has been received from the host system. If it is determined that the signal has been received (YES in S11), the flow proceeds to step S12. Otherwise (NO in S11), the flow returns to step S11.
 ステップS12:制御部14Aは、監視する電位の値を取得する。 Step S12: The control unit 14A acquires the value of the potential to be monitored.
 ステップS13:続いて制御部14Aは、取得した電位の値から、予知用電線36が断線しているか否かを判断する。断線していると判断される場合(S13でYES)、フローはステップS14に進む。それ以外の場合(S13でNO)、フローはステップS16に進む。 Step S13: Subsequently, the control unit 14A determines from the acquired potential value whether or not the prediction wire 36 is broken. If it is determined that the wire is broken (YES in S13), the flow proceeds to step S14. Otherwise (NO in S13), the flow proceeds to step S16.
 ステップS14:制御部14Aは、RFID通信システム1Aの状態を送信停止モードに遷移させる。つまり制御部14Aは、RFID通信システム1Aの状態が送信停止モードであると記憶する。送信停止モードでは、RFIDタグと通信するためのアンテナ回路22への高周波電力の送出を、送受信回路12が行わない。すなわち送信停止モードとは、RFIDタグへの無線信号の送信を行わないアンテナ制御装置10Aの状態である。なお、送信停止モードはRFID通信システム1Aがシャットダウンすると解除される。あるいはアンテナ制御装置10Aは、上位システムからの指令により、送信停止モードが解除されるように構成されていてもよい。 Step S14: The control unit 14A shifts the state of the RFID communication system 1A to the transmission stop mode. That is, the control unit 14A stores that the state of the RFID communication system 1A is the transmission stop mode. In the transmission stop mode, the transmission / reception circuit 12 does not transmit high frequency power to the antenna circuit 22 for communicating with the RFID tag. That is, the transmission stop mode is a state of the antenna control device 10A that does not transmit the radio signal to the RFID tag. The transmission stop mode is canceled when the RFID communication system 1A shuts down. Alternatively, the antenna control device 10A may be configured so that the transmission stop mode is canceled by a command from the host system.
 ステップS15:続いて制御部14Aは、上位システムに対して、アンテナケーブル30Aが劣化している旨の、異常報知を実行する。なお、異常報知は、アンテナ制御装置10A自体が備える、図1に不図示のユーザへの報知機能によって実行してもよく、これを上位システムへの報知と合わせて実行してもよい。ユーザへの報知機能としては、例えば、ランプ表示、ディスプレイ表示等の視覚的な報知機能、音声または機械音等の聴覚的な報知機能など、公知の手法が適宜に適用可能である。次にフローは終了する。 Step S15: Subsequently, the control unit 14A executes an abnormality notification to the host system to the effect that the antenna cable 30A has deteriorated. The abnormality notification may be executed by the notification function for the user (not shown in FIG. 1) provided in the antenna control device 10A itself, or may be executed together with the notification to the host system. As the notification function to the user, for example, a known method such as a visual notification function such as a lamp display and a display display, and an auditory notification function such as voice or machine sound can be appropriately applied. Then the flow ends.
 ステップS16:制御部14Aは、送受信コマンドに従って、送受信回路12を制御し、RFIDタグへの所要の信号を搬送する高周波電力を、アンテナ回路22に対して送出する。予知用電線36の断線が検知されていないため、送受信回路12が高周波電力を出力しても故障等の不具合が生じないからである。上記高周波電力は、アンテナケーブル30Aの同軸線路34を通じてアンテナ回路22に送られる。そうして、アンテナ回路22からRFIDタグへの無線送信が実行される。次にフローは終了する。 Step S16: The control unit 14A controls the transmission / reception circuit 12 according to the transmission / reception command, and transmits high-frequency power for carrying the required signal to the RFID tag to the antenna circuit 22. This is because the disconnection of the predictive wire 36 has not been detected, so that even if the transmission / reception circuit 12 outputs high frequency power, no trouble such as a failure occurs. The high frequency power is sent to the antenna circuit 22 through the coaxial line 34 of the antenna cable 30A. Then, wireless transmission from the antenna circuit 22 to the RFID tag is executed. Then the flow ends.
 <作用、効果>
 アンテナ分離型のRFID通信システムにおいて、アンテナケーブルの同軸線路が破損すると、アンテナ回路から電磁波が放射されずRFIDタグとの交信ができなくなる。更には、送受信回路とアンテナ回路との間のインピーダンス整合が取れなくなるため、不要輻射を発生させ、周囲の機器に悪影響を与える怖れがある。
<Action, effect>
In an RFID communication system with a separate antenna, if the coaxial line of the antenna cable is damaged, electromagnetic waves are not radiated from the antenna circuit and communication with the RFID tag becomes impossible. Furthermore, since impedance matching between the transmission / reception circuit and the antenna circuit cannot be achieved, unnecessary radiation may be generated, which may adversely affect surrounding equipment.
 あるいは、アンテナケーブルの同軸線路が破損すると、送受信回路からアンテナ回路に向けて送出された高周波電力が、反射されて送受信回路に戻ることがある。RFID通信システムでは、高周波の電磁波をアンテナ装置から放射するために、比較的大電力の高周波が送受信回路から送出されるので、高周波電力が送受信回路に戻ると、送受信回路が故障する怖れもある。 Alternatively, if the coaxial line of the antenna cable is damaged, the high frequency power transmitted from the transmission / reception circuit toward the antenna circuit may be reflected and returned to the transmission / reception circuit. In RFID communication systems, since high-frequency electromagnetic waves are radiated from the antenna device, relatively high-frequency high-frequency waves are transmitted from the transmission / reception circuit, so if the high-frequency power returns to the transmission / reception circuit, the transmission / reception circuit may fail. ..
 実施形態1の構成例に係るRFID通信システム1Aでは、アンテナケーブル30Aに設けられた予知用電線の断線を検知することで、アンテナケーブル30Aの同軸線路34の破損に至る前にアンテナケーブル30Aの劣化を検出することができる。そうして、RFID通信システム1Aでは、アンテナケーブル30Aに劣化が生じていることが検出されると、送受信回路からアンテナ回路に向けて高周波電力が送出されなくなる。 In the RFID communication system 1A according to the configuration example of the first embodiment, the antenna cable 30A is deteriorated before the coaxial line 34 of the antenna cable 30A is damaged by detecting the disconnection of the prediction electric wire provided in the antenna cable 30A. Can be detected. Then, in the RFID communication system 1A, when it is detected that the antenna cable 30A has deteriorated, high frequency power is not transmitted from the transmission / reception circuit to the antenna circuit.
 そのため、実施形態1の構成例に係るRFID通信システム1Aでは、アンテナケーブル30Aの破損に伴う不要輻射の発生が抑えられる。あるいは、RFID通信システム1Aでは、アンテナケーブル30Aの破損に伴う送受信回路の故障発生が抑えられる。 Therefore, in the RFID communication system 1A according to the configuration example of the first embodiment, the generation of unnecessary radiation due to the breakage of the antenna cable 30A can be suppressed. Alternatively, in the RFID communication system 1A, the occurrence of failure of the transmission / reception circuit due to the breakage of the antenna cable 30A can be suppressed.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない場合がある。また符号において、数字に続いて最後の1文字がアルファベットとされている部材について、アルファベットのみが置き換わっている部材同士は、同様の機能を有する相応する部材である。このような同様の機能を有する部材についても、説明を繰り返さない場合がある。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals may be added to the members having the same functions as the members described in the above-described embodiment, and the description may not be repeated. Further, with respect to a member in which only the alphabet is replaced with respect to a member in which the last character following the number is an alphabet in the code, the members in which only the alphabet is replaced are corresponding members having the same function. The description may not be repeated for a member having such a similar function.
 <RFID通信システム1Bの構成>
 図4は、実施形態2に係るRFID通信システム1Bの構成を模式的に示す図である。RFID通信システム1Bは、アンテナ制御装置10Bと、アンテナ装置20Bと、アンテナケーブル30Bと、を備えている。RFID通信システム1Bのアンテナケーブル30Bは、実施形態1の構成例のアンテナケーブル30Aと異なり、予知用電線36を複数本有している。
<Structure of RFID communication system 1B>
FIG. 4 is a diagram schematically showing the configuration of the RFID communication system 1B according to the second embodiment. The RFID communication system 1B includes an antenna control device 10B, an antenna device 20B, and an antenna cable 30B. The antenna cable 30B of the RFID communication system 1B has a plurality of predictive wires 36, unlike the antenna cable 30A of the configuration example of the first embodiment.
 図5は、アンテナケーブル30Bの構造を模式的に示す断面図である。図示されるようにアンテナケーブル30Bでは、外被35が複数本の予知用電線36を内包している。更に、実施形態2に係るRFID通信システム1Bにおいては、図5に示すアンテナケーブル30Bに替えて、図6に示すアンテナケーブル30Cを用いてもよい。アンテナケーブル30Cでは、複数の予知用電線として、径が互いに異なる予知用電線36aと、予知用電線36bとを有している。予知用電線36bは、予知用電線36aよりも径が小さく、より断線しやすいようにされている。 FIG. 5 is a cross-sectional view schematically showing the structure of the antenna cable 30B. As shown in the figure, in the antenna cable 30B, the outer cover 35 includes a plurality of predictive electric wires 36. Further, in the RFID communication system 1B according to the second embodiment, the antenna cable 30C shown in FIG. 6 may be used instead of the antenna cable 30B shown in FIG. The antenna cable 30C has, as a plurality of predictive wires, a predictive wire 36a having different diameters and a predictive wire 36b. The predictive wire 36b has a smaller diameter than the predictive wire 36a so that the wire can be easily broken.
 アンテナケーブル30Bが予知用電線36を複数本有していることに伴い、実施形態2では、アンテナ制御装置10Bが、各予知用電線36にそれぞれ接続された第1接続線16と、各第1接続線16にそれぞれ接続された抵抗器13を有している。そうしてアンテナ制御装置10Bの制御部14Bは、各予知用電線36の電位を監視するように構成されている。またアンテナ装置20Bは、各予知用電線36にそれぞれ接続された第2接続線26を有している。 As the antenna cable 30B has a plurality of predictive wires 36, in the second embodiment, the antenna control device 10B has a first connection line 16 connected to each predictive wire 36 and a first connection line 16 for each. It has a resistor 13 connected to each of the connection lines 16. Then, the control unit 14B of the antenna control device 10B is configured to monitor the potential of each prediction electric wire 36. Further, the antenna device 20B has a second connection line 26 connected to each prediction electric wire 36.
 つまり、RFID通信システム1Bは、直列に接続された、抵抗器13、第1接続線16、予知用電線36、第2接続線26のセットを複数有している。制御部14Bは、それぞれのセットについて、抵抗器13の電圧源Vs側と反対側の端子の電位を監視し、各予知用電線36について断線の有無を検知できる。 That is, the RFID communication system 1B has a plurality of sets of a resistor 13, a first connection line 16, a prediction electric wire 36, and a second connection line 26 connected in series. The control unit 14B can monitor the potentials of the terminals on the opposite side of the voltage source Vs side of the resistor 13 for each set, and can detect the presence or absence of disconnection in each prediction electric wire 36.
 <RFID通信システム1Bの動作>
 次に、実施形態2に係るRFID通信システム1Bの動作が、図3のフローチャートを参照しつつ説明される。RFID通信システム1Bは、RFID通信システム1Bの状態が送信停止モードではない場合に、図3のフローチャートに示されるフローを繰り返し実行する。
<Operation of RFID communication system 1B>
Next, the operation of the RFID communication system 1B according to the second embodiment will be described with reference to the flowchart of FIG. The RFID communication system 1B repeatedly executes the flow shown in the flowchart of FIG. 3 when the state of the RFID communication system 1B is not the transmission stop mode.
 ステップS21:アンテナ制御装置10Bの制御部14Bは、RFIDタグとの送受信を実行すべき旨の、送受信コマンドを上位システムから受信しているか否かを判断する。受信していると判断される場合(S21でYES)、フローはステップS22に進む。それ以外の場合(S21でNO)、フローはステップS21に戻る。 Step S21: The control unit 14B of the antenna control device 10B determines whether or not a transmission / reception command to the effect that transmission / reception with the RFID tag should be executed has been received from the host system. If it is determined that the signal has been received (YES in S21), the flow proceeds to step S22. Otherwise (NO in S21), the flow returns to step S21.
 ステップS22:制御部14Bは、監視する各電位の値を取得する。 Step S22: The control unit 14B acquires the value of each potential to be monitored.
 ステップS23:続いて制御部14Bは、取得した各電位の値から、予知用電線36が断線しているか否かを判断する。少なくとも1本の予知用電線が断線していると判断される場合(S23でYES)、フローはステップS24に進む。それ以外の場合(S23でNO)、フローはステップS29に進む。 Step S23: Subsequently, the control unit 14B determines from the acquired potential values whether or not the prediction wire 36 is broken. If it is determined that at least one predictive wire is broken (YES in S23), the flow proceeds to step S24. Otherwise (NO in S23), the flow proceeds to step S29.
 ステップS24:制御部14Bは、取得した各電位の値から、予知用電線36が何本断線しているかによって、劣化レベルを判断する。その際、制御部14Bは、予知用電線36が多く断線しているほど、劣化レベルが高くなるように決定する。 Step S24: The control unit 14B determines the deterioration level from the acquired potential values depending on how many predictive wires 36 are broken. At that time, the control unit 14B determines that the more the predictive wire 36 is broken, the higher the deterioration level.
 ステップS25:続いて制御部14Bは、劣化レベルが予め設定されたレベル以上であるか否かを判断する。予め設定されたレベル以上であると判断される場合(S25でYES)、フローはステップS26に進む。それ以外の場合(S25でNO)、フローはステップS28に進む。 Step S25: Subsequently, the control unit 14B determines whether or not the deterioration level is equal to or higher than the preset level. If it is determined that the level is equal to or higher than the preset level (YES in S25), the flow proceeds to step S26. Otherwise (NO in S25), the flow proceeds to step S28.
 ステップS26:制御部14Bは、RFID通信システム1Bの状態を送信停止モードに遷移させる。つまり制御部14Bは、RFID通信システム1Bの状態が送信停止モードであると記憶する。送信停止モードでは、RFIDタグと通信するためのアンテナ回路22への高周波電力の送出を、送受信回路12が行わない。すなわち送信停止モードとは、RFIDタグへの無線信号の送信を行わないアンテナ制御装置10Bの状態である。なお、送信停止モードはRFID通信システム1Bがシャットダウンすると解除される。あるいはアンテナ制御装置10Bは、上位システムからの指令により、送信停止モードが解除されるように構成されていてもよい。 Step S26: The control unit 14B shifts the state of the RFID communication system 1B to the transmission stop mode. That is, the control unit 14B stores that the state of the RFID communication system 1B is the transmission stop mode. In the transmission stop mode, the transmission / reception circuit 12 does not transmit high frequency power to the antenna circuit 22 for communicating with the RFID tag. That is, the transmission stop mode is a state of the antenna control device 10B that does not transmit the radio signal to the RFID tag. The transmission stop mode is canceled when the RFID communication system 1B shuts down. Alternatively, the antenna control device 10B may be configured so that the transmission stop mode is canceled by a command from the host system.
 ステップS27:続いて制御部14Bは、上位システムに対して、アンテナケーブル30Bが劣化している旨の、異常報知を実行する。なお、異常報知は、アンテナ制御装置10B自体が備える、図1に不図示のユーザへの報知機能によって実行してもよく、これを上位システムへの報知と合わせて実行してもよい。次にフローは終了する。 Step S27: Subsequently, the control unit 14B executes an abnormality notification to the host system to the effect that the antenna cable 30B has deteriorated. The abnormality notification may be executed by the notification function to the user (not shown in FIG. 1) provided in the antenna control device 10B itself, or may be executed together with the notification to the host system. Then the flow ends.
 ステップS28:制御部14Bは、上位システムに対して、アンテナケーブル30Bの劣化レベルを報知する。なお、劣化レベルの報知は、アンテナ制御装置10B自体が備える、図4に不図示のユーザへの報知機能によって実行してもよく、これを上位システムへの報知と合わせて実行してもよい。次にフローはステップS29に進む。 Step S28: The control unit 14B notifies the host system of the deterioration level of the antenna cable 30B. The deterioration level notification may be executed by the notification function for the user (not shown in FIG. 4) provided in the antenna control device 10B itself, or may be executed together with the notification to the host system. Next, the flow proceeds to step S29.
 ステップS29:制御部14Bは、送受信コマンドに従って、送受信回路12を制御し、RFIDタグへの所要の信号を搬送する高周波電力を、アンテナ回路22に対して送出する。アンテナケーブル30Bに所定以上の劣化が生じていないと判断されるためである。上記高周波電力は、アンテナケーブル30Bの同軸線路34を通じてアンテナ回路22に送られる。そうして、アンテナ回路22からRFIDタグへの無線送信が実行される。次にフローは終了する。 Step S29: The control unit 14B controls the transmission / reception circuit 12 according to the transmission / reception command, and transmits high-frequency power for carrying a required signal to the RFID tag to the antenna circuit 22. This is because it is determined that the antenna cable 30B has not deteriorated more than a predetermined value. The high frequency power is sent to the antenna circuit 22 through the coaxial line 34 of the antenna cable 30B. Then, wireless transmission from the antenna circuit 22 to the RFID tag is executed. Then the flow ends.
 <作用、効果>
 実施形態2の構成例に係るRFID通信システム1Bでは、アンテナケーブル30Bに予知用電線が複数設けられることで、断線した予知用電線の本数に応じて、アンテナケーブル30Bの劣化レベルが判定され報知される。よってRFID通信システム1Bでは、RFID通信システム1Bが送信停止モードとなるアンテナケーブル30Bの劣化状態に至る前に、ユーザにアンテナケーブル30Bの交換を促すことができる。
<Action, effect>
In the RFID communication system 1B according to the configuration example of the second embodiment, the antenna cable 30B is provided with a plurality of predictive wires, so that the deterioration level of the antenna cable 30B is determined and notified according to the number of the broken predictive wires. To. Therefore, in the RFID communication system 1B, the user can be urged to replace the antenna cable 30B before the RFID communication system 1B reaches the deteriorated state of the antenna cable 30B in the transmission stop mode.
 また、RFID通信システム1Bでは、アンテナケーブル30Aの同軸線路34が所定の劣化レベル以上であると判定されると、送受信回路からアンテナ回路に向けて高周波電力が送出されなくなる。従って、アンテナケーブル30Aが破損している状態で送受信回路12から高周波電力が出力されて、送受信回路12が故障する、あるいはRFID通信システム1Bから不要輻射が放射されるという問題の発生が抑えられる。 Further, in the RFID communication system 1B, when it is determined that the coaxial line 34 of the antenna cable 30A is at least a predetermined deterioration level, high frequency power is not transmitted from the transmission / reception circuit to the antenna circuit. Therefore, it is possible to suppress the occurrence of problems that high frequency power is output from the transmission / reception circuit 12 in a state where the antenna cable 30A is damaged, the transmission / reception circuit 12 fails, or unnecessary radiation is emitted from the RFID communication system 1B.
 更に、アンテナケーブルが太さが互いに異なる電線を有している場合、あるいは、材質が互いに異なる電線を有している場合には、断線の生じやすさが異なる電線をアンテナケーブルが有することができるようになる。よって、アンテナケーブルへの機械的ストレスによる劣化の状態の広い範囲に亘って劣化の状態を区別して検出できるRFID通信システムを実現することができるようになる。 Further, when the antenna cables have electric wires having different thicknesses, or when the antenna cables have electric wires having different materials, the antenna cables can have electric wires having different susceptibility to disconnection. It will be like. Therefore, it becomes possible to realize an RFID communication system that can distinguish and detect the deterioration state over a wide range of the deterioration state due to the mechanical stress on the antenna cable.
 〔実施形態3〕
 図8は、実施形態3に係るRFID通信システム1Dの構成を模式的に示す図である。RFID通信システム1Dは、アンテナ制御装置10Dと、アンテナ装置20Dと、アンテナケーブル30Dと、を備えている。RFID通信システム1Dは、実施形態2のRFID通信システム1Bから以下の点が異なる。
[Embodiment 3]
FIG. 8 is a diagram schematically showing the configuration of the RFID communication system 1D according to the third embodiment. The RFID communication system 1D includes an antenna control device 10D, an antenna device 20D, and an antenna cable 30D. The RFID communication system 1D differs from the RFID communication system 1B of the second embodiment in the following points.
 RFID通信システム1Dのアンテナケーブル30Dは、実施形態2のアンテナケーブル30Bと異なり、それぞれの予知用電線36の線路上に、抵抗素子Rが設けられている。予知用電線36の線路上の抵抗素子Rは、図8に示されるように、アンテナ装置側のコネクタ38D内に配置されていてもよい。しかし、アンテナ制御装置側のコネクタ37D内に配置されていてもよいし、アンテナケーブル30Dの外被35内に配置されていてもよい。更には、予知用電線36自体が比較的大きな抵抗成分を持ち、実質的に抵抗素子Rと同様の機能を果たすように構成してもよい。 Unlike the antenna cable 30B of the second embodiment, the antenna cable 30D of the RFID communication system 1D is provided with a resistance element R on the line of each prediction electric wire 36. As shown in FIG. 8, the resistance element R on the line of the predictive wire 36 may be arranged in the connector 38D on the antenna device side. However, it may be arranged in the connector 37D on the antenna control device side, or may be arranged in the outer cover 35 of the antenna cable 30D. Further, the predictive wire 36 itself may have a relatively large resistance component and may be configured to perform substantially the same function as the resistance element R.
 RFID通信システム1Dのアンテナ制御装置10Dは、実施形態2のアンテナ制御装置10Bと異なり、電圧源Vsに接続される単一の抵抗器13を有している。そうして、それぞれの第1接続線16は、抵抗器13の電圧源Vsと反対側の端子に接続されている。制御部14Dは、A/D変換器15を介して、抵抗器13の電圧源Vsと反対側の端子の電位を監視する。 Unlike the antenna control device 10B of the second embodiment, the antenna control device 10D of the RFID communication system 1D has a single resistor 13 connected to the voltage source Vs. Then, each first connection line 16 is connected to a terminal on the opposite side of the voltage source Vs of the resistor 13. The control unit 14D monitors the potential of the terminal on the opposite side of the voltage source Vs of the resistor 13 via the A / D converter 15.
 このような構成により、抵抗器13の電圧源Vsと反対側の端子の部分から、アンテナケーブル30D側を見た抵抗値は、複数の予知用電線36のうち断線した本数に応じて、変化する。あるいは上記抵抗値は、予知用電線36について互いに異なる抵抗の大きさが設定されている場合には、その抵抗の大きさに応じても変化する。よって、制御部14Dは、上記抵抗値の変化によって生じる、抵抗器13の電圧源Vsと反対側の端子の電位の変化から、複数の予知用電線36についての断線の状況を検知することができる。 With such a configuration, the resistance value when the antenna cable 30D side is viewed from the terminal portion on the opposite side of the voltage source Vs of the resistor 13 changes according to the number of broken wires among the plurality of predictive wires 36. .. Alternatively, when the resistance values different from each other are set for the predictive wire 36, the resistance value also changes according to the resistance magnitude. Therefore, the control unit 14D can detect the disconnection status of the plurality of predictive wires 36 from the change in the potential of the terminal on the opposite side of the voltage source Vs of the resistor 13 caused by the change in the resistance value. ..
 従って、実施形態3に係るRFID通信システム1Dでは、複数の予知用電線36についての断線の状況の検知の方法が、実施形態2に係るRFID通信システム1Bとは異なるが、図3のフローチャートに示された実施形態2における動作と同様の動作をする。このことにより、実施形態3に係るRFID通信システム1Dでは、実施形態2と同様の効果を得ることができる。 Therefore, in the RFID communication system 1D according to the third embodiment, the method of detecting the disconnection status of the plurality of predictive wires 36 is different from the RFID communication system 1B according to the second embodiment, but it is shown in the flowchart of FIG. The operation is similar to the operation in the second embodiment. As a result, in the RFID communication system 1D according to the third embodiment, the same effect as that of the second embodiment can be obtained.
 〔実施形態4〕
 図8は、実施形態4に係るRFID通信システム1Eの構成を模式的に示す図である。RFID通信システム1Eは、アンテナ制御装置10Eと、アンテナ装置20Eと、アンテナケーブル30Eと、を備えている。RFID通信システム1Eは、実施形態3のRFID通信システム1Dから以下の点が異なる。
[Embodiment 4]
FIG. 8 is a diagram schematically showing the configuration of the RFID communication system 1E according to the fourth embodiment. The RFID communication system 1E includes an antenna control device 10E, an antenna device 20E, and an antenna cable 30E. The RFID communication system 1E differs from the RFID communication system 1D of the third embodiment in the following points.
 実施形態3に係るRFID通信システム1Dにおいて、アンテナケーブル30D内で予知用電線36の線路上に設けられていた抵抗素子Rが、実施形態4に係るRFID通信システム1Eでは、アンテナ装置20E内の第2線路上へと移動して配置されている。しかし、抵抗素子Rの配置位置が変更されたのみで、RFID通信システム1Eは、実施形態3に係るRFID通信システム1Dと同様に動作する。 In the RFID communication system 1D according to the third embodiment, the resistance element R provided on the line of the prediction electric wire 36 in the antenna cable 30D is the first in the antenna device 20E in the RFID communication system 1E according to the fourth embodiment. 2 Moved to the top of the track and placed. However, the RFID communication system 1E operates in the same manner as the RFID communication system 1D according to the third embodiment only by changing the arrangement position of the resistance element R.
 従って、実施形態4に係るRFID通信システム1Eでは、実施形態3と同様の効果を得ることができる。更に、抵抗素子Rをアンテナケーブル内でなく、アンテナ装置20E内に設けるようにしたことで、抵抗素子Rの配置が容易になる利点がある。 Therefore, in the RFID communication system 1E according to the fourth embodiment, the same effect as that of the third embodiment can be obtained. Further, by providing the resistance element R not in the antenna cable but in the antenna device 20E, there is an advantage that the resistance element R can be easily arranged.
 〔ソフトウェアによる実現例〕
 RFID通信システム1A~1Eの制御ブロック(特に制御部14A~14E)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。後者の場合、RFID通信システム1A~1Eは、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。
[Example of implementation by software]
The control blocks (particularly the control units 14A to 14E) of the RFID communication systems 1A to 1E may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. good. In the latter case, the RFID communication systems 1A to 1E include a computer that executes a program instruction, which is software that realizes each function.
 このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。 This computer is equipped with, for example, one or more processors and a computer-readable recording medium in which the above program is stored. Then, in the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
 上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。 As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided.
 また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 上述した各実施形態において、予知用電線36の断線を検出する手段は以下のように構成された。アンテナ制御装置10A~10Eに設けられた、一端が所定の第1電位V1とされた抵抗器13と、一端が抵抗器13の他端に接続され、他端が予知用電線36に接続されている第1接続線16。アンテナ装置20A~20Eに設けられた、一端が予知用電線36に接続され、他端が所定の第2電位V2にされた第2接続線26。そうして制御部14A~14Eが、抵抗器13の前記他端の電位を監視することによって、予知用電線36の断線を検知するものであった。 In each of the above-described embodiments, the means for detecting the disconnection of the predictive wire 36 is configured as follows. A resistor 13 provided in the antenna control devices 10A to 10E having one end having a predetermined first potential V1 and one end connected to the other end of the resistor 13 and the other end connected to the prediction electric wire 36. First connection line 16 A second connecting line 26 provided in the antenna devices 20A to 20E, one end of which is connected to the predictive wire 36 and the other end of which is set to a predetermined second potential V2. Then, the control units 14A to 14E detect the disconnection of the predictive wire 36 by monitoring the potential of the other end of the resistor 13.
 しかし、本発明の予知用電線の断線を検出する手段は、他の方法であってもよい。例えば、予知用電線を2本用いてアンテナ制御装置とアンテナ装置との間をループバックさせる構成とする。そうして、アンテナ制御装置から信号、例示としてパルス信号を発信し、予知用電線2本を経由して戻ってきた信号を正しく受信できるかどうかで判断する方法が挙げられる。また、予知用電線に流れる電流が生じる磁界を検出することで、電流の有無を検知し、予知用電線の断線を検出する方法によってもよい。あるいは予知用電線に電流が流れているかを、誘導電流によって検出する方法によってもよい。 However, the means for detecting the disconnection of the predictive wire of the present invention may be another method. For example, two predictive wires are used to loop back between the antenna control device and the antenna device. Then, a method of transmitting a signal, for example, a pulse signal from the antenna control device, and determining whether or not the signal returned via the two predictive wires can be correctly received can be mentioned. Further, a method of detecting the presence or absence of a current and detecting the disconnection of the predictive wire by detecting the magnetic field in which the current flowing through the predictive wire is generated may be used. Alternatively, a method of detecting whether or not a current is flowing in the predictive wire by an induced current may be used.
 上述した各実施形態において、制御部14A~14Eが予知用電線36の1本または所定の本数以上の断線を検出した場合の動作は、次のようなものであった。制御部14A~14Eが、アンテナ装置20A~20Eに向けた高周波電力の出力を停止させるように、送受信回路12を制御する。 In each of the above-described embodiments, the operation when the control units 14A to 14E detect one of the predictive wires 36 or a disconnection of a predetermined number or more is as follows. The control units 14A to 14E control the transmission / reception circuit 12 so as to stop the output of the high frequency power toward the antenna devices 20A to 20E.
 しかし、この場合の動作として、制御部14A~14Eが、アンテナ装置20A~20Eに向けた高周波電力の出力を弱くさせるように、送受信回路12を制御するものであってもよい。高周波電力の出力を弱くさせることによっても、送受信回路12が故障する、あるいはRFID通信システム1A~1Eから不要輻射が放射されるという問題の発生が抑えることが可能となる。 However, as an operation in this case, the control units 14A to 14E may control the transmission / reception circuit 12 so as to weaken the output of the high frequency power toward the antenna devices 20A to 20E. By weakening the output of high-frequency power, it is possible to suppress the occurrence of the problem that the transmission / reception circuit 12 fails or unnecessary radiation is emitted from the RFID communication systems 1A to 1E.
 あるいは、RFID通信システムがRFIDタグへの無線送信を行うアンテナ回路を有する予備用アンテナ装置と、予備用アンテナ装置と前記アンテナ制御装置とを接続する予備用アンテナケーブルと、を更に備えていてもよい。この場合に制御部は、予知用電線の1本または所定の本数以上の断線を検知すると、前記アンテナ装置に向けた高周波電力の出力を停止させるとともに、予備用アンテナ装置への高周波電力の出力を行わせるように、前記送信回路を制御するようにしてもよい。このような構成によれば、アンテナケーブルに破損が生じた場合であっても、予備用アンテナ装置を用いてRFIDタグとの通信を維持することができるようになる。 Alternatively, the RFID communication system may further include a spare antenna device having an antenna circuit for wireless transmission to the RFID tag, and a spare antenna cable connecting the spare antenna device and the antenna control device. .. In this case, when the control unit detects a disconnection of one of the predictive wires or a predetermined number or more, the output of the high frequency power to the antenna device is stopped and the output of the high frequency power to the spare antenna device is output. The transmission circuit may be controlled so as to be performed. With such a configuration, even if the antenna cable is damaged, the spare antenna device can be used to maintain communication with the RFID tag.
 〔まとめ〕
 本発明の一側面に係るRFID通信システムは、RFIDタグへの無線送信を行うアンテナ回路を有するアンテナ装置と、前記アンテナ回路が前記無線送信をするための高周波電力を出力する送信回路と、前記送信回路を制御する制御部と、を有するアンテナ制御装置と、前記アンテナ装置と、前記アンテナ制御装置とを接続するアンテナケーブルであって、前記高周波電力を伝送するための同軸線路と、前記同軸線路を被覆する外被と、前記外被に内包された電線と、を有するアンテナケーブルと、前記電線の断線を検出するための部材と、を備え、前記制御部は、前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御する。
〔summary〕
The RFID communication system according to one aspect of the present invention includes an antenna device having an antenna circuit that performs wireless transmission to an RFID tag, a transmission circuit that outputs high-frequency power for the antenna circuit to perform wireless transmission, and the transmission. An antenna control device having a control unit for controlling a circuit, an antenna cable for connecting the antenna device and the antenna control device, and a coaxial line for transmitting the high frequency power and the coaxial line. An antenna cable having an outer cover to be covered, an electric wire contained in the outer cover, and a member for detecting a disconnection of the electric wire are provided, and the control unit detects the disconnection of the electric wire. In addition, the transmission circuit is controlled so as to stop or weaken the output of the high frequency power.
 上記構成によれば、アンテナケーブルの破損に起因する送信回路の故障発生または不要輻射の発生の少なくともいずれかが抑えられるRFID通信システムが実現できる。 According to the above configuration, it is possible to realize an RFID communication system in which at least one of the occurrence of failure of the transmission circuit or the occurrence of unnecessary radiation due to the breakage of the antenna cable is suppressed.
 上記一側面に係るRFID通信システムにおいて、前記電線の断線を検出するための部材は、前記アンテナ制御装置に設けられた、一端が所定の第1電位とされた抵抗器と、一端が前記抵抗器の他端に接続され、他端が前記電線に接続されている第1接続線と、前記アンテナ装置に設けられた、一端が前記電線に接続され、他端が所定の第2電位にされた第2接続線と、によって構成され、前記制御部が、前記抵抗器の前記他端の電位を監視することによって、前記電線の断線を検知するものであってもよい。上記構成によれば、前記電線の断線を検出する部材を具体的に構成することができる。 In the RFID communication system according to the one aspect, the member for detecting the disconnection of the electric wire includes a resistor provided in the antenna control device having a predetermined first potential at one end and the resistor at one end. A first connection line connected to the other end of the wire and the other end connected to the electric wire, and one end connected to the electric wire provided in the antenna device and the other end having a predetermined second potential. It may be configured by a second connecting wire, and the control unit may detect the disconnection of the electric wire by monitoring the potential of the other end of the resistor. According to the above configuration, the member for detecting the disconnection of the electric wire can be specifically configured.
 上記一側面に係るRFID通信システムにおいて、RFIDタグへの無線送信を行うアンテナ回路を有する予備用アンテナ装置と、前記アンテナ装置と、前記アンテナ制御装置とを接続する予備用アンテナケーブルと、を更に備え、前記制御部は、前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるとともに、前記予備用アンテナ装置への高周波電力の出力を行わせるように、前記送信回路を制御する構成を備えていてもよい。上記構成によれば、アンテナケーブルに破損が生じた場合であっても、RFIDタグとの通信を維持することができるようになる。 The RFID communication system according to the above aspect further includes a spare antenna device having an antenna circuit for wireless transmission to the RFID tag, and a spare antenna cable for connecting the antenna device and the antenna control device. The control unit controls the transmission circuit so as to stop the output of the high-frequency power and output the high-frequency power to the spare antenna device when the disconnection of the electric wire is detected. May be provided. According to the above configuration, communication with the RFID tag can be maintained even if the antenna cable is damaged.
 上記一側面に係るRFID通信システムにおいて、前記アンテナケーブルは、前記電線を複数有し、前記アンテナ制御装置は、それぞれの前記電線毎に前記第1接続線と、前記抵抗器とを有しており、前記制御部は、各前記抵抗器の前記他端の電位の変化を監視することによって、複数の前記電線のそれぞれについて断線を検知し、前記制御部は、所定の本数以上の前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御する構成としてもよい。 In the RFID communication system according to the one aspect, the antenna cable has a plurality of the electric wires, and the antenna control device has the first connection line and the resistor for each of the electric wires. By monitoring the change in the potential of the other end of each of the resistors, the control unit detects a disconnection of each of the plurality of electric wires, and the control unit detects disconnection of the electric wires of a predetermined number or more. The transmission circuit may be controlled so as to stop or weaken the output of the high frequency power when the above is detected.
 上記構成によれば、アンテナケーブルの破損の予知をより確実にすることができるRFID通信システムが実現できる。更には、電線の断線状況に応じた警告を報知することで、ユーザにアンテナケーブルの交換を促すことができるようになる。 According to the above configuration, it is possible to realize an RFID communication system that can more reliably predict damage to the antenna cable. Furthermore, by notifying the warning according to the disconnection state of the electric wire, it becomes possible to urge the user to replace the antenna cable.
 上記一側面に係るRFID通信システムにおいて、前記アンテナケーブルは、前記電線を複数有し、前記アンテナ制御装置は、それぞれの前記電線毎に前記第1接続線を有しており、それぞれの前記第1接続線の前記一端は、単一の前記抵抗器の前記他端に接続されており、前記制御部は、前記抵抗器の前記他端の電位の変化を監視することによって、複数の前記電線における断線の本数を検知し、前記制御部は、所定の本数以上の前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御する構成としてもよい。 In the RFID communication system according to the one aspect, the antenna cable has a plurality of the electric wires, and the antenna control device has the first connection line for each of the electric wires, and the first connection line is provided. The one end of the connecting wire is connected to the other end of the single resistor, and the control unit monitors the change in the potential of the other end of the resistor in the plurality of electric wires. The control unit may control the transmission circuit so as to stop or weaken the output of the high-frequency power when the number of disconnections is detected and the disconnection of the wires of a predetermined number or more is detected. good.
 上記構成によれば、アンテナケーブルの破損の予知をより確実にすることができるRFID通信システムが実現できる。更には、電線の断線状況に応じた警告を報知することで、ユーザにアンテナケーブルの交換を促すことができるようになる。 According to the above configuration, it is possible to realize an RFID communication system that can more reliably predict damage to the antenna cable. Furthermore, by notifying the warning according to the disconnection state of the electric wire, it becomes possible to urge the user to replace the antenna cable.
 上記一側面に係るRFID通信システムにおいて、前記アンテナケーブルは、端部に前記アンテナ装置に接続するためのコネクタを有し、前記コネクタ中に、各前記電線の線路上にそれぞれ設けられた抵抗素子を有していてもよい。上記構成によれば、制御部が、抵抗器の前記他端の電位の変化を監視することによって、複数の電線における断線の本数を検知することができるようになるアンテナケーブルを具体的に構成することができる。 In the RFID communication system according to the one aspect, the antenna cable has a connector at an end for connecting to the antenna device, and a resistance element provided on the line of each of the electric wires is inserted in the connector. You may have. According to the above configuration, the control unit specifically configures an antenna cable that can detect the number of broken wires in a plurality of electric wires by monitoring the change in the potential of the other end of the resistor. be able to.
 上記一側面に係るRFID通信システムにおいて、前記アンテナ装置は、それぞれの前記電線毎に前記第2接続線を有しており、更に、各前記第2接続線の線路上にそれぞれ設けられた抵抗素子を有していてもよい。上記構成によれば、アンテナケーブルの構造を複雑化することなく、制御部が、抵抗器の前記他端の電位の変化を監視することによって、複数の電線における断線の本数を検知することができるようになるRFID通信システムを構成することができる。 In the RFID communication system according to the one aspect, the antenna device has the second connection line for each of the electric wires, and further, a resistance element provided on the line of each of the second connection lines. May have. According to the above configuration, the control unit can detect the number of broken wires in a plurality of electric wires by monitoring the change in the potential of the other end of the resistor without complicating the structure of the antenna cable. It is possible to configure an RFID communication system such as.
 上記一側面に係るRFID通信システムにおいて、前記制御部は、複数の前記電線のうちの少なくとも1つの前記電線の断線を検知した場合に、異常を報知する構成としてもよい。上記構成によれば、RFID通信システムが送信停止となるアンテナケーブルの劣化状態に至る前に、ユーザにアンテナケーブルの交換を促すことができるようになる。 In the RFID communication system according to the one aspect, the control unit may be configured to notify an abnormality when it detects a disconnection of at least one of the plurality of electric wires. According to the above configuration, the user can be urged to replace the antenna cable before the RFID communication system reaches the deteriorated state of the antenna cable in which the transmission is stopped.
 上記一側面に係るRFID通信システムにおいて、前記アンテナケーブルは、太さが互いに異なる前記電線を有していてもよい。上記構成によれば、断線の生じやすさが異なる電線をアンテナケーブルが有することができ、アンテナケーブルのストレスによる劣化の状態の広い範囲に亘って劣化の状態を区別して検出できるRFID通信システムを実現することができるようになる。 In the RFID communication system according to the one aspect, the antenna cable may have the electric wires having different thicknesses. According to the above configuration, the antenna cable can have electric wires having different susceptibility to disconnection, and an RFID communication system capable of distinguishing and detecting the deteriorated state over a wide range of the deteriorated state due to the stress of the antenna cable is realized. You will be able to.
 上記一側面に係るRFID通信システムにおいて、前記アンテナケーブルは、材質が互いに異なる前記電線を有していてもよい。上記構成によれば、断線の生じやすさが異なる電線をアンテナケーブルが有することができ、アンテナケーブルのストレスによる劣化の状態の広い範囲に亘って劣化の状態を区別して検出できるRFID通信システムを実現することができるようになる。 In the RFID communication system according to the one aspect, the antenna cable may have the electric wires made of different materials. According to the above configuration, the antenna cable can have electric wires having different susceptibility to disconnection, and an RFID communication system capable of distinguishing and detecting the deteriorated state over a wide range of the deteriorated state due to the stress of the antenna cable is realized. You will be able to.
 本発明の各側面に係るRFID通信システムの一部は、コンピュータによって実現してもよい。この場合には、コンピュータを前記RFID通信システムが備える制御部として動作させることにより前記RFID通信システムの一部をコンピュータにて実現させるRFID通信システムの制御プログラム、及びそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 A part of the RFID communication system according to each aspect of the present invention may be realized by a computer. In this case, a control program of the RFID communication system that realizes a part of the RFID communication system by the computer by operating the computer as a control unit included in the RFID communication system, and a computer-readable record that records the control program. The medium also falls within the scope of the present invention.
 1A~1E RFID通信システム
 10A~10E アンテナ制御装置
 11A~11E アンテナケーブル接続用コネクタ
 12 送受信回路(送信回路)
 13 抵抗器
 14A~14E 制御部
 15 A/D変換器
 16 第1接続線
 Vs 電圧源
 20A~20E アンテナ装置
 21A~21E アンテナケーブル接続用コネクタ
 22 アンテナ回路
 26 第2接続線
 E アース
 30A~30E アンテナケーブル
 31 内部導体
 32 外部導体
 33 絶縁体
 34 同軸線路
 35 外被
 36 予知用電線(電線)
 37A~37E アンテナ制御装置側のコネクタ
 38A~38E アンテナ装置側のコネクタ
 R 抵抗素子
1A to 1E RFID communication system 10A to 10E Antenna controller 11A to 11E Antenna cable connection connector 12 Transmission / reception circuit (transmission circuit)
13 Resistor 14A-14E Control unit 15 A / D converter 16 1st connection line Vs Voltage source 20A-20E Antenna device 21A-21E Antenna cable connection connector 22 Antenna circuit 26 2nd connection line E Earth 30A-30E Antenna cable 31 Internal conductor 32 External conductor 33 Insulator 34 Coaxial line 35 Outer cover 36 Prediction wire (electric wire)
37A-37E Connector on the antenna control device side 38A-38E Connector on the antenna device side R Resistance element

Claims (10)

  1.  RFIDタグへの無線送信を行うアンテナ回路を有するアンテナ装置と、
     前記アンテナ回路が前記無線送信をするための高周波電力を出力する送信回路と、前記送信回路を制御する制御部と、を有するアンテナ制御装置と、
     前記アンテナ装置と、前記アンテナ制御装置とを接続するアンテナケーブルであって、前記高周波電力を伝送するための同軸線路と、前記同軸線路を被覆する外被と、前記外被に内包された電線と、を有するアンテナケーブルと、
     前記電線の断線を検出するための部材と、を備え、
     前記制御部は、前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御することを特徴とする、RFID通信システム。
    An antenna device having an antenna circuit for wireless transmission to an RFID tag,
    An antenna control device having a transmission circuit for outputting high-frequency power for the antenna circuit to perform wireless transmission, and a control unit for controlling the transmission circuit.
    An antenna cable for connecting the antenna device and the antenna control device, the coaxial line for transmitting the high frequency power, the outer cover covering the coaxial line, and the electric wire included in the outer cover. With an antenna cable,
    A member for detecting a break in the electric wire is provided.
    The RFID communication system is characterized in that the control unit controls the transmission circuit so as to stop or weaken the output of the high frequency power when the disconnection of the electric wire is detected.
  2.  前記電線の断線を検出するための部材は、
     前記アンテナ制御装置に設けられた、一端が所定の第1電位とされた抵抗器と、一端が前記抵抗器の他端に接続され、他端が前記電線に接続されている第1接続線と、
     前記アンテナ装置に設けられた、一端が前記電線に接続され、他端が所定の第2電位にされた第2接続線と、
     によって構成され、
     前記制御部が、前記抵抗器の前記他端の電位を監視することによって、前記電線の断線を検知することを特徴とする、請求項1に記載のRFID通信システム。
    The member for detecting the disconnection of the electric wire is
    A resistor provided in the antenna control device having one end having a predetermined first potential, and a first connection line having one end connected to the other end of the resistor and the other end connected to the electric wire. ,
    A second connecting wire provided in the antenna device, one end of which is connected to the electric wire and the other end of which is set to a predetermined second potential.
    Consists of
    The RFID communication system according to claim 1, wherein the control unit detects a disconnection of the electric wire by monitoring the potential of the other end of the resistor.
  3.  RFIDタグへの無線送信を行うアンテナ回路を有する予備用アンテナ装置と、前記アンテナ装置と、前記アンテナ制御装置とを接続する予備用アンテナケーブルと、を更に備え、
     前記制御部は、前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるとともに、前記予備用アンテナ装置への高周波電力の出力を行わせるように、前記送信回路を制御することを特徴とする、請求項1に記載のRFID通信システム。
    A spare antenna device having an antenna circuit for wirelessly transmitting to an RFID tag, and a spare antenna cable for connecting the antenna device and the antenna control device are further provided.
    The control unit controls the transmission circuit so as to stop the output of the high-frequency power and output the high-frequency power to the spare antenna device when the disconnection of the electric wire is detected. The RFID communication system according to claim 1, wherein the RFID communication system is characterized.
  4.  前記アンテナケーブルは、前記電線を複数有し、
     前記アンテナ制御装置は、それぞれの前記電線毎に前記第1接続線と、前記抵抗器とを有しており、
     前記制御部は、各前記抵抗器の前記他端の電位の変化を監視することによって、複数の前記電線のそれぞれについて断線を検知し、
     前記制御部は、所定の本数以上の前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御することを特徴とする、請求項2に記載のRFID通信システム。
    The antenna cable has a plurality of the electric wires, and the antenna cable has a plurality of the electric wires.
    The antenna control device has the first connection line and the resistor for each of the electric wires.
    The control unit detects a disconnection in each of the plurality of electric wires by monitoring the change in the potential of the other end of each of the resistors.
    The second aspect of the present invention is characterized in that the control unit controls the transmission circuit so as to stop or weaken the output of the high frequency power when the disconnection of a predetermined number or more of the electric wires is detected. The RFID communication system described.
  5.  前記アンテナケーブルは、前記電線を複数有し、
     前記アンテナ制御装置は、それぞれの前記電線毎に前記第1接続線を有しており、それぞれの前記第1接続線の前記一端は、単一の前記抵抗器の前記他端に接続されており、
     前記制御部は、前記抵抗器の前記他端の電位の変化を監視することによって、複数の前記電線における断線の本数を検知し、
     前記制御部は、所定の本数以上の前記電線の断線を検知した場合に、前記高周波電力の出力を停止させるかまたは弱くさせるように前記送信回路を制御することを特徴とする、請求項2に記載のRFID通信システム。
    The antenna cable has a plurality of the electric wires, and the antenna cable has a plurality of the electric wires.
    The antenna control device has the first connecting line for each of the electric wires, and one end of each of the first connecting lines is connected to the other end of a single resistor. ,
    The control unit detects the number of disconnections in the plurality of electric wires by monitoring the change in the potential of the other end of the resistor.
    The second aspect of the present invention is characterized in that the control unit controls the transmission circuit so as to stop or weaken the output of the high frequency power when the disconnection of a predetermined number or more of the electric wires is detected. The RFID communication system described.
  6.  前記アンテナケーブルは、端部に前記アンテナ装置に接続するためのコネクタを有し、
     前記コネクタ中に、各前記電線の線路上にそれぞれ設けられた抵抗素子を有することを特徴とする、請求項5に記載のRFID通信システム。
    The antenna cable has a connector at the end for connecting to the antenna device.
    The RFID communication system according to claim 5, wherein the connector has a resistance element provided on each line of the electric wire.
  7.  前記アンテナ装置は、それぞれの前記電線毎の前記第2接続線を有しており、更に、各前記第2接続線の線路上にそれぞれ設けられた抵抗素子を有することを特徴とする、請求項5または6に記載のRFID通信システム。 The antenna device is characterized by having the second connecting line for each of the electric wires, and further having a resistance element provided on the line of each of the second connecting lines. 5 or 6 for the RFID communication system.
  8.  前記制御部は、複数の前記電線のうちの少なくとも1つの前記電線の断線を検知した場合に、異常を報知することを特徴とする、請求項4から7のいずれか1項に記載のRFID通信システム。 The RFID communication according to any one of claims 4 to 7, wherein the control unit notifies an abnormality when the disconnection of at least one of the plurality of electric wires is detected. system.
  9.  前記アンテナケーブルは、太さが互いに異なる前記電線を有することを特徴とする、請求項4から8のいずれか1項に記載のRFID通信システム。 The RFID communication system according to any one of claims 4 to 8, wherein the antenna cable has the electric wires having different thicknesses.
  10.  前記アンテナケーブルは、材質が互いに異なる前記電線を有することを特徴とする、請求項4から9のいずれか1項に記載のRFID通信システム。 The RFID communication system according to any one of claims 4 to 9, wherein the antenna cable has the electric wires made of different materials.
PCT/JP2021/008202 2020-10-30 2021-03-03 Rfid communication system WO2022091443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021005687.5T DE112021005687T5 (en) 2020-10-30 2021-03-03 RFID communication system
CN202180064417.2A CN116210000A (en) 2020-10-30 2021-03-03 Radio frequency identification communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-182977 2020-10-30
JP2020182977A JP2022073170A (en) 2020-10-30 2020-10-30 RFID communication system

Publications (1)

Publication Number Publication Date
WO2022091443A1 true WO2022091443A1 (en) 2022-05-05

Family

ID=81382194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008202 WO2022091443A1 (en) 2020-10-30 2021-03-03 Rfid communication system

Country Status (4)

Country Link
JP (1) JP2022073170A (en)
CN (1) CN116210000A (en)
DE (1) DE112021005687T5 (en)
WO (1) WO2022091443A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127728A1 (en) 2022-10-20 2024-04-25 Jochen Kuhn Device and method for structural monitoring of an object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213263A (en) * 1982-06-05 1983-12-12 Fujitsu Ltd Detecting system of coaxial cable disconnection
JPS61224212A (en) * 1985-03-28 1986-10-04 日立電線株式会社 Cable with bending life detection line
JPH11340929A (en) * 1998-05-28 1999-12-10 Nec Corp Radio equipment and control method therefor
JP2017027516A (en) * 2015-07-27 2017-02-02 マスプロ電工株式会社 Antenna device and rfid system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213263A (en) * 1982-06-05 1983-12-12 Fujitsu Ltd Detecting system of coaxial cable disconnection
JPS61224212A (en) * 1985-03-28 1986-10-04 日立電線株式会社 Cable with bending life detection line
JPH11340929A (en) * 1998-05-28 1999-12-10 Nec Corp Radio equipment and control method therefor
JP2017027516A (en) * 2015-07-27 2017-02-02 マスプロ電工株式会社 Antenna device and rfid system

Also Published As

Publication number Publication date
CN116210000A (en) 2023-06-02
DE112021005687T5 (en) 2023-08-24
JP2022073170A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP4482403B2 (en) Non-contact information medium
TWI394081B (en) High-tensile belt-type tag and wireless radio frequency identification system employing the same
CN101137517B (en) Robust installation apparatus for RFID responder antenna
EP2186163B1 (en) A large scale folded dipole antenna for near-field rfid applications
WO2022091443A1 (en) Rfid communication system
EP2908302B1 (en) Operation terminal apparatus for manufacturing apparatus, and manufacturing system including the same
CN101046850B (en) Read apparatus of RF tag and method of controlling read of RF tag
US20150371065A1 (en) Radio-frequency identification reader device
US11196158B2 (en) Electric composite detection antenna
WO2009119494A1 (en) Rfid tag reader and antenna unit for rfid tag
JP4747750B2 (en) Environmental change detection system
EP2239688B1 (en) RFID device being operable in a first and a second operating state
EP3549067B1 (en) Improving performance of rfid tags
JP4702931B2 (en) Non-contact IC tag communication device and non-contact IC tag communication system using reader / writer for contact IC tag
JP2009232397A (en) Rfid tag antenna device and rfid tag reader
JP2001043326A (en) Reader/writer, reader/writer system and testing method for reader/writer
US20130140362A1 (en) Electrical product
JP2023152143A (en) Antenna, reader/writer system, and reader/writer
WO2017110788A1 (en) Wire harness
JP2013257277A (en) Storage battery monitoring device
KR100909622B1 (en) Fault notification radio recognition device and recording medium therefor
WO2022102142A1 (en) Rfid system and rfid communication device
JP2024513382A (en) System for monitoring line conditions in energy chains
JP2020028191A (en) Power transmission device
JP2022180789A (en) Antenna module, reader/writer, and wireless communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885568

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21885568

Country of ref document: EP

Kind code of ref document: A1