WO2022091248A1 - Degradation detection device - Google Patents

Degradation detection device Download PDF

Info

Publication number
WO2022091248A1
WO2022091248A1 PCT/JP2020/040417 JP2020040417W WO2022091248A1 WO 2022091248 A1 WO2022091248 A1 WO 2022091248A1 JP 2020040417 W JP2020040417 W JP 2020040417W WO 2022091248 A1 WO2022091248 A1 WO 2022091248A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
data
unit
learning
detection device
Prior art date
Application number
PCT/JP2020/040417
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 太中
浩司 脇本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021523093A priority Critical patent/JP6961126B1/en
Priority to PCT/JP2020/040417 priority patent/WO2022091248A1/en
Publication of WO2022091248A1 publication Critical patent/WO2022091248A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This disclosed technology relates to a deterioration detection device.
  • a prediction model is created, the values of multiple types of features calculated from the operating state data are acquired, and the abnormalities that occur in the device are obtained from the values of each type of features acquired during normal and abnormal conditions.
  • the technique of associating with each kind of feature amount is disclosed. Further, it is disclosed that a decision tree is used as an algorithm for specifying the degree of association between an abnormality occurring in an apparatus and each type of feature (for example, Patent Document 1).
  • a machine learning method for creating a decision tree from data is called decision tree learning, or simply decision tree for short.
  • Patent Document 1 when the deterioration event of the device is defined, a decision tree is created to try to classify all the defined deterioration events. However, sometimes, even when looking at the distribution of features of each type, there may be deterioration events that are difficult to classify because they mix with each other. At this time, if a plurality of deterioration events are selected and grouped by trial and error, the correct answer rate of the classification is improved, and the nature of the grouped deterioration events may be clarified by the decision tree. However, the prior art does not disclose what degradation events should be grouped and how grouping can be incorporated into decision tree learning.
  • the deterioration detection device includes a learning unit that learns and constructs a decision tree that infers the category of deterioration events to which the data belongs from the feature amount of the data based on the learning data, and an input time-series sensor.
  • a feature amount extraction unit that calculates a feature amount from data, and a deterioration candidate inference unit that selects a feature amount with a high evaluation from the calculated feature amount and estimates a plausible deterioration event candidate from the learned decision tree.
  • the learning unit is characterized in that the deterioration event is grouped and the decision tree is learned and constructed.
  • the deterioration detection device Since the deterioration detection device according to the present disclosure technique has the above configuration, deterioration events are grouped by decision tree learning, the correct answer rate of classification is improved, and the nature of the grouped deterioration events is clarified by the decision tree. Can be done.
  • FIG. 1 is a block diagram showing a configuration of a deterioration detection factor analysis system according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a process performed by a deterioration candidate inference unit of the deterioration detection device according to the first embodiment.
  • FIG. 3 is a flowchart showing a processing flow of the inference phase of the deterioration detection device according to the first embodiment.
  • FIG. 4 is a block diagram showing a configuration of a learning unit of the deterioration detection device according to the first embodiment.
  • FIG. 5 is a block diagram showing a configuration of a model generation unit of the deterioration detection device according to the first embodiment.
  • FIG. 6 is a diagram showing an example of an adjacency matrix generated by the adjacency matrix calculation unit of the feature amount evaluation unit according to the first embodiment.
  • FIG. 7 is a flowchart showing a processing flow of the learning phase of the deterioration detection device according to the first embodiment.
  • the form for implementing the disclosed technique will be clarified by the following description along with the drawings. Further, the description of each embodiment includes the description of the inference phase and the learning phase in decision tree learning.
  • the learning related to the disclosed technique is a kind of "supervised learning" because the learning data is labeled. Labeled data refers to data that is labeled to indicate which category the data belongs to.
  • Embodiment 1 The deterioration detection device 100 according to the first embodiment constitutes the deterioration detection factor analysis system 1000 in the inference phase in the decision tree learning.
  • FIG. 1 is a block diagram showing a configuration of a deterioration detection factor analysis system according to the first embodiment.
  • the deterioration detection factor analysis system 1000 includes a deterioration detection device 100 and an external device 200. More specifically, the deterioration detection factor analysis system 1000 includes sensor ESs (ES1, ES2, ..., ESn) attached to n units (n is an integer of 1 or more) and these sensor ESs (ES1, ES1).
  • the deterioration detection device 100 that receives vibration data or current data acquired from each of ES2, ..., ESn) via the communication network NW, and the user inputs various settings and displays the output result of the deterioration detection device 100. It is composed of an external device 200.
  • the deterioration detection device 100 performs deterioration diagnosis and factor analysis on vibration data or current data (hereinafter, generally referred to as "sensor data") received from the sensor ES (ES1, ES2, ..., ESn).
  • the deterioration detection device 100 stores a state descriptor, a geographical descriptor, or a temporal descriptor indicating the result of deterioration detection in association with the sensor data D2, and deteriorates in response to an input from the external device 200. Display the possibility and deterioration factors.
  • the state descriptor is an integer that distinguishes the state of the electric device to which the sensor is attached.
  • the geographical descriptor is an integer that distinguishes the positions of the sensors ES (ES1, ES2, ..., ESn) and the like.
  • the temporal descriptor is an integer that distinguishes the sensor data acquisition time and the like.
  • the deterioration detection device 100 includes a labeled data acquisition unit 1, a feature amount extraction unit 2, a deterioration candidate inference unit 3, a storage unit 6, an interface unit 7, and a learning unit 300.
  • the operation of the deterioration detection device 100 according to the first embodiment will be clarified by the following description of the operation of each part.
  • the labeled data acquisition unit 1 of the deterioration detection device 100 receives the distribution data D1 from the sensors ES (ES1, ES2, ..., ESn).
  • the distribution data D1 includes sensor data D2 from each sensor and data consisting of information concomitant to the sensor data D2.
  • the labeled data acquisition unit 1 refers to the information regarding the data structure stored in the storage unit 6 and extracts the sensor data D2 from the received distribution data D1.
  • the labeled data acquisition unit 1 outputs the extracted sensor data D2 to the feature amount extraction unit 2.
  • the feature amount extraction unit 2 of the deterioration detection device 100 calculates the feature amount such as the mean value, the amplitude, and the spectrum peak from the time-series sensor data D2 input from the labeled data acquisition unit 1.
  • the calculated feature amount is output to the deterioration candidate inference unit 3 as the feature amount data D3.
  • the deterioration candidate inference unit 3 of the deterioration detection device 100 selects a feature amount that is highly evaluated by the feature amount evaluation descriptor described later with respect to the feature amount data D3 output by the feature amount extraction unit 2.
  • the deterioration candidate inference unit 3 measures the distance from the feature quantity distribution that has been learned and is created by each of the deterioration events, which will be described later, and estimates a plausible deterioration event candidate from the measured distance.
  • the deterioration candidate inference unit 3 outputs the deterioration event candidate to which the data is presumed and the estimation accuracy thereof to the interface unit 7.
  • the estimation accuracy may be a calculation of the probability using Bayes' theorem.
  • the learned deterioration events include a "deterioration event group" in which a plurality of deterioration events are grouped.
  • the inference process performed by the deterioration candidate inference unit 3 is performed using a decision tree.
  • the decision tree consists of nodes and branches.
  • a node has a type of feature amount used for classification, a classification surface of the feature amount for classification, and a deterioration event as a result of classification.
  • the storage unit 6 of the deterioration detection device 100 stores various information, and is realized by a storage device such as a hard disk.
  • the storage unit 6 stores the feature amount data D3 and the feature amount evaluation descriptor D5 described later in association with each other.
  • the interface unit 7 of the deterioration detection device 100 connects the external device 200 and each part of the deterioration detection device 100 to enable communication and various controls.
  • the interface unit 7 sets the accuracy to be obtained in the deterioration factor estimation, and is used to confirm the factor estimation result.
  • the processing performed by the feature amount extraction unit 2 will be clarified by the following specific example.
  • the target device in the specific example is a platform door for the purpose of preventing a fall from a platform and a contact accident with a train at a railway station.
  • the feature quantities include a door opening / closing start position, torque average, torque standard deviation, maximum torque value, and the like.
  • the feature amount may include an ID indicating an electric device to which the sensor is attached and a data acquisition time.
  • FIG. 2 is a schematic diagram showing a process performed by a deterioration candidate inference unit of the deterioration detection device according to the first embodiment.
  • FIG. 2A shows the process A performed by the deterioration candidate inference unit 3 in the learning phase.
  • four categories of belt tension, belt loosening, twist installation a, and twist installation b are considered as deterioration events.
  • the graph on the left of FIG. 2A is an example of a feature space in which the horizontal axis is the feature X5 and the vertical axis is the feature X6. This graph shows the distribution in which the features in each deterioration event are plotted.
  • the process A measures the sensor data D2 for a plurality of home doors in an abnormal state such as "belt tension", and calculates the feature amount X5 and the feature amount X6 from the measured sensor data D2. , Plot in the feature space.
  • Process A plots platform doors in other categories of degradation events as well.
  • FIG. 2A can express only a two-dimensional space, the actual feature space is a p-dimensional space if the number of types of features is p.
  • the plot for belt tension and belt loosening is where the feature X5 is small, and the plot for twist installation a and twist installation b is the feature X5.
  • the deterioration candidate inference unit 3 learns the boundary of the region for the classification of this plot.
  • the boundaries of the regions are represented by thresholds.
  • the boundary of the region is represented by a straight line.
  • the boundary of this region is called a classification plane.
  • the classification surface it is conceivable to use a support vector machine algorithm that maximizes the margin, which is the distance between the sample closest to the classification surface and the classification surface.
  • the method of determining the classification surface is not limited to this, and may be obtained by learning by another algorithm.
  • the deterioration candidate inference unit 3 of the deterioration detection device 100 that has learned the classification surface then constructs a corresponding decision tree.
  • the figure to the right of FIG. 2A shows the decision tree in this embodiment.
  • the feature amount X5 and the feature amount X6 corresponding to the horizontal axis and the vertical axis of the feature amount space correspond to the "type of feature amount used for classification" of the node of the decision tree.
  • the learned classification surface corresponds to the "classification surface of the feature quantity for classification" of the node of the decision tree.
  • the two categories classified by the classification plane correspond to the "deterioration event as a result of classification" of the node of the decision tree.
  • the deterioration candidate at the tip of the two branches corresponds to the "deterioration event as a classification result".
  • belt tension and belt loosening can be mentioned as candidates for deterioration events.
  • twist installation a and twist installation b are listed as candidates for deterioration events.
  • FIG. 2B shows the process B performed by the deterioration candidate inference unit 3 in the inference phase.
  • the graph on the left side of FIG. 2B is a feature space in which the feature X5 and the feature X6 are plotted for the platform door to be investigated.
  • the graph on the right side of FIG. 2B is the same as the graph on the left side of FIG. 2A.
  • the image of the process B performed by the deterioration candidate inference unit 3 is to infer which category the plot for the platform door to be investigated belongs to by comparing it with the learned past plot. For example, when the plot for the platform door to be investigated is on the left side of the classification plane, the deterioration candidate inference unit 3 infers that the deterioration event is belt tension or belt loosening. That is, the deterioration candidate inference unit 3 infers the category of deterioration events from the plot of the feature amount to be investigated by using the decision tree learned in the learning phase.
  • the deterioration event candidate inferred by the deterioration candidate inference unit 3 may be output to the interface unit 7 as a predetermined deterioration candidate descriptor. That is, in the deterioration detection device according to the present disclosure technique, deterioration events are numbered and defined in advance. In a specific example of a platform door, the deterioration candidate descriptor is 1, if the belt is meandering, 2, if the belt is loose, 3, if the belt is tight, 9 if it is normal, and so on.
  • the deterioration candidate descriptor is stored in the storage unit 6 together with the information of the above-learned decision tree.
  • FIG. 3 is a flowchart showing a processing flow of the inference phase of the deterioration detection device 100 according to the first embodiment.
  • FIG. 4 is a block diagram showing the configuration of the learning unit 300 of the deterioration detection device 100 according to the first embodiment. As shown in FIG. 4, the learning unit 300 has a learning data acquisition unit 301 and a model generation unit 302. The model generation unit 302 is connected to the storage unit 6.
  • FIG. 5 is a block diagram showing a configuration of a model generation unit 302 of the deterioration detection device 100 according to the first embodiment.
  • the model generation unit 302 has an inter-distribution distance calculation unit 303, a feature amount evaluation unit 304, and an aggregation unit 305.
  • the model generation unit 302 and the storage unit 6 are connected to each other via the aggregation unit 305 of the model generation unit 302.
  • the feature amount evaluation unit 304 further includes an adjacency matrix calculation unit 311, a separation degree evaluation unit 312, and a similarity evaluation unit 313.
  • the learning data acquisition unit 301 of the deterioration detection device 100 acquires data as a set of various feature quantities of the investigation target in the state of the deterioration event and the category of the deterioration event as the learning data D11.
  • the model generation unit 302 of the deterioration detection device 100 learns and constructs a decision tree based on the learning data D11 input via the learning data acquisition unit 301.
  • the decision tree is an algorithm that distinguishes from which of many variables the most useful classification conditions can be obtained. In determining the superiority or inferiority of this classification condition, the decision tree uses the impureness of category identification as an index. In addition, information gain is used to score which variable is useful as a branching condition.
  • the decision tree constructed by the model generation unit 302 is constructed by comparing the information gains of the learning data D11 by changing the type of the feature amount to be used and the classification surface to be used. By increasing the training data D11, the model generation unit 302 learns the classification surface and the decision tree.
  • the model generation unit 302 of the deterioration detection device 100 outputs the learned decision tree to the storage unit 6 as the learning model D12.
  • the storage unit 6 of the deterioration detection device 100 stores the trained learning model D12 output by the model generation unit 302.
  • model generation unit 302 The details of the operation of the model generation unit 302 will be clarified by the explanation of the operation of the inter-distribution distance calculation unit 303, the feature amount evaluation unit 304, and the aggregation unit 305, which are the components of the model generation unit 302.
  • the inter-distribution distance calculation unit 303 of the model generation unit 302 calculates the distance between the distributions of the two types of plots in the feature space for the data with two types of labels in the learning data D11. Since the present disclosure technique considers the impureness of category identification to be important, the distance between distributions is defined in terms of impureness. Purity is a concept that is paired with impureness. The purity is a value obtained by dividing the number of data that can be correctly classified by the total number of data when the learning data D11 is classified in terms of classification. Being able to classify with high purity can be interpreted as having a sufficient distance from each other. Therefore, the present disclosure technique defines this purity as the distance between two distributions classified by the classification plane.
  • AUC Area Under The Curve
  • ROC curve Receiver Operating Characteristic Curve
  • the feature amount evaluation unit 304 of the model generation unit 302 is further divided into an adjacency matrix calculation unit 311, a separation degree evaluation unit 312, and a similarity evaluation unit 313.
  • the details of the operation of the feature amount evaluation unit 304 will be clarified by the explanation of each operation of the adjacency matrix calculation unit 311 which is a component of the feature amount evaluation unit 304, the separation degree evaluation unit 312, and the similarity evaluation unit 313. ..
  • the adjacency matrix calculation unit 311 of the feature quantity evaluation unit 304 uses the adjacency matrix F as an element of the distance between the distributions of all the labels based on the information of the distance between the distributions of the two labels output by the distance calculation unit 303. Generate and output the adjacency matrix F to the separation evaluation unit 312 and the similarity evaluation unit 313.
  • the adjacency matrix F is a square matrix representing a finite graph used in graph theory and computer science.
  • FIG. 6 is a diagram showing an example of an adjacency matrix F generated by the adjacency matrix calculation unit 311 of the feature quantity evaluation unit 304 according to the first embodiment. As shown in FIG. 6, since the adjacency matrix F in the disclosed technique is an undirected graph, it is a triangular matrix in the upper half. Also, since the diagonal component represents the distance to itself, all the elements are 0.
  • the separation evaluation unit 312 of the feature amount evaluation unit 304 determines whether or not the separation distance condition is satisfied for each element Fi, j of the adjacency matrix F output by the adjacency matrix calculation unit 311, and determines whether or not the separation distance condition is satisfied, and the adjacency matrix F Binarize each element Fi and j .
  • the separation evaluation unit 312 outputs this separation evaluation matrix G to the aggregation unit 305.
  • the similarity evaluation unit 313 of the feature quantity evaluation unit 304 determines whether or not the similarity distance condition is satisfied for each element Fi, j of the adjacency matrix F output by the adjacency matrix calculation unit 311, and determines whether or not the similarity distance condition is satisfied, and the adjacency matrix F Binarize each element Fi and j .
  • the similarity evaluation unit 313 outputs this similarity evaluation matrix H to the aggregation unit 305.
  • the aggregation unit 305 of the model generation unit 302 selects the category of deterioration events to be grouped from the separation evaluation matrix G and the similarity evaluation matrix H output by the feature quantity evaluation unit 304. Whether to use the separation evaluation matrix G or the similarity evaluation matrix H is a design matter, but after all, the deterioration events to be grouped are difficult to classify in the classification by the classification surface indicated by the decision tree, and the classification is performed. Even so, select deterioration events with high impurities. After selecting the deterioration events to be grouped, the model generation unit 302 reflects the information of the grouped "deterioration event group" in the learning of the classification surface and the decision tree. The grouping here may change as the learning progresses.
  • FIG. 7 is a flowchart showing a processing flow of the learning phase of the deterioration detection device 100 according to the first embodiment.
  • the processing operation in the learning phase of the deterioration detection device 100 includes a step of acquiring learning data D11 (ST21), a step of calculating the distance between distributions (ST22), and a step of calculating an adjacency matrix. (ST23), a step of calculating the separation evaluation matrix G (ST24), a step of calculating the adjacency matrix H (ST25), a step of selecting a category of deterioration events to be grouped (ST26), and grouping. It has a step of reflecting and advancing the learning (ST27) and a step of confirming whether to end the learning (ST28).
  • the step (ST28) for confirming whether to finish learning requires explanation, so it is performed here.
  • learning methods are divided into batch learning and online learning.
  • this step (ST28) is not necessary because all the training data D11 is used at once.
  • learning data D11 having different properties such as a difference in the type of the target device is used, there may be a case where it is desired to perform learning step by step and observe the difference in the learning result. In such cases, this step (ST28) is included.
  • the deterioration detection device 100 improves the correct answer rate of classification and can clarify the nature of grouped deterioration events by a decision tree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A degradation detection device according to the present disclosure is characterized by comprising: a learning unit that learns and constructs a decision tree for inferring a category of degradation events to which data belongs from the feature of the data on the basis of learning data; a feature amount extraction unit that calculates a feature amount from input time-series sensor data; and a degradation candidate inference unit that selects a feature amount having high evaluation from the calculated feature amount and infers a candidate of plausible degradation events from the learned decision tree, wherein the learning unit groups the degradation events to learn and construct the decision tree.

Description

劣化検知装置Deterioration detection device
 本開示技術は、劣化検知装置に関する。 This disclosed technology relates to a deterioration detection device.
 さまざまな現場において、装置に対する予知保全により設備稼働率を向上させたいというニーズが存在する。このニーズに対して、予測モデルを作成し、動作状態データから算出される複数種類の特徴量の値を取得し、正常時及び異常時に取得した各種類の特徴量の値から、装置に生じる異常と各種類の特徴量とを関連づける技術が開示されている。また、装置に生じる異常と各種類の特徴との関連度を特定するアルゴリズムに、決定木を用いることが開示されている(例えば、特許文献1)。データから決定木を作る機械学習の手法は、決定木学習、又は略して単に決定木とよばれる。 At various sites, there is a need to improve the equipment utilization rate by predictive maintenance of equipment. To meet this need, a prediction model is created, the values of multiple types of features calculated from the operating state data are acquired, and the abnormalities that occur in the device are obtained from the values of each type of features acquired during normal and abnormal conditions. The technique of associating with each kind of feature amount is disclosed. Further, it is disclosed that a decision tree is used as an algorithm for specifying the degree of association between an abnormality occurring in an apparatus and each type of feature (for example, Patent Document 1). A machine learning method for creating a decision tree from data is called decision tree learning, or simply decision tree for short.
特開2018-116545号公報Japanese Unexamined Patent Publication No. 2018-116545
 特許文献1に例示される従来技術は、装置の劣化事象を定義すると、定義されたすべての劣化事象について分類を試みる決定木が作られる。しかしときには、各種類の特徴量の分布をみても互いに交じりあい、分類が困難な劣化事象が存在することがある。このときに、試行錯誤で或る複数の劣化事象を選択しグループ化すると、分類の正答率が向上し、そのグループ化された劣化事象の性質が決定木により明らかになることがある。しかし、どのような劣化事象をグループ化すればよいか、また、どのようにすればグループ化を決定木学習に取り入れられるかを、従来技術は開示していない。 In the prior art exemplified in Patent Document 1, when the deterioration event of the device is defined, a decision tree is created to try to classify all the defined deterioration events. However, sometimes, even when looking at the distribution of features of each type, there may be deterioration events that are difficult to classify because they mix with each other. At this time, if a plurality of deterioration events are selected and grouped by trial and error, the correct answer rate of the classification is improved, and the nature of the grouped deterioration events may be clarified by the decision tree. However, the prior art does not disclose what degradation events should be grouped and how grouping can be incorporated into decision tree learning.
 本開示にかかる劣化検知装置は、学習用データに基づいて、データの特徴量から前記データが属する劣化事象のカテゴリーを推測する決定木を学習し構築する学習部と、入力された時系列のセンサーデータから特徴量を算出する特徴量抽出部と、前記算出された特徴量から評価の高い特徴量を選択し、学習済みの前記決定木からもっともらしい劣化事象の候補を推測する劣化候補推論部と、を備える劣化検知装置であって、前記学習部は、劣化事象をグループ化して前記決定木を学習し構築することを特徴とする。 The deterioration detection device according to the present disclosure includes a learning unit that learns and constructs a decision tree that infers the category of deterioration events to which the data belongs from the feature amount of the data based on the learning data, and an input time-series sensor. A feature amount extraction unit that calculates a feature amount from data, and a deterioration candidate inference unit that selects a feature amount with a high evaluation from the calculated feature amount and estimates a plausible deterioration event candidate from the learned decision tree. , The learning unit is characterized in that the deterioration event is grouped and the decision tree is learned and constructed.
 本開示技術にかかる劣化検知装置は上記の構成を備えるため、決定木学習により劣化事象のグループ化を行い、分類の正答率が向上し、そのグループ化された劣化事象の性質を決定木により明らかにできる。 Since the deterioration detection device according to the present disclosure technique has the above configuration, deterioration events are grouped by decision tree learning, the correct answer rate of classification is improved, and the nature of the grouped deterioration events is clarified by the decision tree. Can be done.
図1は、実施の形態1にかかる劣化検知要因分析システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a deterioration detection factor analysis system according to the first embodiment. 図2は、実施の形態1にかかる劣化検知装置の劣化候補推論部が行う処理を示した模式図である。FIG. 2 is a schematic diagram showing a process performed by a deterioration candidate inference unit of the deterioration detection device according to the first embodiment. 図3は、実施の形態1にかかる劣化検知装置の推論フェーズの処理フローを示したフローチャートである。FIG. 3 is a flowchart showing a processing flow of the inference phase of the deterioration detection device according to the first embodiment. 図4は、実施の形態1にかかる劣化検知装置の学習部の構成を示したブロック図である。FIG. 4 is a block diagram showing a configuration of a learning unit of the deterioration detection device according to the first embodiment. 図5は、実施の形態1にかかる劣化検知装置のモデル生成部の構成を示したブロック図である。FIG. 5 is a block diagram showing a configuration of a model generation unit of the deterioration detection device according to the first embodiment. 図6は、実施の形態1にかかる特徴量評価部の隣接行列算出部が生成する隣接行列の例を示した図である。FIG. 6 is a diagram showing an example of an adjacency matrix generated by the adjacency matrix calculation unit of the feature amount evaluation unit according to the first embodiment. 図7は、実施の形態1にかかる劣化検知装置の学習フェーズの処理フローを示したフローチャートである。FIG. 7 is a flowchart showing a processing flow of the learning phase of the deterioration detection device according to the first embodiment.
 本開示技術を実施するための形態は、図面に沿った以下の説明により、明らかにされる。また、各実施の形態の説明は、決定木学習における推論フェーズと学習フェーズとの説明を含む。なお、本開示技術にかかる学習は、学習用データがラベル付きのものであることから、「教師あり学習」の類である。ラベル付データとは、そのデータがどこのカテゴリーに属しているかを示すラベルが付いているデータのことを指す。 The form for implementing the disclosed technique will be clarified by the following description along with the drawings. Further, the description of each embodiment includes the description of the inference phase and the learning phase in decision tree learning. The learning related to the disclosed technique is a kind of "supervised learning" because the learning data is labeled. Labeled data refers to data that is labeled to indicate which category the data belongs to.
実施の形態1.
 実施の形態1にかかる劣化検知装置100は、決定木学習における推論フェーズでは、劣化検知要因分析システム1000を構成する。図1は、実施の形態1にかかる劣化検知要因分析システムの構成を示すブロック図である。
Embodiment 1.
The deterioration detection device 100 according to the first embodiment constitutes the deterioration detection factor analysis system 1000 in the inference phase in the decision tree learning. FIG. 1 is a block diagram showing a configuration of a deterioration detection factor analysis system according to the first embodiment.
 図1が示すように、劣化検知要因分析システム1000は、劣化検知装置100と、外部機器200と、を備える。より具体的にいえば劣化検知要因分析システム1000は、n台(nは1以上の整数)の電機機器に取り付けられたセンサーES(ES1、ES2、…、ESn)と、これらセンサーES(ES1、ES2、…、ESn)の各々から取得した振動データ又は電流データを、通信ネットワークNWを介して受信する劣化検知装置100と、ユーザーが各種設定を入力し、劣化検知装置100の出力結果を表示する外部機器200とで構成される。 As shown in FIG. 1, the deterioration detection factor analysis system 1000 includes a deterioration detection device 100 and an external device 200. More specifically, the deterioration detection factor analysis system 1000 includes sensor ESs (ES1, ES2, ..., ESn) attached to n units (n is an integer of 1 or more) and these sensor ESs (ES1, ES1). The deterioration detection device 100 that receives vibration data or current data acquired from each of ES2, ..., ESn) via the communication network NW, and the user inputs various settings and displays the output result of the deterioration detection device 100. It is composed of an external device 200.
 劣化検知装置100は、センサーES(ES1、ES2、…、ESn)から受信した振動データ又は電流データ(以下、総じて「センサーデータ」と記載する)に対して劣化診断及び要因の解析を行う。劣化検知装置100は、劣化検知の結果を示す状態的記述子、地理的記述子又は時間的記述子を、センサーデータD2と関連付けて蓄積し、外部機器200からの入力に応じて劣化している可能性や劣化要因の表示を行う。ここで、状態的記述子とは、センサーを取り付けられている電機機器の状態を区別する整数である。地理的記述子とはセンサーES(ES1、ES2、…、ESn)の位置等を区別する整数である。時間的記述子とは、センサーデータ取得時刻等を区別する整数である。 The deterioration detection device 100 performs deterioration diagnosis and factor analysis on vibration data or current data (hereinafter, generally referred to as "sensor data") received from the sensor ES (ES1, ES2, ..., ESn). The deterioration detection device 100 stores a state descriptor, a geographical descriptor, or a temporal descriptor indicating the result of deterioration detection in association with the sensor data D2, and deteriorates in response to an input from the external device 200. Display the possibility and deterioration factors. Here, the state descriptor is an integer that distinguishes the state of the electric device to which the sensor is attached. The geographical descriptor is an integer that distinguishes the positions of the sensors ES (ES1, ES2, ..., ESn) and the like. The temporal descriptor is an integer that distinguishes the sensor data acquisition time and the like.
 劣化検知装置100は、ラベル付データ取得部1、特徴量抽出部2、劣化候補推論部3、記憶部6、インターフェース部7、及び学習部300を備える。実施の形態1にかかる劣化検知装置100の動作は、以下の各部の動作の説明により明らかになる。 The deterioration detection device 100 includes a labeled data acquisition unit 1, a feature amount extraction unit 2, a deterioration candidate inference unit 3, a storage unit 6, an interface unit 7, and a learning unit 300. The operation of the deterioration detection device 100 according to the first embodiment will be clarified by the following description of the operation of each part.
 劣化検知装置100のラベル付データ取得部1は、センサーES(ES1、ES2、…、ESn)から配信データD1を受信する。配信データD1は、各センサーからのセンサーデータD2と、それに不随する情報からなるデータとを含む。ラベル付データ取得部1は、記憶部6に保存されたデータ構造に関する情報を参照し、受信した配信データD1からセンサーデータD2を抽出する。ラベル付データ取得部1は、抽出したセンサーデータD2を特徴量抽出部2へ出力する。 The labeled data acquisition unit 1 of the deterioration detection device 100 receives the distribution data D1 from the sensors ES (ES1, ES2, ..., ESn). The distribution data D1 includes sensor data D2 from each sensor and data consisting of information concomitant to the sensor data D2. The labeled data acquisition unit 1 refers to the information regarding the data structure stored in the storage unit 6 and extracts the sensor data D2 from the received distribution data D1. The labeled data acquisition unit 1 outputs the extracted sensor data D2 to the feature amount extraction unit 2.
 劣化検知装置100の特徴量抽出部2は、ラベル付データ取得部1から入力された時系列のセンサーデータD2から平均値、振幅、及びスペクトルピークなどの特徴量を算出する。算出した特徴量は、特徴量データD3として劣化候補推論部3に出力される。 The feature amount extraction unit 2 of the deterioration detection device 100 calculates the feature amount such as the mean value, the amplitude, and the spectrum peak from the time-series sensor data D2 input from the labeled data acquisition unit 1. The calculated feature amount is output to the deterioration candidate inference unit 3 as the feature amount data D3.
 劣化検知装置100の劣化候補推論部3は、特徴量抽出部2が出力した特徴量データD3に対して,後述する特徴量評価記述子による評価の高い特徴量を選択する。劣化候補推論部3は、後述する学習済みであって劣化事象のそれぞれがつくる特徴量分布からの距離を測定し、測定した距離からもっともらしい劣化事象の候補を推測する。劣化候補推論部3は、データが属すると推測される劣化事象候補とその推測精度とをインターフェース部7へ出力する。推測精度は、ベイズの定理を用いた確率を計算したものでよい。本開示技術においては、学習済みの劣化事象に、複数の劣化事象がグループ化された「劣化事象グループ」を含む。 The deterioration candidate inference unit 3 of the deterioration detection device 100 selects a feature amount that is highly evaluated by the feature amount evaluation descriptor described later with respect to the feature amount data D3 output by the feature amount extraction unit 2. The deterioration candidate inference unit 3 measures the distance from the feature quantity distribution that has been learned and is created by each of the deterioration events, which will be described later, and estimates a plausible deterioration event candidate from the measured distance. The deterioration candidate inference unit 3 outputs the deterioration event candidate to which the data is presumed and the estimation accuracy thereof to the interface unit 7. The estimation accuracy may be a calculation of the probability using Bayes' theorem. In the present disclosed technique, the learned deterioration events include a "deterioration event group" in which a plurality of deterioration events are grouped.
 劣化候補推論部3が行う推測のプロセスは、具体的には決定木を用いて行われる。決定木は、ノードと枝とから構成される。本開示技術における決定木では、ノードは、分類に用いる特徴量の種類と、分類のための特徴量の分類面と、分類結果としての劣化事象と、を有する。 Specifically, the inference process performed by the deterioration candidate inference unit 3 is performed using a decision tree. The decision tree consists of nodes and branches. In the decision tree in the present disclosure technique, a node has a type of feature amount used for classification, a classification surface of the feature amount for classification, and a deterioration event as a result of classification.
 劣化検知装置100の記憶部6は、各種情報を記憶するものであり、ハードディスク等の記憶装置により実現される。実施の形態1において、記憶部6は、特徴量データD3と後述する特徴量評価記述子D5とを対応付けて記憶する。 The storage unit 6 of the deterioration detection device 100 stores various information, and is realized by a storage device such as a hard disk. In the first embodiment, the storage unit 6 stores the feature amount data D3 and the feature amount evaluation descriptor D5 described later in association with each other.
 劣化検知装置100のインターフェース部7は、外部機器200と劣化検知装置100の各部とを接続して、交信や各種制御を可能にするものである。インターフェース部7は、劣化要因推定において求める精度を設定し、要因推定の結果を確認するために用いる。 The interface unit 7 of the deterioration detection device 100 connects the external device 200 and each part of the deterioration detection device 100 to enable communication and various controls. The interface unit 7 sets the accuracy to be obtained in the deterioration factor estimation, and is used to confirm the factor estimation result.
 特徴量抽出部2が行う処理は、以下の具体例により明らかにされる。具体例における対象の装置は、鉄道駅においてプラットホームからの転落防止及び列車との接触事故防止を目的としたホームドアである。この装置を対象とする場合、特徴量は、ドア開閉開始位置、トルク平均、トルク標準偏差、トルクの最大値、などがある。また、特徴量は、センサーを取り付けた電機機器を示すID、及びデータ取得時刻を含めてもよい。 The processing performed by the feature amount extraction unit 2 will be clarified by the following specific example. The target device in the specific example is a platform door for the purpose of preventing a fall from a platform and a contact accident with a train at a railway station. When this device is targeted, the feature quantities include a door opening / closing start position, torque average, torque standard deviation, maximum torque value, and the like. Further, the feature amount may include an ID indicating an electric device to which the sensor is attached and a data acquisition time.
 劣化候補推論部3が行う処理は、以下の具体例により明らかにされる。図2は、実施の形態1にかかる劣化検知装置の劣化候補推論部が行う処理を示した模式図である。図2Aは、劣化候補推論部3が学習フェーズに行う処理Aについて示したものである。ホームドアの具体例は、劣化事象としてベルト張り、ベルト緩み、ひねり設置a、ひねり設置b、の4つのカテゴリーを考える。図2Aの左のグラフは、横軸を特徴量のX5、縦軸を特徴量のX6とした特徴量空間の例である。このグラフは、各劣化事象における特徴量をプロットした分布を表している。具体的にいえば処理Aは、例えば「ベルト張り」という異常な状態にある複数のホームドアについてセンサーデータD2を測定し、測定したセンサーデータD2から特徴量のX5と特徴量のX6を計算し、特徴量空間にプロットする。処理Aは、他のカテゴリーの劣化事象の状態にあるホームドアについても同様にプロットする。図2Aは2次元のものしか表現できないが、実際の特徴量空間は、特徴量の種類の数をpとすれば、p次元空間となる。 The processing performed by the deterioration candidate inference unit 3 is clarified by the following specific example. FIG. 2 is a schematic diagram showing a process performed by a deterioration candidate inference unit of the deterioration detection device according to the first embodiment. FIG. 2A shows the process A performed by the deterioration candidate inference unit 3 in the learning phase. As a specific example of the platform door, four categories of belt tension, belt loosening, twist installation a, and twist installation b are considered as deterioration events. The graph on the left of FIG. 2A is an example of a feature space in which the horizontal axis is the feature X5 and the vertical axis is the feature X6. This graph shows the distribution in which the features in each deterioration event are plotted. Specifically, the process A measures the sensor data D2 for a plurality of home doors in an abnormal state such as "belt tension", and calculates the feature amount X5 and the feature amount X6 from the measured sensor data D2. , Plot in the feature space. Process A plots platform doors in other categories of degradation events as well. Although FIG. 2A can express only a two-dimensional space, the actual feature space is a p-dimensional space if the number of types of features is p.
 図2Aの左のグラフが表す特徴量空間を見ると、ベルト張りとベルト緩みとについてのプロットは特徴量のX5が小さいところに、ひねり設置aとひねり設置bとについてのプロットは特徴量のX5が大きいところに、それぞれ分布されている。この2つの分布は重なっていないため、領域の境界を決めることにより分類ができる。劣化候補推論部3は、このプロットの分類のための領域の境界を学習していく。1次元の特徴量空間においては、領域の境界は閾値で表される。図2Aの左のグラフのように2次元の特徴量空間においては、領域の境界は直線で表される。一般にN次元の特徴量空間において、この領域の境界は分類面と呼ばれる。分類面は、分類面に最も近いサンプルと分類面との距離であるマージンを最大化するサポートベクターマシンのアルゴリズムを用いることが考えられる。なお、分類面の決め方はこれに限定するものではなく、他のアルゴリズムにより学習して求めてもよい。 Looking at the feature space represented by the graph on the left of FIG. 2A, the plot for belt tension and belt loosening is where the feature X5 is small, and the plot for twist installation a and twist installation b is the feature X5. Are distributed in large areas. Since these two distributions do not overlap, they can be classified by determining the boundaries of the regions. The deterioration candidate inference unit 3 learns the boundary of the region for the classification of this plot. In a one-dimensional feature space, the boundaries of the regions are represented by thresholds. In the two-dimensional feature space as shown in the graph on the left of FIG. 2A, the boundary of the region is represented by a straight line. Generally, in an N-dimensional feature space, the boundary of this region is called a classification plane. For the classification surface, it is conceivable to use a support vector machine algorithm that maximizes the margin, which is the distance between the sample closest to the classification surface and the classification surface. The method of determining the classification surface is not limited to this, and may be obtained by learning by another algorithm.
 分類面を学習した劣化検知装置100の劣化候補推論部3は、次に、対応する決定木を構築する。図2Aの右の図は、この具体例における決定木を示している。特徴量空間の横軸と縦軸に対応する特徴量のX5と特徴量のX6は、決定木のノードの「分類に用いる特徴量の種類」に対応する。また、学習した分類面は、決定木のノードの「分類のための特徴量の分類面」に対応する。さらに、分類面により分類された2つのカテゴリーは、決定木のノードの「分類結果としての劣化事象」に対応する。図2Aの右の図の決定木において、2つの枝の先の劣化候補は、「分類結果としての劣化事象」が対応する。この具体例でいえば、分類面よりも左側は、劣化事象の候補としてベルト張り及びベルト緩みがあげられる。分類面よりも右側は、劣化事象の候補としてひねり設置a及びひねり設置bがあげられる。 The deterioration candidate inference unit 3 of the deterioration detection device 100 that has learned the classification surface then constructs a corresponding decision tree. The figure to the right of FIG. 2A shows the decision tree in this embodiment. The feature amount X5 and the feature amount X6 corresponding to the horizontal axis and the vertical axis of the feature amount space correspond to the "type of feature amount used for classification" of the node of the decision tree. In addition, the learned classification surface corresponds to the "classification surface of the feature quantity for classification" of the node of the decision tree. Further, the two categories classified by the classification plane correspond to the "deterioration event as a result of classification" of the node of the decision tree. In the decision tree in the figure on the right of FIG. 2A, the deterioration candidate at the tip of the two branches corresponds to the "deterioration event as a classification result". In this specific example, on the left side of the classification surface, belt tension and belt loosening can be mentioned as candidates for deterioration events. On the right side of the classification surface, twist installation a and twist installation b are listed as candidates for deterioration events.
 図2Bは、劣化候補推論部3が推論フェーズに行う処理Bについて示したものである。図2Bの左側のグラフは、調査対象のホームドアについて特徴量のX5と特徴量のX6をプロットした特徴量空間である。図2Bの右側のグラフは、図2Aの左側のグラフと同じものである。劣化候補推論部3が行う処理Bのイメージは、調査対象のホームドアについてのプロットを、学習済みの過去のプロットと照らし合わせて、どのカテゴリーに属するかと推論することである。例えば、調査対象のホームドアについてのプロットが、分類面よりも左側であったとき、劣化候補推論部3は、劣化事象がベルト張り又はベルト緩みだと推論する。すなわち劣化候補推論部3は、学習フェーズで学習した決定木を使って、調査対象の特徴量のプロットから、劣化事象のカテゴリーを推論する。 FIG. 2B shows the process B performed by the deterioration candidate inference unit 3 in the inference phase. The graph on the left side of FIG. 2B is a feature space in which the feature X5 and the feature X6 are plotted for the platform door to be investigated. The graph on the right side of FIG. 2B is the same as the graph on the left side of FIG. 2A. The image of the process B performed by the deterioration candidate inference unit 3 is to infer which category the plot for the platform door to be investigated belongs to by comparing it with the learned past plot. For example, when the plot for the platform door to be investigated is on the left side of the classification plane, the deterioration candidate inference unit 3 infers that the deterioration event is belt tension or belt loosening. That is, the deterioration candidate inference unit 3 infers the category of deterioration events from the plot of the feature amount to be investigated by using the decision tree learned in the learning phase.
 劣化候補推論部3が推論した劣化事象の候補は、あらかじめ決めておいた劣化候補記述子としてインターフェース部7へ出力するとよい。すなわち、本開示技術にかかる劣化検知装置は、あらかじめ劣化事象に番号を付して定義しておく。ホームドアの具体例でいえば、劣化候補記述子は、ベルト蛇行ならば1、ベルト緩みならば2、ベルト張りならば3、…正常ならば9、などである。劣化候補記述子は、上記の学習した決定木の情報とともに記憶部6に記憶しておく。 The deterioration event candidate inferred by the deterioration candidate inference unit 3 may be output to the interface unit 7 as a predetermined deterioration candidate descriptor. That is, in the deterioration detection device according to the present disclosure technique, deterioration events are numbered and defined in advance. In a specific example of a platform door, the deterioration candidate descriptor is 1, if the belt is meandering, 2, if the belt is loose, 3, if the belt is tight, 9 if it is normal, and so on. The deterioration candidate descriptor is stored in the storage unit 6 together with the information of the above-learned decision tree.
 劣化検知装置100の推論フェーズにおける動作は、フローチャートに沿った以下の説明により明らかにされる。図3は、実施の形態1にかかる劣化検知装置100の推論フェーズの処理フローを示したフローチャートである。 The operation of the deterioration detection device 100 in the inference phase will be clarified by the following explanation along the flowchart. FIG. 3 is a flowchart showing a processing flow of the inference phase of the deterioration detection device 100 according to the first embodiment.
 図3が示すとおり、劣化検知装置100の推論フェーズにおける処理動作には、特徴量を抽出するステップ(ST1)と、劣化事象を推論するステップ(ST2)と、推論した結果を出力するステップ(ST3)と、を有する。 As shown in FIG. 3, in the processing operation in the inference phase of the deterioration detection device 100, a step of extracting a feature amount (ST1), a step of inferring a deterioration event (ST2), and a step of outputting the inferred result (ST3). ) And.
 劣化検知装置100の学習部300は、学習フェーズにおいて用いる。図4は、実施の形態1にかかる劣化検知装置100の学習部300の構成を示したブロック図である。図4が示すとおり、学習部300は、学習用データ取得部301と、モデル生成部302と、を有する。モデル生成部302は、記憶部6と接続されている。 The learning unit 300 of the deterioration detection device 100 is used in the learning phase. FIG. 4 is a block diagram showing the configuration of the learning unit 300 of the deterioration detection device 100 according to the first embodiment. As shown in FIG. 4, the learning unit 300 has a learning data acquisition unit 301 and a model generation unit 302. The model generation unit 302 is connected to the storage unit 6.
 モデル生成部302は、さらに細かく構成部材に分けられる。図5は、実施の形態1にかかる劣化検知装置100のモデル生成部302の構成を示したブロック図である。図5が示すとおり、モデル生成部302は、分布間距離算出部303と、特徴量評価部304と、集約部305とを有する。モデル生成部302と記憶部6とは、モデル生成部302の集約部305を介して接続されている。特徴量評価部304は、さらに隣接行列算出部311と、分離度評価部312と、類似度評価部313とを有する。 The model generation unit 302 is further subdivided into constituent members. FIG. 5 is a block diagram showing a configuration of a model generation unit 302 of the deterioration detection device 100 according to the first embodiment. As shown in FIG. 5, the model generation unit 302 has an inter-distribution distance calculation unit 303, a feature amount evaluation unit 304, and an aggregation unit 305. The model generation unit 302 and the storage unit 6 are connected to each other via the aggregation unit 305 of the model generation unit 302. The feature amount evaluation unit 304 further includes an adjacency matrix calculation unit 311, a separation degree evaluation unit 312, and a similarity evaluation unit 313.
 劣化検知装置100の学習用データ取得部301は、劣化事象の状態にある調査対象の各種の特徴量と劣化事象のカテゴリーとをセットにしたデータを、学習用データD11として取得する。 The learning data acquisition unit 301 of the deterioration detection device 100 acquires data as a set of various feature quantities of the investigation target in the state of the deterioration event and the category of the deterioration event as the learning data D11.
 劣化検知装置100のモデル生成部302は、学習用データ取得部301を経由して入力された学習用データD11に基づいて、決定木を学習し、構築する。決定木は、多数の変数の中でどの変数から最も有益な分類条件を得られるのかを見分けるアルゴリズムである。この分類条件の優劣を決める際に、決定木は、カテゴリー識別の不純度を指標とする。また、どの変数が分岐条件として有益なのかを点数化するには、情報利得を用いる。モデル生成部302が構築する決定木は、学習用データD11について、用いる特徴量の種類及び用いる分類面を変えて、情報利得を比較し、決定木を構築する。学習用データD11を増やすことによって、モデル生成部302は、分類面と決定木とを学習する。 The model generation unit 302 of the deterioration detection device 100 learns and constructs a decision tree based on the learning data D11 input via the learning data acquisition unit 301. The decision tree is an algorithm that distinguishes from which of many variables the most useful classification conditions can be obtained. In determining the superiority or inferiority of this classification condition, the decision tree uses the impureness of category identification as an index. In addition, information gain is used to score which variable is useful as a branching condition. The decision tree constructed by the model generation unit 302 is constructed by comparing the information gains of the learning data D11 by changing the type of the feature amount to be used and the classification surface to be used. By increasing the training data D11, the model generation unit 302 learns the classification surface and the decision tree.
 劣化検知装置100のモデル生成部302は、上記学習した決定木を、学習モデルD12として記憶部6へ出力する。 The model generation unit 302 of the deterioration detection device 100 outputs the learned decision tree to the storage unit 6 as the learning model D12.
 劣化検知装置100の記憶部6は、モデル生成部302が出力した学習済みの学習モデルD12を記憶する。 The storage unit 6 of the deterioration detection device 100 stores the trained learning model D12 output by the model generation unit 302.
 モデル生成部302の動作の詳細は、モデル生成部302の構成要素である分布間距離算出部303、特徴量評価部304、及び集約部305のそれぞれの動作の説明により、明らかにされる。 The details of the operation of the model generation unit 302 will be clarified by the explanation of the operation of the inter-distribution distance calculation unit 303, the feature amount evaluation unit 304, and the aggregation unit 305, which are the components of the model generation unit 302.
 モデル生成部302の分布間距離算出部303は、学習用データD11のうち、2種類のラベルがついたデータについて、特徴量空間における2種類のプロットの分布間の距離を算出する。本開示技術は、カテゴリー識別の不純度を重要と考えるため、分布間の距離を不純度という面から定義する。純度は、不純度と対をなす概念である。純度は、分類面で学習用データD11を分類したときに、正しく分類できたデータ数をデータ総数で割った値である。純度が高く分類できるということは、お互いの距離が十分ある、というように解釈できる。そこで、本開示技術は、この純度を、分類面により分類された2つの分布間の距離と定義する。
 1つの特徴量の閾値で分類を行う場合は、分布間の距離をArea Under The Curve(以下、「AUC」という)で定義することも考えられる。AUCは、Receiver Operating Characteristic Curve(以下、「ROC曲線」という)の下の面積であり、0から1までの値をとる。AUCが1であることは、不純度がなく2つの分布が十分離れていることを表す。
The inter-distribution distance calculation unit 303 of the model generation unit 302 calculates the distance between the distributions of the two types of plots in the feature space for the data with two types of labels in the learning data D11. Since the present disclosure technique considers the impureness of category identification to be important, the distance between distributions is defined in terms of impureness. Purity is a concept that is paired with impureness. The purity is a value obtained by dividing the number of data that can be correctly classified by the total number of data when the learning data D11 is classified in terms of classification. Being able to classify with high purity can be interpreted as having a sufficient distance from each other. Therefore, the present disclosure technique defines this purity as the distance between two distributions classified by the classification plane.
When classifying by the threshold value of one feature amount, it is conceivable to define the distance between distributions by Area Under The Curve (hereinafter referred to as “AUC”). AUC is an area under the Receiver Operating Characteristic Curve (hereinafter referred to as “ROC curve”) and takes a value from 0 to 1. An AUC of 1 indicates that there is no impureness and the two distributions are sufficiently separated.
 モデル生成部302の特徴量評価部304は、さらに隣接行列算出部311と、分離度評価部312と、類似度評価部313と、に分けられる。特徴量評価部304の動作の詳細は、特徴量評価部304の構成要素である隣接行列算出部311、分離度評価部312、及び類似度評価部313のそれぞれの動作の説明により明らかにされる。 The feature amount evaluation unit 304 of the model generation unit 302 is further divided into an adjacency matrix calculation unit 311, a separation degree evaluation unit 312, and a similarity evaluation unit 313. The details of the operation of the feature amount evaluation unit 304 will be clarified by the explanation of each operation of the adjacency matrix calculation unit 311 which is a component of the feature amount evaluation unit 304, the separation degree evaluation unit 312, and the similarity evaluation unit 313. ..
 特徴量評価部304の隣接行列算出部311は、分布間距離算出部303が出力した2つのラベルの分布間距離の情報をもとに、全ラベルの分布間距離を要素とした隣接行列Fを生成し、分離度評価部312及び類似度評価部313へ隣接行列Fを出力する。ここで、隣接行列Fは、グラフ理論及び計算機科学で用いられる有限グラフを表す正方行列である。図6は、実施の形態1にかかる特徴量評価部304の隣接行列算出部311が生成する隣接行列Fの例を示した図である。図6が示すとおり、本開示技術における隣接行列Fは、無向グラフであるため、上半分の三角行列となっている。また、対角成分は自分自身との距離を表すため、要素はすべて0である。 The adjacency matrix calculation unit 311 of the feature quantity evaluation unit 304 uses the adjacency matrix F as an element of the distance between the distributions of all the labels based on the information of the distance between the distributions of the two labels output by the distance calculation unit 303. Generate and output the adjacency matrix F to the separation evaluation unit 312 and the similarity evaluation unit 313. Here, the adjacency matrix F is a square matrix representing a finite graph used in graph theory and computer science. FIG. 6 is a diagram showing an example of an adjacency matrix F generated by the adjacency matrix calculation unit 311 of the feature quantity evaluation unit 304 according to the first embodiment. As shown in FIG. 6, since the adjacency matrix F in the disclosed technique is an undirected graph, it is a triangular matrix in the upper half. Also, since the diagonal component represents the distance to itself, all the elements are 0.
 特徴量評価部304の分離度評価部312は、隣接行列算出部311が出力した隣接行列Fの各要素Fi、jに対して分離距離条件を満たすか否かを判断し、隣接行列Fの各要素Fi、jを二値化する。分離距離条件は、以下の式で与えられる。
 IF Fi、j>1-ε THEN Gi、j=1、ELSE Gi、j=0・・・(1)
ただし、εは分離距離条件のパラメータである。また、隣接行列Fの各要素Fi、jを二値化した行列は、分離評価行列Gとよぶ。分離度評価部312は、この分離評価行列Gを集約部305へ出力する。
The separation evaluation unit 312 of the feature amount evaluation unit 304 determines whether or not the separation distance condition is satisfied for each element Fi, j of the adjacency matrix F output by the adjacency matrix calculation unit 311, and determines whether or not the separation distance condition is satisfied, and the adjacency matrix F Binarize each element Fi and j . The separation distance condition is given by the following equation.
IF F i, j > 1-ε 1 THEN G i, j = 1, ELSE G i, j = 0 ... (1)
However, ε 1 is a parameter of the separation distance condition. Further, the matrix obtained by binarizing the elements Fi and j of the adjacency matrix F is called the separation evaluation matrix G. The separation evaluation unit 312 outputs this separation evaluation matrix G to the aggregation unit 305.
 特徴量評価部304の類似度評価部313は、隣接行列算出部311が出力した隣接行列Fの各要素Fi、jに対して類似距離条件を満たすか否かを判断し、隣接行列Fの各要素Fi、jを二値化する。類似距離条件は、以下の式で与えられる。
 IF Fi、j<ε THEN Hi、j=0、ELSE Hi、j=1・・・・・・(2)
ただし、εは類似距離条件のパラメータである。また、隣接行列Fの各要素Fi、jを二値化した行列は、類似評価行列Hとよぶ。類似度評価部313は、この類似評価行列Hを集約部305へ出力する。
The similarity evaluation unit 313 of the feature quantity evaluation unit 304 determines whether or not the similarity distance condition is satisfied for each element Fi, j of the adjacency matrix F output by the adjacency matrix calculation unit 311, and determines whether or not the similarity distance condition is satisfied, and the adjacency matrix F Binarize each element Fi and j . The similar distance condition is given by the following equation.
IF F i, j2 THEN Hi i, j = 0, ELSE Hi , j = 1 ... (2)
However, ε 2 is a parameter of the similar distance condition. Further, the matrix obtained by binarizing the elements Fi and j of the adjacency matrix F is called the similarity evaluation matrix H. The similarity evaluation unit 313 outputs this similarity evaluation matrix H to the aggregation unit 305.
 モデル生成部302の集約部305は、特徴量評価部304が出力した分離評価行列Gと類似評価行列Hから、グループ化すべき劣化事象のカテゴリーを選定する。分離評価行列Gと類似評価行列Hとのいずれを用いるかは設計事項であるが、結局のところ、グループ化すべき劣化事象は、決定木が示す分類面による分類において、分類が困難で、分類をしても不純度が高い劣化事象同士を選定する。
 グループ化すべき劣化事象を選定した後、モデル生成部302は、グループ化した「劣化事象グループ」の情報を、分類面と決定木との学習に反映させる。ここでのグループ化は、学習を進める段階で変化することがある。
The aggregation unit 305 of the model generation unit 302 selects the category of deterioration events to be grouped from the separation evaluation matrix G and the similarity evaluation matrix H output by the feature quantity evaluation unit 304. Whether to use the separation evaluation matrix G or the similarity evaluation matrix H is a design matter, but after all, the deterioration events to be grouped are difficult to classify in the classification by the classification surface indicated by the decision tree, and the classification is performed. Even so, select deterioration events with high impurities.
After selecting the deterioration events to be grouped, the model generation unit 302 reflects the information of the grouped "deterioration event group" in the learning of the classification surface and the decision tree. The grouping here may change as the learning progresses.
 劣化検知装置100の学習フェーズにおける動作は、フローチャートに沿った以下の説明により明らかにされる。図7は、実施の形態1にかかる劣化検知装置100の学習フェーズの処理フローを示したフローチャートである。 The operation of the deterioration detection device 100 in the learning phase will be clarified by the following explanation along the flowchart. FIG. 7 is a flowchart showing a processing flow of the learning phase of the deterioration detection device 100 according to the first embodiment.
 図7が示すとおり、劣化検知装置100の学習フェーズにおける処理動作には、学習用データD11を取得するステップ(ST21)と、分布間距離を算出するステップ(ST22)と、隣接行列を算出するステップ(ST23)と、分離評価行列Gを算出するステップ(ST24)と、類似評価行列Hを算出するステップ(ST25)と、グループ化すべき劣化事象のカテゴリーを選定するステップ(ST26)と、グループ化を反映して学習を進めるステップ(ST27)と、学習を終了するか確認するステップ(ST28)と、を有する。 As shown in FIG. 7, the processing operation in the learning phase of the deterioration detection device 100 includes a step of acquiring learning data D11 (ST21), a step of calculating the distance between distributions (ST22), and a step of calculating an adjacency matrix. (ST23), a step of calculating the separation evaluation matrix G (ST24), a step of calculating the adjacency matrix H (ST25), a step of selecting a category of deterioration events to be grouped (ST26), and grouping. It has a step of reflecting and advancing the learning (ST27) and a step of confirming whether to end the learning (ST28).
 学習を終了するか確認するステップ(ST28)は、説明を要するので、ここで行う。一般に、学習を行う方法は、バッチ学習とオンライン学習とに区別される。バッチ学習の場合、学習用データD11は一度にすべてが使用されるため、このステップ(ST28)は必要ないとも考えられる。しかし、対象の装置の型の違いなど、性質の異なる学習用データD11を用いる場合、段階的に学習を行い、学習の結果の違いを観測していきたい、というようなケースも考えられる。このようなケースの場合、このステップ(ST28)が含まれる。 The step (ST28) for confirming whether to finish learning requires explanation, so it is performed here. In general, learning methods are divided into batch learning and online learning. In the case of batch learning, it is considered that this step (ST28) is not necessary because all the training data D11 is used at once. However, when learning data D11 having different properties such as a difference in the type of the target device is used, there may be a case where it is desired to perform learning step by step and observe the difference in the learning result. In such cases, this step (ST28) is included.
 以上の構成を備えることにおり、実施の形態1にかかる劣化検知装置100は、分類の正答率が向上し、グループ化された劣化事象の性質を決定木により明らかにできる。 With the above configuration, the deterioration detection device 100 according to the first embodiment improves the correct answer rate of classification and can clarify the nature of grouped deterioration events by a decision tree.
 1 ラベル付データ取得部; 2 特徴量抽出部; 3 劣化候補推論部; 6 記憶部; 7 インターフェース部; 100 劣化検知装置; 200 外部機器; 300 学習部; 301 学習用データ取得部; 302 モデル生成部; 303 分布間距離算出部; 304 特徴量評価部; 305 集約部; 311 隣接行列算出部; 312 分離度評価部; 313 類似度評価部; 1000 劣化検知要因分析システム。 1 Labeled data acquisition unit; 2 Feature amount extraction unit; 3 Deterioration candidate inference unit; 6 Storage unit; 7 Interface unit; 100 Deterioration detection device; 200 External device; 300 Learning unit; 301 Learning data acquisition unit; 302 Model generation Part; 303 Distance between distribution calculation part; 304 Feature amount evaluation part; 305 Aggregation part; 311 Adjacent matrix calculation part; 312 Separation degree evaluation part; 313 Similarity evaluation part; 1000 Deterioration detection factor analysis system.

Claims (4)

  1.  学習用データに基づいて、データの特徴量から前記データが属する劣化事象のカテゴリーを推測する決定木を学習し構築する学習部と、
     入力された時系列のセンサーデータから特徴量を算出する特徴量抽出部と、
     前記算出された特徴量から評価の高い特徴量を選択し、学習済みの前記決定木からもっともらしい劣化事象の候補を推測する劣化候補推論部と、
    を備える劣化検知装置であって、
     前記学習部は、劣化事象をグループ化して前記決定木を学習し構築することを特徴とする劣化検知装置。
    A learning unit that learns and builds a decision tree that infers the category of deterioration events to which the data belongs from the features of the data based on the learning data.
    A feature amount extractor that calculates a feature amount from the input time-series sensor data,
    A deterioration candidate inference unit that selects a feature with a high evaluation from the calculated features and infers a plausible deterioration event candidate from the learned decision tree.
    It is a deterioration detection device equipped with
    The learning unit is a deterioration detection device characterized by grouping deterioration events and learning and constructing the decision tree.
  2.  前記学習部は、
     前記学習用データを前記決定木にしたがって分類を行ったとき、正しく分類できたデータ数をデータ総数で割った値に基づいて、グループ化する劣化事象を決めることを特徴とする請求項1に記載の劣化検知装置。
    The learning unit
    The first aspect of claim 1, wherein when the learning data is classified according to the decision tree, the deterioration events to be grouped are determined based on the value obtained by dividing the number of data that can be correctly classified by the total number of data. Deterioration detection device.
  3.  前記学習部は、
     前記学習用データのうち、2種類のラベルがついたデータについて、特徴量空間における前記2種類のプロットの分布間距離を算出する分布間距離算出部を備え、
     前記分布間距離算出部が算出した前記分布間距離に基づいて、前記グループ化する劣化事象を決めることを特徴とする請求項1に記載の劣化検知装置。
    The learning unit
    Among the training data, the data with two types of labels is provided with an inter-distribution distance calculation unit for calculating the inter-distribution distance of the two types of plots in the feature space.
    The deterioration detection device according to claim 1, wherein the deterioration event to be grouped is determined based on the distance between distributions calculated by the distance calculation unit between distributions.
  4.   前記分布間距離は、Area Under The Curveによって定義することを特徴とする請求項3に記載の劣化検知装置。 The deterioration detection device according to claim 3, wherein the distance between distributions is defined by Area Under The Curve.
PCT/JP2020/040417 2020-10-28 2020-10-28 Degradation detection device WO2022091248A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021523093A JP6961126B1 (en) 2020-10-28 2020-10-28 Deterioration detection device
PCT/JP2020/040417 WO2022091248A1 (en) 2020-10-28 2020-10-28 Degradation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040417 WO2022091248A1 (en) 2020-10-28 2020-10-28 Degradation detection device

Publications (1)

Publication Number Publication Date
WO2022091248A1 true WO2022091248A1 (en) 2022-05-05

Family

ID=78409780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040417 WO2022091248A1 (en) 2020-10-28 2020-10-28 Degradation detection device

Country Status (2)

Country Link
JP (1) JP6961126B1 (en)
WO (1) WO2022091248A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116545A (en) * 2017-01-19 2018-07-26 オムロン株式会社 Prediction model creating device, production facility monitoring system, and production facility monitoring method
JP2019192059A (en) * 2018-04-27 2019-10-31 田中 成典 Object recognition device
JP2020057053A (en) * 2018-09-28 2020-04-09 学校法人慶應義塾 Postoperative complication prediction method, postoperative complication prediction program, and postoperative complication prediction device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087968A1 (en) * 2007-01-17 2008-07-24 Nec Corporation Change-point detecting method and apparatus
JP6846369B2 (en) * 2018-02-14 2021-03-24 Kddi株式会社 Programs, devices and methods for classifying unknown multidimensional vector data groups
KR20190106861A (en) * 2019-08-27 2019-09-18 엘지전자 주식회사 Artificial intelligence apparatus, artificial intelligence server and method for generating training data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116545A (en) * 2017-01-19 2018-07-26 オムロン株式会社 Prediction model creating device, production facility monitoring system, and production facility monitoring method
JP2019192059A (en) * 2018-04-27 2019-10-31 田中 成典 Object recognition device
JP2020057053A (en) * 2018-09-28 2020-04-09 学校法人慶應義塾 Postoperative complication prediction method, postoperative complication prediction program, and postoperative complication prediction device

Also Published As

Publication number Publication date
JPWO2022091248A1 (en) 2022-05-05
JP6961126B1 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
TWI746914B (en) Detective method and system for activity-or-behavior model construction and automatic detection of the abnormal activities or behaviors of a subject system without requiring prior domain knowledge
CN110309886B (en) Wireless sensor high-dimensional data real-time anomaly detection method based on deep learning
Yin et al. Fault detection based on a robust one class support vector machine
US8332337B2 (en) Condition-based monitoring system for machinery and associated methods
US10712733B2 (en) Methods and systems for discovery of prognostic subsequences in time series
CN111353482A (en) LSTM-based fatigue factor recessive anomaly detection and fault diagnosis method
CN107241358B (en) Smart home intrusion detection method based on deep learning
WO2021071911A1 (en) Sensor contribution ranking
WO2018180197A1 (en) Data analysis device, data analysis method and data analysis program
Michau et al. Unsupervised fault detection in varying operating conditions
EP4028841B1 (en) Systems and methods for detecting wind turbine operation anomaly using deep learning
US20090043536A1 (en) Use of Sequential Clustering for Instance Selection in Machine Condition Monitoring
CN111277459A (en) Equipment anomaly detection method and device and machine-readable storage medium
US20230221684A1 (en) Explaining Machine Learning Output in Industrial Applications
CN113361944B (en) Safe production index abnormity rapid sensing method based on Internet of things and artificial intelligence
CN110737976A (en) mechanical equipment health assessment method based on multi-dimensional information fusion
CN112561383A (en) Real-time anomaly detection method based on generation countermeasure network
CN111431937A (en) Method and system for detecting abnormal flow of industrial network
Ding et al. A zero-shot soft sensor modeling approach using adversarial learning for robustness against sensor fault
JP7158624B2 (en) Abnormality detection device
WO2022091248A1 (en) Degradation detection device
KR102486463B1 (en) Method and Apparatus for Real Time Fault Detection Using Time series data According to Degradation
CN112836570B (en) Equipment abnormality detection method utilizing Gaussian noise
Stržinar et al. Soft sensor for non-invasive detection of process events based on Eigenresponse Fuzzy Clustering
JP2018014093A (en) Process state diagnosis method and state diagnosis device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021523093

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959766

Country of ref document: EP

Kind code of ref document: A1