WO2022090599A1 - Tool for managing the efficient incorporation of alternative fuels in cement plants - Google Patents

Tool for managing the efficient incorporation of alternative fuels in cement plants Download PDF

Info

Publication number
WO2022090599A1
WO2022090599A1 PCT/ES2021/070773 ES2021070773W WO2022090599A1 WO 2022090599 A1 WO2022090599 A1 WO 2022090599A1 ES 2021070773 W ES2021070773 W ES 2021070773W WO 2022090599 A1 WO2022090599 A1 WO 2022090599A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
volatile elements
fuel
plant
volatile
Prior art date
Application number
PCT/ES2021/070773
Other languages
Spanish (es)
French (fr)
Inventor
Luz Marina GALLEGO FERNÁNDEZ
Rocío GONZÁLEZ FALCÓN
Benito Navarrete Rubia
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2022090599A1 publication Critical patent/WO2022090599A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a method and system for predicting the operational risk associated with the entry and accumulation of volatile elements in a given internal volatile circuit in a cement plant.
  • the technical invention is developed in the area of knowledge of Chemical Engineering. Specifically, this invention can be included in the sector of the use of biomass or waste, since it allows evaluating the operation of a cement plant, when the amount of volatile elements that are introduced into the process is modified together with the waste or biomass incorporated as alternative fuels to the traditional fossil fuels used in this type of plant.
  • An object of the invention is a method to predict the type of enrichment in volatile elements (chlorine enrichment, sulfur enrichment, alkali enrichment) to which a cement plant would tend, when the amount of these elements varies in the process, for incorporate new alternative fuels, so that the method allows deciding whether or not to incorporate a new waste or biomass as a substitute for traditional fossil fuel, thus ensuring the stability of the operation.
  • Another object of the invention refers to a system for predicting the operational risk present in the production process, derived from the amount of volatile elements that remain in the volatile elements circuit of the plant. This risk is associated with the possible appearance of scale or sticking inside the process equipment, and even blockage and shutdown of the plant.
  • waste in cement plants is a common practice to reduce the consumption of fossil fuel in the daily operation of the plant, and to provide an effective and safe response to society in the treatment of waste.
  • degree of thermal substitution in Spanish cement plants from alternative fuels reached 26.6%, and despite being a relevant percentage and continuously growing, it is far from the European average (41%) and even from the percentage of substitution achieved by countries such as Germany, Holland, Sweden, Switzerland, Norway or Austria, with values above 60%.
  • Integrated Environmental Authorization establishes the acceptance specifications for new materials or fuels that can be used in the production process, either as raw material or as alternative fuels.
  • Said specifications refer to different physical, chemical and/or energy parameters associated with the new materials or fuels (waste and biomass) that are to be recovered (PCI, Cl, F, S, etc.), and to the maximum quantity allowed to be introduced in the process. Compliance with these specifications guarantees the preservation of the environment after the use of waste in this type of facility.
  • This type of plant is of great interest in finding a solution to the problem derived from the accumulation of volatile elements inside the system, in order to reduce the number of plant stoppages caused by the presence of scale and sticking in the system. inside the equipment, and, therefore, minimize the economic losses derived from the drop in the efficiency of the process and its level of production.
  • the invention relates to a method for predicting the type of enrichment to which a cement plant would tend when waste or biomass are incorporated as new fuels, and the operational risk associated with said action, derived from the appearance of encrustations, sticking or blockages of the system due to the accumulation of volatile elements in the internal volatile circuit given in this type of installation.
  • the method of the invention thus makes it possible to solve, predictively, the operational problems that may arise from the incorporation of a new alternative fuel in cement plants.
  • the method of the invention allows to previously know the effect that the incorporation of a new fuel can cause on the equipment and on the daily operation of the plant, reducing the economic and environmental impact that this problem causes in this type of installation.
  • the method of the invention also makes it possible to estimate the risk posed to a specific cement plant, to incorporate said new fuel into its production system or to replace part of its fossil fuel with another of a biomass nature.
  • the method of the invention comprises a stage of obtaining the amount and composition of raw materials introduced and fuels used in the cement plant, since the entry of volatile elements (NaO 2 , KO 2 , Cl, S) to the The process can be carried out through the raw material fed or the fuels used in the kiln to provide sufficient thermal energy to produce the cement clinker.
  • a parameter is obtained that indicates a desired degree of thermal substitution, that is, the quantity of new fuel that it is desired to include.
  • a model is generated that relates the amount of volatile elements predicted in the new operating situation, with the amount of volatile elements that remains circulating in the circuit of volatile elements of the cement plant, indicating the type of enrichment (sulfur, chlorine and/or alkalis) that would prevail in the plant, given the new recovery scenario.
  • the generated model has the form of a decision tree, which marks the enrichment trend of the plant when the composition of volatile elements is modified with the incorporation of the new fuel.
  • the model is developed using the CRISP-DM methodology and data mining techniques from which the data is analyzed, the model is generated and validated.
  • This model is based on the estimated amount of volatile elements and data previously obtained regarding the order of affinity of the volatile elements in the system, such as the Alkali-Sulfate Ratio and the Residual Alkali parameter, thus determining whether there is an enrichment of volatile elements of the sulfur, alkali or chlorine type in the circuit of volatile elements of the cement plant.
  • This calculation is carried out because, once the volatile elements have been introduced into the system, depending on the compounds formed, respecting the order of affinity of the volatile elements and depending on the quantities introduced, they can leave the volatile elements circuit. together with process gases, clinker, clinker dust or CKD, or be trapped in it.
  • the method can also include the stages of:
  • the relationship between the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the crude meal and the risk of plant failure is expressed by a tolerance graph of Cl vs. SO 3 in the Hot Meal or raw meal, which indicates the risk level of the appearance of operational problems (sticking, encrustations or blocks) that the plant would most likely tend to (Low level, medium level, high level) according to the type of enrichment given when the new fuel is introduced into the furnace.
  • the combination of the described model and the analysis of the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the crude meal allows estimating the level of risk in the plant. of forming sticking, encrustations and/or blockages of the system, when the modification of the mix of fuels used in the clinker furnace is considered.
  • the method of the invention allows a production manager to decide before acting, whether or not it is convenient to incorporate a new fuel into the original fuel mix, or what type of alternative fuel may be the most recommended based on its use.
  • composition to replace part of the fossil fuel used until then in the plant, reducing or improving the technical and environmental impact that this fact causes on the operation.
  • the invention also relates to a system for predicting the amount of volatile elements in a cement plant, comprising: a database, comprising data about the affinity order of the volatile elements; a processing unit, which calculates the amount of volatile elements present in the raw material and fuel, based on data on the amount and composition of the raw material and fuel, which can be obtained through a set of sensors placed in the plant of cement; a prediction unit, connected to the processing unit, which predicts the amount of volatile elements that would be in the raw material, the fuel and in the raw meal or Hot Meal, based on a parameter of the desired degree of thermal substitution and the composition and amount of new fuel introduced; and a unit for calculating volatile elements, connected to the database and to the prediction unit, and which obtains a measure of enrichment in volatile elements such as sulphur, alkalis or chlorine, by means of a model, preferably based on algorithms generated by means of the methodology CRISP-DM, which relates the number of volatile elements predicted by the prediction unit to the number of volatile elements remaining in a loop of
  • the system may also comprise a risk prediction unit, connected to the volatile elements calculation unit, and which obtains an estimate of the risk of plant malfunction based on the amount of sulfur oxide (SO 3 ) and chlorine (Cl) present in the raw meal (Hot Meal) and the amount of volatile elements that circulate through the volatile elements circuit of the plant.
  • a risk prediction unit connected to the volatile elements calculation unit, and which obtains an estimate of the risk of plant malfunction based on the amount of sulfur oxide (SO 3 ) and chlorine (Cl) present in the raw meal (Hot Meal) and the amount of volatile elements that circulate through the volatile elements circuit of the plant.
  • the system reflects the current situation of the plant in terms of the presence of volatile elements, through the processing unit; indicates how the operation would evolve when you want to incorporate a fuel or waste with a certain content of volatile elements in its matrix, through the prediction unit; and, depending on whether the addition of biomass or residue as fuel produces an increase or a decrease in the total volatile elements that would enter the system, it indicates the tendency that the installation would present to evolve towards enrichment in chlorine, enrichment in alkalis or an enrichment in sulfur, through the calculation unit of volatile elements.
  • the predictive analysis carried out by the system allows the decision to be made whether or not to incorporate a new fuel into the clinker kiln by increasing or not the degree of thermal substitution in this equipment, or knowing the quality that the fuel to be introduced in the kiln must have. process and, therefore, the conditioning needs of this new fuel. In this way, the operation would be prevented from moving to areas where the operational risk becomes evident, thus reducing unexpected plant stoppages, the reduction in production capacity or the drop in the quality of the manufactured product.
  • Figure 1 shows a preferred embodiment of the system for predicting the amount of volatile elements that circulate through a circuit of volatile elements of a cement plant of the invention.
  • Figure 2.- shows a preferred embodiment of the method for predicting the amount of volatile elements that circulate through a circuit of volatile elements of a cement plant of the invention.
  • Figure 3.- shows a decision tree model for predicting the type of enrichment in volatile elements in a cement plant according to a preferred embodiment of the invention.
  • Figure 4.- Shows an example of a graph of tolerance chlorine - sulfur oxide in raw flour or Hot Meal, according to a preferred embodiment of the invention.
  • Figure 5.- shows the evolution of the operation of the plant with the incorporation of a certain quantity of a new fuel to the clinker furnace, on the chlorine - sulfur oxide tolerance graph according to an example of implementation of the invention.
  • the present invention refers to a method and a system for predicting the type of enrichment in volatile elements given in a cement plant, when incorporating biomass or waste as fuel in the clinker oven, and the risk associated with said action in terms of the appearance of inefficiencies in the operation derived from the appearance of incrustations, sticking and blockages of the system.
  • the method of the invention makes use of a database (1) that contains the operating data history of a cement plant, recommended for at least 1 year, which includes the composition parameters in volatile elements (SO 3 , Cl, Na 2 O and K 2 O) of the raw material and the fuel used. These parameters are estimated (9) by the processing unit (2), previously obtaining (7) an amount and composition of raw materials introduced and fuels used in the cement plant, preferably by means of a set of sensors (6).
  • a decision tree model is generated (1 1), by means of a volatile element calculation unit (4), based on the definition of the following indicators: A/S ratio, residual alkalis, sulfur oxide, chlorine, alkalis, sulfur oxide in crude meal, chlorine in crude meal and alkalis in crude meal.
  • the CRISP-DM methodology is applied using data analysis software, and the decision tree model is obtained with an adjustment close to 90%.
  • Figure 3 shows an example of the decision tree model generated in a particular embodiment of the method of the invention, comprising 18 nodes, and node 0.
  • the input data is the amount of volatile elements that enter the system, sulfur oxide, chlorine, alkalis, represented in the lines that join the nodes, and the output data is the type of enrichment given in the plant in question.
  • function of the amount of volatile elements present that is, enrichment in sulfur; alkali enrichment; chlorine enrichment or normal operation, given at each node of the tree which in turn gives way to the nodes located below.
  • a low risk zone with a low percentage of chlorine and a low percentage of sulfur oxide, delimited by a continuous line
  • a medium risk zone with a medium percentage of chlorine and a medium percentage of sulfur oxide, delimited by the continuous line and a dashed line
  • a high risk zone with a high percentage of chlorine and a high percentage of sulfur oxide, delimited by the dashed line.
  • the amount of total volatiles present in the system and in the raw meal (Hot Meal, HM), both expressed based on clinker, in the current operating situation of the plant are shown in Table one .
  • Clinker 112000 1.10 0.01 0.74 0.07 1235.4 7.8 828.8 82.9 911.7
  • Figure 5 graphically shows the evolution of the plant operation in view of the addition of the new fuel, decreasing the amount of coke fed, which in this case would be recommended, by improving not only the environmental conditions (reduction of emissions) but also by improving the operational problems (scaling) that the plant has been suffering in its current mode of operation, since the displacement of the base case to the recovery scenario supposes a high reduction in the amount of sulfur oxide and a slight reduction in the amount of chlorine.

Abstract

A method and system for predicting enrichment type in terms of volatile components in a cement plant resulting from a variation in the amount of volatile components circulating in a volatile component circuit of the facility following the addition of biomass or waste as fuel, comprising the steps of: obtaining the amount and composition of raw materials and fuels used; establishing a desired degree of thermal substitution; estimating a measure of the amount of volatile components present in raw materials and fuels; predicting a measure of the amount of volatile components in raw material and fuel upon adding biomass or waste; and generating a model relating the predicted amount of volatile components to the amount remaining; estimating the amount of sulphur oxide and chlorine in raw meal and relating it to the amount of volatile components remaining, obtaining an estimate of the risk of failure.

Description

HERRAMIENTA PARA GESTIONAR LA INCORPORACIÓN EFICIENTE DE COMBUSTIBLES ALTERNATIVOS EN PLANTAS DE CEMENTO.
Figure imgf000002_0001
TOOL TO MANAGE THE EFFICIENT INCORPORATION OF ALTERNATIVE FUELS IN CEMENT PLANTS.
Figure imgf000002_0001
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se refiere a un método y sistema para predecir el riesgo operativo asociado a la entrada y acumulación de elementos volátiles en un circuito interno de volátiles dado en una planta de cemento. The present invention relates to a method and system for predicting the operational risk associated with the entry and accumulation of volatile elements in a given internal volatile circuit in a cement plant.
La invención técnica se desarrolla en el área de conocimiento de Ingeniería Química. Concretamente, esta invención se puede englobar en el sector del uso de biomasa o residuos, pues permite evaluar la operación de una planta de cemento, cuando se modifica la cantidad de elementos volátiles que se introducen en el proceso junto con los residuos o biomasa incorporados como combustibles alternativos a los combustibles fósiles tradicionales empleados en este tipo de plantas. The technical invention is developed in the area of knowledge of Chemical Engineering. Specifically, this invention can be included in the sector of the use of biomass or waste, since it allows evaluating the operation of a cement plant, when the amount of volatile elements that are introduced into the process is modified together with the waste or biomass incorporated as alternative fuels to the traditional fossil fuels used in this type of plant.
Un objeto de la invención es un método para predecir el tipo de enriquecimiento en elementos volátiles (enriquecimiento en cloro, enriquecimiento en azufre, enriquecimiento en álcalis) al que tendería una planta de cemento, cuando varía la cantidad de estos elementos en el proceso, por incorporar nuevos combustibles alternativos, de modo que el método permite decidir incorporar o no un nuevo residuo o biomasa como sustituto del combustible fósil tradicional, asegurando, de esta manera, la estabilidad de la operación. An object of the invention is a method to predict the type of enrichment in volatile elements (chlorine enrichment, sulfur enrichment, alkali enrichment) to which a cement plant would tend, when the amount of these elements varies in the process, for incorporate new alternative fuels, so that the method allows deciding whether or not to incorporate a new waste or biomass as a substitute for traditional fossil fuel, thus ensuring the stability of the operation.
Otro objeto de la invención se refiere a un sistema para predecir el riesgo operativo presente en el proceso de producción, derivado de la cantidad de elementos volátiles que permanecen en el circuito de elementos volátiles de la planta. Este riesgo está asociado a una posible aparición de incrustaciones o pegaduras en el interior de los equipos de proceso, e incluso al bloqueo y parada de la planta. ANTECEDENTES DE LA INVENCIÓN Another object of the invention refers to a system for predicting the operational risk present in the production process, derived from the amount of volatile elements that remain in the volatile elements circuit of the plant. This risk is associated with the possible appearance of scale or sticking inside the process equipment, and even blockage and shutdown of the plant. BACKGROUND OF THE INVENTION
El aprovechamiento de residuos en las plantas de cemento es una práctica habitual para reducir el consumo de combustible fósil en la operación diaria de planta, y para dar una respuesta eficaz y segura a la sociedad en el tratamiento de los residuos. En 2017 el grado de sustitución térmica en las cementeras españolas procedentes de combustibles alternativos alcanzó el 26,6%, y a pesar de ser un porcentaje relevante y en continuo crecimiento, está muy alejado de la media europea (41 %) e incluso del porcentaje de sustitución alcanzado por países como Alemania, Holanda, Suecia, Suiza, Noruega o Austria, con valores superiores al 60%. The use of waste in cement plants is a common practice to reduce the consumption of fossil fuel in the daily operation of the plant, and to provide an effective and safe response to society in the treatment of waste. In 2017, the degree of thermal substitution in Spanish cement plants from alternative fuels reached 26.6%, and despite being a relevant percentage and continuously growing, it is far from the European average (41%) and even from the percentage of substitution achieved by countries such as Germany, Holland, Sweden, Switzerland, Norway or Austria, with values above 60%.
Toda fábrica de cemento que pretenda valorizar residuos debe contar con una autorización en la que se integre tanto la actividad de fabricación del cemento, como la permisión de la propia fábrica para llevar a cabo la combustión de residuos o biomasas. En esta autorización, denominada Autorización Ambiental Integrada (AAI), se establecen las especificaciones de aceptación de los nuevos materiales o combustibles que pueden ser empleados en el proceso de producción, bien como materia prima o bien como combustibles alternativos. Dichas especificaciones están referidas a distintos parámetros físicos, químicos y/o energéticos asociados a los nuevos materiales o combustibles (residuos y biomasa) que se quieran valorizar (PCI, Cl, F, S, etc.), y a la cantidad máxima admitida para ser introducidos en el proceso. El cumplimiento de estas especificaciones garantiza la preservación del medio ambiente tras el aprovechamiento de los residuos en este tipo de instalaciones. Sin embargo, no asegura que la operación se lleve a cabo de forma eficiente, es decir, sin un enriquecimiento del sistema en alguno de sus elementos volátiles (Cl, S, Na2O, K2O), y sin propiciar el aumento del riesgo de aparición de incrustaciones o pegaduras en el interior de los equipos, provocando incluso el bloqueo del sistema de producción, asociado todo ello a la acumulación de compuestos volátiles introducidos con dichos combustibles dentro del propio proceso. Any cement factory that intends to recover waste must have an authorization that integrates both the cement manufacturing activity and the factory's own permission to carry out the combustion of waste or biomass. This authorization, called Integrated Environmental Authorization (AAI), establishes the acceptance specifications for new materials or fuels that can be used in the production process, either as raw material or as alternative fuels. Said specifications refer to different physical, chemical and/or energy parameters associated with the new materials or fuels (waste and biomass) that are to be recovered (PCI, Cl, F, S, etc.), and to the maximum quantity allowed to be introduced in the process. Compliance with these specifications guarantees the preservation of the environment after the use of waste in this type of facility. However, it does not ensure that the operation is carried out efficiently, that is, without an enrichment of the system in some of its volatile elements (Cl, S, Na 2 O, K 2 O), and without promoting an increase in the risk of the appearance of incrustations or sticking inside the equipment, even causing the blockage of the production system, all associated with the accumulation of volatile compounds introduced with said fuels within the process itself.
A día de hoy no se conoce ningún método que a priori identifique el tipo de enriquecimiento en elementos volátiles y el nivel de riesgo operativo existente en la instalación cuando se plantea introducir un nuevo residuo o biomasa como combustible al sistema. El efecto de incrementar el grado de sustitución de combustible fósil se valora con carácter predictivo, notando como la eficiencia del proceso se modifica al existir o no un riesgo operativo derivado de la actuación anterior, y como se generan bloqueos en los equipos y, por consiguiente, paradas inesperadas de las plantas. To date, no method is known that a priori identifies the type of enrichment in volatile elements and the level of operational risk existing in the facility when introducing a new waste or biomass as fuel into the system. The effect of increasing the degree of substitution of fossil fuel is assessed predictively, noting how the efficiency of the process is modified by Whether or not there is an operational risk derived from the previous action, and how blockages are generated in the equipment and, consequently, unexpected stoppages of the plants.
Este tipo de plantas presentan un gran interés por buscar una solución al problema derivado de la acumulación de elementos volátiles en el interior del sistema, para, de esta forma, reducir el número de paradas de planta ocasionadas por la presencia de incrustaciones y pegaduras en el interior de los equipos, y, por tanto, minimizar las pérdidas económicas derivadas de la caída de la eficiencia del proceso y de su nivel de producción. This type of plant is of great interest in finding a solution to the problem derived from the accumulation of volatile elements inside the system, in order to reduce the number of plant stoppages caused by the presence of scale and sticking in the system. inside the equipment, and, therefore, minimize the economic losses derived from the drop in the efficiency of the process and its level of production.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La invención se refiere a un método para predecir el tipo de enriquecimiento al que tendería una planta de cemento cuando se incorporan residuos o biomasa como nuevos combustibles, y el riesgo operativo asociado a dicha actuación, derivado de la aparición de incrustaciones, pegaduras o bloqueos del sistema por acumulación de elementos volátiles en el circuito interno de volátiles dado en este tipo de instalaciones. The invention relates to a method for predicting the type of enrichment to which a cement plant would tend when waste or biomass are incorporated as new fuels, and the operational risk associated with said action, derived from the appearance of encrustations, sticking or blockages of the system due to the accumulation of volatile elements in the internal volatile circuit given in this type of installation.
El método de la invención permite así solventar, con carácter predictivo, los problemas operativos que pueden derivarse de la incorporación de un nuevo combustible alternativo en las plantas de cemento. The method of the invention thus makes it possible to solve, predictively, the operational problems that may arise from the incorporation of a new alternative fuel in cement plants.
La aparición de fallos en el funcionamiento de la planta de cemento, debido a la presencia de incrustaciones y pegaduras en el interior de los equipos y/o a bloqueos inesperados del sistema de producción durante la operación, está motivada principalmente por la quema de una gran diversidad de combustibles con composición química diversa en el horno de clinker de la planta de cemento. The appearance of failures in the operation of the cement plant, due to the presence of scale and sticking inside the equipment and/or unexpected blockages of the production system during operation, is mainly caused by the burning of a great diversity of fuels with diverse chemical composition in the clinker kiln of the cement plant.
El método de la invención permite conocer previamente el efecto que la incorporación de un nuevo combustible puede provocar sobre los equipos y sobre la operación diaria de la planta, reduciendo el impacto económico y medioambiental que este problema causa en este tipo de instalaciones. The method of the invention allows to previously know the effect that the incorporation of a new fuel can cause on the equipment and on the daily operation of the plant, reducing the economic and environmental impact that this problem causes in this type of installation.
El método de la invención también permite estimar el riesgo que supone para una determinada planta de cemento, incorporar dicho nuevo combustible a su sistema productivo o sustituir parte de su combustible fósil por otro de carácter biomásico. Para ello, el método de la invención comprende una etapa de obtención de la cantidad y composición de materias primas introducidas y combustibles usados en la planta de cemento, ya que la entrada de elementos volátiles (NaO2, KO2, Cl, S) al proceso puede llevarse a cabo a través de la materia prima alimentada o de los combustibles utilizados en el horno para aportar la energía térmica suficiente para producir el clinker de cemento. The method of the invention also makes it possible to estimate the risk posed to a specific cement plant, to incorporate said new fuel into its production system or to replace part of its fossil fuel with another of a biomass nature. For this, the method of the invention comprises a stage of obtaining the amount and composition of raw materials introduced and fuels used in the cement plant, since the entry of volatile elements (NaO 2 , KO 2 , Cl, S) to the The process can be carried out through the raw material fed or the fuels used in the kiln to provide sufficient thermal energy to produce the cement clinker.
A continuación, se obtiene un parámetro que indica un grado de sustitución térmica deseado, es decir, la cantidad de nuevo combustible que se desea incluir. Next, a parameter is obtained that indicates a desired degree of thermal substitution, that is, the quantity of new fuel that it is desired to include.
Una vez obtenidos estos datos, se procede a estimar una medida de la cantidad de elementos volátiles presentes en las materias primas, en la harina de crudo (Hot Meal), y en los combustibles introducidos en la planta de cemento. Once these data have been obtained, a measure of the amount of volatile elements present in the raw materials, in the crude flour (Hot Meal), and in the fuels introduced into the cement plant is estimated.
Una vez conocido el estado actual de la planta de cemento, en lo que a cantidad de elementos volátiles presentes se refiere, se procede a realizar una estimación de la cantidad de elementos volátiles que habría en la materia prima y los combustibles de la planta de cemento en el nuevo escenario de operación, es decir, al añadir un nuevo combustible o sustituir el combustible ya presente de acuerdo con el grado de sustitución térmica establecido. Para ello, se debe conocer previamente la composición en elementos volátiles del nuevo combustible a introducir. Once the current state of the cement plant is known, in terms of the amount of volatile elements present, an estimate is made of the amount of volatile elements that would be in the raw material and fuels of the cement plant. in the new operating scenario, that is, when adding a new fuel or substituting the fuel already present according to the degree of thermal substitution established. For this, the composition of volatile elements of the new fuel to be introduced must be previously known.
Entonces, se genera un modelo que relaciona la cantidad de elementos volátiles predicha en la nueva situación de operación, con la cantidad de elementos volátiles que permanece circulando en el circuito de elementos volátiles de la planta de cemento, indicando el tipo de enriquecimiento (azufre, cloro y/o álcalis) que prevalecería en la planta, dado el nuevo escenario de valorización. Preferiblemente, el modelo generado tiene la forma de árbol de decisión, que marca la tendencia de enriquecimiento de la planta cuando se modifica la composición de elementos volátiles con la incorporación del nuevo combustible. Then, a model is generated that relates the amount of volatile elements predicted in the new operating situation, with the amount of volatile elements that remains circulating in the circuit of volatile elements of the cement plant, indicating the type of enrichment (sulfur, chlorine and/or alkalis) that would prevail in the plant, given the new recovery scenario. Preferably, the generated model has the form of a decision tree, which marks the enrichment trend of the plant when the composition of volatile elements is modified with the incorporation of the new fuel.
El modelo se desarrolla haciendo uso de la metodología CRISP-DM y de técnicas de minería de datos a partir de las cuales se analizan los datos, se genera el modelo y se valida. Este modelo parte de la cantidad de elementos volátiles estimada y de datos previamente obtenidos referentes al orden de afinidad de los elementos volátiles en el interior del sistema, como son la Ratio Álcalis - Sulfato y el parámetro Álcalis residual, determinando así si existe un enriquecimiento de elementos volátiles de tipo azufre, álcalis o cloro en el circuito de elementos volátiles de la planta de cemento. The model is developed using the CRISP-DM methodology and data mining techniques from which the data is analyzed, the model is generated and validated. This model is based on the estimated amount of volatile elements and data previously obtained regarding the order of affinity of the volatile elements in the system, such as the Alkali-Sulfate Ratio and the Residual Alkali parameter, thus determining whether there is an enrichment of volatile elements of the sulfur, alkali or chlorine type in the circuit of volatile elements of the cement plant.
Este cálculo se lleva a cabo ya que, una vez introducidos los elementos volátiles en el sistema, en función de los compuestos formados, respetando el orden de afinidad de los elementos volátiles y dependiendo de las cantidades introducidas, éstos pueden abandonar el circuito de elementos volátiles junto con los gases de proceso, el clinker, el polvo de clinker o CKD, o quedar retenidos en él. This calculation is carried out because, once the volatile elements have been introduced into the system, depending on the compounds formed, respecting the order of affinity of the volatile elements and depending on the quantities introduced, they can leave the volatile elements circuit. together with process gases, clinker, clinker dust or CKD, or be trapped in it.
El paso del tiempo y la gestión inadecuada de dichos elementos volátiles puede provocar el enriquecimiento del sistema en cloro, álcalis o azufre, y generar problemas operativos derivados de la aparición de incrustaciones y pegaduras en los equipos, o del bloqueo de la propia instalación, mermando la producción y repercutiendo negativamente en el balance económico de la planta. The passage of time and the inadequate management of these volatile elements can cause the system to become enriched in chlorine, alkalis or sulfur, and generate operational problems derived from the appearance of scale and sticking in the equipment, or from the blockage of the installation itself, reducing production and negatively affecting the economic balance of the plant.
Para estimar el riesgo de fallos en el funcionamiento de la planta, el método además puede comprender las etapas de: To estimate the risk of failures in the operation of the plant, the method can also include the stages of:
- estimar la cantidad de óxido de azufre (SO3) y cloro (Cl) en la harina de crudo o Hot Meal; y relacionar la cantidad de elementos volátiles que permanecen en el circuito de elementos volátiles con la cantidad de óxido de azufre (SO3) y cloro (Cl) en la harina de crudo, obteniendo así una estimación del riesgo de fallo en el funcionamiento de la planta. - estimate the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in raw meal or Hot Meal; and relate the amount of volatile elements that remain in the circuit of volatile elements with the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the crude flour, thus obtaining an estimate of the risk of failure in the operation of the plant.
Preferiblemente, la relación entre la cantidad de óxido de azufre (SO3) y cloro (Cl) en la harina de crudo y el riesgo de fallo en el funcionamiento de la planta, se expresa mediante un gráfico de tolerancia de Cl vs. SO3 en la Hot Meal o harina de crudo, que indica el nivel de riesgo de aparición de problemas operativos (pegaduras, incrustaciones o bloques) más probable al que tendería la planta (Nivel bajo, nivel medio, nivel alto) según el tipo de enriquecimiento dado cuando se introduce el nuevo combustible en el horno. Preferably, the relationship between the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the crude meal and the risk of plant failure is expressed by a tolerance graph of Cl vs. SO 3 in the Hot Meal or raw meal, which indicates the risk level of the appearance of operational problems (sticking, encrustations or blocks) that the plant would most likely tend to (Low level, medium level, high level) according to the type of enrichment given when the new fuel is introduced into the furnace.
Así, la combinación del modelo descrito y del análisis de la cantidad de óxido de azufre (SO3) y cloro (Cl) en la harina de crudo, permite estimar el nivel de riesgo en la planta de formar pegaduras, incrustaciones y/o bloqueos del sistema, cuando se plantea la modificación del mix de combustibles empleado en el horno de clinker. Thus, the combination of the described model and the analysis of the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the crude meal, allows estimating the level of risk in the plant. of forming sticking, encrustations and/or blockages of the system, when the modification of the mix of fuels used in the clinker furnace is considered.
De este modo, el método de la invención permite a un responsable de producción decidir antes de actuar, si es conveniente incorporar o no un nuevo combustible al mix de combustibles original, o qué tipo de combustible alternativo puede ser el más recomendado en función de su composición, para sustituir parte del combustible fósil empleado hasta entonces en la planta, reduciendo o mejorando el impacto técnico y medioambiental que este hecho causa sobre la operación. In this way, the method of the invention allows a production manager to decide before acting, whether or not it is convenient to incorporate a new fuel into the original fuel mix, or what type of alternative fuel may be the most recommended based on its use. composition, to replace part of the fossil fuel used until then in the plant, reducing or improving the technical and environmental impact that this fact causes on the operation.
La invención también se refiere a un sistema de predicción de la cantidad de elementos volátiles en una planta de cemento, que comprende: una base de datos, que comprende datos acerca del orden de afinidad de los elementos volátiles; una unidad de procesamiento, que calcula la cantidad de elementos volátiles presentes en la materia prima y el combustible, a partir de datos de cantidad y composición de la materia prima y el combustible, que pueden ser obtenidos mediante un conjunto de sensores colocados en la planta de cemento; una unidad de predicción, conectada con la unidad de procesamiento, que predice la cantidad de elementos volátiles que habría en la materia prima, el combustible y en la harina de crudo o Hot Meal, en función de un parámetro del grado de sustitución térmica deseado y la composición y cantidad de nuevo combustible introducido; y una unidad de cálculo de elementos volátiles, conectada a la base de datos y a la unidad de predicción, y que obtiene una medida de enriquecimiento en elementos volátiles tipo azufre, álcalis o cloro, mediante un modelo, preferiblemente basado en algoritmos generados mediante la metodología CRISP-DM, que relaciona la cantidad de elementos volátiles predicha por la unidad de predicción con la cantidad de elementos volátiles que permanecen en un circuito de elementos volátiles, calculada a partir de la cantidad de elementos volátiles estimada y los datos referentes al orden de afinidad de la base de datos. The invention also relates to a system for predicting the amount of volatile elements in a cement plant, comprising: a database, comprising data about the affinity order of the volatile elements; a processing unit, which calculates the amount of volatile elements present in the raw material and fuel, based on data on the amount and composition of the raw material and fuel, which can be obtained through a set of sensors placed in the plant of cement; a prediction unit, connected to the processing unit, which predicts the amount of volatile elements that would be in the raw material, the fuel and in the raw meal or Hot Meal, based on a parameter of the desired degree of thermal substitution and the composition and amount of new fuel introduced; and a unit for calculating volatile elements, connected to the database and to the prediction unit, and which obtains a measure of enrichment in volatile elements such as sulphur, alkalis or chlorine, by means of a model, preferably based on algorithms generated by means of the methodology CRISP-DM, which relates the number of volatile elements predicted by the prediction unit to the number of volatile elements remaining in a loop of volatile elements, calculated from the estimated number of volatile elements and affinity order data from the database.
El sistema también puede comprender una unidad de predicción de riesgo, conectada a la unidad de cálculo de elementos volátiles, y que obtiene una estimación del riesgo de fallo en el funcionamiento de la planta en base a la cantidad de óxido de azufre (SO3) y cloro (Cl) presentes en la harina de crudo (Hot Meal) y la cantidad de elementos volátiles que circulan por el circuito de elementos volátiles de la planta. The system may also comprise a risk prediction unit, connected to the volatile elements calculation unit, and which obtains an estimate of the risk of plant malfunction based on the amount of sulfur oxide (SO 3 ) and chlorine (Cl) present in the raw meal (Hot Meal) and the amount of volatile elements that circulate through the volatile elements circuit of the plant.
Así, el sistema refleja la situación actual de la planta en cuanto a la presencia de elementos volátiles se refiere, mediante la unidad de procesamiento; indica cómo evolucionaría la operación cuando se desea incorporar un combustible o residuo con un contenido determinado de elementos volátiles en su matriz, mediante la unidad de predicción; y, en función de si la adición de biomasa o residuo como combustible produce un aumento o una disminución de los elementos volátiles totales que entrarían al sistema, indica la tendencia que presentaría la instalación de evolucionar hacia un enriquecimiento en cloro, un enriquecimiento en álcalis o un enriquecimiento en azufre, mediante la unidad de cálculo de elementos volátiles. Finalmente, se determina si esta nueva situación operativa conduciría a operar dentro de una zona libre de riesgos operativos, es decir, libre de incrustaciones, pegaduras o bloqueos, o si, por el contrario, operaría en una zona de riesgo de aparición de algunos de los problemas mencionados, mediante la unidad de predicción de riesgo. Thus, the system reflects the current situation of the plant in terms of the presence of volatile elements, through the processing unit; indicates how the operation would evolve when you want to incorporate a fuel or waste with a certain content of volatile elements in its matrix, through the prediction unit; and, depending on whether the addition of biomass or residue as fuel produces an increase or a decrease in the total volatile elements that would enter the system, it indicates the tendency that the installation would present to evolve towards enrichment in chlorine, enrichment in alkalis or an enrichment in sulfur, through the calculation unit of volatile elements. Finally, it is determined whether this new operating situation would lead to operating within an area free of operational risks, that is, free of encrustations, sticking or blockages, or if, on the contrary, it would operate in an area at risk of the appearance of some of the the mentioned problems, by means of the risk prediction unit.
El análisis predictivo llevado a cabo por el sistema permite tomar la decisión de incorporar o no un nuevo combustible al horno de clinker aumentando o no el grado de sustitución térmica en este equipo, o conocer la calidad que debe de tener el combustible a introducir en el proceso y, por tanto, las necesidades de acondicionamiento de este nuevo combustible. De esta manera se evitaría que la operación se desplazase hacia zonas donde el riesgo operativo se haga evidente, reduciendo, por tanto, las paradas inesperadas de planta, la reducción de la capacidad de producción o la bajada de la calidad del producto elaborado. The predictive analysis carried out by the system allows the decision to be made whether or not to incorporate a new fuel into the clinker kiln by increasing or not the degree of thermal substitution in this equipment, or knowing the quality that the fuel to be introduced in the kiln must have. process and, therefore, the conditioning needs of this new fuel. In this way, the operation would be prevented from moving to areas where the operational risk becomes evident, thus reducing unexpected plant stoppages, the reduction in production capacity or the drop in the quality of the manufactured product.
En este contexto, dadas las severas condiciones de operación que reinan en este tipo de instalaciones, y dado que el aprovechamiento de residuos es clave para el desarrollo de una economía circular, el desarrollo de esta invención se estima de especial interés tanto a nivel industrial, por los ahorros que su uso podría llevar asociado; como a nivel medioambiental, a propiciar el aprovechamiento de residuos como sustituto de combustibles fósiles de una forma segura. In this context, given the severe operating conditions that prevail in this type of facility, and given that the use of waste is key to the development of a circular economy, the development of this invention is considered to be of special interest both at an industrial level, for the savings that its use could be associated with; and at an environmental level, to promote the safe use of waste as a substitute for fossil fuels.
DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: DESCRIPTION OF THE DRAWINGS To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of its practical embodiment, a set of drawings is attached as an integral part of said description. where, by way of illustration and not limitation, the following has been represented:
Figura 1 muestra una realización preferente del sistema para predecir la cantidad de elementos volátiles que circulan por un circuito de elementos volátiles de una planta de cemento de la invención. Figure 1 shows a preferred embodiment of the system for predicting the amount of volatile elements that circulate through a circuit of volatile elements of a cement plant of the invention.
Figura 2.- muestra una realización preferente del método para predecir la cantidad de elementos volátiles que circulan por un circuito de elementos volátiles de una planta de cemento de la invención. Figure 2.- shows a preferred embodiment of the method for predicting the amount of volatile elements that circulate through a circuit of volatile elements of a cement plant of the invention.
Figura 3.- muestra un modelo de árbol de decisión para la predicción del tipo de enriquecimiento en elementos volátiles en una planta de cemento de acuerdo con una realización preferente de la invención. Figure 3.- shows a decision tree model for predicting the type of enrichment in volatile elements in a cement plant according to a preferred embodiment of the invention.
Figura 4.- muestra un ejemplo de un gráfico de tolerancia cloro - óxido de azufre en la harina de crudo o Hot Meal, de acuerdo con una realización preferente de la invención. Figure 4.- Shows an example of a graph of tolerance chlorine - sulfur oxide in raw flour or Hot Meal, according to a preferred embodiment of the invention.
Figura 5.- muestra la evolución de la operación de la planta con la incorporación de una cierta cantidad de un nuevo combustible al horno de clinker, sobre el gráfico de tolerancia cloro - óxido de azufre de acuerdo con un ejemplo de implementación de la invención. Figure 5.- shows the evolution of the operation of the plant with the incorporation of a certain quantity of a new fuel to the clinker furnace, on the chlorine - sulfur oxide tolerance graph according to an example of implementation of the invention.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
La presente invención se refiere a un método y un sistema para predecir el tipo de enriquecimiento en elementos volátiles dado en una planta de cemento, al incorporar biomasa o residuos como combustible en el horno de clinker, y el riesgo asociado a dicha actuación en cuanto a la aparición de ineficiencias en la operación derivadas de la aparición de incrustaciones, pegaduras y bloqueos del sistema. The present invention refers to a method and a system for predicting the type of enrichment in volatile elements given in a cement plant, when incorporating biomass or waste as fuel in the clinker oven, and the risk associated with said action in terms of the appearance of inefficiencies in the operation derived from the appearance of incrustations, sticking and blockages of the system.
Como se muestra en las Figuras 1 y 2, el método de la invención hace uso de una base de datos (1 ) que contiene el histórico de datos de operación de una planta de cemento, recomendable al menos 1 año, en la que se incluyen los parámetros de composición en elementos volátiles (SO3, Cl, Na2O y K2O) de la materia prima y el combustible usado. Estos parámetros se estiman (9) mediante la unidad de procesamiento (2), obteniendo (7) previamente una cantidad y composición de materias primas introducidas y combustibles usados en la planta de cemento, preferiblemente mediante un conjunto de sensores (6). As shown in Figures 1 and 2, the method of the invention makes use of a database (1) that contains the operating data history of a cement plant, recommended for at least 1 year, which includes the composition parameters in volatile elements (SO 3 , Cl, Na 2 O and K 2 O) of the raw material and the fuel used. These parameters are estimated (9) by the processing unit (2), previously obtaining (7) an amount and composition of raw materials introduced and fuels used in the cement plant, preferably by means of a set of sensors (6).
Seguidamente, se procede a predecir (10) la cantidad de elementos volátiles que estarán presentes en la materia prima y el combustible de la planta de cemento si se añade biomasa o residuo como nuevo combustible o sustituto del combustible ya presente, de acuerdo con un grado de sustitución térmica previamente obtenido (8) y conociendo la composición en elementos volátiles del nuevo combustible, mediante la unidad de predicción (3). Next, we proceed to predict (10) the amount of volatile elements that will be present in the raw material and the fuel of the cement plant if biomass or residue is added as a new fuel or a substitute for the fuel already present, according to a degree of thermal substitution previously obtained (8) and knowing the composition in volatile elements of the new fuel, by means of the prediction unit (3).
A continuación, se genera (1 1 ), mediante una unidad de cálculo de elementos volátiles (4), un modelo de árbol de decisión a partir de la definición de los siguientes indicadores: Ratio A/S, álcalis residual, óxido de azufre, cloro, álcalis, óxido de azufre en la harina de crudo, cloro en la harina de crudo y álcalis en la harina de crudo. Para ello, se aplica la metodología CRISP-DM haciendo uso de un software de análisis de datos, y se obtiene el modelo de árbol de decisión con un ajuste cercano al 90%. Next, a decision tree model is generated (1 1), by means of a volatile element calculation unit (4), based on the definition of the following indicators: A/S ratio, residual alkalis, sulfur oxide, chlorine, alkalis, sulfur oxide in crude meal, chlorine in crude meal and alkalis in crude meal. For this, the CRISP-DM methodology is applied using data analysis software, and the decision tree model is obtained with an adjustment close to 90%.
La figura 3 muestra un ejemplo del modelo de árbol de decisión generado en una realización particular del método de la invención, que comprende 18 nodos, y el nodo 0. Figure 3 shows an example of the decision tree model generated in a particular embodiment of the method of the invention, comprising 18 nodes, and node 0.
En este modelo los datos de entrada son la cantidad de elementos volátiles que entran al sistema, óxido de azufre, cloro, álcalis, representados en las líneas que unen los nodos, y los datos de salida son el tipo de enriquecimiento dado en la planta en función de la cantidad de elementos volátiles presentes, es decir, enriquecimiento en azufre; enriquecimiento en álcalis; enriquecimiento en cloro u operación normal, dado en cada nodo del árbol que a su vez da paso a los nodos situados más abajo. In this model, the input data is the amount of volatile elements that enter the system, sulfur oxide, chlorine, alkalis, represented in the lines that join the nodes, and the output data is the type of enrichment given in the plant in question. function of the amount of volatile elements present, that is, enrichment in sulfur; alkali enrichment; chlorine enrichment or normal operation, given at each node of the tree which in turn gives way to the nodes located below.
Una vez identificado el tipo de enriquecimiento y estimando (12) la composición en elementos volátiles presentes en la harina de crudo (Hot Meal), se estima (13) el nivel de riesgo dado en la instalación para formar pegaduras, incrustaciones o bloqueos del sistema cuando se introduce la cantidad de elementos volátiles que dan lugar al tipo de enriquecimiento identificado con el modelo de árbol, mediante una unidad de predicción de riesgo (5). Once the type of enrichment has been identified and the composition of volatile elements present in the raw meal (Hot Meal) has been estimated (12), the level of risk given in the installation to form sticking, encrustation or system blockages is estimated (13). when the amount of volatile elements that give rise to the type of enrichment identified with the tree model, through a risk prediction unit (5).
Esta estimación del nivel de riesgo se lleva a cabo mediante un gráfico, obtenido de bibliografía especializada, que relaciona el porcentaje de cloro y el porcentaje de óxido de azufre en la harina de crudo o Hot Meal, previamente estimados. La Figura 4 muestra un ejemplo de dicho gráfico en una realización particular de la invención. El gráfico permite localizar la zona de operación (riesgo bajo, riesgo medio, riesgo alto) en la que la planta de cemento estaría operando. De ese modo, en el gráfico se identifican 3 zonas: una zona de riesgo bajo: con un porcentaje bajo de cloro y un porcentaje bajo de óxido de azufre, delimitada por una línea continua; una zona de riesgo medio: con un porcentaje medio de cloro y un porcentaje medio de óxido de azufre, delimitada por la línea continua y una línea discontinua; y una zona de riesgo alto: con un porcentaje alto de cloro y un porcentaje alto de óxido de azufre, delimitada por la línea discontinua. This estimation of the level of risk is carried out by means of a graph, obtained from specialized bibliography, which relates the percentage of chlorine and the percentage of sulfur oxide in the raw meal or Hot Meal, previously estimated. Figure 4 shows an example of said graph in a particular embodiment of the invention. The graph allows locating the area of operation (low risk, medium risk, high risk) in which the cement plant would be operating. In this way, 3 zones are identified in the graph: a low risk zone: with a low percentage of chlorine and a low percentage of sulfur oxide, delimited by a continuous line; a medium risk zone: with a medium percentage of chlorine and a medium percentage of sulfur oxide, delimited by the continuous line and a dashed line; and a high risk zone: with a high percentage of chlorine and a high percentage of sulfur oxide, delimited by the dashed line.
EJEMPLO EXAMPLE
En un ejemplo de realización, la cantidad de volátiles totales presentes en el sistema y en la harina de crudo (Hot Meal, HM), ambos expresados en base al clinker, en la situación de operación actual de la planta son los mostrados en la Tabla 1 . In an example of implementation, the amount of total volatiles present in the system and in the raw meal (Hot Meal, HM), both expressed based on clinker, in the current operating situation of the plant are shown in Table one .
Caudal Composición (%cli) Cantidad volátiles (kg/h)Flow rate Composition (%cli) Volatile quantity (kg/h)
SO3 Cl Na2O K2O SO 3 Cl Na 2 OK 2 O
Kg/h SO3 Cl Na2O K2O AlcalisKg/h SO 3 Cl Na 2 OK 2 O Alkalis
(%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡)
CLS 1500 0,12 0,14 128,8 156,8 0CLS1500 0.12 0.14 128.8 156.8 0
Asfaltos/ Asphalts/
1000 0,18 0,02 199,4 19,04 0 aceites 1000 0.18 0.02 199.4 19.04 0 oils
CSSf 3000 0,48 0,06 537,6 71 ,7 0CSSf 3000 0.48 0.06 537.6 71 .7 0
CSSg 1000 0,04 0,01 47,04 12,3 0CSSg 1000 0.04 0.01 47.04 12.3 0
Coque 8000 3,90 0,02 4386 16,8 0Coke 8000 3.90 0.02 4386 16.8 0
Crudo 190000 1 ,20 0,21 0,89 3,04 1346,2 236,2 993,4 3407 4400,5Crude 190,000 1.20 0.21 0.89 3.04 1,346.2 236.2 993.4 3,407 4,400.5
Clinker 1 12000 2,77 0,10 0,92 1 ,35 3096,8 1 12 1030,4 1514,22544,6Clinker 1 12000 2.77 0.10 0.92 1 .35 3096.8 1 12 1030.4 1514.22544.6
SO2 emitido gas - 0,00 - - - - - - - - chimenea SO 2 emitted gas - 0.00 - - - - - - - - chimney
Inputs inputs
Sistema 5,92 0,46 3,93System 5.92 0.46 3.93
(%cl¡) (%cl¡)
Hot Meal Hot Meals
3,15 0,36 Na2O eq. 1 ,08 (%cl¡) 3.15 0.36 Na 2 O eq. 1.08 (%cl¡)
Tabla 1 . Se evalúa incorporar un nuevo combustible (CDR) a la operación actual de dicha planta de cemento. En esta situación, los volátiles al sistema entran con el crudo y los combustibles alimentados (CLS, Asfaltos, CSSf, CSSg, CDR, Coque), y salen con el clinker producido y con los gases en forma de SO2. La cantidad de volátiles que entra en el sistema y presente en la harina de crudo, expresada en base al clinker, se muestra en la Tabla 2. Caudal Composición (%cli) Cantidad volátiles (kg/h)Table 1 . It is evaluated to incorporate a new fuel (CDR) to the current operation of said cement plant. In this situation, the volatiles enter the system with the crude oil and the fed fuels (CLS, Asphalts, CSSf, CSSg, CDR, Coke), and leave with the clinker produced and with the gases in the form of SO 2 . The amount of volatiles that enters the system and is present in the raw meal, expressed on a clinker basis, is shown in Table 2. Flow rate Composition (%cli) Volatile quantity (kg/h)
SO3 Cl Na2O K2O SO 3 Cl Na 2 OK 2 O
Kg/h SO3 Cl Na2O K2O AlcalisKg/h SO 3 Cl Na 2 OK 2 O Alkalis
(%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡) (%cl¡)
CLS 1500 0,02 0,03 25,8 156,8 0CLS1500 0.02 0.03 25.8 156.8 0
Asfaltos/ Asphalts/
1000 0,01 0,00 10,1 19,04 0 aceites 1000 0.01 0.00 10.1 19.04 0 oils
CSSf 3000 0,03 0,01 34,7 71 ,7 0CSSf 3000 0.03 0.01 34.7 71 .7 0
CSSg 1000 0,01 0,00 9 12,3 0CSSg 1000 0.01 0.00 9 12.3 0
CDR Co-CDR Co-
8667 0,1 0,04 0,03 0,23 108,3 44,6 30,6 261 ,6 292,3 cbtion 8667 0.1 0.04 0.03 0.23 108.3 44.6 30.6 261 .6 292.3 cbtion
Coque 3888 1 ,41 0,01 764,8 2,7 0Coke 3888 1 .41 0.01 764.8 2.7 0
Crudo 190000 0,41 0,08 0,31 1 ,52 458,1 90,7 349,4 1706,92056,3Crude 190,000 0.41 0.08 0.31 1.52 458.1 90.7 349.4 1706.92056.3
Clinker 112000 1 ,10 0,01 0,74 0,07 1235,4 7,8 828,8 82,9 911 ,7Clinker 112000 1.10 0.01 0.74 0.07 1235.4 7.8 828.8 82.9 911.7
SO2 emitido gas - 0,00 - - - - - - - - chimenea SO 2 emitted gas - 0.00 - - - - - - - - chimney
Inputs inputs
Sistema 1 ,26 0,17 2System 1 .26 0.17 2
(%cl¡) (%cl¡)
Hot Meal Hot Meals
0,16 0,16 Na2O eq. 0,710.16 0.16 Na 2 O eq. 0.71
(%cl¡) (%cl¡)
Tabla 2. Table 2.
Haciendo uso del método de la invención descrito se determina que, para la situación actual de la planta, caso base, la planta estaría enriquecida en azufre, operando en zona inestable donde es frecuente la aparición de incrustaciones en los equipos, es decir, la planta estaría operando con un nivel de riesgo medio en cuanto a la formación de pegaduras se refiere, como se muestra en la Tabla 3. Evolución circuito Tipo operación deMaking use of the described method of the invention, it is determined that, for the current situation of the plant, base case, the plant would be enriched in sulfur, operating in an unstable area where the appearance of fouling in the equipment is frequent, that is, the plant would be operating with a medium risk level in terms of the formation of sticking, as shown in Table 3. Circuit evolution Type of operation
Elementos volátiles volátiles plantaVolatile plant volatile elements
Inputs inputs
Elementos Hot Meal Sistema predicciónHot Meal Items Prediction System
Sistema Modelo árbol volátiles (%cli) riesgo Volatile tree model system (%cli) risk
(%cl i) (%cl i)
SO3 5,92 3,15 Enriquecimiento SO 3 5.92 3.15 Enrichment
Cl 0,46 0,36 azufre %CI Hot Meal<0,74Cl 0.46 0.36 sulfur %CI Hot Meal<0.74
(precisión=70,8% - Operación Inestable.(precision=70.8% - Unstable Operation.
Álcalis ( 0% en álcalis) FrecuentesAlkalis (0% alkalis) Frequent
3,93 1 ,08 3.93 1.08
Na2O eq.) Exceso azufre sobre incrustaciones. álcalis. Na 2 O eq.) Excess sulfur on scale. alkalis.
Tabla 3. Para la nueva situación de planta que se plantea, escenario de valorización, la planta estaría enriquecida en cloro, pero tendería a operar de forma estable, es decir, con un riesgo bajo en cuanto a la aparición de problemas operacionales, como se muestra en la Tabla 4. Table 3. For the new plant situation that arises, recovery scenario, the plant would be enriched in chlorine, but would tend to operate in a stable manner, that is, with a low risk in terms of the appearance of operational problems, as shown shown in Table 4.
Evolución circuito Tipo operación deCircuit evolution Type of operation
Elementos volátiles volátiles plantaVolatile plant volatile elements
Inputs inputs
Elementos Hot Meal Sistema predicciónHot Meal Items Prediction System
Sistema Modelo árbol volátiles (%cli) riesgo Volatile tree model system (%cli) risk
(%cl i) (%cl i)
SO3 1 ,26 0,16 %CI Hot Meal <0,75SO3 1 .26 0.16 %CI Hot Meal <0.75
- Enriquecimiento en - Enrichment in
Cl 0,17 0,16 Operación Estable.Cl 0.17 0.16 Stable operation.
, _ cloro , _ chlorine
Álcalis/ Más tolerancia en cloroAlkalis/ More chlorine tolerance
2,10 0,71 2.10 0.71
Na2O eq. (Menor entrada SO3) Na 2 O eq. (Lower input SO 3 )
Tabla 4. Table 4.
La figura 5 muestra de forma gráfica la evolución de la operación de la planta en vista de la adición del nuevo combustible, disminuyendo la cantidad de coque alimentado, que en este caso, sería recomendable, al mejorar no sólo las condiciones ambientales (reducción de emisiones) sino también al mejorar los problemas operativos (incrustaciones) que viene sufriendo la planta en su modo de operación actual, ya que el desplazamiento del caso base al escenario de valorización supone una reducción elevada en la cantidad de óxido de azufre y una ligera reducción en la cantidad de cloro. Figure 5 graphically shows the evolution of the plant operation in view of the addition of the new fuel, decreasing the amount of coke fed, which in this case would be recommended, by improving not only the environmental conditions (reduction of emissions) but also by improving the operational problems (scaling) that the plant has been suffering in its current mode of operation, since the displacement of the base case to the recovery scenario supposes a high reduction in the amount of sulfur oxide and a slight reduction in the amount of chlorine.

Claims

Figure imgf000016_0001
Método para la predicción del tipo de enriquecimiento en elementos volátiles debido a la variación de la cantidad de elementos volátiles que circulan por un circuito de elementos volátiles de una planta de cemento tras la adición de biomasa o residuo como combustible al proceso, que comprende las etapas de:
Figure imgf000016_0001
Method for the prediction of the type of enrichment in volatile elements due to the variation of the amount of volatile elements that circulate through a circuit of volatile elements of a cement plant after the addition of biomass or residue as fuel to the process, which includes the stages from:
- obtener (7) una cantidad y composición de materias primas introducidas y combustibles usados en la planta de cemento; - obtain (7) an amount and composition of raw materials introduced and fuels used in the cement plant;
- establecer (8) un grado de sustitución térmica ; - establishing (8) a degree of thermal substitution;
- estimar (9) una medida de la cantidad de elementos volátiles presentes en las materias primas, en la harina de crudo (Hot Meal), y en los combustibles de la planta de cemento; - estimate (9) a measure of the amount of volatile elements present in the raw materials, in the crude flour (Hot Meal), and in the fuels of the cement plant;
- predecir (10) una medida de la cantidad de elementos volátiles presentes en la materia prima, en el combustible de la planta de cemento, y en la Hot Meal, al añadir un nuevo combustible o sustituir el combustible ya presente, de acuerdo con el grado de sustitución térmica obtenido, conociendo la composición en elementos volátiles del nuevo combustible; y - predict (10) a measure of the amount of volatile elements present in the raw material, in the cement plant fuel, and in the Hot Meal, when adding a new fuel or substituting the fuel already present, according to the degree of thermal substitution obtained, knowing the composition in volatile elements of the new fuel; Y
- generar (1 1 ) un modelo que relacione la cantidad de elementos volátiles predicha con la cantidad de elementos volátiles que permanecen circulando en un circuito de elementos volátiles de la planta de cemento, a partir de la cantidad de elementos volátiles estimada y de datos previamente obtenidos referentes al orden de afinidad de los elementos volátiles, determinando si existe un enriquecimiento de elementos volátiles de tipo azufre, álcalis o cloro. Método de acuerdo con la reivindicación 1 , que además comprende las etapas de: - generate (1 1 ) a model that relates the amount of volatile elements predicted with the amount of volatile elements that remain circulating in a circuit of volatile elements of the cement plant, from the amount of volatile elements estimated and data previously obtained referring to the order of affinity of the volatile elements, determining if there is an enrichment of volatile elements of the sulfur, alkali or chlorine type. Method according to claim 1, further comprising the steps of:
- estimar (12) la cantidad de óxido de azufre (SO3) y cloro (Cl) en harina de crudo (Hot Meal); y - estimate (12) the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in raw meal (Hot Meal); Y
- estimar (13) el riesgo de fallo en el funcionamiento de la planta, relacionando la cantidad de elementos volátiles que permanecen en el circuito de elementos volátiles con la cantidad de óxido de azufre (SO3) y cloro (Cl) en la harina de crudo, determinando si se opera en una zona de riesgo o libre de riesgos. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde el modelo generado es un árbol de decisión, que marca la tendencia de composición de elementos volátiles en la materia prima y el combustible, y permite decidir si incorporar o no un combustible o decidir la calidad del combustible más adecuada. Método de acuerdo con cualquiera de las reivindicaciones 2 y 3, donde la relación entre la cantidad de óxido de azufre (SO3) y cloro (Cl) en la harina de crudo y el riesgo de fallo en el funcionamiento de la planta se expresa mediante un gráfico. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde la etapa de generar (11 ) un modelo que relacione la cantidad de elementos volátiles predicha con la cantidad de volátiles que permanecen circulando en un circuito de elementos volátiles de la planta de cemento se lleva a cabo haciendo uso de la metodología CRISP-DM. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde los datos previamente obtenidos referentes al orden de afinidad comprenden los indicadores Ratio A/S y Álcalis residual. Sistema de predicción de la cantidad de elementos volátiles en una planta de cemento que comprende: - estimate (13) the risk of failure in the operation of the plant, relating the amount of volatile elements that remain in the circuit of volatile elements with the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the flour of oil, determining if it operates in a risk or risk-free zone. Method according to any of the preceding claims, where the generated model is a decision tree, which marks the composition trend of volatile elements in the raw material and the fuel, and allows deciding whether or not to incorporate a fuel or decide the quality of the most suitable fuel. Method according to any of claims 2 and 3, where the relationship between the amount of sulfur oxide (SO 3 ) and chlorine (Cl) in the crude flour and the risk of failure in the operation of the plant is expressed by a graph. Method according to any of the preceding claims, where the stage of generating (11) a model that relates the amount of volatile elements predicted with the amount of volatiles that remain circulating in a circuit of volatile elements of the cement plant is carried out carried out using the CRISP-DM methodology. Method according to any of the preceding claims, wherein the data previously obtained regarding the order of affinity comprise the indicators Ratio A/S and Residual Alkalis. Prediction system for the amount of volatile elements in a cement plant comprising:
- una base de datos (1 ), que comprende datos acerca del orden de afinidad de los elementos volátiles; - a database (1), comprising data about the order of affinity of the volatile elements;
- una unidad de procesamiento (2), que calcula la cantidad de elementos volátiles presentes en la materia prima y el combustible, a partir de datos de cantidad y composición de la materia prima y el combustible; - a processing unit (2), which calculates the amount of volatile elements present in the raw material and the fuel, based on data on the amount and composition of the raw material and the fuel;
- una unidad de predicción (3), conectada con la unidad de procesamiento (2), que predice la cantidad de elementos volátiles que habría en la materia prima y el combustible, en función de un parámetro del grado de sustitución térmica deseado y la composición y cantidad de biomasa o residuo introducido como combustible; y - a prediction unit (3), connected to the processing unit (2), which predicts the amount of volatile elements that would be in the raw material and the fuel, based on a parameter of the desired degree of thermal substitution and the composition and amount of biomass or waste introduced as fuel; Y
- una unidad de cálculo de elementos volátiles (4), conectada a la base de datos (1 ) y a la unidad de predicción (3), y que obtiene una medida de enriquecimiento en elementos volátiles tipo azufre, álcalis o cloro, mediante un modelo que relaciona la cantidad de elementos volátiles predicha por la 17 unidad de predicción (3) con la cantidad de elementos volátiles que permanecen en un circuito de elementos volátiles, calculada a partir de la cantidad de elementos volátiles estimada y los datos referentes al orden de afinidad de la base de datos (1). Sistema de acuerdo con la reivindicación 7, que además comprende una unidad de predicción de riesgo (5), conectada a la unidad de cálculo de elementos volátiles (4), y que obtiene una estimación del riesgo de fallo en el funcionamiento de la planta en base a la cantidad de óxido de azufre (SO3) y cloro (Cl) presentes en la harina de crudo y la cantidad de elementos volátiles que circulan por el circuito de elementos volátiles de la planta. Sistema de acuerdo con cualquiera de las reivindicaciones 7 a 8, donde la unidad de predicción (3) incorpora algoritmos basados en la metodología CRISP-DM. - a unit for calculating volatile elements (4), connected to the database (1) and to the prediction unit (3), and which obtains a measure of enrichment in volatile elements such as sulphur, alkalis or chlorine, by means of a model which relates the amount of volatile elements predicted by the 17 prediction unit (3) with the amount of volatile elements that remain in a circuit of volatile elements, calculated from the estimated amount of volatile elements and the data referring to the affinity order of the database (1). System according to claim 7, which also comprises a risk prediction unit (5), connected to the calculation unit for volatile elements (4), and which obtains an estimate of the risk of failure in the operation of the plant in based on the amount of sulfur oxide (SO 3 ) and chlorine (Cl) present in the crude flour and the amount of volatile elements that circulate through the volatile elements circuit of the plant. System according to any of claims 7 to 8, where the prediction unit (3) incorporates algorithms based on the CRISP-DM methodology.
PCT/ES2021/070773 2020-10-26 2021-10-25 Tool for managing the efficient incorporation of alternative fuels in cement plants WO2022090599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202031069 2020-10-26
ES202031069A ES2908114B2 (en) 2020-10-26 2020-10-26 TOOL TO MANAGE THE EFFICIENT INCORPORATION OF ALTERNATIVE FUELS IN CEMENT PLANTS

Publications (1)

Publication Number Publication Date
WO2022090599A1 true WO2022090599A1 (en) 2022-05-05

Family

ID=81289219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070773 WO2022090599A1 (en) 2020-10-26 2021-10-25 Tool for managing the efficient incorporation of alternative fuels in cement plants

Country Status (2)

Country Link
ES (1) ES2908114B2 (en)
WO (1) WO2022090599A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707444A (en) * 1994-04-21 1998-01-13 F. L. Smidth & Co. A/S Method for controlling the temperature in a kiln
US6790034B1 (en) * 1999-11-04 2004-09-14 Pretoria Portland Cement Company Limited Kiln plant control system
EP1760418A1 (en) * 2005-09-02 2007-03-07 ABB Research Ltd Model for a cement kiln process
WO2013179702A1 (en) * 2012-05-30 2013-12-05 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of cement
JP2017178651A (en) * 2016-03-29 2017-10-05 太平洋セメント株式会社 Method of predicting manufacturing conditions of cement clinker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012086754A1 (en) * 2010-12-24 2014-06-05 太平洋セメント株式会社 Methods for predicting cement quality or manufacturing conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707444A (en) * 1994-04-21 1998-01-13 F. L. Smidth & Co. A/S Method for controlling the temperature in a kiln
US6790034B1 (en) * 1999-11-04 2004-09-14 Pretoria Portland Cement Company Limited Kiln plant control system
EP1760418A1 (en) * 2005-09-02 2007-03-07 ABB Research Ltd Model for a cement kiln process
WO2013179702A1 (en) * 2012-05-30 2013-12-05 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of cement
JP2017178651A (en) * 2016-03-29 2017-10-05 太平洋セメント株式会社 Method of predicting manufacturing conditions of cement clinker

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GABRIEL DULCE; MATIAS TIAGO; PEREIRA J. COSTA; ARAUJO RUI: "Predicting gas emissions in a cement kiln plant using hard and soft modeling strategies", 2013 IEEE 18TH CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), IEEE, 10 September 2013 (2013-09-10), pages 1 - 8, XP032517051, ISSN: 1946-0740, DOI: 10.1109/ETFA.2013.6648036 *
KADDATZ K.T.; RASUL M.G.; RAHMAN AZAD: "Alternative Fuels for use in Cement Kilns: Process Impact Modelling", PROCEDIA ENGINEERING, ELSEVIER BV, NL, vol. 56, 7 May 2013 (2013-05-07), NL , pages 413 - 420, XP028534671, ISSN: 1877-7058, DOI: 10.1016/j.proeng.2013.03.141 *

Also Published As

Publication number Publication date
ES2908114B2 (en) 2022-12-02
ES2908114A1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
Schiller et al. Continuous material flow analysis approach for bulk nonmetallic mineral building materials applied to the German building sector
Stadler et al. Model predictive control of a rotary cement kiln
Papadopoulos et al. Environmental performance evaluation of thermal insulation materials and its impact on the building
Tan et al. Pinch analysis-based approach to industrial safety risk and environmental management
Pushkar et al. A methodology for design of environmentally optimal buildings by variable grouping
JP5683338B2 (en) Temperature control device for circulating fluidized incinerator and temperature control method thereof
Seyler et al. Life cycle inventory for use of waste solvent as fuel substitute in the cement industry-a multi-input allocation model (11 pp)
ES2908114B2 (en) TOOL TO MANAGE THE EFFICIENT INCORPORATION OF ALTERNATIVE FUELS IN CEMENT PLANTS
Zhou et al. Influence of gas ventilation pressure on the stability of airways airflow
El-Behery et al. Performance evaluation of industrial glass furnace regenerator
CN103502154B (en) For monitoring and control the method for chemical process of the ZLD operation in power plant
Akpe et al. The design of a portable municipal waste incinerator with fuzzy logic based support for emission estimation
Cuviella-Suárez et al. Reduction of water and energy consumption in the sanitary ware industry by an absorption machine operated with recovered heat
Cuviella-Suárez et al. Water and energy use in sanitary-ware manufacturing: using modelling processes for water and energy accounting and decarbonisation
Bujak et al. Fuel consumption in the thermal treatment of low-calorific industrial food processing waste
Saadi et al. Perspectives of desalination of brackish water for valorisation in arid regions of Morocco
CN113609684A (en) Method for optimizing steam production of coal per ton of boiler based on industrial data and process mechanism
Li et al. A case study of fundamental grey-box modeling
Bénard et al. A coke oven battery modelization for transient operating conditions
Carlos et al. Thermal energy reduction in sanitary-ware industry by heat-recovering thermal engineering technologies
Struhala et al. Environmental assessment of thermal insulation composite material
Regucki et al. Numerical modelling of sulphate ion concentration in wastewater from a closed cooling system
Vilcekova et al. Analysis of Environmental and Social Aspects in Low Energy House-Case Study
Cuviella-Suárez et al. Analysis of Consumptions
Cuviella-Suárez et al. Thermal energy reduction in sanitary-ware industry by heat-recovering thermal engineering technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885413

Country of ref document: EP

Kind code of ref document: A1