WO2022088698A1 - 磁悬浮马达和磁悬浮血泵 - Google Patents

磁悬浮马达和磁悬浮血泵 Download PDF

Info

Publication number
WO2022088698A1
WO2022088698A1 PCT/CN2021/101230 CN2021101230W WO2022088698A1 WO 2022088698 A1 WO2022088698 A1 WO 2022088698A1 CN 2021101230 W CN2021101230 W CN 2021101230W WO 2022088698 A1 WO2022088698 A1 WO 2022088698A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
magnetic levitation
levitation motor
magnet
Prior art date
Application number
PCT/CN2021/101230
Other languages
English (en)
French (fr)
Inventor
洛根托马斯•乔治
克利夫顿彼得•科尔顿•詹姆斯
徐嘉颢
Original Assignee
苏州心擎医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75042734&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022088698(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 苏州心擎医疗技术有限公司 filed Critical 苏州心擎医疗技术有限公司
Priority to EP21884439.7A priority Critical patent/EP4223356A4/en
Priority to US18/034,518 priority patent/US20230390546A1/en
Publication of WO2022088698A1 publication Critical patent/WO2022088698A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • A61M60/822Magnetic bearings specially adapted for being actively controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2316/00Apparatus in health or amusement
    • F16C2316/10Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances
    • F16C2316/18Pumps for pumping blood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0417Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit

Definitions

  • the present disclosure relates generally to the field of medical devices. More particularly, the present disclosure relates to a magnetic levitation motor and a magnetic levitation blood pump including the same.
  • Heart failure is a prevalent and life-threatening disease with a one-year mortality rate of approximately 75% once it progresses to an advanced stage.
  • ventricular assist device VAD
  • VAD ventricular assist device
  • adverse events caused by current technology still limit the use of these devices for the treatment of critically ill patients.
  • adverse events related to blood damage eg, hemolysis, neurological events, stroke, and in-pump thrombosis
  • RBPs rotary blood pumps
  • Hydrodynamic bearings eliminate direct mechanical contact between rotor and stator by using blood as a lubricant to create a thin blood film (usually a secondary flow gap).
  • the levitation force is directly related to the blood film geometry between the rotating part and the stationary part, as well as the rotational speed, and changes dynamically with the working conditions of the pump. Due to the close relationship between blood film geometry and levitation forces, there are severe constraints on hydrodynamic bearing design.
  • active magnetic bearings can keep the secondary flow gap constant, breaking the correlation between the blood film geometry and the levitation force.
  • This provides blood pump designers with greater freedom to optimize the flow field within the pump chamber and the flow-related blood compatibility, which is known to be a function of shear stress, exposure time (blood time period of exposure to shear stress), and elution in the secondary flow path. Therefore, since 2015, the magnetic levitation rotary blood pump has gradually attracted attention, because the latest magnetic levitation blood pump design significantly reduces the size of the blood pump to be implanted in the thoracic cavity, and has the superior performance of zero thrombosis rate in the pump .
  • the key performance indicators of a magnetic bearing are the number of actively controlled degrees of freedom (DoF) and the support stiffness in each DOF.
  • DoF actively controlled degrees of freedom
  • the degrees of freedom In order to obtain strong stiffness in each degree of freedom, it is naturally necessary to actively control the degrees of freedom by means of electromagnetic coils. This requires placing a pair or set of winding coils along the degrees of freedom (directions), complicating the design of the secondary flow path and thus limiting the mechanical structure for blood flow (eg, the secondary flow path) Space.
  • a magnetic levitation motor in a first aspect of the present disclosure, includes a stator assembly and a rotor assembly located above the stator assembly along a vertical center axis of the magnetic levitation motor, with an axial gap adjustable in distance between the stator assembly and the rotor assembly.
  • the stator assembly includes a stator base, a plurality of stator teeth distributed along a circumference of the stator base and extending upwardly from an upper surface of the stator base toward the gap, and a plurality of stator teeth disposed around the plurality of stator teeth.
  • the stator thrust body in the inner cavity of the stator tooth is wound with a stator coil as an actuator.
  • the rotor assembly includes a rotor ring in the form of a ring, rotor drive magnets disposed on a lower surface of the rotor ring, and rotor thrust magnets disposed in an interior cavity of the rotor ring.
  • the stator thrust body and the rotor thrust magnet are configured to generate axial magnetic lines of force and to generate axial repulsion between the stator thrust body and the rotor thrust magnet.
  • the rotor drive magnet includes a plurality of sections, each section being magnetized in an axial direction and adjacent sections having opposite magnetization directions, such that the rotor drive magnet has an alternating plurality of poles.
  • each part of the rotor driving magnet has a circular arc shape, so that each part can be disposed on the lower surface of the rotor ring member following the shape of the rotor ring member.
  • the ends of the plurality of parts abut each other, so that the rotor drive magnet formed by the plurality of parts has a closed annular shape.
  • the ends of the plurality of parts are spaced apart from each other such that there is a space between the parts.
  • each of the sections includes one or more segments of magnets.
  • the rotor drive magnet includes four sections, and the stator assembly includes eight stator teeth.
  • the plurality of stator teeth are configured to extend substantially vertically upward from the upper surface of the stator base toward the gap.
  • the plurality of stator teeth are configured to extend substantially helically upward from the upper surface of the stator base toward the gap.
  • the plurality of stator teeth are configured such that the spacing between adjacent stator teeth gradually becomes smaller as they spiral upward toward the gap.
  • both the rotor thrust magnet and the stator thrust body are configured as solid cylindrical magnets, and wherein the center of the rotor thrust magnet and the center of the stator thrust body are in an ideal state All coincide with the vertical central axis of the magnetic levitation motor.
  • the outer diameter of the rotor thrust magnet is larger than the outer diameter of the stator thrust body.
  • the rotor thrust magnet is configured as a circular ring-shaped magnet with an internal cavity and the stator thrust body is configured as a solid cylindrical magnet, and wherein the center of the rotor thrust magnet and all Ideally, the center of the stator thrust body coincides with the vertical center axis of the magnetic levitation motor.
  • the rotor thrust magnet has an inner diameter of a first size and an outer diameter of a second size
  • the outer diameter of the stator thrust body has a size between the first size and the second size of the rotor thrust magnet. between two sizes.
  • the stator base body is in the shape of a circular ring or a pie.
  • the stator thrust body is made of a permanent magnet material, or formed of an electromagnetic coil or an electromagnet.
  • the stator thrust body, the rotor thrust magnet and the rotor drive magnet are made of permanent magnet material.
  • the stator base is made of a magnetically permeable material for providing a magnetically permeable connection between the roots of the plurality of stator teeth.
  • the rotor ring is made of a magnetically permeable material for providing a magnetically permeable connection between various parts of the rotor drive magnet.
  • the stator thrust body is located above the stator coil, at a position close to the heads of the stator teeth.
  • the stator coils are configured to: generate a direct-axis component magnetic field aligned with the magnetic field of each portion of the rotor drive magnet for adjusting the axial position of the rotor assembly; and A quadrature axis component magnetic field that is misaligned with the magnetic field of each portion of the rotor drive magnet by half the length of the portion can be generated for driving the rotor assembly to rotate and to adjust the rotational speed of the rotor assembly.
  • each of the stator teeth is wound with the stator coil, each of the stator coils being located between the root and the head of the corresponding stator tooth and extending a portion of the length of the corresponding stator tooth.
  • stator coils are grouped and interconnected to form a plurality of independently controllable stator coil groups.
  • each of the stator coil sets is connected to an amplifier for flowing current into the stator coils of the stator coil sets.
  • each of the amplifiers is independently controllable to cause different magnitudes of current to flow into the stator coils in the stator coil set to which the amplifier is connected.
  • the magnetic levitation motor includes a controller configured to control a current input value to each of the amplifiers so that the current in each stator coil set conforms to that stator coil set The current set value, thereby controlling at least one of the axial movement, the tilting movement, and the rotational movement of the rotor assembly.
  • the controller adjusts the direct-axis component magnetic field by adjusting and controlling the current input value to the amplifier, thereby adjusting and controlling the axial force generated on the rotor assembly, In order to ensure that the axial gap between the rotor assembly and the stator assembly conforms to the set distance value.
  • the controller adjusts the quadrature-axis component magnetic field by adjusting and controlling the current input value to the amplifier, thereby adjusting and controlling the rotational torque generated on the rotor assembly to Make sure that the rotational speed of the rotor assembly complies with the set rotational speed value.
  • the controller adjusts and controls the current input values of the stator coils corresponding to the two opposing portions, thereby adjusting and controlling the tilting moment generated on the rotor assembly to ensure that all The inclination angle of the rotor assembly conforms to the set inclination angle value.
  • the magnetic levitation motor includes one or more sensors for measuring at least one of an axial position, an inclination angle, and an angular position of the rotor assembly relative to the stator assembly.
  • the controller is configured to receive measurements from the one or more sensors and to perform control by adjusting a current input value of the stator coil set based on the measurements.
  • the senor is an eddy current based sensor or a Hall effect sensor.
  • the size of the head portion of the stator teeth is larger than the size of the other parts of the stator teeth.
  • the heads of the stator teeth have chamfered or inclined surfaces, so that the heads of the stator teeth are wedge-shaped.
  • a magnetic levitation blood pump in a second aspect of the present disclosure, includes an impeller and a magnetic levitation motor according to the present disclosure, the magnetic levitation motor is used to drive the impeller.
  • FIG. 1 is a schematic perspective view of a magnetic levitation motor according to one embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the magnetic levitation motor shown in FIG. 1 .
  • FIG. 3 is an exploded view of the magnetic levitation motor shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of the rotor driving magnet of the magnetic levitation motor shown in FIG. 1 and its schematic magnetization characteristics.
  • FIG. 5 is a schematic perspective view showing a magnetic field line circuit of a magnetic field generated by a rotor thrust magnet and a stator thrust body.
  • Figures 6a and 6b are a schematic plan view and a perspective view, respectively, illustrating the magnetic field line loops of the magnetic field generated by the rotor driving magnets.
  • 7a and 7b are a schematic plan view and a perspective view, respectively, showing a magnetic field line loop of a d-axis component magnetic field generated by a stator coil.
  • 8a and 8b are a schematic plan view and a perspective view, respectively, showing a magnetic field line loop of a q-axis component magnetic field generated by a stator coil.
  • 9a to 9c respectively show schematic diagrams of axial control, tilt control, and radial control of the rotor of the magnetic levitation motor.
  • top For descriptive purposes, the terms “top”, “bottom”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “landscape”, “portrait” and their Derivatives all relate to the orientation in the figures of the present disclosure. It should be understood, however, that the present disclosure may employ various alternative modifications, unless expressly stated to the contrary. For example, when the device in the figures is turned over, features previously described as “below” other features may now be described as “above” the other features. The device may also be otherwise oriented (rotated 90 degrees or at other orientations) in which case the relative spatial relationships will be interpreted accordingly.
  • an element when an element is referred to as being “on”, “attached” to, “connected” to, “coupled” to, or “contacting” another element, etc.
  • the element may be directly on, attached to, connected to, coupled to, or in contact with another element, or intervening elements may be present.
  • an element is referred to as being “directly on” another element, “directly attached” to another element, “directly connected” to another element, “directly coupled” to another element or, or “directly connected” to another element.
  • directly contacting” another element there will be no intervening elements.
  • a feature is arranged “adjacent" to another feature, which can mean that one feature has a portion that overlaps an adjacent feature or a portion that is above or below an adjacent feature.
  • the present disclosure relates to a magnetic levitation motor.
  • a schematic structure of a magnetic levitation motor 10 according to an embodiment of the present disclosure is shown.
  • the magnetic levitation motor 10 may include a stator assembly 11 and a rotor assembly 12 positioned above the stator assembly 11 along a vertical central axis A-A of the magnetic levitation motor 10 .
  • the stator assembly 11 may include a stator base 111 and a plurality of stator teeth 112 distributed along the circumference of the stator base 111 and extending upwardly from the upper surface of the stator base 111 toward the gap 13 .
  • the stator base body 111 may be in the shape of a circular ring or a circular cake, and is used for providing a magnetically permeable connection between the roots of the plurality of stator teeth 112 .
  • the plurality of stator teeth 112 may have substantially the same height such that the heads of the plurality of stator teeth 112 proximate the rotor assembly 12 lie substantially in the same plane.
  • the plurality of stator teeth 112 may form a cylinder with an interior cavity.
  • the stator base 111 and the plurality of stator teeth 112 may be integrally formed. In another embodiment according to the present disclosure, the stator base 111 and the plurality of stator teeth 112 may be formed separately, and then the plurality of stator teeth may be bonded together in a suitable manner (eg, bonding, welding, mechanical connection, etc.). 112 is mounted on the stator base 111 .
  • the stator base 111 and the plurality of stator teeth 112 may be made of the same magnetically conductive material.
  • the stator teeth 112 are configured to extend substantially vertically upward from the upper surface of the stator base 111 toward the gap 13 .
  • the present disclosure is not limited thereto.
  • the stator teeth 112 may be configured to extend substantially helically upward from the upper surface of the stator base 111 toward the gap 13 . More specifically, the stator teeth 112 may extend helically upward along the same orientation on the circumferential surface of an imaginary cylinder from the upper surface of the stator base 111 toward the gap 13 (as shown in FIGS. 5, 6b, 7b, and 8b). Show).
  • stator teeth 112 may extend helically upward toward the gap 13 .
  • the helically extending stator teeth 112 may help to increase the cross-sectional area of the side of the stator assembly 11 facing the rotor assembly 12 , thereby helping to increase the magnetic flux through the axial gap 13 .
  • the size of the head portion of the stator tooth 112 may be larger than that of other parts of the stator tooth 112 , so that the head portion of the stator tooth 112 has a shape such as a hoe shape.
  • the size of the heads of the stator teeth 112 may be larger than the size of other parts of the stator teeth 112 , and the heads of the stator teeth 112 have chamfered or inclined surfaces, so that the heads of the stator teeth 112
  • the portion has a shape such as a wedge shape.
  • a stator coil 113 may be wound on the stator teeth 112 .
  • the stator coils 113 serve as actuators for driving the rotor assembly 11 for one or more of axial motion, tilt motion, rotational motion, and the like.
  • the stator coils 113 may be distributed over a plurality of stator teeth 112 to form a distributed winding.
  • each stator tooth 112 is wound with a stator coil 113 .
  • Each stator coil 113 may be located between the root and head of a corresponding stator tooth 112 and extend a portion of the length of the stator tooth 112 .
  • Each stator coil 113 may have two terminals.
  • the stator coils 113 on the plurality of stator teeth 112 can be grouped and interconnected to form a plurality of independently controllable stator coil groups.
  • Each stator coil set may be connected to an amplifier capable of causing current to flow into the stator coils in the stator coil set.
  • Each amplifier is independently controllable, enabling different magnitudes of current to flow into the stator coils of the stator coil set to which it is connected.
  • a stator thrust body 114 is provided in the inner cavity of the cylinder formed by the plurality of stator teeth 112 , preferably above the stator coil 113 and at a position close to the heads of the plurality of stator teeth 112 .
  • the stator thrust body 114 is configured to generate axial magnetic lines of force for generating axial repulsion to suspend the rotor assembly 12 above the stator assembly 11 .
  • the stator thrust body 114 is configured as a solid cylindrical magnet, the center of which coincides with the vertical central axis A-A of the magnetic levitation motor 10 in an ideal state, so that the stator thrust body 114 is in the magnetic levitation motor 10 . are arranged in a substantially rotationally symmetrical manner.
  • the stator thrust body 114 may be made of a permanent magnet material.
  • the stator thrust body 114 may be formed of an electromagnetic coil or an electromagnet.
  • the rotor assembly 12 may include a rotor ring 121 in the form of a ring having an inner cavity and rotor drive magnets 122 disposed on the lower surface of the rotor ring 121 .
  • the rotor driving magnet 122 is composed of a plurality of parts 123 , and each part 123 is arc-shaped, so that it can be disposed on the lower surface of the rotor ring 121 following the shape of the rotor ring 121 .
  • Each section 123 may be constructed of one or more segments of magnets.
  • Each portion 123 may be magnetized in the axial direction, and adjacent portions 123 may have opposite magnetization directions, so that the rotor drive magnet 122 constituted by the plurality of portions 123 has an alternating plurality of magnetic poles.
  • the upper surface of the first part is the N pole and the lower surface is the S pole
  • the upper surface of the second part adjacent to one end of the first part and the third part adjacent to the other end of the first part are the S pole and
  • the lower surface is the N pole.
  • Such a configuration allows the type of axial magnetic field measured around the ring of rotor assembly 12 to contain p pole components, where p corresponds to the number of sections 123 .
  • p may preferably be an even number, and p may preferably be greater than or equal to 4.
  • the multiple segments of magnets of each segment 123 may have the same magnetization direction, while adjacent segments 123 have opposite magnetization directions.
  • the rotor drive magnet 122 consists of four parts 123 .
  • the ends of the four parts 123 may abut each other so that the rotor drive magnet 122 constructed from the four parts 123 has a closed annular shape.
  • the rotor drive magnet 122 may be formed of other numbers of sections 123 , for example, may be formed of six, eight, or more sections 123 .
  • each portion 123 may be spaced apart from other portions 123 such that each portion 123 has a space therebetween (as shown in Figures 5, 6b, 7b and 8b).
  • Each portion 123 may be mounted to the lower surface of the rotor ring 121 in a suitable manner (such as by bonding, welding, mechanical connection, etc.).
  • the rotor ring 121 is used to provide a magnetically permeable connection between the various parts 123 of the rotor drive magnets 122 .
  • the rotor drive magnets 122 are used to drive the rotor assembly 11 to perform one or more of axial motion, tilt motion, rotational motion, etc. under the driving of the stator coil 113, which will be described in detail below.
  • the rotor ring 121 may have substantially the same size as the stator base 111 , that is, the rotor ring 121 may have substantially the same outer diameter as the stator base 111 .
  • Rotor assembly 12 includes rotor thrust magnets 124 .
  • the rotor thrust magnets 124 may have a substantially rotationally symmetric form and be magnetized in an axial direction (ie, magnetized to generate axial magnetic field lines).
  • the rotor thrust magnet 124 may be disposed in the inner cavity of the rotor ring member 121 , and its center coincides with the vertical center axis A-A of the magnetic levitation motor 10 in an ideal state.
  • the direction of the magnetic field lines of the rotor thrust magnets 124 and the stator thrust body 114 may be selected to enable axial repulsion between the rotor thrust magnets 124 and the stator thrust body 114 to levitate the rotor assembly 12 above the stator assembly 11 . This can be achieved, for example, by making the direction of the magnetic field lines of the rotor thrust magnet 124 opposite to the direction of the magnetic field lines of the stator thrust body 114 .
  • the shapes of rotor thrust magnet 124 and stator thrust body 114 may also be selected such that a radial direction of force is created between rotor thrust magnet 124 and stator thrust body 114 when the center of rotor thrust magnet 124 is not aligned with the center of stator thrust body 114. component, the radial component of the force tends to pull the rotor thrust magnet 124 and the stator thrust body 114 back to a position where their centers are aligned with each other.
  • the rotor thrust magnet 124 is configured as a solid cylindrical magnet similar to the stator thrust body 114 , and the outer diameter of the rotor thrust magnet 124 may be larger than the outer diameter of the stator thrust body 114 .
  • the rotor thrust magnet 124 is configured as a toroidal magnet having an interior cavity having an inner diameter of a first dimension and an outer diameter of a second dimension;
  • the stator thrust body 114 is configured as a solid cylindrical magnet, and the size of the outer diameter of the stator thrust body 114 is between the first size and the second size of the rotor thrust magnet 124 .
  • the number of stator teeth 112 may be several times, such as 2 times, the number of portions 123 of rotor drive magnets 122 (and thus the number of alternating poles).
  • the stator assembly 11 may include, for example, 8 stator teeth 112 .
  • the rotor thrust magnets 124 may be made of permanent magnet materials, while the stator base 111 , stator teeth 112 and rotor rings 121 may be made of magnetically conductive materials (eg, metal iron, etc.).
  • FIG. 5 shows the magnetic field line loop of the magnetic field between the stator thrust body 114 and the rotor thrust magnet 124 . It can be clearly seen from FIG. 5 that the magnetic lines of force of the stator thrust body 114 and the rotor thrust magnet 124 flow relatively in positions facing each other, thereby generating an axial repulsion force between the stator thrust body 114 and the rotor thrust magnet 124, and An upward axial force is further generated on the rotor ring 121 of the rotor assembly 12 so that the entire rotor assembly 12 can be suspended above the stator assembly 11 . When the rotor assembly 12 is closer to the stator assembly 11, the magnetic field lines will be pushed more strongly in the radial direction, and this twisting of the magnetic field will cause a change in the axial force.
  • Figures 6a and 6b illustrate, in schematic plan and perspective views, respectively, the magnetic field line loops of the magnetic field generated by one of the parts 123 of the rotor drive magnets 122 of the rotor assembly 12.
  • the magnetic field lines of the portion 123 shown may pass down through the portion 123 itself, continue down through the stator teeth 112 and reach the stator base 111, passing around the circumference of the stator base 111.
  • a part of the stator base 111 (when the rotor drive magnet 122 includes four parts 123, the magnetic field lines go around 90° and pass through a quarter of the circumference of the stator base 111), up through the other stator teeth 112, up through and This part 123 is adjacent to the body of the other part 123 with the opposite magnetization direction to reach the rotor ring 121 , around the circumference of the rotor ring 121 in a direction opposite to the direction when passing through the stator ring 111 .
  • a part of the rotor ring 121 forms a complete magnetic field circuit. Portions 123 with the same magnetization direction can create magnetic field line loops with opposite magnetic field line flow directions. Therefore, the entire rotor driving magnet 122 can generate a magnetic field line loop in which the flow direction of the magnetic field lines alternately changes.
  • the magnetic field generated by the rotor driving magnets 122 will interact with the magnetic field generated by the stator coils 113 to generate corresponding magnetic axial components and magnetic torque components, thereby generating a shaft for suspending the rotor assembly 12 above the stator assembly 11 force and generate a rotational moment for rotating the rotor assembly 12 .
  • the magnetic field generated by the stator coils 113 of the stator teeth 112 can be considered to have two component magnetic fields: the direct-axis component (d-axis component) magnetic field, the magnetic field loops of which are related to the magnetic poles of the rotor driving magnet 122 (ie: each part 123 ) are aligned with the magnetic field lines of the magnetic field generated; and the quadrature axis component (q-axis component) magnetic field, the magnetic field line loops of which are half a distance from the magnetic field line loops of the magnetic field generated by the magnetic poles of the rotor drive magnet 122 (ie: each part 123 ) the length of the parts without aligning with each other.
  • the direct-axis component d-axis component
  • q-axis component quadrature axis component
  • Figures 7a and 7b show the magnetic field line loops of the d-axis component magnetic field generated by the stator coil 113 in schematic plan and perspective views, respectively. It can be seen that the magnetic field line loop of the d-axis component magnetic field is completely aligned with the magnetic field line loop generated by the rotor driving magnet 122, and the flow direction of the magnetic field line of the d-axis component magnetic field can be the same or opposite to that generated by the rotor driving magnet 122. The net magnetic field below the rotor drive magnets 122 is made stronger or weaker.
  • the d-axis component magnetic field generated by the stator coils 113 does not generate a rotational moment on the rotor assembly 12 that rotates the rotor assembly 12, but it can generate a downward attractive force between the rotor assembly 12 and the stator assembly 11, which attracts The force will attempt to close the gap 13 by attracting the rotor assembly 12 towards the stator assembly 11 and this attraction is proportional to the square of the net magnetic field strength.
  • the net axial force acting on the rotor assembly 12 can be adjusted, which is compensated by the stator thrust body 114 and the rotor thrust magnet 124.
  • the resulting upward axial force can thus control the position of the rotor assembly 12 in the axial direction (see Figure 9a).
  • Figures 8a and 8b show the magnetic field loops of the q-axis component magnetic field generated by the stator coil 113 in schematic plan view and perspective view, respectively. It can be seen that the magnetic field line loop of the q-axis component magnetic field and the magnetic field line loop generated by the rotor drive magnet 122 differ by half the length of the portion 123 and are not aligned with each other. Since the magnetic field line loop of the q-axis component magnetic field produced by the stator coil 113 is not aligned with the magnetic field line loop produced by the rotor drive magnet 122, a rotational force trying to align it will be generated between the two, and the rotational force will make the rotor assembly in the rotor assembly. A rotational moment is created on 12 , causing rotor assembly 12 to rotate.
  • the magnetic levitation motor 10 operates and controls based on the above principles.
  • the d-axis component magnetic field for each pole ie: each section 123
  • the stator coil set can be independently controlled (by virtue of the above-described independently controllable magnetic field) of the stator coil set), thereby allowing the axial force of different sides of the rotor assembly 12 of the magnetic levitation motor 10 to be controlled to different values.
  • This allows a pitch torque to be applied to the rotor assembly 12, thereby controlling the pitch angle of the rotor assembly 12 (see Figure 9b).
  • the stability of the rotor assembly 12 of the magnetic levitation motor 10 according to the present disclosure in the radial direction is passively obtained, when the center of the rotor assembly 12 deviates from the vertical center axis A-A of the magnetic levitation motor 10, the stator base 111 and the rotor A radial force component will develop between the rings 121 that aligns them with each other, which pulls the rotor assembly 12 back into alignment with the stator assembly 11 in the radial direction (see Figure 9c).
  • the magnetic levitation motor 10 may include a controller configured to control at least one of axial movement, tilting movement, and rotational movement of the rotor assembly 12 .
  • the controller can control the value of the current input to each stator coil set by independently controlling each amplifier in a voltage-controlled or current-controlled manner so that the current in each stator coil set conforms to the conditions for that stator coil set.
  • a current setpoint which is adjustable to generate net magnetomotive force from the stator assembly 11 .
  • the controller may adjust the d-axis component magnetic field and the q-axis component magnetic field of the stator coil 113 corresponding to the p magnetic poles to adjust and Controls the rotational torque generated on the rotor assembly 12 and the axial force generated on the rotor assembly 12 , wherein the controller regulates and controls the axial force generated on the rotor assembly 12 to ensure that between the rotor assembly 12 and the stator assembly 11 The axial clearance of the rotor complies with the set distance value, and the controller adjusts and controls the rotational torque generated on the rotor assembly 12 to ensure that the rotational speed of the rotor assembly 12 complies with the set rotational speed value.
  • the controller may regulate and control the current of the stator coils 113 corresponding to the two opposing magnetic poles (portions 213 ) by independently controlling the respective amplifiers in a voltage-controlled or current-controlled manner Enter a value to adjust and control the tilt moment generated on the rotor assembly 12 to ensure that the tilt angle of the rotor assembly 12 conforms to the set tilt angle value.
  • the magnetic levitation motor 10 may further include one or more sensors for measuring the axial position (height), the inclination angle, and the angular position of the rotor assembly 12 relative to the stator assembly 11 . at least one.
  • the controller may control by receiving measurements from the one or more sensors and adjusting the current input values of the corresponding stator coils or sets of stator coils based on the measurements.
  • the one or more sensors may be any one or more of eddy current based sensors, Hall effect sensors, and other suitable types of sensors.
  • the magnetic levitation motor 10 may be used in, for example, an in vivo or extracorporeal magnetic levitation blood pump for driving an impeller of the in vivo or extracorporeal magnetic levitation blood pump.
  • the magnetic levitation motor 10 only utilizes one set of independently controllable stator coils 113 to generate the rotational driving force and the axial translation driving force at the same time, avoiding the need to use two different sets of stator coils for the motors of the prior art.
  • the rotational driving force and the axial translation driving force are generated, thereby effectively reducing the number of components of the magnetic levitation motor 10 and thus reducing the size of the magnetic levitation motor 10 and reducing the risk of its failure.
  • the magnetic levitation motor 10 can place the stator coil 113 as an actuator on only one side (eg, below) of the rotor assembly 12, so that when it is applied to a magnetic levitation blood pump, the blood pump can be
  • the flow path design has more degrees of freedom and flexibility and thus allows the flow path of the blood pump to have as simple a structure as possible. In this way, the hydrodynamics of the magnetic levitation blood pump can be made very simple, thereby minimizing the damage to the blood.
  • the magnetic levitation motor 10 can adjust the axial position, tilt position, and rotational speed of the rotor assembly 12 as required by adjusting the magnitude of the current input to the different stator coil sets with the aid of a single controller, thereby enabling the use of a single controller.
  • the controller enables multiple degrees of freedom control of the magnetic levitation motor 10 and thus enables better control with a simple mechanical and control mechanism.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种磁悬浮马达(10)和磁悬浮血泵。磁悬浮马达(10)包括定子组件(11)和位于定子组件(11)上方的转子组件(12),定子组件(11)和转子组件(12)之间具有轴向间隙(13)。定子组件(11)包括定子基体(111)、沿定子基体(111)的圆周分布并且从定子基体(111)的上表面向上延伸的多个定子齿(112)和设置于由多个定子齿(112)围绕成的内部空腔中的定子推力体(114),定子齿(112)上缠绕有定子线圈(113)。转子组件(12)包括转子环形件(121)、设置于转子环形件(121)的下表面的转子驱动磁体(122)和设置于转子环形件(121)的内部空腔中的转子推力磁体(124)。定子推力体(114)和转子推力磁体(124)配置成能产生轴向的磁力线并且能在二者之间产生轴向斥力。转子驱动磁体(122)包括多个部分(123),每个部分(123)均沿着轴向磁化,并且相邻的部分(123)具有相反的磁化方向,以使转子驱动磁体(122)具有交替的多个磁极。

Description

磁悬浮马达和磁悬浮血泵 技术领域
本公开总体上涉及医疗器械领域。更特别地,本公开涉及一种磁悬浮马达以及包含所述磁悬浮马达的磁悬浮血泵。
背景技术
心脏衰竭是一种流行的和威胁生命的疾病,一旦恶化至晚期,其一年死亡率约为75%。鉴于晚期心脏衰竭的心脏供体有限,心室辅助设备(VAD)技术已成为搭起患者和移植手术之间的桥梁的可行治疗选择、或作为替代治疗。但是,当前技术导致的不良事件(AE)仍然限制了这些设备用于重症患者的治疗。在这些不良事件中,与血液损伤相关的不良事件(例如溶血、神经性事件、中风、和泵内血栓形成)占20%的发生率。溶血和血栓形成主要归因于旋转式血泵(RBP)中的过高生理应力和流动停滞。尽管可以通过液压设计优化来改善血液相容性,但对于带有血液浸没式轴承的旋转式血泵(其中旋转部件和固定部件之间的直接接触是不可避免的)而言,这种优化极具挑战性。
为了解决这些问题,已经开发出第三代心室辅助设备,它们采用了利用流体动力悬浮和/或磁悬浮技术的非接触式轴承。流体动力轴承通过使用血液作为润滑剂而产生一层薄的血膜(通常是二次流动间隙),从而消除了转子与定子之间的直接机械接触。悬浮力与旋转部件和固定部件之间的血膜几何特征以及旋转速度直接相关,并随泵的工作条件而动态变化。由于血膜几何特征和悬浮力之间的紧密联系,对流体动力轴承设计而言存在着严格的限制。
另一方面,主动式磁轴承可以使二次流动间隙保持恒定,从而断开了血膜几何特征和悬浮力之间的关联性。这为血泵设计人员提供了更大的自由度来优化泵腔内的流场以及与流动相关的血液相容性,已知的是,该血液相容性与剪切应力、暴露时间(血液暴露于剪切应力的时间段)、和在二次流动路径中的洗脱相关。因此,自2015年以来,磁悬浮的旋转式血泵逐渐受到关注,因为最新的磁悬浮血泵设计显著减小了要植入胸腔的血泵的尺寸、并且具有泵内血栓形成率为零的优越性能。
因此,在设计磁悬浮的旋转式血泵时,非常重要的是在保持磁悬浮支承性能的同时在流体动力优化方面留出足够的自由度。磁悬浮轴承的关键性能指标是主动控制 自由度(DoF)的数量和在每个自由度中的支承刚度。为了在每个自由度中获得较强的刚度,自然需要通过电磁线圈来主动地控制自由度。这需要沿着所述自由度(方向)放置一对或一组绕组线圈,从而使得二次流动路径的设计变得复杂并且因此限制了用于血液流动的机械结构(比如,二次流动路径)的空间。
另外,在磁悬浮血泵中存在两种力:(1)旋转力,其用于驱动叶轮;和(2)平移力,其用于保持叶轮/转子悬浮。为了实现这两种力,马达中存在两组执行机构,用于为叶轮/转子提供移动力。这两组执行机构(实际上是两组绕组线圈或呈其它形式的执行机构)要么被配置为完全分开、要么更紧密地相邻布置。在任意一种配置中都需要两组部件,并且这两组部件需要独立控制(即:需要两组独立的控制电路),从而增加了机械结构的复杂性以及故障的发生率。
发明内容
本公开的目的之一是解决以上问题中的一个或多个并实现其它额外的优点。
在本公开的第一方面,提供了一种磁悬浮马达。所述磁悬浮马达包括定子组件和沿着所述磁悬浮马达的竖直中心轴线位于所述定子组件上方的转子组件,所述定子组件和所述转子组件之间具有距离可调节的轴向间隙。所述定子组件包括定子基体、沿着所述定子基体的圆周分布并且从所述定子基体的上表面朝向所述间隙向上延伸的多个定子齿、和设置于由所述多个定子齿围绕成的内部空腔中的定子推力体,所述定子齿上缠绕有作为执行机构的定子线圈。所述转子组件包括呈圆环形式的转子环形件、设置于所述转子环形件的下表面的转子驱动磁体、和设置于所述转子环形件的内部空腔中的转子推力磁体。所述定子推力体和所述转子推力磁体被配置成能够产生轴向的磁力线并且能够在所述定子推力体和所述转子推力磁体之间产生轴向斥力。所述转子驱动磁体包括多个部分,每个部分均被沿着轴向方向磁化并且相邻的部分具有相反的磁化方向,从而使得所述转子驱动磁体具有交替的多个磁极。
根据本公开的一个实施例,所述转子驱动磁体的每个部分呈圆弧形,使得每个部分能够跟随所述转子环形件的形状而设置于所述转子环形件的下表面。
根据本公开的一个实施例,所述多个部分的端部彼此邻接,使得由所述多个部分形成的转子驱动磁体呈封闭的圆环形。
根据本公开的一个实施例,所述多个部分的端部彼此间隔开,使得各个部分之间具有间隔。
根据本公开的一个实施例,每个所述部分包括一段或多段磁体。
根据本公开的一个实施例,所述转子驱动磁体包括四个部分,并且所述定子组件包括八个定子齿。
根据本公开的一个实施例,所述多个定子齿构造成从所述定子基体的上表面朝向所述间隙基本竖直地向上延伸。
根据本公开的一个实施例,所述多个定子齿构造成从所述定子基体的上表面朝向所述间隙基本螺旋地向上延伸。
根据本公开的一个实施例,所述多个定子齿构造成在其朝向所述间隙螺旋地向上延伸的过程中,相邻的定子齿之间的间距逐渐变小。
根据本公开的一个实施例,所述转子推力磁体和所述定子推力体均构造成实心的圆柱形磁体,并且其中,所述转子推力磁体的中心和所述定子推力体的中心在理想状态下均与所述磁悬浮马达的竖直中心轴线重合。
根据本公开的一个实施例,所述转子推力磁体的外径大于所述定子推力体的外径。
根据本公开的一个实施例,所述转子推力磁体构造成具有内部空腔的圆环形磁体而所述定子推力体构造成实心的圆柱形磁体,并且其中,所述转子推力磁体的中心和所述定子推力体的中心在理想状态下均与所述磁悬浮马达的竖直中心轴线重合。
根据本公开的一个实施例,所述转子推力磁体具有第一尺寸的内径和第二尺寸的外径,所述定子推力体的外径的尺寸介于所述转子推力磁体的第一尺寸和第二尺寸之间。
根据本公开的一个实施例,所述定子基体呈圆环形或者圆饼形。
根据本公开的一个实施例,所述定子推力体由永磁体材料制成、或者由电磁线圈或电磁铁形成。
根据本公开的一个实施例,所述定子推力体、所述转子推力磁体和所述转子驱动磁体由永磁体材料制成。
根据本公开的一个实施例,所述定子基体由导磁性材料制成,用于提供所述多个定子齿的根部之间的可导磁连接。
根据本公开的一个实施例,所述转子环形件由导磁性材料制成,用于提供所述转子驱动磁体的各个部分之间的可导磁连接。
根据本公开的一个实施例,所述定子推力体位于所述定子线圈的上方、靠近所述 定子齿的头部的位置处。
根据本公开的一个实施例,所述定子线圈配置成:能够产生与所述转子驱动磁体的每个部分的磁场对准的直轴分量磁场,用于调节所述转子组件的轴向位置;并且能够产生与所述转子驱动磁体的每个部分的磁场相差半个部分的长度而与其不对准的交轴分量磁场,用于驱动所述转子组件旋转并调节所述转子组件的旋转速度。
根据本公开的一个实施例,每个所述定子齿上均缠绕有所述定子线圈,每个所述定子线圈位于相应定子齿的根部和头部之间并且延伸相应定子齿的长度的一部分。
根据本公开的一个实施例,所述定子线圈分组互联,以形成多个可独立控制的定子线圈组。
根据本公开的一个实施例,每个所述定子线圈组连接至一个放大器,所述放大器用于使电流流入所述定子线圈组中的定子线圈中。
根据本公开的一个实施例,每个所述放大器能够独立地控制,以使不同大小的电流流入与该放大器连接的定子线圈组中的定子线圈中。
根据本公开的一个实施例,所述磁悬浮马达包括控制器,所述控制器配置成控制输入至每个所述放大器的电流输入值,以使每个定子线圈组中的电流符合该定子线圈组的电流设定值,从而控制所述转子组件的轴向运动、倾斜运动、和旋转运动中的至少一种。
根据本公开的一个实施例,所述控制器通过调节并控制输入至所述放大器的电流输入值而调节所述直轴分量磁场,从而调节并控制在所述转子组件上产生的轴向力,以确保所述转子组件和所述定子组件之间的轴向间隙符合设定的距离值。
根据本公开的一个实施例,所述控制器通过调节并控制输入至所述放大器的电流输入值而调节所述交轴分量磁场,从而调节并控制在所述转子组件上产生的旋转力矩,以确保所述转子组件的旋转速度符合设定的转速值。
根据本公开的一个实施例,所述控制器调节并控制对应于两个相对的所述部分的定子线圈的电流输入值,从而调节并控制在所述转子组件上产生的倾斜力矩,以确保所述转子组件的倾斜角符合设定的倾斜角度值。
根据本公开的一个实施例,所述磁悬浮马达包括一个或多个传感器,用于测量所述转子组件相对于所述定子组件的轴向位置、倾斜角度、和角位置中的至少一种。
根据本公开的一个实施例,所述控制器配置成接收来自所述一个或多个传感器的测量值并根据所述测量值调节所述定子线圈组的电流输入值而实施控制。
根据本公开的一个实施例,所述传感器是基于涡电流的传感器或霍尔效应传感器。
根据本公开的一个实施例,所述定子齿的头部的尺寸大于所述定子齿的其它部分的尺寸。
根据本公开的一个实施例,所述定子齿的头部具有倒角或倾斜面,使得所述定子齿的头部呈楔形。
在本公开的第二方面,提供了一种磁悬浮血泵。所述磁悬浮血泵包括叶轮和根据本公开的磁悬浮马达,所述磁悬浮马达用于驱动所述叶轮。
本公开的附加和/或其他方面和优点将在下文的描述中阐述,或者从描述中显而易见或者可以通过本发明的实践来学习。本公开的各种技术特征可以任意组合,只要它们不相互矛盾即可。
附图说明
结合附图,参考下面对本公开的具体实施方式的详细描述,本公开的上面提到的特征和优点和其他特征和优点、以及实现它们的方式将会变得更加显而易见。在附图中:
图1是根据本公开的一个实施例的磁悬浮马达的示意性立体图。
图2是图1所示的磁悬浮马达的剖视图。
图3是图1所示的磁悬浮马达的分解图。
图4是图1所示的磁悬浮马达的转子驱动磁体的示意图及其示意性磁化特征。
图5是示出了由转子推力磁体和定子推力体所产生的磁场的磁力线回路的示意性立体图。
图6a和图6b分别是示出了由转子驱动磁体所产生的磁场的磁力线回路的示意性平面图和立体图。
图7a和图7b分别是示出了由定子线圈所产生的d轴分量磁场的磁力线回路的示意性平面图和立体图。
图8a和图8b分别是示出了由定子线圈所产生的q轴分量磁场的磁力线回路的示意性平面图和立体图。
图9a至图9c分别示出了磁悬浮马达的转子的轴向控制、倾斜控制、以及径向控制的示意图。
在附图中,相应的附图标记表示相应的部件。这里描述的示例用于阐述本发明的示例性方面,这些示例不应被解释为以任何方式限制本公开的范围。
具体实施方式
以下将参考附图描述本公开,其中的附图示出了本公开的若干实施例。然而应当理解的是,本公开可以以多种不同的方式呈现出来,并不局限于下文描述的实施例;事实上,下文描述的实施例旨在使本公开的公开更为完整,并向本领域技术人员充分说明本公开的保护范围。还应当理解的是,本文公开的实施例能够以各种方式进行组合,从而提供更多额外的实施例。
出于描述的目的,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“横向”、“纵向”以及它们的派生词均与本公开的附图中的取向有关。然而应该理解的是,本公开可以采用各种替代性的变型,除非明确相反地说明。例如,在附图中的装置倒转时,原先描述为在其它特征“下方”的特征,此时可以描述为在其它特征的“上方”。装置还可以以其它方式定向(旋转90度或在其它方位),此时将相应地解释相对空间关系。
说明书使用的单数形式“一”、“所述”和“该”除非清楚指明,均包含复数形式。说明书使用的用辞“包括”、“包含”和“含有”表示存在所声称的特征,但并不排斥存在一个或多个其它特征。说明书使用的用辞“和/或”包括相关列出项中的一个或多个的任意和全部组合。
在说明书中,称一个元件位于另一元件“上”、“附接”至另一元件、“连接”至另一元件、“联接”至另一元件、或“接触”另一元件等时,该元件可以直接位于另一元件上、附接至另一元件、连接至另一元件、联接至另一元件或接触另一元件,或者可以存在中间元件。相对照的是,称一个元件“直接”位于另一元件“上”、“直接附接”至另一元件、“直接连接”至另一元件、“直接联接”至另一元件或、或“直接接触”另一元件时,将不存在中间元件。在说明书中,一个特征布置成与另一特征“相邻”,可以指一个特征具有与相邻特征重叠的部分或者位于相邻特征上方或下方的部分。
本公开涉及一种磁悬浮马达。参照图1至图4,示出了根据本公开的一个实施例的磁悬浮马达10的示意性结构。磁悬浮马达10可以包括定子组件11和沿着磁悬浮马达10的竖直中心轴线A-A位于定子组件11上方的转子组件12。定子组件11和转 子组件12之间可以具有距离可调节的轴向间隙13,使得转子组件12能够以期望的轴向位置悬浮于定子组件11的上方。
定子组件11可以包括定子基体111和沿着定子基体111的圆周分布并且从定子基体111的上表面朝向间隙13向上延伸的多个定子齿112。定子基体111可以呈圆环状或者呈圆饼状,用于提供所述多个定子齿112的根部之间的可导磁连接。所述多个定子齿112可以具有基本相同的高度,使得所述多个定子齿112的靠近转子组件12的头部基本位于同一平面中。所述多个定子齿112可以形成具有内部空腔的圆筒。在根据本公开的一个实施例中,定子基体111与所述多个定子齿112可以一体形成。在根据本公开的另一个实施例中,定子基体111与所述多个定子齿112可以分别形成,然后以适当的方式(比如,粘结、焊接、机械连接等)将所述多个定子齿112安装于定子基体111上。定子基体111与所述多个定子齿112可以由相同的导磁性材料制成。
在图1至图3所示的实施例中,定子齿112构造成从定子基体111的上表面朝向间隙13基本竖直地向上延伸。然而,本公开不局限于此。在根据本公开的其它实施例中,定子齿112可以构造成从定子基体111的上表面朝向间隙13基本螺旋地向上延伸。更具体地,定子齿112可以从定子基体111的上表面朝向间隙13在一假想圆筒的圆周表面上沿着相同的取向螺旋地向上延伸(如图5、图6b、图7b和图8b所示)。在一个优选实施例中,在定子齿112朝向间隙13螺旋地向上延伸的过程中,相邻定子齿112之间的间距可以逐渐变小。螺旋延伸的定子齿112可以有助于增加定子组件11的面向转子组件12的那一面的截面积,从而有助于增加通过轴向间隙13的磁通量。在根据本公开的一个实施例中,定子齿112的头部的尺寸可以大于定子齿112的其它部分的尺寸,使得定子齿112的头部呈比如锄头形等形状。在根据本公开的另一个实施例中,定子齿112的头部的尺寸可以大于定子齿112的其它部分的尺寸,并且定子齿112的头部具有倒角或倾斜面,使得定子齿112的头部呈比如楔形等形状。
定子齿112上可以缠绕有定子线圈113。定子线圈113用作执行机构,用于驱动转子组件11进行比如轴向运动、倾斜运动、旋转运动等中的一种或多种。在根据本公开的一个实施例中,定子线圈113可以分布在多个定子齿112上,以形成分布式绕组。在根据本公开的另一个实施例中,优选地,每个定子齿112上均缠绕有定子线圈113。每个定子线圈113可以位于相应定子齿112的根部和头部之间并且延伸该定子齿112的长度的一部分。每个定子线圈113可以具有两个接线端。所述多个定子齿112上的定子线圈113可以分组互联,以形成多个可独立控制的定子线圈组。每个定子线 圈组可以连接至一个放大器,所述放大器能够使电流流入该定子线圈组中的定子线圈中。每个放大器可独立地控制,从而能够使不同大小的电流流入与其连接的定子线圈组中的定子线圈中。将定子线圈形成多个可独立控制的定子线圈组使得能够方便地控制转子组件12的倾斜运动以及倾斜角,将在下文进行详细描述。
在所述多个定子齿112形成的圆筒的内部空腔中、优选在定子线圈113的上方并靠近所述多个定子齿112的头部的位置处设置有定子推力体114。定子推力体114被配置成能够产生轴向的磁力线,用于产生轴向斥力,以将转子组件12悬浮于定子组件11的上方。在根据本公开的一个实施例中,定子推力体114构造成实心的圆柱形磁体,其中心在理想状态下与磁悬浮马达10的竖直中心轴线A-A重合,以使定子推力体114在磁悬浮马达10中基本旋转对称地布置。在根据本公开的一个实施例中,定子推力体114可以由永磁体材料制成。在根据本公开的另一个实施例中,定子推力体114可以由电磁线圈或电磁铁形成。
转子组件12可以包括呈圆环形式的、具有内部空腔的转子环形件121和设置于转子环形件121的下表面的转子驱动磁体122。在根据本公开的实施例中,转子驱动磁体122由多个部分123构成,每个部分123呈圆弧形,使其可以跟随转子环形件121的形状而设置于转子环形件121的下表面。每个部分123可以由一段或多段磁体构成。每个部分123均可以被沿着轴向磁化,并且相邻的部分123可以具有相反的磁化方向,从而使得由所述多个部分123构成的转子驱动磁体122具有交替的多个磁极。比如,如果第一部分的上表面为N极而下表面为S极,则与第一部分的一端相邻的第二部分以及与第一部分的另一端相邻的第三部分的上表面为S极而下表面为N极。这样的构造使得围绕转子组件12的圆环所测量的轴向磁场类型可以包含p个磁极分量,其中,p对应于部分123的数量。在本公开的实施例中,p可以优选地为偶数,并且p可以优选地大于等于4。当每个部分123由多段磁体构成时,每个部分123的多段磁体可以具有相同的磁化方向,然而相邻的部分123具有相反的磁化方向。
在图4所示的实施例中,转子驱动磁体122由四个部分123构成。四个部分123的端部可以彼此邻接,使得由四个部分123构造成的转子驱动磁体122呈封闭的圆环形。然而,本公开不局限于此。转子驱动磁体122可以由其它数量的部分123构成,比如,可以由六个、八个或更多个部分123构成。另外,每个部分123可以与其它部分123间隔开,使得各个部分123之间具有间隔(如图5、图6b、图7b和图8b所示)。每个部分123可以以适当的方式(比如粘结、焊接、机械连接等)安装于转子环形件 121的下表面。
转子环形件121用于提供转子驱动磁体122的各个部分123之间的可导磁连接。转子驱动磁体122用于在定子线圈113的驱动下带动转子组件11进行比如轴向运动、倾斜运动、旋转运动等中的一种或多种,将在下文详细描述。优选地,转子环形件121可以具有与定子基体111基本相同的尺寸,即:转子环形件121可以具有与定子基体111基本相同的外径。
转子组件12包括转子推力磁体124。转子推力磁体124可以具有基本上旋转对称的形式,并且被沿着轴向方向磁化(即:被磁化成能够产生轴向的磁力线)。转子推力磁体124可以设置在转子环形件121的内部空腔中,并且其中心在理想状态下与磁悬浮马达10的竖直中心轴向A-A重合。
可以选择转子推力磁体124与定子推力体114的磁力线方向,以使得能够在转子推力磁体124和定子推力体114之间产生轴向斥力而使转子组件12悬浮与定子组件11的上方。这可以通过比如使转子推力磁体124的磁力线方向与定子推力体114的磁力线方向相反来实现。
还可以选择转子推力磁体124和定子推力体114的形状,以使得当转子推力磁体124的中心与定子推力体114的中心不对准时在转子推力磁体124和定子推力体114之间产生力的径向分量,该力的径向分量倾向于将转子推力磁体124和定子推力体114拉回到其中心彼此对准的位置。在图1至图3所示的实施例中,转子推力磁体124构造成与定子推力体114类似的实心圆柱形磁体,并且转子推力磁体124的外径可以大于定子推力体114的外径。在图5b、图6、图7b和图8b所示的实施例中,转子推力磁体124构造成具有内部空腔的圆环形磁体,其具有第一尺寸的内径和第二尺寸的外径;而定子推力体114构造成实心的圆柱形磁体,并且定子推力体114的外径的尺寸介于转子推力磁体124的第一尺寸和第二尺寸之间。
在根据本公开的一个实施例中,定子齿112的数量可以是转子驱动磁体122的部分123的数量(以及因此是交替的磁极的数量)的若干倍,比如2倍。换言之,当转子驱动磁体122包括四个部分123而使得转动驱动磁体122具有4个磁极时,定子组件11可以包括例如8个定子齿112。
在根据本公开的一个实施例中,转子推力磁体124可以由永磁体材料制成,而定子基体111、定子齿112和转子环形件121可以由导磁性材料(比如,金属铁等)制成。
接下来,参照图5至图9c来描述根据本公开的磁悬浮马达10的工作原理及其控制。
图5示出了定子推力体114和转子推力磁体124之间的磁场的磁力线回路。从图5中可以清楚地看到定子推力体114和转子推力磁体124的磁力线在彼此面对的位置中相对地流动,从而在定子推力体114和转子推力磁体124之间产生轴向斥力、并进一步在转子组件12的转子环形件121上产生向上的轴向力,使得整个转子组件12可以悬浮于定子组件11的上方。当转子组件12更靠近定子组件11时,磁力线将被更强烈地推向径向方向,磁场的该扭曲将会导致轴向力的变化。
图6a和图6b分别以示意性平面图和立体图的形式示出了由转子组件12的转子驱动磁体122的其中一个部分123所产生的磁场的磁力线回路。如图6a和图6b所示,所示部分123的磁力线可以向下穿过该部分123本身、继续向下穿过定子齿112并到达定子基体111、沿着定子基体111的圆周绕行穿过定子基体111的一部分(当转子驱动磁体122包括四个部分123时,磁力线绕行90°而穿过定子基体111的四分之一圆周)、向上穿过另一个定子齿112、向上穿过与该部分123相邻的具有相反磁化方向的另一个部分123的本体而到达转子环形件121、沿着转子环形件121的圆周以与穿过定子环形环111时的方向相反的方向绕行穿过转子环形件121的一部分而形成一个完整的磁场回路。具有相同磁化方向的部分123可以产生具有相反磁力线流动方向的磁力线回路。因此,整个转子驱动磁体122可以产生磁力线流动方向交替变化的磁力线回路。
转子驱动磁体122所产生的磁场将与定子线圈113所产生的磁场相互作用而产生相应的磁力轴向分量和磁力转矩分量,从而可以产生用于使转子组件12悬浮于定子组件11上方的轴向力以及产生用于使转子组件12旋转的旋转力矩。
具体地,由定子齿112的定子线圈113所产生的磁场可以被认为具有两个分量磁场:直轴分量(d轴分量)磁场,其磁力线回路与转子驱动磁体122的磁极(即:各部分123)所产生的磁场的磁力线回路对准;和交轴分量(q轴分量)磁场,其磁力线回路与转子驱动磁体122的磁极(即:各部分123)所产生的磁场的磁力线回路彼此相差半个部分的长度而彼此不对准。
图7a和图7b分别以示意性平面图和立体图的形式示出了由定子线圈113所产生的d轴分量磁场的磁力线回路。可以看到d轴分量磁场的磁力线回路与转子驱动磁体122所产生的磁力线回路完全对准,并且d轴分量磁场的磁力线流动方向可以与转子 驱动磁体122所产生的磁力线流动方向相同或相反,以使得转子驱动磁体122下方的净磁场变强或变弱。由定子线圈113所产生的d轴分量磁场不会在转子组件12上产生使转子组件12旋转的旋转力矩,然而其可以在转子组件12和定子组件11之间产生向下的吸引力,该吸引力会试图将转子组件12朝向定子组件11吸引而闭合间隙13并且该吸引力与净磁场强度的平方成比例。利用该性质,通过改变由定子线圈113所产生的d轴分量磁场的大小,可以调节作用在转子组件12上的净轴向力,该净轴向力补偿由定子推力体114和转子推力磁体124所产生的向上的轴向力,从而可以控制转子组件12在轴向方向上的位置(参见图9a)。
图8a和图8b分别以示意性平面图和立体图的形式示出了由定子线圈113所产生的q轴分量磁场的磁力线回路。可以看到q轴分量磁场的磁力线回路与转子驱动磁体122所产生的磁力线回路相差半个部分123的长度而彼此不对准。由于定子线圈113所产生的q轴分量磁场的磁力线回路与转子驱动磁体122所产生的磁力线回路不对准,在二者之间将产生试图使其对准的旋转力,该旋转力使得在转子组件12上产生旋转力矩,从而使得转子组件12旋转。
根据本公开的磁悬浮马达10基于以上原理进行操作和控制。然而,与传统马达不同,在根据本公开的磁悬浮马达10中,用于每个磁极(即:每个部分123)的d轴分量磁场可以被独立地控制(借助于上文描述的可独立控制的定子线圈组),从而允许将磁悬浮马达10的转子组件12的不同侧的轴向力控制至不同的数值。这允许将倾斜扭矩施加至转子组件12,从而控制转子组件12的倾斜角(参见图9b)。另外,根据本公开的磁悬浮马达10的转子组件12在径向方向上的稳定性是被动获得的,当转子组件12的中心偏离磁悬浮马达10的竖直中心轴线A-A时,在定子基体111和转子环形件121之间将会产生使其彼此对准的径向力分量,该径向力分量沿着径向方向将转子组件12拉回到与定子组件11对准的位置(参见图9c)。
根据本公开的磁悬浮马达10可以包括控制器,所述控制器配置成控制转子组件12的轴向运动、倾斜运动、和旋转运动中的至少一种。控制器可以通过以电压控制或电流控制的方式独立地控制每个放大器而控制输入至每个定子线圈组的电流输入值,以使得每个定子线圈组中的电流符合用于该定子线圈组的电流设定值,所述电流设定值是可调节的,以从定子组件11产生净的磁动力。在根据本公开的一个实施例中,通过调节并控制输入至定子线圈组的电流输入值,控制器可以调节对应于p个磁极的定子线圈113的d轴分量磁场和q轴分量磁场以调节和控制在转子组件12上产生的 旋转力矩以及在转子组件12上产生的轴向力,其中,控制器调节并控制在转子组件12上产生的轴向力以确保转子组件12和定子组件11之间的轴向间隙符合设定的距离值,并且控制器调节并控制在转子组件12上产生的旋转力矩以确保转子组件12的旋转速度符合设定的转速值。在根据本公开的另一个实施例中,控制器可以通过以电压控制或电流控制的方式独立地控制相应的放大器而调节并控制对应于两个相对的磁极(部分213)的定子线圈113的电流输入值,从而调节并控制在转子组件12上产生的倾斜力矩,以确保转子组件12的倾斜角符合设定的倾斜角度值。
根据本公开的磁悬浮马达10还可以包括一个或多个传感器,所述一个或多个传感器用于测量转子组件12相对于定子组件11的轴向位置(高度)、倾斜角度、和角位置中的至少一种。控制器可以接收来自所述一个或多个传感器的测量值并根据所述测量值来调节相应的定子线圈或定子线圈组的电流输入值而实施控制。在根据本公开的实施例中,所述一个或多个传感器可以是基于涡电流的传感器、霍尔效应传感器、和其它适当类型传感器中的任意一种或多种。
根据本公开的磁悬浮马达10可以在比如体内或体外磁悬浮血泵中使用,用于驱动所述体内或体外磁悬浮血泵的叶轮。
根据本公开的磁悬浮马达10仅利用一套可独立控制的定子线圈113来同时产生旋转驱动力和轴向平移驱动力,避免了像现有技术马达那样需要分别采用两套不同的定子线圈来分别产生旋转驱动力和轴向平移驱动力,从而有效降低了磁悬浮马达10的零部件的数量并且因此能够减小磁悬浮马达10的尺寸并降低其失效的风险。在此基础上,根据本公开的磁悬浮马达10可以将作为执行机构的定子线圈113仅仅置于转子组件12的一侧(比如,下方),从而在其应用于磁悬浮血泵时能够使血泵的流动路径设计具有更多的自由度和灵活性,并因此允许血泵的流动路径具有尽可能简单的结构。这样,可以使磁悬浮血泵的流体动力学非常简单,从而最大化地降低了对血液的损坏。
再者,根据本公开的磁悬浮马达10可以借助于单个控制器调节输入至不同定子线圈组上的电流大小而根据需要调节转子组件12的轴向位置、倾斜位置、和旋转速度,从而能够利用单个控制器实现磁悬浮马达10的多自由度控制、并因此能够以简单的机械和控制机构实现更好的控制。
上文结合附图描述了本公开的示范实施例。然而,本领域技术人员应当理解的是,本公开不局限于所公开的具体结构。在不脱离本公开的精神和范围的情况下,能够对 本公开的示范实施例进行多种变化和改变。所有这些变化和改变均包含在由本公开的权利要求所限定的保护范围内。

Claims (34)

  1. 一种磁悬浮马达,包括定子组件和沿着所述磁悬浮马达的竖直中心轴线位于所述定子组件上方的转子组件,所述定子组件和所述转子组件之间具有距离可调节的轴向间隙;
    所述定子组件包括定子基体、沿着所述定子基体的圆周分布并且从所述定子基体的上表面朝向所述间隙向上延伸的多个定子齿、和设置于由所述多个定子齿围绕成的内部空腔中的定子推力体,所述定子齿上缠绕有作为执行机构的定子线圈;
    所述转子组件包括呈圆环形式的转子环形件、设置于所述转子环形件的下表面的转子驱动磁体、和设置于所述转子环形件的内部空腔中的转子推力磁体;
    其中,所述定子推力体和所述转子推力磁体被配置成能够产生轴向的磁力线并且能够在所述定子推力体和所述转子推力磁体之间产生轴向斥力;并且
    其中,所述转子驱动磁体包括多个部分,每个部分均被沿着轴向方向磁化并且相邻的部分具有相反的磁化方向,从而使得所述转子驱动磁体具有交替的多个磁极。
  2. 根据权利要求1所述的磁悬浮马达,其中,所述转子驱动磁体的每个部分呈圆弧形,使得每个部分能够跟随所述转子环形件的形状而设置于所述转子环形件的下表面。
  3. 根据权利要求2所述的磁悬浮马达,其中,所述多个部分的端部彼此邻接,使得由所述多个部分形成的转子驱动磁体呈封闭的圆环形。
  4. 根据权利要求2所述的磁悬浮马达,其中,所述多个部分的端部彼此间隔开,使得各个部分之间具有间隔。
  5. 根据权利要求1所述的磁悬浮马达,其中,每个所述部分包括一段或多段磁体。
  6. 根据权利要求1所述的磁悬浮马达,其中,所述转子驱动磁体包括四个部分,并且所述定子组件包括八个定子齿。
  7. 根据权利要求1所述的磁悬浮马达,其中,所述多个定子齿构造成从所述定子基体的上表面朝向所述间隙基本竖直地向上延伸。
  8. 根据权利要求1所述的磁悬浮马达,其中,所述多个定子齿构造成从所述定子基体的上表面朝向所述间隙基本螺旋地向上延伸。
  9. 根据权利要求8所述的磁悬浮马达,其中,所述多个定子齿构造成在其朝向 所述间隙螺旋地向上延伸的过程中,相邻的定子齿之间的间距逐渐变小。
  10. 根据权利要求1所述的磁悬浮马达,其中,所述转子推力磁体和所述定子推力体均构造成实心的圆柱形磁体,并且其中,所述转子推力磁体的中心和所述定子推力体的中心在理想状态下均与所述磁悬浮马达的竖直中心轴线重合。
  11. 根据权利要求10所述的磁悬浮马达,其中,所述转子推力磁体的外径大于所述定子推力体的外径。
  12. 根据权利要求1所述的磁悬浮马达,其中,所述转子推力磁体构造成具有内部空腔的圆环形磁体而所述定子推力体构造成实心的圆柱形磁体,并且其中,所述转子推力磁体的中心和所述定子推力体的中心在理想状态下均与所述磁悬浮马达的竖直中心轴线重合。
  13. 根据权利要求12所述的磁悬浮马达,其中,所述转子推力磁体具有第一尺寸的内径和第二尺寸的外径,所述定子推力体的外径的尺寸介于所述转子推力磁体的第一尺寸和第二尺寸之间。
  14. 根据权利要求1所述的磁悬浮马达,其中,所述定子基体呈圆环形或者圆饼形。
  15. 根据权利要求1所述的磁悬浮马达,其中,所述定子推力体由永磁体材料制成、或者由电磁线圈或电磁铁形成。
  16. 根据权利要求1所述的磁悬浮马达,其中,所述转子推力磁体和所述转子驱动磁体由永磁体材料制成。
  17. 根据权利要求1所述的磁悬浮马达,其中,所述定子基体由导磁性材料制成,用于提供所述多个定子齿的根部之间的可导磁连接。
  18. 根据权利要求1所述的磁悬浮马达,其中,所述转子环形件由导磁性材料制成,用于提供所述转子驱动磁体的各个部分之间的可导磁连接。
  19. 根据权利要求1所述的磁悬浮马达,其中,所述定子推力体位于所述定子线圈的上方、靠近所述定子齿的头部的位置处。
  20. 根据权利要求1所述的磁悬浮马达,其中,所述定子线圈配置成:能够产生与所述转子驱动磁体的每个部分的磁场对准的直轴分量磁场,用于调节所述转子组件的轴向位置;并且能够产生与所述转子驱动磁体的每个部分的磁场相差半个部分的长度而与其不对准的交轴分量磁场,用于驱动所述转子组件旋转并调节所述转子组件的旋转速度。
  21. 根据权利要求20所述的磁悬浮马达,其中,每个所述定子齿上均缠绕有所述定子线圈,每个所述定子线圈位于相应定子齿的根部和头部之间并且延伸相应定子齿的长度的一部分。
  22. 根据权利要求21所述的磁悬浮马达,其中,所述定子线圈分组互联,以形成多个可独立控制的定子线圈组。
  23. 根据权利要求22所述的磁悬浮马达,其中,每个所述定子线圈组连接至一个放大器,所述放大器用于使电流流入所述定子线圈组中的定子线圈中。
  24. 根据权利要求23所述的磁悬浮马达,其中,每个所述放大器能够独立地控制,以使不同大小的电流流入与该放大器连接的定子线圈组中的定子线圈中。
  25. 根据权利要求24所述的磁悬浮马达,其中,所述磁悬浮马达包括控制器,所述控制器配置成控制输入至每个所述放大器的电流输入值,以使每个定子线圈组中的电流符合该定子线圈组的电流设定值,从而控制所述转子组件的轴向运动、倾斜运动、和旋转运动中的至少一种。
  26. 根据权利要求25所述的磁悬浮马达,其中,所述控制器通过调节并控制输入至所述放大器的电流输入值而调节所述直轴分量磁场,从而调节并控制在所述转子组件上产生的轴向力,以确保所述转子组件和所述定子组件之间的轴向间隙符合设定的距离值。
  27. 根据权利要求25所述的磁悬浮马达,其中,所述控制器通过调节并控制输入至所述放大器的电流输入值而调节所述交轴分量磁场,从而调节并控制在所述转子组件上产生的旋转力矩,以确保所述转子组件的旋转速度符合设定的转速值。
  28. 根据权利要求25所述的磁悬浮马达,其中,所述控制器调节并控制对应于两个相对的所述部分的定子线圈的电流输入值,从而调节并控制在所述转子组件上产生的倾斜力矩,以确保所述转子组件的倾斜角符合设定的倾斜角度值。
  29. 根据权利要求25所述的磁悬浮马达,其中,所述磁悬浮马达包括一个或多个传感器,用于测量所述转子组件相对于所述定子组件的轴向位置、倾斜角度、和角位置中的至少一种。
  30. 根据权利要求29所述的磁悬浮马达,其中,所述控制器配置成接收来自所述一个或多个传感器的测量值并根据所述测量值调节所述定子线圈组的电流输入值而实施控制。
  31. 根据权利要求29所述的磁悬浮马达,其中,所述传感器是基于涡电流的传 感器或霍尔效应传感器。
  32. 根据权利要求1所述的磁悬浮马达,其中,所述定子齿的头部的尺寸大于所述定子齿的其它部分的尺寸。
  33. 根据权利要求32所述的磁悬浮马达,其中,所述定子齿的头部具有倒角或倾斜面,使得所述定子齿的头部呈楔形。
  34. 一种磁悬浮血泵,包括叶轮和根据权利要求1至33中的任意一项所述的磁悬浮马达,其中,所述磁悬浮马达用于驱动所述叶轮。
PCT/CN2021/101230 2020-10-29 2021-06-21 磁悬浮马达和磁悬浮血泵 WO2022088698A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21884439.7A EP4223356A4 (en) 2020-10-29 2021-06-21 MAGNETIC LEVITATION CIRCULATORY ASSISTANCE MOTOR AND PUMP
US18/034,518 US20230390546A1 (en) 2020-10-29 2021-06-21 Magnetic suspension motor and magnetic suspension blood pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011182801.6A CN112546425B (zh) 2020-10-29 2020-10-29 磁悬浮马达和磁悬浮血泵
CN202011182801.6 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022088698A1 true WO2022088698A1 (zh) 2022-05-05

Family

ID=75042734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101230 WO2022088698A1 (zh) 2020-10-29 2021-06-21 磁悬浮马达和磁悬浮血泵

Country Status (4)

Country Link
US (1) US20230390546A1 (zh)
EP (1) EP4223356A4 (zh)
CN (1) CN112546425B (zh)
WO (1) WO2022088698A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546425B (zh) * 2020-10-29 2021-07-23 苏州心擎医疗技术有限公司 磁悬浮马达和磁悬浮血泵
CN113082507B (zh) * 2021-05-12 2023-01-13 苏州大学 一种运用于人工心脏的磁悬浮装置
CN113765437A (zh) * 2021-09-15 2021-12-07 于振州 一种克服磁悬浮发电机反电动势阻力的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320290B1 (en) * 1999-09-01 2001-11-20 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitated motor
US20020153790A1 (en) * 2001-02-15 2002-10-24 Hideki Kanebako Magnetically levitated motor
CN102891636A (zh) * 2011-07-21 2013-01-23 天津昊高磁材有限公司 一种减小漏磁的磁悬浮电机
CN107302294A (zh) * 2016-04-14 2017-10-27 莱维特朗尼克斯有限责任公司 电磁旋转驱动器和旋转装置
US20190209752A1 (en) * 2018-01-10 2019-07-11 Tc1 Llc Bearingless implantable blood pump
US20190356195A1 (en) * 2018-05-18 2019-11-21 Levitronix Gmbh Electromagnetic rotary drive and rotational device
CN111561519A (zh) * 2019-02-14 2020-08-21 苏州心擎医疗技术有限公司 用于磁悬浮轴承的刚度增益机构、磁悬浮轴承和血泵
CN112546425A (zh) * 2020-10-29 2021-03-26 苏州心擎医疗技术有限公司 磁悬浮马达和磁悬浮血泵

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168187A (en) * 1991-02-20 1992-12-01 Dana Corporation, Warner Electric Brake & Clutch Division Axial pole stepping motor
US5742450A (en) * 1995-03-08 1998-04-21 International Business Machines Corporation Disk drive spindle motor with radial gap and field generating coils interconnected by ring flux guide
JP2007043887A (ja) * 2005-07-06 2007-02-15 Nippon Densan Corp モータ及びディスク駆動装置
KR20090074110A (ko) * 2006-03-31 2009-07-06 오퀴스 메디컬 코포레이션 회전식 혈액펌프
US9091271B2 (en) * 2010-08-20 2015-07-28 Thoratec Corporation Implantable blood pump
CN104747596B (zh) * 2013-12-30 2017-06-30 李国坤 有支点无摩擦径向永磁悬浮轴承
JP6577300B2 (ja) * 2015-08-27 2019-09-18 国立大学法人茨城大学 磁気浮上姿勢制御装置
EP3711785A1 (en) * 2019-03-19 2020-09-23 Abiomed Europe GmbH Blood pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320290B1 (en) * 1999-09-01 2001-11-20 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitated motor
US20020153790A1 (en) * 2001-02-15 2002-10-24 Hideki Kanebako Magnetically levitated motor
CN102891636A (zh) * 2011-07-21 2013-01-23 天津昊高磁材有限公司 一种减小漏磁的磁悬浮电机
CN107302294A (zh) * 2016-04-14 2017-10-27 莱维特朗尼克斯有限责任公司 电磁旋转驱动器和旋转装置
US20190209752A1 (en) * 2018-01-10 2019-07-11 Tc1 Llc Bearingless implantable blood pump
US20190356195A1 (en) * 2018-05-18 2019-11-21 Levitronix Gmbh Electromagnetic rotary drive and rotational device
CN111561519A (zh) * 2019-02-14 2020-08-21 苏州心擎医疗技术有限公司 用于磁悬浮轴承的刚度增益机构、磁悬浮轴承和血泵
CN112546425A (zh) * 2020-10-29 2021-03-26 苏州心擎医疗技术有限公司 磁悬浮马达和磁悬浮血泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4223356A4 *

Also Published As

Publication number Publication date
CN112546425A (zh) 2021-03-26
US20230390546A1 (en) 2023-12-07
EP4223356A4 (en) 2024-04-03
EP4223356A1 (en) 2023-08-09
CN112546425B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022088698A1 (zh) 磁悬浮马达和磁悬浮血泵
WO2020164371A1 (zh) 用于磁悬浮轴承的刚度增益机构、磁悬浮轴承和血泵
US8882477B2 (en) Magnetically levitated and driven blood pump and method for using the same
US6595762B2 (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
JP5719829B2 (ja) 心臓ポンプコントローラおよび心臓ポンプを制御する方法
KR101356414B1 (ko) 회전 혈액 펌프
JP6861461B2 (ja) 大静脈肺動脈インペラ補助装置
JP2002512333A (ja) ハイブリッド磁性ベアリングを備える埋め込み可能な遠心型血液ポンプ
US12090316B2 (en) High efficiency blood pump
JP2004072879A (ja) アキシャル磁気浮上回転モータおよびこれを用いた回転機器
RU2772509C1 (ru) Механизм для увеличения жесткости для подшипника на магнитной подвеске, подшипник на магнитной подвеске и насос для крови
JP2002130177A (ja) 磁気浮上型ポンプ
Shinshi Ventricular Assist Devices Utilizing Magnetic Bearing Systems
AU766439B2 (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
Horikawa et al. Study on a magnetic suspension of the rotor of an artificial heart

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18034518

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021884439

Country of ref document: EP

Effective date: 20230502

NENP Non-entry into the national phase

Ref country code: DE