WO2022089419A1 - Core-shell magnetic sludge-based biochar, preparation method therefor and utilization method thereof - Google Patents

Core-shell magnetic sludge-based biochar, preparation method therefor and utilization method thereof Download PDF

Info

Publication number
WO2022089419A1
WO2022089419A1 PCT/CN2021/126371 CN2021126371W WO2022089419A1 WO 2022089419 A1 WO2022089419 A1 WO 2022089419A1 CN 2021126371 W CN2021126371 W CN 2021126371W WO 2022089419 A1 WO2022089419 A1 WO 2022089419A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
magnetic
based biochar
iron
magnetic sludge
Prior art date
Application number
PCT/CN2021/126371
Other languages
French (fr)
Inventor
Guoren XU
Zhao Zhang
Original Assignee
Harbin Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute Of Technology filed Critical Harbin Institute Of Technology
Publication of WO2022089419A1 publication Critical patent/WO2022089419A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents

Definitions

  • the present patent belongs to the technical field of sludge resource utilization, and specifically relates to a method of preparing magnetic sludge-based biochar material from sludge and its application.
  • the materialized utilization of sewage sludge mainly includes the preparation of adsorbent materials, catalytic materials, and soil improvement materials.
  • adsorbent materials and catalytic materials prepared from sludge generally have high preparation costs, low material performance, low material added value and poor adaptability, which are challenging to realize the large-scale application.
  • Nano-magnetic core-shell materials have a high specific surface area, good adsorption, and catalytic properties.
  • nano-magnetic core-shell materials are mainly prepared by industrial-grade chemicals with high costs. If we can make full use of municipal and industrial wastes such as sewage sludge, hematite, iron rust, Bayer red mud, high iron content fly ash and pickling wastewater to prepare high performance nano-magnetic core-shell materials, we can not only realize the resource-free utilization of wastes, but also prepare high-performance materials that can be applied to water treatment.
  • the purpose of the present patent is to make full use of municipal and industrial wastes such as sewage sludge, hematite, iron rust, Bayer method red mud, fly ash with high iron content and pickling wastewater to provide a method for preparing magnetic sludge-based biochar materials from sludge and its application, which realizes resource-free utilization of waste for application in water treatment.
  • Municipal and industrial wastes such as sewage sludge, hematite, iron rust, Bayer method red mud, fly ash with high iron content and pickling wastewater to provide a method for preparing magnetic sludge-based biochar materials from sludge and its application, which realizes resource-free utilization of waste for application in water treatment.
  • a method of preparing magnetic sludge-based biochar material from sludge is as follows.
  • Step 1 The pre-treatment process for the preparation of magnetic sludge-based biochar, in two specific forms as follows:
  • Mode I Preparation of magnetic sludge-based biochar from solid waste iron source: dried sludge with a moisture content of less than 15%and solid iron source mechanically crushed and mixed well;
  • Mode 2 Preparation of magnetic sludge-based biochar nuclei from inexpensive liquid waste iron sources: dewatered/dried sludge and liquid iron sources mixed and homogenized, then thermally dried to a water content of less than 15%and crushed;
  • Step 2 Pyrolysis preparation process of magnetic sludge-based biochar material in two forms as follows:
  • Mode I continuous pyrolysis with a pyrolysis temperature of 400-800°C, a residence time of 20-120 min for solid materials in the device, and fine ball milling and crushing to less than 100 ⁇ m;
  • Mode 2 intermittent pyrolysis with a pyrolysis temperature of 400-800°C, a temperature rise rate of 10-100°C/min, a pyrolysis temperature residence time of 20-120 min, protective atmosphere passed through the device, fine ball mill crushing to below 100 ⁇ m.
  • the patent provides a new high value-added sludge-based material preparation technology, compared with the sludge-based adsorbent prepared by direct pyrolysis of sewage sludge, the specific surface area can be increased by more than 2-10 times; for adsorption and removal of phosphate, antibiotics, COD, etc. in water, the removal rate is increased by more than 50%; magnetic properties are increased by more than 5-10 times, and the magnetic adsorbent material and water can be quickly separated in two ways, permanent magnet and electromagnetism.
  • the traditional magnetic material preparation iron source is iron salts and other chemical agents, the price is high.
  • the iron source of the patent is hematite, iron rust, Bayer red mud, high iron content fly ash and pickling wastewater, etc.
  • the iron source is almost zero cost or even gainful, which significantly reduces the preparation cost of magnetic materials.
  • both the core and shell of the material are magnetic, which can effectively avoid the loss of magnetism of the material due to the oxidation of the magnetic shell in the catalytic oxidation application of the magnetic core-shell material and the inability to achieve catalytic recovery.
  • hematite, rust, Bayer red mud, high iron content fly ash and pickling wastewater are mixed with sludge and then pyrolyzed, and the reducing gas generated during the sludge pyrolysis reduces trivalent iron salts and ferric oxide to produce magnetic Fe 3 O 4 ;
  • trivalent iron salts, ferric oxide, calcium hydroxide and sodium hydroxide in red mud, and acid in pickling wastewater can play the role of activator in the pyrolysis process and pore builder to increase the specific surface area of sludge-based biochar, and at the same time increase the positive charge adsorption sites and metal ion catalytic sites on the surface of sludge-based biochar.
  • the iron-based coating solution can uniformly deposit nano-Fe 3 O 4 on the surface of magnetic sludge-based biochar to form nano-Fe 3 O 4 shells, further enhancing the surface adsorption and catalytic properties of magnetic sludge-based biochar, and finally making a nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material with good adsorption, catalytic and magnetic separation properties.
  • This implementation documents a method of preparing magnetic sludge-based biochar material from sludge, and the described method is specified as follows:
  • Step 1 The pre-treatment process for the preparation of magnetic sludge-based biochar, in two specific forms as follows:
  • Mode I Preparation of magnetic sludge-based biochar from solid waste iron source: dried sludge with a moisture content of less than 15%and solid iron source are mechanically crushed and mixed well, with or without adding porogenic agents as needed.
  • Mode 2 Preparation of magnetic sludge-based biochar nuclei from inexpensive liquid waste iron sources: dewatered/dried sludge and liquid iron sources are mixed and homogenized, then thermally dried to a water content of less than 15%and crushed.
  • Step 2 Pyrolysis preparation process of magnetic sludge-based biochar material in two forms as follows:
  • Mode I continuous pyrolysis, with a pyrolysis temperature of 400-800°C (when the temperature is lower than 400°C, the pyrolysis is incomplete, the decomposition and reduction of trivalent iron compounds in the raw material is incomplete, and the magnetism is poor; when the temperature is higher than 800°C, it is greater than the Curie point of Fe 3 O 4 and causes the magnetic properties to decrease) , and the residence time of solid materials in the device of 20-120 min (the residence time of pyrolysis is determined according to the organic matter content in the sludge, with the sludge organic content between 30%-70%; if the organic content is low, a shorter residence time is chosen; if the organic content is high, a longer residence time is chosen) , through pyrolysis to generate gas to exclude the air in the device to achieve an anaerobic environment and further generate reducing atmosphere to achieve high valent iron reduction, fine ball mill crushing to less than 100 ⁇ m;
  • Mode 2 intermittent pyrolysis, with a pyrolysis temperature of 400-800°C (when the temperature is lower than 400°C, the pyrolysis is incomplete, the decomposition and reduction of trivalent iron compounds in the raw material is incomplete, and the magnetism is poor; when the temperature is higher than 800°C, it is greater than the Curie point of Fe 3 O 4 and causes the magnetism to decrease) , the heating rate of 10-100°C /min, and the residence time of pyrolysis temperature of 20-120min (the residence time of pyrolysis is determined according to the organic matter content in the sludge, with the organic matter content in the sludge between 30%-70%, to choose a shorter residence time for low organic matter content; choose a longer residence time for high organic matter content) , through the device to pass into the protective atmosphere (one or more of nitrogen, argon, carbon dioxide or water vapor) to achieve an anaerobic environment and further generate a reducing atmosphere to achieve the reduction of high-valent iron, fine ball mill crushing to
  • Specific implementation II A method for preparing magnetic sludge-based biochar material from sludge as described in the specific implementation I, wherein in step 1, said solid iron source is one or more of hematite, iron rust, Bayer method red mud or high iron content fly ash.
  • Specific implementation III A method for preparing magnetic sludge-based biochar material from sludge as described in the specific implementation I, wherein in step 1, said liquid iron source is acid washing wastewater.
  • Specific implementation IV A method for preparing magnetic sludge-based biochar material from sludge as described in the specific implementation I, wherein in step 1, said porogenic agent is one or more of potassium hydroxide, phosphoric acid, or zinc chloride.
  • Specific implementation V A method for preparing magnetic sludge-based biochar material from sludge as described in a specific implementation I, wherein in step 1, said mechanical comminution is ball mill mixing.
  • Specific implementation VI An application of a magnetic sludge-based biochar material prepared in any of specific implementation I to V, used as an advanced oxidation catalyst in catalytic ozone oxidation, Fenton oxidation, and persulfate oxidation, where the catalyst can be recovered by magnetic field after failure; used as an adsorbent in the enhanced primary treatment of wastewater, enhanced phosphorus removal in the effluent, and enhanced antibiotic removal, where it can be recovered by a magnetic field; used as a magnetic coagulation aid in the magnetic coagulation process, where it is recovered by a magnetic field.
  • Specific implementation VII An application of a magnetic sludge-based biochar material prepared in any one of specific implementation I-V for the preparation of nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material, specifically: in an inert atmosphere by adding iron-based coating solution, pH buffer solution (pH 8-12) , anhydrous ethanol and deoxygenated distilled water, stirred continuously for 30-120 min and filter, rinsed clean with deoxygenated distilled water and dried at 70-105°C, that is, the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was prepared.
  • Specific implementation VIII An application of a magnetic sludge-based biochar material described in specific implementation VII, said Fe 3+ /Fe 2+ molar ratio in the iron-based coating solution is 1 to 2: 1.
  • Specific implementation IX An application of a magnetic sludge-based biochar material described in specific implementation VII, wherein the prepared nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material is specifically used as an advanced oxidation catalyst in catalytic ozone oxidation, Fenton oxidation, and persulfate oxidation, where the catalyst can be recovered by magnetic field after failure; in the enhanced primary treatment of wastewater, enhanced phosphorus removal from effluent, and enhanced antibiotic removal used as an adsorbent, recovered by a magnetic field; used as magnetic coagulation aid in the magnetic coagulation process, recovered by a magnetic field.
  • a wastewater treatment plant dried sludge with 13%water content was added to 30%Bayer method red mud, mechanically and chemically crushed and mixed homogeneously through a ball mill.
  • the homogeneous material was subjected to continuous pyrolysis to prepare a magnetic sludge-based biochar at a pyrolysis temperature of 650°C with a residence time of 40 min in the device.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was prepared by stirring continuously for 60 min, filtering, rinsing with deoxygenated distilled water and drying at 105°C.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was applied as catalyst for catalytic oxidation of aniline organic pollutant persulphate in chemical wastewater with a dosing amount of 200 mg/L.
  • the removal rate of aniline was improved by more than 80%compared with that without catalyst, and the catalyst was recovered by electromagnetic recovery device after the reaction, and the catalyst separation time was reduced by more than 90%compared with that by precipitation separation of non-magnetic catalyst.
  • a wastewater treatment plant dried sludge with 15%water content was added to 20%hematite with 25%KOH, mechanically and chemically crushed and mixed homogeneously through a ball mill.
  • the homogeneous material was subjected to continuous pyrolysis to prepare a magnetic sludge-based biochar at a pyrolysis temperature of 650°C with a residence time of 40 min in the device.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was prepared by stirring continuously for 60 min, filtering, rinsing with deoxygenated distilled water, and drying at 105°C.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was applied to Fenton catalytic oxidation catalyst for aniline organic pollutants in chemical wastewater, and the dosing amount was 300 mg/L.
  • the removal rate of aniline was improved by more than 85%compared with no catalyst dosing, and the catalyst was recovered by an electromagnetic recovery device after the reaction, and the catalyst separation time was reduced by more than 90%compared with the separation of non-magnetic catalyst by precipitation.
  • a wastewater treatment plant dried sludge with 12%water content was added to pickling wastewater with 3.5%iron content and mixed evenly for dewatering and thermal drying until the water content was below 15%, and the dried material was crushed evenly using a ball mill.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was prepared by stirring continuously for 60 min, filtering, rinsing with deoxygenated distilled water, and drying at 105°C.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was applied to catalytic oxidation catalyst of aniline organic pollutant persulphate in chemical wastewater with the dosing amount of 200 mg/L.
  • the removal rate of aniline was improved by more than 80%compared with no catalyst dosing, and the catalyst was recovered by an electromagnetic recovery device after the reaction, and the catalyst separation time was reduced by more than 90%compared with the separation of non-magnetic catalyst by precipitation.
  • This example differs from Example 1 in that intermittent pyrolysis is used with a pyrolysis temperature of 600°C, a heating rate of 50°C/min, a residence time of 100 min at the pyrolysis temperature, an anaerobic environment and a further reducing atmosphere through the passage of argon gas in the device to achieve high valent iron reduction, and fine ball milling crushing to below 100 ⁇ m.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was applied to the enhanced removal of penicillin residue (1 mg/L) from antibiotic fermentation wastewater with a dosing amount of 250 mg/L, and the removal rate of penicillin was above 99%, and the adsorbed catalyst was recovered by electromagnetic recovery device, and the catalyst separation time was reduced by more than 90%compared with the separation of non-magnetic catalyst by precipitation.
  • This example differs from Example 1 in that intermittent pyrolysis is used with a pyrolysis temperature of 700°C, a heating rate of 70°C/min, and a pyrolysis temperature residence time of 60 min.
  • High-valent iron reduction is achieved by passing argon into the device to achieve an anaerobic environment and to further generate a reducing atmosphere, and fine ball milling and crushing to below 100 ⁇ m is sufficient.
  • the nano-Fe 3 O 4 /magnetic sludge-based biochar core-shell material was applied to the enhanced removal of tetracycline residue (1 mg/L) from pharmaceutical wastewater with a dosing amount of 250 mg/L.
  • the tetracycline removal rate was above 99%, and the adsorbed catalyst was recovered by an electromagnetic recovery device, and the catalyst separation time was reduced by more than 90%compared to the separation of non-magnetic catalyst by precipitation.
  • a wastewater treatment plant dried sludge with 13%water content was added to 30%Bayer method red mud, mechanically and chemically crushed by ball milling, and mixed well.
  • the homogeneous material was subjected to continuous pyrolysis to produce magnetic sludge-based biochar at 650°C with a residence time of 40 min in the device.
  • the magnetic sludge-based biochar was crushed to below 100 ⁇ m by fine ball milling, and more than 99%of the magnetic sludge-based biochar could be separated by iron such as boron magnets.
  • Magnetic sludge-based biochar was applied to a phosphorus-containing wastewater treatment with a dosing amount of 200 mg/L, in which the inorganic phosphate removal rate was over 96%, and the recovery rate of magnetic sludge-based biochar by magnetic field after adsorption reached over 90%, and the separation time was reduced by over 90%compared with that by precipitation separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method of preparing magnetic sludge-based biochar material from sludge and its application belongs to the field of sludge resource utilization technology. The purpose of the present patent is to make full use of municipal and industrial wastes such as sewage sludge, hematite, iron rust, Bayer method red mud, fly ash with high iron content and pickling wastewater to prepare magnetic sludge-based biochar from solid waste iron source: dried sludge with water content less than 15%and solid iron source mechanically crushed and mixed well; continuous pyrolysis with a pyrolysis temperature of 400 ~ 800℃, a dwell time of 20 ~ 120min for solid material in the device; fine ball mill crushing to below 100μm. In the core-shell material of nano-Fe 3O 4/magnetic sludge-based biochar prepared by the present patent, both the core and shell of the material are magnetic, which can achieve efficient recycling.

Description

CORE-SHELL MAGNETIC SLUDGE-BASED BIOCHAR, PREPARATION METHOD THEREFOR AND UTILIZATION METHOD THEREOF FIELD OF THE INVENTION
The present patent belongs to the technical field of sludge resource utilization, and specifically relates to a method of preparing magnetic sludge-based biochar material from sludge and its application.
BACKGROUND OF THE INVENTION
With the rapid growth of China's sewage treatment scale, the production of sewage sludge has exceeded 30 million tons/year, and there is an urgent need to develop safe treatment and disposal and resource utilization technologies for sludge. At present, the materialized utilization of sewage sludge mainly includes the preparation of adsorbent materials, catalytic materials, and soil improvement materials. Presently, adsorbent materials and catalytic materials prepared from sludge generally have high preparation costs, low material performance, low material added value and poor adaptability, which are challenging to realize the large-scale application. Nano-magnetic core-shell materials have a high specific surface area, good adsorption, and catalytic properties. At present, nano-magnetic core-shell materials are mainly prepared by industrial-grade chemicals with high costs. If we can make full use of municipal and industrial wastes such as sewage sludge, hematite, iron rust, Bayer red mud, high iron content fly ash and pickling wastewater to prepare high performance nano-magnetic core-shell materials, we can not only realize the resource-free utilization of wastes, but also prepare high-performance materials that can be applied to water treatment.
SUMMARY OF THE INVENTION
The purpose of the present patent is to make full use of municipal and industrial wastes such as sewage sludge, hematite, iron rust, Bayer method red mud, fly ash with high iron content and pickling wastewater to provide a method for preparing magnetic sludge-based biochar materials from sludge and its application, which realizes resource-free utilization of waste for application in water treatment.
To achieve the above purpose, the technical solution adopted in the present patent is as follows.
A method of preparing magnetic sludge-based biochar material from sludge, said method is as follows.
Step 1: The pre-treatment process for the preparation of magnetic sludge-based biochar, in two specific forms as follows:
Mode I: Preparation of magnetic sludge-based biochar from solid waste iron source: dried sludge with a moisture content of less than 15%and solid iron source mechanically crushed and mixed well;
Mode 2: Preparation of magnetic sludge-based biochar nuclei from inexpensive liquid waste iron sources: dewatered/dried sludge and liquid iron sources mixed and homogenized, then thermally dried to a water content of less than 15%and crushed;
Step 2: Pyrolysis preparation process of magnetic sludge-based biochar material in two forms as follows:
Mode I: continuous pyrolysis with a pyrolysis temperature of 400-800℃, a residence time of 20-120 min for solid materials in the device, and fine ball milling and crushing to less than 100 μm;
Mode 2: intermittent pyrolysis with a pyrolysis temperature of 400-800℃, a temperature rise rate of 10-100℃/min, a pyrolysis temperature residence time of 20-120 min, protective atmosphere passed through the device, fine ball mill crushing to below 100μm.
The beneficial effects of the present patent relative to the prior art are as follows:
1. The patent provides a new high value-added sludge-based material preparation technology, compared with the sludge-based adsorbent prepared by direct pyrolysis of sewage sludge, the specific surface area can be increased by more than 2-10 times; for adsorption and removal of phosphate, antibiotics, COD, etc. in water, the removal rate is increased by more than 50%; magnetic properties are increased by more than 5-10 times, and the magnetic adsorbent material and water can be quickly separated in two ways, permanent magnet and electromagnetism.
2. The traditional magnetic material preparation iron source is iron salts and other chemical agents, the price is high. The iron source of the patent is hematite, iron rust, Bayer red mud, high iron content fly ash and pickling wastewater, etc. The iron source is almost zero cost or even gainful, which significantly reduces the preparation cost of magnetic materials.
3. Unlike the traditional sludge-based magnetic material preparation process all using iron salt solution, when the iron source is solid, the mixing is carried out in the present patent by mechanical-chemical methods such as ball milling, which reduces the drying process after  mixing the traditional iron source and significantly reduces the cost of sludge-based magnetic material preparation process.
4. In the preparation of nano Fe 3O 4/magnetic sludge-based biochar core-shell material of the present patent, both the core and shell of the material are magnetic, which can effectively avoid the loss of magnetism of the material due to the oxidation of the magnetic shell in the catalytic oxidation application of the magnetic core-shell material and the inability to achieve catalytic recovery.
DETAILED DESCRIPTION OF THE INVENTION
The following is a further description of the technical solution of the present patent in combination with the embodiments, but is not limited to this, and any modification or equivalent replacement of the technical solution of the present patent without departing from the spirit and scope of the technical solution of the present patent shall be covered in the scope of protection of the present patent.
As to the principle of the patent, hematite, rust, Bayer red mud, high iron content fly ash and pickling wastewater are mixed with sludge and then pyrolyzed, and the reducing gas generated during the sludge pyrolysis reduces trivalent iron salts and ferric oxide to produce magnetic Fe 3O 4; trivalent iron salts, ferric oxide, calcium hydroxide and sodium hydroxide in red mud, and acid in pickling wastewater can play the role of activator in the pyrolysis process and pore builder to increase the specific surface area of sludge-based biochar, and at the same time increase the positive charge adsorption sites and metal ion catalytic sites on the surface of sludge-based biochar. The iron-based coating solution can uniformly deposit nano-Fe 3O 4 on the surface of magnetic sludge-based biochar to form nano-Fe 3O 4 shells, further enhancing the surface adsorption and catalytic properties of magnetic sludge-based biochar, and finally making a nano-Fe 3O 4/magnetic sludge-based biochar core-shell material with good adsorption, catalytic and magnetic separation properties.
Specific implementation I: This implementation documents a method of preparing magnetic sludge-based biochar material from sludge, and the described method is specified as follows:
Step 1: The pre-treatment process for the preparation of magnetic sludge-based biochar, in two specific forms as follows:
Mode I: Preparation of magnetic sludge-based biochar from solid waste iron source: dried sludge with a moisture content of less than 15%and solid iron source are mechanically crushed and mixed well, with or without adding porogenic agents as needed.
Mode 2: Preparation of magnetic sludge-based biochar nuclei from inexpensive liquid waste iron sources: dewatered/dried sludge and liquid iron sources are mixed and homogenized, then thermally dried to a water content of less than 15%and crushed.
Step 2: Pyrolysis preparation process of magnetic sludge-based biochar material in two forms as follows:
Mode I: continuous pyrolysis, with a pyrolysis temperature of 400-800℃ (when the temperature is lower than 400℃, the pyrolysis is incomplete, the decomposition and reduction of trivalent iron compounds in the raw material is incomplete, and the magnetism is poor; when the temperature is higher than 800℃, it is greater than the Curie point of Fe 3O 4 and causes the magnetic properties to decrease) , and the residence time of solid materials in the device of 20-120 min (the residence time of pyrolysis is determined according to the organic matter content in the sludge, with the sludge organic content between 30%-70%; if the organic content is low, a shorter residence time is chosen; if the organic content is high, a longer residence time is chosen) , through pyrolysis to generate gas to exclude the air in the device to achieve an anaerobic environment and further generate reducing atmosphere to achieve high valent iron reduction, fine ball mill crushing to less than 100μm;
Mode 2: intermittent pyrolysis, with a pyrolysis temperature of 400-800℃ (when the temperature is lower than 400℃, the pyrolysis is incomplete, the decomposition and reduction of trivalent iron compounds in the raw material is incomplete, and the magnetism is poor; when the temperature is higher than 800℃, it is greater than the Curie point of Fe 3O 4 and causes the magnetism to decrease) , the heating rate of 10-100℃ /min, and the residence time of pyrolysis temperature of 20-120min (the residence time of pyrolysis is determined according to the organic matter content in the sludge, with the organic matter content in the sludge between 30%-70%, to choose a shorter residence time for low organic matter content; choose a longer residence time for high organic matter content) , through the device to pass into the protective atmosphere (one or more of nitrogen, argon, carbon dioxide or water vapor) to achieve an anaerobic environment and further generate a reducing atmosphere to achieve the reduction of high-valent iron, fine ball mill crushing to below 100μm.
Specific implementation II: A method for preparing magnetic sludge-based biochar material from sludge as described in the specific implementation I, wherein in step 1, said solid  iron source is one or more of hematite, iron rust, Bayer method red mud or high iron content fly ash.
Specific implementation III: A method for preparing magnetic sludge-based biochar material from sludge as described in the specific implementation I, wherein in step 1, said liquid iron source is acid washing wastewater.
Specific implementation IV: A method for preparing magnetic sludge-based biochar material from sludge as described in the specific implementation I, wherein in step 1, said porogenic agent is one or more of potassium hydroxide, phosphoric acid, or zinc chloride.
Specific implementation V: A method for preparing magnetic sludge-based biochar material from sludge as described in a specific implementation I, wherein in step 1, said mechanical comminution is ball mill mixing.
Specific implementation VI: An application of a magnetic sludge-based biochar material prepared in any of specific implementation I to V, used as an advanced oxidation catalyst in catalytic ozone oxidation, Fenton oxidation, and persulfate oxidation, where the catalyst can be recovered by magnetic field after failure; used as an adsorbent in the enhanced primary treatment of wastewater, enhanced phosphorus removal in the effluent, and enhanced antibiotic removal, where it can be recovered by a magnetic field; used as a magnetic coagulation aid in the magnetic coagulation process, where it is recovered by a magnetic field.
Specific implementation VII: An application of a magnetic sludge-based biochar material prepared in any one of specific implementation I-V for the preparation of nano-Fe 3O 4/magnetic sludge-based biochar core-shell material, specifically: in an inert atmosphere by adding iron-based coating solution, pH buffer solution (pH 8-12) , anhydrous ethanol and deoxygenated distilled water, stirred continuously for 30-120 min and filter, rinsed clean with deoxygenated distilled water and dried at 70-105℃, that is, the nano-Fe 3O 4 /magnetic sludge-based biochar core-shell material was prepared.
Specific implementation VIII: An application of a magnetic sludge-based biochar material described in specific implementation VII, said Fe 3+/Fe 2+ molar ratio in the iron-based coating solution is 1 to 2: 1.
Specific implementation IX: An application of a magnetic sludge-based biochar material described in specific implementation VII, wherein the prepared nano-Fe 3O 4/magnetic sludge-based biochar core-shell material is specifically used as an advanced oxidation catalyst in catalytic ozone oxidation, Fenton oxidation, and persulfate oxidation, where the catalyst can be recovered by magnetic field after failure; in the enhanced primary treatment of wastewater,  enhanced phosphorus removal from effluent, and enhanced antibiotic removal used as an adsorbent, recovered by a magnetic field; used as magnetic coagulation aid in the magnetic coagulation process, recovered by a magnetic field.
Example 1
A wastewater treatment plant dried sludge with 13%water content was added to 30%Bayer method red mud, mechanically and chemically crushed and mixed homogeneously through a ball mill. The homogeneous material was subjected to continuous pyrolysis to prepare a magnetic sludge-based biochar at a pyrolysis temperature of 650℃ with a residence time of 40 min in the device. The magnetic sludge-based biochar was crushed to below 1000 nm by fine ball milling, and an iron-based coating solution (Fe 3+/Fe 2+=1: 1-2: 1, the solvent is water) , pH buffer solution (pH 9) , anhydrous ethanol, and deoxygenated distilled water were added in an inert gas atmosphere. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was prepared by stirring continuously for 60 min, filtering, rinsing with deoxygenated distilled water and drying at 105℃. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was applied as catalyst for catalytic oxidation of aniline organic pollutant persulphate in chemical wastewater with a dosing amount of 200 mg/L. The removal rate of aniline was improved by more than 80%compared with that without catalyst, and the catalyst was recovered by electromagnetic recovery device after the reaction, and the catalyst separation time was reduced by more than 90%compared with that by precipitation separation of non-magnetic catalyst.
Example 2
A wastewater treatment plant dried sludge with 15%water content was added to 20%hematite with 25%KOH, mechanically and chemically crushed and mixed homogeneously through a ball mill. The homogeneous material was subjected to continuous pyrolysis to prepare a magnetic sludge-based biochar at a pyrolysis temperature of 650℃ with a residence time of 40 min in the device. The magnetic sludge-based biochar was crushed to below 1000 nm by fine ball milling, and an iron-based coating solution (Fe 3+/Fe 2+=1: 1-2: 1) , pH buffer solution (pH 9) , anhydrous ethanol and deoxygenated distilled water were added in an inert gas atmosphere. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was prepared by stirring continuously for 60 min, filtering, rinsing with deoxygenated distilled water, and drying at 105℃. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was applied to Fenton catalytic oxidation catalyst for aniline organic pollutants in chemical wastewater, and the dosing amount was 300 mg/L. The removal rate of aniline was improved by more than 85%compared with no catalyst dosing, and the catalyst was recovered by an electromagnetic recovery device  after the reaction, and the catalyst separation time was reduced by more than 90%compared with the separation of non-magnetic catalyst by precipitation.
Example 3
A wastewater treatment plant dried sludge with 12%water content was added to pickling wastewater with 3.5%iron content and mixed evenly for dewatering and thermal drying until the water content was below 15%, and the dried material was crushed evenly using a ball mill. The homogeneous material was subjected to continuous pyrolysis to prepare magnetic sludge-based biochar at a pyrolysis temperature of 650℃ with a residence time of 40 min in the device, and the magnetic sludge-based biochar was crushed to less than 1000 nm by fine ball milling, and an iron-based coating solution (Fe 3+/Fe 2+=1: 1-2: 1) , pH buffer solution (pH 9) , anhydrous ethanol and deoxygenated distilled water were added in an inert gas atmosphere. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was prepared by stirring continuously for 60 min, filtering, rinsing with deoxygenated distilled water, and drying at 105℃. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was applied to catalytic oxidation catalyst of aniline organic pollutant persulphate in chemical wastewater with the dosing amount of 200 mg/L. The removal rate of aniline was improved by more than 80%compared with no catalyst dosing, and the catalyst was recovered by an electromagnetic recovery device after the reaction, and the catalyst separation time was reduced by more than 90%compared with the separation of non-magnetic catalyst by precipitation.
Example 4
This example differs from Example 1 in that intermittent pyrolysis is used with a pyrolysis temperature of 600℃, a heating rate of 50℃/min, a residence time of 100 min at the pyrolysis temperature, an anaerobic environment and a further reducing atmosphere through the passage of argon gas in the device to achieve high valent iron reduction, and fine ball milling crushing to below 100 μm. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was applied to the enhanced removal of penicillin residue (1 mg/L) from antibiotic fermentation wastewater with a dosing amount of 250 mg/L, and the removal rate of penicillin was above 99%, and the adsorbed catalyst was recovered by electromagnetic recovery device, and the catalyst separation time was reduced by more than 90%compared with the separation of non-magnetic catalyst by precipitation.
Example 5
This example differs from Example 1 in that intermittent pyrolysis is used with a pyrolysis temperature of 700℃, a heating rate of 70℃/min, and a pyrolysis temperature  residence time of 60 min. High-valent iron reduction is achieved by passing argon into the device to achieve an anaerobic environment and to further generate a reducing atmosphere, and fine ball milling and crushing to below 100 μm is sufficient. The nano-Fe 3O 4/magnetic sludge-based biochar core-shell material was applied to the enhanced removal of tetracycline residue (1 mg/L) from pharmaceutical wastewater with a dosing amount of 250 mg/L. The tetracycline removal rate was above 99%, and the adsorbed catalyst was recovered by an electromagnetic recovery device, and the catalyst separation time was reduced by more than 90%compared to the separation of non-magnetic catalyst by precipitation.
Example 6
A wastewater treatment plant dried sludge with 13%water content was added to 30%Bayer method red mud, mechanically and chemically crushed by ball milling, and mixed well. The homogeneous material was subjected to continuous pyrolysis to produce magnetic sludge-based biochar at 650℃ with a residence time of 40 min in the device. The magnetic sludge-based biochar was crushed to below 100 μm by fine ball milling, and more than 99%of the magnetic sludge-based biochar could be separated by iron such as boron magnets. Magnetic sludge-based biochar was applied to a phosphorus-containing wastewater treatment with a dosing amount of 200 mg/L, in which the inorganic phosphate removal rate was over 96%, and the recovery rate of magnetic sludge-based biochar by magnetic field after adsorption reached over 90%, and the separation time was reduced by over 90%compared with that by precipitation separation.

Claims (9)

  1. A method of preparing core-shell magnetic sludge-based biochar material from sludge, which is specified as follows:
    Step 1: the pre-treatment process for the preparation of magnetic sludge-based biochar in two specific forms as follows:
    Mode I: preparation of magnetic sludge-based biochar from solid waste iron source: dried sludge with moisture content less than 15%and solid iron source mechanically crushed and mixed well;
    Mode 2: preparation of magnetic sludge-based biochar nuclei from inexpensive liquid waste iron sources: dewatered/dried sludge and liquid iron sources mixed and homogenized, then thermally dried to a water content of less than 15%and crushed;
    Step 2: Pyrolysis preparation process of magnetic sludge-based biochar material in two forms as follows;
    Mode I: continuous pyrolysis with a pyrolysis temperature of 400-800℃, a residence time of 20-120 min for solid materials in the device, and fine ball milling and crushing to less than 100 μm;
    Mode 2: intermittent pyrolysis with a pyrolysis temperature 400-800℃, a heating rate of 10-100℃/min, a pyrolysis temperature residence time of 20-120min, protective atmosphere passed through the device, fine ball mill crushing to below 100μm.
  2. A method for preparing magnetic sludge-based biochar material from sludge according to claim 1, characterized in that: in step 1, said solid iron source is one or more of hematite, iron rust, Bayer method red mud or high iron content fly ash.
  3. A method for preparing magnetic sludge-based biochar material from sludge according to claim 1, characterized in that: in step 1, said liquid iron source is pickling wastewater.
  4. A method for preparing magnetic sludge-based biochar material from sludge according to claim 1, characterized in that: in step 1, said porogenic agent is one or more of potassium hydroxide, phosphoric acid, or zinc chloride.
  5. A method for preparing magnetic sludge-based biochar material from sludge according to claim 1, characterized in that: in step 1, said mechanical comminution is ball mill mixing.
  6. An application of magnetic sludge-based biochar material prepared by any one of claims 1 to 5, characterized in that: it is used as an advanced oxidation catalyst in catalytic ozone oxidation, Fenton oxidation, and persulfate oxidation, and the catalyst can be recovered by magnetic field after failure; it is used as an adsorbent in enhanced primary treatment of wastewater, enhanced phosphorus removal from effluent, and enhanced antibiotic removal, and is recovered by magnetic field; in magnetic coagulation process, it is used as a magnetic coagulation aid and recovered by magnetic field.
  7. An application of magnetic sludge-based biochar material prepared by any one of claims 1 to 5, characterized in that: for the preparation of nano-Fe 3O 4/magnetic sludge-based biochar core-shell material, specifically: in an inert atmosphere by adding iron-based coating solution, pH buffer solution, anhydrous ethanol and deoxygenated distilled water, stirred continuously for 30 ~120min and then filtered, rinsed clean with deoxygenated distilled water, and dried at 70 ~ 105 ℃, to prepare the nano-Fe 3O 4/magnetic sludge-based biochar core-shell material.
  8. The application of the magnetic sludge-based biochar material according to claim 7, characterized in that: the Fe 3+/Fe 2+ molar ratio in said iron-based coating solution is 1 to 2: 1.
  9. The application of the magnetic sludge-based biochar material according to claim 7, characterized in that: the prepared nano Fe 3O 4/magnetic sludge-based biochar core-shell material is specifically used as an advanced oxidation catalyst in catalytic ozone oxidation, Fenton oxidation, and persulfate oxidation, and the catalyst can be recovered by magnetic field after failure; in enhanced primary treatment of wastewater, enhanced phosphorus removal from effluent, and enhanced antibiotic removal, it is used as adsorbent and recovered by magnetic field; it is used as magnetic coagulation aid in magnetic coagulation process and recovered by magnetic field.
PCT/CN2021/126371 2020-10-26 2021-10-26 Core-shell magnetic sludge-based biochar, preparation method therefor and utilization method thereof WO2022089419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011157987.XA CN112354516B (en) 2020-10-26 2020-10-26 Method for preparing magnetic sludge-based biochar material from sludge and application of magnetic sludge-based biochar material
CN202011157987.X 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022089419A1 true WO2022089419A1 (en) 2022-05-05

Family

ID=74510475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126371 WO2022089419A1 (en) 2020-10-26 2021-10-26 Core-shell magnetic sludge-based biochar, preparation method therefor and utilization method thereof

Country Status (2)

Country Link
CN (1) CN112354516B (en)
WO (1) WO2022089419A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114783714A (en) * 2022-06-21 2022-07-22 中国农业科学院农业环境与可持续发展研究所 Method for promoting anaerobic fermentation by using magnetic straw biochar
CN114958925A (en) * 2022-05-26 2022-08-30 沈阳航空航天大学 Load nanometer Fe 3 O 4 Method for applying biochar to anaerobic digestion of kitchen waste
CN115010511A (en) * 2022-05-13 2022-09-06 佛山欧神诺陶瓷有限公司 Light functional ceramic tile and preparation method and application thereof
CN115259131A (en) * 2022-06-23 2022-11-01 长江水利委员会长江科学院 Green method for preparing multifunctional biochar from sludge and application of biochar
CN115367818A (en) * 2022-07-15 2022-11-22 浙江省农业科学院 Preparation method of coagulated sludge-based zero-valent iron biochar dephosphorization composite material
CN115518614A (en) * 2022-07-12 2022-12-27 山东大学 Iron-copper bimetal modified biochar material and preparation method and application thereof
CN115739009A (en) * 2022-12-16 2023-03-07 陕西矸山翠环保科技有限公司 Novel adsorbent for heavy metal pollution
CN115888712A (en) * 2022-07-27 2023-04-04 广西大学 Preparation method and application of Fenton sludge-based magnetic biochar catalytic material
CN116102167A (en) * 2023-01-16 2023-05-12 浙江科技学院 Preparation method, product and application of bimetal magnetic modified nitrogen-enriched sewage peat
CN116119875A (en) * 2023-02-20 2023-05-16 纳琦绿能工程有限公司 Medical wastewater treatment method
CN116251570A (en) * 2023-03-31 2023-06-13 贵州民族大学 Adsorption material for removing heavy metal zinc in water body and preparation method and application thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354516B (en) * 2020-10-26 2021-10-29 哈尔滨工业大学 Method for preparing magnetic sludge-based biochar material from sludge and application of magnetic sludge-based biochar material
CN112976461A (en) * 2021-02-19 2021-06-18 南京航天波平电子科技有限公司 Method and equipment for improving oxygen index of thermoplastic resin foam pyramid wave-absorbing material
CN113072267B (en) * 2021-03-05 2022-02-15 华中科技大学 Method for efficiently recovering phosphorus from municipal sludge and synchronously preparing porous biochar
CN113351173A (en) * 2021-06-03 2021-09-07 华南理工大学 Humic acid-containing magnetic adsorption material and preparation method and application thereof
CN115518672B (en) * 2021-06-24 2024-01-30 中国石油化工股份有限公司 Regenerated catalyst powder and alkaline substance treating agent containing same
CN113698052A (en) * 2021-08-02 2021-11-26 广东卓信环境科技股份有限公司 Municipal sludge organic matter concentration recycling process
CN113694889A (en) * 2021-08-02 2021-11-26 北京工业大学 Preparation method of magnetic biomass carbon based on sewage plant sludge and backwashing iron mud and method for adsorbing methylene blue by using magnetic biomass carbon
CN113620405A (en) * 2021-08-12 2021-11-09 河北建设集团股份有限公司 Reactor and method for degrading antibiotics by catalyzing persulfate through up-flow packed bed
CN113634201B (en) * 2021-08-26 2023-03-14 天津大学 Upflow fluidized bed reaction device and method for treating antibiotic wastewater
CN113634232B (en) * 2021-10-19 2022-02-22 广东卓信环境科技股份有限公司 Preparation method of carbon-rich magnetic biochar
CN113636650A (en) * 2021-10-19 2021-11-12 广东卓信环境科技股份有限公司 Biological treatment method and system for enhancing sewage denitrification function by carbon-rich magnetic biochar
CN114229983A (en) * 2021-11-29 2022-03-25 哈尔滨工业大学(深圳) Method for preparing catalytic activated biochar from iron-containing excess sludge and removing antibiotics
CN114192099B (en) * 2021-11-29 2023-03-03 山东大学 Reaction furnace, red mud and sludge-based environment restoration agent prepared by reaction furnace, and preparation method and application thereof
CN114229984B (en) * 2021-11-30 2024-03-22 武汉工商学院 Two-stage Fenton-like treatment method for landfill leachate
CN114540036A (en) * 2021-12-02 2022-05-27 上海市环境工程设计科学研究院有限公司 Organic biochar for repairing soil-underground water aniline pollution and repairing method
CN114247427A (en) * 2021-12-13 2022-03-29 清华大学 Sludge-based magnetic biochar adsorbing material and preparation method and application thereof
CN114248418B (en) * 2021-12-21 2023-09-29 河源新昊塑胶制品有限公司 High-safety flame-retardant plastic toy processing blow molding machine
CN114345344B (en) * 2022-02-28 2024-03-08 湖北臻润环境科技股份有限公司 Persulfate catalyst and preparation method and application thereof
CN114921256A (en) * 2022-04-08 2022-08-19 大连理工大学 Device and method for preparing magnetic formed biochar and co-producing white carbon black
CN114870802A (en) * 2022-05-11 2022-08-09 河北工业大学 Method for preparing magnetic porous carbon composite adsorption material by multi-element solid waste synergism
CN115041166A (en) * 2022-05-24 2022-09-13 浙江科技学院 Heterogeneous persulfate catalyst and preparation method and application thereof
CN115193400A (en) * 2022-06-07 2022-10-18 遵义师范学院 Natural siderite-sludge-based composite material and preparation method and application thereof
CN115138336B (en) * 2022-06-29 2023-07-18 北京科技大学 Preparation method of red mud-peanut shell-based composite material for treating acidic phosphorus-containing sewage
CN115108705B (en) * 2022-06-30 2023-08-11 浙江科技学院 Preparation method, product and application of modified magnetic sludge peat
CN115106097A (en) * 2022-07-14 2022-09-27 苏州仕净科技股份有限公司 Preparation method of Fenton-like catalyst for shale gas development fracturing reverse drainage, catalyst and application
CN115259601A (en) * 2022-08-02 2022-11-01 许国仁 Process for enhancing sludge conditioning dehydration by coupling nano ozone and sludge-based biochar
CN115780485B (en) * 2022-11-23 2023-06-06 北京朝阳环境集团有限公司 Kitchen waste treatment method
CN115888655A (en) * 2022-11-28 2023-04-04 淮阴工学院 Preparation method of sulfydryl modified magnetic carbon-red mud adsorbent
CN115771991A (en) * 2022-12-12 2023-03-10 安徽省通源环境节能股份有限公司 Polymeric aluminum ferric silicate sludge conditioner and preparation method thereof
CN115722227A (en) * 2022-12-28 2023-03-03 国科大杭州高等研究院 Iron slag-doped wine-making sludge biochar material and preparation method and application thereof
CN116474720B (en) * 2023-02-06 2023-11-10 生态环境部南京环境科学研究所 Preparation method and application of red mud-based enhanced magnetic straw biochar material
CN116371360A (en) * 2023-04-04 2023-07-04 华南协同创新研究院 Magnetic oil tea shell biochar material capable of adsorbing antibiotics and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221323A (en) * 1991-10-03 1993-06-22 Li Chung Lee Method of producing magnetic powders from heavy metal sludges
RU2017101763A (en) * 2017-01-19 2018-07-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) METHOD FOR PRODUCING MAGNETIC SORBENT
CN108906055A (en) * 2018-07-31 2018-11-30 哈尔滨工业大学 A kind of preparation method of magnetic sludge charcoal, magnetic sludge charcoal and its application
CN110171876A (en) * 2019-05-16 2019-08-27 浙江科技学院 A kind of N doping sludge carbon carries the preparation method and applications of nano ferriferrous oxide
CN111359610A (en) * 2020-04-09 2020-07-03 中国矿业大学 Preparation and application of multi-stage pore-low-valence iron Fenton sludge-based heterogeneous catalyst
CN112354516A (en) * 2020-10-26 2021-02-12 哈尔滨工业大学 Method for preparing magnetic sludge-based biochar material from sludge and application of magnetic sludge-based biochar material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012123331A1 (en) * 2011-03-11 2012-09-20 Fundació Privada Institut Català De Nanotecnologia Biogas production
CN102718312A (en) * 2012-07-14 2012-10-10 哈尔滨工业大学 Preparation and regeneration methods of iron-based activated sludge and method for treating domestic sewage by regenerated iron-based activated sludge
WO2018044675A1 (en) * 2016-08-29 2018-03-08 The Penn State Research Foundation Membrane surface activation to eliminate fouling and concentration polarization in water purification systems
GB2560317A (en) * 2017-03-06 2018-09-12 Sibelco Nederland N V Bed materials for fluidised bed reaction methods and fluidised bed reaction methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221323A (en) * 1991-10-03 1993-06-22 Li Chung Lee Method of producing magnetic powders from heavy metal sludges
RU2017101763A (en) * 2017-01-19 2018-07-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) METHOD FOR PRODUCING MAGNETIC SORBENT
CN108906055A (en) * 2018-07-31 2018-11-30 哈尔滨工业大学 A kind of preparation method of magnetic sludge charcoal, magnetic sludge charcoal and its application
CN110171876A (en) * 2019-05-16 2019-08-27 浙江科技学院 A kind of N doping sludge carbon carries the preparation method and applications of nano ferriferrous oxide
CN111359610A (en) * 2020-04-09 2020-07-03 中国矿业大学 Preparation and application of multi-stage pore-low-valence iron Fenton sludge-based heterogeneous catalyst
CN112354516A (en) * 2020-10-26 2021-02-12 哈尔滨工业大学 Method for preparing magnetic sludge-based biochar material from sludge and application of magnetic sludge-based biochar material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010511A (en) * 2022-05-13 2022-09-06 佛山欧神诺陶瓷有限公司 Light functional ceramic tile and preparation method and application thereof
CN114958925A (en) * 2022-05-26 2022-08-30 沈阳航空航天大学 Load nanometer Fe 3 O 4 Method for applying biochar to anaerobic digestion of kitchen waste
CN114783714A (en) * 2022-06-21 2022-07-22 中国农业科学院农业环境与可持续发展研究所 Method for promoting anaerobic fermentation by using magnetic straw biochar
CN114783714B (en) * 2022-06-21 2022-09-06 中国农业科学院农业环境与可持续发展研究所 Method for promoting anaerobic fermentation by using magnetic straw biochar
CN115259131A (en) * 2022-06-23 2022-11-01 长江水利委员会长江科学院 Green method for preparing multifunctional biochar from sludge and application of biochar
CN115259131B (en) * 2022-06-23 2024-04-30 长江水利委员会长江科学院 Green method for preparing multifunctional biochar by utilizing sludge and application of biochar
CN115518614A (en) * 2022-07-12 2022-12-27 山东大学 Iron-copper bimetal modified biochar material and preparation method and application thereof
CN115367818B (en) * 2022-07-15 2023-06-27 浙江省农业科学院 Preparation method of coagulated sludge-based zero-valent iron biochar dephosphorization composite material
CN115367818A (en) * 2022-07-15 2022-11-22 浙江省农业科学院 Preparation method of coagulated sludge-based zero-valent iron biochar dephosphorization composite material
CN115888712A (en) * 2022-07-27 2023-04-04 广西大学 Preparation method and application of Fenton sludge-based magnetic biochar catalytic material
CN115739009A (en) * 2022-12-16 2023-03-07 陕西矸山翠环保科技有限公司 Novel adsorbent for heavy metal pollution
CN116102167A (en) * 2023-01-16 2023-05-12 浙江科技学院 Preparation method, product and application of bimetal magnetic modified nitrogen-enriched sewage peat
CN116119875A (en) * 2023-02-20 2023-05-16 纳琦绿能工程有限公司 Medical wastewater treatment method
CN116119875B (en) * 2023-02-20 2023-07-07 纳琦绿能工程有限公司 Medical wastewater treatment method
CN116251570A (en) * 2023-03-31 2023-06-13 贵州民族大学 Adsorption material for removing heavy metal zinc in water body and preparation method and application thereof

Also Published As

Publication number Publication date
CN112354516A (en) 2021-02-12
CN112354516B (en) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2022089419A1 (en) Core-shell magnetic sludge-based biochar, preparation method therefor and utilization method thereof
Huang et al. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst
CN109317100B (en) Normal-temperature pretreatment-hydrothermal carbonization method for preparing magnetic algae-based biochar
CN108311153B (en) Nano-ZnO loaded magnetic biochar composite photocatalyst and preparation method thereof
CN102775019B (en) Coupling type sewage de-phosphorization purification regeneration treatment technique
CN111921536B (en) Novel catalytic adsorption material prepared based on natural minerals and biomass
Cai et al. Advanced treatment of piggery tail water by dual coagulation with Na+ zeolite and Mg/Fe chloride and resource utilization of the coagulation sludge for efficient decontamination of Cd2+
CN111939874A (en) Method for removing tetracycline in water by using sludge-based biochar activated persulfate in synergistic manner
CN108017137B (en) Magnetic Fenton oxidation wastewater treatment method based on magnetic carrier
CN113877581B (en) Copper ferrite spinel material and preparation method and application thereof
Gao et al. Removal of tetracycline from wastewater using magnetic biochar: A comparative study of performance based on the preparation method
CN109604624A (en) A kind of method and application preparing nano zero valence iron using water treatment plant's iron containing sludge
CN106179210A (en) A kind of preparation method of magnetic-particle activated carbon
CN111302452B (en) Method for preparing magnetic coagulant aid by recycling metal-containing sludge and application of magnetic coagulant aid in enhanced pollutant removal
CN108079949B (en) Method for removing lead in water body by using magnetic pig manure biochar
CN114394800B (en) Method for resource utilization of sludge biochar
CN109928603B (en) Preparation method and use method of green sludge dewatering agent
Ji et al. A review of metallurgical slag for efficient wastewater treatment: Pretreatment, performance and mechanism
CN108128889B (en) Method for enhanced biochemical treatment of industrial wastewater by using nano magnetic powder-iron powder/graphene oxide composite carrier
Yang et al. Simultaneous recovery of phosphate and degradation of antibiotics by waste sludge-derived biochar
CN113117681A (en) Method for treating industrial wastewater by enhanced Fenton
CN115231684A (en) Method for treating dye wastewater by using sludge hydrothermal biochar activated persulfate
CN101665280B (en) Method for waste water treatment and preparing magnetic flocculant by reclaimed flocculant
CN114455703A (en) Method for treating heavy metal-containing organic wastewater by biochar-loaded zero-valent iron coupling sulfate reduction
CN102350313B (en) Preparation method and application of copper and ferrous magnetic metal oxide modified fly ash phosphorus adsorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885146

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/12/2023)