WO2022086374A1 - Unité plasmique de pulvérisation pour produire des matériaux en poudre - Google Patents

Unité plasmique de pulvérisation pour produire des matériaux en poudre Download PDF

Info

Publication number
WO2022086374A1
WO2022086374A1 PCT/RU2021/050334 RU2021050334W WO2022086374A1 WO 2022086374 A1 WO2022086374 A1 WO 2022086374A1 RU 2021050334 W RU2021050334 W RU 2021050334W WO 2022086374 A1 WO2022086374 A1 WO 2022086374A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma torch
plasma
nozzle
symmetry
sprayed material
Prior art date
Application number
PCT/RU2021/050334
Other languages
English (en)
Russian (ru)
Inventor
Евгений Евгеньевич ЛИМАЧКО
Виктор Иванович КУЗЬМИН
Дмитрий Викторович СЕРГАЧЕВ
Original Assignee
Общество с ограниченной ответственностью "Империус Групп"
Евгений Евгеньевич ЛИМАЧКО
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Империус Групп", Евгений Евгеньевич ЛИМАЧКО filed Critical Общество с ограниченной ответственностью "Империус Групп"
Publication of WO2022086374A1 publication Critical patent/WO2022086374A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge

Definitions

  • Plasmatron for obtaining powder materials.
  • the invention relates to the field of plasma technology, in particular to means for obtaining powder particles suitable for use in powder metallurgy, additive technologies.
  • the resulting powder materials can be used in the aviation, energy, transport and rocket and space industries.
  • a device for producing metal powder (RU 2532215, class B22F 9/14, 2014) is known from the prior art, containing a water-cooled working chamber with a controlled atmosphere, a plasma torch installed in the upper part of the working chamber for forming a plasma flow, one or more devices for supplying bar material into the plasma flow and a powder collector installed in the lower part of the working chamber.
  • the working chamber is made with a working branch installed parallel to it, connected to it by means of the upper and lower bypass pipes, with the possibility of ensuring the circulation of the gas flow towards the movement of the flow of powder particles due to the installation of a fan in the lower bypass pipe.
  • the upper bypass pipe is located below the point of intersection of the plasma flow with the bar material, and the parallel working branch has an additional powder collector located in its lower part.
  • the disadvantage of the invention is the low speed of the spraying plasma jet, as a result of which particles with a size of less than 63 ⁇ m are not obtained at the installation, which are necessary, for example, for laser selective sintering, which limits the scope of the obtained powder.
  • SUBSTITUTE SHEET (RULE 26) Also known is an installation (US 5707419, class V01L9/26, publ. 01/13/1992) for producing powders by spraying wire or rods with thermal plasma flows, including a plasma unit consisting of three electric arc plasma torches with a self-adjusting arc length (SUDD), located in such a way in such a way that the jets converge at the top.
  • the sprayed material (rod or wire) is single-point fed into the plasma jet confluence zone by means of a winding device.
  • Plasmatrons are located symmetrically around the circumference in the chamber. The axes of the plasma torches are oriented at an angle of 30° to the feed axis.
  • the installation operates with an increased pulsation of the plasma jet velocity and an increased pulsation of the plasma jet temperature, which affects the heterogeneity of the fractional composition of the powder obtained by spraying rods or wire.
  • a single-point injection of the sprayed material significantly reduces the efficiency of using the energy of the plasma jet (the efficiency of heating the material with a plasma flow).
  • a single-point injection can break the axial symmetry of the dispersive plasma jet, which also leads to a broadening of the particle size distribution.
  • the prototype of the invention is an apparatus for obtaining powder particles (RU No. 2671034, class B22F 9/14, B01J 2/02, H05H 1/38, B22F2202/13, B22F2999/00, publ. 10/29/2018), containing an electric arc plasma torch made with the possibility of supplying the source material in the form of a rod or rod into the plasma, and a spray unit with nozzles for supplying the spray gas and a chamber for collecting powder particles.
  • the plasma torch is equipped with a nozzle with a supersonic part configured to feed the source material at an angle of 10-90° to the axis of the plasma torch with simultaneous rotation.
  • a spray block is installed with nozzles for supplying spray gas,
  • SUBSTITUTE SHEET (RULE 26) the number of which is from 2 to 16.
  • the axes of the nozzles do not intersect the axis of the plasma torch, and also do not intersect with each other.
  • the combination of a high value of the arc discharge current (>500 A) and its large-scale pulsations leads to an increase in the erosion of the cathode and anode and, accordingly, to a decrease in their service life, pollution of the plasma flow by erosion products.
  • the resource of the rod cathode which is used in plasma torches with SUDD, can vary from 8 to 40 hours. Erosion of the electrodes leads to the instability of the plasma jet, since the formation of a cavity on the surface of the cathode begins its intense destruction.
  • the arc spot is tied to the region of the cavity, as a result of which the generated plasma jet has an asymmetric profile.
  • the plasma flow rate decreases, which makes it problematic to obtain a fine powder fraction (particle size less than 40 microns.).
  • the problem solved by the invention is the improvement of the plasma sputtering unit for obtaining powder materials with a uniform input of the material being processed into the plasma jet, with minimal disturbances of the plasma jet and minimal fluctuations in its speed and temperature.
  • the technical result of the invention is to obtain a narrow-fraction composition of high quality powder materials.
  • the plasma torch for producing powder materials contains a nozzle and a node for introducing the sprayed material into the plasma stream.
  • the plasma torch is made with a sectioned interelectrode insert, and the sputtered material input unit is made in the form of channels symmetrically located relative to the longitudinal axis of symmetry of the plasma torch and at the same distance from each other in the form of rods or rods, the output ends of which are located in the plasma torch plasma channel with the possibility of locating the ends of the sprayed material in the outlet part of the plasma torch nozzle.
  • the angle a between the projections of the input channels on the plane perpendicular to the axis of symmetry of the plasma torch is 360°/n, where n is the number of input channels of the sprayed material, and the angle 0 between the axis of symmetry of the plasma torch and the longitudinal axis of the input channel of the sprayed material is from 45 to 90°.
  • the number n of the spray material input channels is from 2 to ?i*D/d, where D is the channel diameter, d is the diameter of the spray material rod.
  • the sprayed material in the form of a rod or rod has a diameter ranging from 0.5 mm to the diameter of the plasma torch nozzle.
  • the plasma torch nozzle is made in the form of a subsonic cylindrical or supersonic Laval nozzle.
  • the execution of the plasma torch with a sectioned interelectrode insert provides, in comparison with plasma torches with a self-adjusting arc length, a significantly higher operating voltage, good axial symmetry of the plasma jet and a minimum level of plasma flow velocity and temperature pulsations.
  • a significantly higher operating voltage makes it possible, while maintaining the same required power of the plasma flow, to reduce the current of the arc discharge and thus ensure low erosion of the cathode and anode materials and
  • SUBSTITUTE SHEET (RULE 26) eliminate, respectively, the contamination of the resulting powders with erosion products of the plasmatron electrodes.
  • the implementation of the input node of the sprayed material in the form of symmetrically located, relative to the longitudinal axis of symmetry of the plasma torch and at the same distance from each other, the channels of the input of the sprayed material does not violate the axial symmetry of the plasma flow, which favorably affects the stability, productivity of the spraying process, as well as obtaining predominantly monofractional powders.
  • the location of the outlet ends of the rods or rods of the sprayed material in the plasma torch plasma channel, in the outlet part of the plasma torch nozzle provides the ability to control, in a wide range, the speed of the outflow of plasma jets and allows you to control the particle size of the resulting powder materials.
  • such a design of the sputtering material input unit provides an increase in the efficiency of using the energy of the plasma jet, i.e. higher efficiency heating.
  • the execution of the angle a between the projections of the input channels on the plane perpendicular to the axis of symmetry of the plasma torch is 360°/n, which ensures geometric symmetry.
  • the number of input channels from 2 to n is limited by the fact that the wires should not come into contact with each other before they are melted, otherwise the nozzle will clog, and, consequently, pulsations of the plasma jet parameters will appear, which lead to a broadening of the fractional composition of the resulting powder.
  • the implementation of the plasma channel in the form of a conventional nozzle that implements subsonic plasma outflow modes, or in the form of a Laval nozzle for generating supersonic plasma jets, makes it possible to control the plasma jet outflow rate over a wide range, which makes it possible to control the particle size of the resulting powder materials.
  • Fig. 1 shows a plasma sputtering unit for the production of powder materials, fig. 3 - section A-A;
  • Fig. 4 is a graph of particle size distribution of stainless steel powders obtained with various nozzles.
  • the plasma sputtering unit for producing powder materials includes a plasma torch 1 for generating plasma flows with a sectioned interelectrode insert coupled with a nozzle 2 of a multipoint plasma input unit 3.
  • the input channels 4 of the rod or bar 5 are arranged symmetrically with respect to the longitudinal axis 6 of symmetry of the plasma torch 1.
  • the angle a between the projections of the input channels 4 on the plane perpendicular to the axis of symmetry of the plasma torch 1 is 360°/n, where n is the number of channels 4 for input of the sprayed material.
  • Angle 0 between the longitudinal axis 6 of symmetry of the plasma torch 1 and the channel 4 of the input of the sprayed material is from 45 to 90°.
  • Plasma sputtering unit for obtaining powder materials works as follows.
  • the plasma torch 1 with a sectioned interelectrode insert generates a thermal plasma flow that flows out at a given speed.
  • the velocity of the plasma jet depending on the configuration of the plasma channel (subsonic nozzle, or supersonic Laval nozzle),
  • SUBSTITUTE SHEET (RULE 26) can be both subsonic and supersonic.
  • the axial symmetry of the dispersive plasma jet is not violated due to the synchronous introduction of the rods 5 into the core of the plasma jet.
  • the formed film breaks off from the sprayed material in the form of spherical particles (due to surface tension forces) and is collected in the powder materials collection unit (not shown in the figure).
  • the powder was obtained on a plasma torch with a sectioned interelectrode insert.
  • the input node symmetrically to the longitudinal axis of the plasma torch, there are 2 channels.
  • a cylindrical nozzle with D 6 mm was used in the experiment.
  • Rod diameter 1 mm.
  • FIG. 4 shows the particle distributions of stainless steel powders obtained with the spray unit in question.
  • a powder with an average particle size of 95 ⁇ m was obtained, the parameters characterizing the distribution width dlO and d90 were 54 and 140 ⁇ m. Powder with such parameters can be used for plasma powder spraying and laser cladding (Direct Metal Deposition) without additional screening.
  • FIG. 4 shows the particle distributions of stainless steel powders obtained with the spray unit in question. This powder can be used in laser selective sintering technology in laser 3D printers without additional screening.
  • the commercially available PH1 grade powder used has an average size of 39 ⁇ m, dlO and d90 of 22 and 59 ⁇ m, respectively.
  • this powder was obtained in several stages: gas atomization, heat treatment and screening.
  • Plasma spraying unit allows to obtain a powder of narrow fraction composition. This powder does not require additional screening and heat treatment even when using technologies such as laser selective sintering.
  • the plasma sputtering unit for producing powder material is currently at the stage of assembling a pilot plant.

Landscapes

  • Plasma Technology (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'invention concerne une unité plasmique de pulvérisation pour produire des matériaux en poudre, et se rapporte à un plasmotron pour produire des matériaux en poudre. Ce plasmotron comprend une buse et une unité d'introduction de matériau à pulvériser dans un flux de plasma. Le plasmotron comprend un insert inter-électrodes à sections. L'unité d'introduction de matériau à pulvériser se présente sous forme de canaux d'introduction de matériaux à pulvériser qui sont disposés symétriquement par rapport à l'axe longitudinal de symétrie du plasmotron et à une même distance les uns des autres, et se présentent sous forme de tiges ou de barres dont les extrémités de sortie sont disposées dans un canal plasmique du plasmotron de manière à pouvoir placer les extrémités du matériau à pulvériser dans la partie de sortie de la buse du plasmotron. L'angle α entre les projections des canaux d'entrée dans le plan perpendiculaire à l'axe à l'axe de symétrie du plasmotron est de 360°/n, où n est le nombre de canaux d'entrée du matériau à pulvériser. L'angle β entre l'axe de symétrie du plasmotron et l'axe longitudinal du canal d'entrée du matériau à pulvériser varie de 45° à 90°. Il est ainsi possible d'obtenir une composition à fraction étroite de matériaux en poudre ayant une meilleure qualité.
PCT/RU2021/050334 2020-10-19 2021-10-08 Unité plasmique de pulvérisation pour produire des matériaux en poudre WO2022086374A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2020134249A RU2749533C1 (ru) 2020-10-19 2020-10-19 Плазмотрон для получения порошковых материалов
RU2020134249 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022086374A1 true WO2022086374A1 (fr) 2022-04-28

Family

ID=76377498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2021/050334 WO2022086374A1 (fr) 2020-10-19 2021-10-08 Unité plasmique de pulvérisation pour produire des matériaux en poudre

Country Status (2)

Country Link
RU (1) RU2749533C1 (fr)
WO (1) WO2022086374A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2406592C2 (ru) * 2009-02-24 2010-12-20 Учреждение Российской академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН Способ и установка для получения нанопорошков с использованием трансформаторного плазмотрона
RU2588931C1 (ru) * 2015-01-20 2016-07-10 Общество с ограниченной ответственностью "НОРМИН" Способ получения ультрадисперсных порошков металла или металлических сплавов
RU2593061C1 (ru) * 2015-01-20 2016-07-27 Общество с ограниченной ответственностью "НОРМИН" Способ получения ультрадисперсных порошков титана
RU2671034C1 (ru) * 2017-08-28 2018-10-29 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Установка для получения частиц порошка и способ ее работы

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462405A (en) * 1987-08-31 1989-03-08 Ishikawajima Harima Heavy Ind Apparatus for producing rotating disk type metal powder
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2406592C2 (ru) * 2009-02-24 2010-12-20 Учреждение Российской академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН Способ и установка для получения нанопорошков с использованием трансформаторного плазмотрона
RU2588931C1 (ru) * 2015-01-20 2016-07-10 Общество с ограниченной ответственностью "НОРМИН" Способ получения ультрадисперсных порошков металла или металлических сплавов
RU2593061C1 (ru) * 2015-01-20 2016-07-27 Общество с ограниченной ответственностью "НОРМИН" Способ получения ультрадисперсных порошков титана
RU2671034C1 (ru) * 2017-08-28 2018-10-29 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Установка для получения частиц порошка и способ ее работы

Also Published As

Publication number Publication date
RU2749533C1 (ru) 2021-06-11

Similar Documents

Publication Publication Date Title
CN106457180B (zh) 通过雾化以伸长部件的形式的原材料制造粉末粒子的方法和设备
US4982067A (en) Plasma generating apparatus and method
US9376740B2 (en) Plasma systems and methods including high enthalpy and high stability plasmas
US5144110A (en) Plasma spray gun and method of use
US8080759B2 (en) Multi-electrode plasma system and method for thermal spraying
EP2116112B1 (fr) Dispositif et procédé de pulvérisation par plasma
CA2830431C (fr) Dispositif de projection plasma a alimentation axiale
US11839918B2 (en) Method and apparatus for producing high purity spherical metallic powders at high production rates from one or two wires
EP1801256A1 (fr) Procedé hybride de Plasma-pulvérisation à froid et appareil
KR20110134406A (ko) 측면 분사기를 가진 플라즈마 토치
WO2012067546A2 (fr) Dispositif pour la production de suie contenant des fullerènes
JP2020528106A (ja) スラスタ支援プラズマ微粒化を使用した大量の超微細球状粉末の費用効率の良い生産方法
GB2367521A (en) Electric arc metal spraying
CN101954324B (zh) 一种低压等离子喷涂用等离子喷枪
RU2749533C1 (ru) Плазмотрон для получения порошковых материалов
USRE33803E (en) Gas laser with at least one excitation tube wherethrough gas is actually flowing
RU142250U1 (ru) Плазмотрон для напыления
JP4164610B2 (ja) プラズマ溶射装置
RU2092981C1 (ru) Плазмотрон для напыления порошковых материалов
RU2366122C1 (ru) Плазмотрон для нанесения покрытий
RU142944U1 (ru) Плазменная горелка для напыления металлов и окислов
RU2743474C2 (ru) Способ плазменного производства порошков неорганических материалов и устройство для его осуществления
RU190126U1 (ru) Плазмотрон для напыления
RU2818187C1 (ru) Электродуговой плазмотрон и узел кольцевого ввода исходных реагентов в плазмотрон
Anshakov et al. Laboratory and technological electric-arc plasma generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883396

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2023)