WO2022088879A1 - 一种海底天然气水合物开采监测系统 - Google Patents

一种海底天然气水合物开采监测系统 Download PDF

Info

Publication number
WO2022088879A1
WO2022088879A1 PCT/CN2021/114230 CN2021114230W WO2022088879A1 WO 2022088879 A1 WO2022088879 A1 WO 2022088879A1 CN 2021114230 W CN2021114230 W CN 2021114230W WO 2022088879 A1 WO2022088879 A1 WO 2022088879A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
assembly
seabed
component
control
Prior art date
Application number
PCT/CN2021/114230
Other languages
English (en)
French (fr)
Inventor
荆铁亚
赵文韬
张健
王金意
刘练波
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2022088879A1 publication Critical patent/WO2022088879A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/001Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/088Well testing, e.g. testing for reservoir productivity or formation parameters combined with sampling

Definitions

  • the application belongs to the technical field of submarine natural gas hydrate development, and in particular relates to a monitoring system for submarine natural gas hydrate development.
  • Natural gas hydrate is an ice-like solid compound with a cage-like structure formed by the combination of low molecular weight hydrocarbon gases such as methane, ethane, and propane with water under low temperature and high pressure conditions. It can be directly burned, commonly known as "flammable ice”.
  • natural gas hydrates are widely distributed in the sea area with a water depth of 300m to 3000m, and a small part is located in the permafrost zone. Most of them are methane hydrates. It is estimated that the natural gas contained in the global natural gas hydrate is about 3 ⁇ 1016m 3 ⁇ 3 ⁇ 1017m 3 , and its thermal equivalent is twice that of all the fossil fuels that have been proven so far, including coal, oil and natural gas, and can be used by humans. about 1000 years. Compared with conventional oil and gas resources, natural gas hydrate combustion produces less pollution and is a real clean energy source. One of the alternative energy sources.
  • the present application proposes a complete monitoring system for seabed natural gas hydrate production, namely an atmosphere-seawater-seabed-reservoir "four-in-one" environmental monitoring system.
  • a monitoring system for submarine natural gas hydrate exploitation comprising an atmospheric monitoring unit, a seawater monitoring unit, a seabed monitoring unit and a seabed reservoir monitoring unit arranged on an offshore platform assembly
  • the atmospheric monitoring unit includes a methane sensor component and an atmospheric monitoring data acquisition component, and the atmospheric monitoring unit is used to monitor the concentration of methane in the atmosphere above the sea surface near the ocean platform
  • the seawater monitoring unit includes a seawater methane in-situ sensor component and Seawater monitoring and control assembly, the seawater monitoring unit is used to monitor the concentration of methane in seawater
  • the seabed monitoring unit includes a seabed monitoring and control assembly, and the seabed monitoring unit is used for monitoring seabed deformation
  • the layer monitoring unit includes a drilling assembly and a subsea reservoir monitoring control assembly for monitoring temperature, pressure and deformation in the reservoir.
  • the methane sensor assembly in the atmospheric monitoring unit is installed on the marine platform assembly 11 through a mounting bracket assembly, and the methane sensor assembly is connected to the atmospheric monitoring data acquisition assembly disposed in the marine platform assembly 11 through the first cable assembly. connect.
  • seawater methane in-situ sensor assembly in the seawater monitoring unit is connected through the second cable assembly and the seawater monitoring and control assembly, and the seawater monitoring and control assembly is arranged on the marine platform assembly.
  • the seabed monitoring and control assembly includes an acoustic deep towing control unit, a side scan sonar control unit, a pressure monitoring and control unit, and a three-component acceleration monitoring and control unit, and the seabed monitoring and control assembly is arranged on the ocean platform assembly. superior.
  • the acoustic deep towing system assembly is connected with the acoustic deep towing control component through a third cable assembly, and the acoustic deep towing system assembly is used to monitor the topography of the seabed;
  • the side scan sonar system assembly is connected through a fourth cable assembly. is connected with the side scan sonar control component, the side scan sonar system component is used for monitoring the seabed landform;
  • the pressure sensor component is connected with the pressure monitoring control component through the fifth cable component, and the pressure sensor component is used for monitoring the seabed
  • the three-component acceleration sensor assembly is connected to the three-component acceleration monitoring and control component through the sixth cable assembly, and the three-component acceleration sensor assembly is used for monitoring seabed subsidence.
  • the subsea reservoir monitoring and control component includes a pressure monitoring and control component, a temperature monitoring and control component, a flowing potential monitoring and control component, and a sampling control component, and the subsea reservoir monitoring and control component is provided on the ocean platform component.
  • the pressure sensor assembly is connected with the pressure monitoring control part through the seventh cable assembly; the temperature sensor assembly is connected with the temperature monitoring control part through the eighth cable assembly; the flowing potential assembly is connected with the flowing potential through the ninth cable assembly.
  • the monitoring control part is connected; the sampling assembly is connected with the sampling control part through the stainless steel pipe assembly.
  • the offshore platform component is a marine vessel or an offshore drilling platform.
  • the present application at least has the following beneficial effects:
  • the monitoring system provided by this application is a complete monitoring system, and the monitoring system takes into account various available monitoring technologies and means, so as to be applicable to the mining monitoring of submarine natural gas hydrates under various environmental, geological and economic conditions;
  • the monitoring system provided by this application has a clear structure and comprehensive functions, can realize all-round monitoring of submarine natural gas hydrate extraction, and provides a guarantee for reducing the environmental risk of submarine natural gas hydrate extraction so as to realize safe extraction, and has good application prospects and commercial value.
  • the monitoring system considers various monitoring technologies and means that can be used for monitoring the exploitation of seabed natural gas hydrate, so as to be suitable for the exploitation of marine natural gas hydrate under various environmental, geological and economic conditions.
  • the monitoring system provided by this application can appropriately select some of the technical combinations according to the actual situation of the specific project to form the optimal monitoring technical solution for the specific project.
  • Figure 1 is a schematic diagram of the structure of a monitoring system for submarine natural gas hydrate exploitation
  • 21 methane sensor assembly
  • 22 installation bracket assembly
  • 23 first cable assembly
  • 24 atmospheric monitoring data acquisition assembly.
  • 31 water methane in-situ sensor assembly
  • 32 second cable assembly
  • 33 water monitoring and control assembly.
  • 41 surface monitoring control assembly
  • 411 acoustic deep towing system assembly
  • 412 third cable assembly
  • 413 acoustic deep towing control component
  • 421 side scan sonar system assembly
  • 422 fourth cable assembly
  • 423 side Scanning sonar control part
  • 431 pressure sensor assembly
  • 432-fifth cable assembly 433-pressure monitoring control part
  • 441-three-component acceleration sensor assembly 442-sixth cable assembly; 443-three-component acceleration monitoring control part.
  • 51 distal assembly
  • 52 subsea reservoir monitoring and control assembly
  • 511 pressure sensor assembly
  • 512 suction sensor assembly
  • 513 temperature monitoring and control part
  • 521 temperature sensor assembly
  • 522 epiighth cable assembly
  • 532 node cable assembly
  • 533 stampling control part
  • 541 stampling assembly
  • 542 stainless steel pipe assembly
  • 543 flow potential monitoring and control part.
  • a monitoring system for submarine natural gas hydrate exploitation includes an offshore platform assembly 11, an atmospheric monitoring unit, a seawater monitoring unit, a seabed monitoring unit and a seabed reservoir monitoring unit.
  • the methane sensor assembly 21 in the atmospheric monitoring unit is installed on the marine platform assembly 11 through the mounting bracket assembly 22, and is connected to the atmospheric monitoring data acquisition assembly 24 disposed in the marine platform assembly 11 through the first cable assembly 23, for monitoring the ocean
  • the seawater methane in-situ sensor assembly 31 in the seawater monitoring unit is connected to the seawater monitoring control assembly 33 through the second cable assembly 32 for monitoring the concentration of methane in seawater;
  • the acoustic deep towing system assembly 411 in the seabed monitoring unit is connected with the acoustic deep towing control component 413 in the seabed monitoring control assembly 41 through the third cable assembly 412 , and the side scan sonar system assembly 421 is connected with the seabed through the fourth cable assembly 422
  • the side scan sonar control part 423 in the bed monitoring control assembly 41 is connected, the pressure sensor assembly 431 is connected with the pressure monitoring control part 433 in the seabed monitoring control assembly 41 through the fifth cable assembly 432, and the three-component acceleration sensor assembly 441 is connected through the fifth cable assembly 432.
  • the six cable assemblies 442 are connected to the three-component acceleration monitoring and control component 443 in the seabed monitoring and control assembly 41 for monitoring seabed deformation and for monitoring temperature, pressure and deformation in the reservoir;
  • the subsea reservoir monitoring unit includes a drilling assembly 51 and a subsea reservoir monitoring control assembly 52 for monitoring temperature, pressure and deformation in the reservoir.
  • a pressure sensor assembly 511, a temperature sensor assembly 521, a flow potential assembly 531 and a sampling assembly 541 are provided in the drilling assembly 51, and the subsea reservoir monitoring and control assembly 52 is disposed on the offshore platform assembly 11, wherein the pressure sensor assembly 511 passes through the seventh
  • the cable assembly 512 is connected with the pressure monitoring and control part 523 in the subsea reservoir monitoring and control assembly 52; 531 is connected with the flow potential monitoring and control part 543 in the subsea reservoir monitoring and control assembly 52 through the ninth cable assembly 532;
  • the sampling assembly 541 is connected with the subsea reservoir through the drilling assembly 51 and the stainless steel pipe assembly 542 and the sampling assembly 541 through the stainless steel pipe assembly 542 533 of 52 in the monitoring control assembly is connected to the sampling control unit.
  • each monitoring unit in this application uses each monitoring unit in this application to carry out corresponding monitoring respectively.
  • this application overcomes the above-mentioned deficiencies of the existing monitoring of the development environment of seabed natural gas hydrate, and proposes a complete monitoring system for the development of seabed natural gas hydrate.
  • the monitoring system considers various available monitoring systems.
  • the technology and means are suitable for the exploitation and monitoring of seabed natural gas hydrate under various environmental, geological and economic conditions.
  • the system has a clear structure and comprehensive functions, which can realize all-round monitoring of submarine natural gas hydrate extraction, provide a guarantee for reducing the environmental risk of submarine natural gas hydrate extraction and realize safe extraction, and has good application prospects and commercial value.
  • the monitoring plan needs to realize real-time, diversified and whole-process monitoring of possible methane leakage in the process of natural gas hydrate extraction, the release of low-temperature hypoxia and low-salt water in the offshore sea caused by the decomposition of natural gas hydrate, seabed deformation, and reservoir stability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种海底天然气水合物开采监测系统,包括设置在海洋平台组件(11)上的大气监测单元、海水监测单元、海床监测单元和海底储层监测单元。

Description

一种海底天然气水合物开采监测系统 技术领域
本申请属于海底天然气水合物开发技术领域,具体涉及一种海底天然气水合物开采监测系统。
背景技术
天然气水合物是甲烷、乙烷、丙烷等低分子质量的烃类气体在低温高压条件下与水结合形成的一种笼状结构的冰样固态化合物,可直接燃烧,俗称“可燃冰”。
自然界中天然气水合物广泛分布于300m~3000m水深的海域,少部分位于永久冻土带,多以甲烷水合物为主90%,蕴藏量巨大。据测算,全球天然气水合物所含天然气约为3×1016m 3~3×1017m 3,其热当量相当于目前已探明的所有化石燃料包括煤、石油和天然气总和的2倍,可供人类使用约1000年。与常规油气资源相比,天然气水合物燃烧产生污染较少,是一种真正的清洁能源,有望在21世纪成为继页岩气、致密气、煤层气、油砂之后储量最大的、理想的可替代能源之一。
虽然天然气水合物的研究工作得到世界上很多国家的重视,但是开采技术难、开发成本高、环境隐患大等问题成为制约海底天然气水合物开采的瓶颈,特别是开采带来的环境安全问题。天然气水合物的开采会改变天然气水合物赖以赋存的温压条件,引起天然气水合物的分解。在天然气水合物的开采过程中如果不能有效地实现对温压条件的控制,就可能产生一系列环境安全问题,如温室效应的加剧、海洋生态的变化以及海底滑塌事件等。
针对上述海域天然气水合物开采过程中可能出现的环境风险,海域天然气水合物开采过程必须进行全面的监测。然而,目前在日本南海海槽Nankai Trough和中国南海神狐海域进行的4次海域水合物试采项目虽各自都进行了一定的监测设备布置,但均未全面地对海底天然气水 合物开发的上述四方面环境安全问题展开监测,更未形成一套完善的海底天然气水合物开发环境监测系统。
发明内容
为了解决现有技术中海底天然气水合物开发环境监测的不足,本申请提出一套完整的海底天然气水合物开采监测系统,即大气—海水—海底—储层“四位一体”环境监测系统。
为实现上述目的,本申请提供如下技术方案:一种海底天然气水合物开采的监测系统,包括设置在海洋平台组件上的大气监测单元、海水监测单元、海床监测单元和海底储层监测单元,其中,所述大气监测单元包括甲烷传感器组件和大气监测数据采集组件,所述大气监测单元用于监测海洋平台附近海面上方大气中甲烷的浓度;所述海水监测单元包括海水甲烷原位传感器组件和海水监测控制组件,所述海水监测单元用于监测海水中甲烷的浓度;所述海床监测单元包括海床监测控制组件,所述海床监测单元用途用于监测海床变形;所述海底储层监测单元包括钻井组件和海底储层监测控制组件,所述海底储层监测单元用于监测储层中的温度、压力和变形。
进一步的,所述大气监测单元中所述甲烷传感器组件通过安装支架组件安装在海洋平台组件11上,所述甲烷传感器组件通过第一电缆组件与设置在海洋平台组件11中的大气监测数据采集组件连接。
进一步的,所述海水监测单元中所述海水甲烷原位传感器组件通过所述第二电缆组件和所述海水监测控制组件连接,所述海水监测控制组件设置在所述海洋平台组件上。
进一步的,所述海床监测控制组件包括声学深拖控制部件、侧扫声纳控制部件、压力监测控制部件和三分量加速度监测控制部件,所述海床监测控制组件设置在所述海洋平台组件上。
进一步的,所述声学深拖系统组件通过第三电缆组件和声学深拖控制部件连接,所述声学深拖系统组件用于监测海底地形地貌;所述侧扫声纳系统组件通过第四电缆组件和侧扫声纳控 制部件连接,所述侧扫声纳系统组件用于监测海底地貌;所述压力传感器组件通过第五电缆组件和压力监测控制部件连接,所述压力传感器组件用于监测海床上的海水压力;所述三分量加速度传感器组件通过第六电缆组件和三分量加速度监测控制部件连接,所述三分量加速度传感器组件用于监测海床沉降。
进一步的,所述海底储层监测控制组件包括压力监测控制部件、温度监测控制部件、流动电位监测控制部件和取样控制部件,所述海底储层监测控制组件设置在所述海洋平台组件上。
进一步的,所述压力传感器组件通过第七电缆组件与压力监测控制部件连接;所述温度传感器组件通过第八电缆组件与温度监测控制部件连接;所述流动电位组件通过第九电缆组件与流动电位监测控制部件连接;所述取样组件通过不锈钢管组件与取样控制部件连接。
进一步的,所述海洋平台组件为海洋船或海洋钻井平台。
与现有技术相比,本申请至少具有以下有益效果:
本申请提供的监测系统作为一套完备的监测体系,该监测系统考虑了各种可用的监测技术和手段,以便适用于各种环境、地质、经济条件下海底天然气水合物的开采监测;
本申请提供的监测系统结构清晰、功能全面,能够实现海底天然气水合物开采的全方位监测,为降低海底天然气水合物开采的环境风险从而实现安全开采提供保障,具有良好的应用前景和商业价值。
本申请提供的监测系统考虑各种可用于海底天然气水合物开采监测的监测技术和手段,以便适用于各种环境、地质、经济条件下海域天然气水合物的开采。
本申请提供的监测系统可以根据具体项目的实际情况,适当选取其中一些技术组合,形成特定项目最优的监测技术方案。
附图说明
图1为一种海底天然气水合物开采监测系统结构示意图
附图中:11—海洋平台组件。
21—甲烷传感器组件;22—安装支架组件;23—第一电缆组件;24—大气监测数据采集组件。
31—海水甲烷原位传感器组件;32—第二电缆组件;33—海水监测控制组件。
41—海床监测控制组件,411—声学深拖系统组件;412—第三电缆组件;413—声学深拖控制部件;421—侧扫声纳系统组件;422—第四电缆组件;423—侧扫声纳控制部件;431—压力传感器组件;432—第五电缆组件;433—压力监测控制部件;441—三分量加速度传感器组件;442—第六电缆组件;443—三分量加速度监测控制部件。
51—钻井组件;52—海底储层监测控制组件;511—压力传感器组件;512—第七电缆组件;513—温度监测控制部件;521—温度传感器组件;522—第八电缆组件;523—压力监测控制部件;531—流动电位组件;532—第九电缆组件;533—取样控制部件;541—取样组件;542—不锈钢管组件;543—流动电位监测控制部件。
具体实施方式
下面结合附图和具体实施方式对本申请作进一步的说明。
一种海底天然气水合物开采的监测系统,它包括海洋平台组件11、大气监测单元、海水监测单元、海床监测单元和海底储层监测单元。
大气监测单元中的甲烷传感器组件21通过安装支架组件22安装在海洋平台组件11上,并通过第一电缆组件23与安置在海洋平台组件11中的大气监测数据采集组件24连接,用于监测海洋平台附近海面上方大气中甲烷的浓度;
海水监测单元中的海水甲烷原位传感器组件31通过第二电缆组件32和海水监测控制组件33连接,用于监测海水中甲烷的浓度;
海床监测单元中的声学深拖系统组件411通过第三电缆组件412和海床监测控制组件41中的声学深拖控制部件413连接,侧扫声纳系统组件421通过第四电缆组件422和海床监测控制组件41中的侧扫声纳控制部件423连接,压力传感器组件431通过第五电缆组件432和海床监测控制组件41中的压力监测控制部件433连接,三分量加速度传感器组件441通过第六电缆组件442和海床监测控制组件41中的三分量加速度监测控制部件443连接,用于监测海床变形,用于监测储层中的温度、压力和变形;
海底储层监测单元包括钻井组件51和海底储层监测控制组件52,用于监测储层中的温度、压力和变形。
优选的,钻井组件51中设置压力传感器组件511、温度传感器组件521、流动电位组件531和取样组件541,海底储层监测控制组件52设置在海洋平台组件11上,其中压力传感器组件511通过第七电缆组件512与海底储层监测控制组件52中的压力监测控制部件523连接,温度传感器组件521通过第八电缆组件522与海底储层监测控制组件52中的温度监测控制部件513连接,流动电位组件531通过第九电缆组件532与海底储层监测控制组件52中的流动电位监测控制部件543连接;取样组件541通过钻井组件51和不锈钢管组件542与取样组件541通过不锈钢管组件542与海底储层监测控制组件中52的533连接取样控制部件。
利用本申请进行海底天然气水合物开采监测的方法如下:
1、将本申请的各单元、组件、部件按照上述连接关系连接,集成完整的海底天然气水合物开发监测系统。
2、按照实际项目的监测方案设定的监测频率,利用本申请中的各监测单元分别开展相应的监测。
总之,本申请克服了现有海底天然气水合物开发环境监测的上述不足,提出一套完整的海底天然气水合物开采监测系统,作为一套完备的监测体系,该监测系统考虑了各种可用的监测 技术和手段,以便适用于各种环境、地质、经济条件下海底天然气水合物的开采监测。该系统结构清晰、功能全面,能够实现海底天然气水合物开采的全方位监测,为降低海底天然气水合物开采的环境风险从而实现安全开采提供保障,具有良好的应用前景和商业价值。
应用该监测系统,对于不同环境、地质、经济条件下海域天然气水合物的开采,可适当选取其中一些技术组合,形成特定项目最优的监测技术方案。监测方案需要对天然气水合物开采过程中可能的甲烷泄漏、天然气水合物分解导致的近海低温缺氧低盐水的释放、海床变形、储层稳定性等实现实时、多元化和全过程监测。

Claims (8)

  1. 一种海底天然气水合物开采的监测系统,其特征在于,包括设置在海洋平台组件(11)上的大气监测单元、海水监测单元、海床监测单元和海底储层监测单元,其中,所述大气监测单元包括甲烷传感器组件(21)和大气监测数据采集组件(24),所述大气监测单元用于监测海洋平台附近海面上方大气中甲烷的浓度;所述海水监测单元包括海水甲烷原位传感器组件(31)和海水监测控制组件(33),所述海水监测单元用于监测海水中甲烷的浓度;所述海床监测单元包括海床监测控制组件(41),所述海床监测单元用于监测海床变形;所述海底储层监测单元包括钻井组件(51)和海底储层监测控制组件(52),所述海底储层监测单元用于监测储层中的温度、压力和变形。
  2. 根据权利要求1所述的一种海底天然气水合物开采的监测系统,其特征在于,所述大气监测单元中所述甲烷传感器组件(21)通过安装支架组件(22)安装在海洋平台组件(11)上,所述甲烷传感器组件(21)通过第一电缆组件(23)与设置在海洋平台组件(11)中的大气监测数据采集组件(24)连接。
  3. 根据权利要求1所述的一种海底天然气水合物开采的监测系统,其特征在于,所述海水监测单元中所述海水甲烷原位传感器组件(31)通过所述第二电缆组件(32)和所述海水监测控制组件(33)连接,所述海水监测控制组件(33)设置在所述海洋平台组件(11)上。
  4. 根据权利要求1所述的一种海底天然气水合物开采的监测系统,其特征在于,所述海床监测控制组件(41)包括声学深拖控制部件(413)、侧扫声纳控制部件(423)、压力监测控制部件(433)和三分量加速度监测控制部件(443),所述海床监测控制组件(41)设置在所述海洋平台组件(11)上。
  5. 根据权利要求4所述的一种海底天然气水合物开采的监测系统,其特征在于,所述声学深拖系统组件(411)通过第三电缆组件(412)和声学深拖控制部件(413)连接,所述声学深拖系统组件用于监测海底地形地貌;所述侧扫声纳系统组件(421)通过第四电缆组件(422) 和侧扫声纳控制部件(423)连接,所述侧扫声纳系统组件用于监测海底地貌;所述压力传感器组件(431)通过第五电缆组件(432)和压力监测控制部件(433)连接,所述压力传感器组件用于监测海床上的海水压力;所述三分量加速度传感器组件(441)通过第六电缆组件(442)和三分量加速度监测控制部件(443)连接,所述三分量加速度传感器组件用于监测海床沉降。
  6. 根据权利要求1所述的一种海底天然气水合物开采的监测系统,其特征在于,所述海底储层监测控制组件(52)包括压力监测控制部件(523)、温度监测控制部件(513)、流动电位监测控制部件(543)和取样控制部件(533),所述海底储层监测控制组件(52)设置在所述海洋平台组件(11)上。
  7. 根据权利要求6所述的一种海底天然气水合物开采的监测系统,其特征在于,所述压力传感器组件(511)通过第七电缆组件(512)与压力监测控制部件(523)连接;所述温度传感器组件(521)通过第八电缆组件(522)与温度监测控制部件(513)连接;所述流动电位组件(531)通过第九电缆组件(532)与流动电位监测控制部件(543)连接;所述取样组件(541)通过不锈钢管组件(542)与取样控制部件(533)连接。
  8. 根据权利要求1所述的一种海底天然气水合物开采的监测系统,其特征在于,所述海洋平台组件(11)为海洋船或海洋钻井平台。
PCT/CN2021/114230 2020-10-29 2021-08-24 一种海底天然气水合物开采监测系统 WO2022088879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011187500.2 2020-10-29
CN202011187500.2A CN112302626A (zh) 2020-10-29 2020-10-29 一种海底天然气水合物开采监测系统

Publications (1)

Publication Number Publication Date
WO2022088879A1 true WO2022088879A1 (zh) 2022-05-05

Family

ID=74332432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114230 WO2022088879A1 (zh) 2020-10-29 2021-08-24 一种海底天然气水合物开采监测系统

Country Status (2)

Country Link
CN (1) CN112302626A (zh)
WO (1) WO2022088879A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112302626A (zh) * 2020-10-29 2021-02-02 中国华能集团有限公司 一种海底天然气水合物开采监测系统
CN117189040A (zh) * 2023-09-27 2023-12-08 西南石油大学 一种多气源多方法联合开采工艺智能调控与风险监控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106761724A (zh) * 2016-12-02 2017-05-31 中国海洋大学 海底天然气水合物分解原位井中电学监测方法及装置
CN107024244A (zh) * 2017-03-24 2017-08-08 青岛海洋地质研究所 海域水合物开采环境立体化监测系统
CN107608007A (zh) * 2017-08-29 2018-01-19 广州海洋地质调查局 一种海洋天然气水合物开发环境监测系统及方法
WO2018167186A1 (en) * 2017-03-14 2018-09-20 Wfs Technologies Limited Subsea structure monitoring system
CN110765686A (zh) * 2019-10-22 2020-02-07 中国人民解放军战略支援部队信息工程大学 利用有限波段海底地形进行船载声呐测深测线设计的方法
CN112302626A (zh) * 2020-10-29 2021-02-02 中国华能集团有限公司 一种海底天然气水合物开采监测系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547359B (zh) * 2015-12-15 2018-03-27 中国科学院力学研究所 一种土层响应监测系统
US10097906B2 (en) * 2016-05-31 2018-10-09 Korea Institute Of Geoscience And Mineral Resources Submarine gas-leakage monitoring system for long-term detection of gas and method of operating the same
CN107607081A (zh) * 2017-08-29 2018-01-19 广州海洋地质调查局 一种天然气水合物开发的海底变形监测仪器及其使用方法
CN107607153A (zh) * 2017-08-29 2018-01-19 广州海洋地质调查局 一种海域天然气水合物试采点监测系统及方法
CN107678055B (zh) * 2017-08-29 2018-08-28 广州海洋地质调查局 一种海域天然气水合物海底甲烷监测系统及方法
CN108643869B (zh) * 2018-04-24 2020-08-04 西南石油大学 一种海底浅层天然气水合物固态流化绿色开采装置及方法
CN109488258B (zh) * 2018-12-06 2019-08-06 青岛海洋地质研究所 海底浅表层水合物开采装置及其开采方法
CN111780710B (zh) * 2020-07-21 2021-04-16 中国海洋大学 一种海床表层变形滑动长期观测装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106761724A (zh) * 2016-12-02 2017-05-31 中国海洋大学 海底天然气水合物分解原位井中电学监测方法及装置
WO2018167186A1 (en) * 2017-03-14 2018-09-20 Wfs Technologies Limited Subsea structure monitoring system
CN107024244A (zh) * 2017-03-24 2017-08-08 青岛海洋地质研究所 海域水合物开采环境立体化监测系统
CN107608007A (zh) * 2017-08-29 2018-01-19 广州海洋地质调查局 一种海洋天然气水合物开发环境监测系统及方法
CN110765686A (zh) * 2019-10-22 2020-02-07 中国人民解放军战略支援部队信息工程大学 利用有限波段海底地形进行船载声呐测深测线设计的方法
CN112302626A (zh) * 2020-10-29 2021-02-02 中国华能集团有限公司 一种海底天然气水合物开采监测系统

Also Published As

Publication number Publication date
CN112302626A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2022088879A1 (zh) 一种海底天然气水合物开采监测系统
MacDonald The future of methane as an energy resource
CN103628880B (zh) 深海海底浅层非成岩地层天然气水合物的绿色开采系统
CN102704894B (zh) 原位开采海底天然气水合物的装置及其方法
CN102817596A (zh) 海洋可燃冰开采装置和开采方法
KR20000057521A (ko) 수화물로부터 가스의 회수 방법
Shah Chemical energy from natural and synthetic gas
Sawada et al. Tomakomai CCS demonstration project of Japan, CO2 injection in progress
CN103397871A (zh) 一种基于干式采油树的超深水油气开发系统及其安装方法
WO2022088880A1 (zh) 一种陆域天然气水合物开采监测系统
JP2023113874A (ja) 海洋カーボンサイクルを使用する、浮動海洋カーボンニュートラル発電システム
Moretti et al. Natural hydrogen: a geological curiosity or the primary energy source for a low-carbon future
CN107215435A (zh) 一种适用于深水的海上核电平台
Tanase et al. Progress of CO2 injection and monitoring of the Tomakomai CCS Demonstration Project
Wei et al. A state-of-the-art review and prospect of gas hydrate reservoir drilling techniques
Ning et al. Recent development in the decarbonization of marine and offshore engineering systems
Xu et al. Innovation conceptual design on carbon neutrality deepwater drilling platform
CN1065943C (zh) 边钻井边测试边进行早期试生产的方法及设备
CN213807640U (zh) 用于深水天然气水合物开采的负压桶
RU2529683C1 (ru) Способ разработки углеводородных месторождений арктического шельфа и технические решения для реализации способа
CN220645918U (zh) 一种深水水下脱碳的s波形管道系统
Chen Going deeper: China's offshore oil and gas industry
Furuholt et al. With Poseidon Technology Towards Year 2000
Senani et al. CO2 Sequestration beneath the Caspian Sea, Potential and Assessment
Chen et al. Prospects of Special Ocean Engineering Equipment Application in Chinese Marine NGH Trial Production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884611

Country of ref document: EP

Kind code of ref document: A1