WO2022088923A1 - 一种深海多金属硫化物资源的勘探保留区圈定方法 - Google Patents
一种深海多金属硫化物资源的勘探保留区圈定方法 Download PDFInfo
- Publication number
- WO2022088923A1 WO2022088923A1 PCT/CN2021/115525 CN2021115525W WO2022088923A1 WO 2022088923 A1 WO2022088923 A1 WO 2022088923A1 CN 2021115525 W CN2021115525 W CN 2021115525W WO 2022088923 A1 WO2022088923 A1 WO 2022088923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- area
- information
- prospecting
- level
- marks
- Prior art date
Links
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000011156 evaluation Methods 0.000 claims abstract description 6
- 230000002159 abnormal effect Effects 0.000 claims description 27
- 230000004075 alteration Effects 0.000 claims description 19
- 239000011435 rock Substances 0.000 claims description 19
- 239000013049 sediment Substances 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 11
- 239000013535 sea water Substances 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 150000003568 thioethers Chemical class 0.000 claims description 8
- 230000033558 biomineral tissue development Effects 0.000 claims description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 7
- 239000011707 mineral Substances 0.000 claims description 7
- 241000237536 Mytilus edulis Species 0.000 claims description 6
- 230000002547 anomalous effect Effects 0.000 claims description 6
- 238000013213 extrapolation Methods 0.000 claims description 6
- 235000020638 mussel Nutrition 0.000 claims description 6
- 241000727745 Glyphocrangonidae Species 0.000 claims description 5
- 241000242759 Actiniaria Species 0.000 claims description 3
- 229910002551 Fe-Mn Inorganic materials 0.000 claims description 3
- 235000001484 Trigonella foenum graecum Nutrition 0.000 claims description 3
- 244000250129 Trigonella foenum graecum Species 0.000 claims description 3
- IUMKBGOLDBCDFK-UHFFFAOYSA-N dialuminum;dicalcium;iron(2+);trisilicate;hydrate Chemical compound O.[Al+3].[Al+3].[Ca+2].[Ca+2].[Fe+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IUMKBGOLDBCDFK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052869 epidote Inorganic materials 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims description 3
- 235000001019 trigonella foenum-graecum Nutrition 0.000 claims description 3
- 244000020551 Helianthus annuus Species 0.000 claims description 2
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 claims description 2
- 239000011022 opal Substances 0.000 claims description 2
- 238000011835 investigation Methods 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
- G01V9/007—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by detecting gases or particles representative of underground layers at or near the surface
Definitions
- the invention belongs to the technical field of deep-sea resource exploration and development, and in particular relates to a method for delineating an exploration and reserve area for deep-sea polymetallic sulfide resources.
- hydrothermal products can be formed during deep-sea hydrothermal activities, including hydrothermal fluids, hydrothermal columns, hydrothermal sulfides, hydrothermally altered rocks, metal-bearing sediments, and living organisms at vents.
- hydrothermal sulfides are usually rich in metal elements such as Cu, Zn, Au, and Ag, and are also called polymetallic sulfides.
- polymetallic mineral resources that can be exploited and utilized, the rational development of polymetallic sulfides provides the possibility to meet human demand for polymetallic mineral resources. As an important strategic resource, the exploration of deep-sea polymetallic sulfide resources has attracted much attention.
- the purpose of the present invention is to provide a method for delineating an exploration reserve area for deep-sea polymetallic sulfides, through analyzing the prospecting index, delineating the level of the prospect area, and delineating the exploration reserve area by the level of the prospect area.
- the technical scheme of the present invention is as follows: a method for delineating an exploration reserve area for deep-sea polymetallic sulfide resources, comprising the following steps:
- Step 1 The stage of extraction and grading of prospecting marks; including extracting prospecting marks for deep-sea sulfide resources, specifying the characteristics of the marks, and delimiting the grades of the marks; the specific steps are as follows:
- Step 1.1 Extract the prospecting information of deep-sea polymetallic sulfide resources, including (1) plume information, (2) geophysical information, (3) geochemical information, (4) biological information, (5) surrounding rocks Alteration information and (6) mineralization outcrop information; the specific process is as follows: specify the characteristics of the prospecting signs, (1) the characteristics of the plume information: take the seawater elements within a range of 100 meters as the background value, with high temperature- Salinity, high turbidity, low redox potential, high methane, high dissolved Mn 2+ and Fe 2+ , high He isotope and 3 He/ 4 He ratio; (2) Characteristics of geophysical information: relative to the distance from the seafloor The background value in the range of 200 meters has weak magnetism, high polarization, low resistance, and high density; (3) The characteristics of geochemical information: Cu-Zn-Fe-Mn combination element anomaly, MSI(Al/(Al+Fe +Mn)) anomaly, Cu/Fe anomaly, etc.;
- Step 1.2 According to the reliability of the prospecting information, specify the level of prospecting marks.
- the levels of prospecting marks from low to high are: (1) plume information, (2) geophysical information, (3) geochemical information , (4) biological information, (5) wall rock alteration information and (6) mineralized outcrop information.
- Step 2 The evaluation stage of metallogenic prospective areas; including the delineation of the control range indicated by various prospecting signs, and the delineation of prospective areas based on the prospecting signs; the specific steps are as follows:
- Step 2.1 Based on the prospecting signs, delineate the scope of the abnormal area. Specifically: (1) Plume information, first exclude the topographic area near the water anomaly discovery location higher than the water anomaly according to the topographic data, and then trace the plume information according to the distribution characteristics of the local flow field, and then delineate the water anomaly (3) Geochemical information, according to the number of sulfide particles found in sediments, heavy mineral anomalies and the intensity of Cu, Zn, Fe and Pb element anomalies to delineate abnormal areas of different levels; (4) Biological information, marine The enriched area of sunflower, armored shrimp, fenugreek and mussels or their remains, extrapolated from the edge of the area at a distance of 100m as an abnormal area; (5) alteration information of surrounding rocks, rocks or sediments with color changes of taupe, brown, yellow and red (6) Mineralization outcrop information, brown and reddish-brown sulfides in the shape of mounds, chimneys, layers and breccias are direct evidence
- Step 2.2 Based on the prospecting information in the previous step and the delineation of the abnormal area, the prospective area is delineated by a closed curve, and a single prospecting mark can be delineated as a prospective area.
- the prospect area contains all prospecting marks, and the positions of various types of prospecting marks overlap but are not completely overlapped, various abnormal ranges are delineated in the prospect area.
- Step 3 Delineation of the exploration reserve area; including evaluating and classifying the prospecting information, delimiting the level of the prospective area, and taking the prospective area as the exploration reserve area; the specific steps are as follows:
- Step 3.1 According to the type of prospecting information and the level of prospecting information in the prospecting area, and in order of resource potential from high to bottom, the level of the prospecting area is divided into Level I, Level II and Level III, and the low-level prospecting area may include high High-level prospect areas cannot contain low-level prospect areas;
- Step 3.2 According to the level of the prospective area, delineate the exploration reserve area.
- the method for determining the scope of the prospect based on the plume further includes:
- the distance D between the geographic location of the plume information and the hydrothermal source should satisfy D ⁇ seawater bottom velocity ⁇ the dissipation time of the abnormal signal in the seawater; the hydrothermal source is located in an area lower than the water depth where the plume information is found.
- the anomaly areas of different levels are delineated, further including:
- the method of mean + 2 ⁇ variance is used to cyclically eliminate outliers until the data set meets the requirements.
- the radius of 500-1000m is used to delineate the I-level anomaly area; when the number of sulfide particles in the sediment is greater than 10, or the anomalous intensity of Cu and Zn elements is greater than the average + variance of the measurement area, the radius of 1500-2000m is delineated It is a grade II abnormal area; when the number of sulfide particles in the sediment is greater than 1, or the abnormal intensity of Cu and Zn elements in the sediment is greater than the average value + 0.5 ⁇ variance, it is defined as a grade III abnormal area with a radius of 5000m.
- the prospect area is delineated according to the prospecting mark, which further includes:
- the distance between two long-range areas is not less than 2km: if the distance between two or more long-range areas at the same level is less than 2km, it will be designated as the same long-range area; if the distance between two or more long-range areas at different levels is less than 2km, it will be designated as the same long-range area. For nested prospects.
- the level of the prospect area is delineated according to the level of the prospecting mark, further comprising:
- the metallogenic markers are divided into three categories, indirect information: (1) plume information; metallogenic factor information: (2) geophysical information, (3) geochemical information and (4) biological information; and direct information: (5) ) surrounding rock alteration information and (6) mineralization outcrop information; the area with direct information in the prospect area is designated as a level I prospect area; the area with indirect information in the prospect area is classified as a level II prospect area ; If there is information on metallogenic factors in the prospect area, it will be classified as a Class III prospect area.
- the method for delimiting the exploration reserved area for deep-sea polymetallic sulfides proposed by the present invention has carried out the delineation of the exploration reserved area in the southwestern Indian Ocean polymetallic sulfide mining area, and based on the prospecting information, the prospect can be effectively delimited It has strong applicability and is of guiding significance for the exploration of polymetallic sulfide resources in other deep-sea areas.
- FIG. 1 is a flowchart of a method for delineating an exploration reserve area for deep-sea polymetallic sulfide resources provided by the present invention.
- FIG. 2 shows the specific steps of a method for delineating a reserve area for exploration of deep-sea polymetallic sulfide resources provided by the present invention.
- a method for delineating exploration and reserve areas for submarine polymetallic sulfide resources Taking a prospect A as an example, it can be divided into three sub-areas, A1, A2, and A3, with slightly different investigation degrees. Specific steps include:
- Step 1 The stage of extraction and grading of prospecting marks; including extracting prospecting marks for deep-sea sulfide resources, specifying the characteristics of the marks, and delimiting the grades of the marks;
- Step 2 Evaluation stage of metallogenic prospective areas; including the delineation of the control range indicated by various prospecting signs, and the delineation of prospective areas based on prospecting signs;
- Step 3 Delineation of the exploration and reserve area; including evaluating and classifying the prospecting sign information, delimiting the level of the prospective area, and sequentially using the higher-level prospective area as the exploration and reserve area;
- step 1 The specific steps of the step 1 are as follows:
- Step 1.1 Extract the prospecting signs of 6 types of deep-sea polymetallic sulfide resources, namely (1) plume information, (2) geophysical information, (3) geochemical information, (4) biological information, (5) Wall rock alteration information and (6) mineralized outcrop information;
- Step 1.2 Specify the characteristics of the prospecting signs, (1) the characteristics of the plume information: take the seawater elements within a range of 100 meters as the background value, with high temperature-salinity, high turbidity, low redox potential, high Methane, high dissolved Mn 2+ and Fe 2+ , high He isotope and 3 He/ 4 He ratio; (2) Characteristics of geophysical information: weak magnetic, high Polarization, low resistance, high density; (3) Features of geochemical information: Cu-Zn-Fe-Mn composite element anomaly, low MSI (Al/(Al+Fe+Mn)) value, high Cu /Fe ratio; (4) Characteristics of biological information: typical organisms in hydrothermal areas, such as sea anemones, armored shrimps, fenugreek and mussels; (5) Characteristics of wall rock alteration information: silicification, chlorite, epidote , zeolization, edinization, serpentinization, carbonation;
- Step 1.3 According to the credibility of prospecting information, specify the level of prospecting marks.
- the level of prospecting marks from low to high is: (1) plume information, (2) geophysical information, (3) geochemical information , (4) biological information, (5) surrounding rock alteration information and (6) mineralized outcrop information;
- step 2 The specific steps of step 2 are as follows:
- Step 2.1 Based on the prospecting signs, extrapolate the distribution range of the prospect. Specifically:
- Plume information In the A1 area, it is found that there are both turbidity anomalies and dissolved methane gas anomalies in the water body;
- Alteration information of surrounding rocks In the A3 area, the rocks are mainly basalt and peridotite, the basalt is gray-black, the shape is pillow-like and breccia-like, and different degrees of alteration occur.
- the surface of the altered basalt is It is light green and yellow-green, and the peridotite is light green, mostly showing breccia distribution.
- the alteration area is distributed around the mineralized area, and the strike is also NE, showing an ellipse shape. The entire alteration area is about 500m long and 250m wide along the strike;
- the plume-based method for determining the extent of a prospect further comprising:
- the distance D between the geographic location of different water body anomaly signals and the hydrothermal source should satisfy D ⁇ seawater bottom velocity ⁇ dissipation time of the anomalous element in seawater; the hydrothermal source must be located below the location where the water body anomaly signal is found In the area of water depth, that is, in the area where the abnormal hydrothermal signal is located, the area with higher water depth than the area where the abnormal hydrothermal signal is located can basically exclude the possibility of the existence of the hydrothermal source;
- the method of mean + 2 ⁇ variance is used to cyclically eliminate outliers until the data set meets the requirements.
- the radius of 500-1000m is used to delineate the I-level anomaly area; when the number of sulfide particles in the sediment is greater than 10, or the anomalous intensity of Cu and Zn elements is greater than the average + variance of the measurement area, the radius of 1500-2000m is delineated It is a grade II abnormal area; when the number of sulfide particles in the sediment is greater than 1, or the abnormal intensity of Cu and Zn elements in the sediment is greater than the average value + 0.5 ⁇ variance, it is defined as a grade III abnormal area with a radius of 5000m.
- Step 2.2 Based on the prospecting marks and diffusion range in the previous step, the prospect area is delineated by a closed curve.
- a single prospecting mark is defined as a prospect area.
- the prospect area includes all prospecting marks, and various types of prospecting marks are abnormally distributed in similar areas. (The position overlaps but the position does not completely overlap), delineate various abnormal ranges in the long-range area;
- step 3 The specific steps of the step 3 are as follows:
- Step 3.1 According to the type of prospecting marks and the level of prospecting marks in the prospect area, and in order of resource potential from high to bottom, the levels of prospect areas are delineated as Level I, Level II and Level III, and low-level prospect areas can be nested High-level prospect areas, low-level prospect areas cannot be nested in high-level prospect areas;
- Delineate prospective areas according to prospecting signs further including:
- the distance between two long-range areas is not less than 2km: if the distance between two or more long-range areas at the same level is less than 2km, it will be designated as the same long-range area; if the distance between two or more long-range areas at different levels is less than 2km, it will be designated as the same long-range area. is a nested prospect;
- Step 3.2 According to the level of the prospective area, delineate the exploration reserve area; delineate the level of the prospective area according to the level of the prospecting mark, further including:
- the metallogenic markers are divided into three categories, indirect information: (1) plume information; metallogenic factor information: (2) geophysical information, (3) geochemical information and (4) biological information; and direct information: (5) ) surrounding rock alteration information and (6) mineralization outcrop information; the area with direct information in the prospect area is designated as a level I prospect area; the area with indirect information in the prospect area is classified as a level II prospect area ; If there is information on metallogenic factors in the prospect area, it will be classified as a Class III prospect area.
- the A1 area is designated as a Class III prospective area; the A2 area is designated as a Class II prospective area; and the A3 area is designated as a Class I prospective area.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geophysics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种深海多金属硫化物资源的勘探保留区圈定方法,适用于在海底硫化物找矿调查后,经过远景区圈定与评价,圈定勘探保留区块,以备开展进一步勘探。方法包括以下步骤:首先是找矿标志提取阶段;包括提取深海硫化物资源找矿标志,指定标志的特征,划定标志的级别;其次是成矿远景区评价阶段;包括各种找矿标志控制范围的划定,以及基于找矿标志圈定远景区;最后是勘探保留区圈定阶段;包括综合各类找矿标志信息进行预测,确定远景区级别,依次把较高级别的远景区作为资源保留区。应用于深海多金属硫化物资源的评价与预测,特别是深海多金属硫化物的资源勘探保留区圈定。
Description
本发明属于深海资源勘探开发技术领域,具体涉及一种深海多金属硫化物资源的勘探保留区圈定方法。
深海热液活动过程中可形成多种热液产物,包括热液流体、热液柱、热液硫化物、热液蚀变岩石、含金属沉积物及喷口活体生物等。其中热液硫化物通常富含Cu、Zn、Au、Ag等金属元素,亦称之为多金属硫化物。多金属硫化物作为一种可被开发利用的多金属矿产资源,它的合理开发为满足人类对多金属矿产资源的需求提供了可能。作为一种重要的战略资源,深海多金属硫化物资源的勘探备受关注。多项国际研究计划,对该类资源在海底的分布、规模与成矿控制因素等方面也开展了大量调查研究,多金属硫化物一般形成于海底的开放环境之下,不仅与岩浆活动、构造等密切相关,而且受海水动力学、水化学特征等的影响,形成条件复杂、矿床产出形式多样。多金属硫化物矿床的矿床成因、控矿因素、成矿规律的研究都处于初期阶段,目前没有系统的深海多金属硫化物资源勘探保留区圈定方法,制约了勘探工作的进展。亟需制定适宜的勘探圈定策略,指导进一步的资源评价与预测。
发明内容
本发明的目的是提供一种深海多金属硫化物的勘探保留区圈定方法,通过对找矿指标分析,划定远景区的级别,通过远景区的级别圈定勘探保留区。
本发明的技术方案如下所述:一种深海多金属硫化物资源的勘探保留区圈定方法,包括如下步骤:
步骤1:找矿标志提取与定级阶段;包括提取深海硫化物资源找矿标志,指定标志的特征,划定标志的级别;具体步骤如下:
步骤1.1:提取深海多金属硫化物资源的找矿信息,主要包括(1)羽状流信息、(2)地球物理信息、(3)地球化学信息、(4)生物信息、(5)围岩蚀变信息与(6)矿化露头信息;具体过程如下:指定找矿标志的特征,(1)羽状流信息的特征:以周围100米范围内的海水要素为背景值,具备高温度-盐度、高浊度、低氧化还原电位、高甲烷、高溶解态Mn
2+和Fe
2+、高He同位素及
3He/
4He比率;(2)地球物理信息的特征:相对于距离海底200米范围内的背景值,具有弱磁性、高极化、低电阻、高密度;(3)地球化学信息的特征:Cu-Zn-Fe-Mn组合元素异常、MSI(Al/(Al+Fe+Mn))异常,Cu/Fe异常等;(4)生物信息的特征:典型的热 液区生物,包括海葵、铠甲虾、茗荷以及贻贝;(5)围岩蚀变信息的特征:硅化、绿泥石化、绿帘石化、沸石化、伊丁石化、蛇纹石化、碳酸盐化;(6)矿化露头信息的特征:多金属硫化物烟囱体、多金属沉积物;
步骤1.2:根据找矿信息的可信程度,指定找矿标志的级别,找矿标志级别由低至高依次为:(1)羽状流信息、(2)地球物理信息、(3)地球化学信息、(4)生物信息、(5)围岩蚀变信息与(6)矿化露头信息。
步骤2:成矿远景区评价阶段;包括各种找矿标志所指示的控制范围划定,以及基于找矿标志圈定远景区;具体步骤如下:
步骤2.1:基于找矿标志,圈定异常区的范围。具体为:(1)羽状流信息,先根据地形数据将水体异常发现处附近高于水体异常的地形区域排除,再根据局地流场分布特征对羽状流信息进行溯源,进而圈定水体异常区的范围;(3)地球化学信息,根据沉积物中发现硫化物颗粒数、重矿物异常以及Cu、Zn、Fe与Pb元素异常的强度圈定不同级别的异常区;(4)生物信息,海葵、铠甲虾、茗荷与贻贝或其遗骸富集区域,从区域边缘外推距离100m作为异常区;(5)围岩蚀变信息,灰褐色、褐色、黄色、红色颜色变化的岩石或沉积物,外推距离2000m作为异常区;(6)矿化露头信息,呈丘状、烟囱状、层状、角砾状的褐色、红褐色硫化物为硫化物区的直接证据,外推距离800m作为异常区;热液产物蛋白石、烟囱体等分布区域,丘状、烟囱状外推距离500m作为异常区,层状等产状外推距离2000m作为异常区;
步骤2.2:基于上一步的找矿信息以及异常区圈定范围,以封闭曲线圈定远景区,单一找矿标志即可圈定为远景区。当远景区包含所有找矿标志,多种类型找矿标志位置有重叠但是位置又不完全重叠时,将各种异常范围均圈定在远景区内。
步骤3:勘探保留区圈定阶段;包括对找矿信息进行评价分类,划定远景区的级别,把远景区作为勘探保留区;具体步骤如下:
步骤3.1:根据找矿信息类型与远景区内的找矿信息级别,以资源潜力从高到底,依次划定远景区的级别为I级、II级与III级,低级别远景区内可包含高级别远景区,高级别的远景区内不可包含低级别的远景区;
步骤3.2:根据远景区的级别,圈定勘探保留区。
进一步地,所述步骤2.1中,基于羽状流确定远景区范围的方法,进一步包括:
羽状流信息的地理位置与热液源之间的距离D应满足D≤海水底层流速×异常信号在海水中的耗散时间;热液源位于低于羽状流信息发现地水深的区域。
进一步地,所述步骤2.1中,根据元素异常以及重矿物异常圈定不同级别的异常区,进一步包括:
采用平均值+2×方差的方式循环剔除特异值至数据集满足要求,当沉积物中发现硫化物颗粒数>25,或Cu、Zn元素异常的强度大于测区平均值+2×方差时,以500-1000m为半径圈定为I级异常区;当沉积物中发现硫化物的颗粒数>10,或Cu、Zn元素异常的强度大于测区平均值+方差时,以1500-2000m为半径圈定为II级异常区;当沉积物中发现硫化物的颗粒数>1,或沉积物中Cu、Zn元素异常的强度大于平均值+0.5×方差,以5000m为半径圈定为III级异常区。
进一步地,所述步骤3.1中,根据找矿标志圈定远景区,进一步包括:
两个远景区之间距离不小于2km:若同一级别2个或2个以上远景区距离小于2km,则圈定为同一远景区;若不同级别2个或2个以上远景区距离小于2km,则划为嵌套远景区。
进一步地,所述步骤3.2中,根据找矿标志级别划定远景区的级别,进一步包括:
将成矿标志分为三类,间接信息:(1)羽状流信息;成矿因素信息:(2)地球物理信息、(3)地球化学信息与(4)生物信息;以及直接信息:(5)围岩蚀变信息与(6)矿化露头信息;将远景区内存在直接信息的区域,划定为I级远景区;将远景区内存在间接信息的区域,划定为II级远景区;将远景区内存在成矿因素信息的,划定为III级远景区。
本发明的有益技术效果在于:本发明提出的深海多金属硫化物的勘探保留区圈定方法,在西南印度洋多金属硫化物矿区开展了勘探保留区圈定工作,基于找矿信息,能够有效划定远景区级别,为保留区圈定提供依据,适用性较强,对其他深海区域的多金属硫化物资源勘探具有指导意义。
图1为本发明提供的一种深海多金属硫化物资源的勘探保留区圈定方法流程图。
图2为本发明提供的一种深海多金属硫化物资源的勘探保留区圈定方法的具体步骤。
下面结合附图和实施例对本发明的一种深海多金属硫化物资源的勘探保留区圈定方法实施进行具体说明:
一种海底多金属硫化物资源的勘探保留区圈定方法,以某远景区A为例,可以分为A1、A2与A3三个子区,调查程度略有不同,对该区域进行勘探保留区圈定,具体步骤包括:
步骤1:找矿标志提取与定级阶段;包括提取深海硫化物资源找矿标志,指定标志的特征,划定标志的级别;
步骤2:成矿远景区评价阶段;包括各种找矿标志所指示的控制范围划定,以及基于找矿标志圈定远景区;
步骤3:勘探保留区圈定阶段;包括对找矿标志信息进行评价分类,划定远景区的级别, 依次把较高级别的远景区作为勘探保留区;
所述步骤1的具体步骤如下:
步骤1.1:提取6类深海多金属硫化物资源的找矿标志,分别为(1)羽状流信息、(2)地球物理信息、(3)地球化学信息、(4)生物信息、(5)围岩蚀变信息与(6)矿化露头信息;
步骤1.2:指定找矿标志的特征,(1)羽状流信息的特征:以周围100米范围内的海水要素为背景值,具备高温度-盐度、高浊度、低氧化还原电位、高甲烷、高溶解态Mn
2+和Fe
2+、高He同位素及
3He/
4He比率;(2)地球物理信息的特征:相对于距离海底200米范围内的背景值,具有弱磁性、高极化、低电阻、高密度;(3)地球化学信息的特征:Cu-Zn-Fe-Mn组合元素异常、较低的MSI(Al/(Al+Fe+Mn))值,较高的Cu/Fe比值;(4)生物信息的特征:典型的热液区生物,海葵、铠甲虾、茗荷以及贻贝;(5)围岩蚀变信息的特征:硅化、绿泥石化、绿帘石化、沸石化、伊丁石化、蛇纹石化、碳酸盐化;(6)矿化露头信息的特征:多金属硫化物烟囱体、多金属沉积物;
步骤1.3:根据找矿信息的可信程度,指定找矿标志的级别,找矿标志级别由低至高依次为:(1)羽状流信息、(2)地球物理信息、(3)地球化学信息、(4)生物信息、(5)围岩蚀变信息与(6)矿化露头信息;
所述步骤2的具体步骤如下:
步骤2.1:基于找矿标志,外推远景区的分布范围。具体为:
(1)羽状流信息:在A1区域发现水体中既存在浊度异常,又存在溶解甲烷气体异常;
(2)地球物理信息:在A2区域,磁力探测结果表明,存在低磁异常,受热液蚀变而产生了退磁;
(3)地球化学信息:在A2区域采集的硫化物样品的Cu、Zn含量较低,其中Cu的含量范围为0.02wt.%~2.88wt.%,Zn的含量普遍低于0.01wt.%,根据Cu、Fe、Si元素的含量,可以将其分为Si-Fe型;
(4)生物信息:在A2区域,发现疑似的热液生物如贻贝、螺、铭荷等遗骸,主要分布在海底地形高地及其边缘或海山区,其形成有可能受到热液的影响;
(5)围岩蚀变信息:在A3区域,岩石主要为玄武岩和橄榄岩,玄武岩为灰黑色,形状为枕状和角砾状,并且发生不同程度的蚀变现象,蚀变后的玄武岩表面呈现淡绿色和黄绿色,橄榄岩为淡绿色,多呈现角砾分布。蚀变区域围绕着矿化区域分布,走向也为北东向,呈现椭圆状,沿着走向整个蚀变区长约500m,宽约250m;
(6)矿化露头信息:在A3区域,出露块状硫化物和红褐色热液沉积物,沿着走向整个矿化区长约200m,宽约100m;
基于羽状流确定远景区范围的方法,进一步包括:
不同的水体异常信号的地理位置与热液源之间的距离D应满足D≤海水底层流速×该异常元素在海水中的耗散时间;热液源必位于低于水体异常信号发现地的所在水深的区域,即在热液异常信号所在区域内,比热液异常信号所在水深高的区域均可基本排除热液源地存在的可能性;
根据元素异常以及重矿物异常圈定不同级别的远景区,进一步包括:
采用平均值+2×方差的方式循环剔除特异值至数据集满足要求,当沉积物中发现硫化物颗粒数>25,或Cu、Zn元素异常的强度大于测区平均值+2×方差时,以500-1000m为半径圈定为I级异常区;当沉积物中发现硫化物的颗粒数>10,或Cu、Zn元素异常的强度大于测区平均值+方差时,以1500-2000m为半径圈定为II级异常区;当沉积物中发现硫化物的颗粒数>1,或沉积物中Cu、Zn元素异常的强度大于平均值+0.5×方差,以5000m为半径圈定为III级异常区。
步骤2.2:基于上一步的找矿标志以及扩散范围,以封闭曲线圈定远景区,单一找矿标志即圈定为远景区,远景区包含所有找矿标志,多种类型找矿标志异常分布在相近区域(位置有重叠但是位置又不完全重叠)时,将各种异常范围均圈定在远景区内;
所述步骤3的具体步骤如下:
步骤3.1:根据找矿标志类型与远景区内的找矿标志级别,以资源潜力从高到底,依次划定远景区的级别为I级、II级与III级,低级别远景区内可嵌套高级别远景区,高级别的远景区内不可嵌套低级别的远景区;
根据找矿标志圈定远景区,进一步包括:
两个远景区之间距离不小于2km:若同一级别2个或2个以上远景区距离小于2km,则圈定为同一远景区;若不同级别2个或2个以上远景区距离小于2km,则划为嵌套远景区;
步骤3.2:根据远景区的级别,圈定勘探保留区;根据找矿标志级别划定远景区的级别,进一步包括:
将成矿标志分为三类,间接信息:(1)羽状流信息;成矿因素信息:(2)地球物理信息、(3)地球化学信息与(4)生物信息;以及直接信息:(5)围岩蚀变信息与(6)矿化露头信息;将远景区内存在直接信息的区域,划定为I级远景区;将远景区内存在间接信息的区域,划定为II级远景区;将远景区内存在成矿因素信息的,划定为III级远景区。将A1区域划定为III级远景区;将A2区域划定为II级远景区;将A3区域划定为I级远景区。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
Claims (5)
- 一种深海多金属硫化物资源的勘探保留区圈定方法,其特征在于,包括如下步骤:步骤1:找矿标志提取与定级阶段;包括提取深海硫化物资源找矿标志,指定标志的特征,划定标志的级别;具体步骤如下:步骤1.1:提取深海多金属硫化物资源的找矿信息,主要包括(1)羽状流信息、(2)地球物理信息、(3)地球化学信息、(4)生物信息、(5)围岩蚀变信息与(6)矿化露头信息;具体过程如下:指定找矿标志的特征,(1)羽状流信息的特征:以周围100米范围内的海水要素为背景值,具备高温度-盐度、高浊度、低氧化还原电位、高甲烷、高溶解态Mn 2+和Fe 2+、高He同位素及 3He/ 4He比率;(2)地球物理信息的特征:相对于距离海底200米范围内的背景值,具有弱磁性、高极化、低电阻、高密度;(3)地球化学信息的特征:Cu-Zn-Fe-Mn组合元素异常、MSI(Al/(Al+Fe+Mn))异常,Cu/Fe异常等;(4)生物信息的特征:典型的热液区生物,包括海葵、铠甲虾、茗荷以及贻贝;(5)围岩蚀变信息的特征:硅化、绿泥石化、绿帘石化、沸石化、伊丁石化、蛇纹石化、碳酸盐化;(6)矿化露头信息的特征:多金属硫化物烟囱体、多金属沉积物;步骤1.2:根据找矿信息的可信程度,指定找矿标志的级别,找矿标志级别由低至高依次为:(1)羽状流信息、(2)地球物理信息、(3)地球化学信息、(4)生物信息、(5)围岩蚀变信息与(6)矿化露头信息。步骤2:成矿远景区评价阶段;包括各种找矿标志所指示的控制范围划定,以及基于找矿标志圈定远景区;具体步骤如下:步骤2.1:基于找矿标志,圈定异常区的范围。具体为:(1)羽状流信息,先根据地形数据将水体异常发现处附近高于水体异常的地形区域排除,再根据局地流场分布特征对羽状流信息进行溯源,进而圈定水体异常区的范围;(3)地球化学信息,根据沉积物中发现硫化物颗粒数、重矿物异常以及Cu、Zn、Fe与Pb元素异常的强度圈定不同级别的异常区;(4)生物信息,海葵、铠甲虾、茗荷与贻贝或其遗骸富集区域,从区域边缘外推距离100m作为异常区;(5)围岩蚀变信息,灰褐色、褐色、黄色、红色颜色变化的岩石或沉积物,外推距离2000m作为异常区;(6)矿化露头信息,呈丘状、烟囱状、层状、角砾状的褐色、红褐色硫化物为硫化物区的直接证据,外推距离800m作为异常区;热液产物蛋白石、烟囱体等分布区域,丘状、烟囱状外推距离500m作为异常区,层状等产状外推距离2000m作为异常区;步骤2.2:基于上一步的找矿信息以及异常区圈定范围,以封闭曲线圈定远景区,单一找矿标志即可圈定为远景区。当远景区包含所有找矿标志,多种类型找矿标志位置有重叠但是 位置又不完全重叠时,将各种异常范围均圈定在远景区内。步骤3:勘探保留区圈定阶段;包括对找矿信息进行评价分类,划定远景区的级别,依次把较高级别的远景区作为勘探保留区;具体步骤如下:步骤3.1:根据找矿信息类型与远景区内的找矿信息级别,以资源潜力从高到底,依次划定远景区的级别为I级、II级与III级,低级别远景区内可包含高级别远景区,高级别的远景区内不可包含低级别的远景区;步骤3.2:根据远景区的级别,圈定勘探保留区。
- 根据权利要求1所述的一种深海多金属硫化物资源的勘探保留区圈定方法,其特征在于,所述步骤2.1中,基于羽状流确定远景区范围的方法,进一步包括:羽状流信息的地理位置与热液源之间的距离D应满足D≤海水底层流速×异常信号在海水中的耗散时间;热液源位于低于羽状流信息发现地水深的区域。
- 根据权利要求1所述的一种深海多金属硫化物资源的勘探保留区圈定方法,其特征在于,所述步骤2.1中,根据元素异常以及重矿物异常圈定不同级别的异常区,进一步包括:采用平均值+2×方差的方式循环剔除特异值至数据集满足要求,当沉积物中发现硫化物颗粒数>25,或Cu、Zn元素异常的强度大于测区平均值+2×方差时,以500-1000m为半径圈定为I级异常区;当沉积物中发现硫化物的颗粒数>10,或Cu、Zn元素异常的强度大于测区平均值+方差时,以1500-2000m为半径圈定为II级异常区;当沉积物中发现硫化物的颗粒数>1,或沉积物中Cu、Zn元素异常的强度大于平均值+0.5×方差,以5000m为半径圈定为III级异常区。
- 根据权利要求1所述的一种深海多金属硫化物资源的勘探保留区圈定方法,其特征在于,所述步骤3.1中,根据找矿标志圈定远景区,进一步包括:两个远景区之间距离不小于2km:若同一级别2个或2个以上远景区距离小于2km,则圈定为同一远景区;若不同级别2个或2个以上远景区距离小于2km,则划为嵌套远景区。
- 根据权利要求1所述的一种深海多金属硫化物资源的勘探保留区圈定方法,其特征在于,所述步骤3.2中,根据找矿标志级别划定远景区的级别,进一步包括:将成矿标志分为三类,间接信息:(1)羽状流信息;成矿因素信息:(2)地球物理信息、(3)地球化学信息与(4)生物信息;以及直接信息:(5)围岩蚀变信息与(6)矿化露头信息;将远景区内存在直接信息的区域,划定为I级远景区;将远景区内存在间接信息的区域,划定为II级远景区;将远景区内存在成矿因素信息的,划定为III级远景区。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/302,774 US20230258841A1 (en) | 2020-10-29 | 2023-04-18 | Method for delineating exploration reserved areas of deep-sea polymetallic sulfide resources |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011187687.6A CN112379461B (zh) | 2020-10-29 | 2020-10-29 | 一种深海多金属硫化物资源的勘探保留区圈定方法 |
CN202011187687.6 | 2020-10-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/302,774 Continuation US20230258841A1 (en) | 2020-10-29 | 2023-04-18 | Method for delineating exploration reserved areas of deep-sea polymetallic sulfide resources |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022088923A1 true WO2022088923A1 (zh) | 2022-05-05 |
Family
ID=74577576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/115525 WO2022088923A1 (zh) | 2020-10-29 | 2021-08-31 | 一种深海多金属硫化物资源的勘探保留区圈定方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230258841A1 (zh) |
CN (1) | CN112379461B (zh) |
WO (1) | WO2022088923A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116520452A (zh) * | 2023-03-22 | 2023-08-01 | 中国地质科学院矿产资源研究所 | 一种密西西比型铅锌矿床找矿预测方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112379461B (zh) * | 2020-10-29 | 2023-06-27 | 自然资源部第二海洋研究所 | 一种深海多金属硫化物资源的勘探保留区圈定方法 |
CN113420254B (zh) * | 2021-06-07 | 2022-12-20 | 核工业北京地质研究院 | 一种基于多因子指标贡献率的铀矿靶区评级方法 |
CN117871822B (zh) * | 2024-01-10 | 2024-09-24 | 青岛海洋地质研究所 | 原位量化区分深海热液硫化物与围岩的钻测解析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110012501A (ko) * | 2009-07-30 | 2011-02-09 | 한국생산기술연구원 | 해양 광물자원 위치 확인 방법 및 시스템 |
CN103605168A (zh) * | 2013-10-12 | 2014-02-26 | 国家海洋局第二海洋研究所 | 一种海底多金属硫化物综合信息快速找矿方法 |
CN108614087A (zh) * | 2016-12-13 | 2018-10-02 | 核工业北京地质研究院 | 一种砂岩型铀矿勘查中的成矿远景区圈定方法 |
CN109188556A (zh) * | 2018-08-28 | 2019-01-11 | 国家海洋局第二海洋研究所 | 一种基于地形分析的海底硫化物找矿方法 |
CN112379461A (zh) * | 2020-10-29 | 2021-02-19 | 自然资源部第二海洋研究所 | 一种深海多金属硫化物资源的勘探保留区圈定方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2215309C1 (ru) * | 2002-09-05 | 2003-10-27 | Фролов Игорь Юрьевич | Способ прогнозирования перспективности площадей на нефть и газ |
CN103886383A (zh) * | 2012-12-20 | 2014-06-25 | 核工业北京地质研究院 | 基于元素地球化学异常的花岗岩型铀矿靶区优选方法 |
JP2018059888A (ja) * | 2016-09-29 | 2018-04-12 | Jx金属探開株式会社 | 金属鉱床の探鉱方法、資源開発方法、採鉱方法、二次硫化銅の産出方法、資源産出方法、鉱山開発方法およびボーリング方法 |
RU2651353C1 (ru) * | 2017-05-17 | 2018-04-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) | Геохимический способ поиска месторождений полезных ископаемых |
CN107608006B (zh) * | 2017-08-08 | 2019-08-20 | 国家海洋局第二海洋研究所 | 一种海底热液硫化物资源评价方法 |
CN108287373A (zh) * | 2017-12-28 | 2018-07-17 | 核工业北京地质研究院 | 一种基于成矿有利度的砂岩型铀矿靶区选择方法 |
CN108535791B (zh) * | 2018-03-12 | 2020-12-08 | 有色金属矿产地质调查中心 | 一种用于检查评价干旱荒漠景观区铜铅锌异常的新方法 |
US10077656B1 (en) * | 2018-05-07 | 2018-09-18 | Qingdao Institute Of Marine Geology | In-situ cultivation system of deep-sea hydrothermal metallic sulfide deposits |
-
2020
- 2020-10-29 CN CN202011187687.6A patent/CN112379461B/zh active Active
-
2021
- 2021-08-31 WO PCT/CN2021/115525 patent/WO2022088923A1/zh active Application Filing
-
2023
- 2023-04-18 US US18/302,774 patent/US20230258841A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110012501A (ko) * | 2009-07-30 | 2011-02-09 | 한국생산기술연구원 | 해양 광물자원 위치 확인 방법 및 시스템 |
CN103605168A (zh) * | 2013-10-12 | 2014-02-26 | 国家海洋局第二海洋研究所 | 一种海底多金属硫化物综合信息快速找矿方法 |
CN108614087A (zh) * | 2016-12-13 | 2018-10-02 | 核工业北京地质研究院 | 一种砂岩型铀矿勘查中的成矿远景区圈定方法 |
CN109188556A (zh) * | 2018-08-28 | 2019-01-11 | 国家海洋局第二海洋研究所 | 一种基于地形分析的海底硫化物找矿方法 |
CN112379461A (zh) * | 2020-10-29 | 2021-02-19 | 自然资源部第二海洋研究所 | 一种深海多金属硫化物资源的勘探保留区圈定方法 |
Non-Patent Citations (1)
Title |
---|
CHEN SHENG;TAO CHUNHUI;ZHOU JIANPING;ZHANG GUOYIN;QIN HUAWEI;WANG YUAN;CHEN DONG: "The Distribution Characteristics of Hydrothermal Plume in Mid-Ocean Ridge and Its Indicative Role in Polymetallic Sulfide Prospecting", ACTA OCEANOLOGIA SINICA, vol. 41, no. 8, 9 August 2019 (2019-08-09), pages 1 - 12, XP055925100, ISSN: 0253-4193, DOI: 10.3969/j.issn.0253−4193.2019.08.001 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116520452A (zh) * | 2023-03-22 | 2023-08-01 | 中国地质科学院矿产资源研究所 | 一种密西西比型铅锌矿床找矿预测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112379461A (zh) | 2021-02-19 |
US20230258841A1 (en) | 2023-08-17 |
CN112379461B (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022088923A1 (zh) | 一种深海多金属硫化物资源的勘探保留区圈定方法 | |
Rohrman | Prospectivity of volcanic basins: Trap delineation and acreage de-risking | |
Dymond et al. | Plume dispersed hydrothermal particles: A time-series record of settling flux from the Endeavour Ridge using moored sensors | |
Gurvich | Metalliferous sediments of the world ocean: fundamental theory of deep-sea hydrothermal sedimentation | |
Vilas et al. | Sediment distribution pattern in the Rias Baixas (NW Spain): main facies and hydrodynamic dependence | |
Petrovic et al. | Integrated hyperspectral remote sensing, geochemical and isotopic studies for understanding hydrocarbon-induced rock alterations | |
Ellwood et al. | Gulf of Mexico sediment sources and sediment transport trends from magnetic susceptibility measurements of surface samples | |
Lavoie et al. | Methane-derived authigenic carbonates from active hydrocarbon seeps of the St. Lawrence Estuary, Canada | |
LeSchack et al. | High-resolution ground-magnetic (HRGM) and radiometric surveys for hydrocarbon exploration: Six case histories in Western Canada | |
Rollet et al. | Seafloor features and fluid migration in the Capel and Faust basins, offshore eastern Australia | |
Easthouse et al. | Paleobathymetry of a Silurian shelf system: application of proximality trends and trace-fossil distributions | |
Davies et al. | An irregular feather-edge and potential outcrop of marine gas hydrate along the Mauritanian margin | |
Yim et al. | Magnetic susceptibility study of Late Quaternary inner continental shelf sediments in the Hong Kong SAR, China | |
Kerr et al. | IRON: Geophysics and iron ore exploration: examples from the Jimblebar and Shay Gap-Yarrie regions, Western Australia | |
Robinson et al. | Genesis of the Blende carbonate-hosted Zn-Pb-Ag deposit, north-central Yukon Territory; geologic, fluid inclusion and isotopic constraints | |
Hoffmann et al. | Fresh submarine groundwater discharge offshore Wellington (New Zealand): hydroacoustic characteristics and its influence on seafloor geomorphology | |
Thyne et al. | Evidence for a paleoaquifer from early diagenetic siderite of the Cardium Formation, Alberta, Canada | |
Heggland | Hydrocarbon migration and accumulation above salt domes—Risking of prospects by the use of gas chimneys | |
Black et al. | The relation of dolomite associated with faults to the stratigraphy and structure of central Kentucky | |
st JOHN’s | Geological Association of Canada | |
Campos et al. | Shallow gas accumulations in the sediments of Todos os Santos bay (Bahia, Brazil): origin and distribution | |
Rusakov | Geochemical characteristics of hydrothermal plumes above the TAG and Broken Spur fields of the Mid-Atlantic Ridge | |
López-Pérez et al. | Palaeoenvironmental context and significance of ferruginous tubular bioforms and other authigenic mineral formations in source-to-sink sedimentary systems | |
Qiu et al. | Discovery and characterization of a new hydrothermal field at 2° N on the slow-spreading Carlsberg Ridge | |
Nwankwo et al. | Structural and depth to basment evaluation of parts of Brass and Olobiri, Bayelsa STATE, Nigeria, using airborne magnetic data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21884655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21884655 Country of ref document: EP Kind code of ref document: A1 |