WO2022086169A1 - Method and apparatus for managing beam for cell-to-cell cooperative communication in wireless communication system - Google Patents

Method and apparatus for managing beam for cell-to-cell cooperative communication in wireless communication system Download PDF

Info

Publication number
WO2022086169A1
WO2022086169A1 PCT/KR2021/014704 KR2021014704W WO2022086169A1 WO 2022086169 A1 WO2022086169 A1 WO 2022086169A1 KR 2021014704 W KR2021014704 W KR 2021014704W WO 2022086169 A1 WO2022086169 A1 WO 2022086169A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
control
message
trp
pdcch
Prior art date
Application number
PCT/KR2021/014704
Other languages
French (fr)
Korean (ko)
Inventor
정의창
윤수하
노훈동
박진현
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2022086169A1 publication Critical patent/WO2022086169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to cell-to-cell cooperative communication using a plurality of cells.
  • the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or the LTE system after (Post LTE).
  • the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band).
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna technologies are being discussed.
  • cloud radio access network cloud radio access network: cloud RAN
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Technology development is underway.
  • CoMP Coordinated Multi-Points
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
  • FBMC Filter Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • IoT an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
  • 5G communication technology is implemented by techniques such as beam forming, MIMO, and array antenna.
  • cloud radio access network cloud RAN
  • CoMP Coordinatd multi-point
  • CoMP is a technology that reduces inter-cell interference and increases the throughput of the UE at the cell boundary by enabling neighboring cells to cooperate with each other so that not only the serving cell but also other cells can communicate with the same UE.
  • the present disclosure provides a plurality of transmission reception point (TRP) (hereinafter, Multiple TRP)-based CoMP (eg, NC-JT (non- We propose various techniques for coherent joint transmission). Specifically, a signaling method for instructing a PDCCH beam change or update operation of each TRP in multiple scenarios of a multi-cell group including different cells is proposed. In addition, a method of instructing a PDCCH transmission beam change or update operation of each TRP for two or more different cells (serving cell, non-serving cell) with one signaling is proposed.
  • TRP transmission reception point
  • NC-JT non-JT
  • an inter-cell multi-transmission reception point (multi-TRP) operation receiving a setting message related to; receiving a control message from a node of a first cell related to the inter-cell multi-TRP operation; checking a change in a beam through which a physical downlink control channel (PDCCH) is transmitted from a node of a second cell related to the inter-cell multi-TRP operation based on the configuration message and the control message; and receiving the PDCCH from the node of the second cell through the changed beam based on the confirmation result.
  • PDCH physical downlink control channel
  • an inter-cell multi-transmission reception point (multi-TRP) operation Transmitting a configuration message related to (operation) to the terminal; and transmitting a control message to the terminal through a node of the first cell related to the inter-cell multi-TRP operation, Physical downlink from the node of the second cell related to the inter-cell multi-TRP operation is characterized in that it is based on configuration information included in the configuration message and control information included in the control message.
  • PDCCH physical downlink control channel
  • a transceiver in a terminal of a wireless communication system, a transceiver; and controlling the transceiver to receive a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation, and a first cell related to the inter-cell multi-TRP operation controls the transceiver to receive a control message from a node of Downlink control channel (PDCCH) includes a control unit that controls to confirm a change in the transmitted beam, and controls the transceiver to receive the PDCCH from the node of the second cell through the changed beam based on the result of the confirmation characterized in that
  • PDCCH Downlink control channel
  • a transceiver in a base station of a wireless communication system, a transceiver; and controlling the transceiver to transmit a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation to the terminal, and a first related to the inter-cell multi-TRP operation a control unit for controlling the transceiver to transmit a control message to the terminal through a node of one cell;
  • the change of the beam through which the control channel (PDCCH) is transmitted is characterized in that it is based on configuration information included in the configuration message and control information included in the control message.
  • the UE in various scenarios of a multi-cell group including different cells, the UE effectively determines the change of the PDCCH transmission beam and updates the link with the changed beam, so that the beam management is more efficient. can operate
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
  • FIG. 3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
  • Control Resource Set Control Resource Set, CORESET
  • FIG. 6 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
  • 8A is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
  • 8B is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
  • 8C is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
  • 8D is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating a CORESETPoolIndex setting method of M-TRP based on Multi-DCI according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating a method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart illustrating a process in which a terminal and a base station transmit and receive signals for a multi-TRP operation according to an embodiment of the present disclosure.
  • 14A is a diagram illustrating a beam management procedure according to an embodiment.
  • 14B is a diagram illustrating a beam management procedure according to an embodiment.
  • 15 is a diagram illustrating a MAC CE-based beam indication method according to an embodiment of the present disclosure.
  • 16 is a diagram illustrating a MAC CE format for MAC CE-based beam indication according to an embodiment.
  • 17 is a flowchart illustrating an operation of instructing an intra-cell beam change according to an embodiment.
  • 18A is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
  • 18B is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
  • 18C is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
  • 18D is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
  • 19 is a flowchart illustrating a method of instructing an inter-cell beam change according to the first embodiment of the present disclosure.
  • 20A is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
  • 20B is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
  • 20C is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
  • 20D is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
  • 21 is a flowchart illustrating a method of simultaneously instructing to change beams of a first cell and a second cell through one control message according to a second embodiment of the present disclosure.
  • 22 is a flowchart illustrating an operation of a terminal according to the first embodiment of the present disclosure.
  • FIG. 23 is a flowchart illustrating an operation of a terminal according to a second embodiment of the present disclosure.
  • 24 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • 25 is a diagram illustrating the structure of a terminal according to an embodiment of the present invention.
  • 26 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flow chart block(s) may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible that instructions for performing the processing equipment provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles do.
  • '-part' is not limited to software or hardware.
  • ' ⁇ ' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the base station is a subject that performs resource allocation of the terminal, and may be at least one of gNode B, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • a computer or a multimedia system capable of performing a communication function.
  • a description will be given of a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after the 4 th generation (4G) system with Internet of Things (IoT) technology, and a system thereof.
  • the present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • a wireless communication system for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2 HRPD (High Rate Packet Data), UMB (Ultra Mobile Broadband), and IEEE 802.16e, such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
  • HSPA High Speed Packet Access
  • LTE-A Long Term Evolution-A
  • LTE-Pro LTE-Pro
  • 3GPP2 HRPD High Rate Packet Data
  • UMB Ultra Mobile Broadband
  • IEEE 802.16e such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
  • Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals.
  • the multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources for each user to transmit data or control information so that they do not overlap each other, that is, orthogonality is established. .
  • the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported.
  • Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
  • the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by existing LTE, LTE-A, or LTE-Pro.
  • the eMBB should be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station.
  • it is necessary to provide an increased user perceived data rate of the terminal.
  • transmission/reception technology including a more advanced multi-input multi-output (MIMO) transmission technology.
  • MIMO multi-input multi-output
  • mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system.
  • IoT Internet of Things
  • mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell.
  • a terminal supporting mMTC is highly likely to be located in a shaded area that a cell cannot cover, such as the basement of a building, due to the nature of the service, it may require wider coverage compared to other services provided by the 5G communication system.
  • a terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
  • URLLC as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or machine, industrial automation
  • a service used in an unmaned aerial vehicle, remote health care, emergency alert, etc. it is necessary to provide communication that provides ultra-low latency and ultra-reliability.
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller transmit time interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required.
  • TTI transmit time interval
  • the aforementioned mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
  • each service considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
  • the embodiment of the present invention will be described below using LTE, LTE-A, LTE Pro, or NR system as an example, the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present invention can be applied to other communication systems through some modifications within the scope of the present invention as judged by a person having skilled technical knowledge.
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • a basic unit of a resource in the time and frequency domain is a resource element (RE) (1-01) as 1 OFDM (orthogonal frequency division multiplexing) symbol (1-02) on the time axis and 1 subcarrier on the frequency axis It can be defined as (1-03).
  • RE resource element
  • 1-02 1 OFDM (orthogonal frequency division multiplexing) symbol
  • 1-03 resource block
  • RB resource block
  • FIG. 2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
  • FIG. 2 an example of a structure of a frame 2-00, a subframe 2-01, and a slot 2-02 is illustrated in FIG. 2 .
  • One frame (2-00) may be defined as 10 ms.
  • One subframe (2-01) may be defined as 1 ms, and one frame (2-00) may consist of a total of 10 subframes (2-01).
  • One subframe (2-01) may consist of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per one subframe (2-01) may be different depending on the set value ⁇ (2-04, 2-05) for the subcarrier spacing.
  • each subcarrier spacing setting ⁇ and may be defined as in [Table 1] below.
  • one component carrier (CC) or serving cell may consist of up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth (serving cell bandwidth) like LTE, the power consumption of the terminal may be extreme, and in order to solve this, the base station provides one or more bandwidth parts (BWP) to the terminal. It can be configured to support the UE to change the reception area within the cell.
  • BWP bandwidth parts
  • the base station may set 'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through the MIB. Thereafter, the base station sets the initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI). . Thereafter, the base station may indicate which band the terminal uses by announcing the BWP ID through DCI. If the terminal does not receive DCI in the currently allocated BWP for a specific time or longer, the terminal returns to the 'default BWP' and attempts to receive DCI.
  • 'initial BWP' which is the bandwidth of CORESET #0 (or common search space, CSS)
  • the base station sets the initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI).
  • DCI downlink control
  • FIG. 3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
  • the terminal bandwidth 3-00 may include two bandwidth portions, namely, a bandwidth portion #1(3-05) and a bandwidth portion #2(3-10).
  • the base station may set one or more bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
  • Setting information 1 Bandwidth in the bandwidth portion (number of PRBs that make up the bandwidth portion)
  • Setting information 2 The frequency position of the bandwidth part (such information may include an offset value compared to the reference point A, and the reference point may include, for example, the center frequency of a carrier wave, a synchronization signal, a synchronization signal raster, etc.)
  • Setting information 3 Numerology of the bandwidth part (eg, subcarrier spacing, CP (Cyclic Prefix) length, etc.) etc.
  • various parameters related to the bandwidth portion may be set in the terminal.
  • the above-described information may be transmitted by the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling, or may be dynamically transmitted through a MAC control element (MAC CE) or DCI.
  • MAC CE MAC control element
  • the setting of the bandwidth part supported by the above-described 5G communication system may be used for various purposes.
  • the bandwidth supported by the terminal when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported by setting the bandwidth portion. For example, in [Table 2], the frequency position of the bandwidth part (setting information 2) is set for the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
  • the base station may configure a plurality of bandwidth portions for the terminal. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to an arbitrary terminal, two bandwidth portions may be configured to use a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be subjected to frequency division multiplexing (FDM), and when data is transmitted/received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
  • FDM frequency division multiplexing
  • the base station may configure a bandwidth portion having different sizes of bandwidths for the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits/receives data using the corresponding bandwidth, very large power consumption may be caused. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation in which there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In the absence of traffic, the UE may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
  • FIG. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
  • the base station may set one or more bandwidth parts to the terminal, and as settings for each bandwidth part, the bandwidth of the bandwidth part, the frequency position of the bandwidth part, Information on the numerology of the bandwidth part may be informed to the terminal.
  • bandwidth portion #1 bandwidth portion #1
  • BWP#2, 4- 10 bandwidth portion #2
  • One or a plurality of bandwidth portions may be activated among the set bandwidths, and an example in which one bandwidth portion is activated may be considered in FIG. 4 .
  • the bandwidth part #1 (4-02) is activated among the set bandwidth parts, and the terminal controls the control region #1 ( 4-45) may monitor a Physical Downlink Control Channel (PDCCH), and may transmit/receive data 4-55 in bandwidth part #1 (4-05).
  • a control region in which the terminal receives the PDCCH may be different depending on which bandwidth portion among the configured bandwidth portions is activated, and accordingly, the bandwidth in which the terminal monitors the PDCCH may vary.
  • the base station may additionally transmit an indicator for changing the configuration of the bandwidth portion to the terminal.
  • changing the setting for the bandwidth portion may be considered the same as an operation of activating a specific bandwidth portion (eg, changing the activation from the bandwidth portion A to the bandwidth portion B).
  • the base station may transmit a configuration switching indicator to the terminal in a specific slot.
  • the terminal After receiving the configuration change indicator from the base station, the terminal may determine a bandwidth portion to be activated by applying the changed configuration according to the configuration change indicator from a specific time point.
  • the UE may perform monitoring for the PDCCH in the control region set in the activated bandwidth portion.
  • the base station instructs the terminal to change the activated bandwidth part from the existing bandwidth part #1 (4-05) to the bandwidth part #2 (4-10) (Configuration Switching Indication, 4-15) can be transmitted in slot #1 (4-30).
  • the terminal may activate the bandwidth part #2 (6-10) according to the content of the indicator.
  • a transition time (4-20) for changing the bandwidth portion may be required, and accordingly, a time point for changing and applying the active bandwidth portion may be determined.
  • 4 shows a case in which a transition time 4-20 of one slot is required after receiving the setting change indicator 4-15. In the transition time (4-20), data transmission/reception may not be performed (4-60). Accordingly, the bandwidth part #2 (4-10) is activated in the slot #2 (4-35), so that the control channel and data can be transmitted/received through the corresponding bandwidth part.
  • the base station may preset one or more bandwidth parts to the terminal as higher layer signaling (eg, RRC signaling), and the configuration change indicator 4-15 is activated in a way that is mapped with one of the bandwidth part settings preset by the base station. can be instructed.
  • an indicator of log 2 N bits may indicate by selecting one of N preset bandwidth parts.
  • [Table 3] below an example of indicating configuration information for a bandwidth portion using a 2-bit indicator is described.
  • Bandwidth Partial Settings 00 Bandwidth setting A set by upper layer signaling 01
  • Bandwidth setting B set with higher layer signaling 10
  • Bandwidth setting C set with higher layer signaling 11
  • Bandwidth setting D set by higher layer signaling
  • the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 is in the form of MAC (Medium Access Control) CE (Control Element) signaling or L1 signaling (eg, common DCI, group-common DCI, terminal-specific DCI) may be transmitted from the base station to the terminal.
  • MAC Medium Access Control
  • CE Control Element
  • L1 signaling eg, common DCI, group-common DCI, terminal-specific DCI
  • the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 from which point in time the bandwidth portion activation is applied may depend on the following. From which point in time the setting change is applied, it follows a predefined value (eg, it is applied from N ( ⁇ 1) slots after receiving the setting change indicator), or is set from the base station to the UE through higher layer signaling (eg RRC signaling), or , may be partially included in the contents of the setting change indicator 4-15 and transmitted. Alternatively, the timing at which the setting change is applied may be determined by a combination of the above-described methods. After receiving the configuration change indicator 4-15 for the bandwidth portion, the terminal may apply the changed configuration from the point in time obtained by the above-described method.
  • a predefined value eg, it is applied from N ( ⁇ 1) slots after receiving the setting change indicator
  • RRC signaling eg RRC signaling
  • Control Resource Set Control Resource Set, CORESET
  • control region #1 (5-01), control Area #2 (5-02)
  • the control regions 5-01 and 5-02 may be set in a specific frequency resource 5-03 within the entire terminal bandwidth portion 5-10 on the frequency axis.
  • the control regions 5-01 and 5-02 may be set with one or more OFDM symbols on the time axis, and may be defined by a control region length (Control Resource Set Duration, 5-04).
  • the control region #1 (5-01) is set to a control region length of two symbols
  • the control region #2 (5-02) is set to a control region length of one symbol.
  • the control region in the 5G system described above may be set by the base station to the terminal through higher layer signaling (eg, system information, master information block (MIB), radio resource control (RRC) signaling).
  • Setting the control region to the terminal means providing the terminal with information such as a control region identifier (Identity), a frequency position of the control region, and a symbol length of the control region.
  • information according to Table 4 may be included in the information for setting the control region to the terminal.
  • ControlResourceSet SEQUENCE ⁇ -- Corresponds to L1 parameter 'CORESET-ID' controlResourceSetId ControlResourceSetId, (Control area identifier (Identity)) frequencyDomainResources BIT STRING (SIZE (45)), (frequency axis resource allocation information) duration INTEGER (1..maxCoReSetDuration), (Time axis resource allocation information) cce-REG-MappingType CHOICE ⁇ (CCE-to-REG mapping method) interleaved SEQUENCE ⁇ reg-BundleSize ENUMERATED ⁇ n2, n3, n6 ⁇ , (REG bundle size) precoderGranularity ENUMERATED ⁇ sameAsREG-bundle, allContiguousRBs ⁇ , interleaverSize ENUMERATED ⁇ n2, n3, n6 ⁇ (interleaver size) shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPT
  • tci-StatesPDCCH configuration information includes one or more synchronization signal (SS)/physical broadcast channel (PBCH) blocks in a quasi co-located (QCL) relationship with a demodulation reference signal (DMRS) transmitted in the corresponding control region.
  • block (referred to as an SSB or SS/PBCH block) index or CSI-RS (channel state information reference signal) index information may be included.
  • one or more different antenna ports may be associated with each other by QCL configuration as shown in Table 5 below.
  • QCL-Info :: SEQUENCE ⁇ cell ServCellIndex (Serving cell index to which QCL reference RS is transmitted) bwp-Id BWP-Id (bandwidth partial index over which QCL reference RS is transmitted) referenceSignal CHOICE ⁇ (indicator indicating one of CSI-RS or SS/PBCH block as QCL reference RS) csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index ⁇ , qcl-Type ENUMERATED ⁇ typeA, typeB, typeC, typeD ⁇ , (QCL type indicator) ... ⁇
  • the QCL setting can connect two different antenna ports in a relationship between a (QCL) target antenna port and a (QCL) reference antenna port, and the terminal can perform statistical characteristics (e.g., For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal) are set to the target antenna port. It can be applied (or assumed) upon reception.
  • statistical characteristics e.g., For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal
  • the target antenna port means an antenna port for transmitting a channel or signal set by upper layer setting including the QCL setting, or an antenna port for transmitting a channel or signal to which a TCI state indicating the QCL setting is applied.
  • the reference antenna port means an antenna port for transmitting a channel or signal indicated (specific) by a referenceSignal parameter in the QCL configuration.
  • the statistical characteristics of the channel defined by the QCL setting may be classified according to the QCL type as follows.
  • ⁇ 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the types of QCL type are not limited to the above four types, but all possible combinations are not listed in order not to obscure the gist of the description.
  • the bandwidth and transmission period of the target antenna port are both sufficient compared to the reference antenna port (that is, the number of samples and the transmission band/time of the target antenna port in both the frequency axis and the time axis are the number of samples and transmission of the reference antenna port. More than band/time)
  • QCL-TypeB is a QCL type used when the bandwidth of the target antenna port is sufficient to measure measurable statistical characteristics on the frequency axis, that is, Doppler shift and Doppler spreads.
  • QCL-TypeC is a QCL type used when the bandwidth and transmission period of the target antenna port are insufficient to measure second-order statistics, that is, Doppler spread and delay spreads, so that only first-order statistics, that is, Doppler shift and average delay, can be referred to. .
  • QCL-TypeD is a QCL type set when spatial reception filter values used when receiving a reference antenna port can be used when receiving a target antenna port.
  • the base station prefferably set or instruct up to two QCL settings to one target antenna port through the TCI state setting as shown in Table 6 below.
  • TCI-State SEQUENCE ⁇ tci-StateId TCI-StateId, (TCI state indicator) qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied) qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, -- Need R ... ⁇
  • the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC.
  • the settable QCL type is specified according to the types of the target antenna port and the reference antenna port and will be described in detail below.
  • the second QCL setting among the two QCL settings included in the one TCI state setting may be set to QCL-TypeD, and may be omitted in some cases.
  • FIG. 6 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
  • the terminal may perform a procedure of reporting the capability supported by the terminal to the corresponding base station while connected to the serving base station.
  • this may be referred to as UE capability report.
  • the base station may transmit a UE capability inquiry message for requesting a capability report to the terminal in the connected state (610).
  • the UE capability inquiry message may include a UE capability request for each RAT type.
  • the request for each RAT type may include requested frequency band information.
  • the UE capability enquiry message may include a plurality of RAT types in one RRC message container.
  • a UE capability enquiry message including a request for each RAT type may be delivered to the UE multiple times. That is, the UE capability enquiry message is repeatedly transmitted a plurality of times, and the UE may configure and report a corresponding UE capability information message.
  • the base station may request UE capability for MR-DC including NR, LTE, and EN-DC.
  • the base station may transmit a UE capability inquiry message after the terminal is connected, and may also request a UE capability report under any conditions when the base station is needed.
  • the terminal may configure or acquire UE capability according to the RAT type and band information included in the UE capability enquiry message.
  • the UE capability may include information on whether the terminal supports the multi-TRP operation. Also, the UE Capability may include information on whether the UE supports multi-TRP operation for inter-cell. Accordingly, the UE capability may be referred to as a Multi-TRP related capability.
  • the terminal may transmit a UE capability information message including the UE capability to the base station (602).
  • the base station may then perform scheduling and transmission/reception management appropriate for the corresponding terminal based on the UE capability received from the terminal.
  • FIG. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
  • FIG. 7 an example of radio resource allocation for each transmission reception point (TRP) according to a joint transmission (JT) technique and a situation is illustrated.
  • FIG. 7 are diagrams illustrating coherent joint transmission (C-JT) supporting coherent precoding between each cell, TRP, and/or beam.
  • C-JT coherent joint transmission
  • TRP A (7-05) and TRP B (7-10) transmit the same data (PDSCH), and joint precoding can be performed in multiple TRPs.
  • This may mean that the same DMRS ports (eg, DMRS ports A and B in both TRPs) are transmitted from TRP A (7-05) and TRP B (7-10).
  • the terminal may receive one piece of DCI information for receiving one physical downlink shared channel (PDSCH) demodulated by the reference signal received through DMRS ports A and B.
  • PDSCH physical downlink shared channel
  • NC-JT non-coherent joint transmission
  • different PDSCHs may be transmitted in each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH.
  • This may mean that different DMRS ports (eg, DMRS port A in TRP A, DMRS port B in TRP B) are transmitted from TRP A (7-25) and TRP B (7-30).
  • the UE may receive two types of DCI information for receiving PDSCH A demodulated by DMRS port A and PDSCH B demodulated by another DMRS port B.
  • NC-JT which transmits data from two or more transmission points to one terminal at the same time
  • PDSCHs transmitted from two (or more) different transmission points are allocated through a single PDCCH, or two It is necessary to allocate PDSCHs transmitted from the above different transmission points.
  • the UE acquires a QCL (quasi co-location) connection relationship between each reference signal or channel based on L1/L2/L3 signaling, and through this, efficiently estimates large scale parameters of each reference signal or channel can do. If the transmission point of the reference signal or channel is different, since large scale parameters are difficult to share with each other, when performing cooperative transmission, the base station simultaneously informs the terminal of quasi co-location information for two or more transmission points. It is necessary to inform through two or more TCI states.
  • non-coherent cooperative transmission is supported through multiple PDCCHs, that is, when two or more PDCCHs allocate two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, two or more TCI states are each PDCCH It may be allocated to each PDSCH to DMRS ports, respectively.
  • the two or more TCI states are one It may be allocated to each PDSCH to DMRS ports through the PDCCH of .
  • the DMRS ports allocated to the terminal at a specific time are divided into a DMRS port group A transmitted from a transmission point A and a DMRS port group B transmitted from a transmission point B, two or more TCI states are respectively connected to the DMRS port group. and a channel can be estimated based on different QCL assumptions for each group.
  • different DMRS ports may be subjected to code division multiplexing (CDM), frequency division multiplexing (FDM), or time domain multiplexing (TDM) in order to increase channel measurement accuracy and reduce transmission burden at the same time.
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • TDM time domain multiplexing
  • CDM group when the DMRS ports used for CDM are collectively referred to as the CDM group, code-based multiplexing works well when the channel characteristics of each port are similar to the DMRS ports in the CDM group (that is, if the channel characteristics of each port are similar, OCC (orthogonal It may be important to ensure that DMRS ports existing in the same CDM group do not have different TCI states because they are distinguished by the cover code).
  • a node may mean a physical or logical node in a wireless communication system that transmits and receives data with a terminal through a specific cell.
  • the node may mean a transmission/reception point (hereinafter, TRP), a base station, an evolved node B (eNodeB or eNB), a next generation node B (gNodeB, or gNB), and the like.
  • the first node may mean TRP for transmitting and receiving data to and from the terminal through the first cell
  • the second node is physically separated or separated from the first node and is different from the first cell. It may mean TRP for transmitting and receiving data with the terminal through the second cell.
  • the operation of transmitting data through a plurality of TRPs as described above may be referred to as a multi-TRP (M-TRP) operation.
  • M-TRP multi-TRP
  • an operation of transmitting data through a plurality of cells in a plurality of TRPs as described above may be referred to as an inter cell multi-TRP operation.
  • the plurality of cells may mean each cell operated by a plurality of base stations, may mean a plurality of cells operated by one base station, or a combination thereof.
  • the present disclosure proposes a method for the inter cell multi TRP operation.
  • an inter-cell can be configured through inter-cell configuration information, and the inter-cell configuration information includes a unit and method for configuring an inter-cell, a unit and method for grouping cells, and a method for identifying the cell.
  • the inter-cell configuration information includes a unit and method for configuring an inter-cell, a unit and method for grouping cells, and a method for identifying the cell.
  • At least one of information eg, cell id, serving cell id, physical cell id
  • the embodiment of the present disclosure is not limited thereto, and the above-described information may not be included in the inter-cell configuration information, and any information related to the inter-cell may be included.
  • the inter-cell configuration information may include SSB pattern (ssb-PositionsInBurst, ssb-periodicityServingCell), sub-carrier spacing (subcarrier Spacing), frequency (absoluteFrequencySSB), and the like.
  • the inter-cell configuration information refers to cell configuration information for inter-cell cooperative transmission, and may also be referred to as configuration information, cell configuration information, or the like.
  • the present disclosure may be applied to inter-cell multi-TRP cooperative transmission through serving cells and inter-cell multi-TRP cooperative transmission through serving cells and non-serving cells.
  • 8A to 8D are diagrams illustrating scenarios of configuring multi-TRP according to an embodiment of the present disclosure.
  • FIGS. 8A to 8D illustrate scenarios that can be used for cooperative communication between base stations (inter-gNB) or between cells within a base station (intra-gNB).
  • inter-gNB base stations
  • intra-gNB intra-gNB
  • the back-haul and front-haul of FIGS. 8A to 8D may be applied to both an ideal back-haul/front-haul and a non-ideal back-haul/front-haul.
  • 8A to 8D may be applied between co-channels or different channels, and may also be applied to different cell IDs or the same cell ID.
  • FIG. 8A is a diagram illustrating an example of a serving cell and PCI configuration according to a carrier aggregation (CA) operation.
  • CA carrier aggregation
  • the base station can set different serving cells (ServCellConfigCommon) for each cell in a CA situation in which the frequency resources occupied by each cell are different (that is, the frequency band value FrequencyInfoDL indicated by DownlinkConfigCommon in each serving cell setting is different), so you can set different indexes (ServCellIndex) for each cell and map different PCI values.
  • FIG. 8B illustrates an intra-cell multi-TRP operation in which one or more TRPs operate within one serving cell configuration.
  • the base station since the base station transmits the settings for channels and signals transmitted in different TRPs in one serving cell configuration, several TRPs operate based on one serving cell index (ServingCellIndex or ServCellIndex).
  • ServingCellIndex a serving cell index
  • a cell may be configured using the same physical cell Id.
  • frequency-side eg, frequency/channel/band
  • it is much more resource efficient to use all allocated resources in one CC so a method of classifying cells in the form of cell IDs rather than classifying cells in terms of time and frequency resources may be used during cell planning.
  • the inter-Cell for a new M-TRP is configured based on new cell ID information or the cell-related information (or may be referred to as cooperative cell configuration information, cooperative cell-related information, etc.) method can be considered. That is, according to an embodiment of the present disclosure, when a plurality of TRPs perform inter-cell cooperative transmission, a method of setting this to the UE (that is, notifying the UE that cells performing inter-cell cooperative transmission are related to other TRPs) method) is described. Meanwhile, a method of using a cell ID will be described below as an example, but the present disclosure is not limited thereto, and a method of using a physical cell ID, a serving cell index, or another identifier may also be considered.
  • a method of configuring a cell or a cell group according to an embodiment of the present disclosure will be described.
  • a method of setting a cell or a cell group may be configured differently according to each scenario and case.
  • FIG. 8c shows an inter-cell M-TRP operation in which the CA-framework is extended.
  • the base station can be configured by including settings for channels and signals transmitted in different TRPs in different serving cell settings.
  • each TRP has an independent serving cell configuration
  • the frequency band values FrequencyInfoDLs indicated by DownlinkConfigCommon in each serving cell configuration may indicate at least some overlapping bands.
  • PCI physical cell ID
  • a method for setting cooperative transmission in a plurality of TRPs using cell configuration information is as follows.
  • Method 1 Referring to Table 7 below, a method of setting information indicating activation or deactivation of intercell multi-TRP information (IntercellForMultiTRP) in SpCell configuration information (SpCellConfig) may be considered.
  • IntercellForMultiTRP indicates activation or deactivation with 1-bit information or indicates activation when IntercellForMultiTRP information is included and deactivation when IntercellForMultiTRP information is not included.
  • the UE may determine that the sCell or SPCell in which the IntercellForMultiTRP is set to enable (or includes IntercellForMultiTRP) is set as the cooperating set to perform cooperative transmission.
  • SpCellConfig SEQUENCE ⁇ servCellIndex ServCellIndex OPTIONAL, -- Cond SCG reconfigurationWithSync ReconfigurationWithSync OPTIONAL, -- Cond ReconfWithSync rlf-TimersAndConstants SetupRelease ⁇ RLF-TimersAndConstants ⁇ OPTIONAL, -- Need M rlmInSyncOutOfSyncThreshold ENUMERATED ⁇ n1 ⁇ OPTIONAL, -- Need S spCellConfigDedicated ServingCellConfig OPTIONAL, -- Need M IntercellForMultiTRP ENUMERATED ⁇ enable, disable ⁇ OPTIONAL, -- Need M ... ⁇ Example (omitting ScellConfig)
  • SpCellConfig has been described as an example, the present disclosure is not limited thereto, and the same may be applied to SCell configuration information (SCellConfig).
  • Method 2 Meanwhile, in consideration of another embodiment, a method of configuring the IntercellForMultiTRP using ServingCellConfig as shown in Table 8 may be considered.
  • IntercellForMultiTRP indicates activation or deactivation with 1-bit information, or indicates activation when IntercellForMultiTRP information is included, and instructs deactivation when IntercellForMultiTRP information is not included. Accordingly, when IntercellForMultiTRP is set to enable in the ServingCellConfig (or when IntercellForMultiTRP is included in the ServingCellConfig), the UE can determine that the SCells or SPCells corresponding to the ServingCellConfig perform cooperative transmission.
  • ServingCellConfig SEQUENCE ⁇ tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDD initialDownlinkBWP BWP-DownlinkDedicated OPTIONAL, -- Need M downlinkBWP-ToReleaseList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need N downlinkBWP-ToAddModList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need N IntercellForMultiTRP ENUMERATED ⁇ enable, disable ⁇ OPTIONAL, -- Need M
  • cooperative cell-related information may be transmitted using higher layer signaling (RRC) for inter-cell-based multiple TRP transmission.
  • RRC higher layer signaling
  • Cooperative cell-related information may be included in CellGroupConfig as shown in Table 9 below, for example, at least one information of inter-cell group information for Multi-TRP (hereinafter, InterCellGroupForMultiTRP) and TRP group ID (hereinafter, InterCellGroupForMultiTRPGroupID). may be added to the CellGroupConfig.
  • the cooperative cell-related information may be configured by being included in the aforementioned SpCellConfig, SCellConfig, ServingCellConfig, and the like.
  • CellGroupConfig :: SEQUENCE ⁇ cellGroupId CellGroupId, rlc-BearerToAddModList SEQUENCE (SIZE(1..maxLC-ID)) OF RLC-BearerConfig rlc-BearerToReleaseList SEQUENCE (SIZE(1..maxLC-ID)) OF LogicalChannelIdentity mac-CellGroupConfig MAC-CellGroupConfig OPTIONAL, -- Need M physicalCellGroupConfig PhysicalCellGroupConfig OPTIONAL, -- Need M spCellConfig SpCellConfig OPTIONAL, -- Need M sCellToAddModList SEQUENCE (SIZE (1..maxNrofSCells)) OF sCellToReleaseList SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellIndex ..., dormancySCellGroups DormancySCellGroups OPTIONAL, -- Need N InterCellGroup
  • the InterCellGroupForMultiTRP may be included in CellGroupConfig, and the InterCellGroupForMultiTRP may be composed of InterCellGroupForMultiTRPGroupID and InterCellGroupForMultiTRPSCellList. Accordingly, SCells included in InterCellGroupForMultiTRPSCellList are grouped by InterCellGroupForMultiTRPGroupID, and the SCells or SPCells may be used for cooperative transmission.
  • InterCellGroupForMultiTRPGroupID At least one of 0 to 5 may be selected for InterCellGroupForMultiTRPGroupID.
  • the InterCellGroupForMultiTRPGroupID may be set to a value of 5 or more.
  • InterCellGroupForMultiTRPGroupID may be included in CellGroupConfig.
  • SCells corresponding to SCellConfig included in CellGroupConfig may have the same TRP Group ID. Therefore, a cell or cell groups having the same TRP Group ID may be used for cooperative transmission. In this way, the cooperating set of the inter-cell-based M-TR can be set by using or combining the two methods, respectively.
  • cooperative cell-related information may be transmitted using higher layer signaling (RRC) for inter-cell-based Multiple TRP transmission, and a set constituting a CellGroup (physical ID) #X, physical Id #Y) or (servicellId #X, servicellId #Y) can be defined in a list or table form.
  • RRC higher layer signaling
  • a set of physical cell IDs or a set of servingcellIDs may be configured in CellGroup, and the set may be used for cooperative transmission.
  • the set of the physical cell ID or the set of servingcellID may be configured through SpCellConfig, SCellConfig, ServingCellConfig, etc. in addition to CellGroupConfig.
  • FIG. 8D shows an inter-cell M-TRP operation based on a non-CA framework.
  • settings for channels and signals transmitted in different TRPs may be included in one serving cell configuration.
  • the UE may determine that the Inter-Cell M-TRP operation is performed.
  • a separate serving cell index (eg, ServCellIndex) may not be set for the non-serving cell.
  • ServCellIndex eg., ServCellIndex
  • the following describes a method of configuring the PCI of the TRP for transmitting and receiving a signal to the base station through a non-serving cell to the terminal. Through this, the UE can check whether the inter-cell M-TRP is configured.
  • Method 1 The method of setting the SSB based on the additional PCI as the QCL reference antenna port by adding a parameter that can connect additional PCI values other than the first PCI value mapped to the existing ServCellIndex to the TCI setting or QCL setting will be used can
  • parameters for referring to other PCIs in addition to the PCI allocated to the corresponding serving cell may be added to the QCL setting.
  • QCL-Info :: SEQUENCE ⁇ cell ServCellIndex (Serving cell index to which QCL reference RS is transmitted) bwp-Id BWP-Id (bandwidth partial index over which QCL reference RS is transmitted) referenceSignal CHOICE ⁇ (indicator indicating one of CSI-RS or SS/PBCH block as QCL reference RS) csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index ⁇ , qcl-Type ENUMERATED ⁇ typeA, typeB, typeC, typeD ⁇ , (QCL type indicator) physCellId PhysCellId ... ⁇
  • Second method Alternatively, as shown in Table 11 below, a parameter for referring to PCI other than the PCI allocated to the corresponding serving cell may be added to the TCI setting.
  • TCI-State SEQUENCE ⁇ tci-StateId TCI-StateId, (TCI state indicator) qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied) qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, -- Need R physCellId PhysCellId ... ⁇
  • TCI-State SEQUENCE ⁇ tci-StateId TCI-StateId, (TCI state indicator) qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied) qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, -- Need R physCellId1 PhysCellId physCellId2 PhysCellId ... ⁇
  • the base station can use a black cell list or a white cell list in the measurement configuration (eg, MeasConfig or MeasObject configuration).
  • the base station can set a list of PCI values connected to the black list (blackCellsToAddModList) and white list (whiteCellsToAddModList) of the PCI values that the terminal considers when measuring the SSB through MeasObject configuration.
  • MeasObjectNR SEQUENCE ⁇ ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSB ssbSubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSB smtc1 SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSB smtc2 SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnected refFreqCSI-RS ARFCN-ValueNR OPTIONAL, -- Cond CSI-RS referenceSignalConfig ReferenceSignalConfig, absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need R absThreshCSI-RS-Consolidation ThresholdNR OPTIONAL, -- Need R nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL,
  • PCI #2 is included in whiteCellsToAddModList in MeasObjectNR (or not included in blackCellsToAddModList), but PCI #3 is not included in whiteCellsToAddModList in MeasObjectNR (or included in blackCellsToAddModList), the terminal has PCI #2 You can check that it has been set. Therefore, the UE has an obligation to measure SSB for PCI #2, but has no obligation to measure SSB for PCI #3. Therefore, the UE can apply the QCL reference antenna port setting to the SSB linked to PCI #2, but may not expect the QCL reference antenna port setting to the SSB linked to PCI #3.
  • the terminal does not expect the QCL reference antenna port setting means “if it is set in this way, ignore the corresponding setting” or “the terminal operation for the setting is not defined, so random processing is performed”
  • Various applications are possible, such as “allowed to do so” or “guaranteeing that the base station does not set this setting”.
  • the following method may be used for the UE to check whether the inter-cell M-TRP operation is configured in FIG. 8D .
  • At least one or more BWPs may be configured for TRP 1 and TRP 2, and cell-related higher layer signaling or parameters may be configured.
  • a plurality of TRP(s) may be set so that the BWP corresponding to the inter-cell M-TRP is active among the BWPs supported by each TRP. Therefore, a plurality of BWPs may be active for M-TRP transmission.
  • BWP-0 of TRP 1 is associated with CORESET 0, 1, 2, 3, 4
  • BWP-1 of TRP 2 is CORESET 0, 1, 2, 3, It can be set to be associated with 4.
  • the terminal may determine that the M-TRP operation is set. Accordingly, the terminal may perform the M-TRP operation according to the ControlResourceSet setting. That is, the terminal may transmit or receive a signal through a plurality of TRPs.
  • the above-described measurement configuration information may be used to determine whether BWP-1 of TRP 2 related to the non-serving cell is in the activation state.
  • BWP-1 of the TPR 2 may be activated by including at least a portion of the BWP-1 in the information.
  • the measurement setting information may include frequency information (eg, ARFCN-ValueNR in freqbandindicatorNR or ssbFrequency), and when it is set to include a part of the frequency information (BWP-1) of TRP 2 in the frequency information , BWP-1 of the TRP 2 may be activated.
  • the measurement configuration information may include an activated BWP or BWP ID to be used for multi-TRP inter-cell transmission, through which multi-TRP inter-cell transmission may be performed.
  • the measurement configuration information received from the serving cell may include information such as a measurement object (servingCellMO) and measurement Id of the serving cell.
  • the measurement configuration information received from the serving cell may include a measurement object related to a neighboring cell.
  • the measurement object may include at least one of information such as BWP ID and cell ID. Accordingly, the terminal may determine that BWP 0 of TRP 1 and BWP 1 of TRP 2 are activated according to the measurement object, and may perform an M-TRP operation.
  • information on CellsToAddModList may be included in the measurement object, and BWP 1 of TRP 2 may be activated by including a PCI list in the information.
  • the base station transmits the BWP ID for performing multi-TRP inter-cell cooperative transmission to the terminal through configuration information such as QCL information (QCL info), or transmits the BWP ID for BWP 1 of TRP 2 to the terminal.
  • QCL info QCL information
  • the following method may be used for the UE to check whether the inter-cell M-TRP operation is configured in FIG. 8D .
  • At least one BWP may be set or activated for TRP 1 and TRP 2, and a method of newly setting the CORESET Index set in the terminal may be considered.
  • a plurality of TRP(s) may each set one or more BWPs, where the same BWP-Id of each TRP for inter-cell M-TRP transmission may be set to be associated with a continuous (consecutive number) CORESET Index.
  • the UE may be configured such that the same BWP-Id is active from TRP 1 and TRP 2.
  • BWP-1 of TRP 1 may be set to be associated with CORESETs 0, 1, and 2, and BWP-1 of TRP 2 may be set to be associated with CORESETs 3 and 4.
  • the maximum number of COREESET Index is determined to be a value of 5 or more (eg 10)
  • BWP-1 of TRP 1 is associated with CORESET 0-4
  • BWP-1 of TRP 2 is associated with CORESET 5-9. It can be set to be
  • IntercellDownlinkBWP-Id may be added as follows to separately set the active BWP Id. Accordingly, when the BWP indicated by the IntercellDownlinkBWP-Id is activated as described above, the UE may perform the inter-cell M-TRP operation in the corresponding BWP. In case of using this method, there is an advantage of performing non-CA framework operation while maintaining the current standard in which only one BWP is active in inter-cell-based multi-TRP transmission.
  • ServingCellConfig SEQUENCE ⁇ tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDD initialDownlinkBWP BWP-DownlinkDedicated OPTIONAL, -- Need M downlinkBWP-ToReleaseList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need N downlinkBWP-ToAddModList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need N firstActiveDownlinkBWP-Id BWP-Id IntercellDownlinkBWP-Id BWP-Id // Assign BWP Id ... ⁇
  • Rel-16 up to five CORESETs can be set within one BWP, and at this time, a set of CORESETs capable of performing multi-TRP transmission can be set to the same CORESETPoolIndex.
  • CORESETPoolIndex it is necessary to set CORESETPoolIndex for each of a plurality of TRPs corresponding to inter-cells in Rel-17.
  • the base station can set five or more CORESETs within one BWP, and can extend and use a plurality of existing CORESETPoolIndex for inter-cell-based multi-TRP transmission, and use new information (eg, CORESETPoolIndex-rel17 or CORESETPoolIndexForIntercell) can be used.
  • new information eg, CORESETPoolIndex-rel17 or CORESETPoolIndexForIntercell
  • FIG. 9 is a diagram illustrating a CORESETPoolIndex setting method of M-TRP based on Multi-DCI according to an embodiment of the present disclosure.
  • the UE may decode DCI by monitoring a plurality of PDCCHs included in CORESET in which CORESETPoolIndex is set to the same value in at least one BWP.
  • the UE can expect to receive fully/partially/non-overlapped PDSCHs scheduled by the DCI.
  • the UE may monitor CORESET #X (902) of TRP 1 and CORESET Y (903) of TRP #2 set to the same CORESETPoolIndex (901) in slot #0 (904), respectively. Accordingly, the UE may receive data in PDSCH #2 905 and PDSCH #1 906 based on the DCI received through CORESET #X and CORESET #Y.
  • CORESETPoolIndex may be set in the UE, and the UE may perform M-TRP operation through CORESET having the same CORESETPoolIndex. For example, if CORESETPoolIndex 0 includes CORESETs 1 and 2 and CORESETPoolIndex 1 includes CORESETs 3 and 4, the UE may perform an M-TRP operation through CORESETs 1 and 2, and CORESET 3 and 4 through the M-TRP operation.
  • a first method for setting CORESETPoolIndex will be described.
  • the UE when CORESETPoolIndex is set for the serving cell, the UE can expect that the same CORESETPoolIndex is set for the inter-cell (non-serving cell). That is, the same CORESETPoolIndex may be applied even in the inter-cell. In this case, it can be determined that the inter-cell (non-serving cell) is set implicitly without a separate CORESETPoolIndex setting.
  • CORESETPoolIndex 0 for the cell for TRP 1 is set to include CORESETs 1 and 2
  • CORESETPoolIndex 1 is set to include CORESET 3 and 4
  • the UE CORESETPoolIndex 0 for the cell for TPR2 is also CORESET 1
  • CORESETPoolIndex 1 can be determined to include CORESETs 3 and 4.
  • FIG. 10 is a diagram illustrating a second method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
  • the number of CORESETPoolIndex settings can be fixed, and the present disclosure describes a case where, for example, it is set to two.
  • the embodiment of the present disclosure is not limited thereto, and the number of CORESETPoolIndex settings may be changed.
  • the base station may set CORESETPoolIndex to 0 or 1 for each PCI. At this time, there may be two or more CORESETs included in CORESETPoolIndex 0 or 1.
  • the base station may set at least one CORESET to be configured as a pool to have the same index for each PCI in order to set the CORESETPoolIndex between inter-cells.
  • At least two CORESETs may be included in CORESETPoolIndex, and CORESETs having the same CORESETPoolIndex may be used for inter-cell cooperative transmission.
  • the base station may set CORESET 1 for TRP 1 and CORESET 1 for TRP 2 as inter-cell CORESETPoolIndex 0 for a specific terminal.
  • the PDCCH for multi-TRP transmission may be monitored in the inter-cell using the same CORESETIndex.
  • CORESET 1 for TRP 1 and CORESET 2 for TRP 1 may be set to CORESETPoolIndex 0 (1010) for TRP 1
  • CORESET 1 for TRP 2 and CORESET 3 for TRP 2 may be set to TRP 2
  • CORESETPoolIndex may be set to 0 (1020). Therefore, CORESETPoolIndex 0 for TRP 1 and TRP 2 may be used for PDCCH monitoring for inter-cell multi-TRP transmission.
  • CORESET 3 for TRP 1 CORESET 4 for TRP 1 may be set to CORESETPoolIndex 1 (1011) for TRP 1
  • CORESET 3 for TRP 2 CORESET 4 for TRP 2 may be set to CORESETPoolIndex 1 (1021) for TRP 2 can be set to Therefore
  • CORESETPoolIndex 1 for TRP 1 and TRP 2 may be used for PDCCH monitoring for inter-cell multi-TRP transmission.
  • the UE may perform PDCCH monitoring for multi-TRP transmission by checking only CORESETPoolIndex regardless of PCI. In this way, the base station can set/determine so that the total number of CORESETPoolIndex is fixed and the terminal monitors all pools having the same index.
  • CORESETPoolIndex information for setting CORESET ID and CORESETPoolIndex in the second method may be shown in Table 15 below.
  • the case where there are two CORESETPoolIndex will be described as an example, but the number of CORESETPoolIndex may be increased, and accordingly, the number of bits of the corresponding information may also be increased.
  • the UE may operate assuming that CORESETPoolIndex is 0 if there is no separate value setting in the RRC setting.
  • ControlResourceSet SEQUENCE ⁇ controlResourceSetId ControlResourceSetId, OPTIONAL, -- Need S ... [[ coresetPoolIndex-r17 INTEGER (0..1) // fixed 2 OPTIONAL, -- Need R controlResourceSetId-r17 ControlResourceSetId-r16 OPTIONAL -- Need S ]] ⁇
  • FIG. 11 is a diagram illustrating a third method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
  • the number of CORESETPoolIndex settings can be fixed, and the present disclosure describes a case where, for example, it is set to two.
  • the embodiment of the present disclosure is not limited thereto, and the number of CORESETPoolIndex settings may be changed.
  • the base station may set CORESETPoolIndex to 0 or 1 for each PCI. In this case, there may be two or more CORESETs included in CORESETPoolIndex 0 or 1.
  • the base station may set at least one CORESET to be configured as a pool to have the same index for each PCI in order to set the CORESETPoolIndex between inter-cells.
  • CORESETs having different PCIs may be set to be included in one CORESETPoolIndex for inter-cell cooperative transmission.
  • the base station may set CORESET 1 for TRP 1 and CORESET 2 for TRP 2 as inter-cell CORESETPoolIndex 0 1110 for a specific terminal.
  • the base station may set CORESET 4 for TRP 1 and CORESET 3 for TRP 2 as CORESETPoolIndex 1 (1120) between inter-cells.
  • the terminal does not support inter-cell-based M-TRP transmission for CORESET indexes that are not set as CORESETPoolIndex (CORESET 2 for TRP 1, CORESET 3 for TRP 2, CORESET 1 for TRP 2, CORESET 4 for TRP2) in this figure. can be judged as In this way, the base station can set/determine so that the total number of CORESETPoolIndex is fixed and the terminal monitors all pools having the same index.
  • the CORESET setting according to the present embodiment may be configured as shown in Table 16 below.
  • the CORESETPoolIndex-r17 field may be set to ENUMERATED ⁇ n0, n1 ⁇
  • the CORESETPoolIndex-r17 field is set to ENUMERATED ⁇ n0, n1, n3 ⁇ can be set.
  • CORESETPoolIndex may be set by dividing intra-cell and inter-cell.
  • the CORESETPoolIndex-r17 field may be set to ENUMERATED ⁇ n0, n1, n2 ⁇ , and n0, n1 may be set for intra-cell and n2 may be set for inter-cell.
  • CORESETPoolIndex-r17 field may also be set to information such as n4, n5, and the like.
  • CORESETPoolIndex when configured by distinguishing between intra-cell and inter-cell, information on intra-cell and information on inter-cell may be determined according to a setting of a base station or a predetermined rule.
  • ControlResourceSet SEQUENCE ⁇ controlResourceSetId ControlResourceSetId, OPTIONAL, -- Need S ... [[ coresetPoolIndex-r17 ENUMERATED ⁇ n0, n1, n2 ⁇ OPTIONAL, -- Need R controlResourceSetId-r17 ControlResourceSetId-r16 OPTIONAL -- Need S ]]
  • CORESETPoolIndex may be set for intra-cell use, and CORESETPoolIndex CORESETPoolIndexFor-IntercellId (new parameter)) for inter-cell may be newly defined.
  • CORESETPoolIndexForIntercellId may be set to include CORESETPoolIndex including the CORESET Id of each cell.
  • CORESETPoolIndexForIntercellId 0 can be set to include CORESETPoolIndex 0 or CORESETPoolIndex 0 and CORESETPoolIndex 1 to be included.
  • CORESETPoolIndexForIntercellId may be directly set to include the CORESET Id of each cell.
  • the CORESETPoolIndexForIntercellId setting may be configured as shown in Table 17 below.
  • ControlResourceSet SEQUENCE ⁇ controlResourceSetId ControlResourceSetId, OPTIONAL, -- Need S ... [[ // coresetPoolIndex-r17 INTEGER (0..1) // 2 fixed OPTIONAL, -- Need R coresetPoolIndexForIntercellId-r17 INTEGER (0..2*maxIntercell) // N Cells controlResourceSetId-r17 ControlResourceSetId-r17 OPTIONAL -- Need S ]] ⁇
  • FIG. 12 is a diagram illustrating a fifth method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
  • the fifth method describes a method of extending the number of CORESETPoolIndex settings.
  • the base station may expand the number of pools considering the entire inter-cell by the number of PCIs. For example, it is assumed that only five CORESETs that can be included in one BWP are set, and when N PCIs are set, 2 x N CORESETPoolIndex can be set.
  • CORESETPoolIndex 0 (1210) may include CORESET 1 for TRP 1 and CORESET 2 for TRP 1
  • CORESETPoolIndex 1 (1220) is CORESET 3 for TRP 1
  • CORESET 3 for TRP 2 may include
  • CORESETPoolIndex 2 (1230) may include CORESET 4 for TRP 1
  • CORESETPoolIndex 3 (1240) may include CORESET 1 for TRP 2
  • it may be set to include CORESET 2 for TRP 2.
  • the CORESETPoolIndex mapping may be set similarly.
  • the UE may perform PDCCH monitoring for the Mult-TRP operation according to the set CORESETPoolIndex.
  • FIG. 13 is a flowchart illustrating a process in which a terminal and a base station transmit and receive signals for a multi-TRP operation according to an embodiment of the present disclosure.
  • the terminal 1300 may report (transmit) the terminal capability to the base station 1310 in step S1305 .
  • the terminal 1300 may receive the terminal capability report request from the base station 1310 and report the terminal capability accordingly.
  • the terminal capability may include information on terminal capability for each RAT type.
  • the terminal capability information may include information on whether the terminal supports the multi-TRP operation.
  • the UE capability may include information on whether the terminal 1300 supports the multi-TRP operation for inter-cell.
  • not all of the above information should be included in the terminal capability information, and some information may be omitted or other information may be added.
  • the base station 1310 may not request the terminal capability report, and step S1305 may be omitted.
  • the base station 1310 may transmit a multi-TRP related configuration message (eg, an RRC message) to the terminal 1300 in step S1310 .
  • the Multi-TRP related configuration information may include at least one of cell related information (or cooperative cell related information), BWP related information, and CORESETPoolIndex related information for an inter cell-based M-TRP operation. Specific details are the same as described above. Accordingly, the above-described cell setting method, BWP related method, CORESETPoolIndex setting method, etc. can be applied to this embodiment.
  • the terminal 1300 and the base station 1310 may perform an inter-cell multi-TRP operation in step S1315 .
  • the base station 1310 may indicate to the terminal 1300 that the inter-cell Multi-TRP operation is configured through the cell-related information.
  • the terminal 1300 may confirm that the inter-cell Multi-TRP operation is configured through the cell-related information.
  • the terminal 1300 may receive the CORESETPoolIndex information transmitted by the base station 1310 and check information on CORESET to be monitored for a plurality of TRPs.
  • the base station 1310 may transmit DCI in the CORESET for the plurality of TRPs.
  • the terminal 1300 may monitor the PDCCH in the CORESET for the plurality of TRPs and acquire DCI.
  • the terminal 1300 may receive data through the PDSCH scheduled by the DCI.
  • the base station 1310 may transmit data through the PDSCH.
  • 14A to 14B are diagrams illustrating a beam management procedure according to an embodiment.
  • NR or 5G
  • One of the main functions in NR is to support a large number of controllable antenna elements for both transmit and receive.
  • a large number of antenna elements may be mainly used for beamforming for the purpose of extending coverage.
  • All NR channels and signals, including those used for control and synchronization, are designed to support beamforming.
  • NR can support analog beamforming as well as digital precoding and beamforming for implementation flexibility.
  • analog beamforming that converts a signal from digital to analog and then forms a beam may be used.
  • analog beamforming a receive beam or a transmit beam may be formed in one direction at a given point in time.
  • analog beamforming may require a process (beam sweeping) in which the same signal is repeated in a plurality of OFDM symbols but must be transmitted using different transmission beams. Since a signal can be transmitted with a high gain in any direction through the beam sweeping function, the signal can be transmitted through a narrow beam up to an intended entire coverage area.
  • the base station may indicate to the terminal information for selecting a beam through which the terminal receives data and control information.
  • Various signaling methods supporting such a beam management procedure may be considered.
  • the beam management aims to select and maintain a combination of the direction of the transmission beam on the transmission side and the direction of the reception beam on the reception side so that the channel gain is maximized. If the beam management is efficiently operated, data rate and throughput can be maximized.
  • the optimal beam pair may be a beam pair 1420 in which the direction of the downlink transmission beam of the base station 1410 and the direction of the downlink reception beam of the terminal 1400 directly coincide. there is.
  • the beam pair 1430 in the transmission beam direction and the reception beam direction along the reflection path may be an optimal beam pair. This can happen especially in high frequency bands where there is little diffraction at the edges of obstacles.
  • the base station 1410 and the terminal 1400 can determine an optimal beam pair even when the above-described direct path between the transmitting side and the receiving side is blocked.
  • FIG. 14A illustrates beamforming in the downlink direction
  • the optimal transmission/reception beam pair in the downlink direction may be the optimal beam pair in the uplink direction as well.
  • the optimal beam pair in the uplink direction may be the optimal beam pair in the downlink direction as well. In this case, it may be said that beam correspondence (or beam correspondence) is established for downlink and uplink.
  • initial beam establishment may refer to a procedure for establishing an initial beam pair.
  • the base station may transmit a synchronization signal block (SS/PBCH block, or SSB) corresponding to each beam using different downlink beams in an initial access process.
  • the UE may attempt random access to the BS by selecting one of a PRACH occasion (physical random access channel occasion) and a preamble corresponding to each beam.
  • the base station may check the downlink transmission beam for the terminal based on the received random access preamble.
  • SS/PBCH block synchronization signal block
  • the procedure for reconfirming the beam pair as described above may be referred to as a beam adjustment procedure.
  • the beam adjustment may include a downlink transmission side (eg, a base station) (downlink transmitter-side) beam adjustment and a downlink reception side (eg, a terminal) (downlink receiver-side) beam adjustment.
  • the reception beam of the terminal 1400 may be maintained and the transmission beam of the base station 1410 may be adjusted.
  • the base station 1410 may sequentially transmit signals using different downlink beams. In this way, the base station 1410 sequentially transmits signals using different beams may be referred to as beam sweeping.
  • the terminal 1400 may measure a reference signal (RS) corresponding to the different downlink beams while maintaining the reception beam 1450 .
  • the RS may be a channel state information reference signal (CSI-RS) or an SSB. Accordingly, the terminal 1400 may measure the quality of different downlink beams on the transmission side. Also, the terminal 1400 may report different measured beam qualities to the base station 1410 . According to the above process, the optimal beam 1440 of the downlink transmission side can be identified.
  • the base station 1410 maintains the downlink transmission beam 1460 and the terminal 1400 may adjust the downlink reception beam (or beam sweep).
  • the terminal 1400 may be configured with a set of downlink RSs.
  • the terminal 1400 may perform measurement on the RS by sequentially applying a reception beam to the configured RS.
  • the terminal 1400 may identify the optimal beam 1470 of the downlink reception side based on the measurement value.
  • 15 is a diagram illustrating a MAC CE-based beam indication method according to an embodiment of the present disclosure.
  • the NR supports beam indication (or beam indication).
  • the beam indication may mean indicating (or specifying) to the UE that the PDSCH or PDCCH is being transmitted in the same beam as the configured RS (CSI-RS or SSB). Alternatively, it may mean indicating (or specifying) that the PDSCH or PDCCH is transmitted using the same spatial filter as the configured RS.
  • transmitting or receiving the PDSCH may mean transmitting or receiving data through the PDSCH.
  • transmitting or receiving a PDCCH may mean transmitting or receiving a DCI through the PDCCH.
  • the PDCCH transmission beam may mean a transmission beam used by the base station to transmit the PDCCH to the terminal.
  • the beam indication may be made through downlink signaling using transmission configuration indicator state (TCI state) information.
  • TCI state information may include information on RS (CSI-RS or SSB).
  • the base station may inform the terminal of beam information related to downlink transmission (PDSCH or PDCCH transmission) through the TCI state information. For example, the UE may assume that the PDSCH or PDCCH is transmitted through the same beam as the downlink transmission beam through which the RS (CSI-RS or SSB) included in the TCI state information is transmitted.
  • the base station may configure N (eg, up to 128) TCI states to the terminal.
  • the N TCI states may be included in an information element (IE) (eg, PDSCH-Config) in a configuration message (eg, RRC message) transmitted from the base station to the terminal.
  • IE information element
  • M eg, up to 64
  • candidate TCI states used to indicate (or specify) a beam through which a PDCCH is transmitted among the N, through the configuration message.
  • Candidate TCI states used to indicate a beam through which the PDCCH is transmitted may be referred to as, for example, tci-StatesPDCCH.
  • each CORESET configuration information may include a list of candidate TCI states (eg, tci-StatesPDCCH-ToAddList).
  • Each CORESET setting information may include information according to Table 4 as described above.
  • a configuration for each TCI state in the list of candidate TCI states may be as shown in Table 18 below. The relationship between the QCL setting and the TCI state according to each TCI state setting is as described above.
  • TCI-State SEQUENCE ⁇ tci-StateId TCI-StateId, qcl-Type1 QCL-Info, qcl-Type2 QCL-Info OPTIONAL, -- Need R ...
  • ⁇ QCL-Info :: SEQUENCE ⁇ cell ServCellIndex OPTIONAL, -- Need R bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated referenceSignal CHOICE ⁇ csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index ⁇ , qcl-Type ENUMERATED ⁇ typeA, typeB, typeC, typeD ⁇ , ...
  • NZP-CSI-RS-Resource SEQUENCE ⁇ nzp-CSI-RS-ResourceId NZP-CSI-RS-ResourceId, resourceMapping CSI-RS-ResourceMapping, powerControlOffset INTEGER (-8..15), powerControlOffsetSS ENUMERATED ⁇ db-3, db0, db3, db6 ⁇ OPTIONAL, -- Need R scramblingID ScramblingId, periodicityAndOffset CSI-ResourcePeriodicityAndOffset OPTIONAL, -- Cond PeriodicOrSemiPersistent qcl-InfoPeriodicCSI-RS TCI-StateId OPTIONAL, -- Cond Periodic ... ⁇ -- TAG-NZP-CSI-RS-RESOURCE-STOP -- ASN1STOP
  • the base station transmits the configuration information to the terminal through a configuration message, and the terminal may store it.
  • the configuration message may be a message including the above-described Multi-TRP related configuration information.
  • the base station may transmit a control message (eg, MAC CE) to the terminal to indicate (or specify) the changed beam.
  • a control message eg, MAC CE
  • the UE can confirm that the PDCCH is transmitted through the same beam as the RS (eg, CSI-RS or SSB) associated with the TCI state set for each CORESET (eg, the UE is the It can be assumed that the PDCCH is transmitted through a spatial filter such as RS).
  • indicating to the UE the beam through which the PDCCH is transmitted through the MAC CE message may be referred to as MAC CE based beam indication.
  • 16 is a diagram illustrating a MAC CE format for MAC CE-based beam indication according to an embodiment.
  • the MAC CE 1610 shown in FIG. 16 may include at least one of the following fields (filed).
  • - Serving Cell ID may indicate the identifier of the serving cell to which the corresponding MAC CE is applied.
  • - CORESET ID may indicate the identifier of the control resource set (control resource set, CORESET) indicated by the TCI state.
  • - TCI state ID may indicate the identifier of the TCI state included in the CORESET setting identified by the CORESET ID field.
  • the UE may receive the MAC CE 1610 and check a change in the beam through which the PDCCH is transmitted based thereon.
  • the UE can confirm that the cell indicated by the Serving Cell ID field 1611 is a cell to which the MAC CE 1610 is applied.
  • the UE can confirm that the PDCCH transmitted through the CORESET resource indicated by the CORESET ID field 1612 is transmitted through the same beam as the RS configured in association with the TCI state indicated by the TCI state ID field 1613 . Thereafter, the UE may receive the PDCCH through the changed beam.
  • 17 is a flowchart illustrating an operation of instructing an intra-cell beam change according to an embodiment.
  • the serving cell (or the node for the serving cell, hereinafter the same) 1710 may transmit a control message (eg, MAC CE) to the UE 1700 in step S1705 .
  • a control message eg, MAC CE
  • step S1710 the terminal 1700 may confirm a change in the beam through which the PDCCH is transmitted in the serving cell 1710 .
  • the terminal 1700 checks the change-related control message (eg, MAC CE) of the beam through which the PDCCH is transmitted, and a response message thereto may be transmitted to the serving cell 1710 (not shown).
  • the response message may be defined in MAC CE format.
  • the terminal 1700 includes a MAC subheader (subheader) including a logical channel ID (LCID) corresponding to the response message (MAC CE) and the MAC sub PDU including the response message (MAC CE) may be transmitted to the serving cell 1710 .
  • MAC subheader including a logical channel ID (LCID) corresponding to the response message (MAC CE)
  • MAC sub PDU including the response message (MAC CE) may be transmitted to the serving cell 1710 .
  • the terminal 1700 may perform a subsequent operation without transmitting the above response message.
  • the serving cell 1710 may transmit the PDCCH to the UE 1700 through the changed beam in step S1715 .
  • the terminal 1700 may receive the PDCCH through the changed beam.
  • the serving cell 1710 confirms that the control message (eg, MAC CE) has been successfully received by the terminal 1700 based on the response message, and transmits the PDCCH through the changed beam to the terminal (1700).
  • the terminal 1700 may receive the PDCCH through the changed beam.
  • the method may indicate only a beam change of one serving cell. Therefore, the present disclosure proposes a method of instructing a beam change of a cell other than a serving cell (non-serving cell) in an inter-cell Multi TRP operation in the following. In addition, we propose a method of simultaneously instructing the beam change of the serving cell and the non-serving cell.
  • a non-serving cell and a serving cell may be configured in association with each other in the RRC message.
  • the following method may be used as a method of establishing a non-serving cell and a serving cell in connection with each other.
  • this may be understood with reference to the methods proposed in the above-described FIGS. 8C to 8D and the description thereof.
  • a Physical Cell index (PCI) can be designated for non-serving cells.
  • the reason for configuring the PCI may be to inform the UE by classifying the TCI state setting of the non-serving cell for each PCI.
  • PCI PhysicalCellId
  • each PCI may be added to the QCL type setting in the TCI-State of the RRC setting.
  • CSI-RS-CellMobility it may be configured by adding a QCL type to the PCI configuration.
  • PCI#2 can be implicitly signaled through the setting of TCI state id.
  • 00: PCI #2, 01: PCI#7, 10: PCI#9, 11: PCI#20 can be set through separate indexing.
  • non-serving cells can be designated based on the serving cell index (ServCellIndex). Specifically, set it in the ServCellIndex format, use a separate additional index (eg, intercell Added Index 0, 1, 2, 3, 4, 5, 6, 7, 8, etc.), or group cells to create a separate ID. You can also specify
  • Method 3 Grouping of non-serving cells and serving cells can be indexed by setting a cell group based on PCI and serving cell index and designating a separate index for it.
  • Method 4 In RRC, a separate configuration may not be performed for a non-serving cell. In this case, it may not be possible to distinguish whether cells other than the Pcell configured in RRC are configured for CA purpose or operation for Multi-TRP for NC-JT purpose.
  • the first embodiment proposes a method of instructing a beam change of a non-serving cell in an inter-cell Multi TRP operation.
  • a serving cell may be simply referred to as a first cell, and a TRP operating the first cell may be referred to as a first TRP.
  • a non-serving cell may be simply referred to as a second cell, and a TRP operating the second cell may be referred to as a second TRP.
  • 18A to 18D are diagrams illustrating a MAC CE format according to a first embodiment of the present disclosure.
  • the base station or the terminal distinguishes the first cell from the second cell.
  • One way to do this is to use PCI.
  • the UE in order to change the configuration of the spatial domain of the beam through which the PDCCH is transmitted in the second TRP, the UE includes the TCI included in the RRC configuration (eg, ControlResourceSet, PDSCH-Config, NZP-CSI-RS-Resource, etc.) You can refer to -stateId.
  • the referenced TCI-stateID is as described above in Table 18. (QCL-info: set the RS of the source for QCL setting)
  • the MAC CE for indicating (or specifying) the change of the PDCCH beam is shown in FIG. 18a It may have a structure as shown in It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
  • a separate serving cell ID eg, ServCellIndex
  • the MAC CE 1810 may include a serving cell ID field 1811 , a CORESET ID field 1812 , and a TCI state ID field 1813 (when a resource created for the purpose of setting the TCI states ID is reused).
  • MAC CE (1820) is Serving cell ID field (1821), CORESET Pool index field (1822) (can be omitted), CORESET ID field (1823), TCI state ID field (1824) (for inter-cell Multi TRP operation) It may include an extended (extended TCI state ID field) capable of additionally setting 128 TCI state IDs.
  • each of the Serving Cell ID field 1811 may have a length of 5 bits
  • the CORESET ID field 1812 may have a length of 4 bits
  • the TCI state ID field 1813 may have a length of 7 bits.
  • the Serving Cell ID field 1821 may have a length of 5 bits
  • the CORESET ID field 1823 may have 5 bits
  • the TCI state ID field 1824 may have a length of 8 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • the identifier of the second cell (eg PCI) It is possible to indicate the beam change or update configuration of the PDCCH while omitting .
  • the UE may refer to the RRC configuration for the cell (the first cell) indicated by the Serving Cell ID field 1811 .
  • the RRC configuration a part of the TCI state indicated by the (extended) TCI state ID fields 1813 and 1824 may be preset for the first cell and another part for the second cell.
  • the UE may receive the MAC CE from the first TRP and check the PCI of the second cell by using the (extended) TCI state ID fields 1813 and 1824 of the MAC CE.
  • the UE transmits the PDCCH beam through the CORESET resource indicated by the CORESET ID fields 1812 and 1821 (and the CORESET Pool Index field 1822) in the second TRP, the (extended) TCI state ID field 1813 , 1824) can be confirmed that it is transmitted in the same beam as the RS configured in association with the TCI state indicated.
  • the CORESET Pool index field 1822 when the CORESET Pool index field 1822 is included, the UE may confirm that the corresponding PCI is a cell configured for the purpose of inter-cell Multi TRP operation. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • one PDCCH transmission beam is changed. It can be interpreted as an instruction. Or, as shown below in Figure 18a, when the terminal receives a MAC CE message including a plurality of CORESET ID fields (1812, 1823) and a plurality of TCI state IDs (1813, 1824), each CORESET of the second cell It can be interpreted as that the PDCCH transmission beam for the PDCCH is updated to each TCI state (that is, transmitted through the same beam as the RS configured in association with each TCI state).
  • one CORESET ID field 1812 and 1823 and a plurality of TCI state ID fields 1813 and 1824 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
  • the base station or the terminal distinguishes the first cell from the second cell.
  • One way to do this is to use PCI.
  • the UE in order to change the configuration of the spatial domain of the beam through which the PDCCH is transmitted in the second TRP, the UE includes the TCI included in the RRC configuration (eg, ControlResourceSet, PDSCH-Config, NZP-CSI-RS-Resource, etc.) You can refer to -stateId.
  • the referenced TCI-stateID is as described above in Table 18. (QCL-info: set the RS of the source for QCL setting)
  • the MAC CE for instructing (or specifying) the change of the PDCCH beam is as shown in FIG. 18B .
  • the MAC CE below can be operated even if it is not set in RRC as in method 3.
  • the MAC CE 1830 may include a Physical Cell ID (PCI) field 1831 , a CORESET ID field 1832 , a CORESET Pool index field (optionally omitted) 1833 , and a TCI state ID field 1834 .
  • PCI Physical Cell ID
  • each PCI field 1831 is 10 bits
  • the CORESET ID field 1832 is 5 bits (or 4 bits)
  • the CORESET Pool index field (can be omitted) 1833 is 1 bit
  • the TCI state ID field ( 1834) may have a length of 7 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • the UE may identify a cell (second cell) having PCI indicated by the PCI field 1831 .
  • the UE in the second TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID field 1832 (and the CORESET Pool Index field 1833) is the TCI indicated by the TCI state ID field 1834. It can be confirmed that it is transmitted in the same beam as the RS configured in association with the state. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • PCI may be a case in which PCI is not set together in TCI state ID, QCL info, etc. through an RRC message. Alternatively, it may be included when PCI has been established, but replacement of the serving cell ID is explicitly required. For example, the PCI included in the MAC CE may be one of PCI used to report uplink feedback.
  • the UE may confirm that the corresponding PCI is a cell configured for the purpose of inter-cell Multi TRP operation.
  • the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • the UE when the UE receives a MAC CE message including one CORESET ID field 1832 and one TCI state ID field 1834, it is interpreted as indicating a change of one PDCCH transmission beam. can do.
  • the UE receives a MAC CE message including a plurality of CORESET ID fields 1832 and a plurality of TCI state ID fields 1834 as shown below in FIG. 18b , the PDCCH transmission beam for each CORESET of the second cell It can be interpreted as being updated to each TCI state (that is, transmitted through the same beam as RS configured in association with each TCI state).
  • one CORESET ID field 1832 and a plurality of TCI state ID fields 1834 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
  • the Serving Cell ID field 1611 can be used as it is or partially extended to indicate a change in the beam through which the PDCCH is transmitted in the second TRP. . Since the second cell has a serving cell configuration according to an independent ServCellIndex, and one PCI can be allocated per ServCellIndex, the ServCellIndex and PCI of the second cell can be indicated through the Serving Cell ID field 1611 .
  • the MAC CE for instructing (or specifying) the change of the PDCCH beam is as shown in FIG. 18C .
  • MAC CE (1840) includes a Serving Cell ID field (1841), an identifier field that additionally defines an inter cell in addition to the basic serving cell ID (eg, an Intercell field) (1842), a CORESET ID field (1843), and a CORESET Pool index field ( may be omitted) 1844 , and a TCI state ID field 1845 .
  • each of the Serving Cell ID field 1841 is 5 bits
  • the Intercell field 1842 is 1 bit (1 to 4 bits)
  • the CORESET ID field 1843 is 5 bits (or 4 bits)
  • the CORESET Pool index field (Can be omitted) 1844 may have a length of 1 bit
  • the TCI state ID field 1844 may have a length of 7 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • the inter cell identifier field 1842 may be used to distinguish it from the ServCellindex used for the existing carrier aggregation (CA). For example, in the above-described RRC configuration, whether the ServCellIndex of the second cell is for CA or for inter-cell Multi TRP operation may not be distinguished. In this case, when the value of the inter cell identifier field 1842 is indicated as 1, the UE may determine that the ServCellIndex of the second cell configured in a higher layer (eg, RRC) is for inter-cell Multi TRP. In another embodiment, CA and inter-cell Multi TRP operation may be independently configured in the above-described RRC configuration.
  • CA carrier aggregation
  • the inter cell identifier field 1842 may be omitted. That is, when the ServCellIndex is set to be clearly distinguished for the purpose of carrier aggregation in the RRC configuration, the inter cell identifier field 1842 may be unnecessary, and if it is implicitly indicated without being distinguished, the inter cell identifier field 1842 may be required.
  • the inter cell identifier field 1842 is 1 bit is illustrated, but it may be extended to a plurality of bits according to the number of non-serving cells linked for the inter-cell Multi TRP operation with a specific serving cell.
  • the UE may regard the cell indicated by the serving cell ID field 1841 as the first cell.
  • the UE may identify the PCI of the second cell through the serving cell configuration of the cell (second cell) indicated by the Serving Cell ID field 1841 (and the inter cell identifier field 1842).
  • the UE transmits the PDCCH beam through the CORESET resource indicated by the CORESET ID field 1843 (and the CORESET Pool Index field 1844) in the second TRP is the TCI state indicated by the TCI state ID field 1845. It can be confirmed that it is transmitted on the same beam as the RS configured in association with .
  • the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • the UE when the UE receives a MAC CE message including one CORESET ID field 1843 and one TCI state ID field, it can be interpreted as indicating a change of one PDCCH transmission beam. .
  • the PDCCH transmission beam for each CORESET of the second cell is transferred to each TCI state. It can be interpreted as being updated (that is, transmitted through the same beam as the RS configured in association with each TCI state).
  • one CORESET ID field 1843 and a plurality of TCI state ID fields 1845 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
  • the PCI of the second cell When the PCI of the second cell is configured through the RRC configuration (eg, MeasConfig or MeasObject) for measurement, the PCI (PCI) of the second cell to indicate the change of the beam through which the PDCCH is transmitted in the second TRP You can use the SSB index linked to #2).
  • RRC configuration eg, MeasConfig or MeasObject
  • the MAC CE for instructing (or specifying) the change of the PDCCH beam may have a structure as shown in FIG. 18D.
  • FIG. 18D it is also possible to utilize the PCI and serving cell ID described above.
  • QCL association of CORESET ID can be used for measurement or QCL assumption operation by setting QCL parameters not only CORESET ID of the corresponding serving cell ID but also SSB ID.
  • MAC CE (1850) may include a Serving Cell ID field (1851), a CORESET ID field (1852), a CORESET Pool index (can be omitted) (1853), a TCI state ID field (1854), and an SSB ID field (1855). there is.
  • the Serving Cell ID field 1851 may indicate the second cell, and an identifier that additionally defines an inter cell by applying the above-described embodiment. Fields can also be used.
  • each of the Serving Cell ID field 1851 is 5 bits
  • the CORESET ID field 1852 is 5 bits (or 4 bits)
  • the TCI state ID field 1854 is 7 bits
  • the SSB ID field 1855 is It can have a length of 6 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • the UE may refer to the serving cell configuration of the serving cell (first cell) indicated by the Serving Cell ID field 1851 . Accordingly, the UE can check the PCI of the second cell associated with the SSB index indicated by the SSB ID field 1855 .
  • the UE in the second TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID field 1852 (and the CORESET Pool Index field 1853) is indicated by the existing TCI state ID field 1854. It can be confirmed that the transmission is carried out in the same beam as the RS configured in association with the TCI state.
  • the CORESET Pool index field 1853 the UE may confirm that the corresponding PCI is a cell configured for the purpose of inter-cell Multi TRP operation. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • the UE when the UE receives a MAC CE message including one CORESET ID field 1852 and one TCI state ID field 1854, it is interpreted as indicating a change of one PDCCH transmission beam. can do. Or, as shown below in FIG. 18D, when the UE receives a MAC CE message including a plurality of CORESET ID fields 1852 and a plurality of TCI state IDs 1854, PDCCH transmission for each CORESET of the second cell It can be interpreted that the beam is updated to each TCI state (that is, transmitted through the same beam as the RS configured in association with each TCI state).
  • one CORESET ID field 1852 and a plurality of TCI state ID fields 1854 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
  • the UE receives the configuration message from the first TRP, and the MAC CE for instructing the change of the beam through which the PDCCH is transmitted in the second TRP is received from the second TRP. It is possible.
  • PDCCH monitoring for the second cell may be performed using the above-described method, and the MAC CE may be received from the second TRP through the PDSCH scheduled by the DCI received through the PDCCH.
  • 19 is a flowchart illustrating a method of instructing an inter-cell beam change according to the first embodiment of the present disclosure.
  • the first node may mean a node (eg, TRP) that transmits and receives data to and from the terminal through the first cell, and the second node physically communicates with the first node. It may refer to a node (eg, TRP) that is divided or separated and transmits and receives data to and from the terminal through the second cell different from the first cell.
  • TRP node
  • the first node 1910 may transmit a control message (eg, MAC CE) to the terminal 1900 in step S1905 .
  • a control message eg, MAC CE
  • step S1910 the terminal 1900 may check a change in the beam through which the PDCCH is transmitted from the second node 1920 based on the control message.
  • the terminal 1900 checks the beam change related control message (eg, MAC CE) through which the PDCCH is transmitted, and a response message thereto may be transmitted to the first node 1910 (not shown).
  • the response message may be defined in MAC CE format.
  • the terminal 1900 includes a MAC subheader (subheader) including a logical channel ID (LCID) corresponding to the response message (MAC CE) and the MAC sub PDU including the response message (MAC CE) may be transmitted to the first node 1910 .
  • MAC subheader including a logical channel ID (LCID) corresponding to the response message (MAC CE)
  • MAC sub PDU including the response message (MAC CE) may be transmitted to the first node 1910 .
  • the terminal 1900 may perform the subsequent operation without transmitting the above response message.
  • the second node 1920 may transmit the PDCCH to the terminal 1900 through the changed beam in step S1915.
  • the terminal 1900 may receive the PDCCH transmitted from the second node 1920 through the changed beam.
  • the first node 1910 confirms that the control message (eg, MAC CE) has been successfully received by the terminal 1900 based on the response message, and the second node 1920, in step S1915, The PDCCH may be transmitted to the UE 1900 through the changed beam.
  • the terminal 1900 may receive the PDCCH through the changed beam.
  • the first node 1910 sends the response message to the second node 1920 through a separate message (eg, an X2 interface message). is transmitted, and the second node 1920 may transmit the PDCCH to the UE 1900 through a beam changed based on this. can do.
  • the UE receives the configuration message from the first node 1910, and the MAC CE for instructing the change of the beam through which the PDCCH is transmitted from the second node 1920 is the second A method of receiving from node 1920 is also possible.
  • PDCCH monitoring for the second cell may be performed, and the MAC CE may be received from the second node 1920 through the PDSCH scheduled by the DCI received through the PDCCH.
  • the second embodiment proposes a method of instructing a beam change of a serving cell and a non-serving cell through one MAC CE in an inter-cell multi TRP operation.
  • a serving cell may be simply referred to as a first cell, and a TRP operating the first cell may be referred to as a first TRP.
  • a non-serving cell may be simply referred to as a second cell, and a TRP operating the second cell may be referred to as a second TRP.
  • the UE may receive one MAC CE and simultaneously check an indication (or specify) of a change in the PDCCH transmission beam of each of the first cell and the second cell.
  • the base station may transmit information on two PDCCH beams through one signaling.
  • the terminal can change the beam at once without distinguishing the type of TRP.
  • 20A to 20D are diagrams illustrating a MAC CE format according to a second embodiment of the present disclosure.
  • a separate serving cell id is not configured in the second cell (for example, it may be the case that there is no ServCellIndex or it is assumed that it is the same as the ServCellIndex of the first cell).
  • the PCI of the second cell can be checked by using the same method as in 2 .
  • the MAC CE for indicating (or specifying) the change of the PDCCH transmission beams of the first cell and the second cell with one MAC CE may have a structure as shown in FIG. 20A . It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
  • MAC CE (2010) includes Serving cell ID 1 field (2011), CORESET ID 1 field (2012), CORESET ID 2 field (2013), TCI state ID 1 field (2014), and TCI state ID 2 field (2015) can do.
  • each Serving Cell ID field (2011) is 5 bits
  • the CORESET ID 1 field (2012) is 5 bits
  • the CORESET ID 2 field (2013) is 5 bits
  • the TCI state ID 1 field (2014) is 7 bits (or 8 bits)
  • the TCI state ID 2 field 2015 may have a length of 7 bits (or 8 bits).
  • the order of the fields and the number of bits in each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • the identifier of the second cell (eg PCI) It is possible to indicate the beam change or update configuration of the PDCCH while omitting .
  • the UE may refer to the serving cell configuration of the cell (first cell) indicated by the Serving Cell ID 1 field 2011 .
  • CORESET ID 1 means the CORESET index of the cell (first cell) indicated by the Serving cell ID 1 field (2011)
  • CORESET ID 2 is implicit in the TCI state setting indicated by the TCI state ID 2 field (2015). It may mean the CORESET index of the PCI cell (second cell). Therefore, the UE can confirm that the cell indicated by the Serving cell ID 1 field (2011) is the first cell, and the PCI of the second cell is performed through the PCI embedded in the TCI state setting indicated by the TCI state ID 2 field (2015). can be checked
  • the UE transmits the PDCCH through the CORESET resource indicated by the CORESET ID 1 field 2012 in the first TRP is the same beam as the RS set in association with the TCI state indicated by the TCI state ID 1 field 2014 It can be confirmed that it is transmitted to At the same time, the UE transmits the PDCCH beam through the CORESET resource indicated by the CORESET ID 2 field 2013 in the second TRP is set in association with the TCI state indicated by the TCI state ID 2 field 2015 Same as RS. It can be confirmed that the beam is transmitted.
  • the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • one PDCCH transmission beam It can be interpreted as indicating a change.
  • the UE upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
  • one TCI state ID corresponds to one CORESET ID
  • the above-described embodiment 1-1) or embodiment 1 -2) can be used to check the PCI of the second cell.
  • the MAC CE for indicating (or specifying) the change of the PDCCH transmission beams of the first cell and the second cell with one MAC CE may have a structure as shown in FIG. 20B . It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
  • MAC CE (2020) is 5 bits of Serving cell ID 1 field 2021, PCI field 2022, CORESET ID 1 field 2023, CORESET ID 2 field 2024, TCI state ID 1 field 2025, TCI state ID 2 field 2026 .
  • each of the Serving Cell ID field 2021 is 5 bits
  • the PCI field 2022 is 10 bits
  • the CORESET ID 1 field 2023 is 4 bits (or 5 bits)
  • the CORESET ID 2 field 2024 is 4 bits (or 5 bits)
  • the TCI state ID 1 field 2025 may have a length of 7 bits
  • the TCI state ID 2 field 2026 may have a length of 7 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • MAC CE omits the identifier of the second cell (eg PCI) and changes the beam of the PDCCH Or you can instruct the update settings.
  • the UE may identify a cell (second cell) having PCI indicated by the PCI field 2022 .
  • CORESET ID 1 means the CORESET index of the cell (first cell) indicated by the serving cell ID 1 field 2021
  • CORESET ID 2 is the CORESET index of the cell (second cell) indicated by the PCI field 2022.
  • the UE can confirm that the cell indicated by the Serving cell ID 1 field 2021 is the first cell, and can identify the PCI of the second cell through the PCI field 2022 .
  • the UE in the first TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 1 field 2022 is linked to the TCI state indicated by the TCI state ID 1 field 2025. It can be confirmed that the beam is transmitted.
  • the UE transmits the PDCCH through the CORESET resource indicated by the CORESET ID 2 field 2024 in the second TRP is the same beam as the RS set in association with the TCI state indicated by the TCI state ID 2 field 2026 It can be confirmed that it is transmitted to In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • one PDCCH transmission beam It can be interpreted as indicating a change.
  • the UE upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
  • one TCI state ID corresponds to one CORESET ID
  • the Serving Cell ID field 2031 can be used as it is or partially extended to indicate a change in the beam through which the PDCCH is transmitted in the second TRP. . Since the second cell has a serving cell configuration according to an independent ServCellIndex, and one PCI can be allocated per ServCellIndex, the ServCellIndex and PCI of the second cell can be indicated through the Serving Cell ID field 2031 .
  • the MAC CE for instructing (or specifying) the change of the PDCCH beam is as shown in FIG. 20C .
  • MAC CE (2030) includes a Serving Cell ID field (2031), an identifier field that additionally defines an inter cell (eg, an Intercell field) (2032), a CORESET ID 1 field (2033), and a CORESET ID 2 field in addition to the basic serving cell ID. 2034 , a TCI state ID 1 field 2035 , and a TCI state ID 2 field 2036 may be included.
  • each of the Serving Cell ID field 2031 is 5 bits
  • the Intercell field 2032 is 1 bit (1 to 4 bits)
  • the CORESET ID 1 field 2033 is 4 bits (or 5 bits)
  • CORESET ID 2 The field 2034 may have a length of 4 bits (or 5 bits)
  • the TCI state ID 1 field 2035 may have a length of 7 bits
  • the TCI state ID 2 field 2036 may have a length of 7 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
  • the inter cell identifier field 2032 may be used to distinguish it from the ServCellindex used for the existing carrier aggregation (CA). For example, in the above-described RRC configuration, whether the ServCellIndex of the second cell is for CA or for inter-cell Multi TRP operation may not be distinguished. In this case, when the value of the inter cell identifier field 2032 is indicated as 1, the UE may determine that the ServCellIndex of the second cell configured in a higher layer (eg, RRC) is for inter-cell Multi TRP. In another embodiment, CA and inter-cell Multi TRP operation may be independently configured in the above-described RRC configuration.
  • CA carrier aggregation
  • the inter cell identifier field 2032 may be omitted. That is, when ServCellIndex is set to be clearly distinguished for the purpose of carrier aggregation in RRC configuration, the inter cell identifier field 2032 may be unnecessary, and if it is implicitly indicated without distinction, the inter cell identifier field 2032 may be required.
  • inter cell identifier field 2032 is 1 bit is illustrated, but it may be extended to a plurality of bits according to the number of non-serving cells linked for the inter-cell Multi TRP operation with a specific serving cell.
  • the UE is a serving cell of the cell (second cell) indicated by the Serving Cell ID field 2031 .
  • the UE in the first TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 1 field 2033 is linked to the TCI state indicated by the TCI state ID 1 field 2035. It can be confirmed that the beam is transmitted.
  • the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 2 field 2034 is the same beam as the RS set in association with the TCI state ID indicated by the TCI state ID 2 field 2036. can confirm that it is being transmitted.
  • the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • the inter cell identifier field 2032 is indicated as 0, it may be assumed that only TCI states ID 1 exists.
  • one PDCCH transmission beam It can be interpreted as indicating a change.
  • the UE upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
  • one TCI state ID corresponds to one CORESET ID
  • a separate serving cell id eg, ServCellIndex
  • a plurality of Serving Cell ID fields (2041, 2042) are used to indicate the change of the PDCCH transmission beam of each of the first cell and the second cell.
  • the first cell and the second cell have independent serving cell settings according to ServCellIndex, and one PCI may be allocated per ServCellIndex. Accordingly, the first cell may be indicated through the Serving Cell ID 1 field 2041 and the second cell may be indicated through the Serving Cell ID 2 field 2042 .
  • the MAC CE may have a structure as shown in FIG. 20D .
  • MAC CE 2040 is Serving Cell ID 1 field 2041, Serving Cell ID 2 field 2042, CORESET ID 1 field 2043, CORESET ID 2 field 2044, TCI state ID 1 field 2045, TCI It may include a state ID 2 field 2046 .
  • each of the Serving Cell ID 1 field 2041 is 5 bits
  • the Serving Cell ID 2 field 2042 is 5 bits
  • the CORESET ID 1 field 2043 is 4 bits (or 5 bits)
  • the CORESET ID 2 field 2044 may have 4 bits (or 5 bits)
  • the TCI state ID 1 field 2045 may have 7 bits
  • the TCI state ID 2 field 2046 may have 7 bits.
  • the order of the fields and the number of bits of each field are merely examples and are not limited thereto.
  • not all fields (or information) should be included in the MAC CE, and some fields may be omitted or fields may be added.
  • the UE may confirm that the cell indicated by the Serving Cell ID 1 field 2041 is the first cell, and may confirm that the cell indicated by the Serving Cell ID 2 field 2042 is the second cell.
  • the UE in the first TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 1 field 2043 is linked to the TCI state indicated by the TCI state ID 1 field 2045. It can be confirmed that the beam is transmitted.
  • the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 2 field 2044 is the same beam as the RS set in association with the TCI state ID indicated by the TCI state ID 2 field 2046. can confirm that it is being transmitted.
  • the TCI state ID may be reflected according to the setting of QCL-info of RRC.
  • one PDCCH transmission beam It can be interpreted as indicating a change.
  • the UE upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
  • one TCI state ID corresponds to one CORESET ID
  • the UE receives the configuration message in the first TRP, and the MAC CE for simultaneously indicating the change of the beam through which the PDCCH is transmitted in the first TRP and the second TRP is the second It is also possible to receive from TRP.
  • PDCCH monitoring for the second cell may be performed, and the MAC CE may be received from the second TRP through the PDSCH scheduled by the DCI received through the PDCCH.
  • 21 is a flowchart illustrating a method of simultaneously instructing to change beams of a first cell and a second cell through one control message according to a second embodiment of the present disclosure.
  • the first node may mean a node (eg, TRP) that transmits and receives data to and from the terminal through the first cell, and the second node is physically connected to the first node. It may refer to a node (eg, TRP) that is divided or separated and transmits and receives data to and from the terminal through the second cell different from the first cell.
  • TRP node
  • the first node 2110 may transmit a control message (eg, MAC CE) to the terminal 2100 in step S2105 .
  • a control message eg, MAC CE
  • the terminal 2100 may check a change in a beam through which each PDCCH is transmitted from at least one of the first node 2110 and the second node 2120 based on the control message.
  • the terminal 2100 checks the change-related control message (eg, MAC CE) of the beam through which the PDCCH is transmitted, and a response message thereto may be transmitted to the first node 2110 (not shown).
  • the response message may be defined in MAC CE format.
  • the terminal 2100 includes a MAC subheader (subheader) including a logical channel ID (LCID) corresponding to the response message (MAC CE) and the MAC sub PDU including the response message (MAC CE) may be transmitted to the first node 2110 .
  • MAC subheader including a logical channel ID (LCID) corresponding to the response message (MAC CE)
  • MAC sub PDU including the response message (MAC CE) may be transmitted to the first node 2110 .
  • the terminal 2100 may perform the subsequent operation without transmitting the above response message.
  • the first node 2110 or the second node 2120 may transmit the PDCCH to the terminal 2100 through the changed beam in step S2115.
  • the terminal 2100 may receive each transmitted PDCCH from at least one of the first node 2110 and the second node 2120 through the changed beam.
  • the first node 2110 confirms that the control message (eg, MAC CE) has been successfully received by the terminal 2100 based on the response message, and the first node 2110 or the second node ( The 2120 may transmit the PDCCH to the terminal 2100 through the changed beam in step S2115.
  • the terminal 2100 may receive each transmitted PDCCH from at least one of the first node 2110 and the second node 2120 through the changed beam.
  • the first node 2110 sends the response message to the second node 2120 through a separate message (eg, an X2 interface message). is transmitted, and the second node 2120 may transmit the PDCCH to the terminal 1900 through a beam changed based on this.
  • the terminal receives the configuration message from the first node 2110, and each PDCCH is transmitted from at least one of the first node 2110 and the second node 2120.
  • a method of receiving the MAC CE for instructing the change of m from the second node 2120 is also possible.
  • PDCCH monitoring for the second cell may be performed, and the MAC CE may be received from the second node 2120 through the PDSCH scheduled by the DCI received through the PDCCH.
  • 22 is a flowchart illustrating an operation of a terminal according to the first embodiment of the present disclosure.
  • step S2205 the terminal may report to the base station the terminal capability information (eg, UE capability) related to the multi-TRP operation to the base station.
  • the terminal capability information eg, UE capability
  • step S2205 may be omitted.
  • the UE may receive a configuration message (eg, RRC message) including configuration information related to (Inter-cell) Multi TRP operation.
  • a configuration message eg, RRC message
  • RRC message configuration information related to (Inter-cell) Multi TRP operation.
  • the terminal may receive a control message (eg, MAC CE) through the first node.
  • a control message eg, MAC CE
  • step S2220 based on the information included in the configuration message or the control message, the terminal checks the change of the beam through which the PDCCH is transmitted in the second node, and can receive the PDCCH from the second node through the changed beam. there is.
  • FIG. 23 is a flowchart illustrating an operation of a terminal according to a second embodiment of the present disclosure.
  • the terminal may report to the base station multi-TRP operation-related terminal capability information (eg, UE capability) to the base station in step S2305.
  • the base station multi-TRP operation-related terminal capability information eg, UE capability
  • step S2305 may be omitted.
  • the UE may receive a configuration message (eg, RRC message) including configuration information related to the (Inter-cell) Multi TRP operation.
  • a configuration message eg, RRC message
  • RRC message configuration information related to the (Inter-cell) Multi TRP operation.
  • the terminal may receive a control message (eg, MAC CE) through the first node.
  • a control message eg, MAC CE
  • step S2320 the terminal checks the change of the beam through which each PDCCH is transmitted from at least one of the first node and the second node based on the information included in the configuration message or the control message, and uses the changed beam
  • the PDCCH may be received from at least one of the first node and the second node.
  • 24 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • a serving cell may be simply referred to as a first cell, and a non-serving cell may be simply referred to as a second cell.
  • the first cell and the second cell may mean each cell operated by a plurality of base stations, or may mean a plurality of cells operated by one base station.
  • the first node may mean a TRP for transmitting and receiving data to and from the terminal through the first cell, and the second node is physically separated or separated from the first node and is a terminal through a second cell different from the first cell and TRP for transmitting and receiving data.
  • the base station may receive multi-TRP operation-related terminal capability information (eg, UE capability) in step S2405. On the other hand, if the base station has previously received or already stored the terminal capability, step S2405 may be omitted.
  • multi-TRP operation-related terminal capability information eg, UE capability
  • the base station may transmit a configuration message (eg, an RRC message) including configuration information related to the (Inter-cell) Multi TRP operation in step S2410.
  • a configuration message eg, an RRC message
  • RRC message configuration information related to the (Inter-cell) Multi TRP operation in step S2410.
  • the base station may transmit a control message (eg, MAC CE) in step S2415.
  • the control message may be used to instruct the UE to change the beam through which the PDDCH is transmitted in the second node.
  • the base station may transmit a PDCCH to the terminal through a beam changed by the second node.
  • 25 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 2510 , a controller 2520 , and a storage 2530 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 2510 may transmit/receive signals to and from other network entities.
  • the transceiver 2510 may receive, for example, system information from a base station, and may receive a synchronization signal or a reference signal.
  • the controller 2520 may control the overall operation of the terminal according to the embodiment proposed in the present invention.
  • the controller 2520 may control a signal flow between blocks to perform an operation according to the above-described flowchart.
  • the controller 2520 may control to receive a control message instructing a PDCCH beam change or update operation of each TRP in an inter-cell multi TRP operation.
  • the storage unit 2530 may store at least one of information transmitted and received through the transceiver 2510 and information generated through the control unit 2520 .
  • the storage unit 2530 may store configuration information (eg, information included in an RRC message) for an inter-cell Multi TRP operation.
  • 26 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 2610 , a control unit 2620 , and a storage unit 2630 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 2610 may transmit/receive signals to and from other network entities.
  • the transceiver 2610 may transmit, for example, system information to the terminal, and may transmit a synchronization signal or a reference signal.
  • the controller 2620 may control the overall operation of the base station according to the embodiment proposed in the present invention.
  • the controller 2620 may control a signal flow between blocks to perform an operation according to the above-described flowchart.
  • the controller 2620 may control to transmit a control message instructing a PDCCH beam change or update operation of each TRP in an inter-cell Multi TRP operation according to an embodiment of the present invention.
  • the storage unit 2630 may store at least one of information transmitted and received through the transceiver 2610 and information generated through the control unit 2520 .
  • the storage unit 2630 may store configuration information (eg, information included in an RRC message) for an inter-cell Multi TRP operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to: a communication technique for merging an IoT technology with a 5G communication system for supporting a higher data transmission rate than a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security- and safety-related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. The present disclosure discloses a method for further effectively managing a beam in a cell-to-cell cooperative communication system using a plurality of cells.

Description

무선 통신 시스템에서 셀 간 협력 통신을 위한 빔 관리 방법 및 장치Beam management method and apparatus for cooperative communication between cells in a wireless communication system
본 개시는 무선 통신 시스템에 대한 것으로서, 보다 구체적으로 복수 개의 셀을 이용한 셀 간 협력 통신에 관련된 것이다.The present disclosure relates to a wireless communication system, and more particularly, to cell-to-cell cooperative communication using a plurality of cells.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.Efforts are being made to develop an improved 5G communication system or pre-5G communication system in order to meet the increasing demand for wireless data traffic after commercialization of the 4G communication system. For this reason, the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or the LTE system after (Post LTE). In order to achieve a high data rate, the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band). In order to alleviate the path loss of radio waves and increase the propagation distance of radio waves in the ultra-high frequency band, in the 5G communication system, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) are used. ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed. In addition, for network improvement of the system, in the 5G communication system, an evolved small cell, an advanced small cell, a cloud radio access network (cloud radio access network: cloud RAN), an ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Technology development is underway. In addition, in the 5G system, advanced coding modulation (ACM) methods such as FQAM (Hybrid FSK and QAM Modulation) and SWSC (Sliding Window Superposition Coding), and advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.On the other hand, the Internet is evolving from a human-centered connection network where humans create and consume information to an Internet of Things (IoT) network that exchanges and processes information between distributed components such as objects. Internet of Everything (IoE) technology, which combines big data processing technology through connection with cloud servers, etc. with IoT technology, is also emerging. In order to implement IoT, technology elements such as sensing technology, wired and wireless communication and network infrastructure, service interface technology, and security technology are required. , M2M), and MTC (Machine Type Communication) are being studied. In the IoT environment, an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided. IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts are being made to apply the 5G communication system to the IoT network. For example, in technologies such as sensor network, machine to machine (M2M), and MTC (Machine Type Communication), 5G communication technology is implemented by techniques such as beam forming, MIMO, and array antenna. there will be The application of cloud radio access network (cloud RAN) as the big data processing technology described above can be said to be an example of convergence of 5G technology and IoT technology.
한편, 5G (또는 NR) 시스템에서는 셀 경계에 위치한 단말의 처리량 (throughput)을 높이기 위하여 복수 개의 셀을 이용한 셀 간 협력 통신이 가능하다. 이에, 셀 간 협력 통신에서 효과적인 빔 관리 방법의 필요성이 대두하였다.Meanwhile, in the 5G (or NR) system, cooperative communication between cells using a plurality of cells is possible in order to increase the throughput of the terminal located at the cell boundary. Accordingly, the need for an effective beam management method in cell-to-cell cooperative communication has emerged.
셀 경계에 위치한 단말의 처리량 (throughput)을 높이기 위하여 새로운 형태의 셀 간 협력 기술인 CoMP (coordinated multi-point)가 사용될 수 있다. CoMP는 이웃한 셀들이 협력하여서 서빙 (serving) 셀 뿐만 아니라 다른 셀들도 같은 단말과 통신할 수 있도록 함으로써 셀 간 간섭을 줄이고 셀 경계에서 단말의 throughput을 높이는 기술이다.In order to increase the throughput of the UE located at the cell boundary, a new type of inter-cell cooperation technology CoMP (coordinated multi-point) may be used. CoMP is a technology that reduces inter-cell interference and increases the throughput of the UE at the cell boundary by enabling neighboring cells to cooperate with each other so that not only the serving cell but also other cells can communicate with the same UE.
본 개시는 무선 통신 시스템의 주파수 대역 (예를 들어, 6GHz 이상의 대역)에서 복수의 송수신 포인트 (transmission reception point, TRP) (이하, Multiple TRP) 기반의 CoMP (예를 들어, NC-JT (non-coherent joint transmission))에 대한 다양한 기법들을 제안한다. 구체적으로, 서로 다른 셀 (cell)이 포함되는 다중 셀 그룹의 여러 시나리오에서 각 TRP의 PDCCH 빔 변경 또는 업데이트 동작을 지시하는 시그널링 (signalling) 방법을 제안한다. 또한, 한번의 시그널링으로 2개 이상의 서로 다른 셀 (serving cell, non-serving cell)에 대한 각 TRP의 PDCCH 전송 빔 변경 또는 업데이트 동작을 지시하는 방법을 제안한다.The present disclosure provides a plurality of transmission reception point (TRP) (hereinafter, Multiple TRP)-based CoMP (eg, NC-JT (non- We propose various techniques for coherent joint transmission). Specifically, a signaling method for instructing a PDCCH beam change or update operation of each TRP in multiple scenarios of a multi-cell group including different cells is proposed. In addition, a method of instructing a PDCCH transmission beam change or update operation of each TRP for two or more different cells (serving cell, non-serving cell) with one signaling is proposed.
상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시예에 따르면, 무선 통신 시스템의 단말의 방법에 있어서, 셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 수신하는 단계; 상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)로부터 제어 메시지를 수신하는 단계; 상기 설정 메시지 및 상기 제어 메시지에 기반하여, 상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경을 확인하는 단계; 및 상기 확인 결과에 기반하여 상기 변경되는 빔을 통해 상기 제2셀의 노드로부터 상기 PDCCH를 수신하는 단계를 포함하는 것을 특징으로 한다.According to an embodiment of the present disclosure for solving the above problems, in a method of a terminal of a wireless communication system, an inter-cell multi-transmission reception point (multi-TRP) operation ) receiving a setting message related to; receiving a control message from a node of a first cell related to the inter-cell multi-TRP operation; checking a change in a beam through which a physical downlink control channel (PDCCH) is transmitted from a node of a second cell related to the inter-cell multi-TRP operation based on the configuration message and the control message; and receiving the PDCCH from the node of the second cell through the changed beam based on the confirmation result.
또한, 상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시예에 따르면, 무선 통신 시스템의 기지국의 방법에 있어서, 셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 단말로 전송하는 단계; 및 상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)를 통해 제어 메시지를 상기 단말로 전송하는 단계를 포함하고,상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경은 상기 설정 메시지에 포함된 설정 정보 및 상기 제어 메시지에 포함된 제어 정보에 기반하는 것을 특징으로 한다.In addition, according to an embodiment of the present disclosure for solving the above problems, in a method of a base station of a wireless communication system, an inter-cell multi-transmission reception point (multi-TRP) operation Transmitting a configuration message related to (operation) to the terminal; and transmitting a control message to the terminal through a node of the first cell related to the inter-cell multi-TRP operation, Physical downlink from the node of the second cell related to the inter-cell multi-TRP operation A change in a beam through which a physical downlink control channel (PDCCH) is transmitted is characterized in that it is based on configuration information included in the configuration message and control information included in the control message.
또한, 상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시예에 따르면, 무선 통신 시스템의 단말에 있어서, 송수신부; 및 셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 수신하도록 상기 송수신부를 제어하고, 상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)로부터 제어 메시지를 수신하도록 상기 송수신부를 제어하고, 상기 설정 메시지 및 상기 제어 메시지에 기반하여, 상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경을 확인하도록 제어하고, 상기 확인 결과에 기반하여 상기 변경되는 빔을 통해 상기 제2셀의 노드로부터 상기 PDCCH를 수신하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 한다.In addition, according to an embodiment of the present disclosure for solving the above problems, in a terminal of a wireless communication system, a transceiver; and controlling the transceiver to receive a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation, and a first cell related to the inter-cell multi-TRP operation controls the transceiver to receive a control message from a node of Downlink control channel (PDCCH) includes a control unit that controls to confirm a change in the transmitted beam, and controls the transceiver to receive the PDCCH from the node of the second cell through the changed beam based on the result of the confirmation characterized in that
또한, 상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시예에 따르면, 무선 통신 시스템의 기지국에 있어서, 송수신부; 및 셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 단말로 전송하도록 상기 송수신부를 제어하고, 상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)를 통해 제어 메시지를 상기 단말로 전송하도록 상기 송수신부를 제어하는 제어부를 포함하고, 상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경은 상기 설정 메시지에 포함된 설정 정보 및 상기 제어 메시지에 포함된 제어 정보에 기반하는 것을 특징으로 한다.In addition, according to an embodiment of the present disclosure for solving the above problems, in a base station of a wireless communication system, a transceiver; and controlling the transceiver to transmit a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation to the terminal, and a first related to the inter-cell multi-TRP operation a control unit for controlling the transceiver to transmit a control message to the terminal through a node of one cell; The change of the beam through which the control channel (PDCCH) is transmitted is characterized in that it is based on configuration information included in the configuration message and control information included in the control message.
본 개시의 일 실시예에 따르면, 서로 다른 셀 (cell)이 포함되는 다중 셀 그룹의 여러 시나리오에서 단말은 효과적으로 PDCCH 전송 빔의 변경을 판단하고 변경되는 빔으로 링크를 업데이트함으로써 보다 효율적으로 빔 관리를 운영할 수 있다.According to an embodiment of the present disclosure, in various scenarios of a multi-cell group including different cells, the UE effectively determines the change of the PDCCH transmission beam and updates the link with the changed beam, so that the beam management is more efficient. can operate
도 1은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 또는 제어 채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system according to an embodiment of the present disclosure.
도 2는 5G 시스템에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
도 3은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 대역폭 부분에 대한 설정을 설명하기 위한 도면이다.3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시 예에 따른 대역폭 부분에 대한 동적 설정 변경 방법을 도시한 도면이다. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시 예에 따른 5G 스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)을 설명하기 위한 도면이다.5 is a diagram for explaining a control region (Control Resource Set, CORESET) in which a downlink control channel is transmitted in a 5G system according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시예에 따른 단말 능력 (UE capability)을 보고하는 절차를 도시한 도면이다. 6 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
도 7은 본 개시의 일 실시예에 따른 협력 통신 안테나 포트 구성을 설명하기 위한 도면이다. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
도 8a는 본 개시의 일 실시예에 따라 Multi-TRP를 구성하는 시나리오를 도시한 도면이다.8A is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
도 8b는 본 개시의 일 실시예에 따라 Multi-TRP를 구성하는 시나리오를 도시한 도면이다.8B is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
도 8c는 본 개시의 일 실시예에 따라 Multi-TRP를 구성하는 시나리오를 도시한 도면이다.8C is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
도 8d는 본 개시의 일 실시예에 따라 Multi-TRP를 구성하는 시나리오를 도시한 도면이다.8D is a diagram illustrating a scenario of configuring Multi-TRP according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시예에 따른 Multi-DCI 기반 M-TRP의 CORESETPoolIndex 설정 방법을 도시한 도면이다. 9 is a diagram illustrating a CORESETPoolIndex setting method of M-TRP based on Multi-DCI according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시예에 따른 CORESETPoolIndex를 설정하는 방법을 도시한 도면이다. 10 is a diagram illustrating a method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시예에 따른 CORESETPoolIndex를 설정하는 방법을 도시한 도면이다. 11 is a diagram illustrating a method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따른 CORESETPoolIndex를 설정하는 방법을 도시한 도면이다.12 is a diagram illustrating a method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시예에 따른 Multi-TRP 동작을 위해 단말과 기지국이 신호를 송수신하는 과정을 도시한 순서도이다.13 is a flowchart illustrating a process in which a terminal and a base station transmit and receive signals for a multi-TRP operation according to an embodiment of the present disclosure.
도 14a는 일 실시예에 따른 빔 관리 절차를 도시한 도면이다.14A is a diagram illustrating a beam management procedure according to an embodiment.
도 14b는 일 실시예에 따른 빔 관리 절차를 도시한 도면이다.14B is a diagram illustrating a beam management procedure according to an embodiment.
도 15는 본 개시의 일 실시예에 따른 MAC CE 기반 빔 지시 방법을 도시한 도면이다.15 is a diagram illustrating a MAC CE-based beam indication method according to an embodiment of the present disclosure.
도 16는 일 실시예에 따라 MAC CE 기반 빔 지시를 위한 MAC CE 포맷을 도시한 도면이다.16 is a diagram illustrating a MAC CE format for MAC CE-based beam indication according to an embodiment.
도 17은 일 실시예에 따라 셀 내 (intra cell) 빔 변경을 지시하는 동작을 나타낸 순서도이다.17 is a flowchart illustrating an operation of instructing an intra-cell beam change according to an embodiment.
도 18a는 본 개시의 제 1 실시예에 따른 MAC CE 포맷을 도시한 도면이다.18A is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
도 18b는 본 개시의 제 1 실시예에 따른 MAC CE 포맷을 도시한 도면이다.18B is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
도 18c는 본 개시의 제 1 실시예에 따른 MAC CE 포맷을 도시한 도면이다.18C is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
도 18d는 본 개시의 제 1 실시예에 따른 MAC CE 포맷을 도시한 도면이다.18D is a diagram illustrating a MAC CE format according to a first embodiment of the present disclosure.
도 19는 본 개시의 제 1 실시예에 따라 셀 간 (inter cell)의 빔 변경을 지시하는 방법을 도시한 순서도이다.19 is a flowchart illustrating a method of instructing an inter-cell beam change according to the first embodiment of the present disclosure.
도 20a는 본 개시의 제 2 실시예에 따른 MAC CE 포맷을 도시한 도면이다.20A is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
도 20b는 본 개시의 제 2 실시예에 따른 MAC CE 포맷을 도시한 도면이다.20B is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
도 20c는 본 개시의 제 2 실시예에 따른 MAC CE 포맷을 도시한 도면이다.20C is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
도 20d는 본 개시의 제 2 실시예에 따른 MAC CE 포맷을 도시한 도면이다.20D is a diagram illustrating a MAC CE format according to a second embodiment of the present disclosure.
도 21은 본 개시의 제 2 실시예에 따라 하나의 제어 메시지를 통해 제 1 셀 및 제 2 셀의 빔 변경을 동시에 지시하는 방법을 도시한 순서도이다.21 is a flowchart illustrating a method of simultaneously instructing to change beams of a first cell and a second cell through one control message according to a second embodiment of the present disclosure.
도 22는 본 개시의 제 1 실시예에 따른 단말의 동작을 도시한 순서도이다.22 is a flowchart illustrating an operation of a terminal according to the first embodiment of the present disclosure.
도 23은 본 개시의 제 2 실시예에 따른 단말의 동작을 도시한 순서도이다.23 is a flowchart illustrating an operation of a terminal according to a second embodiment of the present disclosure.
도 24는 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 순서도이다.24 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
도 25는 본 발명의 일 실시예에 따른 단말의 구조를 도시한 도면이다.25 is a diagram illustrating the structure of a terminal according to an embodiment of the present invention.
도 26은 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.26 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents that are well known in the technical field to which the present invention pertains and are not directly related to the present invention will be omitted. This is to more clearly convey the gist of the present invention without obscuring the gist of the present invention by omitting unnecessary description.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components are exaggerated, omitted, or schematically illustrated in the accompanying drawings. In addition, the size of each component does not fully reflect the actual size. In each figure, the same or corresponding elements are assigned the same reference numerals.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the embodiments of the present disclosure make the present disclosure complete, and common knowledge in the technical field to which the present invention belongs It is provided to fully inform the possessor of the scope of the invention, and the present disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.At this time, it will be understood that each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions. These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions. These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory. It may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s). The computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible that instructions for performing the processing equipment provide steps for performing the functions described in the flowchart block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다. At this time, the term '~ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~ unit' performs certain roles do. However, '-part' is not limited to software or hardware. '~' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Accordingly, according to some embodiments, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided in the components and '~ units' may be combined into a smaller number of components and '~ units' or further separated into additional components and '~ units'. In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card. Also, according to some embodiments, '~ unit' may include one or more processors.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.Hereinafter, the operating principle of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. Hereinafter, the base station is a subject that performs resource allocation of the terminal, and may be at least one of gNode B, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network. The terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function. Of course, the present disclosure is not limited to the above example. Hereinafter, a description will be given of a technique for a terminal to receive broadcast information from a base station in a wireless communication system. The present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after the 4 th generation (4G) system with Internet of Things (IoT) technology, and a system thereof. The present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.A term referring to broadcast information, a term referring to control information, a term related to communication coverage, a term referring to a state change (eg, an event), and network entities used in the following description Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, some terms and names defined in 3GPP LTE (3rd generation partnership project long term evolution) standard may be used. However, the present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB (Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. A wireless communication system, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2 HRPD (High Rate Packet Data), UMB (Ultra Mobile Broadband), and IEEE 802.16e, such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.As a representative example of a broadband wireless communication system, in an LTE system, an Orthogonal Frequency Division Multiplexing (OFDM) scheme is employed in Downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) is used in Uplink (UL). ) method is used. Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals. The multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources for each user to transmit data or control information so that they do not overlap each other, that is, orthogonality is established. .
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation: URLLC) 등이 있다.As a future communication system after LTE, that is, the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported. Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. According to some embodiments, the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by existing LTE, LTE-A, or LTE-Pro. For example, in the 5G communication system, the eMBB should be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station. At the same time, it is necessary to provide an increased user perceived data rate of the terminal. In order to satisfy such a requirement, it is required to improve transmission/reception technology, including a more advanced multi-input multi-output (MIMO) transmission technology. In addition, it is possible to satisfy the data transmission speed required by the 5G communication system by using a frequency bandwidth wider than 20 MHz in a frequency band of 3 to 6 GHz or 6 GHz or more instead of the 2 GHz band used by the current LTE.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다. At the same time, mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system. In order to efficiently provide the Internet of Things, mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell. In addition, since a terminal supporting mMTC is highly likely to be located in a shaded area that a cell cannot cover, such as the basement of a building, due to the nature of the service, it may require wider coverage compared to other services provided by the 5G communication system. A terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.Lastly, in the case of URLLC, as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or machine, industrial automation, As a service used in an unmaned aerial vehicle, remote health care, emergency alert, etc., it is necessary to provide communication that provides ultra-low latency and ultra-reliability. For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller transmit time interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required. However, the aforementioned mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다. The services considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 발명의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시 예가 적용될 수 있다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.In addition, although the embodiment of the present invention will be described below using LTE, LTE-A, LTE Pro, or NR system as an example, the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present invention can be applied to other communication systems through some modifications within the scope of the present invention as judged by a person having skilled technical knowledge.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.A term referring to broadcast information, a term referring to control information, a term related to communication coverage, a term referring to a state change (eg, an event), and network entities used in the following description Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, some terms and names defined in 3GPP LTE (3rd generation partnership project long term evolution) standard may be used. However, the present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
도 1은 무선 통신 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system.
도 1을 참조하면, 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(resource element: RE)(1-01)로서 시간 축으로 1 OFDM (orthogonal frequency division multiplexing) 심볼(1-02) 및 주파수 축으로 1 부반송파(Subcarrier)(1-03)로 정의될 수 있다. 주파수 영역에서
Figure PCTKR2021014704-appb-I000001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(resource block: RB)(1-04)을 구성할 수 있다.
Referring to FIG. 1 , the horizontal axis represents the time domain and the vertical axis represents the frequency domain. A basic unit of a resource in the time and frequency domain is a resource element (RE) (1-01) as 1 OFDM (orthogonal frequency division multiplexing) symbol (1-02) on the time axis and 1 subcarrier on the frequency axis It can be defined as (1-03). in the frequency domain
Figure PCTKR2021014704-appb-I000001
(for example, 12) consecutive REs may constitute one resource block (RB) 1-04.
도 2는 5G 시스템에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
도 2를 참조하면, 도 2에는 프레임(Frame, 2-00), 서브프레임(Subframe, 2-01), 슬롯(Slot, 2-02) 구조의 일 예가 도시되어 있다. 1 프레임(2-00)은 10ms로 정의될 수 있다. 1 서브프레임(2-01)은 1ms로 정의될 수 있으며, 1 프레임(2-00)은 총 10개의 서브프레임(2-01)으로 구성될 수 있다. 1 슬롯(2-02, 2-03)은 14개의 OFDM 심볼로 정의될 수 있다 (즉 1 슬롯 당 심볼 수(
Figure PCTKR2021014704-appb-I000002
)=14). 1 서브프레임(2-01)은 하나 또는 다수 개의 슬롯(2-02, 2-03)으로 구성될 수 있으며, 1 서브프레임(2-01)당 슬롯(2-02, 2-03)의 개수는 부반송파 간격에 대한 설정 값 μ(2-04, 2-05)에 따라 다를 수 있다.
Referring to FIG. 2 , an example of a structure of a frame 2-00, a subframe 2-01, and a slot 2-02 is illustrated in FIG. 2 . One frame (2-00) may be defined as 10 ms. One subframe (2-01) may be defined as 1 ms, and one frame (2-00) may consist of a total of 10 subframes (2-01). One slot (2-02, 2-03) may be defined as 14 OFDM symbols (that is, the number of symbols per slot (
Figure PCTKR2021014704-appb-I000002
)=14). One subframe (2-01) may consist of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per one subframe (2-01) may be different depending on the set value μ(2-04, 2-05) for the subcarrier spacing.
도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(2-04)인 경우와 μ=1(2-05)인 경우가 도시되어 있다. μ=0(2-04)일 경우, 1 서브프레임(2-01)은 1개의 슬롯(2-02)으로 구성될 수 있고, μ=1(2-05)일 경우, 1 서브프레임(2-01)은 2개의 슬롯(2-03)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure PCTKR2021014704-appb-I000003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure PCTKR2021014704-appb-I000004
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2021014704-appb-I000005
Figure PCTKR2021014704-appb-I000006
는 하기의 [표 1]과 같이 정의될 수 있다.
In the example of FIG. 2 , a case of μ=0 (2-04) and a case of μ=1 (2-05) are illustrated as the subcarrier spacing setting values. When μ = 0 (2-04), one subframe (2-01) may consist of one slot (2-02), and when μ = 1 (2-05), one subframe (2) -01) may be composed of two slots (2-03). That is, the number of slots per subframe (
Figure PCTKR2021014704-appb-I000003
) may vary, and accordingly, the number of slots per frame (
Figure PCTKR2021014704-appb-I000004
) may be different. According to each subcarrier spacing setting μ
Figure PCTKR2021014704-appb-I000005
and
Figure PCTKR2021014704-appb-I000006
may be defined as in [Table 1] below.
μμ
Figure PCTKR2021014704-appb-I000007
Figure PCTKR2021014704-appb-I000007
Figure PCTKR2021014704-appb-I000008
Figure PCTKR2021014704-appb-I000008
Figure PCTKR2021014704-appb-I000009
Figure PCTKR2021014704-appb-I000009
00 1414 1010 1One
1One 1414 2020 22
22 1414 4040 44
33 1414 8080 88
44 1414 160160 1616
55 1414 320320 3232
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성될 수 있다. 따라서, 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part,BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원할 수 있다. In NR, one component carrier (CC) or serving cell may consist of up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth (serving cell bandwidth) like LTE, the power consumption of the terminal may be extreme, and in order to solve this, the base station provides one or more bandwidth parts (BWP) to the terminal. It can be configured to support the UE to change the reception area within the cell.
NR에서 기지국은 CORESET #0 (혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그날링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여, 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할지를 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은, 'default BWP'로 회귀하여 DCI 수신을 시도한다. In NR, the base station may set 'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through the MIB. Thereafter, the base station sets the initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI). . Thereafter, the base station may indicate which band the terminal uses by announcing the BWP ID through DCI. If the terminal does not receive DCI in the currently allocated BWP for a specific time or longer, the terminal returns to the 'default BWP' and attempts to receive DCI.
도 3은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 대역폭 부분에 대한 설정을 설명하기 위한 도면이다.3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
도 3을 참조하면, 단말 대역폭(3-00)은 두 개의 대역폭 부분, 즉 대역폭 부분 #1(3-05)과 대역폭 부분 #2(3-10)을 포함할 수 있다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 [표 2]와 같은 정보들을 설정해 줄 수 있다.Referring to FIG. 3 , the terminal bandwidth 3-00 may include two bandwidth portions, namely, a bandwidth portion #1(3-05) and a bandwidth portion #2(3-10). The base station may set one or more bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
설정정보 1Setting information 1 대역폭 부분의 대역폭 (대역폭 부분을 구성하는 PRB 수)Bandwidth in the bandwidth portion (number of PRBs that make up the bandwidth portion)
설정정보 2 Setting information 2 대역폭 부분의 주파수 위치(이러한 정보로 기준점(A Reference Point) 대비 오프셋(Offset) 값, 기준점은 예컨대 반송파의 중심 주파수, 동기 신호, 동기 신호 래스터(Raster) 등이 있을 수 있다)The frequency position of the bandwidth part (such information may include an offset value compared to the reference point A, and the reference point may include, for example, the center frequency of a carrier wave, a synchronization signal, a synchronization signal raster, etc.)
설정정보 3Setting information 3 대역폭 부분의 뉴머롤로지 (Numerology) (예컨대, 부반송파 (Subcarrier) 간격, CP (Cyclic Prefix) 길이 등)Numerology of the bandwidth part (eg, subcarrier spacing, CP (Cyclic Prefix) length, etc.)
그 외etc
[표 2]에서 설명된 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상술한 정보들은 상위 계층 시그널링, 예컨대 RRC 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(Activation)될 수 있다. 설정된 대역폭 부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적(semi-static)으로 전달되거나, MAC CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.In addition to the setting information described in [Table 2], various parameters related to the bandwidth portion may be set in the terminal. The above-described information may be transmitted by the base station to the terminal through higher layer signaling, for example, RRC signaling. At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling, or may be dynamically transmitted through a MAC control element (MAC CE) or DCI.
상술한 5G 통신 시스템에서 지원하는 대역폭 부분에 대한 설정은 다양한 목적으로 사용될 수 있다. The setting of the bandwidth part supported by the above-described 5G communication system may be used for various purposes.
일 예로 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에, 대역폭 부분에 대한 설정을 통해, 단말이 지원하는 대역폭이 지원될 수 있다. 예컨대 [표 2]에서 대역폭 부분의 주파수 위치(설정정보 2)가 단말에게 설정됨으로써, 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.For example, when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported by setting the bandwidth portion. For example, in [Table 2], the frequency position of the bandwidth part (setting information 2) is set for the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
또 다른 일 예로 서로 다른 뉴머롤로지를 지원하기 위한 목적으로, 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 임의의 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분이 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정될 수 있다. 서로 다른 대역폭 부분은 FDM(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화 될 수 있다.As another example, for the purpose of supporting different numerologies, the base station may configure a plurality of bandwidth portions for the terminal. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to an arbitrary terminal, two bandwidth portions may be configured to use a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be subjected to frequency division multiplexing (FDM), and when data is transmitted/received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
또 다른 일 예로 단말의 전력 소모 감소를 위한 목적으로, 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭 부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다. As another example, for the purpose of reducing power consumption of the terminal, the base station may configure a bandwidth portion having different sizes of bandwidths for the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits/receives data using the corresponding bandwidth, very large power consumption may be caused. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation in which there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In the absence of traffic, the UE may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
도 4는 본 개시의 일 실시 예에 따른 대역폭 부분에 대한 동적 설정 변경 방법을 도시한 도면이다. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
도 4를 참조하면, 상술한 [표 2]에서 설명한 바와 같이, 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정할 수 있으며, 각 대역폭 부분에 대한 설정으로 대역폭 부분의 대역폭, 대역폭 부분의 주파수 위치, 대역폭 부분의 뉴머롤로지 등에 대한 정보를 단말에게 알려줄 수 있다. 도 4에 도시된 바에 따르면, 단말에게 단말 대역폭(4-00) 내의 두 개의 대역폭 부분, 즉, 대역폭 부분#1(BPW#1, 4-05)과 대역폭 부분#2(BWP#2, 4-10)이 설정될 수 있다. 설정된 대역폭 중에서 하나 또는 다수 개의 대역폭 부분이 활성화 될 수 있으며, 도 4에서는 하나의 대역폭 부분이 활성화되는 일 예가 고려될 수 있다. 슬롯#0(4-25)에서는 설정된 대역폭 부분들 중에서 대역폭 부분#1(4-02)이 활성화되어 있는 상태이고, 단말은 대역폭 부분#1(4-05)에 설정되어 있는 제어 영역#1(4-45)에서 PDCCH(Physical Downlink Control Channel)를 모니터링할 수 있고, 대역폭 부분 #1(4-05)에서 데이터(4-55)를 송수신할 수 있다. 설정된 대역폭 부분 중에서 어떤 대역폭 부분이 활성화되는지에 따라서 단말이 PDCCH를 수신하는 제어 영역이 다를 수 있고, 이에 따라 단말이 PDCCH를 모니터링하는 대역폭이 달라질 수 있다. Referring to FIG. 4, as described in [Table 2] above, the base station may set one or more bandwidth parts to the terminal, and as settings for each bandwidth part, the bandwidth of the bandwidth part, the frequency position of the bandwidth part, Information on the numerology of the bandwidth part may be informed to the terminal. As shown in FIG. 4 , two bandwidth portions within the terminal bandwidth 4-00, that is, bandwidth portion #1 (BPW#1, 4-05) and bandwidth portion #2 (BWP#2, 4- 10) can be set. One or a plurality of bandwidth portions may be activated among the set bandwidths, and an example in which one bandwidth portion is activated may be considered in FIG. 4 . In slot #0 (4-25), the bandwidth part #1 (4-02) is activated among the set bandwidth parts, and the terminal controls the control region #1 ( 4-45) may monitor a Physical Downlink Control Channel (PDCCH), and may transmit/receive data 4-55 in bandwidth part #1 (4-05). A control region in which the terminal receives the PDCCH may be different depending on which bandwidth portion among the configured bandwidth portions is activated, and accordingly, the bandwidth in which the terminal monitors the PDCCH may vary.
기지국은 단말에게 대역폭 부분에 대한 설정을 변경하는 지시자를 추가로 전송할 수 있다. 여기서, 대역폭 부분에 대한 설정을 변경하는 것이라 함은 특정 대역폭 부분을 활성화하는 동작(예컨대 대역폭 부분 A에서 대역폭 부분 B로의 활성화 변경)과 동일하게 여겨질 수 있다. 기지국은 단말에게 설정 변경 지시자(Configuration Switching Indicator)를 특정 슬롯에서 전송할 수 있다. 단말은 기지국으로부터 설정 변경 지시자를 수신한 후 특정 시점에서부터 설정 변경 지시자에 따라 변경된 설정을 적용하여 활성화할 대역폭 부분을 결정할 수 있다. 또한, 단말은 활성화된 대역폭 부분에 설정되어 있는 제어 영역에서 PDCCH에 대한 모니터링을 수행할 수 있다. The base station may additionally transmit an indicator for changing the configuration of the bandwidth portion to the terminal. Here, changing the setting for the bandwidth portion may be considered the same as an operation of activating a specific bandwidth portion (eg, changing the activation from the bandwidth portion A to the bandwidth portion B). The base station may transmit a configuration switching indicator to the terminal in a specific slot. After receiving the configuration change indicator from the base station, the terminal may determine a bandwidth portion to be activated by applying the changed configuration according to the configuration change indicator from a specific time point. In addition, the UE may perform monitoring for the PDCCH in the control region set in the activated bandwidth portion.
도 4에서 기지국은 단말에게 활성화된 대역폭 부분을 기존의 대역폭 부분#1(4-05)에서 대역폭 부분#2(4-10)로 변경을 지시하는 설정 변경 지시자(Configuration Switching Indication, 4-15)를 슬롯#1(4-30)에서 전송할 수 있다. 단말은 해당 지시자를 수신한 후, 지시자의 내용에 따라 대역폭 부분#2(6-10)를 활성화 할 수 있다. 이 때 대역폭 부분의 변경을 위한 전이 시간(Transistion Time, 4-20)이 요구될 수 있고, 이에 따라 활성화하는 대역폭 부분을 변경하여 적용하는 시점이 결정될 수 있다. 도 4에서는 설정 변경 지시자(4-15)를 수신한 후 1 슬롯의 전이 시간(4-20)이 소요되는 경우가 도시되어 있다. 전이 시간(4-20)에는 데이터 송수신이 수행되지 않을 수 있다(4-60). 이에 따라 슬롯#2(4-35)에서 대역폭 부분#2(4-10)이 활성화되어 해당 대역폭 부분으로 제어채널 및 데이터가 송수신될 수 있다.In FIG. 4, the base station instructs the terminal to change the activated bandwidth part from the existing bandwidth part #1 (4-05) to the bandwidth part #2 (4-10) (Configuration Switching Indication, 4-15) can be transmitted in slot #1 (4-30). After receiving the indicator, the terminal may activate the bandwidth part #2 (6-10) according to the content of the indicator. In this case, a transition time (4-20) for changing the bandwidth portion may be required, and accordingly, a time point for changing and applying the active bandwidth portion may be determined. 4 shows a case in which a transition time 4-20 of one slot is required after receiving the setting change indicator 4-15. In the transition time (4-20), data transmission/reception may not be performed (4-60). Accordingly, the bandwidth part #2 (4-10) is activated in the slot #2 (4-35), so that the control channel and data can be transmitted/received through the corresponding bandwidth part.
기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 상위 계층 시그널링(예컨대 RRC 시그널링)으로 미리 설정할 수 있으며, 설정 변경 지시자(4-15)가 기지국이 미리 설정한 대역폭 부분 설정 중 하나와 매핑되는 방법으로 활성화를 지시할 수 있다. 예컨대 log2N비트의 지시자는 N개의 기 설정된 대역폭 부분들 중 한 가지를 선택하여 지시할 수 있다. 하기 [표 3]에서는 2 비트 지시자를 이용하여 대역폭 부분에 대한 설정 정보를 지시하는 일 예가 설명된다.The base station may preset one or more bandwidth parts to the terminal as higher layer signaling (eg, RRC signaling), and the configuration change indicator 4-15 is activated in a way that is mapped with one of the bandwidth part settings preset by the base station. can be instructed. For example, an indicator of log 2 N bits may indicate by selecting one of N preset bandwidth parts. In [Table 3] below, an example of indicating configuration information for a bandwidth portion using a 2-bit indicator is described.
지시자 값indicator value 대역폭 부분 설정Bandwidth Partial Settings
0000 상위 계층 시그널링으로 설정된 대역폭 설정 ABandwidth setting A set by upper layer signaling
0101 상위 계층 시그널링으로 설정된 대역폭 설정 BBandwidth setting B set with higher layer signaling
1010 상위 계층 시그널링으로 설정된 대역폭 설정 CBandwidth setting C set with higher layer signaling
1111 상위 계층 시그널링으로 설정된 대역폭 설정 DBandwidth setting D set by higher layer signaling
도 4에서 설명된 대역폭 부분에 대한 설정 변경 지시자(4-15)는 MAC(Medium Access Control) CE(Control Element) 시그널링 또는 L1 시그널링(예컨대 공통 DCI, 그룹-공통 DCI, 단말-특정 DCI)의 형태로 기지국으로부터 단말에게 전달될 수 있다. The configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 is in the form of MAC (Medium Access Control) CE (Control Element) signaling or L1 signaling (eg, common DCI, group-common DCI, terminal-specific DCI) may be transmitted from the base station to the terminal.
도 4에서 설명된 대역폭 부분에 대한 설정 변경 지시자(4-15)에 따라, 대역폭 부분 활성화가 어느 시점에서부터 적용될지 여부는 다음에 따를 수 있다. 설정 변경이 어느 시점부터 적용될지는 미리 정의되어 있는 값(예컨대 설정 변경 지시자 수신 후 N(≥1) 슬롯 뒤부터 적용)에 따르거나, 기지국으로부터 단말에게 상위 계층 시그널링(예컨대 RRC 시그널링)을 통해 설정하거나, 설정 변경 지시자(4-15)의 내용에 일부 포함되어 전송될 수 있다. 또는, 설정 변경이 적용되는 시점은 상술한 방법들의 조합으로 결정될 수 있다. 단말은 대역폭 부분에 대한 설정 변경 지시자(4-15)를 수신한 후 상술한 방법으로 획득한 시점에서부터 변경된 설정을 적용할 수 있다.According to the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 , from which point in time the bandwidth portion activation is applied may depend on the following. From which point in time the setting change is applied, it follows a predefined value (eg, it is applied from N (≥1) slots after receiving the setting change indicator), or is set from the base station to the UE through higher layer signaling (eg RRC signaling), or , may be partially included in the contents of the setting change indicator 4-15 and transmitted. Alternatively, the timing at which the setting change is applied may be determined by a combination of the above-described methods. After receiving the configuration change indicator 4-15 for the bandwidth portion, the terminal may apply the changed configuration from the point in time obtained by the above-described method.
도 5는 본 개시의 일 실시 예에 5G 스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)을 설명하기 위한 도면이다.5 is a diagram for explaining a control region (Control Resource Set, CORESET) in which a downlink control channel is transmitted in a 5G system according to an embodiment of the present disclosure.
도 5를 참조하면, 본 실시예에서는 주파수 축으로 단말의 대역폭 부분(5-10), 시간축으로 하나의 슬롯(5-20) 내에 2개의 제어영역 (제어영역#1(5-01), 제어영역#2(5-02))이 설정될 수 있다. 제어영역(5-01, 5-02)은 주파수 축으로 전체 단말 대역폭 부분(5-10) 내에서 특정 주파수 자원(5-03)에 설정될 수 있다. 제어영역(5-01, 5-02)은 시간 축으로는 하나 혹은 다수 개의 OFDM 심볼로 설정될 수 있고, 제어영역 길이 (Control Resource Set Duration, 5-04)로 정의될 수 있다. 도 5의 일 예에서 제어영역#1(5-01)은 2개의 심볼의 제어영역 길이로 설정되어 있고, 제어영역#2(5-02)는 1개의 심볼의 제어영역 길이로 설정되어 있다. Referring to FIG. 5 , in this embodiment, two control regions (control region #1 (5-01), control Area #2 (5-02)) can be set. The control regions 5-01 and 5-02 may be set in a specific frequency resource 5-03 within the entire terminal bandwidth portion 5-10 on the frequency axis. The control regions 5-01 and 5-02 may be set with one or more OFDM symbols on the time axis, and may be defined by a control region length (Control Resource Set Duration, 5-04). In the example of FIG. 5 , the control region #1 (5-01) is set to a control region length of two symbols, and the control region #2 (5-02) is set to a control region length of one symbol.
상기에서 설명된 5G 시스템에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 통해 설정할 수 있다. 단말에게 제어영역을 설정한다는 것은, 단말에게 제어영역 식별자(Identity), 제어영역의 주파수 위치, 제어영역의 심볼 길이 등의 정보가 제공하는 것을 의미한다. 예컨대 단말에게 제어영역을 설정하기 위한 정보에는 표 4에 따른 정보들이 포함될 수 있다.The control region in the 5G system described above may be set by the base station to the terminal through higher layer signaling (eg, system information, master information block (MIB), radio resource control (RRC) signaling). Setting the control region to the terminal means providing the terminal with information such as a control region identifier (Identity), a frequency position of the control region, and a symbol length of the control region. For example, information according to Table 4 may be included in the information for setting the control region to the terminal.
ControlResourceSet ::= SEQUENCE {
-- Corresponds to L1 parameter 'CORESET-ID'

controlResourceSetId ControlResourceSetId,
(제어영역 식별자(Identity))
frequencyDomainResources BIT STRING (SIZE (45)),
(주파수 축 자원할당 정보)
duration INTEGER (1..maxCoReSetDuration),
(시간 축 자원할당 정보)
cce-REG-MappingType CHOICE {
(CCE-to-REG 매핑 방식)
interleaved SEQUENCE {

reg-BundleSize ENUMERATED {n2, n3, n6},
(REG 번들 크기)

precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},

interleaverSize ENUMERATED {n2, n3, n6}
(인터리버 크기)

shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL
(인터리버 쉬프트(Shift))
},
nonInterleaved NULL
},
tci-StatesPDCCH SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
(QCL 설정 정보)
tci-PresentInDCI ENUMERATED {enabled} OPTIONAL, -- Need S}
ControlResourceSet ::= SEQUENCE {
-- Corresponds to L1 parameter 'CORESET-ID'

controlResourceSetId ControlResourceSetId,
(Control area identifier (Identity))
frequencyDomainResources BIT STRING (SIZE (45)),
(frequency axis resource allocation information)
duration INTEGER (1..maxCoReSetDuration),
(Time axis resource allocation information)
cce-REG-MappingType CHOICE {
(CCE-to-REG mapping method)
interleaved SEQUENCE {

reg-BundleSize ENUMERATED {n2, n3, n6},
(REG bundle size)

precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},

interleaverSize ENUMERATED {n2, n3, n6}
(interleaver size)

shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL
(Interleaver Shift)
},
nonInterleaved NULL
},
tci-StatesPDCCH SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
(QCL setting information)
tci-PresentInDCI ENUMERATED {enabled} OPTIONAL, -- Need S}
표 4에서 tci-StatesPDCCH 설정 정보는, 해당 제어영역에서 전송되는 DMRS (demodulation reference signal)와 QCL(quasi co-located) 관계에 있는 하나 또는 다수 개의 SS(synchronization signal)/PBCH(physical broadcast channel) 블록(block) (SSB 또는 SS/PBCH block 으로 지칭) 인덱스 또는 CSI-RS(channel state information reference signal) 인덱스의 정보를 포함할 수 있다.In Table 4, tci-StatesPDCCH configuration information includes one or more synchronization signal (SS)/physical broadcast channel (PBCH) blocks in a quasi co-located (QCL) relationship with a demodulation reference signal (DMRS) transmitted in the corresponding control region. (block) (referred to as an SSB or SS/PBCH block) index or CSI-RS (channel state information reference signal) index information may be included.
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 신호 및 이들의 조합들로 대체되는 것도 가능하다.)은 아래의 표 5와 같은 QCL 설정에 의하여 서로 연결(associate)될 수 있다In a wireless communication system, one or more different antenna ports (or one or more channels, signals, and combinations thereof may be replaced) may be associated with each other by QCL configuration as shown in Table 5 below.
QCL-Info ::= SEQUENCE {
cell ServCellIndex (QCL reference RS가 전송되는 서빙 셀 인덱스)
bwp-Id BWP-Id (QCL reference RS가 전송되는 대역폭 부분 인덱스)
referenceSignal CHOICE { (CSI-RS 혹은 SS/PBCH block 중 하나를 QCL reference RS로 지시하는 지시자)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD}, (QCL type 지시자)
...
}
QCL-Info ::= SEQUENCE {
cell ServCellIndex (Serving cell index to which QCL reference RS is transmitted)
bwp-Id BWP-Id (bandwidth partial index over which QCL reference RS is transmitted)
referenceSignal CHOICE { (indicator indicating one of CSI-RS or SS/PBCH block as QCL reference RS)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD}, (QCL type indicator)
...
}
구체적으로 QCL 설정은 두 개의 서로 다른 안테나 포트들을 (QCL) target 안테나 포트와 (QCL) reference 안테나 포트의 관계로 연결할 수 있으며, 단말은 상기 reference 안테나 포트에서 측정된 채널의 통계적인 특성들(예를 들어 Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (혹은 Tx) 파라미터 등 채널의 large scale 파라미터 내지 단말의 수신 공간 필터 계수 혹은 전송 공간 필터 계수) 중 전부 혹은 일부를 target 안테나 포트 수신 시 적용 (혹은 가정) 할 수 있다. Specifically, the QCL setting can connect two different antenna ports in a relationship between a (QCL) target antenna port and a (QCL) reference antenna port, and the terminal can perform statistical characteristics (e.g., For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal) are set to the target antenna port. It can be applied (or assumed) upon reception.
상기 target 안테나 포트라 함은 상기 QCL 설정을 포함하는 상위레이어 설정에 의하여 설정되는 채널 혹은 신호를 전송하는 안테나 포트 내지는 상기 QCL 설정을 지시하는 TCI state가 적용되는 채널 혹은 신호를 전송하는 안테나 포트를 의미한다. The target antenna port means an antenna port for transmitting a channel or signal set by upper layer setting including the QCL setting, or an antenna port for transmitting a channel or signal to which a TCI state indicating the QCL setting is applied. .
상기 reference 안테나 포트라 함은 상기 QCL 설정 내 referenceSignal 파라미터에 의하여 지시(특정)되는 채널 혹은 신호를 전송하는 안테나 포트를 의미한다.The reference antenna port means an antenna port for transmitting a channel or signal indicated (specific) by a referenceSignal parameter in the QCL configuration.
구체적으로, 상기 QCL 설정에 의하여 한정되는 (상기 QCL 설정 내에서 파라미터 qcl-Type에 의하여 지시되는) 채널의 통계적인 특성들은 QCL type에 따라 다음과 같이 분류될 수 있다.Specifically, the statistical characteristics of the channel defined by the QCL setting (indicated by the parameter qcl-Type in the QCL setting) may be classified according to the QCL type as follows.
○ 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}○ 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
○ 'QCL-TypeB': {Doppler shift, Doppler spread}○ 'QCL-TypeB': {Doppler shift, Doppler spread}
○ 'QCL-TypeC': {Doppler shift, average delay}○ 'QCL-TypeC': {Doppler shift, average delay}
○ 'QCL-TypeD': {Spatial Rx parameter}○ 'QCL-TypeD': {Spatial Rx parameter}
이때 QCL type의 종류는 위 네 가지 종류에 한정되는 것은 아니나 설명의 요지를 흐리지 않기 위하여 모든 가능한 조합들을 나열하지는 않는다. In this case, the types of QCL type are not limited to the above four types, but all possible combinations are not listed in order not to obscure the gist of the description.
상기 QCL-TypeA는 target 안테나 포트의 대역폭 및 전송 구간이 reference 안테나 포트 대비 모두 충분하여 (즉 주파수 축 및 시간 축 모두에서 target 안테나 포트의 샘플 수 및 전송 대역/시간이 reference 안테나 포트의 샘플 수 및 전송 대역/시간보다 많은 경우) 주파수 및 시간 축에서 측정 가능한 모든 통계적 특성들을 참조 가능한 경우에 사용되는 QCL type이다. In the QCL-TypeA, the bandwidth and transmission period of the target antenna port are both sufficient compared to the reference antenna port (that is, the number of samples and the transmission band/time of the target antenna port in both the frequency axis and the time axis are the number of samples and transmission of the reference antenna port. More than band/time) This is a QCL type used when all statistical properties measurable in frequency and time axis can be referenced.
QCL-TypeB는 target 안테나 포트의 대역폭이 주파수 축에서 측정 가능한 통계적 특성들, 즉 Doppler shift, Doppler spread들을 측정하기에 충분한 경우에 사용되는 QCL type이다. QCL-TypeB is a QCL type used when the bandwidth of the target antenna port is sufficient to measure measurable statistical characteristics on the frequency axis, that is, Doppler shift and Doppler spreads.
QCL-TypeC는 target 안테나 포트의 대역폭 및 전송 구간이 second-order statistics, 즉 Doppler spread 및 delay spread들을 측정하기에는 불충분하여 first-order statistics, 즉 Doppler shift, average delay만을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeC is a QCL type used when the bandwidth and transmission period of the target antenna port are insufficient to measure second-order statistics, that is, Doppler spread and delay spreads, so that only first-order statistics, that is, Doppler shift and average delay, can be referred to. .
QCL-TypeD는 reference 안테나 포트를 수신할 때 사용한 공간 수신 필터 값 들을 target 안테나 포트 수신 시 사용할 수 있을 때 설정되는 QCL type이다.QCL-TypeD is a QCL type set when spatial reception filter values used when receiving a reference antenna port can be used when receiving a target antenna port.
한편, 기지국은 아래의 표 6과 같은 TCI state설정을 통하여 최대 두 개의 QCL 설정을 하나의 target 안테나 포트에 설정 혹은 지시하는 것이 가능하다.On the other hand, it is possible for the base station to set or instruct up to two QCL settings to one target antenna port through the TCI state setting as shown in Table 6 below.
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId, (TCI state 지시자)
qcl-Type1 QCL-Info, (해당 TCI state가 적용되는 target 안테나 포트에 대한 첫 번째 QCL 설정)
qcl-Type2 QCL-Info (해당 TCI state가 적용되는 target 안테나 포트에 대한 두 번째 QCL 설정) OPTIONAL, -- Need R
...
}
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId, (TCI state indicator)
qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied)
qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, -- Need R
...
}
하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 첫 번째 QCL 설정은 QCL-TypeA, QCL-TypeB, QCL-TypeC 중 하나로 설정될 수 있다. 이 때 설정 가능한 QCL type은 target 안테나 포트 및 reference 안테나 포트의 종류에 따라 특정되며 아래 상세히 설명한다. 또한 상기 하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 두 번째 QCL 설정은 QCL-TypeD로 설정될 수 있으며 경우에 따라 생략되는 것이 가능하다.Among the two QCL settings included in one TCI state setting, the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC. At this time, the settable QCL type is specified according to the types of the target antenna port and the reference antenna port and will be described in detail below. In addition, the second QCL setting among the two QCL settings included in the one TCI state setting may be set to QCL-TypeD, and may be omitted in some cases.
도 6은 본 개시의 일 실시예에 따른 단말 능력 (UE capability)을 보고하는 절차를 도시한 도면이다. 6 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
LTE 및 NR 시스템에서 단말은 서빙 기지국에 연결된 상태에서 해당 기지국에게 단말이 지원하는 능력 (capability)를 보고하는 절차를 수행할 수 있다. 이하에서는 이를 UE capability 보고로 지칭할 수 있다. In LTE and NR systems, the terminal may perform a procedure of reporting the capability supported by the terminal to the corresponding base station while connected to the serving base station. Hereinafter, this may be referred to as UE capability report.
기지국은 연결 상태의 단말에게 capability 보고를 요청하는 UE capability enquiry 메시지를 전달할 수 있다 (610). 상기 UE capability enquiry 메시지에는 RAT type 별 UE capability 요청이 포함될 수 있다. RAT type 별 요청에는 요청하는 주파수 밴드 정보가 포함될 수 있다. The base station may transmit a UE capability inquiry message for requesting a capability report to the terminal in the connected state (610). The UE capability inquiry message may include a UE capability request for each RAT type. The request for each RAT type may include requested frequency band information.
또한, UE capability enquiry 메시지는 하나의 RRC 메시지 container에서 복수의 RAT type을 포함할 수 있다. 또는 다른 예에 따라, 각 RAT type 별 요청을 포함한 UE capability enquiry 메시지가 복수 회 단말에게 전달될 수 있다. 즉, UE capability enquiry 메시지가 복수 회 반복 전송 되고 단말은 이에 해당하는 UE capability information 메시지를 구성하여 보고할 수 있다. In addition, the UE capability enquiry message may include a plurality of RAT types in one RRC message container. Alternatively, according to another example, a UE capability enquiry message including a request for each RAT type may be delivered to the UE multiple times. That is, the UE capability enquiry message is repeatedly transmitted a plurality of times, and the UE may configure and report a corresponding UE capability information message.
NR 시스템에서 기지국은 NR, LTE, EN-DC를 비롯한 MR-DC에 대한 UE capability를 요청할 수 있다. 기지국은 단말이 연결된 이후 UE capability enquiry 메시지를 전송할 수 있으며, 또한 기지국이 필요할 때 어떤 조건에서도 UE capability 보고를 요청할 수 있다.In the NR system, the base station may request UE capability for MR-DC including NR, LTE, and EN-DC. The base station may transmit a UE capability inquiry message after the terminal is connected, and may also request a UE capability report under any conditions when the base station is needed.
기지국으로부터 UE capability 보고 요청을 받은 단말은 UE capability enquiry 메시지에 포함된 RAT type 및 밴드 정보에 따라 UE capability를 구성 또는 획득할 수 있다. Upon receiving the UE capability report request from the base station, the terminal may configure or acquire UE capability according to the RAT type and band information included in the UE capability enquiry message.
한편, 본 개시의 일 실시예에 따르면, 상기 UE Capability에는 단말이 Multi-TRP 동작을 지원하는지 여부에 대한 정보가 포함될 수 있다. 또한 상기 UE Capability에는 단말이 inter-cell에 대한 Multi-TRP 동작을 지원하는지 여부에 대한 정보가 포함될 수 있다. 따라서, 상기 UE capability는 Multi-TRP 관련 capability라 칭할 수 있다. Meanwhile, according to an embodiment of the present disclosure, the UE capability may include information on whether the terminal supports the multi-TRP operation. Also, the UE Capability may include information on whether the UE supports multi-TRP operation for inter-cell. Accordingly, the UE capability may be referred to as a Multi-TRP related capability.
UE capability가 구성되고 난 이후, 단말은 UE capability가 포함된 UE capability information 메시지를 기지국에 전달할 수 있다 (602). 기지국은 단말로부터 수신한 UE capability를 기반으로 이후 해당 단말에게 적당한 스케줄링 및 송수신 관리를 수행할 수 있다.After the UE capability is configured, the terminal may transmit a UE capability information message including the UE capability to the base station (602). The base station may then perform scheduling and transmission/reception management appropriate for the corresponding terminal based on the UE capability received from the terminal.
도 7은 본 개시의 일 실시예에 따른 협력 통신 안테나 포트 구성을 설명하기 위한 도면이다. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
도 7을 참조하면, 합동 전송(joint transmission: JT)기법과 상황에 따른 TRP (transmission reception point)별 무선자원 할당 예시가 도시되어 있다. Referring to FIG. 7 , an example of radio resource allocation for each transmission reception point (TRP) according to a joint transmission (JT) technique and a situation is illustrated.
도 7에서 7-00은 각 셀, TRP 및/또는 빔 간 코히런트(coherent) 프리코딩을 지원하는 코히런트 합동 전송(coherent joint transmission: C-JT)을 나타낸 도면이다. C-JT의 경우 TRP A(7-05)과 TRP B(7-10)가 서로 같은 데이터(PDSCH)를 전송하며, 다수의 TRP에서 joint 프리코딩을 수행할 수 있다. 이는 TRP A(7-05)과 TRP B(7-10)에서 동일한 DMRS 포트들(예를 들어 두 TRP 모두에서 DMRS port A, B)을 전송하게 됨을 의미할 수 있다. 이 경우 단말은, DMRS port A, B를 통해 수신된 기준 신호에 의해 복조되는 하나의 PDSCH (physical downlink shared channel)를 수신하기 위한 하나의 DCI 정보를 수신할 수 있다.7-00 in FIG. 7 are diagrams illustrating coherent joint transmission (C-JT) supporting coherent precoding between each cell, TRP, and/or beam. In the case of C-JT, TRP A (7-05) and TRP B (7-10) transmit the same data (PDSCH), and joint precoding can be performed in multiple TRPs. This may mean that the same DMRS ports (eg, DMRS ports A and B in both TRPs) are transmitted from TRP A (7-05) and TRP B (7-10). In this case, the terminal may receive one piece of DCI information for receiving one physical downlink shared channel (PDSCH) demodulated by the reference signal received through DMRS ports A and B.
도 7에서 7-20은 각 셀, TRP 및/또는 빔 간 비-코히런트(non-coherent) 프리코딩을 지원하는 비-코히런트 합동 전송(non-coherent joint transmission: NC-JT)을 나타낸 도면이다. NC-JT의 경우 상기 각 셀, TRP 및/또는 빔에서 서로 다른 PDSCH를 전송할 수 있으며, 각 PDSCH에는 개별 프리코딩이 적용될 수 있다. 이는 TRP A(7-25)과 TRP B(7-30)에서 서로 다른 DMRS 포트들(예를 들어 TRP A에서는 DMRS port A, TRP B에서는 DMRS port B)을 전송하게 됨을 의미할 수 있다. 이 경우, 단말은 DMRS port A에 의해 복조되는 PDSCH A와, 다른 DMRS port B에 의해 복조되는 PDSCH B를 수신하기 위한 두 종류의 DCI 정보를 수신할 수 있다.7-20 are diagrams illustrating non-coherent joint transmission (NC-JT) supporting non-coherent precoding between each cell, TRP and/or beam am. In the case of NC-JT, different PDSCHs may be transmitted in each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH. This may mean that different DMRS ports (eg, DMRS port A in TRP A, DMRS port B in TRP B) are transmitted from TRP A (7-25) and TRP B (7-30). In this case, the UE may receive two types of DCI information for receiving PDSCH A demodulated by DMRS port A and PDSCH B demodulated by another DMRS port B.
두 개 이상의 전송지점에서 한 단말에 동시에 데이터를 전송하는 NC-JT를 지원하기 위하여, 단일 PDCCH를 통해 두 개 (이상)의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하거나, 다중 PDCCH를 통해 두 개 이상의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하는 것이 필요하다. 단말은 L1/L2/L3 시그날링을 기반으로 각 기준신호 혹은 채널 간 QCL(quasi co-location) 연결 관계를 획득하고 이를 통하여 각 기준신호 혹은 채널의 라지 스케일 파라미터(large scale parameter)들을 효율적으로 추정할 수 있다. 만약 기준신호 혹은 채널의 전송지점이 다를 경우 라지 스케일 파라미터(large scale parameter)들은 서로 공유되기 어렵기 때문에 협력 전송을 수행할 때 기지국은 단말에게 동시에 두 개 이상의 전송지점에 대한 quasi co-location 정보를 두 개 이상의 TCI state를 통하여 알려줄 필요가 있다. In order to support NC-JT, which transmits data from two or more transmission points to one terminal at the same time, PDSCHs transmitted from two (or more) different transmission points are allocated through a single PDCCH, or two It is necessary to allocate PDSCHs transmitted from the above different transmission points. The UE acquires a QCL (quasi co-location) connection relationship between each reference signal or channel based on L1/L2/L3 signaling, and through this, efficiently estimates large scale parameters of each reference signal or channel can do. If the transmission point of the reference signal or channel is different, since large scale parameters are difficult to share with each other, when performing cooperative transmission, the base station simultaneously informs the terminal of quasi co-location information for two or more transmission points. It is necessary to inform through two or more TCI states.
만약 다중 PDCCH를 통해 비-코히런트 협력 전송이 지원되는 경우, 즉 두 개 이상의 PDCCH가 두 개 이상의 PDSCH를 동일 시점에 같은 서빙 셀 및 같은 대역폭 부분에 할당하는 경우, 두 개 이상의 TCI state들은 각 PDCCH를 통하여 각 PDSCH 내지 DMRS port들에 각각 할당될 수 있다. 반면, 단일 PDCCH를 통해 비-코히런트 협력 전송이 지원되는 경우, 즉 하나의 PDCCH가 두 개 이상의 PDSCH를 동일 시점에 같은 서빙 셀 및 같은 대역폭 부분에 할당하는 경우, 상기 두 개 이상의 TCI state들은 하나의 PDCCH를 통하여 각 PDSCH 내지 DMRS port들에 할당될 수 있다.If non-coherent cooperative transmission is supported through multiple PDCCHs, that is, when two or more PDCCHs allocate two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, two or more TCI states are each PDCCH It may be allocated to each PDSCH to DMRS ports, respectively. On the other hand, when non-coherent cooperative transmission is supported through a single PDCCH, that is, when one PDCCH allocates two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, the two or more TCI states are one It may be allocated to each PDSCH to DMRS ports through the PDCCH of .
만약 특정 시점에서 단말에게 할당된 DMRS port들이 전송지점 A에서 전송되는 DMRS port group A와 전송지점 B에서 전송되는 DMRS port group B로 나뉜다고 가정하면, 두 개 이상의 TCI state는 각기 DMRS port group에 연결되며, 각 group 별 서로 다른 QCL 가정을 바탕으로 채널이 추정될 수 있다. 한편, 서로 다른 DMRS 포트들은 채널 측정 정확도를 높임과 동시에 전송 부담을 경감시키기 위하여 CDM (code division multiplexing) 되거나 FDM (frequency division multiplexing) 되거나 TDM (time domain multiplexing) 될 수 있다. 이 중 CDM 되는 DMRS port들을 CDM group으로 통칭할 때, CDM group 내 DMRS port 들은 각 port 별 채널 특성이 유사한 경우에 code 기반의 멀티플렉싱이 잘 동작 하므로 (즉 각 port 별 채널 특성이 유사한 경우 OCC (orthogonal cover code)에 의한 구분이 잘 되므로) 같은 CDM group에 존재하는 DMRS port들이 서로 다른 TCI state를 가지지 않도록 하는 것이 중요할 수 있다.If it is assumed that the DMRS ports allocated to the terminal at a specific time are divided into a DMRS port group A transmitted from a transmission point A and a DMRS port group B transmitted from a transmission point B, two or more TCI states are respectively connected to the DMRS port group. and a channel can be estimated based on different QCL assumptions for each group. On the other hand, different DMRS ports may be subjected to code division multiplexing (CDM), frequency division multiplexing (FDM), or time domain multiplexing (TDM) in order to increase channel measurement accuracy and reduce transmission burden at the same time. Among them, when the DMRS ports used for CDM are collectively referred to as the CDM group, code-based multiplexing works well when the channel characteristics of each port are similar to the DMRS ports in the CDM group (that is, if the channel characteristics of each port are similar, OCC (orthogonal It may be important to ensure that DMRS ports existing in the same CDM group do not have different TCI states because they are distinguished by the cover code).
한편, 본 개시에서 노드 (node)는 특정 셀을 통해 단말과 데이터를 송수신하는 무선 통신 시스템에서의 물리적 또는 논리적인 노드를 의미할 수 있다. 예를 들면 상기 노드는 송수신 포인트 (transmission/reception point, 이하 TRP), 기지국, evolved node B (eNodeB 또는 eNB), next generation node B (gNodeB, 또는 gNB), 등을 의미할 수 있다. 일 실시예에 따라, 제 1 노드는 제 1 셀을 통해 단말과 데이터를 송수신하는 TRP를 의미할 수 있으며, 제 2 노드는 상기 제 1 노드와 물리적으로 구분 또는 분리되어 있고 상기 제 1 셀과 다른 제 2 셀을 통해 단말과 데이터를 송수신하는 TRP를 의미할 수 있다.Meanwhile, in the present disclosure, a node may mean a physical or logical node in a wireless communication system that transmits and receives data with a terminal through a specific cell. For example, the node may mean a transmission/reception point (hereinafter, TRP), a base station, an evolved node B (eNodeB or eNB), a next generation node B (gNodeB, or gNB), and the like. According to an embodiment, the first node may mean TRP for transmitting and receiving data to and from the terminal through the first cell, and the second node is physically separated or separated from the first node and is different from the first cell. It may mean TRP for transmitting and receiving data with the terminal through the second cell.
상기와 같이 복수의 TRP를 통해 데이터를 전송하는 동작을 multi-TRP (M-TRP) 동작이라 칭할 수 있다. 또한, 상기와 같이 복수의 TRP에서 복수의 셀을 통해 데이터를 전송하는 동작을 셀 간 (inter cell) multi-TRP 동작이라 칭할 수 있다. 이때, 상기 복수의 셀은 복수의 기지국이 운용하는 각 셀을 의미할 수도 있고, 하나의 기지국에서 운용하는 복수의 셀을 의미할 수도 있으며, 이들의 조합일 수도 있다.The operation of transmitting data through a plurality of TRPs as described above may be referred to as a multi-TRP (M-TRP) operation. In addition, an operation of transmitting data through a plurality of cells in a plurality of TRPs as described above may be referred to as an inter cell multi-TRP operation. In this case, the plurality of cells may mean each cell operated by a plurality of base stations, may mean a plurality of cells operated by one base station, or a combination thereof.
본 개시에서는 상기 inter cell multi TRP 동작을 위한 방법을 제안한다. The present disclosure proposes a method for the inter cell multi TRP operation.
inter-cell multi-TRP (M-TRP) 동작을 위해서는 inter-cell을 설정하는 방법이 필요하다. 예를 들어, inter-cell 설정 정보를 통해 inter-cell을 설정할 수 있으며, 상기 inter-cell 설정 정보에는 inter-cell을 구성하는 단위 및 방법, cell을 grouping 하는 단위 및 방법, 상기 셀을 식별하기 위한 정보 (예를 들어, cell id, serving cell id, physical cell id)등의 정보 중 적어도 하나가 포함될 수 있다. 다만, 본 개시의 실시예가 이에 한정되는 것은 아니고 inter-cell 설정 정보에는 상술한 정보가 포함되지 않을 수 있으며, inter-cell과 관련된 어떠한 정보도 포함될 수 있다. 여기에 추가하여, 상기 inter-cell 설정 정보에는 SSB pattern (ssb-PositionsInBurst, ssb-periodicityServingCell), sub-carrier spacing (subcarrier Spacing), frequency (absoluteFrequencySSB) 등이 포함될 수 있다.For the inter-cell multi-TRP (M-TRP) operation, a method for configuring the inter-cell is required. For example, an inter-cell can be configured through inter-cell configuration information, and the inter-cell configuration information includes a unit and method for configuring an inter-cell, a unit and method for grouping cells, and a method for identifying the cell. At least one of information (eg, cell id, serving cell id, physical cell id) may be included. However, the embodiment of the present disclosure is not limited thereto, and the above-described information may not be included in the inter-cell configuration information, and any information related to the inter-cell may be included. In addition to this, the inter-cell configuration information may include SSB pattern (ssb-PositionsInBurst, ssb-periodicityServingCell), sub-carrier spacing (subcarrier Spacing), frequency (absoluteFrequencySSB), and the like.
또한, 상기 inter-cell 설정 정보는 본 개시에서 cell 간 협력 전송을 위한 셀 설정 정보를 지칭하는 용어로, 설정 정보, 셀 설정 정보 등으로 언급될 수도 있다. 또한, 본 개시는 서빙 셀 (serving cell)들을 통한 inter-cell multi-TRP 협력 전송 및 serving cell과 non-serving cell들을 통한 inter-cell multi-TRP 협력 전송 등에 적용될 수 있다. Also, in the present disclosure, the inter-cell configuration information refers to cell configuration information for inter-cell cooperative transmission, and may also be referred to as configuration information, cell configuration information, or the like. In addition, the present disclosure may be applied to inter-cell multi-TRP cooperative transmission through serving cells and inter-cell multi-TRP cooperative transmission through serving cells and non-serving cells.
도 8a 내지 도 8d는 본 개시의 일 실시예에 따라 multi-TRP를 구성하는 시나리오를 도시한 도면이다. 8A to 8D are diagrams illustrating scenarios of configuring multi-TRP according to an embodiment of the present disclosure.
도 8a 내지 8d는 기지국 간 (inter-gNB) 또는 기지국 내 (intra-gNB)의 셀 간 협력 통신에 사용될 수 있는 시나리오를 도시한 것이다. 또한, 상기 도 8a 내지 8d의 back-haul 및 front-haul은 이상적인 back-haul/front-haul과 비-이상적인 back-haul/front-haul에 모두 적용될 수 있다. 또한, 상기 도 8a 내지 8d는 동일 채널 간 (co-channel) 또는 다른 채널 간 (different channel) 간에 적용될 수 있으며, 서로 다른 cell ID 또는 동일한 셀 ID에도 적용될 수 있다.8A to 8D illustrate scenarios that can be used for cooperative communication between base stations (inter-gNB) or between cells within a base station (intra-gNB). In addition, the back-haul and front-haul of FIGS. 8A to 8D may be applied to both an ideal back-haul/front-haul and a non-ideal back-haul/front-haul. 8A to 8D may be applied between co-channels or different channels, and may also be applied to different cell IDs or the same cell ID.
도 8a는 주파수 집성 (carrier aggregation, CA) 동작에 따른 서빙 셀 및 PCI 설정 예시를 도시한 도면이다. 8A is a diagram illustrating an example of a serving cell and PCI configuration according to a carrier aggregation (CA) operation.
도 8a를 참고하면, 기지국은 각 셀이 점유하는 주파수 자원이 다른 CA 상황에서 각 셀 별 서로 다른 서빙 셀 (ServCellConfigCommon)들을 설정할 수 있으며 (즉 각 서빙 셀 설정 내 DownlinkConfigCommon이 지시하는 주파수 대역 값 FrequencyInfoDL이 서로 다름), 이에 따라 각 셀 별 서로 다른 인덱스 (ServCellIndex)들을 설정하고 서로 다른 PCI 값 들을 매핑할 수 있다. Referring to FIG. 8A , the base station can set different serving cells (ServCellConfigCommon) for each cell in a CA situation in which the frequency resources occupied by each cell are different (that is, the frequency band value FrequencyInfoDL indicated by DownlinkConfigCommon in each serving cell setting is different), so you can set different indexes (ServCellIndex) for each cell and map different PCI values.
도 8b를 참고하면, 도 8b는 하나 이상의 TRP가 하나의 서빙 셀 설정 내에서 동작하는 intra-cell multi-TRP 동작을 도시한다. 도 8b에 따르면, 기지국은 서로 다른 TRP들에서 전송되는 채널 및 신호들을 위한 설정을 하나의 서빙 셀 설정 내에 포함시켜 전송하므로 여러 TRP들이 하나의 서빙 셀 인덱스 (ServingCellIndex 또는 ServCellIndex)에 기반하여 동작하게 된다. 따라서, ServingCellIndex가 하나이므로 동일한 physical cell Id를 이용하여 셀이 구성될 수 있다. 이와 같은 경우, 단말이 셀을 구분하기 위해 주파수 측 (예를 들어, frequency/channel/band) 자원에서 셀 간 자원을 달리하거나 시간 측 자원에서 셀 간 자원을 다르게 할당하는 방법이 필요하다. 그러나 일반적으로 하나의 CC에서 할당된 자원을 전부 사용하는 것이 훨씬 자원 효율적이어서 cell planning 시 시간 및 주파수 자원 상으로 cell을 구분하기 보다는 cell ID 형태로 cell을 구분하는 방법이 사용될 수 있다. Referring to FIG. 8B, FIG. 8B illustrates an intra-cell multi-TRP operation in which one or more TRPs operate within one serving cell configuration. According to FIG. 8b, since the base station transmits the settings for channels and signals transmitted in different TRPs in one serving cell configuration, several TRPs operate based on one serving cell index (ServingCellIndex or ServCellIndex). . Accordingly, since there is one ServingCellIndex, a cell may be configured using the same physical cell Id. In this case, in order for the UE to distinguish cells, there is a need for a method of differentiating inter-cell resources in frequency-side (eg, frequency/channel/band) resources or allocating different inter-cell resources in time-side resources. However, in general, it is much more resource efficient to use all allocated resources in one CC, so a method of classifying cells in the form of cell IDs rather than classifying cells in terms of time and frequency resources may be used during cell planning.
본 개시의 일 실시예에 따르면, 새로운 cell ID 정보 또는 상기 셀 관련 정보 (또는 협력 셀 설정 정보, 협력 셀 관련 정보 등으로 칭할 수 있다)를 기반으로 새로운 M-TRP을 위한 inter-Cell을 구성하는 방법이 고려될 수 있다. 즉, 본 개시의 일 실시예에 따라, 복수 개의 TRP가 셀 간 협력 전송을 하는 경우, 이를 단말에 설정하는 방법 (즉, 셀 간 협력 전송을 하는 셀들이 다른 TRP와 관련되어 있음을 단말에 알리는 방법)을 기술한다. 한편, 이하에서는 cell ID를 이용하는 방법을 예를 들어 설명하지만, 본 개시가 이에 한정되는 것은 아니며, physical cell ID, serving cell index 또는 별도의 다른 식별자를 이용하는 방법 역시 고려될 수 있다. According to an embodiment of the present disclosure, the inter-Cell for a new M-TRP is configured based on new cell ID information or the cell-related information (or may be referred to as cooperative cell configuration information, cooperative cell-related information, etc.) method can be considered. That is, according to an embodiment of the present disclosure, when a plurality of TRPs perform inter-cell cooperative transmission, a method of setting this to the UE (that is, notifying the UE that cells performing inter-cell cooperative transmission are related to other TRPs) method) is described. Meanwhile, a method of using a cell ID will be described below as an example, but the present disclosure is not limited thereto, and a method of using a physical cell ID, a serving cell index, or another identifier may also be considered.
이하에서는 본 개시의 일 실시예에 따라 셀 또는 셀 그룹을 설정하는 방법을 기술 한다. 셀 또는 셀 그룹을 설정하는 방법은 각 시나리오 및 case에 따라 다르게 구성될 수 있다. Hereinafter, a method of configuring a cell or a cell group according to an embodiment of the present disclosure will be described. A method of setting a cell or a cell group may be configured differently according to each scenario and case.
먼저 도 8c를 참고하면, 도 8c는 CA-framework 을 확장한 inter-cell M-TRP동작을 도시한다. Referring first to FIG. 8c, FIG. 8c shows an inter-cell M-TRP operation in which the CA-framework is extended.
도 8c에 따르면, 기지국은 서로 다른 TRP들에서 전송되는 채널 및 신호들을 위한 설정을 서로 다른 서빙 셀 설정 내에 포함시켜 설정할 수 있다. 다시 말해 각 TRP들은 독립적인 서빙 셀 설정을 가지며, 각 서빙 셀 설정 내 DownlinkConfigCommon이 지시하는 주파수 대역 값 FrequencyInfoDL들은 적어도 일부의 겹치는 대역을 지시할 수 있다. 여러 TRP들이 다수의 ServCellIndex들에 (ServCellIndex #1, ServCellIndex #2) 기반하여 동작하게 되기 때문에 TRP 별로 별도의 physical cell ID (PCI)를 사용하는 것도 가능할 수 있다. (ServCellIndex당 하나의 PCI 할당 가능). 이 경우 만약 여러 가지의 SSB가 TRP 1과 TRP 2에서 전송될 때 상기 SSB 들은 서로 다른 PCI 값을(PCI #1, 또는 PCI #2) 가지게 되고, 단말은 이를 구분하여 수신할 수 있다.According to Figure 8c, the base station can be configured by including settings for channels and signals transmitted in different TRPs in different serving cell settings. In other words, each TRP has an independent serving cell configuration, and the frequency band values FrequencyInfoDLs indicated by DownlinkConfigCommon in each serving cell configuration may indicate at least some overlapping bands. Since several TRPs operate based on a plurality of ServCellIndexes (ServCellIndex #1, ServCellIndex #2), it may be possible to use a separate physical cell ID (PCI) for each TRP. (one PCI assignment per ServCellIndex possible). In this case, when various SSBs are transmitted in TRP 1 and TRP 2, the SSBs have different PCI values (PCI #1 or PCI #2), and the UE can receive them separately.
구체적으로, 셀 설정 정보를 이용하여 복수의 TRP에서의 협력 전송을 설정하는 방법은 아래와 같다. Specifically, a method for setting cooperative transmission in a plurality of TRPs using cell configuration information is as follows.
방법1: 하기의 표 7를 참고하면, SpCell 설정 정보 (SpCellConfig)에 셀 간 multi-TRP 정보 (IntercellForMultiTRP)의 활성화 또는 비활성화를 지시하는 정보를 설정하는 방법을 고려할 수 있다. 이 때, 하기의 IntercellForMultiTRP은 1비트의 정보로 활성화 또는 비활성화를 지시거나 혹은 IntercellForMultiTRP 정보가 포함되는 경우에 활성화를 지시하고 IntercellForMultiTRP 정보가 포함되지 않는 경우에는 비활성화를 지시하는 방식으로 설정될 수 있다. 이와 같이 ServCellIndex를 이용함으로써 CA framework 기반으로 동작할 수 있다. Method 1: Referring to Table 7 below, a method of setting information indicating activation or deactivation of intercell multi-TRP information (IntercellForMultiTRP) in SpCell configuration information (SpCellConfig) may be considered. At this time, the following IntercellForMultiTRP information indicates activation or deactivation with 1-bit information or indicates activation when IntercellForMultiTRP information is included and deactivation when IntercellForMultiTRP information is not included. Can be set. In this way, by using ServCellIndex, it can operate based on CA framework.
따라서, 단말은 상기 IntercellForMultiTRP가 enable로 설정된 (혹은 IntercellForMultiTRP가 포함된) sCell 또는 SPCell이 cooperating set으로 설정되어 협력 전송을 수행하는 것으로 판단할 수 있다. Accordingly, the UE may determine that the sCell or SPCell in which the IntercellForMultiTRP is set to enable (or includes IntercellForMultiTRP) is set as the cooperating set to perform cooperative transmission.
-- Serving cell specific MAC and PHY parameters for a SpCell:
SpCellConfig ::= SEQUENCE {
servCellIndex ServCellIndex OPTIONAL, -- Cond SCG
reconfigurationWithSync ReconfigurationWithSync OPTIONAL, -- Cond ReconfWithSync
rlf-TimersAndConstants SetupRelease { RLF-TimersAndConstants } OPTIONAL, -- Need M
rlmInSyncOutOfSyncThreshold ENUMERATED {n1} OPTIONAL, -- Need S
spCellConfigDedicated ServingCellConfig OPTIONAL, -- Need M
IntercellForMultiTRP ENUMERATED {enable, disable} OPTIONAL, -- Need M
...
}
예시 (ScellConfig 생략)
-- Serving cell specific MAC and PHY parameters for a SpCell:
SpCellConfig ::= SEQUENCE {
servCellIndex ServCellIndex OPTIONAL, -- Cond SCG
reconfigurationWithSync ReconfigurationWithSync OPTIONAL, -- Cond ReconfWithSync
rlf-TimersAndConstants SetupRelease { RLF-TimersAndConstants } OPTIONAL, -- Need M
rlmInSyncOutOfSyncThreshold ENUMERATED {n1} OPTIONAL, -- Need S
spCellConfigDedicated ServingCellConfig OPTIONAL, -- Need M
IntercellForMultiTRP ENUMERATED {enable, disable} OPTIONAL, -- Need M
...
}
Example (omitting ScellConfig)
한편, 상기에서는 SpCellConfig를 예를 들어 설명하였으나, 본 개시가 이에 한정되는 것은 아니며, SCell 설정 정보 (SCellConfig)에 대해서도 동일하게 적용될 수 있다. Meanwhile, although SpCellConfig has been described as an example, the present disclosure is not limited thereto, and the same may be applied to SCell configuration information (SCellConfig).
방법 2: 한편, 다른 실시예를 고려하면, 표 8과 같이 ServingCellConfig을 이용하여 상기 IntercellForMultiTRP를 설정하는 방법이 고려될 수 있다.Method 2: Meanwhile, in consideration of another embodiment, a method of configuring the IntercellForMultiTRP using ServingCellConfig as shown in Table 8 may be considered.
상술한 바와 마찬가지로, IntercellForMultiTRP은 1비트의 정보로 활성화 또는 비활성화를 지시거나 혹은 IntercellForMultiTRP 정보가 포함되는 경우에 활성화를 지시하고 IntercellForMultiTRP 정보가 포함되지 않는 경우에는 비활성화를 지시하는 방식으로 설정될 수 있다. 따라서, 단말은 상기 ServingCellConfig에 IntercellForMultiTRP가 enable로 설정된 경우 (혹은 상기 SevingCellConfig에 IntercellForMultiTRP가 포함된 경우), 상기 ServingCellConfig에 상응하는 SCell 또는 SPCell들이 협력 전송을 수행하는 것으로 판단할 수 있다. As described above, IntercellForMultiTRP indicates activation or deactivation with 1-bit information, or indicates activation when IntercellForMultiTRP information is included, and instructs deactivation when IntercellForMultiTRP information is not included. Accordingly, when IntercellForMultiTRP is set to enable in the ServingCellConfig (or when IntercellForMultiTRP is included in the ServingCellConfig), the UE can determine that the SCells or SPCells corresponding to the ServingCellConfig perform cooperative transmission.
ServingCellConfig ::= SEQUENCE {
tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDD
initialDownlinkBWP BWP-DownlinkDedicated OPTIONAL, -- Need M
downlinkBWP-ToReleaseList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need N
downlinkBWP-ToAddModList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need N

IntercellForMultiTRP ENUMERATED {enable, disable} OPTIONAL, -- Need M
ServingCellConfig ::= SEQUENCE {
tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDD
initialDownlinkBWP BWP-DownlinkDedicated OPTIONAL, -- Need M
downlinkBWP-ToReleaseList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need N
downlinkBWP-ToAddModList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need N

IntercellForMultiTRP ENUMERATED {enable, disable} OPTIONAL, -- Need M
방법 3: 한편, 또 다른 실시예를 고려하면, inter-cell 기반의 Multiple TRP 전송을 위해 상위 레이어 시그널링 (RRC)을 이용하여 협력 셀 관련 정보를 전송할 수 있다. 협력 셀 관련 정보는 하기의 표 9과 같이 CellGroupConfig에 포함될 수 있으며, 예를 들어, Multi-TRP에 대한 inter-cell 그룹 정보 (이하, InterCellGroupForMultiTRP), TRP 그룹 ID (이하, InterCellGroupForMultiTRPGroupID) 중 적어도 하나의 정보가 상기 CellGroupConfig에 추가될 수 있다. Method 3: Meanwhile, in consideration of another embodiment, cooperative cell-related information may be transmitted using higher layer signaling (RRC) for inter-cell-based multiple TRP transmission. Cooperative cell-related information may be included in CellGroupConfig as shown in Table 9 below, for example, at least one information of inter-cell group information for Multi-TRP (hereinafter, InterCellGroupForMultiTRP) and TRP group ID (hereinafter, InterCellGroupForMultiTRPGroupID). may be added to the CellGroupConfig.
다만, 본 개시의 실시예가 이에 한정되는 것은 아니다. 즉, 상기 협력 셀 관련 정보는 상술한 SpCellConfig, SCellConfig, ServingCellConfig 등에 포함되어 설정될 수도 있다. However, embodiments of the present disclosure are not limited thereto. That is, the cooperative cell-related information may be configured by being included in the aforementioned SpCellConfig, SCellConfig, ServingCellConfig, and the like.
-- Configuration of one Cell-Group:
CellGroupConfig ::= SEQUENCE {
cellGroupId CellGroupId,
rlc-BearerToAddModList SEQUENCE (SIZE(1..maxLC-ID)) OF RLC-BearerConfig
rlc-BearerToReleaseList SEQUENCE (SIZE(1..maxLC-ID)) OF LogicalChannelIdentity
mac-CellGroupConfig MAC-CellGroupConfig OPTIONAL, -- Need M
physicalCellGroupConfig PhysicalCellGroupConfig OPTIONAL, -- Need M

spCellConfig SpCellConfig OPTIONAL, -- Need M
sCellToAddModList SEQUENCE (SIZE (1..maxNrofSCells)) OF
sCellToReleaseList SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellIndex
...,

dormancySCellGroups DormancySCellGroups OPTIONAL, -- Need N
InterCellGroupsForMultiTRP InterCellGroupsForMultiTRP OPTIONAL, -- Need N
...
}

InterCellGroupForMultiTRP-r17 ::= SEQUENCE {
InterCellGroupForMultiTRPGroupID-r17 InterCellGroupForMultiTRPGroupID-r17,
InterCellGroupForMultiTRPSCellList-r17 SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellIndex
}

InterCellGroupForMultiTRPGroupID-r17 ::= INTEGER (0..5) //인접셀 개수 만큼 group 생성
-- Configuration of one Cell-Group:
CellGroupConfig ::= SEQUENCE {
cellGroupId CellGroupId,
rlc-BearerToAddModList SEQUENCE (SIZE(1..maxLC-ID)) OF RLC-BearerConfig
rlc-BearerToReleaseList SEQUENCE (SIZE(1..maxLC-ID)) OF LogicalChannelIdentity
mac-CellGroupConfig MAC-CellGroupConfig OPTIONAL, -- Need M
physicalCellGroupConfig PhysicalCellGroupConfig OPTIONAL, -- Need M

spCellConfig SpCellConfig OPTIONAL, -- Need M
sCellToAddModList SEQUENCE (SIZE (1..maxNrofSCells)) OF
sCellToReleaseList SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellIndex
...,

dormancySCellGroups DormancySCellGroups OPTIONAL, -- Need N
InterCellGroupsForMultiTRP InterCellGroupsForMultiTRP OPTIONAL, -- Need N
...
}

InterCellGroupForMultiTRP-r17 ::= SEQUENCE {
InterCellGroupForMultiTRPGroupID-r17 InterCellGroupForMultiTRPGroupID-r17,
InterCellGroupForMultiTRPSCellList-r17 SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellIndex
}

InterCellGroupForMultiTRPGroupID-r17 ::= INTEGER (0..5) //Create groups as many as the number of adjacent cells
예를 들어, 상기 InterCellGroupForMultiTRP가 CellGroupConfig에 포함될 수 있으며, 상기 InterCellGroupForMultiTRP는 InterCellGroupForMultiTRPGroupID 및 InterCellGroupForMultiTRPSCellList로 구성될 수 있다. 따라서, InterCellGroupForMultiTRPSCellList 내에 포함된 SCell들이 InterCellGroupForMultiTRPGroupID로 그룹핑되며, 상기 SCell 또는 SPCell들이 협력 전송에 사용될 수 있다. For example, the InterCellGroupForMultiTRP may be included in CellGroupConfig, and the InterCellGroupForMultiTRP may be composed of InterCellGroupForMultiTRPGroupID and InterCellGroupForMultiTRPSCellList. Accordingly, SCells included in InterCellGroupForMultiTRPSCellList are grouped by InterCellGroupForMultiTRPGroupID, and the SCells or SPCells may be used for cooperative transmission.
이 때, 상기 표 7을 참고하면, InterCellGroupForMultiTRPGroupID 는 0 내지 5 중 적어도 하나가 선택될 수 있다. 다만, 이는 본 개시의 일 실시예에 불과하며 즉, TRP 그룹의 수에 따라 상기 InterCellGroupForMultiTRPGroupID는 5 이상의 값으로 설정되는 것도 가능하다.In this case, referring to Table 7, at least one of 0 to 5 may be selected for InterCellGroupForMultiTRPGroupID. However, this is only an embodiment of the present disclosure, that is, according to the number of TRP groups, the InterCellGroupForMultiTRPGroupID may be set to a value of 5 or more.
또는, InterCellGroupForMultiTRPGroupID 이 CellGroupConfig 내에 포함될 수도 있다. 이와 같은 경우, CellGroupConfig 내에 포함되는 SCellConfig에 상응하는 SCell들은 동일한 TRP Group ID를 가질 수 있다. 따라서, 동일한 TRP Group ID를 갖는 cell 또는 cell group들이 협력 전송에 사용될 수도 있다. 이와 같이, 상기 두 방법을 각각 사용하거나 조합하여 inter-cell 기반 M-TR의 cooperating set을 설정할 수 있다.Alternatively, InterCellGroupForMultiTRPGroupID may be included in CellGroupConfig. In this case, SCells corresponding to SCellConfig included in CellGroupConfig may have the same TRP Group ID. Therefore, a cell or cell groups having the same TRP Group ID may be used for cooperative transmission. In this way, the cooperating set of the inter-cell-based M-TR can be set by using or combining the two methods, respectively.
방법 4: 한편, 또 다른 실시예를 고려하면, inter-cell 기반의 Multiple TRP 전송을 위해 상위 레이어 시그널링(RRC)을 이용하여 협력 셀 관련 정보를 전송할 수 있으며, CellGroup을 구성하는 set을 (physical Id #X, physical Id #Y) 또는 (servicellId #X, servicellId #Y)를 리스트 또는 테이블 형태로 구성하여 정의할 수 있다.Method 4: Meanwhile, in consideration of another embodiment, cooperative cell-related information may be transmitted using higher layer signaling (RRC) for inter-cell-based Multiple TRP transmission, and a set constituting a CellGroup (physical ID) #X, physical Id #Y) or (servicellId #X, servicellId #Y) can be defined in a list or table form.
즉, 본 개시에서는 physical cell ID의 세트 혹은 servingcellID의 세트가 CellGroup에서 설정될 수 있으며, 상기 세트가 협력 전송에 사용될 수 있다. 이 때, 상기 physical cell ID의 세트 혹은 servingcellID의 세트는 CellGroupConfig 외에 SpCellConfig, SCellConfig, ServingCellConfig 등을 통해서도 설정될 수 있다. That is, in the present disclosure, a set of physical cell IDs or a set of servingcellIDs may be configured in CellGroup, and the set may be used for cooperative transmission. In this case, the set of the physical cell ID or the set of servingcellID may be configured through SpCellConfig, SCellConfig, ServingCellConfig, etc. in addition to CellGroupConfig.
한편, 도 8d는 non-CA framework 에 기반한 inter-cell M-TRP 동작을 도시한다. Meanwhile, FIG. 8D shows an inter-cell M-TRP operation based on a non-CA framework.
도 8d를 참고하면, 서로 다른 TRP들에서 전송되는 채널 및 신호들을 위한 설정을 하나의 서빙 셀 설정 내에 포함시켜 설정할 수 있다. 이 때, 서로 다른 TRP는 서로 다른 PCI를 가지며, 별도의 serving cell index 설정 없이 서로 상이한 PCI를 가지는 것으로 설정되면, 단말은 Inter-Cell M-TRP 동작을 수행하는 것으로 판단할 수 있다. Referring to FIG. 8D , settings for channels and signals transmitted in different TRPs may be included in one serving cell configuration. At this time, if different TRPs have different PCIs and are set to have different PCIs without a separate serving cell index setting, the UE may determine that the Inter-Cell M-TRP operation is performed.
non-CA framework 에 따르는 경우, non-serving cell에는 별도의 serving cell index (예를 들면 ServCellIndex)가 설정되지 않을 수 있으므로, 별도의 serving cell index 설정 없이 inter-cell multi-TRP 동작을 수행할 TRP의 PCI를 설정하는 방법이 필요하다. 따라서, 이하에서는 기지국에 단말에게 non-serving cell을 통해 신호를 송수신하는 TRP의 PCI를 설정하는 방법을 기술한다. 이를 통해 단말이 inter-cell M-TRP가 설정되었는지 여부를 확인할 수 있다. According to the non-CA framework, a separate serving cell index (eg, ServCellIndex) may not be set for the non-serving cell. I need a way to configure PCI. Therefore, the following describes a method of configuring the PCI of the TRP for transmitting and receiving a signal to the base station through a non-serving cell to the terminal. Through this, the UE can check whether the inter-cell M-TRP is configured.
제1 방법: TCI 설정 혹은 QCL 설정에 기존 ServCellIndex에 매핑 되는 첫 번째 PCI 값 이외 추가적인 PCI 값 들을 연결시킬 수 있는 파라미터를 추가하여 상기 추가적인 PCI에 기반하는 SSB를 QCL reference 안테나 포트로 설정하는 방법이 사용될 수 있다.Method 1: The method of setting the SSB based on the additional PCI as the QCL reference antenna port by adding a parameter that can connect additional PCI values other than the first PCI value mapped to the existing ServCellIndex to the TCI setting or QCL setting will be used can
구체적으로 하기의 표 10과 같이, QCL 설정에 해당 서빙 셀에 할당된 PCI 이외에 다른 PCI를 참조하기 위한 파라미터를 추가할 수 있다. Specifically, as shown in Table 10 below, parameters for referring to other PCIs in addition to the PCI allocated to the corresponding serving cell may be added to the QCL setting.
QCL-Info ::= SEQUENCE {
cell ServCellIndex (QCL reference RS가 전송되는 서빙 셀 인덱스)
bwp-Id BWP-Id (QCL reference RS가 전송되는 대역폭 부분 인덱스)
referenceSignal CHOICE { (CSI-RS 혹은 SS/PBCH block 중 하나를 QCL reference RS로 지시하는 지시자)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD}, (QCL type 지시자)
physCellId PhysCellId
...
}
QCL-Info ::= SEQUENCE {
cell ServCellIndex (Serving cell index to which QCL reference RS is transmitted)
bwp-Id BWP-Id (bandwidth partial index over which QCL reference RS is transmitted)
referenceSignal CHOICE { (indicator indicating one of CSI-RS or SS/PBCH block as QCL reference RS)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD}, (QCL type indicator)
physCellId PhysCellId
...
}
제2 방법: 또는, 하기의 표 11과 같이 TCI 설정에 해당 서빙 셀에 할당된 PCI 이외에 다른 PCI를 참조하기 위한 파라미터를 추가할 수 있다. Second method: Alternatively, as shown in Table 11 below, a parameter for referring to PCI other than the PCI allocated to the corresponding serving cell may be added to the TCI setting.
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId, (TCI state 지시자)
qcl-Type1 QCL-Info, (해당 TCI state가 적용되는 target 안테나 포트에 대한 첫 번째 QCL 설정)
qcl-Type2 QCL-Info (해당 TCI state가 적용되는 target 안테나 포트에 대한 두 번째 QCL 설정) OPTIONAL, -- Need R
physCellId PhysCellId
...
}
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId, (TCI state indicator)
qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied)
qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, -- Need R
physCellId PhysCellId
...
}
제3 방법: 또는, TCI 설정 내 첫 번째 QCL 설정 (qcl-Type1)과 두 번째 QCL 설정 (qcl-Type2)에 서로 다른 PCI 값들을 매핑하고자 할 경우 하기의 표 12와 같이 두 개의 PCI (physCellId1, physCellId2) 들을 TCI 설정에 추가하는 것도 가능하다.Third method: Alternatively, if you want to map different PCI values to the first QCL setting (qcl-Type1) and the second QCL setting (qcl-Type2) in the TCI setting, two PCI (physCellId1, It is also possible to add physCellId2) to the TCI configuration.
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId, (TCI state 지시자)
qcl-Type1 QCL-Info, (해당 TCI state가 적용되는 target 안테나 포트에 대한 첫 번째 QCL 설정)
qcl-Type2 QCL-Info (해당 TCI state가 적용되는 target 안테나 포트에 대한 두 번째 QCL 설정) OPTIONAL, -- Need R
physCellId1 PhysCellId
physCellId2 PhysCellId
...
}
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId, (TCI state indicator)
qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied)
qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, -- Need R
physCellId1 PhysCellId
physCellId2 PhysCellId
...
}
상기 QCL 설정 혹은 TCI 설정 내 추가 PCI 값을 할당함에 있어 단말의 모빌리티 설정 (혹은 핸드오버 설정) 값들을 감안하여 특정 제약을 고려하는 것이 가능하다.In allocating an additional PCI value in the QCL configuration or TCI configuration, it is possible to consider specific restrictions in consideration of the mobility configuration (or handover configuration) values of the UE.
기지국은 측정 설정 (예를 들어, MeasConfig 또는 MeasObject 설정) 내의 black cell list 혹은 white cell list를 사용하는 것이 가능하다. 아래 표 13에 따르면 기지국은 MeasObject 설정을 통하여 단말이 SSB 측정 시 고려할 PCI 값 들의 black list (blackCellsToAddModList)와 white list (whiteCellsToAddModList) 들에 연결되는 일련의 PCI 값 리스트를 설정할 수 있다.It is possible for the base station to use a black cell list or a white cell list in the measurement configuration (eg, MeasConfig or MeasObject configuration). According to Table 13 below, the base station can set a list of PCI values connected to the black list (blackCellsToAddModList) and white list (whiteCellsToAddModList) of the PCI values that the terminal considers when measuring the SSB through MeasObject configuration.
MeasObjectNR ::= SEQUENCE {
ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSB
ssbSubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSB
smtc1 SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSB
smtc2 SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnected
refFreqCSI-RS ARFCN-ValueNR OPTIONAL, -- Cond CSI-RS
referenceSignalConfig ReferenceSignalConfig,
absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need R
absThreshCSI-RS-Consolidation ThresholdNR OPTIONAL, -- Need R
nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need R
nrofCSI-RS-ResourcesToAverage INTEGER (2..maxNrofCSI-RS-ResourcesToAverage) OPTIONAL, -- Need R
quantityConfigIndex INTEGER (1..maxNrofQuantityConfig),
offsetMO Q-OffsetRangeList,
cellsToRemoveList PCI-List OPTIONAL, -- Need N
cellsToAddModList CellsToAddModList OPTIONAL, -- Need N
blackCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
blackCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
whiteCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
whiteCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
... ,
[[
freqBandIndicatorNR-v1530 FreqBandIndicatorNR OPTIONAL, -- Need R
measCycleSCell-v1530 ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280} OPTIONAL -- Need R
]]
}
MeasObjectNR ::= SEQUENCE {
ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSB
ssbSubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSB
smtc1 SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSB
smtc2 SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnected
refFreqCSI-RS ARFCN-ValueNR OPTIONAL, -- Cond CSI-RS
referenceSignalConfig ReferenceSignalConfig,
absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need R
absThreshCSI-RS-Consolidation ThresholdNR OPTIONAL, -- Need R
nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need R
nrofCSI-RS-ResourcesToAverage INTEGER (2..maxNrofCSI-RS-ResourcesToAverage) OPTIONAL, -- Need R
quantityConfigIndex INTEGER(1..maxNrofQuantityConfig),
offsetMO Q-OffsetRangeList,
cellsToRemoveList PCI-List OPTIONAL, -- Need N
cellsToAddModList CellsToAddModList OPTIONAL, -- Need N
blackCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
blackCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
whiteCellsToRemoveList PCI-RangeIndexList OPTIONAL, -- Need N
whiteCellsToAddModList SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N
... ,
[[
freqBandIndicatorNR-v1530 FreqBandIndicatorNR OPTIONAL, -- Need R
measCycleSCell-v1530 ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280} OPTIONAL -- Need R
]]
}
상기 예에서 PCI #2는 상기 MeasObjectNR 내 whiteCellsToAddModList에 포함되었으나 (혹은 blackCellsToAddModList에 포함 되지 않았으나) PCI #3는 상기 MeasObjectNR 내 whiteCellsToAddModList에 포함 되지 않은 경우 (혹은 blackCellsToAddModList에 포함 된 경우), 단말은 PCI #2가 설정되었음을 확인할 수 있다. 따라서, 단말은 PCI #2에 대해서는 SSB를 측정 할 의무를 가지게 되나 PCI #3에 대해서는 SSB 측정을 수행할 의무가 없게 된다. 따라서 단말은 PCI #2에 연계된 SSB에 대해서는 QCL reference 안테나 포트 설정을 적용 가능하나, PCI #3에 연계된 SSB에 대해서는 QCL reference 안테나 포트 설정을 기대하지 않을 수 있다. 이때 "단말이 QCL reference 안테나 포트 설정을 기대하지 않는다" 함은 실제 적용 시 "이와 같이 설정될 경우 해당 설정 내용을 무시하거나", 혹은 "해당 설정에 대한 단말 동작이 정의되지 않아 임의의 처리를 수행하도록 허용되거나", 혹은 "기지국이 해당 설정을 하지 않도록 보장"하는 등 다양하게 응용되는 것이 가능하다.In the above example, PCI #2 is included in whiteCellsToAddModList in MeasObjectNR (or not included in blackCellsToAddModList), but PCI #3 is not included in whiteCellsToAddModList in MeasObjectNR (or included in blackCellsToAddModList), the terminal has PCI #2 You can check that it has been set. Therefore, the UE has an obligation to measure SSB for PCI #2, but has no obligation to measure SSB for PCI #3. Therefore, the UE can apply the QCL reference antenna port setting to the SSB linked to PCI #2, but may not expect the QCL reference antenna port setting to the SSB linked to PCI #3. At this time, "the terminal does not expect the QCL reference antenna port setting" means "if it is set in this way, ignore the corresponding setting" or "the terminal operation for the setting is not defined, so random processing is performed" Various applications are possible, such as "allowed to do so" or "guaranteeing that the base station does not set this setting".
한편, 본 개시의 또 다른 실시예에 따르면, 도 8d에서 단말이 inter-cell M-TRP 동작이 설정되었는지 여부를 확인하기 위해 하기와 같은 방법이 사용될 수 있다. Meanwhile, according to another embodiment of the present disclosure, the following method may be used for the UE to check whether the inter-cell M-TRP operation is configured in FIG. 8D .
TRP 1과 TRP 2에 대해 적어도 하나 이상의 BWP가 설정될 수 있으며, Cell 관련 상위 레이어 signaling 또는 parameter가 설정될 수 있다. 복수의 TRP(s)는 각 TRP에서 지원하는 BWP 중에서 inter-cell M-TRP에 해당하는 BWP가 active 되도록 설정할 수 있다. 따라서, M-TRP 전송을 위해 복수의 BWP가 active될 수 있다. 예를 들어, inter-cell M-TRP 전송을 위해서 TRP 1의 BWP-0은 CORESET 0, 1, 2, 3, 4와 연관되고, TRP 2의 BWP-1은 CORESET 0, 1, 2, 3, 4와 연관되도록 설정될 수 있다. 또한, 상기 TRP 1의 BWP 0과 TRP 2의 BWP 1이 활성화된 경우, 단말은 M-TRP 동작이 설정된 것으로 판단할 수 있다. 따라서, 단말은 ControlResourceSet 설정에 따라 M-TRP 동작을 수행할 수 있다. 즉, 단말은 복수의 TRP를 통하여 신호를 전송 또는 수신할 수 있다. At least one or more BWPs may be configured for TRP 1 and TRP 2, and cell-related higher layer signaling or parameters may be configured. A plurality of TRP(s) may be set so that the BWP corresponding to the inter-cell M-TRP is active among the BWPs supported by each TRP. Therefore, a plurality of BWPs may be active for M-TRP transmission. For example, for inter-cell M-TRP transmission, BWP-0 of TRP 1 is associated with CORESET 0, 1, 2, 3, 4, and BWP-1 of TRP 2 is CORESET 0, 1, 2, 3, It can be set to be associated with 4. In addition, when BWP 0 of TRP 1 and BWP 1 of TRP 2 are activated, the terminal may determine that the M-TRP operation is set. Accordingly, the terminal may perform the M-TRP operation according to the ControlResourceSet setting. That is, the terminal may transmit or receive a signal through a plurality of TRPs.
한편, non-serving cell과 관련된 TRP 2의 BWP-1이 activation 상태인지 여부를 판단하기 위해 상술한 측정 설정 정보가 사용될 수 있다. serving cell로부터 수신된 측정 설정 정보에 포함된 band의 freq. 정보에 상기 BWP-1의 적어도 일부를 포함시킴으로써 상기 TPR 2의 BWP-1을 activation할 수 있다. 예를 들어, 측정 설정 정보에는 주파수 정보 (예를 들어, freqbandindicatorNR 또는 ssbFrequency에서 ARFCN-ValueNR)이 포함될 수 있으며, 상기 주파수 정보에 TRP 2의 주파수 정보 (BWP-1)의 일부가 포함되도록 설정되는 경우, 상기 TRP 2의 BWP-1이 activation될 수 있다. 또는 상기 측정 설정 정보에는 activated되는 BWP 또는 multi-TRP inter-cell 전송을 위해 사용될 BWP ID가 포함될 수 있으며 이를 통해 multi-TRP inter-cell 전송이 수행될 수 있다. On the other hand, the above-described measurement configuration information may be used to determine whether BWP-1 of TRP 2 related to the non-serving cell is in the activation state. The freq of the band included in the measurement configuration information received from the serving cell. BWP-1 of the TPR 2 may be activated by including at least a portion of the BWP-1 in the information. For example, the measurement setting information may include frequency information (eg, ARFCN-ValueNR in freqbandindicatorNR or ssbFrequency), and when it is set to include a part of the frequency information (BWP-1) of TRP 2 in the frequency information , BWP-1 of the TRP 2 may be activated. Alternatively, the measurement configuration information may include an activated BWP or BWP ID to be used for multi-TRP inter-cell transmission, through which multi-TRP inter-cell transmission may be performed.
또한, 상기 serving cell로부터 수신된 측정 설정 정보에는 serving cell의 measurement object (servingCellMO), measurement Id 등의 정보가 포함될 수 있다. 또한, 상기 serving cell로부터 수신된 측정 설정 정보에는 이웃 셀과 관련된 measurement object이 포함될 수 있다. 상기 measurement object에는 BWP ID, cell ID 등의 정보 중 적어도 하나가 포함될 수 있다. 따라서, 단말은 상기 measurement object에 따라 TRP 1의 BWP 0와 TRP 2의 BWP 1이 activation되었다고 판단할 수 있으며, M-TRP 동작을 수행할 수 있다. 또는, 상기 measurement object에는 CellsToAddModList에 대한 정보가 포함될 수 있으며, 상기 정보에 PCI list가 포함됨으로써 TRP 2의 BWP 1이 activation될 수 있다. In addition, the measurement configuration information received from the serving cell may include information such as a measurement object (servingCellMO) and measurement Id of the serving cell. In addition, the measurement configuration information received from the serving cell may include a measurement object related to a neighboring cell. The measurement object may include at least one of information such as BWP ID and cell ID. Accordingly, the terminal may determine that BWP 0 of TRP 1 and BWP 1 of TRP 2 are activated according to the measurement object, and may perform an M-TRP operation. Alternatively, information on CellsToAddModList may be included in the measurement object, and BWP 1 of TRP 2 may be activated by including a PCI list in the information.
또는, 기지국은 QCL 정보 (QCL info) 등과 같은 설정 정보를 통해 multi-TRP의 inter cell 협력 전송을 수행할 BWP ID를 단말에 전송하거나, TRP 2의 BWP 1에 대한 BWP ID를 단말에 전송할 수도 있다. Alternatively, the base station transmits the BWP ID for performing multi-TRP inter-cell cooperative transmission to the terminal through configuration information such as QCL information (QCL info), or transmits the BWP ID for BWP 1 of TRP 2 to the terminal. .
한편, 본 개시의 또 다른 실시예에 따르면, 도 8d에서 단말이 inter-cell M-TRP 동작이 설정되었는지 여부를 확인하기 위해 하기와 같은 방법이 사용될 수 있다. Meanwhile, according to another embodiment of the present disclosure, the following method may be used for the UE to check whether the inter-cell M-TRP operation is configured in FIG. 8D .
TRP 1과 TRP 2에 대해 적어도 하나의 BWP가 설정 또는 활성화될 수 있으며, 단말에게 설정되는 CORESET Index를 새롭게 설정하는 방법이 고려될 수 있다. 복수의 TRP(s)는 각각 하나 이상의 BWP를 설정할 수 있으며, 여기서 inter-cell M-TRP 전송을 위한 각 TRP의 동일한 BWP-Id는 연속되는(consecutive number) CORESET Index와 연관되도록 설정될 수 있다. 예를 들어, 단말은 TRP 1과 TRP 2로부터 동일한 BWP-Id가 active되도록 설정될 수 있다. 만일 최대 COREESET Index의 개수가 5로 결정되면 TRP 1의 BWP-1은 CORESET 0, 1, 2와 연관되고 TRP 2의 BWP-1은 CORESET 3, 4와 연관되도록 설정될 수 있다. 다른 예를 들어, COREESET Index의 최대 개수가 5 이상의 값(예: 10)으로 결정되면, TRP 1의 BWP-1가 CORESET 0-4와 연관되고 TRP 2의 BWP-1가 CORESET 5-9와 연관되도록 설정될 수 있다. At least one BWP may be set or activated for TRP 1 and TRP 2, and a method of newly setting the CORESET Index set in the terminal may be considered. A plurality of TRP(s) may each set one or more BWPs, where the same BWP-Id of each TRP for inter-cell M-TRP transmission may be set to be associated with a continuous (consecutive number) CORESET Index. For example, the UE may be configured such that the same BWP-Id is active from TRP 1 and TRP 2. If the maximum number of CoreSET Indexes is determined to be 5, BWP-1 of TRP 1 may be set to be associated with CORESETs 0, 1, and 2, and BWP-1 of TRP 2 may be set to be associated with CORESETs 3 and 4. For another example, if the maximum number of COREESET Index is determined to be a value of 5 or more (eg 10), then BWP-1 of TRP 1 is associated with CORESET 0-4 and BWP-1 of TRP 2 is associated with CORESET 5-9. It can be set to be
또한, 하기의 표 14를 참고하면, 상기 active BWP Id를 별도로 설정하기 위해 하기와 같이 IntercellDownlinkBWP-Id가 추가될 수 있다. 따라서, 상기와 같이 IntercellDownlinkBWP-Id가 지시하는 BWP가 활성화된 경우, 단말은 해당 BWP에서 inter-cell M-TRP 동작을 수행할 수 있다. 이와 같은 방법을 사용하는 경우, inter-cell 기반의 multi-TRP 전송에서 하나의 BWP만이 active되는 현재 표준을 유지하면서 non-CA framework 동작을 수행하는 장점이 있다.In addition, referring to Table 14 below, IntercellDownlinkBWP-Id may be added as follows to separately set the active BWP Id. Accordingly, when the BWP indicated by the IntercellDownlinkBWP-Id is activated as described above, the UE may perform the inter-cell M-TRP operation in the corresponding BWP. In case of using this method, there is an advantage of performing non-CA framework operation while maintaining the current standard in which only one BWP is active in inter-cell-based multi-TRP transmission.
ServingCellConfig ::= SEQUENCE {
tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDD
initialDownlinkBWP BWP-DownlinkDedicated OPTIONAL, -- Need M
downlinkBWP-ToReleaseList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need N
downlinkBWP-ToAddModList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need N
firstActiveDownlinkBWP-Id BWP-Id
IntercellDownlinkBWP-Id BWP-Id // BWP Id 지정
...
}
ServingCellConfig ::= SEQUENCE {
tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDD
initialDownlinkBWP BWP-DownlinkDedicated OPTIONAL, -- Need M
downlinkBWP-ToReleaseList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need N
downlinkBWP-ToAddModList SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need N
firstActiveDownlinkBWP-Id BWP-Id
IntercellDownlinkBWP-Id BWP-Id // Assign BWP Id
...
}
한편, 이하에서는 상기에서 설명된 설정에 기반하여 inter-cell 기반의 Multi-TRP 전송을 수행하기 위해 단말이 monitoring하는 CORESET의 설정 및 동작을 설명한다. 세부적으로 CORESET의 설정을 위해 RRC parameter CORESETPoolIndex의 새로운 정의/변경이 필요하다.Meanwhile, the setting and operation of CORESET monitored by the UE to perform inter-cell-based Multi-TRP transmission based on the above-described setting will be described below. In detail, for CORESET setting, new definition/change of RRC parameter CORESETPoolIndex is required.
Rel-16에서는 하나의 BWP 내에 최대 5개의 CORESET까지 설정될 수 있으며, 이때 Multi-TRP transmission을 수행할 수 있는 CORESET의 집합(set)을 동일한 CORESETPoolIndex로 설정할 수 있다. 반면에 Rel-17에서 inter-cell에 대응되는 복수의 TRP 각각에 대해 CORESETPoolIndex의 설정이 필요하다. 이 때, 기지국은 하나의 BWP 내에 5개 이상의 CORESET을 설정할 수 있으며, inter-cell 기반의 Multi-TRP 전송을 위하여 복수 개의 기존의 CORESETPoolIndex를 확장하여 사용할 수 있고, 새로운 정보(예: CORESETPoolIndex-rel17 또는 CORESETPoolIndexForIntercell)를 사용 할 수 있다.In Rel-16, up to five CORESETs can be set within one BWP, and at this time, a set of CORESETs capable of performing multi-TRP transmission can be set to the same CORESETPoolIndex. On the other hand, it is necessary to set CORESETPoolIndex for each of a plurality of TRPs corresponding to inter-cells in Rel-17. At this time, the base station can set five or more CORESETs within one BWP, and can extend and use a plurality of existing CORESETPoolIndex for inter-cell-based multi-TRP transmission, and use new information (eg, CORESETPoolIndex-rel17 or CORESETPoolIndexForIntercell) can be used.
도 9는 본 개시의 일 실시예에 따른 Multi-DCI 기반 M-TRP의 CORESETPoolIndex 설정 방법을 도시한 도면이다. 9 is a diagram illustrating a CORESETPoolIndex setting method of M-TRP based on Multi-DCI according to an embodiment of the present disclosure.
단말은 적어도 하나 이상의 BWP에서 CORESETPoolIndex가 동일한 값으로 설정된 CORESET에 포함된 복수의 PDCCH를 모니터링하여 DCI를 디코딩할 수 있다. 또한, 단말은 상기 DCI가 스케줄링하는 fully/partially/non-overlapped PDSCHs를 수신을 기대할 수 있다. The UE may decode DCI by monitoring a plurality of PDCCHs included in CORESET in which CORESETPoolIndex is set to the same value in at least one BWP. In addition, the UE can expect to receive fully/partially/non-overlapped PDSCHs scheduled by the DCI.
예를 들어, 단말은 동일한 CORESETPoolIndex (901)로 설정된 TRP 1의 CORESET #X (902)와 TRP #2의 CORESET Y (903)를 slot #0 (904)에서 각각 모니터링할 수 있다. 따라서, 단말은 상기 CORESET #X와 CORESET #Y를 통해 수신된 DCI에 기반하여 PDSCH #2 (905)및 PDSCH #1 (906)에서 데이터를 수신할 수 있다. For example, the UE may monitor CORESET #X (902) of TRP 1 and CORESET Y (903) of TRP #2 set to the same CORESETPoolIndex (901) in slot #0 (904), respectively. Accordingly, the UE may receive data in PDSCH #2 905 and PDSCH #1 906 based on the DCI received through CORESET #X and CORESET #Y.
여기서 TRP에 설정된 PCI가 서로 상이 하여도 단말은 설정된 CORESETPoolIndex 만으로 Multi-TRP로 구성되는 CORESET 인덱스(들)을 판단할 수 있다. 이를 위해 아래에서 구체적인 방법을 기술한다. 먼저 CORESETPoolIndex는 단말에 설정될 수 있으며, 단말은 동일한 CORESETPoolIndex를 갖는 CORESET을 통해 M-TRP 동작을 수행할 수 있다. 예를 들어, CORESETPoolIndex 0은 CORESET 1, 2를 포함하고, CORESETPoolIndex 1은 CORESET 3, 4를 포함하는 경우, 단말은 CORESET 1, 2를 통해 M-TRP 동작을 수행할 수 있고, CORESET 3, 4를 통해 M-TRP 동작을 수행할 수 있다. Here, even if the PCIs set in the TRP are different from each other, the UE can determine the CORESET index(s) composed of the Multi-TRP only with the set CORESETPoolIndex. For this purpose, a specific method is described below. First, CORESETPoolIndex may be set in the UE, and the UE may perform M-TRP operation through CORESET having the same CORESETPoolIndex. For example, if CORESETPoolIndex 0 includes CORESETs 1 and 2 and CORESETPoolIndex 1 includes CORESETs 3 and 4, the UE may perform an M-TRP operation through CORESETs 1 and 2, and CORESET 3 and 4 through the M-TRP operation.
CORESETPoolIndex를 설정하기 위한 제1 방법을 설명한다. 본 개시의 제1 방법에 따르면, serving cell에 대해 CORESETPoolIndex가 설정된 경우 단말은 inter-cell (non-serving cell)에 대해서도 동일한 CORESETPoolIndex가 설정되었음을 기대할 수 있다. 즉, inter-cell에서도 동일한 CORESETPoolIndex가 적용될 수 있다. 이 경우 inter-cell (non-serving cell)에 대해 별도의 CORESETPoolIndex 설정 없이 묵시적으로 설정이 된 것으로 판단할 수 있다.A first method for setting CORESETPoolIndex will be described. According to the first method of the present disclosure, when CORESETPoolIndex is set for the serving cell, the UE can expect that the same CORESETPoolIndex is set for the inter-cell (non-serving cell). That is, the same CORESETPoolIndex may be applied even in the inter-cell. In this case, it can be determined that the inter-cell (non-serving cell) is set implicitly without a separate CORESETPoolIndex setting.
예를 들어, TRP 1에 대한 셀에 대해 CORESETPoolIndex 0은 CORESET 1, 2를 포함하고, CORESETPoolIndex 1은 CORESET 3, 4를 포함되도록 설정된 경우, 단말은 TPR2에 대한 셀에 대해서도 CORESETPoolIndex 0은 CORESET 1, 2를 포함하고 CORESETPoolIndex 1은 CORESET 3, 4를 포함한다고 판단할 수 있다. For example, if CORESETPoolIndex 0 for the cell for TRP 1 is set to include CORESETs 1 and 2, and CORESETPoolIndex 1 is set to include CORESET 3 and 4, the UE CORESETPoolIndex 0 for the cell for TPR2 is also CORESET 1, 2 and CORESETPoolIndex 1 can be determined to include CORESETs 3 and 4.
도 10은 본 개시의 일 실시예에 따른 CORESETPoolIndex를 설정하는 제2 방법을 도시한 도면이다. 10 is a diagram illustrating a second method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
제2 방법에서는 CORESETPoolIndex 설정 개수가 고정될 수 있으며, 본 개시에서는 예를 들어, 2개로 설정되는 경우를 설명한다. 다만, 본 개시의 실시예가 이에 한정되는 것은 아니며, CORESETPoolIndex 설정 개수는 변경될 수 있다. 기지국은 PCI 마다 CORESETPoolIndex를 각각 0 or 1로 설정할 수 있다. 이 때 CORESETPoolIndex 0 or 1에 포함되는 CORESET은 2개 이상이 될 수 있다. 제2 방법에 따르면, 기지국은 Inter-cell간 CORESETPoolIndex 설정을 위해 pool로 구성되기 위한 적어도 하나의 CORESET이 PCI 별로 동일한 인덱스를 갖도록 설정할 수 있다. 또한, 제2 방법에 따르면, 동일한 PCI를 갖는 TRP에 대해서 CORESETPoolIndex에는 적어도 2개의 CORESET이 포함될 수 있으며, inter-cell간 협력 전송을 위해 동일한 CORESETPoolIndex를 갖는 CORESET이 사용될 수 있다. In the second method, the number of CORESETPoolIndex settings can be fixed, and the present disclosure describes a case where, for example, it is set to two. However, the embodiment of the present disclosure is not limited thereto, and the number of CORESETPoolIndex settings may be changed. The base station may set CORESETPoolIndex to 0 or 1 for each PCI. At this time, there may be two or more CORESETs included in CORESETPoolIndex 0 or 1. According to the second method, the base station may set at least one CORESET to be configured as a pool to have the same index for each PCI in order to set the CORESETPoolIndex between inter-cells. In addition, according to the second method, for TRP having the same PCI, at least two CORESETs may be included in CORESETPoolIndex, and CORESETs having the same CORESETPoolIndex may be used for inter-cell cooperative transmission.
예를 들어, 기지국은 특정 단말을 위해 CORESET 1 for TRP 1, CORESET 1 for TRP 2를 inter-cell 간 CORESETPoolIndex 0으로 설정할 수 있다. For example, the base station may set CORESET 1 for TRP 1 and CORESET 1 for TRP 2 as inter-cell CORESETPoolIndex 0 for a specific terminal.
다른 예를 들어, 하나의 Intra-cell 내에서 설정된 CORESETPoolIndex를 이용하여 Inter-cell에서 동일한 CORESETIndex를 이용하여 Multi-TRP 전송을 위한 PDCCH를 모니터링할 수 있다. 구체적으로 도 10을 참고하면, CORESET 1 for TRP 1, CORESET 2 for TRP 1가 TRP 1에 대한 CORESETPoolIndex 0 (1010)으로 설정될 수 있으며, CORESET 1 for TRP 2, CORESET 3 for TRP 2가 TRP 2에 대해 CORESETPoolIndex 0 (1020)으로 설정될 수 있다. 따라서, TRP 1 및 TRP 2에 대한 CORESETPoolIndex 0은 inter-cell 간 Multi-TRP 전송을 위한 PDCCH 모니터링에 사용될 수 있다. 마찬가지로, CORESET 3 for TRP 1, CORESET 4 for TRP 1가 TRP 1에 대한 CORESETPoolIndex 1 (1011)로 설정될 수 있으며, CORESET 3 for TRP 2, CORESET 4 for TRP 2가 TRP 2에 대한 CORESETPoolIndex 1 (1021)로 설정될 수 있다. 따라서, TRP 1 및 TRP 2에 대한 CORESETPoolIndex 1은 inter-cell 간 Multi-TRP 전송을 위한 PDCCH 모니터링에 사용될 수 있다. 단말은 이때 PCI의 상관없이 오직 CORESETPoolIndex만을 확인하여 Multi-TRP 전송을 위한 PDCCH 모니터링을 수행할 수 있다. 이와 같이 기지국은 CORESETPoolIndex의 전체 개수는 고정하고, 단말로 하여금 동일한 index를 가지는 pool을 모두 모니터링 하도록 설정/결정할 수 있다.As another example, using the CORESETPoolIndex set in one intra-cell, the PDCCH for multi-TRP transmission may be monitored in the inter-cell using the same CORESETIndex. Specifically, referring to FIG. 10 , CORESET 1 for TRP 1 and CORESET 2 for TRP 1 may be set to CORESETPoolIndex 0 (1010) for TRP 1, and CORESET 1 for TRP 2 and CORESET 3 for TRP 2 may be set to TRP 2 CORESETPoolIndex may be set to 0 (1020). Therefore, CORESETPoolIndex 0 for TRP 1 and TRP 2 may be used for PDCCH monitoring for inter-cell multi-TRP transmission. Similarly, CORESET 3 for TRP 1, CORESET 4 for TRP 1 may be set to CORESETPoolIndex 1 (1011) for TRP 1, and CORESET 3 for TRP 2, CORESET 4 for TRP 2 may be set to CORESETPoolIndex 1 (1021) for TRP 2 can be set to Therefore, CORESETPoolIndex 1 for TRP 1 and TRP 2 may be used for PDCCH monitoring for inter-cell multi-TRP transmission. At this time, the UE may perform PDCCH monitoring for multi-TRP transmission by checking only CORESETPoolIndex regardless of PCI. In this way, the base station can set/determine so that the total number of CORESETPoolIndex is fixed and the terminal monitors all pools having the same index.
구체적으로 제2 방법에서 CORESET ID 및 CORESETPoolIndex를 설정하기 위한 정보는 하기의 표 15와 같이 도시될 수 있다. 이 때, CORESETPoolIndex는 2개인 경우를 예를 들어 설명하지만, CORESETPoolIndex의 수는 증가될 수 있으며 이에 따라 해당 정보의 비트 수 역시 증가될 수 있다. 한편, 단말은 RRC 설정에서 별도의 값 설정이 없으면 CORESETPoolIndex를 0으로 가정하여 동작할 수 있다.Specifically, information for setting CORESET ID and CORESETPoolIndex in the second method may be shown in Table 15 below. In this case, the case where there are two CORESETPoolIndex will be described as an example, but the number of CORESETPoolIndex may be increased, and accordingly, the number of bits of the corresponding information may also be increased. On the other hand, the UE may operate assuming that CORESETPoolIndex is 0 if there is no separate value setting in the RRC setting.
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
OPTIONAL, -- Need S
...
[[
coresetPoolIndex-r17 INTEGER (0..1) // 2개 고정 OPTIONAL, -- Need R
controlResourceSetId-r17 ControlResourceSetId-r16 OPTIONAL -- Need S
]]
}
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
OPTIONAL, -- Need S
...
[[
coresetPoolIndex-r17 INTEGER (0..1) // fixed 2 OPTIONAL, -- Need R
controlResourceSetId-r17 ControlResourceSetId-r16 OPTIONAL -- Need S
]]
}
도 11은 본 개시의 일 실시예에 따른 CORESETPoolIndex를 설정하는 제3 방법을 도시한 도면이다. 11 is a diagram illustrating a third method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
제3 방법에서는 CORESETPoolIndex 설정 개수가 고정될 수 있으며, 본 개시에서는 예를 들어, 2개로 설정되는 경우를 설명한다. 다만, 본 개시의 실시예가 이에 한정되는 것은 아니며, CORESETPoolIndex 설정 개수는 변경될 수 있다. 기지국은 PCI 마다 CORESETPoolIndex를 각각 0 or 1로 설정할 수 있다. 이 때 CORESETPoolIndex 0 or 1에 포함되는 CORESET은 2개 이상이 될 수 있다. 제3 방법에 따르면, 기지국은 Inter-cell간 CORESETPoolIndex 설정을 위해 pool로 구성되기 위한 적어도 하나의 CORESET이 PCI별로 동일한 인덱스를 갖도록 설정할 수 있다. 또한, 제3 방법에 따르면, inter-cell 협력 전송을 위해 PCI가 다른 CORESET들이 하나의 CORESETPoolIndex에 포함되도록 설정될 수 있다. In the third method, the number of CORESETPoolIndex settings can be fixed, and the present disclosure describes a case where, for example, it is set to two. However, the embodiment of the present disclosure is not limited thereto, and the number of CORESETPoolIndex settings may be changed. The base station may set CORESETPoolIndex to 0 or 1 for each PCI. In this case, there may be two or more CORESETs included in CORESETPoolIndex 0 or 1. According to the third method, the base station may set at least one CORESET to be configured as a pool to have the same index for each PCI in order to set the CORESETPoolIndex between inter-cells. Also, according to the third method, CORESETs having different PCIs may be set to be included in one CORESETPoolIndex for inter-cell cooperative transmission.
예를 들어, 기지국은 특정 단말을 위해 CORESET 1 for TRP 1, CORESET 2 for TRP 2를 inter-cell 간 CORESETPoolIndex 0 (1110)으로 설정할 수 있다. 또한, 기지국은 CORESET 4 for TRP 1, CORESET 3 for TRP 2를 inter-cell 간 CORESETPoolIndex 1 (1120)으로 설정할 수 있다. 단말은 CORESETPoolIndex로 설정되지 않은 CORESET index들 (본 도면에서는 CORESET 2 for TRP 1, CORESET 3 for TRP 2, CORESET 1 for TRP 2, CORESET 4 for TRP2)은 Inter-cell 기반 M-TRP 전송을 지원하지 않는 것으로 판단할 수 있다. 이와 같이 기지국은 CORESETPoolIndex의 전체 개수는 고정하고, 단말로 하여금 동일한 index를 가지는 pool을 모두 모니터링 하도록 설정/결정할 수 있다.For example, the base station may set CORESET 1 for TRP 1 and CORESET 2 for TRP 2 as inter-cell CORESETPoolIndex 0 1110 for a specific terminal. In addition, the base station may set CORESET 4 for TRP 1 and CORESET 3 for TRP 2 as CORESETPoolIndex 1 (1120) between inter-cells. The terminal does not support inter-cell-based M-TRP transmission for CORESET indexes that are not set as CORESETPoolIndex (CORESET 2 for TRP 1, CORESET 3 for TRP 2, CORESET 1 for TRP 2, CORESET 4 for TRP2) in this figure. can be judged as In this way, the base station can set/determine so that the total number of CORESETPoolIndex is fixed and the terminal monitors all pools having the same index.
본 실시예에 따른 CORESET의 설정은 하기의 표 16과 같이 구성될 수 있다. 이 때, CORESETPoolIndex를 2개 설정하는 경우, CORESETPoolIndex-r17 field는 ENUMERATED {n0, n1}으로 설정될 수 있으며, CORESETPoolIndex를 3개 설정하는 경우, CORESETPoolIndex-r17 field는 ENUMERATED {n0, n1, n3}으로 설정될 수 있다. The CORESET setting according to the present embodiment may be configured as shown in Table 16 below. At this time, when two CORESETPoolIndex are set, the CORESETPoolIndex-r17 field may be set to ENUMERATED {n0, n1}, and when three CORESETPoolIndex is set, the CORESETPoolIndex-r17 field is set to ENUMERATED {n0, n1, n3} can be set.
또는, intra-cell과 inter-cell을 구분하여 CORESETPoolIndex가 설정될 수 있다. 예를 들어, CORESETPoolIndex-r17 field는 ENUMERATED {n0, n1, n2}으로 설정될 수 있으며, intra-cell에 대해서는 n0, n1이, inter-cell에 대해서는 n2가 사용되도록 설정될 수 있다. Alternatively, CORESETPoolIndex may be set by dividing intra-cell and inter-cell. For example, the CORESETPoolIndex-r17 field may be set to ENUMERATED {n0, n1, n2}, and n0, n1 may be set for intra-cell and n2 may be set for inter-cell.
다만, 이는 본 개시의 일 실시예에 불과하며 CORESETPoolIndex의 수는 변경될 수 있고, 이에 따라 CORESETPoolIndex-r17 field 역시 n4, n5 등의 정보로 설정될 수 있다. 또한, intra-cell과 inter-cell을 구분하여 CORESETPoolIndex가 설정되는 경우 intra-cell에 대한 정보와 inter-cell에 대한 정보는 기지국의 설정 또는 미리 정해진 규칙에 따라 결정될 수 있다. However, this is only an embodiment of the present disclosure and the number of CORESETPoolIndex may be changed, and accordingly, the CORESETPoolIndex-r17 field may also be set to information such as n4, n5, and the like. In addition, when CORESETPoolIndex is configured by distinguishing between intra-cell and inter-cell, information on intra-cell and information on inter-cell may be determined according to a setting of a base station or a predetermined rule.
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
OPTIONAL, -- Need S
...
[[
coresetPoolIndex-r17 ENUMERATED {n0, n1, n2}
OPTIONAL, -- Need R
controlResourceSetId-r17 ControlResourceSetId-r16 OPTIONAL -- Need S
]]
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
OPTIONAL, -- Need S
...
[[
coresetPoolIndex-r17 ENUMERATED {n0, n1, n2}
OPTIONAL, -- Need R
controlResourceSetId-r17 ControlResourceSetId-r16 OPTIONAL -- Need S
]]
또는, 본 개시의 제4 방법에 따르면 CORESETPoolIndex는 intra-cell 용도로 설정하고, inter-cell을 위한 CORESETPoolIndex CORESETPoolIndexFor-IntercellId (new parameter)) 가 새롭게 정의될 수 있다. Alternatively, according to the fourth method of the present disclosure, CORESETPoolIndex may be set for intra-cell use, and CORESETPoolIndex CORESETPoolIndexFor-IntercellId (new parameter)) for inter-cell may be newly defined.
예를 들어, CORESETPoolIndexForIntercellId는 각 셀의 CORESET Id를 포함하는 CORESETPoolIndex를 포함하도록 설정될 수 있다. CORESETPoolIndexForIntercellId 0은 CORESETPoolIndex 0을 포함하도록 설정하거나 CORESETPoolIndex 0과 CORESETPoolIndex 1을 포함하도록 설정할 수 있다. 다른 예를 들어, CORESETPoolIndexForIntercellId는 직접 각 셀의 CORESET Id를 포함하도록 설정될 수 있다.For example, CORESETPoolIndexForIntercellId may be set to include CORESETPoolIndex including the CORESET Id of each cell. CORESETPoolIndexForIntercellId 0 can be set to include CORESETPoolIndex 0 or CORESETPoolIndex 0 and CORESETPoolIndex 1 to be included. As another example, CORESETPoolIndexForIntercellId may be directly set to include the CORESET Id of each cell.
상기 CORESETPoolIndexForIntercellId를 설정은 하기의 표 17과 같이 구성될 수 있다.The CORESETPoolIndexForIntercellId setting may be configured as shown in Table 17 below.
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
OPTIONAL, -- Need S
...
[[
// coresetPoolIndex-r17 INTEGER (0..1) // 2개 고정 OPTIONAL, -- Need R
coresetPoolIndexForIntercellId-r17 INTEGER (0..2*maxIntercell) // N개의 Cell
controlResourceSetId-r17 ControlResourceSetId-r17 OPTIONAL -- Need S
]]
}
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
OPTIONAL, -- Need S
...
[[
// coresetPoolIndex-r17 INTEGER (0..1) // 2 fixed OPTIONAL, -- Need R
coresetPoolIndexForIntercellId-r17 INTEGER (0..2*maxIntercell) // N Cells
controlResourceSetId-r17 ControlResourceSetId-r17 OPTIONAL -- Need S
]]
}
도 12는 본 개시의 일 실시예에 따른 CORESETPoolIndex를 설정하는 제5 방법을 도시한 도면이다. 12 is a diagram illustrating a fifth method of setting CORESETPoolIndex according to an embodiment of the present disclosure.
제 5방법은 CORESETPoolIndex 설정 개수를 확장하는 방법을 기술한다. 이 때, 기지국은 PCI의 개수만큼 전체 Inter-Cell을 고려한 Pool의 개수를 확장할 수 있다. 예를 들어, 1개의 BWP 내에 포함될 수 있는 CORESET의 개수가 5개만 설정된다고 가정하고, N개의 PCI가 설정되면 2 x N개의 CORESETPoolIndex가 설정될 수 있다.The fifth method describes a method of extending the number of CORESETPoolIndex settings. In this case, the base station may expand the number of pools considering the entire inter-cell by the number of PCIs. For example, it is assumed that only five CORESETs that can be included in one BWP are set, and when N PCIs are set, 2 x N CORESETPoolIndex can be set.
예를 들어, 도 12를 참고하여 설명하면, 2개의 PCI를 가지는 2개의 TRP에서 CORESETPoolIndex 0 (1210)는 CORESET 1 for TRP 1 및 CORESET 2 for TRP 1을 포함할 수 있고, CORESETPoolIndex 1 (1220)은 CORESET 3 for TRP 1, CORESET 3 for TRP 2을 포함할 수 있고, CORESETPoolIndex 2 (1230)는 CORESET 4 for TRP 1, CORESET 4 for TRP 2을 포함할 수 있고, CORESETPoolIndex 3 (1240)은 CORESET 1 for TRP 2, CORESET 2 for TRP 2를 포함하도록 설정될 수 있다. 또는 TRP 2의 CORESET index가 5,6,7,8과 같이 연속적으로 설정되어도 CORESETPoolIndex 매핑은 유사하게 설정될 수 있다.For example, referring to FIG. 12 , in two TRPs having two PCIs, CORESETPoolIndex 0 (1210) may include CORESET 1 for TRP 1 and CORESET 2 for TRP 1, and CORESETPoolIndex 1 (1220) is CORESET 3 for TRP 1, CORESET 3 for TRP 2 may include, CORESETPoolIndex 2 (1230) may include CORESET 4 for TRP 1, CORESET 4 for TRP 2, and CORESETPoolIndex 3 (1240) may include CORESET 1 for TRP 2, it may be set to include CORESET 2 for TRP 2. Alternatively, even if the CORESET index of TRP 2 is continuously set such as 5, 6, 7, 8, the CORESETPoolIndex mapping may be set similarly.
따라서, 단말은 설정된 CORESETPoolIndex에 따라 Mult-TRP 동작을 위한 PDCCH 모니터링을 수행할 수 있다. Accordingly, the UE may perform PDCCH monitoring for the Mult-TRP operation according to the set CORESETPoolIndex.
도 13은 본 개시의 일 실시예에 따른 Multi-TRP 동작을 위해 단말과 기지국이 신호를 송수신하는 과정을 도시한 순서도이다. 13 is a flowchart illustrating a process in which a terminal and a base station transmit and receive signals for a multi-TRP operation according to an embodiment of the present disclosure.
도 13을 참고하면, 단말 (1300)은 S1305 단계에서 단말 능력을 기지국 (1310)으로 보고 (전송)할 수 있다. 상술한 바와 같이 단말 (1300)은 기지국 (1310)으로부터 단말 능력 보고 요청을 수신하고 이에 따라 단말 능력을 보고할 수 있다. 상기 단말 능력에는 RAT type 별 단말 능력에 대한 정보가 포함될 수 있다. 또한, 상기 단말 능력 정보에는 단말이 Multi-TRP 동작을 지원하는지 여부에 대한 정보가 포함될 수 있다. 또한 상기 UE Capability에는 단말 (1300)이 inter-cell에 대한 Multi-TRP 동작을 지원하는지 여부에 대한 정보가 포함될 수 있다. Referring to FIG. 13 , the terminal 1300 may report (transmit) the terminal capability to the base station 1310 in step S1305 . As described above, the terminal 1300 may receive the terminal capability report request from the base station 1310 and report the terminal capability accordingly. The terminal capability may include information on terminal capability for each RAT type. In addition, the terminal capability information may include information on whether the terminal supports the multi-TRP operation. In addition, the UE capability may include information on whether the terminal 1300 supports the multi-TRP operation for inter-cell.
본 개시의 일 실시예에 따르면, 상기 단말 능력 정보에 상기의 정보들이 모두 포함되어야 하는 것은 아니며, 일부 정보가 생략될 수 있고 다른 정보가 추가될 수도 있다. 한편 기지국 (1310)이 단말 능력을 미리 수신했거나, 기 저장하고 있는 경우 단말 능력 보고를 요청하지 않을 수 있으며, S1305 단계는 생략될 수 있다.According to an embodiment of the present disclosure, not all of the above information should be included in the terminal capability information, and some information may be omitted or other information may be added. On the other hand, if the base station 1310 has previously received or stored the terminal capability, it may not request the terminal capability report, and step S1305 may be omitted.
기지국 (1310)은 S1310 단계에서 Multi-TRP 관련 설정 메시지 (예를 들면 RRC 메시지)를 단말 (1300)로 전송할 수 있다. 상기 Multi-TRP 관련 설정 정보는 inter cell 기반의 M-TRP 동작을 위한 셀 관련 정보 (또는 협력 셀 관련 정보), BWP 관련 정보, CORESETPoolIndex 관련 정보 중 적어도 하나를 포함할 수 있다. 구체적인 내용은 상술한 바와 동일하다. 따라서, 상술한 셀 설정 방법, BWP 관련 방법 및 CORESETPoolIndex 설정 방법 등이 본 실시예에 적용될 수 있다.The base station 1310 may transmit a multi-TRP related configuration message (eg, an RRC message) to the terminal 1300 in step S1310 . The Multi-TRP related configuration information may include at least one of cell related information (or cooperative cell related information), BWP related information, and CORESETPoolIndex related information for an inter cell-based M-TRP operation. Specific details are the same as described above. Accordingly, the above-described cell setting method, BWP related method, CORESETPoolIndex setting method, etc. can be applied to this embodiment.
단말 (1300)과 기지국 (1310)은 S1315 단계에서 inter-cell Multi-TRP 동작을 수행할 수 있다. 구체적으로 기지국 (1310)은 상기 셀 관련 정보를 통해 inter-cell Multi-TRP 동작이 설정되었음을 단말 (1300)에 지시 (indication)할 수 있다. 단말 (1300)은 상기 셀 관련 정보를 통해 inter-cell Multi-TRP 동작이 설정되었음을 확인할 수 있다. The terminal 1300 and the base station 1310 may perform an inter-cell multi-TRP operation in step S1315 . Specifically, the base station 1310 may indicate to the terminal 1300 that the inter-cell Multi-TRP operation is configured through the cell-related information. The terminal 1300 may confirm that the inter-cell Multi-TRP operation is configured through the cell-related information.
또한, 단말 (1300)은 상기 기지국 (1310)이 전송한 상기 CORESETPoolIndex 정보를 수신하여 복수의 TRP에 대해 모니터링해야 하는 CORESET에 대한 정보를 확인할 수 있다. In addition, the terminal 1300 may receive the CORESETPoolIndex information transmitted by the base station 1310 and check information on CORESET to be monitored for a plurality of TRPs.
따라서, 기지국 (1310)은 상기 복수의 TRP에 대한 CORESET에서 DCI를 전송할 수 있다. 단말 (1300)은 상기 복수의 TRP에 대한 CORESET에서 PDCCH를 모니터링하고 DCI를 획득할 수 있다. 그리고 단말 (1300)은 상기 DCI가 스케줄링한 PDSCH를 통해 데이터를 수신할 수 있다. 또한 기지국 (1310)은 상기 PDSCH를 통해 데이터를 전송할 수 있다.Accordingly, the base station 1310 may transmit DCI in the CORESET for the plurality of TRPs. The terminal 1300 may monitor the PDCCH in the CORESET for the plurality of TRPs and acquire DCI. In addition, the terminal 1300 may receive data through the PDSCH scheduled by the DCI. Also, the base station 1310 may transmit data through the PDSCH.
도 14a 내지 도 14b는 일 실시예에 따른 빔 관리 절차를 도시한 도면이다. 14A to 14B are diagrams illustrating a beam management procedure according to an embodiment.
NR (또는 5G)에서의 주요 기능 중 하나는 전송 및 수신 모두를 위한 많은 수의 제어 가능한 안테나 엘리먼트들을 지원하는 것이다. 높은 주파수 대역의 경우, 많은 수의 안테나 엘리먼트들이 주로 커버리지 확장 목적으로 빔포밍에 사용될 수 있다. 제어 및 동기화에 사용되는 것들을 포함하여 NR 채널들과 시그널들은 모두 빔포밍을 지원하도록 설계되었다.One of the main functions in NR (or 5G) is to support a large number of controllable antenna elements for both transmit and receive. In the case of a high frequency band, a large number of antenna elements may be mainly used for beamforming for the purpose of extending coverage. All NR channels and signals, including those used for control and synchronization, are designed to support beamforming.
NR에서는 구현상의 유연성을 위해, 디지털 프리코딩 및 빔포밍뿐만 아니라 아날로그 빔포밍을 지원할 수 있다. 높은 주파수 대역에서, 신호를 디지털에서 아날로그로 변환한 후 빔을 형성하는 아날로그 빔포밍이 사용될 수 있다. 아날로그 빔포밍은 수신 빔이나 전송 빔이 주어진 시점에서 한 방향으로 형성될 수 있다. 또한, 아날로그 빔포밍은 동일한 신호가 복수 개의 OFDM심볼에서 반복되지만 다른 전송 빔들로 전송해야하는 과정 (빔 스위핑)을 필요로 할 수 있다. 상기 빔 스위핑 기능을 통해, 신호를 어떠한 방향으로도 높은 이득으로 전송할 수 있으므로, 의도했던 전체 커버리지 영역까지 좁은 빔을 통해 신호를 전송할 수 있다.NR can support analog beamforming as well as digital precoding and beamforming for implementation flexibility. In a high frequency band, analog beamforming that converts a signal from digital to analog and then forms a beam may be used. In analog beamforming, a receive beam or a transmit beam may be formed in one direction at a given point in time. In addition, analog beamforming may require a process (beam sweeping) in which the same signal is repeated in a plurality of OFDM symbols but must be transmitted using different transmission beams. Since a signal can be transmitted with a high gain in any direction through the beam sweeping function, the signal can be transmitted through a narrow beam up to an intended entire coverage area.
아날로그 수신 빔포밍의 경우 기지국은, 단말이 데이터 및 제어 정보를 수신하는 빔을 선택하기 위한 정보를 단말에게 지시(indication)할 수 있다. 이러한 빔 관리 (beam management) 절차를 지원하는 여러 가지 시그널링 방법이 고려될 수 있다. 상기 빔 관리는 채널 이득이 최대가 되도록 전송 측의 전송 빔의 방향과 수신 측의 수신 빔의 방향의 조합을 선택 및 유지하는 것을 목적으로 한다. 상기의 빔 관리를 효율적으로 운영하면 데이터 전송 속도(data rate) 및 처리량(throughput)을 최대로 할 수 있다.In the case of analog reception beamforming, the base station may indicate to the terminal information for selecting a beam through which the terminal receives data and control information. Various signaling methods supporting such a beam management procedure may be considered. The beam management aims to select and maintain a combination of the direction of the transmission beam on the transmission side and the direction of the reception beam on the reception side so that the channel gain is maximized. If the beam management is efficiently operated, data rate and throughput can be maximized.
도 14a에 도시된 바와 같이, 최적의 빔 쌍 (beam pair)은 기지국 (1410)의 하향링크 전송 빔 방향과 단말 (1400)의 하향링크 수신 빔 방향이 직접적으로 일치하는 빔 쌍(1420)일 수 있다. 또는, 주변 환경의 장애물에 의해 기지국 (1410) 및 단말 (1400) 간의 직접적인 경로가 차단되는 경우, 반사 경로에 따른 전송 빔 방향과 수신 빔 방향의 빔 쌍 (1430)이 최적의 빔 쌍일 수 있다. 이러한 경우는 특히 장애물의 모서리에서 회절이 거의 없는 높은 주파수 대역에서 발생할 수 있다. 기지국 (1410) 및 단말 (1400)은 빔 관리 기능을 이용하면 상술한 전송 측 및 수신 측 간의 직접 경로가 차단되는 경우에도 최적의 빔 쌍을 결정할 수 있다.14A, the optimal beam pair may be a beam pair 1420 in which the direction of the downlink transmission beam of the base station 1410 and the direction of the downlink reception beam of the terminal 1400 directly coincide. there is. Alternatively, when a direct path between the base station 1410 and the terminal 1400 is blocked by an obstacle in the surrounding environment, the beam pair 1430 in the transmission beam direction and the reception beam direction along the reflection path may be an optimal beam pair. This can happen especially in high frequency bands where there is little diffraction at the edges of obstacles. By using the beam management function, the base station 1410 and the terminal 1400 can determine an optimal beam pair even when the above-described direct path between the transmitting side and the receiving side is blocked.
상기 도 14a는 하향링크 방향의 빔포밍을 도시하였으나, 상향링크 방향의 빔포밍에서도 이와 유사한 경우를 가정할 수 있다. 예를 들면, 하향링크 방향에서의 최적의 송수신 빔 쌍은 상향링크 방향에서도 최적인 빔 쌍일 수 있다. 마찬가지로, 상향링크 방향에서의 최적의 빔 쌍은 하향링크 방향에서도 최적인 빔 쌍일 수 있다. 이러한 경우에 하향링크 및 상향링크에 대해 빔 관련성 (또는 빔 부합성, beam correspondence)이 성립한다고 지칭할 수 있다. Although FIG. 14A illustrates beamforming in the downlink direction, a similar case may be assumed in the uplink direction beamforming. For example, the optimal transmission/reception beam pair in the downlink direction may be the optimal beam pair in the uplink direction as well. Similarly, the optimal beam pair in the uplink direction may be the optimal beam pair in the downlink direction as well. In this case, it may be said that beam correspondence (or beam correspondence) is established for downlink and uplink.
한편, 초기 빔 수립 (initial beam establishment)은 초기 빔 쌍을 설정하는 절차를 지칭할 수 있다. 기지국은 초기 접속 (initial access) 과정에서 서로 다른 하향링크 빔을 이용하여 각각의 빔에 상응하는 동기 신호 블록 (synchronization signal block, SS/PBCH block 또는 SSB)을 전송할 수 있다. 단말은 각 빔에 대응하는 PRACH occasion (물리적 랜덤 액세스 채널 오케이젼, physical random access channel occasion)과 프리앰블 (preamble) 중 하나를 선택하여 기지국에게 랜덤 엑세스를 시도할 수 있다. 기지국은 수신된 랜덤 엑세스 프리앰블에 기반하여 단말에 대한 하향링크 전송 빔을 확인할 수 있다. Meanwhile, initial beam establishment may refer to a procedure for establishing an initial beam pair. The base station may transmit a synchronization signal block (SS/PBCH block, or SSB) corresponding to each beam using different downlink beams in an initial access process. The UE may attempt random access to the BS by selecting one of a PRACH occasion (physical random access channel occasion) and a preamble corresponding to each beam. The base station may check the downlink transmission beam for the terminal based on the received random access preamble.
초기 빔 쌍이 수립된 후 단말의 이동 또는 회전 등에 의해 전송 빔과 수신 빔을 재확인하는 절차가 필요할 수 있다. 또는 단말이 고정된 경우에도 주변에 있는 다른 물체가 움직임으로써 빔을 가리거나 가렸던 빔이 수신되는 경우가 발생할 수 있다. 따라서 빔 쌍을 재확인하는 절차가 필요할 수 있다. 상기와 같이 빔 쌍을 재확인하는 절차를 빔 조정 (beam adjustment) 절차라고 칭할 수 있다. 상기 빔 조정은 하향링크 전송 측 (예를 들면 기지국) (downlink transmitter-side) 빔 조정과 하향링크 수신 측 (예를 들면 단말) (downlink receiver-side) 빔 조정이 있을 수 있다. After the initial beam pair is established, a procedure for reconfirming the transmit beam and the receive beam by movement or rotation of the terminal may be required. Alternatively, even when the terminal is fixed, there may be a case in which a beam that has been blocked or has been blocked is received due to movement of another object in the vicinity. Therefore, a procedure for reconfirming the beam pair may be required. The procedure for reconfirming the beam pair as described above may be referred to as a beam adjustment procedure. The beam adjustment may include a downlink transmission side (eg, a base station) (downlink transmitter-side) beam adjustment and a downlink reception side (eg, a terminal) (downlink receiver-side) beam adjustment.
도 14b를 참고하면, 하향링크 전송 측 빔 조정의 경우 단말 (1400)의 수신 빔은 유지하고 기지국 (1410)의 전송 빔을 조정할 수 있다. 이를 위해 기지국 (1410)은 순서대로 서로 다른 하향링크 빔을 이용하여 신호를 전송할 수 있다. 이렇게 기지국 (1410)에서 순서대로 서로 다른 빔을 이용하여 신호를 전송하는 것을 빔 스위핑 (beam sweeping)이라고 칭할 수 있다. Referring to FIG. 14B , in the case of downlink transmission-side beam adjustment, the reception beam of the terminal 1400 may be maintained and the transmission beam of the base station 1410 may be adjusted. To this end, the base station 1410 may sequentially transmit signals using different downlink beams. In this way, the base station 1410 sequentially transmits signals using different beams may be referred to as beam sweeping.
단말 (1400)은 수신 빔 (1450)을 유지한 채 상기 서로 다른 하향링크 빔에 상응하는 기준 신호 (reference signal, RS)를 측정할 수 있다. 상기 RS는 채널 상태 정보 기준 신호 (channel state information - reference signal, CSI-RS) 또는 SSB 일 수 있다. 이에 따라 단말 (1400)은 전송 측의 서로 다른 하향링크 빔의 품질을 측정할 수 있다. 또한, 단말 (1400)은 측정된 서로 다른 빔 품질을 기지국 (1410)으로 보고할 수 있다. 상기와 같은 과정에 따라 하향링크 전송 측의 최적의 빔 (1440)을 확인할 수 있다.The terminal 1400 may measure a reference signal (RS) corresponding to the different downlink beams while maintaining the reception beam 1450 . The RS may be a channel state information reference signal (CSI-RS) or an SSB. Accordingly, the terminal 1400 may measure the quality of different downlink beams on the transmission side. Also, the terminal 1400 may report different measured beam qualities to the base station 1410 . According to the above process, the optimal beam 1440 of the downlink transmission side can be identified.
도 14b를 참고하면, 하향링크 수신 측 빔 조정의 경우 기지국 (1410)은 하향링크 전송 빔 (1460)을 유지하고 단말 (1400)은 하향링크 수신 빔을 조정 (또는 빔 스위핑)할 수 있다. 이를 위해 단말 (1400)은 하향링크 RS의 셋 (set)이 설정될 수 있다. 단말 (1400)은 설정된 RS에 대해 수신 빔을 순차적으로 적용하여 상기 RS에 대한 측정을 수행할 수 있다. 단말 (1400)은 상기 측정 값에 기반하여 하향링크 수신 측의 최적의 빔 (1470)을 확인할 수 있다. Referring to FIG. 14B , in the case of downlink reception side beam adjustment, the base station 1410 maintains the downlink transmission beam 1460 and the terminal 1400 may adjust the downlink reception beam (or beam sweep). To this end, the terminal 1400 may be configured with a set of downlink RSs. The terminal 1400 may perform measurement on the RS by sequentially applying a reception beam to the configured RS. The terminal 1400 may identify the optimal beam 1470 of the downlink reception side based on the measurement value.
한편, 상향링크 빔 조정이 필요한 경우에는 상술한 하향링크 빔 조정 과정이 유사하게 적용될 수 있을 것이다.On the other hand, when uplink beam adjustment is required, the above-described downlink beam adjustment process may be similarly applied.
도 15는 본 개시의 일 실시예에 따른 MAC CE 기반 빔 지시 방법을 도시한 도면이다. 15 is a diagram illustrating a MAC CE-based beam indication method according to an embodiment of the present disclosure.
NR (또는 5G) 에서는 빔 지시 (또는 빔 명시, beam indication)을 지원한다. 상기 빔 지시는 설정된 RS (CSI-RS 또는 SSB)와 같은 빔으로 PDSCH 또는 PDCCH를 전송하고 있다는 것을 단말에게 지시 (또는 명시)하는 것을 의미할 수 있다. 또는, PDSCH 또는 PDCCH가 설정된 RS와 동일한 공간 필터를 이용하여 전송된다는 것을 지시 (또는 명시)하는 것을 의미할 수 있다. 한편, 본 개시에서 PDSCH를 전송 또는 수신한다는 것은 PDSCH를 통해 데이터를 전송 또는 수신함을 의미할 수 있다. 또한 본 개시에서 PDCCH를 전송 또는 수신한다는 것은 PDCCH를 통해 DCI를 전송 또는 수신함을 의미할 수 있다. 또한 본 개시에서 PDCCH 전송 빔이라 함은 기지국이 PDCCH를 단말에게 전송하는데 이용되는 전송 빔을 의미할 수 있다.NR (or 5G) supports beam indication (or beam indication). The beam indication may mean indicating (or specifying) to the UE that the PDSCH or PDCCH is being transmitted in the same beam as the configured RS (CSI-RS or SSB). Alternatively, it may mean indicating (or specifying) that the PDSCH or PDCCH is transmitted using the same spatial filter as the configured RS. Meanwhile, in the present disclosure, transmitting or receiving the PDSCH may mean transmitting or receiving data through the PDSCH. Also, in the present disclosure, transmitting or receiving a PDCCH may mean transmitting or receiving a DCI through the PDCCH. Also, in the present disclosure, the PDCCH transmission beam may mean a transmission beam used by the base station to transmit the PDCCH to the terminal.
상기 빔 지시는 전송 설정 지시자 상태 (transmission configuration indicator state, TCI state) 정보를 이용한 하향링크 시그널링을 통해 이루어질 수 있다. 상기 TCI state 정보는 RS (CSI-RS 또는 SSB)에 대한 정보를 포함할 수 있다. 기지국은 상기 TCI state 정보를 통해서 하향링크 전송 (PDSCH 또는 PDCCH 전송)과 관련된 빔 정보를 단말에게 알려줄 수 있다. 예를 들면, 단말은 PDSCH 또는 PDCCH가 상기 TCI state 정보에 포함된 RS (CSI-RS 또는 SSB)가 전송되는 하향링크 전송 빔과 같은 빔을 통해 전송된다고 가정할 수 있다.The beam indication may be made through downlink signaling using transmission configuration indicator state (TCI state) information. The TCI state information may include information on RS (CSI-RS or SSB). The base station may inform the terminal of beam information related to downlink transmission (PDSCH or PDCCH transmission) through the TCI state information. For example, the UE may assume that the PDSCH or PDCCH is transmitted through the same beam as the downlink transmission beam through which the RS (CSI-RS or SSB) included in the TCI state information is transmitted.
이하 MAC CE 시그널링을 통해 PDCCH가 전송되는 빔을 단말에게 지시하는 방법에 대하여 구체적으로 설명한다. Hereinafter, a method of instructing the UE to indicate the beam through which the PDCCH is transmitted through MAC CE signaling will be described in detail.
기지국은 단말에게 N개 (예를 들면 최대 128개)의 TCI state를 설정할 수 있다. 상기 N개의 TCI state는 기지국이 단말에게 전송하는 설정 메시지 (예를 들면 RRC 메시지)내의 정보 요소 (information element, IE) (예를 들면, PDSCH-Config) 에 포함될 수 있다. 또한, 기지국은 설정 메시지를 통해 상기 N개 중에서 특히 PDCCH가 전송되는 빔을 지시 (또는 명시)하기 위해 사용되는 M개 (예를 들면 최대 64개)의 후보 TCI state들을 설정할 수 있다. 상기 PDCCH가 전송되는 빔을 지시하기 위해 사용되는 후보 TCI state들은 예를 들어 tci-StatesPDCCH 라고 지칭될 수 있다. 상기 M개의 후보 TCI state들 중에서 몇 개가 선택되어 각각 상기 PDCCH와 관련된 제어 영역 (CORESET)을 설정하기 위한 정보에 포함될 수 있다. 예를 들어 각 CORESET 설정 정보에 후보 TCI state들의 리스트 (예를 들어 tci-StatesPDCCH-ToAddList)를 포함할 수 있다. 각 CORESET 설정 정보에는 상술한 바와 같이 표 4에 따른 정보들이 포함될 수 있다. 상기 후보 TCI state들의 리스트의 각 TCI state에 대한 설정은 하기의 표 18과 같을 수 있다. 각 TCI state 설정에 따른 QCL 설정과 TCI state와의 관계는 상술한 바와 같다. The base station may configure N (eg, up to 128) TCI states to the terminal. The N TCI states may be included in an information element (IE) (eg, PDSCH-Config) in a configuration message (eg, RRC message) transmitted from the base station to the terminal. In addition, the base station can configure M (eg, up to 64) candidate TCI states used to indicate (or specify) a beam through which a PDCCH is transmitted, among the N, through the configuration message. Candidate TCI states used to indicate a beam through which the PDCCH is transmitted may be referred to as, for example, tci-StatesPDCCH. Some of the M candidate TCI states may be selected and included in information for configuring a control region (CORESET) related to the PDCCH, respectively. For example, each CORESET configuration information may include a list of candidate TCI states (eg, tci-StatesPDCCH-ToAddList). Each CORESET setting information may include information according to Table 4 as described above. A configuration for each TCI state in the list of candidate TCI states may be as shown in Table 18 below. The relationship between the QCL setting and the TCI state according to each TCI state setting is as described above.
-- ASN1START
-- TAG-TCI-STATE-START

TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId,
qcl-Type1 QCL-Info,
qcl-Type2 QCL-Info OPTIONAL, -- Need R
...
}

QCL-Info ::= SEQUENCE {
cell ServCellIndex OPTIONAL, -- Need R
bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated
referenceSignal CHOICE {
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD},
...
}

-- TAG-TCI-STATE-STOP
-- ASN1STOP

maxNrofTCI-StatesPDCCH INTEGER ::= 64
maxNrofTCI-States INTEGER ::= 128 -- Maximum number of TCI states.
Figure PCTKR2021014704-appb-I000010

NZP-CSI-RS-Resource ::= SEQUENCE {
nzp-CSI-RS-ResourceId NZP-CSI-RS-ResourceId,
resourceMapping CSI-RS-ResourceMapping,
powerControlOffset INTEGER (-8..15),
powerControlOffsetSS ENUMERATED{db-3, db0, db3, db6} OPTIONAL, -- Need R
scramblingID ScramblingId,
periodicityAndOffset CSI-ResourcePeriodicityAndOffset OPTIONAL, -- Cond PeriodicOrSemiPersistent
qcl-InfoPeriodicCSI-RS TCI-StateId OPTIONAL, -- Cond Periodic
...
}

-- TAG-NZP-CSI-RS-RESOURCE-STOP
-- ASN1STOP
-- ASN1START
-- TAG-TCI-STATE-START

TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId,
qcl-Type1 QCL-Info,
qcl-Type2 QCL-Info OPTIONAL, -- Need R
...
}

QCL-Info ::= SEQUENCE {
cell ServCellIndex OPTIONAL, -- Need R
bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated
referenceSignal CHOICE {
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD},
...
}

-- TAG-TCI-STATE-STOP
-- ASN1STOP

maxNrofTCI-StatesPDCCH INTEGER ::= 64
maxNrofTCI-States INTEGER ::= 128 -- Maximum number of TCI states.
Figure PCTKR2021014704-appb-I000010

NZP-CSI-RS-Resource ::= SEQUENCE {
nzp-CSI-RS-ResourceId NZP-CSI-RS-ResourceId,
resourceMapping CSI-RS-ResourceMapping,
powerControlOffset INTEGER (-8..15),
powerControlOffsetSS ENUMERATED{db-3, db0, db3, db6} OPTIONAL, -- Need R
scramblingID ScramblingId,
periodicityAndOffset CSI-ResourcePeriodicityAndOffset OPTIONAL, -- Cond PeriodicOrSemiPersistent
qcl-InfoPeriodicCSI-RS TCI-StateId OPTIONAL, -- Cond Periodic
...
}

-- TAG-NZP-CSI-RS-RESOURCE-STOP
-- ASN1STOP
기지국은 설정 메시지를 통해 단말에게 상기 설정 정보를 전송하고 단말은 이를 저장할 수 있다. 상기 설정 메시지는 상술한 Multi-TRP 관련 설정 정보를 포함하는 메시지일 수 있다.The base station transmits the configuration information to the terminal through a configuration message, and the terminal may store it. The configuration message may be a message including the above-described Multi-TRP related configuration information.
이후 기지국에서 PDCCH가 전송되는 빔의 변경이 있는 경우에 단말에게 제어 메시지 (예를 들면, MAC CE)를 전송하여 변경되는 빔을 지시 (또는 명시)할 수 있다. 단말은 상기 제어 메시지를 수신하여, 각 CORESET마다 설정된 TCI state와 연계된 RS (예를 들면 CSI-RS 또는 SSB)와 같은 빔을 통해 상기 PDCCH가 전송된다는 것을 확인할 수 있다 (예를 들어 단말은 상기 RS와 같은 공간 필터를 통해 PDCCH가 전송되었다고 가정할 수 있다). 이와 같이 MAC CE 메시지를 통해 PDCCH가 전송되는 빔을 단말에게 지시하는 것을 MAC CE 기반 빔 지시 (MAC CE based beam indication)라고 칭할 수 있다.Thereafter, when there is a change in the beam through which the PDCCH is transmitted, the base station may transmit a control message (eg, MAC CE) to the terminal to indicate (or specify) the changed beam. Upon receiving the control message, the UE can confirm that the PDCCH is transmitted through the same beam as the RS (eg, CSI-RS or SSB) associated with the TCI state set for each CORESET (eg, the UE is the It can be assumed that the PDCCH is transmitted through a spatial filter such as RS). As such, indicating to the UE the beam through which the PDCCH is transmitted through the MAC CE message may be referred to as MAC CE based beam indication.
도 16는 일 실시예에 따라 MAC CE 기반 빔 지시를 위한 MAC CE 포맷을 도시한 도면이다.16 is a diagram illustrating a MAC CE format for MAC CE-based beam indication according to an embodiment.
도 16에 도시된 MAC CE (1610)는 하기와 같은 필드 (filed) 중 적어도 하나를 포함할 수 있다.The MAC CE 1610 shown in FIG. 16 may include at least one of the following fields (filed).
- Serving Cell ID: 해당 MAC CE 가 적용되는 서빙 셀의 식별자를 지시할 수 있다.- Serving Cell ID: may indicate the identifier of the serving cell to which the corresponding MAC CE is applied.
- CORESET ID: TCI state 가 지시되는 제어 자원 세트 (control resource set, CORESET)의 식별자를 지시할 수 있다.- CORESET ID: may indicate the identifier of the control resource set (control resource set, CORESET) indicated by the TCI state.
- TCI state ID: 상기 CORESET ID field로 식별되는 CORESET 설정에 포함되는 TCI state의 식별자를 지시할 수 있다.- TCI state ID: may indicate the identifier of the TCI state included in the CORESET setting identified by the CORESET ID field.
단말은 MAC CE (1610)를 수신하고, 이에 기반하여 PDCCH가 전송되는 빔의 변경을 확인할 수 있다. The UE may receive the MAC CE 1610 and check a change in the beam through which the PDCCH is transmitted based thereon.
보다 구체적으로, 단말은 Serving Cell ID 필드 (1611)가 지시하는 셀이 상기 MAC CE (1610)가 적용되는 셀임을 확인할 수 있다. 단말은 CORESET ID 필드 (1612)가 지시한 CORESET 자원을 통해 전송되는 PDCCH가 TCI state ID 필드 (1613)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이후 단말은 변경되는 빔을 통해 상기 PDCCH를 수신할 수 있다.More specifically, the UE can confirm that the cell indicated by the Serving Cell ID field 1611 is a cell to which the MAC CE 1610 is applied. The UE can confirm that the PDCCH transmitted through the CORESET resource indicated by the CORESET ID field 1612 is transmitted through the same beam as the RS configured in association with the TCI state indicated by the TCI state ID field 1613 . Thereafter, the UE may receive the PDCCH through the changed beam.
도 17은 일 실시예에 따라 셀 내 (intra cell) 빔 변경을 지시하는 동작을 나타낸 순서도이다.17 is a flowchart illustrating an operation of instructing an intra-cell beam change according to an embodiment.
서빙 셀 (또는 서빙 셀에 대한 노드, 이하 동일하다) (1710)은 S1705 단계에서, 제어 메시지 (예를 들면 MAC CE)를 단말 (1700)로 전송할 수 있다.The serving cell (or the node for the serving cell, hereinafter the same) 1710 may transmit a control message (eg, MAC CE) to the UE 1700 in step S1705 .
단말 (1700)은 S1710 단계에서, 서빙 셀 (1710)에서 PDCCH가 전송되는 빔의 변경을 확인할 수 있다.In step S1710 , the terminal 1700 may confirm a change in the beam through which the PDCCH is transmitted in the serving cell 1710 .
본 개시의 일 실시예에 따르면, 단말 (1700)은 빔의 변경을 확인한 후에, 단말 (1700)은 PDCCH가 전송되는 빔의 변경 관련 제어 메시지(예를 들면 MAC CE)를 확인하고 이에 대한 응답 메시지를 서빙 셀(1710)로 전송할 수 있다 (도시하지 않음). 이때 상기 응답 메시지는 MAC CE 포맷으로 정의될 수 있다. 예를 들면, 단말 (1700)은, 상기 응답 메시지 (MAC CE)와 상응하는 logical channel ID (LCID)를 포함하는 MAC subheader (서브헤더) 및 상기 응답 메시지 (MAC CE)를 포함하는, MAC sub PDU를 서빙 셀(1710)로 전송할 수 있다.According to an embodiment of the present disclosure, after the terminal 1700 confirms the change of the beam, the terminal 1700 checks the change-related control message (eg, MAC CE) of the beam through which the PDCCH is transmitted, and a response message thereto may be transmitted to the serving cell 1710 (not shown). In this case, the response message may be defined in MAC CE format. For example, the terminal 1700 includes a MAC subheader (subheader) including a logical channel ID (LCID) corresponding to the response message (MAC CE) and the MAC sub PDU including the response message (MAC CE) may be transmitted to the serving cell 1710 .
또는 본 개시의 일 실시예에 따르면, 단말 (1700)은 상기의 응답 메시지를 전송하지 않고 이후의 동작을 수행할 수도 있다.Alternatively, according to an embodiment of the present disclosure, the terminal 1700 may perform a subsequent operation without transmitting the above response message.
서빙 셀 (1710)은 S1715 단계에서, 변경되는 빔을 통해 PDCCH를 단말 (1700)로 전송할 수 있다. 단말 (1700)은 변경되는 빔을 통해 PDCCH를 수신할 수 있다.The serving cell 1710 may transmit the PDCCH to the UE 1700 through the changed beam in step S1715 . The terminal 1700 may receive the PDCCH through the changed beam.
또는, 서빙 셀 (1710)은 S1715 단계에서, 상기 응답 메시지에 기반하여 상기 제어 메시지 (예를 들면 MAC CE)가 상기 단말 (1700)에서 성공적으로 수신되었음을 확인하고, 변경되는 빔을 통해 PDCCH를 단말 (1700)로 전송할 수 있다. 단말 (1700)은 변경되는 빔을 통해 PDCCH를 수신할 수 있다.Alternatively, in step S1715, the serving cell 1710 confirms that the control message (eg, MAC CE) has been successfully received by the terminal 1700 based on the response message, and transmits the PDCCH through the changed beam to the terminal (1700). The terminal 1700 may receive the PDCCH through the changed beam.
상기 방법은 하나의 서빙 셀 (serving cell)의 빔 변경만을 지시할 수 있다. 따라서 본 개시는 이하에서, 셀 간 Multi TRP 동작에서 서빙 셀이 아닌 셀 (non-serving cell)의 빔 변경을 지시하는 방법을 제안한다. 또한 serving cell 및 non serving cell 의 빔 변경을 동시에 지시하는 방법을 제안한다.The method may indicate only a beam change of one serving cell. Therefore, the present disclosure proposes a method of instructing a beam change of a cell other than a serving cell (non-serving cell) in an inter-cell Multi TRP operation in the following. In addition, we propose a method of simultaneously instructing the beam change of the serving cell and the non-serving cell.
본 개시의 일 실시예에 따른 빔 변경을 지시하는 방법을 설명하기에 앞서, 상술한 바와 같이 RRC 메시지에서 non-serving cell 및 serving cell이 서로 연계되어 설정될 수 있다. non-serving cell 및 serving cell을 서로 연계하여 설정하는 하는 방법은 하기와 같은 방법이 사용될 수 있다. 또한 이는 상술한 도 8c 내지 도 8d와 이에 대한 설명에서 제안하는 방법을 참고하여 이해될 수 있을 것이다.Prior to describing a method of instructing a beam change according to an embodiment of the present disclosure, as described above, a non-serving cell and a serving cell may be configured in association with each other in the RRC message. The following method may be used as a method of establishing a non-serving cell and a serving cell in connection with each other. In addition, this may be understood with reference to the methods proposed in the above-described FIGS. 8C to 8D and the description thereof.
방법 1) CA framework 설정과 다르게 non-serving cell에 대하여 Physical Cell index (PCI)를 지정할 수 있다. PCI를 설정하는 이유는 non serving cell 의 TCI state 설정을 PCI 별로 구분하여 단말에게 알려주기 위함일 수 있다.Method 1) Unlike the CA framework setting, a Physical Cell index (PCI) can be designated for non-serving cells. The reason for configuring the PCI may be to inform the UE by classifying the TCI state setting of the non-serving cell for each PCI.
일례로, RRC 설정의 QCL-Info 에서 QCL type의 설정 이후에 PCI (PhysCellId)를 추가할 수 있다. 다른 예로, RRC 설정의 TCI-State에서 QCL type의 설정에 각각 PCI를 추가할 수 있다. 다른 예로, CSI-RS-CellMobility에서는 PCI 설정에서 QCL type 추가하여 설정할 수도 있다. 결국 TCI state id의 설정을 통해 PCI#2를 내재적으로 시그널링 할 수 있다. 또한, 상기 PCI 설정 시에 별도 인덱싱을 통해 00: PCI #2, 01: PCI#7, 10: PCI#9, 11: PCI#20 형태로 설정할 수 있다.As an example, PCI (PhysCellId) may be added after the QCL type is set in QCL-Info of the RRC setting. As another example, each PCI may be added to the QCL type setting in the TCI-State of the RRC setting. As another example, in CSI-RS-CellMobility, it may be configured by adding a QCL type to the PCI configuration. Ultimately, PCI#2 can be implicitly signaled through the setting of TCI state id. In addition, in the PCI configuration, 00: PCI #2, 01: PCI#7, 10: PCI#9, 11: PCI#20 can be set through separate indexing.
방법 2) CA framework 설정과 유사하게 non-serving cell에 대하여 서빙 셀 인덱스 (ServCellIndex)를 기반으로 지정할 수 있다. 구체적으로 ServCellIndex 형태로 설정하거나, 별도의 추가 index를 사용 (예: intercell Added Index 0, 1, 2, 3, 4, 5, 6, 7, 8 등)하거나, 또는 셀을 그룹화 하여 별도의 ID로 지정할 수도 있다.Method 2) Similar to the CA framework setting, non-serving cells can be designated based on the serving cell index (ServCellIndex). Specifically, set it in the ServCellIndex format, use a separate additional index (eg, intercell Added Index 0, 1, 2, 3, 4, 5, 6, 7, 8, etc.), or group cells to create a separate ID. You can also specify
방법 3) PCI와 Serving Cell index를 기반으로 셀 그룹을 설정하고 이를 별도의 index 지정하여 non-serving cell과 serving cell의 그룹화를 인덱싱할 수 있다.Method 3) Grouping of non-serving cells and serving cells can be indexed by setting a cell group based on PCI and serving cell index and designating a separate index for it.
방법 4) RRC에서 non-serving cell에 대하여 별도의 설정을 하지 않을 수 있다. 이 경우 RRC에서 설정된 Pcell이 아닌 다른 cell들이 CA 목적으로 설정된 것인지 또는 NC-JT 목적의 Multi-TRP를 위한 동작인지 구분되지 않을 수 있다.Method 4) In RRC, a separate configuration may not be performed for a non-serving cell. In this case, it may not be possible to distinguish whether cells other than the Pcell configured in RRC are configured for CA purpose or operation for Multi-TRP for NC-JT purpose.
<제 1 실시예><First embodiment>
제 1 실시예는 셀 간 Multi TRP 동작에서, 서빙 셀이 아닌 셀 (non-serving cell)의 빔 변경을 지시하는 방법을 제안한다. 본 개시에서 serving cell을 간단히 제 1 셀로 칭할 수 있으며, 상기 제 1 셀을 운용하는 TRP를 제 1 TRP으로 칭할 수 있다. 또한 본 개시에서 non-serving cell을 간단히 제 2 셀로 칭할 수 있으며, 상기 제 2 셀을 운용하는 TRP를 제 2 TRP로 칭할 수 있다.The first embodiment proposes a method of instructing a beam change of a non-serving cell in an inter-cell Multi TRP operation. In the present disclosure, a serving cell may be simply referred to as a first cell, and a TRP operating the first cell may be referred to as a first TRP. In addition, in the present disclosure, a non-serving cell may be simply referred to as a second cell, and a TRP operating the second cell may be referred to as a second TRP.
도 18a 내지 도 18d는 본 개시의 제 1 실시예에 따른 MAC CE 포맷을 도시한 도면이다.18A to 18D are diagrams illustrating a MAC CE format according to a first embodiment of the present disclosure.
이하에서는 제 1 실시예에 따라 PDCCH 전송 빔의 변경을 지시하는 방법을 구체적으로 설명한다.Hereinafter, a method of instructing a change of a PDCCH transmission beam according to the first embodiment will be described in detail.
실시예 1-1) Example 1-1)
제 2 셀에 별도의 serving cell id가 구성되지 않으면 (예를 들면, ServCellIndex가 없거나 제 1 셀의 ServCellIndex와 동일하다고 가정한 경우 일 수 있다.) 기지국 또는 단말은 제 1 셀과 제 2 셀을 구분하는 방법으로 PCI를 활용할 수 있다. 예를 들어, 단말은 제 2 TRP에서 PDCCH가 전송되는 빔의 spatial domain의 설정을 변경하기 위하여, RRC 설정 (예를 들면 ControlResourceSet, PDSCH-Config, NZP-CSI-RS-Resource 등)에 포함된 TCI-stateId를 참조할 수 있다. 이때 참조되는 TCI-stateID는 표 18에서 상술한 바와 같다. (QCL-info: QCL 설정을 위한 source 의 RS를 설정함)If a separate serving cell id is not configured in the second cell (for example, it may be the case that there is no ServCellIndex or it is assumed that it is the same as the ServCellIndex of the first cell), the base station or the terminal distinguishes the first cell from the second cell. One way to do this is to use PCI. For example, in order to change the configuration of the spatial domain of the beam through which the PDCCH is transmitted in the second TRP, the UE includes the TCI included in the RRC configuration (eg, ControlResourceSet, PDSCH-Config, NZP-CSI-RS-Resource, etc.) You can refer to -stateId. In this case, the referenced TCI-stateID is as described above in Table 18. (QCL-info: set the RS of the source for QCL setting)
상술한 바와 같이 RRC 설정 정보를 통해 제 2 셀에 별도의 serving cell ID (예를 들면, ServCellIndex)가 구성되지 않도록 설정된 상태에서, PDCCH 빔의 변경을 지시 (또는 명시)하기 위한 MAC CE는도 18a에서 도시한 바와 같은 구조를 가질 수 있다. 방법 3과 같이 RRC에서 설정되지 않아도 아래 MAC CE는 동작 될 수 있음은 물론이다. As described above, in a state in which a separate serving cell ID (eg, ServCellIndex) is not configured in the second cell through the RRC configuration information, the MAC CE for indicating (or specifying) the change of the PDCCH beam is shown in FIG. 18a It may have a structure as shown in It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
이하에서는 Extended TCI state Id를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using the Extended TCI state Id will be described.
MAC CE (1810)는 Serving cell ID 필드 (1811), CORESET ID 필드 (1812), TCI state ID 필드 (1813)(TCI states ID 설정을 목적으로 만들어 놓은 자원을 재사용하는 경우)를 포함할 수 있다. 또는 MAC CE (1820)는 Serving cell ID 필드 (1821), CORESET Pool index 필드 (1822) (생략 가능), CORESET ID 필드 (1823), TCI state ID 필드 (1824) (inter-cell Multi TRP 동작을 위해 TCI state ID 128개를 추가로 설정 가능한 확장된 (extended) TCI state ID 필드)를 포함할 수 있다. The MAC CE 1810 may include a serving cell ID field 1811 , a CORESET ID field 1812 , and a TCI state ID field 1813 (when a resource created for the purpose of setting the TCI states ID is reused). Or MAC CE (1820) is Serving cell ID field (1821), CORESET Pool index field (1822) (can be omitted), CORESET ID field (1823), TCI state ID field (1824) (for inter-cell Multi TRP operation) It may include an extended (extended TCI state ID field) capable of additionally setting 128 TCI state IDs.
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 필드 (1811)는 5bits, CORESET ID 필드 (1812)는 4bits, TCI state ID 필드 (1813)는 7bits의 길이를 가질 수 있다. 또는, 각각 Serving Cell ID 필드 (1821)는 5bits, CORESET Pool index 필드 (1822) (생략 가능)는 1bit, CORESET ID 필드 (1823)은 5bits, TCI state ID 필드 (1824)는 8bits 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each of the Serving Cell ID field 1811 may have a length of 5 bits, the CORESET ID field 1812 may have a length of 4 bits, and the TCI state ID field 1813 may have a length of 7 bits. Alternatively, the Serving Cell ID field 1821 may have a length of 5 bits, the CORESET Pool index field 1822 (which may be omitted) 1 bit, the CORESET ID field 1823 may have 5 bits, and the TCI state ID field 1824 may have a length of 8 bits. . However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
앞서 서술한 방법 1과 같이 서빙 셀의 RRC 설정 과정에서 제 1 셀에 대한 TCI state 설정과 제 2 셀의 PCI를 이미 연관시켜서 설정하였기 때문에, MAC CE에서는 제 2 셀의 식별자 (예를 들면 PCI)를 생략하면서 PDCCH의 빔 변경 또는 업데이트 설정을 지시할 수 있다. As in the method 1 described above, since the TCI state setting for the first cell and the PCI of the second cell are already associated and set in the RRC setting process of the serving cell, in the MAC CE, the identifier of the second cell (eg PCI) It is possible to indicate the beam change or update configuration of the PDCCH while omitting .
구체적인 예를 들면, 단말은 Serving Cell ID 필드 (1811)가 지시하는 셀 (제 1 셀)에 대한 RRC 설정을 참조할 수 있다. 상기 RRC 설정을 통해, 상기 (extended) TCI state ID 필드 (1813, 1824)가 지시하는 TCI state의 일부는 제 1 셀을 위한 것, 다른 일부는 제 2 셀을 위한 것으로 미리 설정될 수 있다. 따라서 단말은 제 1 TRP로부터 MAC CE를 수신하고 상기 MAC CE의 (extended) TCI state ID 필드(1813, 1824)를 활용하여 제 2 셀의 PCI를 확인할 수 있다.For a specific example, the UE may refer to the RRC configuration for the cell (the first cell) indicated by the Serving Cell ID field 1811 . Through the RRC configuration, a part of the TCI state indicated by the (extended) TCI state ID fields 1813 and 1824 may be preset for the first cell and another part for the second cell. Accordingly, the UE may receive the MAC CE from the first TRP and check the PCI of the second cell by using the (extended) TCI state ID fields 1813 and 1824 of the MAC CE.
이때 단말은 제 2 TRP에서 CORESET ID 필드 (1812, 1821) (및 CORESET Pool Index 필드 (1822))가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은, 상기 (extended) TCI state ID 필드 (1813, 1824)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 또한, CORESET Pool index 필드 (1822)가 포함되면 단말은 해당 PCI는 inter-cell Multi TRP 동작을 위한 목적으로 설정된 셀인 것으로 확인할 수도 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다.In this case, the UE transmits the PDCCH beam through the CORESET resource indicated by the CORESET ID fields 1812 and 1821 (and the CORESET Pool Index field 1822) in the second TRP, the (extended) TCI state ID field 1813 , 1824) can be confirmed that it is transmitted in the same beam as the RS configured in association with the TCI state indicated. In addition, when the CORESET Pool index field 1822 is included, the UE may confirm that the corresponding PCI is a cell configured for the purpose of inter-cell Multi TRP operation. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 단말은 하나의 CORESET ID 필드 (1812, 1823)와 하나의 TCI state ID (1813, 1824) 필드를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 도 18a의 아래에 도시된 바와 같이, 단말이 복수의 CORESET ID 필드 (1812, 1823)와 복수의 TCI state ID (1813, 1824)를 포함하는 MAC CE 메시지를 수신하면, 제 2 셀의 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, when the UE receives a MAC CE message including one CORESET ID field (1812, 1823) and one TCI state ID (1813, 1824) field, one PDCCH transmission beam is changed. It can be interpreted as an instruction. Or, as shown below in Figure 18a, when the terminal receives a MAC CE message including a plurality of CORESET ID fields (1812, 1823) and a plurality of TCI state IDs (1813, 1824), each CORESET of the second cell It can be interpreted as that the PDCCH transmission beam for the PDCCH is updated to each TCI state (that is, transmitted through the same beam as the RS configured in association with each TCI state).
또는, MAC CE에 하나의 CORESET ID 필드 (1812, 1823)와 복수의 TCI state ID 필드 (1813, 1824)가 포함되는 것도 가능하다. 즉, 단말은 하나의 CORESET ID 에 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID가 지시하는 각각의 TCI state는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단될 수 있다.Alternatively, one CORESET ID field 1812 and 1823 and a plurality of TCI state ID fields 1813 and 1824 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
실시예 1-2) Example 1-2)
제 2 셀에 별도의 serving cell id가 구성되지 않으면 (예를 들면, ServCellIndex가 없거나 제 1 셀의 ServCellIndex와 동일하다고 가정한 경우 일 수 있다.) 기지국 또는 단말은 제 1 셀 과 제 2 셀을 구분하는 방법으로 PCI를 활용할 수 있다. 예를 들어, 단말은 제 2 TRP에서 PDCCH가 전송되는 빔의 spatial domain의 설정을 변경하기 위하여, RRC 설정 (예를 들면 ControlResourceSet, PDSCH-Config, NZP-CSI-RS-Resource 등)에 포함된 TCI-stateId를 참조할 수 있다. 이때 참조되는 TCI-stateID는 표 18에서 상술한 바와 같다. (QCL-info: QCL 설정을 위한 source 의 RS를 설정함)If a separate serving cell id is not configured in the second cell (for example, it may be the case that there is no ServCellIndex or it is assumed that it is the same as the ServCellIndex of the first cell), the base station or the terminal distinguishes the first cell from the second cell. One way to do this is to use PCI. For example, in order to change the configuration of the spatial domain of the beam through which the PDCCH is transmitted in the second TRP, the UE includes the TCI included in the RRC configuration (eg, ControlResourceSet, PDSCH-Config, NZP-CSI-RS-Resource, etc.) You can refer to -stateId. In this case, the referenced TCI-stateID is as described above in Table 18. (QCL-info: set the RS of the source for QCL setting)
상술한 바와 같이 RRC 설정 정보를 통해 제 2 셀에 별도의 ServCellIndex (serving cell ID)가 구성되지 않도록 설정된 상태에서, PDCCH 빔의 변경을 지시 (또는 명시)하기 위한 MAC CE는도 18b에서 도시한 바와 같은 구조를 가질 수 있다. 방법 3과 같이 RRC에서 설정되지 않아도 아래 MAC CE는 동작 될 수 있음은 물론이다. As described above, in a state in which a separate ServCellIndex (serving cell ID) is not configured in the second cell through the RRC configuration information, the MAC CE for instructing (or specifying) the change of the PDCCH beam is as shown in FIG. 18B . may have the same structure. It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
이하에서는 PCI를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using PCI will be described.
MAC CE (1830)는 Physical Cell ID (PCI) 필드 (1831), CORESET ID 필드 (1832), CORESET Pool index 필드(생략 가능) (1833), TCI state ID 필드 (1834)를 포함할 수 있다. The MAC CE 1830 may include a Physical Cell ID (PCI) field 1831 , a CORESET ID field 1832 , a CORESET Pool index field (optionally omitted) 1833 , and a TCI state ID field 1834 .
본 개시의 일 실시예에 따르면, 각각 PCI 필드 (1831)는 10bits, CORESET ID 필드 (1832)는 5bits (또는 4bits), CORESET Pool index 필드(생략 가능) (1833)는 1bit, TCI state ID 필드 (1834)는 7bits의 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each PCI field 1831 is 10 bits, the CORESET ID field 1832 is 5 bits (or 4 bits), the CORESET Pool index field (can be omitted) 1833 is 1 bit, the TCI state ID field ( 1834) may have a length of 7 bits. However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
단말은 PCI 필드 (1831)가 지시하는 PCI를 가지는 셀 (제 2 셀)을 확인할 수 있다. 이때 단말은, 제 2 TRP에서 CORESET ID 필드 (1832) (및 CORESET Pool Index 필드 (1833))가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은, TCI state ID 필드 (1834)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다.The UE may identify a cell (second cell) having PCI indicated by the PCI field 1831 . At this time, the UE, in the second TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID field 1832 (and the CORESET Pool Index field 1833) is the TCI indicated by the TCI state ID field 1834. It can be confirmed that it is transmitted in the same beam as the RS configured in association with the state. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
여기서 PCI는 RRC메시지를 통해 TCI state ID, QCL info 등에서 PCI가 함께 설정되지 않는 경우일 수 있다. 또는, PCI가 설정되었지만 명시적으로 serving cell ID의 대체가 필요한 경우 포함될 수 있다. 예를 들어,상기 MAC CE에 포함되어 있는 PCI는 상향링크 피드백 (uplink feedback)을 보고하는데 사용된 PCI 중 하나 일 수 있다. Here, PCI may be a case in which PCI is not set together in TCI state ID, QCL info, etc. through an RRC message. Alternatively, it may be included when PCI has been established, but replacement of the serving cell ID is explicitly required. For example, the PCI included in the MAC CE may be one of PCI used to report uplink feedback.
또한, CORESET Pool index 필드 (1833)가 포함되면 단말은 해당 PCI는 inter-cell Multi TRP 동작을 위한 목적으로 설정된 셀인 것으로 확인할 수도 있다. 또한, TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다. In addition, when the CORESET Pool index field 1833 is included, the UE may confirm that the corresponding PCI is a cell configured for the purpose of inter-cell Multi TRP operation. In addition, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 단말은 하나의 CORESET ID 필드 (1832)와 하나의 TCI state ID 필드 (1834)를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 도 18b의 아래에 도시된 바와 같이 단말이 복수의 CORESET ID 필드 (1832)와 복수의 TCI state ID 필드 (1834)가 포함된 MAC CE 메시지를 수신하면 제 2 셀의 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, when the UE receives a MAC CE message including one CORESET ID field 1832 and one TCI state ID field 1834, it is interpreted as indicating a change of one PDCCH transmission beam. can do. Alternatively, when the UE receives a MAC CE message including a plurality of CORESET ID fields 1832 and a plurality of TCI state ID fields 1834 as shown below in FIG. 18b , the PDCCH transmission beam for each CORESET of the second cell It can be interpreted as being updated to each TCI state (that is, transmitted through the same beam as RS configured in association with each TCI state).
또는, MAC CE에 하나의 CORESET ID 필드 (1832)와 복수의 TCI state ID 필드 (1834)가 포함되는 것도 가능하다. 즉, 단말은 하나의 CORESET ID에 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID가 지시하는 각각의 TCI state는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단될 수 있다.Alternatively, one CORESET ID field 1832 and a plurality of TCI state ID fields 1834 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
실시예 1-3) Example 1-3)
제 2 셀에 별도의 serving cell id (예를 들면 ServCellIndex)가 구성되면 제 2 TRP에서 PDCCH 가 전송되는 빔의 변경을 지시하기 위해 Serving Cell ID 필드 (1611)를 그대로 사용하거나 일부 확장하여 사용할 수 있다. 제 2 셀은 독립적인 ServCellIndex에 따른 서빙 셀 설정을 가지며, ServCellIndex당 하나의 PCI가 할당될 수 있으므로, Serving Cell ID 필드 (1611)를 통해 제 2 셀의 ServCellIndex 및 PCI를 지시할 수 있다.When a separate serving cell id (eg, ServCellIndex) is configured in the second cell, the Serving Cell ID field 1611 can be used as it is or partially extended to indicate a change in the beam through which the PDCCH is transmitted in the second TRP. . Since the second cell has a serving cell configuration according to an independent ServCellIndex, and one PCI can be allocated per ServCellIndex, the ServCellIndex and PCI of the second cell can be indicated through the Serving Cell ID field 1611 .
상술한 바와 같이 RRC 설정 정보를 통해 제 2 셀에 별도의 ServCellIndex (serving cell ID)가 구성되도록 설정된 상태에서, PDCCH 빔의 변경을 지시 (또는 명시)하기 위한 MAC CE는 도 18c에서 도시한 바와 같은 구조를 가질 수 있다. 물론 앞서 설명한 PCI를 활용하는 방법도 가능함은 물론이다.As described above, in a state in which a separate ServCellIndex (serving cell ID) is configured in the second cell through the RRC configuration information, the MAC CE for instructing (or specifying) the change of the PDCCH beam is as shown in FIG. 18C . can have a structure. Of course, it is also possible to utilize the PCI described above.
이하에서는 Inter cell을 위한 추가 bit(s)를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using an additional bit(s) for an inter cell will be described.
MAC CE (1840)는 Serving Cell ID 필드 (1841), 기본 serving cell ID에 추가적으로 inter cell을 정의하는 식별자 필드 (예를 들어 Intercell 필드) (1842), CORESET ID 필드 (1843), CORESET Pool index 필드 (생략 가능) (1844), TCI state ID 필드 (1845)를 포함할 수 있다. MAC CE (1840) includes a Serving Cell ID field (1841), an identifier field that additionally defines an inter cell in addition to the basic serving cell ID (eg, an Intercell field) (1842), a CORESET ID field (1843), and a CORESET Pool index field ( may be omitted) 1844 , and a TCI state ID field 1845 .
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 필드 (1841)는 5bits, Intercell 필드 (1842)는 1bit (1 내지 4bits), CORESET ID 필드 (1843)는 5bits (또는 4bits), CORESET Pool index 필드 (생략 가능) (1844)는 1bit, TCI state ID 필드 (1844)는 7bits의 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each of the Serving Cell ID field 1841 is 5 bits, the Intercell field 1842 is 1 bit (1 to 4 bits), the CORESET ID field 1843 is 5 bits (or 4 bits), and the CORESET Pool index field (Can be omitted) 1844 may have a length of 1 bit, and the TCI state ID field 1844 may have a length of 7 bits. However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
여기서 inter cell 식별자 필드 (1842)는 기존의 Carrier aggregation (CA)을 위해 사용되는 ServCellindex와 구분하기 위해 사용될 수 있다. 일례로, 상술한 RRC 설정에서 제 2 셀의 ServCellIndex가 CA를 위한 것인지 또는 inter-cell Multi TRP 동작을 위한 것인지가 구분되지 않을 수 있다. 이 경우, inter cell 식별자 필드 (1842)의 값이 1로 지시되면 단말은 상위 레이어 (예를 들면, RRC)에서 구성된 제 2 셀의 ServCellIndex는 inter-cell Multi TRP를 위한 것으로 판단할 수 있다. 다른 실시예로, 상술한 RRC 설정에서 CA와 inter-cell Multi TRP 동작을 독립적으로 설정할 수도 있다. 예를 들면, RRC 설정에서 CA 동작을 위한 ServCellIndex, inter-cell Multi TRP 동작을 위한 ServCellndex가 구별되어 설정 될 수 있다. 이 경우, 단말은 상위 레이어(예를 들면, RRC)에서 구성된 제 2 셀의 ServCellIndex가 어느 동작을 위한 것인지 판단할 수 있으므로, 이와 같은 경우 inter cell 식별자 필드 (1842)는 생략될 수 있다. 즉, RRC 설정에서 Carrier aggregation 목적으로 명확히 구분되도록 ServCellIndex가 설정되면 inter cell 식별자 필드 (1842)는 불필요할 수 있으며, 구분되지 않고 암묵적으로 지시되면 inter cell 식별자 필드 (1842)가 필요할 수 있다.Here, the inter cell identifier field 1842 may be used to distinguish it from the ServCellindex used for the existing carrier aggregation (CA). For example, in the above-described RRC configuration, whether the ServCellIndex of the second cell is for CA or for inter-cell Multi TRP operation may not be distinguished. In this case, when the value of the inter cell identifier field 1842 is indicated as 1, the UE may determine that the ServCellIndex of the second cell configured in a higher layer (eg, RRC) is for inter-cell Multi TRP. In another embodiment, CA and inter-cell Multi TRP operation may be independently configured in the above-described RRC configuration. For example, in the RRC configuration, ServCellIndex for CA operation and ServCellndex for inter-cell Multi TRP operation may be separately configured. In this case, since the UE can determine for which operation the ServCellIndex of the second cell configured in a higher layer (eg, RRC) is used, in this case, the inter cell identifier field 1842 may be omitted. That is, when the ServCellIndex is set to be clearly distinguished for the purpose of carrier aggregation in the RRC configuration, the inter cell identifier field 1842 may be unnecessary, and if it is implicitly indicated without being distinguished, the inter cell identifier field 1842 may be required.
본 실시예에서는 inter cell 식별자 필드 (1842)가 1bit인 경우를 도시하였으나, 특정 serving cell과 inter-cell Multi TRP 동작을 위해 연계된 non-serving cell의 개수에 따라 복수의 bits로 확장될 수 있다. 다른 예로, inter cell 식별자 필드 (1842)의 값이 0으로 설정되면 단말은 Serving cell ID 필드 (1841)가 지시하는 셀을 제 1 셀로 간주할 수 있다.In this embodiment, the case where the inter cell identifier field 1842 is 1 bit is illustrated, but it may be extended to a plurality of bits according to the number of non-serving cells linked for the inter-cell Multi TRP operation with a specific serving cell. As another example, when the value of the inter cell identifier field 1842 is set to 0, the UE may regard the cell indicated by the serving cell ID field 1841 as the first cell.
단말은 Serving Cell ID 필드 (1841) (및 inter cell 식별자 필드 (1842)) 로 지시되는 셀 (제 2 셀)의 서빙 셀 설정을 통해 제 2 셀의 PCI를 확인할 수 있다. The UE may identify the PCI of the second cell through the serving cell configuration of the cell (second cell) indicated by the Serving Cell ID field 1841 (and the inter cell identifier field 1842).
이때 단말은, 제 2 TRP에서 CORESET ID 필드 (1843) (및 CORESET Pool Index 필드 (1844)) 가 지시하는 CORESET의 자원을 통하여PDCCH 가 전송되는 빔은 TCI state ID 필드 (1845)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다. At this time, in the second TRP, the UE transmits the PDCCH beam through the CORESET resource indicated by the CORESET ID field 1843 (and the CORESET Pool Index field 1844) in the second TRP is the TCI state indicated by the TCI state ID field 1845. It can be confirmed that it is transmitted on the same beam as the RS configured in association with . In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 단말은 하나의 CORESET ID 필드 (1843)와 하나의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 도 18c의 아래에 도시된 바와 같이 복수의 CORESET ID 필드 (1843)와 복수의 TCI state ID를 포함하는 MAC CE 메시지를 수신하면, 제 2 셀의 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트(다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, when the UE receives a MAC CE message including one CORESET ID field 1843 and one TCI state ID field, it can be interpreted as indicating a change of one PDCCH transmission beam. . Alternatively, when receiving a MAC CE message including a plurality of CORESET ID fields 1843 and a plurality of TCI state IDs as shown below in FIG. 18C, the PDCCH transmission beam for each CORESET of the second cell is transferred to each TCI state. It can be interpreted as being updated (that is, transmitted through the same beam as the RS configured in association with each TCI state).
또는, MAC CE에 하나의 CORESET ID 필드(1843)와 복수의 TCI state ID 필드 (1845)가 포함되는 것도 가능하다. 즉, 단말은 하나의 CORESET ID에 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID가 지시하는 각각의 TCI state는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단될 수 있다.Alternatively, one CORESET ID field 1843 and a plurality of TCI state ID fields 1845 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
실시예 1-4)Example 1-4)
측정 (measurement)을 위한 RRC 설정 (예를 들면 MeasConfig 또는 MeasObject)을 통하여 제 2 셀의 PCI가 설정되는 경우, 제 2 TRP에서 PDCCH가 전송되는 빔의 변경을 지시하기 위해 제 2 셀의 PCI (PCI #2)와 연계된 SSB index를 활용할 수 있다. When the PCI of the second cell is configured through the RRC configuration (eg, MeasConfig or MeasObject) for measurement, the PCI (PCI) of the second cell to indicate the change of the beam through which the PDCCH is transmitted in the second TRP You can use the SSB index linked to #2).
상술한 바와 같이 RRC 설정 정보를 통해 제 2 셀의 PCI 와 연계된 SSB index가 설정된 상태에서, PDCCH 빔의 변경을 지시 (또는 명시)하기 위한 MAC CE는 도 18d에서 도시한 바와 같은 구조를 가질 수 있다. 물론 앞서 설명한 PCI 및 serving cell ID를 활용하는 방법도 가능하다. 도 18d에서 도시한 MAC CE 구조에 따르면, CORESET ID의 QCL association을 해당 serving cell ID의 CORESET ID뿐만 아니라 SSB ID까지 한번에 QCL 파라미터를 설정하여 measurement 또는 QCL assumption 동작 시 활용할 수 있다.As described above, in a state in which the SSB index associated with the PCI of the second cell is set through the RRC configuration information, the MAC CE for instructing (or specifying) the change of the PDCCH beam may have a structure as shown in FIG. 18D. there is. Of course, it is also possible to utilize the PCI and serving cell ID described above. According to the MAC CE structure shown in FIG. 18D , QCL association of CORESET ID can be used for measurement or QCL assumption operation by setting QCL parameters not only CORESET ID of the corresponding serving cell ID but also SSB ID.
이하에서는 SSB ID를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using the SSB ID will be described.
MAC CE (1850)는 Serving Cell ID 필드 (1851), CORESET ID 필드 (1852), CORESET Pool index (생략 가능) (1853), TCI state ID 필드 (1854), SSB ID 필드 (1855)를 포함할 수 있다. 다른 실시예로, 제 2 TRP에 별도의 serving cell ID가 구성되는 경우, Serving Cell ID 필드 (1851)은 제 2 셀을 지시할 수 있으며, 상술한 실시예를 응용하여 추가적으로 inter cell을 정의하는 식별자 필드도 활용할 수 있을 것이다.MAC CE (1850) may include a Serving Cell ID field (1851), a CORESET ID field (1852), a CORESET Pool index (can be omitted) (1853), a TCI state ID field (1854), and an SSB ID field (1855). there is. As another embodiment, when a separate serving cell ID is configured in the second TRP, the Serving Cell ID field 1851 may indicate the second cell, and an identifier that additionally defines an inter cell by applying the above-described embodiment. Fields can also be used.
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 필드 (1851)는 5bits, CORESET ID 필드 (1852)는 5bits (또는 4bits), TCI state ID 필드 (1854)는 7bits, SSB ID 필드 (1855)는 6bits의 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each of the Serving Cell ID field 1851 is 5 bits, the CORESET ID field 1852 is 5 bits (or 4 bits), the TCI state ID field 1854 is 7 bits, and the SSB ID field 1855 is It can have a length of 6 bits. However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
제 2 셀에 별도의 serving cell ID가 구성되지 않고, 측정 (measurement)을 위한 RRC 설정 (예를 들면 MeasConfig 또는 MeasObject)을 통하여 제 2 셀의 PCI가 설정되는 경우, 실시예 1-1과 유사한 방법이 사용될 수 있다. 다시 말해, 제 1 셀의 서빙 셀 설정에 포함된 측정을 위한 RRC 설정을 통하여, 제 2 셀의 PCI와 연계된 SSB index를 설정하였기 때문에, 제 2 셀의 serving cell ID 또는 PCI를 생략하고 SSB Index를 통해 제 2 셀에서 PDCCH가 전송되는 빔의 변경을 지시할 수 있다. When a separate serving cell ID is not configured in the second cell and the PCI of the second cell is configured through RRC configuration (eg, MeasConfig or MeasObject) for measurement, a method similar to that of Example 1-1 this can be used In other words, since the SSB index associated with the PCI of the second cell is set through the RRC setting for measurement included in the serving cell setting of the first cell, the serving cell ID or PCI of the second cell is omitted and the SSB Index It is possible to indicate the change of the beam through which the PDCCH is transmitted in the second cell.
단말은 Serving Cell ID 필드 (1851)가 지시하는 서빙 셀 (제 1 셀)의 서빙 셀 설정을 참조할 수 있다. 따라서 단말은 SSB ID 필드 (1855)가 지시하는 SSB index와 연계된 제 2 셀의 PCI를 확인할 수 있다. The UE may refer to the serving cell configuration of the serving cell (first cell) indicated by the Serving Cell ID field 1851 . Accordingly, the UE can check the PCI of the second cell associated with the SSB index indicated by the SSB ID field 1855 .
이때 단말은, 제 2 TRP에서 CORESET ID 필드 (1852) (및 CORESET Pool Index 필드 (1853)) 가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은 기존의 TCI state ID 필드 (1854)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 또한, CORESET Pool index 필드 (1853)가 포함되면 단말은 해당 PCI는 inter-cell Multi TRP 동작을 위한 목적으로 설정된 셀인 것으로 확인할 수도 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다.At this time, the UE, in the second TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID field 1852 (and the CORESET Pool Index field 1853) is indicated by the existing TCI state ID field 1854. It can be confirmed that the transmission is carried out in the same beam as the RS configured in association with the TCI state. In addition, when the CORESET Pool index field 1853 is included, the UE may confirm that the corresponding PCI is a cell configured for the purpose of inter-cell Multi TRP operation. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 단말은 하나의 CORESET ID 필드 (1852)와 하나의 TCI state ID 필드 (1854)를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 도 18d의 아래에 도시된 바와 같이, 단말이 복수의 CORESET ID 필드 (1852)와 복수의 TCI state ID (1854)를 포함하는 MAC CE 메시지를 수신하면, 제 2 셀의 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, when the UE receives a MAC CE message including one CORESET ID field 1852 and one TCI state ID field 1854, it is interpreted as indicating a change of one PDCCH transmission beam. can do. Or, as shown below in FIG. 18D, when the UE receives a MAC CE message including a plurality of CORESET ID fields 1852 and a plurality of TCI state IDs 1854, PDCCH transmission for each CORESET of the second cell It can be interpreted that the beam is updated to each TCI state (that is, transmitted through the same beam as the RS configured in association with each TCI state).
또는, MAC CE에 하나의 CORESET ID 필드 (1852)와 복수의 TCI state ID 필드 (1854)가 포함되는 것도 가능하다. 즉, 단말은 하나의 CORESET ID에 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID가 지시하는 각각의 TCI state는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단될 수 있다. Alternatively, one CORESET ID field 1852 and a plurality of TCI state ID fields 1854 may be included in the MAC CE. That is, the UE may determine that a plurality of TCI states are set in one CORESET ID. For example, it may be determined that each TCI state indicated by a plurality of TCI state IDs is set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
한편, 본 개시의 또 다른 실시예로, 단말은 상기 설정 메시지는 제 1 TRP로부터 수신하고, 제 2 TRP에서 PDCCH가 전송되는 빔의 변경을 지시하기 위한 MAC CE는 제 2 TRP로부터 수신하는 방법 역시 가능하다. 이를 위해서는 상술한 방법을 이용하여 제 2 셀에 대한 PDCCH 모니터링을 수행하고, 상기 PDCCH를 통해 수신한 DCI가 스케쥴링하는 PDSCH를 통해 제 2 TRP로부터 상기 MAC CE를 수신할 수 있다.On the other hand, in another embodiment of the present disclosure, the UE receives the configuration message from the first TRP, and the MAC CE for instructing the change of the beam through which the PDCCH is transmitted in the second TRP is received from the second TRP. It is possible. To this end, PDCCH monitoring for the second cell may be performed using the above-described method, and the MAC CE may be received from the second TRP through the PDSCH scheduled by the DCI received through the PDCCH.
도 19는 본 개시의 제 1 실시예에 따라 셀 간 (inter cell)의 빔 변경을 지시하는 방법을 도시한 순서도이다.19 is a flowchart illustrating a method of instructing an inter-cell beam change according to the first embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 제 1 노드는 상기 제 1 셀을 통해 단말과 데이터를 송수신하는 노드 (예를 들면, TRP)를 의미할 수 있으며, 제 2 노드는 상기 제 1 노드와 물리적으로 구분 또는 분리되어 있고 상기 제 1 셀과 다른 상기 제 2 셀을 통해 단말과 데이터를 송수신하는 노드 (예를 들면, TRP)를 의미할 수 있다.According to an embodiment of the present disclosure, the first node may mean a node (eg, TRP) that transmits and receives data to and from the terminal through the first cell, and the second node physically communicates with the first node. It may refer to a node (eg, TRP) that is divided or separated and transmits and receives data to and from the terminal through the second cell different from the first cell.
제 1 노드 (1910)는 S1905 단계에서, 제어 메시지 (예를 들면 MAC CE)를 단말 (1900)로 전송할 수 있다.The first node 1910 may transmit a control message (eg, MAC CE) to the terminal 1900 in step S1905 .
단말 (1900)은 S1910 단계에서, 상기 제어 메시지에 기반하여 제 2 노드(1920)에서 PDCCH가 전송되는 빔의 변경을 확인할 수 있다.In step S1910 , the terminal 1900 may check a change in the beam through which the PDCCH is transmitted from the second node 1920 based on the control message.
본 개시의 일 실시예에 따르면, 단말 (1900)은 빔의 변경을 확인한 후에, 단말 (1900)은 PDCCH가 전송되는 빔의 변경 관련 제어 메시지(예를 들면 MAC CE)를 확인하고 이에 대한 응답 메시지를 제 1 노드 (1910)로 전송할 수 있다 (도시하지 않음). 이때 상기 응답 메시지는 MAC CE 포맷으로 정의될 수 있다. 예를 들면, 단말 (1900)은, 상기 응답 메시지 (MAC CE)와 상응하는 logical channel ID (LCID)를 포함하는 MAC subheader (서브헤더) 및 상기 응답 메시지 (MAC CE)를 포함하는, MAC sub PDU를 제 1 노드 (1910)로 전송할 수 있다.According to an embodiment of the present disclosure, after the terminal 1900 confirms the change of the beam, the terminal 1900 checks the beam change related control message (eg, MAC CE) through which the PDCCH is transmitted, and a response message thereto may be transmitted to the first node 1910 (not shown). In this case, the response message may be defined in MAC CE format. For example, the terminal 1900 includes a MAC subheader (subheader) including a logical channel ID (LCID) corresponding to the response message (MAC CE) and the MAC sub PDU including the response message (MAC CE) may be transmitted to the first node 1910 .
또는 본 개시의 일 실시예에 따르면, 단말 (1900)은 상기의 응답 메시지를 전송하지 않고 이후의 동작을 수행할 수도 있다.Alternatively, according to an embodiment of the present disclosure, the terminal 1900 may perform the subsequent operation without transmitting the above response message.
제 2 노드 (1920)는 S1915 단계에서, 변경되는 빔을 통해 단말 (1900)로 PDCCH를 전송할 수 있다. 단말 (1900)은 변경되는 빔을 통해 제 2 노드 (1920)에서 전송되는 PDCCH를 수신할 수 있다.The second node 1920 may transmit the PDCCH to the terminal 1900 through the changed beam in step S1915. The terminal 1900 may receive the PDCCH transmitted from the second node 1920 through the changed beam.
또는, 제 1 노드 (1910)는 상기 응답 메시지에 기반하여 상기 제어 메시지 (예를 들면 MAC CE)가 상기 단말 (1900)에서 성공적으로 수신되었음을 확인하고, 제 2 노드 (1920)는 S1915 단계에서, 변경되는 빔을 통해 PDCCH를 단말 (1900)로 전송할 수 있다. 단말 (1900)은 변경되는 빔을 통해 PDCCH를 수신할 수 있다. 이때 만약 제 1 셀과 제 2 셀이 서로 다른 기지국에서 운용되는 셀인 경우에는, 제 1 노드 (1910)는 별도의 메시지 (예를 들면 X2 interface 메시지)를 통해 제 2 노드 (1920)로 상기 응답 메시지를 전달하고, 제 2 노드 (1920)는 이에 기반하여 변경되는 빔을 통해 PDCCH를 단말 (1900)로 전송할 수 있다. 할 수 있다.Alternatively, the first node 1910 confirms that the control message (eg, MAC CE) has been successfully received by the terminal 1900 based on the response message, and the second node 1920, in step S1915, The PDCCH may be transmitted to the UE 1900 through the changed beam. The terminal 1900 may receive the PDCCH through the changed beam. At this time, if the first cell and the second cell are cells operated by different base stations, the first node 1910 sends the response message to the second node 1920 through a separate message (eg, an X2 interface message). is transmitted, and the second node 1920 may transmit the PDCCH to the UE 1900 through a beam changed based on this. can do.
한편, 본 개시의 또 다른 실시예로, 단말은 상기 설정 메시지는 제 1 노드 (1910)로부터 수신하고, 제 2 노드 (1920)로부터 PDCCH가 전송되는 빔의 변경을 지시하기 위한 MAC CE는 제 2 노드 (1920)로부터 수신하는 방법 역시 가능하다. 이를 위해서는 상술한 바와 같이 제 2 셀에 대한 PDCCH 모니터링을 수행하고, 상기 PDCCH를 통해 수신한 DCI가 스케쥴링하는 PDSCH를 통해 제 2 노드 (1920)로부터 상기 MAC CE를 수신할 수 있다.Meanwhile, in another embodiment of the present disclosure, the UE receives the configuration message from the first node 1910, and the MAC CE for instructing the change of the beam through which the PDCCH is transmitted from the second node 1920 is the second A method of receiving from node 1920 is also possible. To this end, as described above, PDCCH monitoring for the second cell may be performed, and the MAC CE may be received from the second node 1920 through the PDSCH scheduled by the DCI received through the PDCCH.
<제 2 실시예><Second embodiment>
제 2 실시예는 셀 간 Multi TRP 동작에서, serving cell 과 non-serving cell의 빔 변경을 하나의 MAC CE를 통해 지시하는 방법을 제안한다. 본 개시에서 serving cell을 간단히 제 1 셀로 칭할 수 있으며, 상기 제 1 셀을 운용하는 TRP를 제 1 TRP으로 칭할 수 있다. 또한 본 개시에서 non-serving cell을 간단히 제 2 셀로 칭할 수 있으며, 상기 제 2 셀을 운용하는 TRP를 제 2 TRP로 칭할 수 있다. The second embodiment proposes a method of instructing a beam change of a serving cell and a non-serving cell through one MAC CE in an inter-cell multi TRP operation. In the present disclosure, a serving cell may be simply referred to as a first cell, and a TRP operating the first cell may be referred to as a first TRP. In addition, in the present disclosure, a non-serving cell may be simply referred to as a second cell, and a TRP operating the second cell may be referred to as a second TRP.
단말은 하나의 MAC CE를 수신하여 동시에 제 1 셀과 제 2 셀 각각의 PDCCH 전송 빔의 변경의 지시 (또는 명시)를 확인할 수 있다. 본 개시의 일 실시예에 따르면, 기지국은 한번의 signaling으로 2개의 PDCCH 빔에 대한 정보를 전송할 수 있다. 뿐만 아니라 단말은 TRP의 종류를 구분하지 않고 한번에 빔을 변경할 수 있다.The UE may receive one MAC CE and simultaneously check an indication (or specify) of a change in the PDCCH transmission beam of each of the first cell and the second cell. According to an embodiment of the present disclosure, the base station may transmit information on two PDCCH beams through one signaling. In addition, the terminal can change the beam at once without distinguishing the type of TRP.
도 20a 내지 도 20d는 본 개시의 제 2 실시예에 따른 MAC CE 포맷을 도시한 도면이다. 20A to 20D are diagrams illustrating a MAC CE format according to a second embodiment of the present disclosure.
이하에서는 제 2 실시예에 따라 제 1 셀 및 제 2 셀 각각의 PDCCH 전송 빔의 변경을 지시하는 방법을 구체적으로 설명한다.Hereinafter, a method of instructing a change of the PDCCH transmission beam of each of the first cell and the second cell according to the second embodiment will be described in detail.
실시예 2-1)Example 2-1)
제 2 셀에 별도의 serving cell id가 구성되지 않으면, (예를 들면, ServCellIndex가 없거나 제 1 셀의 ServCellIndex와 동일하다고 가정한 경우 일 수 있다.) 상술한 실시예 1-1 또는 실시예 1-2와 같은 방법을 활용하여 제 2 셀의 PCI를 확인할 수 있다. 이때, 제 1 셀 및 제 2 셀의 PDCCH 전송 빔의 변경을 하나의 MAC CE로 지시 (또는 명시)하기 위한 MAC CE는 도 20a에서 도시한 바와 같은 구조를 가질 수 있다. 방법 3과 같이 RRC에서 설정되지 않아도 아래 MAC CE는 동작 될 수 있음은 물론이다. If a separate serving cell id is not configured in the second cell (for example, it may be the case that there is no ServCellIndex or it is assumed that it is the same as the ServCellIndex of the first cell). The PCI of the second cell can be checked by using the same method as in 2 . In this case, the MAC CE for indicating (or specifying) the change of the PDCCH transmission beams of the first cell and the second cell with one MAC CE may have a structure as shown in FIG. 20A . It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
이하에서는 Extended TCI state ID를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using the Extended TCI state ID will be described.
MAC CE (2010)는 Serving cell ID 1 필드 (2011), CORESET ID 1 필드 (2012), CORESET ID 2 필드 (2013), TCI state ID 1 필드 (2014), TCI state ID 2 필드 (2015)를 포함할 수 있다. MAC CE (2010) includes Serving cell ID 1 field (2011), CORESET ID 1 field (2012), CORESET ID 2 field (2013), TCI state ID 1 field (2014), and TCI state ID 2 field (2015) can do.
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 필드 (2011)는 5bits, CORESET ID 1 필드 (2012)는 5bits, CORESET ID 2 필드 (2013)는 5bits, TCI state ID 1 필드 (2014)는 7bits (또는 8bits), TCI state ID 2 필드 (2015)는 7bits (또는 8bits)의 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each Serving Cell ID field (2011) is 5 bits, the CORESET ID 1 field (2012) is 5 bits, the CORESET ID 2 field (2013) is 5 bits, and the TCI state ID 1 field (2014) is 7 bits (or 8 bits), the TCI state ID 2 field 2015 may have a length of 7 bits (or 8 bits). However, the order of the fields and the number of bits in each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
앞서 서술한 방법 1과 같이 서빙 셀의 RRC 설정 과정에서 제 1 셀에 대한 TCI state 설정과 제 2 셀의 PCI를 이미 연관시켜서 설정하였기 때문에, MAC CE에서는 제 2 셀의 식별자 (예를 들면 PCI)를 생략하면서 PDCCH의 빔 변경 또는 업데이트 설정을 지시할 수 있다. As in the method 1 described above, since the TCI state setting for the first cell and the PCI of the second cell are already associated and set in the RRC setting process of the serving cell, in the MAC CE, the identifier of the second cell (eg PCI) It is possible to indicate the beam change or update configuration of the PDCCH while omitting .
단말은 Serving Cell ID 1 필드 (2011)가 지시하는 셀 (제 1 셀)의 서빙 셀 설정을 참조할 수 있다. 이때 CORESET ID 1은 Serving cell ID 1 필드 (2011)가 지시하는 셀 (제 1 셀) 의 CORESET index를 의미하고, CORESET ID 2는 TCI state ID 2 필드 (2015)가 지시하는 TCI state 설정에 내재된 PCI의 셀 (제 2 셀)의 CORESET index를 의미할 수 있다. 따라서 단말은 Serving cell ID 1 필드 (2011)가 지시하는 셀은 제 1 셀임을 확인할 수 있으며, TCI state ID 2 필드 (2015)가 지시하는 TCI state 설정에 내재된 PCI를 통해 제 2 셀의 PCI를 확인할 수 있다. The UE may refer to the serving cell configuration of the cell (first cell) indicated by the Serving Cell ID 1 field 2011 . At this time, CORESET ID 1 means the CORESET index of the cell (first cell) indicated by the Serving cell ID 1 field (2011), and CORESET ID 2 is implicit in the TCI state setting indicated by the TCI state ID 2 field (2015). It may mean the CORESET index of the PCI cell (second cell). Therefore, the UE can confirm that the cell indicated by the Serving cell ID 1 field (2011) is the first cell, and the PCI of the second cell is performed through the PCI embedded in the TCI state setting indicated by the TCI state ID 2 field (2015). can be checked
이때 단말은 제 1 TRP에서 CORESET ID 1 필드 (2012)가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은, TCI state ID 1 필드 (2014)가 지시하는 TCI state 와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 동시에, 단말은 제 2 TRP에서 CORESET ID 2 필드 (2013)가 지시하는 CORESET의 자원을 통하여 PDCCH 가 전송되는 빔은, TCI state ID 2 필드 (2015)가 지시하는 TCI state 와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다.In this case, the UE transmits the PDCCH through the CORESET resource indicated by the CORESET ID 1 field 2012 in the first TRP is the same beam as the RS set in association with the TCI state indicated by the TCI state ID 1 field 2014 It can be confirmed that it is transmitted to At the same time, the UE transmits the PDCCH beam through the CORESET resource indicated by the CORESET ID 2 field 2013 in the second TRP is set in association with the TCI state indicated by the TCI state ID 2 field 2015 Same as RS. It can be confirmed that the beam is transmitted. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 하나의 셀 (제 1 셀 또는 제 2 셀)에 대해 하나의 CORESET ID 필드와 하나의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 하나의 셀에 대해 복수의 CORESET 필드와 복수의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 단말은 하나의 셀에 대한 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, upon reception of a MAC CE message including one CORESET ID field and one TCI state ID field for one cell (first cell or second cell), one PDCCH transmission beam It can be interpreted as indicating a change. Alternatively, upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
또는, 하나의 CORESET ID에 하나의 TCI state ID가 대응되는 예를 설명하였으나 복수의 TCI state ID가 포함되는 것도 가능하다. 즉, 하나의 CORESET ID에서 복수의 TCI state필드가 구성되면 단말은 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단할 수 있다.Alternatively, although an example has been described in which one TCI state ID corresponds to one CORESET ID, it is also possible to include a plurality of TCI state IDs. That is, when a plurality of TCI state fields are configured in one CORESET ID, the UE may determine that a plurality of TCI states are set. For example, it may be determined that a plurality of TCI state IDs are set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
실시예 2-2)Example 2-2)
제 2 셀에 별도의 serving cell id가 구성되지 않으면, (예를 들면, ServCellIndex가 없거나 제 1 셀의 ServCellIndex와 동일하다고 가정한 경우 일 수 있다.) 상술한 실시예 1-1) 또는 실시예 1-2)와 같은 방법을 활용하여 제 2 셀의 PCI를 확인할 수 있다. 이때, 제 1 셀 및 제 2 셀의 PDCCH 전송 빔의 변경을 하나의 MAC CE로 지시 (또는 명시)하기 위한 MAC CE는 도 20b에서 도시한 바와 같은 구조를 가질 수 있다. 방법 3과 같이 RRC에서 설정되지 않아도 아래 MAC CE는 동작 될 수 있음은 물론이다. If a separate serving cell id is not configured in the second cell (for example, it may be the case that there is no ServCellIndex or it is assumed that it is the same as the ServCellIndex of the first cell), the above-described embodiment 1-1) or embodiment 1 -2) can be used to check the PCI of the second cell. In this case, the MAC CE for indicating (or specifying) the change of the PDCCH transmission beams of the first cell and the second cell with one MAC CE may have a structure as shown in FIG. 20B . It goes without saying that the MAC CE below can be operated even if it is not set in RRC as in method 3.
이하에서는 PCI를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using PCI will be described.
MAC CE (2020)는 5bits의 Serving cell ID 1 필드 (2021), PCI 필드 (2022), CORESET ID 1 필드 (2023), CORESET ID 2 필드 (2024), TCI state ID 1 필드 (2025), TCI state ID 2 필드 (2026)를 포함할 수 있다. MAC CE (2020) is 5 bits of Serving cell ID 1 field 2021, PCI field 2022, CORESET ID 1 field 2023, CORESET ID 2 field 2024, TCI state ID 1 field 2025, TCI state ID 2 field 2026 .
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 필드 (2021)는 5bits, PCI 필드 (2022)는 10bits, CORESET ID 1 필드 (2023)는 4bits (또는 5bits), CORESET ID 2 필드 (2024)는 4bits (또는 5bits), TCI state ID 1 필드 (2025)는 7bits, TCI state ID 2 필드 (2026)는 7bits 의 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each of the Serving Cell ID field 2021 is 5 bits, the PCI field 2022 is 10 bits, the CORESET ID 1 field 2023 is 4 bits (or 5 bits), and the CORESET ID 2 field 2024 is 4 bits (or 5 bits), the TCI state ID 1 field 2025 may have a length of 7 bits, and the TCI state ID 2 field 2026 may have a length of 7 bits. However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
앞서 서술한 방법 1과 같이 제 1 셀에 대한 TCI state 설정에서 제 2 셀의 PCI를 이미 연관시켜서 설정하였기 때문에, MAC CE에서는 제 2 셀의 식별자 (예를 들면 PCI)를 생략하면서 PDCCH의 빔 변경 또는 업데이트 설정을 지시할 수 있다.As in method 1 described above, since the PCI of the second cell is already associated in the TCI state setting for the first cell, MAC CE omits the identifier of the second cell (eg PCI) and changes the beam of the PDCCH Or you can instruct the update settings.
단말은 PCI 필드 (2022)가 지시하는 PCI를 가지는 셀 (제 2 셀)을 확인할 수 있다. 이때 CORESET ID 1은 Serving cell ID 1 필드 (2021)가 지시하는 셀 (제 1 셀)의 CORESET index를 의미하고, CORESET ID 2는 PCI 필드(2022)가 지시하는 셀 (제 2 셀)의 CORESET index를 의미할 수 있다. 따라서 단말은 Serving cell ID 1 필드 (2021)가 지시하는 셀은 제 1 셀임을 확인할 수 있으며, PCI 필드 (2022)를 통해 제 2 셀의 PCI를 확인할 수 있다. The UE may identify a cell (second cell) having PCI indicated by the PCI field 2022 . At this time, CORESET ID 1 means the CORESET index of the cell (first cell) indicated by the serving cell ID 1 field 2021, and CORESET ID 2 is the CORESET index of the cell (second cell) indicated by the PCI field 2022. can mean Accordingly, the UE can confirm that the cell indicated by the Serving cell ID 1 field 2021 is the first cell, and can identify the PCI of the second cell through the PCI field 2022 .
이때 단말은, 제 1 TRP 에서 CORESET ID 1 필드 (2022)가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은, TCI state ID 1 필드 (2025)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 동시에, 단말은 제 2 TRP에서 CORESET ID 2 필드 (2024)가 지시하는 CORESET의 자원을 통하여 PDCCH 가 전송되는 빔은 TCI state ID 2 필드 (2026)가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다. At this time, the UE, in the first TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 1 field 2022 is linked to the TCI state indicated by the TCI state ID 1 field 2025. It can be confirmed that the beam is transmitted. At the same time, the UE transmits the PDCCH through the CORESET resource indicated by the CORESET ID 2 field 2024 in the second TRP is the same beam as the RS set in association with the TCI state indicated by the TCI state ID 2 field 2026 It can be confirmed that it is transmitted to In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 하나의 셀 (제 1 셀 또는 제 2 셀)에 대해 하나의 CORESET ID 필드와 하나의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 하나의 셀에 대해 복수의 CORESET 필드와 복수의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 단말은 하나의 셀에 대한 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, upon reception of a MAC CE message including one CORESET ID field and one TCI state ID field for one cell (first cell or second cell), one PDCCH transmission beam It can be interpreted as indicating a change. Alternatively, upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
또는, 하나의 CORESET ID에 하나의 TCI state ID가 대응되는 예를 설명하였으나 복수의 TCI state ID가 포함되는 것도 가능하다. 즉, 하나의 CORESET ID에서 복수의 TCI state필드가 구성되면 단말은 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단할 수 있다.Alternatively, although an example has been described in which one TCI state ID corresponds to one CORESET ID, it is also possible to include a plurality of TCI state IDs. That is, when a plurality of TCI state fields are configured in one CORESET ID, the UE may determine that a plurality of TCI states are set. For example, it may be determined that a plurality of TCI state IDs are set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
실시예 2-3)Example 2-3)
제 2 셀에 별도의 serving cell id (예를 들면 ServCellIndex)가 구성되면 제 2 TRP에서 PDCCH 가 전송되는 빔의 변경을 지시하기 위해 Serving Cell ID 필드 (2031)를 그대로 사용하거나 일부 확장하여 사용할 수 있다. 제 2 셀은 독립적인 ServCellIndex에 따른 서빙 셀 설정을 가지며, ServCellIndex당 하나의 PCI가 할당될 수 있으므로, Serving Cell ID 필드 (2031)를 통해 제 2 셀의 ServCellIndex 및 PCI를 지시할 수 있다.When a separate serving cell id (eg, ServCellIndex) is configured in the second cell, the Serving Cell ID field 2031 can be used as it is or partially extended to indicate a change in the beam through which the PDCCH is transmitted in the second TRP. . Since the second cell has a serving cell configuration according to an independent ServCellIndex, and one PCI can be allocated per ServCellIndex, the ServCellIndex and PCI of the second cell can be indicated through the Serving Cell ID field 2031 .
상술한 바와 같이 RRC 설정 정보를 통해 제 2 셀에 별도의 ServCellIndex (serving cell ID)가 구성되도록 설정된 상태에서, PDCCH 빔의 변경을 지시 (또는 명시)하기 위한 MAC CE 는 도 20c에서 도시한 바와 같은 구조를 가질 수 있다. 물론 앞서 설명한 PCI를 활용하는 방법도 가능하다.As described above, in a state in which a separate ServCellIndex (serving cell ID) is configured in the second cell through the RRC configuration information, the MAC CE for instructing (or specifying) the change of the PDCCH beam is as shown in FIG. 20C . can have a structure. Of course, it is also possible to utilize the PCI described above.
이하에서는 Inter cell을 위한 추가 bit(s)를 이용하는 실시예에 대해 기술한다. Hereinafter, an embodiment using an additional bit(s) for an inter cell will be described.
MAC CE (2030)는 Serving Cell ID 필드 (2031), 기본 serving cell ID에 추가적으로 inter cell을 정의하는 식별자 필드 (예를 들어 Intercell 필드) (2032), CORESET ID 1 필드 (2033), CORESET ID 2 필드 (2034), TCI state ID 1 필드 (2035), TCI state ID 2 필드 (2036)를 포함할 수 있다. MAC CE (2030) includes a Serving Cell ID field (2031), an identifier field that additionally defines an inter cell (eg, an Intercell field) (2032), a CORESET ID 1 field (2033), and a CORESET ID 2 field in addition to the basic serving cell ID. 2034 , a TCI state ID 1 field 2035 , and a TCI state ID 2 field 2036 may be included.
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 필드 (2031)는 5bits, Intercell 필드 (2032)는 1bit (1 내지 4bits), CORESET ID 1 필드 (2033)는 4bits (또는 5bits), CORESET ID 2 필드 (2034)는 4bits (또는 5bits), TCI state ID 1 필드 (2035)는 7bits, TCI state ID 2 필드 (2036)는 7bits의 길이를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 일부 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each of the Serving Cell ID field 2031 is 5 bits, the Intercell field 2032 is 1 bit (1 to 4 bits), the CORESET ID 1 field 2033 is 4 bits (or 5 bits), CORESET ID 2 The field 2034 may have a length of 4 bits (or 5 bits), the TCI state ID 1 field 2035 may have a length of 7 bits, and the TCI state ID 2 field 2036 may have a length of 7 bits. However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all of the fields (or information) should be included in the MAC CE, and some fields may be omitted or some fields may be added.
여기서 inter cell 식별자 필드 (2032)는 기존의 Carrier aggregation (CA)을 위해 사용되는 ServCellindex와 구분하기 위해 사용될 수 있다. 일례로, 상술한 RRC 설정에서 제 2 셀의 ServCellIndex가 CA를 위한 것인지 또는 inter-cell Multi TRP 동작을 위한 것인지가 구분되지 않을 수 있다. 이 경우, inter cell 식별자 필드 (2032)의 값이 1로 지시되면 단말은 상위 레이어 (예를 들면, RRC)에서 구성된 제 2 셀의 ServCellIndex는 inter-cell Multi TRP를 위한 것으로 판단할 수 있다. 다른 실시예로, 상술한 RRC 설정에서 CA와 inter-cell Multi TRP 동작을 독립적으로 설정할 수도 있다. 예를 들면, RRC 설정에서 CA 동작을 위한 ServCellIndex, inter-cell Multi TRP 동작을 위한 ServCellndex가 구별되어 설정 될 수 있다. 이 경우, 단말은 상위 레이어(예를 들면, RRC)에서 구성된 제 2 셀의 ServCellIndex가 어느 동작을 위한 것인지 판단할 수 있으므로, 이와 같은 경우 inter cell 식별자 필드 (2032)는 생략될 수 있다. 즉, RRC 설정에서 Carrier aggregation 목적으로 명확히 구분되도록 ServCellIndex가 설정되면 inter cell 식별자 필드 (2032)는 불필요할 수 있으며, 구분되지 않고 암묵적으로 지시되면 inter cell 식별자 필드 (2032)가 필요할 수 있다.Here, the inter cell identifier field 2032 may be used to distinguish it from the ServCellindex used for the existing carrier aggregation (CA). For example, in the above-described RRC configuration, whether the ServCellIndex of the second cell is for CA or for inter-cell Multi TRP operation may not be distinguished. In this case, when the value of the inter cell identifier field 2032 is indicated as 1, the UE may determine that the ServCellIndex of the second cell configured in a higher layer (eg, RRC) is for inter-cell Multi TRP. In another embodiment, CA and inter-cell Multi TRP operation may be independently configured in the above-described RRC configuration. For example, in the RRC configuration, ServCellIndex for CA operation and ServCellndex for inter-cell Multi TRP operation may be separately configured. In this case, since the UE can determine for which operation the ServCellIndex of the second cell configured in a higher layer (eg, RRC) is used, in this case, the inter cell identifier field 2032 may be omitted. That is, when ServCellIndex is set to be clearly distinguished for the purpose of carrier aggregation in RRC configuration, the inter cell identifier field 2032 may be unnecessary, and if it is implicitly indicated without distinction, the inter cell identifier field 2032 may be required.
본 실시예에서는 inter cell 식별자 필드 (2032)가 1bit인 경우를 도시하였으나, 특정 serving cell과 inter-cell Multi TRP 동작을 위해 연계된 non-serving cell의 개수에 따라 복수의 bits로 확장될 수 있다.In this embodiment, the case where the inter cell identifier field 2032 is 1 bit is illustrated, but it may be extended to a plurality of bits according to the number of non-serving cells linked for the inter-cell Multi TRP operation with a specific serving cell.
inter cell 식별자 필드 (2032)가 1로 지시되고, Serving Cell ID 필드 (2031)가 0이 아닌 다른 값을 가지면, 단말은 Serving Cell ID 필드 (2031)로 지시되는 셀 (제 2 셀)의 서빙 셀 설정을 통해 제 2 셀의 PCI를 확인할 수 있다. 또한, 제 1 셀은 ServCellID = 0 인 PCell임을 가정할 수 있다. 따라서 단말은 ServCellID = 0 인 PCell이 제 1 셀임을 확인할 수 있으며, Serving Cell ID 필드 (2031) (및 inter cell 식별자 필드 (2032))로 지시되는 셀이 제 2 셀임을 확인할 수 있다.If the inter cell identifier field 2032 is indicated as 1 and the Serving Cell ID field 2031 has a value other than 0, the UE is a serving cell of the cell (second cell) indicated by the Serving Cell ID field 2031 . You can check the PCI of the second cell through the setting. Also, it may be assumed that the first cell is a PCell with ServCellID = 0. Accordingly, the UE can confirm that the PCell with ServCellID = 0 is the first cell, and can confirm that the cell indicated by the Serving Cell ID field 2031 (and the inter cell identifier field 2032 ) is the second cell.
이때 단말은, 제 1 TRP에서 CORESET ID 1 필드 (2033)가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은, TCI state ID 1 필드 (2035)가 지시하는 TCI state 와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 동시에, 제 2 TRP에서 CORESET ID 2 필드 (2034)가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은TCI state ID 2 필드 (2036)가 지시하는 TCI state ID 와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다. 또는 inter cell 식별자 필드 (2032)가 0으로 지시되면 TCI states ID 1만 존재하는 것으로 가정할 수 있다.At this time, the UE, in the first TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 1 field 2033 is linked to the TCI state indicated by the TCI state ID 1 field 2035. It can be confirmed that the beam is transmitted. At the same time, in the second TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 2 field 2034 is the same beam as the RS set in association with the TCI state ID indicated by the TCI state ID 2 field 2036. can confirm that it is being transmitted. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC. Alternatively, when the inter cell identifier field 2032 is indicated as 0, it may be assumed that only TCI states ID 1 exists.
본 개시의 일 실시예에 따르면, 하나의 셀 (제 1 셀 또는 제 2 셀)에 대해 하나의 CORESET ID 필드와 하나의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 하나의 셀에 대해 복수의 CORESET 필드와 복수의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 단말은 하나의 셀에 대한 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, upon reception of a MAC CE message including one CORESET ID field and one TCI state ID field for one cell (first cell or second cell), one PDCCH transmission beam It can be interpreted as indicating a change. Alternatively, upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
또는, 하나의 CORESET ID에 하나의 TCI state ID가 대응되는 예를 설명하였으나 복수의 TCI state ID가 포함되는 것도 가능하다. 즉, 하나의 CORESET ID에서 복수의 TCI state필드가 구성되면 단말은 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단할 수 있다.Alternatively, although an example has been described in which one TCI state ID corresponds to one CORESET ID, it is also possible to include a plurality of TCI state IDs. That is, when a plurality of TCI state fields are configured in one CORESET ID, the UE may determine that a plurality of TCI states are set. For example, it may be determined that a plurality of TCI state IDs are set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
실시예 2-4)Example 2-4)
제 2 셀에 별도의 serving cell id (예를 들면 ServCellIndex)가 구성되면 제 1 셀 및 제 2 셀 각각의 PDCCH 전송 빔의 변경을 지시하기 위해, 복수의 Serving Cell ID 필드 (2041, 2042)를 사용할 수 있다. 다시 말해 제 1 셀 및 제 2 셀은 독립적인 ServCellIndex에 따른 서빙 셀 설정을 가지며, ServCellIndex당 하나의 PCI가 할당 될 수 있다. 따라서 Serving Cell ID 1 필드 (2041)를 통해 제 1 셀을 지시할 수 있으며, Serving Cell ID 2 필드 (2042)를 통해 제 2 셀을 지시할 수 있다.When a separate serving cell id (eg, ServCellIndex) is configured in the second cell, a plurality of Serving Cell ID fields (2041, 2042) are used to indicate the change of the PDCCH transmission beam of each of the first cell and the second cell. can In other words, the first cell and the second cell have independent serving cell settings according to ServCellIndex, and one PCI may be allocated per ServCellIndex. Accordingly, the first cell may be indicated through the Serving Cell ID 1 field 2041 and the second cell may be indicated through the Serving Cell ID 2 field 2042 .
상술한 바와 같이 RRC 설정 정보를 통해 제 2 셀에 별도의 ServCellIndex (serving cell ID)가 구성되도록 설정된 상태에서, 제 1 셀 및 제 2 셀의 PDCCH 전송 빔의 변경을 하나의 MAC CE로 지시 (또는 명시)하기 위한 MAC CE는 도 20d에서 도시한 바와 같은 구조를 가질 수 있다.As described above, in a state in which a separate ServCellIndex (serving cell ID) is configured in the second cell through the RRC configuration information, the change of the PDCCH transmission beams of the first cell and the second cell is indicated by one MAC CE (or For specifying), the MAC CE may have a structure as shown in FIG. 20D .
이하에서는 별도의 Serving cell ID를 이용하는 실시예에 대해 기술한다.Hereinafter, an embodiment using a separate serving cell ID will be described.
MAC CE (2040)는Serving Cell ID 1 필드 (2041), Serving Cell ID 2 필드 (2042), CORESET ID 1 필드 (2043), CORESET ID 2 필드 (2044), TCI state ID 1 필드 (2045), TCI state ID 2 필드 (2046)를 포함할 수 있다. MAC CE 2040 is Serving Cell ID 1 field 2041, Serving Cell ID 2 field 2042, CORESET ID 1 field 2043, CORESET ID 2 field 2044, TCI state ID 1 field 2045, TCI It may include a state ID 2 field 2046 .
본 개시의 일 실시예에 따르면, 각각 Serving Cell ID 1 필드 (2041)는 5bits, Serving Cell ID 2 필드 (2042)는 5bits, CORESET ID 1 필드 (2043)는 4bits (또는 5bits), CORESET ID 2 필드 (2044)는 4bits (또는 5bits), TCI state ID 1 필드 (2045)는 7bits, TCI state ID 2 필드 (2046)는 7bits를 가질 수 있다. 그러나 상술한 필드의 순서와 각 필드의 비트 수는 예시에 불과하며 이에 한정되는 것은 아니다. 또한 상기 MAC CE에 상기의 필드 (또는 정보)들이 모두 포함되어야 하는 것은 아니며, 일부 필드가 생략될 수 있고 필드가 추가될 수도 있다.According to an embodiment of the present disclosure, each of the Serving Cell ID 1 field 2041 is 5 bits, the Serving Cell ID 2 field 2042 is 5 bits, the CORESET ID 1 field 2043 is 4 bits (or 5 bits), and the CORESET ID 2 field 2044 may have 4 bits (or 5 bits), the TCI state ID 1 field 2045 may have 7 bits, and the TCI state ID 2 field 2046 may have 7 bits. However, the order of the fields and the number of bits of each field are merely examples and are not limited thereto. In addition, not all fields (or information) should be included in the MAC CE, and some fields may be omitted or fields may be added.
단말은 Serving Cell ID 1 필드 (2041)가 지시하는 셀이 제 1 셀임을 확인할 수 있으며, Serving Cell ID 2 필드 (2042)가 지시하는 셀이 제 2 셀임을 확인할 수 있다.The UE may confirm that the cell indicated by the Serving Cell ID 1 field 2041 is the first cell, and may confirm that the cell indicated by the Serving Cell ID 2 field 2042 is the second cell.
이때 단말은, 제 1 TRP에서 CORESET ID 1 필드 (2043)가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은, TCI state ID 1 필드 (2045)가 지시하는 TCI state 와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 동시에, 제 2 TRP에서 CORESET ID 2 필드 (2044)가 지시하는 CORESET의 자원을 통하여 PDCCH가 전송되는 빔은TCI state ID 2 필드 (2046)가 지시하는 TCI state ID 와 연계되어 설정된 RS와 같은 빔으로 전송된다는 것을 확인할 수 있다. 이때 TCI state ID는 RRC의 QCL-info의 설정에 따라 반영될 수 있다. At this time, the UE, in the first TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 1 field 2043 is linked to the TCI state indicated by the TCI state ID 1 field 2045. It can be confirmed that the beam is transmitted. At the same time, in the second TRP, the beam through which the PDCCH is transmitted through the CORESET resource indicated by the CORESET ID 2 field 2044 is the same beam as the RS set in association with the TCI state ID indicated by the TCI state ID 2 field 2046. can confirm that it is being transmitted. In this case, the TCI state ID may be reflected according to the setting of QCL-info of RRC.
본 개시의 일 실시예에 따르면, 하나의 셀 (제 1 셀 또는 제 2 셀)에 대해 하나의 CORESET ID 필드와 하나의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 하나의 PDCCH 전송 빔의 변경을 지시하는 것으로 해석할 수 있다. 또는 하나의 셀에 대해 복수의 CORESET 필드와 복수의 TCI state ID 필드를 포함하는 MAC CE 메시지를 수신하면 단말은 하나의 셀에 대한 각 CORESET에 대한 PDCCH 전송 빔이 각 TCI state로 업데이트 (다시 말해 각 TCI state와 연계되어 설정된 RS와 같은 빔으로 전송) 되는 것으로 해석할 수 있다.According to an embodiment of the present disclosure, when a MAC CE message including one CORESET ID field and one TCI state ID field is received for one cell (first cell or second cell), one PDCCH transmission beam It can be interpreted as indicating a change. Alternatively, upon receiving a MAC CE message including a plurality of CORESET fields and a plurality of TCI state ID fields for one cell, the UE updates the PDCCH transmission beam for each CORESET for one cell to each TCI state (that is, each It can be interpreted as being transmitted through the same beam as the RS configured in connection with the TCI state).
또는, 하나의 CORESET ID에 하나의 TCI state ID가 대응되는 예를 설명하였으나 복수의 TCI state ID가 포함되는 것도 가능하다. 즉, 하나의 CORESET ID에서 복수의 TCI state필드가 구성되면 단말은 복수의 TCI state가 설정되는 것으로 판단할 수 있다. 예를 들어, 복수의 TCI state ID는 하나의 CORESET에서 복수의 search space (set)에 대응되어 적용되도록 설정되는 것으로 판단할 수 있다.Alternatively, although an example has been described in which one TCI state ID corresponds to one CORESET ID, it is also possible to include a plurality of TCI state IDs. That is, when a plurality of TCI state fields are configured in one CORESET ID, the UE may determine that a plurality of TCI states are set. For example, it may be determined that a plurality of TCI state IDs are set to be applied to correspond to a plurality of search spaces (sets) in one CORESET.
한편, 본 개시의 또 다른 실시예로, 단말은 상기 설정 메시지는 제 1 TRP에서 수신하고, 제 1 TRP 및 제 2 TRP에서 각각 PDCCH가 전송되는 빔의 변경을 동시에 지시하기 위한 MAC CE는 제 2 TRP로부터 수신하는 것도 가능하다. 이를 위해서는 상술한 바와 같이 제 2 셀에 대한 PDCCH 모니터링을 수행하고, 상기 PDCCH를 통해 수신한 DCI가 스케쥴링하는 PDSCH를 통해 제 2 TRP로부터 상기 MAC CE를 수신할 수 있다.On the other hand, in another embodiment of the present disclosure, the UE receives the configuration message in the first TRP, and the MAC CE for simultaneously indicating the change of the beam through which the PDCCH is transmitted in the first TRP and the second TRP is the second It is also possible to receive from TRP. To this end, as described above, PDCCH monitoring for the second cell may be performed, and the MAC CE may be received from the second TRP through the PDSCH scheduled by the DCI received through the PDCCH.
도 21은 본 개시의 제 2 실시예에 따라 하나의 제어 메시지를 통해 제 1 셀 및 제 2 셀의 빔 변경을 동시에 지시하는 방법을 도시한 순서도이다.21 is a flowchart illustrating a method of simultaneously instructing to change beams of a first cell and a second cell through one control message according to a second embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 제 1 노드는 상기 제 1 셀을 통해 단말과 데이터를 송수신하는 노드 (예를 들면, TRP)를 의미할 수 있으며, 제 2 노드는 상기 제 1 노드와 물리적으로 구분 또는 분리되어 있고 상기 제 1 셀과 다른 상기 제 2 셀을 통해 단말과 데이터를 송수신하는 노드 (예를 들면, TRP)를 의미할 수 있다.According to an embodiment of the present disclosure, the first node may mean a node (eg, TRP) that transmits and receives data to and from the terminal through the first cell, and the second node is physically connected to the first node. It may refer to a node (eg, TRP) that is divided or separated and transmits and receives data to and from the terminal through the second cell different from the first cell.
제 1 노드 (2110)은 S2105 단계에서, 제어 메시지 (예를 들면 MAC CE)를 단말 (2100)로 전송할 수 있다.The first node 2110 may transmit a control message (eg, MAC CE) to the terminal 2100 in step S2105 .
단말 (2100)은 S2110 단계에서, 상기 제어 메시지에 기반하여, 제 1 노드 (2110) 및 제 2 노드 (2120) 중 적어도 하나에서 각 PDCCH가 전송되는 빔의 변경을 확인할 수 있다.In step S2110 , the terminal 2100 may check a change in a beam through which each PDCCH is transmitted from at least one of the first node 2110 and the second node 2120 based on the control message.
본 개시의 일 실시예에 따르면, 단말 (2100)은 빔의 변경을 확인한 후에, 단말 (2100)은 PDCCH가 전송되는 빔의 변경 관련 제어 메시지(예를 들면 MAC CE)를 확인하고 이에 대한 응답 메시지를 제 1 노드 (2110)로 전송할 수 있다 (도시하지 않음). 이때 상기 응답 메시지는 MAC CE 포맷으로 정의될 수 있다. 예를 들면, 단말 (2100)은, 상기 응답 메시지 (MAC CE)와 상응하는 logical channel ID (LCID)를 포함하는 MAC subheader (서브헤더) 및 상기 응답 메시지 (MAC CE)를 포함하는, MAC sub PDU를 제 1 노드 (2110)로 전송할 수 있다.According to an embodiment of the present disclosure, after the terminal 2100 confirms the change of the beam, the terminal 2100 checks the change-related control message (eg, MAC CE) of the beam through which the PDCCH is transmitted, and a response message thereto may be transmitted to the first node 2110 (not shown). In this case, the response message may be defined in MAC CE format. For example, the terminal 2100 includes a MAC subheader (subheader) including a logical channel ID (LCID) corresponding to the response message (MAC CE) and the MAC sub PDU including the response message (MAC CE) may be transmitted to the first node 2110 .
또는 본 개시의 일 실시예에 따르면, 단말 (2100)은 상기의 응답 메시지를 전송하지 않고 이후의 동작을 수행할 수도 있다.Alternatively, according to an embodiment of the present disclosure, the terminal 2100 may perform the subsequent operation without transmitting the above response message.
제 1 노드 (2110) 또는 제 2 노드 (2120)는 S2115 단계에서, 변경되는 빔을 통해 단말 (2100)로 PDCCH를 전송할 수 있다. 단말 (2100)은 변경되는 빔을 통해 제 1 노드 (2110) 및 제 2 노드 (2120) 중 적어도 하나로부터 각 전송되는 PDCCH를 수신할 수 있다.The first node 2110 or the second node 2120 may transmit the PDCCH to the terminal 2100 through the changed beam in step S2115. The terminal 2100 may receive each transmitted PDCCH from at least one of the first node 2110 and the second node 2120 through the changed beam.
또는, 제 1 노드 (2110)는 상기 응답 메시지에 기반하여 상기 제어 메시지 (예를 들면 MAC CE)가 상기 단말 (2100)에서 성공적으로 수신되었음을 확인하고, 제 1 노드 (2110) 또는 제 2 노드 (2120)는 S2115 단계에서, 변경되는 빔을 통해 PDCCH를 단말 (2100)로 전송할 수 있다. 단말 (2100)은 변경되는 빔을 통해 제 1 노드 (2110) 및 제 2 노드 (2120) 중 적어도 하나로부터 각 전송되는 PDCCH를 수신할 수 있다. 이때 만약 제 1 셀과 제 2 셀이 서로 다른 기지국에서 운용되는 셀인 경우에는, 제 1 노드 (2110)는 별도의 메시지 (예를 들면 X2 interface 메시지)를 통해 제 2 노드 (2120)로 상기 응답 메시지를 전달하고, 제 2 노드 (2120)는 이에 기반하여 변경되는 빔을 통해 PDCCH를 단말 (1900)로 전송할 수 있다.Alternatively, the first node 2110 confirms that the control message (eg, MAC CE) has been successfully received by the terminal 2100 based on the response message, and the first node 2110 or the second node ( The 2120 may transmit the PDCCH to the terminal 2100 through the changed beam in step S2115. The terminal 2100 may receive each transmitted PDCCH from at least one of the first node 2110 and the second node 2120 through the changed beam. At this time, if the first cell and the second cell are cells operated by different base stations, the first node 2110 sends the response message to the second node 2120 through a separate message (eg, an X2 interface message). is transmitted, and the second node 2120 may transmit the PDCCH to the terminal 1900 through a beam changed based on this.
한편, 본 개시의 또 다른 실시예로, 단말은 상기 설정 메시지는 제 1 노드 (2110)에서 수신하고, 제 1 노드 (2110) 및 제 2 노드 (2120) 중 적어도 하나로부터 각 PDCCH가 전송되는 빔의 변경을 지시하기 위한 MAC CE는 제 2 노드 (2120)로부터 수신하는 방법 역시 가능하다. 이를 위해서는 상술한 바와 같이 제 2 셀에 대한 PDCCH 모니터링을 수행하고, 상기 PDCCH를 통해 수신한 DCI가 스케쥴링하는 PDSCH를 통해 제 2 노드 (2120)로부터 상기 MAC CE를 수신할 수 있다.Meanwhile, in another embodiment of the present disclosure, the terminal receives the configuration message from the first node 2110, and each PDCCH is transmitted from at least one of the first node 2110 and the second node 2120. A method of receiving the MAC CE for instructing the change of m from the second node 2120 is also possible. To this end, as described above, PDCCH monitoring for the second cell may be performed, and the MAC CE may be received from the second node 2120 through the PDSCH scheduled by the DCI received through the PDCCH.
도 22는 본 개시의 제 1 실시예에 따른 단말의 동작을 도시한 순서도이다.22 is a flowchart illustrating an operation of a terminal according to the first embodiment of the present disclosure.
단말은 S2205 단계에서, 기지국으로 Multi-TRP 동작과 관련된 단말 능력 정보 (예를 들면 UE capability)를 기지국으로 보고할 수 있다. 한편 기지국이 단말 능력을 미리 수신했거나, 기 저장하고 있는 경우, S2205 단계는 생략될 수 있다.In step S2205, the terminal may report to the base station the terminal capability information (eg, UE capability) related to the multi-TRP operation to the base station. On the other hand, when the base station has previously received or already stored the terminal capability, step S2205 may be omitted.
단말은 S2210 단계에서, (Inter-cell) Multi TRP 동작과 관련된 설정 정보를 포함하는 설정 메시지 (예를 들면 RRC 메시지)를 수신할 수 있다.In step S2210, the UE may receive a configuration message (eg, RRC message) including configuration information related to (Inter-cell) Multi TRP operation.
단말은 S2215 단계에서, 제 1 노드를 통해 제어 메시지 (예를 들면, MAC CE)를 수신할 수 있다.In step S2215, the terminal may receive a control message (eg, MAC CE) through the first node.
단말은 S2220 단계에서, 상기 설정 메시지 또는 상기 제어 메시지에 포함된 정보에 기반하여, 제 2 노드에서 PDCCH가 전송되는 빔의 변경을 확인하고, 변경되는 빔을 통해 제 2 노드로부터 PDCCH를 수신할 수 있다.In step S2220, based on the information included in the configuration message or the control message, the terminal checks the change of the beam through which the PDCCH is transmitted in the second node, and can receive the PDCCH from the second node through the changed beam. there is.
도 23은 본 개시의 제 2 실시예에 따른 단말의 동작을 도시한 순서도이다.23 is a flowchart illustrating an operation of a terminal according to a second embodiment of the present disclosure.
단말은 S2305 단계에서, 기지국으로 Multi-TRP 동작 관련 단말 능력 정보 (예를 들면 UE capability)를 기지국으로 보고할 수 있다. 한편 기지국이 단말 능력을 미리 수신했거나, 기 저장하고 있는 경우, S2305 단계는 생략될 수 있다.The terminal may report to the base station multi-TRP operation-related terminal capability information (eg, UE capability) to the base station in step S2305. On the other hand, if the base station has previously received or already stored the terminal capability, step S2305 may be omitted.
단말은 S2310 단계에서, (Inter-cell) Multi TRP 동작과 관련된 설정 정보를 포함하는 설정 메시지 (예를 들면 RRC 메시지)를 수신할 수 있다.In step S2310, the UE may receive a configuration message (eg, RRC message) including configuration information related to the (Inter-cell) Multi TRP operation.
단말은 S2315 단계에서, 제 1 노드를 통해 제어 메시지 (예를 들면, MAC CE)를 수신할 수 있다.In step S2315, the terminal may receive a control message (eg, MAC CE) through the first node.
단말은 S2320 단계에서, 상기 설정 메시지 또는 상기 제어 메시지에 포함된 정보에 기반하여, 제 1 노드 및 제 2 노드 중 적어도 하나로부터 각 PDCCH가 전송되는 빔의 변경을 확인하고, 변경되는 빔을 통해 제 1 노드 및 제 2 노드 중 적어도 하나로부터 PDCCH를 수신할 수 있다.In step S2320, the terminal checks the change of the beam through which each PDCCH is transmitted from at least one of the first node and the second node based on the information included in the configuration message or the control message, and uses the changed beam The PDCCH may be received from at least one of the first node and the second node.
도 24은 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 순서도이다.24 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
본 개시에서 serving cell을 간단히 제 1 셀로 칭할 수 있으며, non-serving cell을 간단히 제 2 셀로 칭할 수 있다. 이때, 제 1 셀 및 제 2 셀은 복수의 기지국이 운용하는 각 셀을 의미할 수도 있고, 하나의 기지국에서 운용하는 복수의 셀을 의미할 수도 있다. 제 1 노드는 제 1 셀을 통해 단말과 데이터를 송수신하는 TRP를 의미할 수 있으며, 제 2 노드는 상기 제 1 노드와 물리적으로 구분 또는 분리되어 있고 상기 제 1 셀과 다른 제 2 셀을 통해 단말과 데이터를 송수신하는 TRP를 의미할 수 있다.In the present disclosure, a serving cell may be simply referred to as a first cell, and a non-serving cell may be simply referred to as a second cell. In this case, the first cell and the second cell may mean each cell operated by a plurality of base stations, or may mean a plurality of cells operated by one base station. The first node may mean a TRP for transmitting and receiving data to and from the terminal through the first cell, and the second node is physically separated or separated from the first node and is a terminal through a second cell different from the first cell and TRP for transmitting and receiving data.
기지국은 S2405 단계에서, Multi-TRP 동작 관련 단말 능력 정보 (예를 들면 UE capability)를 수신할 수 있다. 한편 기지국이 단말 능력을 미리 수신했거나, 기 저장하고 있는 경우, S2405 단계는 생략될 수 있다.The base station may receive multi-TRP operation-related terminal capability information (eg, UE capability) in step S2405. On the other hand, if the base station has previously received or already stored the terminal capability, step S2405 may be omitted.
기지국은 S2410 단계에서, (Inter-cell) Multi TRP 동작과 관련된 설정 정보를 포함하는 설정 메시지 (예를 들면 RRC 메시지)를 전송할 수 있다.The base station may transmit a configuration message (eg, an RRC message) including configuration information related to the (Inter-cell) Multi TRP operation in step S2410.
기지국은 S2415 단계에서, 제어 메시지 (예를 들면, MAC CE)를 전송할 수 있다. 상기 제어 메시지는 제 2 노드에서 PDDCH가 전송되는 빔의 변경을 단말에게 지시하는데 사용될 수 있다.The base station may transmit a control message (eg, MAC CE) in step S2415. The control message may be used to instruct the UE to change the beam through which the PDDCH is transmitted in the second node.
상기 제 1 셀 및 제 2 셀이 상기 기지국에서 운용하는 복수의 셀인 경우, 상기 기지국은 제 2 노드에서 변경되는 빔을 통해 PDCCH를 단말에게 전송할 수 있다.When the first cell and the second cell are a plurality of cells operated by the base station, the base station may transmit a PDCCH to the terminal through a beam changed by the second node.
도 25는 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다. 25 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
도 25를 참고하면, 단말은 송수신부 (2510), 제어부 (2520), 저장부 (2530)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 25 , the terminal may include a transceiver 2510 , a controller 2520 , and a storage 2530 . In the present invention, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부 (2510)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(2510)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다. The transceiver 2510 may transmit/receive signals to and from other network entities. The transceiver 2510 may receive, for example, system information from a base station, and may receive a synchronization signal or a reference signal.
제어부 (2520)은 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2520)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부(2520)는 본 발명의 실시예에 따라, inter-cell Multi TRP 동작에서 각 TRP의 PDCCH 빔 변경 또는 업데이트 동작을 지시하는 제어 메시지를 수신하도록 제어할 수 있다. 또한, 2개 이상의 서로 다른 셀 (예를 들면, serving cell, non-serving cell)에 대한 각 TRP의 PDCCH 빔 변경 또는 업데이트 동작을 한번에 지시하는 제어 메시지를 수신하도록 제어할 수 있다. The controller 2520 may control the overall operation of the terminal according to the embodiment proposed in the present invention. For example, the controller 2520 may control a signal flow between blocks to perform an operation according to the above-described flowchart. Specifically, according to an embodiment of the present invention, the controller 2520 may control to receive a control message instructing a PDCCH beam change or update operation of each TRP in an inter-cell multi TRP operation. In addition, it is possible to control to receive a control message indicating a PDCCH beam change or update operation of each TRP for two or more different cells (eg, serving cell, non-serving cell) at once.
저장부(2530)는 상기 송수신부 (2510)를 통해 송수신되는 정보 및 제어부 (2520)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부 (2530)는 inter-cell Multi TRP 동작을 위한 설정 정보 (예를 들면 RRC 메시지에 포함되는 정보) 등을 저장할 수 있다.The storage unit 2530 may store at least one of information transmitted and received through the transceiver 2510 and information generated through the control unit 2520 . For example, the storage unit 2530 may store configuration information (eg, information included in an RRC message) for an inter-cell Multi TRP operation.
도 26는 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다. 26 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
도 26를 참고하면, 기지국은 송수신부 (2610), 제어부 (2620), 저장부 (2630)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 26 , the base station may include a transceiver 2610 , a control unit 2620 , and a storage unit 2630 . In the present invention, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부 (2610)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(2610)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다. The transceiver 2610 may transmit/receive signals to and from other network entities. The transceiver 2610 may transmit, for example, system information to the terminal, and may transmit a synchronization signal or a reference signal.
제어부 (2620)은 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2620)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부 (2620)는 본 발명의 실시예에 따라 inter-cell Multi TRP 동작에서 각 TRP의 PDCCH 빔 변경 또는 업데이트 동작을 지시하는 제어 메시지를 전송하도록 제어할 수 있다. 또한, 2개 이상의 서로 다른 셀 (예를 들면, serving cell, non-serving cell)에 대한 각 TRP의 PDCCH 빔 변경 또는 업데이트 동작을 한번에 지시하는 제어 메시지를 전송하도록 제어할 수 있다. The controller 2620 may control the overall operation of the base station according to the embodiment proposed in the present invention. For example, the controller 2620 may control a signal flow between blocks to perform an operation according to the above-described flowchart. Specifically, the controller 2620 may control to transmit a control message instructing a PDCCH beam change or update operation of each TRP in an inter-cell Multi TRP operation according to an embodiment of the present invention. In addition, it is possible to control to transmit a control message indicating a PDCCH beam change or update operation of each TRP for two or more different cells (eg, serving cell, non-serving cell) at once.
저장부(2630)는 상기 송수신부 (2610)를 통해 송수신되는 정보 및 제어부 (2520)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부 (2630)는 inter-cell Multi TRP 동작을 위한 설정 정보 (예를 들면 RRC 메시지에 포함되는 정보) 등을 저장할 수 있다.The storage unit 2630 may store at least one of information transmitted and received through the transceiver 2610 and information generated through the control unit 2520 . For example, the storage unit 2630 may store configuration information (eg, information included in an RRC message) for an inter-cell Multi TRP operation.
본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.The embodiments of the present invention disclosed in the present specification and drawings are merely provided for specific examples in order to easily explain the technical contents of the present invention and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (15)

  1. 무선 통신 시스템의 단말의 방법에 있어서, In the method of a terminal of a wireless communication system,
    셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 수신하는 단계;Receiving a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation;
    상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)로부터 제어 메시지를 수신하는 단계;receiving a control message from a node of a first cell related to the inter-cell multi-TRP operation;
    상기 설정 메시지 및 상기 제어 메시지에 기반하여, 상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경을 확인하는 단계; 및checking a change in a beam through which a physical downlink control channel (PDCCH) is transmitted from a node of a second cell related to the inter-cell multi-TRP operation based on the configuration message and the control message; and
    상기 확인 결과에 기반하여 상기 변경되는 빔을 통해 상기 제2셀의 노드로부터 상기 PDCCH를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.and receiving the PDCCH from the node of the second cell through the changed beam based on the confirmation result.
  2. 제1항에 있어서, According to claim 1,
    상기 제어 메시지는, 제어 자원 세트 (control resource set, CORESET)에 대한 정보 및 전송 설정 지시자 상태 (transmission configuration indicator state, TCI state)에 대한 정보를 포함하고,The control message includes information on a control resource set (CORESET) and information on a transmission configuration indicator state (transmission configuration indicator state, TCI state),
    상기 PDCCH는 상기 CORESET에 대한 정보와 관련되고,The PDCCH is related to the information on the CORESET,
    상기 변경되는 빔은 상기 TCI state에 대한 정보에 상응하고,The changed beam corresponds to information on the TCI state,
    상기 설정 메시지는, 무선 자원 제어 (radio resource control, RRC) 메시지이고, The configuration message is a radio resource control (radio resource control, RRC) message,
    상기 제어 메시지는, 매체 엑세스 제어 제어 요소 (medium access control control element, MAC CE)인 것을 특징으로 하는 방법.The control message is a method, characterized in that the medium access control control element (medium access control control element, MAC CE).
  3. 제1항에 있어서, According to claim 1,
    상기 제2셀은 상기 설정 메시지 및 상기 제어 메시지 중 적어도 하나에 기반하여 확인되는 물리적 셀 아이디 (physical cell ID, PCI)와 상응하는 것을 특징으로 하는 방법.The method of claim 1, wherein the second cell corresponds to a physical cell ID (PCI) identified based on at least one of the configuration message and the control message.
  4. 제1항에 있어서, According to claim 1,
    상기 제2셀은 상기 제어 메시지에 포함된 서빙 셀 인덱스 (serving cell index)와 상응하는 것을 특징으로 하는 방법.The second cell method, characterized in that it corresponds to a serving cell index (serving cell index) included in the control message.
  5. 제1항에 있어서, According to claim 1,
    상기 제어 메시지는, 상기 제1셀의 노드로부터 PDCCH 가 전송되는 빔의 변경에 대한 정보를 더 포함하고, The control message further includes information on a change in a beam through which the PDCCH is transmitted from the node of the first cell,
    상기 설정 메시지 및 상기 제어 메시지에 기반하여, 상기 제1셀의 노드 및 상기 제2셀의 노드 중 적어도 하나로부터 PDCCH가 전송되는 빔의 변경이 확인되는 것을 특징으로 하는 방법.Based on the configuration message and the control message, it is characterized in that the change of the beam through which the PDCCH is transmitted is confirmed from at least one of the node of the first cell and the node of the second cell.
  6. 무선 통신 시스템의 기지국의 방법에 있어서, In the method of a base station of a wireless communication system,
    셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 단말로 전송하는 단계; 및Transmitting a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation to the terminal; and
    상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)를 통해 제어 메시지를 상기 단말로 전송하는 단계를 포함하고,Transmitting a control message to the terminal through a node of a first cell related to the inter-cell multi-TRP operation,
    상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경은 상기 설정 메시지에 포함된 설정 정보 및 상기 제어 메시지에 포함된 제어 정보에 기반하는 것을 특징으로 하는 방법.The change in the beam through which a physical downlink control channel (PDCCH) is transmitted from the node of the second cell related to the inter-cell multi-TRP operation includes the configuration information included in the configuration message and the control message. A method, characterized in that it is based on the control information.
  7. 제6항에 있어서, 7. The method of claim 6,
    상기 제어 메시지는, 제어 자원 세트 (control resource set, CORESET)에 대한 정보, 전송 설정 지시자 상태 (transmission configuration indicator state, TCI state)에 대한 정보, 및 상기 제1셀의 노드로부터 PDCCH 가 전송되는 빔의 변경에 대한 정보를 포함하고,The control message includes information on a control resource set (CORESET), information on a transmission configuration indicator state (TCI state), and a beam through which the PDCCH is transmitted from the node of the first cell. including information about the change;
    상기 PDCCH는 상기 CORESET에 대한 정보와 관련되고,The PDCCH is related to the information on the CORESET,
    상기 변경되는 빔은 상기 TCI state에 대한 정보에 상응하고,The changed beam corresponds to information on the TCI state,
    상기 제1셀의 노드 및 상기 제2셀의 노드 중 적어도 하나로부터 PDCCH가 전송되는 빔의 변경은 상기 설정 메시지 및 상기 제어 메시지에 기반하고,The change of the beam through which the PDCCH is transmitted from at least one of the node of the first cell and the node of the second cell is based on the configuration message and the control message,
    상기 설정 메시지는, 무선 자원 제어 (radio resource control, RRC) 메시지이고, The configuration message is a radio resource control (radio resource control, RRC) message,
    상기 제어 메시지는, 매체 엑세스 제어 제어 요소 (medium access control control element, MAC CE)인 것을 특징으로 하는 방법.The control message is a method, characterized in that the medium access control control element (medium access control control element, MAC CE).
  8. 무선 통신 시스템의 단말에 있어서,In the terminal of a wireless communication system,
    송수신부; 및transceiver; and
    셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 수신하도록 상기 송수신부를 제어하고, 상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)로부터 제어 메시지를 수신하도록 상기 송수신부를 제어하고, 상기 설정 메시지 및 상기 제어 메시지에 기반하여, 상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경을 확인하도록 제어하고, 상기 확인 결과에 기반하여 상기 변경되는 빔을 통해 상기 제2셀의 노드로부터 상기 PDCCH를 수신하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 단말.Controls the transceiver to receive a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation, and controls the transceiver of the first cell related to the inter-cell multi-TRP operation. Controls the transceiver to receive a control message from a node, and based on the configuration message and the control message, a physical downlink control channel (physical downlink) from the node of the second cell related to the inter-cell multi-TRP operation A control channel (PDCCH) including a control unit that controls to confirm a change in a transmitted beam, and controls the transceiver to receive the PDCCH from a node of the second cell through the changed beam based on a result of the confirmation A terminal, characterized in that.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 제어 메시지는, 제어 자원 세트 (control resource set, CORESET)에 대한 정보 및 전송 설정 지시자 상태 (transmission configuration indicator state, TCI state)에 대한 정보를 포함하고,The control message includes information on a control resource set (CORESET) and information on a transmission configuration indicator state (transmission configuration indicator state, TCI state),
    상기 PDCCH는 상기 CORESET에 대한 정보와 관련되고,The PDCCH is related to the information on the CORESET,
    상기 변경되는 빔은 상기 TCI state에 대한 정보에 상응하고,The changed beam corresponds to information on the TCI state,
    상기 설정 메시지는, 무선 자원 제어 (radio resource control, RRC) 메시지이고, The configuration message is a radio resource control (radio resource control, RRC) message,
    상기 제어 메시지는, 매체 엑세스 제어 제어 요소 (medium access control control element, MAC CE)인 것을 특징으로 하는 단말.The control message is a terminal, characterized in that the medium access control control element (medium access control control element, MAC CE).
  10. 제8항에 있어서,9. The method of claim 8,
    상기 제2셀은 상기 설정 메시지 및 상기 제어 메시지 중 적어도 하나에 기반하여 확인되는 물리적 셀 아이디 (physical cell ID, PCI)와 상응하는 것을 특징으로 하는 단말.The second cell corresponds to a physical cell ID (PCI) that is identified based on at least one of the configuration message and the control message.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 제2셀은 상기 제어 메시지에 포함된 서빙 셀 인덱스 (serving cell index)와 상응하는 것을 특징으로 하는 단말.The second cell terminal, characterized in that it corresponds to a serving cell index (serving cell index) included in the control message.
  12. 제8항에 있어서,9. The method of claim 8,
    상기 제어 메시지는, 상기 제1셀의 노드로부터 PDCCH 가 전송되는 빔의 변경에 대한 정보를 더 포함하고, The control message further includes information on a change in a beam through which the PDCCH is transmitted from the node of the first cell,
    상기 설정 메시지 및 상기 제어 메시지에 기반하여, 상기 제1셀의 노드 및 상기 제2셀의 노드 중 적어도 하나로부터 PDCCH가 전송되는 빔의 변경이 확인되는 것을 특징으로 하는 단말.Based on the configuration message and the control message, the terminal characterized in that the change of the beam through which the PDCCH is transmitted is confirmed from at least one of the node of the first cell and the node of the second cell.
  13. 무선 통신 시스템의 기지국에 있어서,In a base station of a wireless communication system,
    송수신부; 및transceiver; and
    셀 간 (inter-cell) 다중 송수신 포인트 (multi-TRP (transmission reception point)) 동작 (operation)과 관련된 설정 메시지를 단말로 전송하도록 상기 송수신부를 제어하고, 상기 셀 간 multi-TRP 동작과 관련된 제1셀의 노드 (node)를 통해 제어 메시지를 상기 단말로 전송하도록 상기 송수신부를 제어하는 제어부를 포함하고,Controls the transceiver to transmit a configuration message related to an inter-cell multi-transmission reception point (multi-TRP) operation to the terminal, and controls the transceiver to transmit a first information related to the inter-cell multi-TRP operation A control unit for controlling the transceiver to transmit a control message to the terminal through a node of a cell,
    상기 셀 간 multi-TRP 동작과 관련된 제2셀의 노드로부터 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)이 전송되는 빔의 변경은 상기 설정 메시지에 포함된 설정 정보 및 상기 제어 메시지에 포함된 제어 정보에 기반하는 것을 특징으로 하는 기지국.The change in the beam through which a physical downlink control channel (PDCCH) is transmitted from the node of the second cell related to the inter-cell multi-TRP operation includes the configuration information included in the configuration message and the control message. Base station, characterized in that based on the control information.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 제어 메시지는, 제어 자원 세트 (control resource set, CORESET)에 대한 정보 및 전송 설정 지시자 상태 (transmission configuration indicator state, TCI state)에 대한 정보를 포함하고,The control message includes information on a control resource set (CORESET) and information on a transmission configuration indicator state (transmission configuration indicator state, TCI state),
    상기 PDCCH는 상기 CORESET에 대한 정보와 관련되고,The PDCCH is related to the information on the CORESET,
    상기 변경되는 빔은 상기 TCI state에 대한 정보에 상응하고,The changed beam corresponds to information on the TCI state,
    상기 설정 메시지는, 무선 자원 제어 (radio resource control, RRC) 메시지이고, The configuration message is a radio resource control (radio resource control, RRC) message,
    상기 제어 메시지는, 매체 엑세스 제어 제어 요소 (medium access control control element, MAC CE)인 것을 특징으로 하는 기지국.The control message is a base station, characterized in that the medium access control control element (medium access control control element, MAC CE).
  15. 제13항에 있어서,14. The method of claim 13,
    상기 제어 메시지는, 상기 제1셀의 노드로부터 PDCCH 가 전송되는 빔의 변경에 대한 정보를 더 포함하고, The control message further includes information on a change in a beam through which the PDCCH is transmitted from the node of the first cell,
    상기 제1셀의 노드 및 상기 제2셀의 노드 중 적어도 하나로부터 PDCCH가 전송되는 빔의 변경은 상기 설정 메시지 및 상기 제어 메시지에 기반하는 것을 특징으로 하는 기지국.The change of the beam through which the PDCCH is transmitted from at least one of the node of the first cell and the node of the second cell is based on the configuration message and the control message.
PCT/KR2021/014704 2020-10-21 2021-10-20 Method and apparatus for managing beam for cell-to-cell cooperative communication in wireless communication system WO2022086169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200137062A KR20220052758A (en) 2020-10-21 2020-10-21 A method and apparatus for beam management for inter-cell coordinated communication in a wireless communication system
KR10-2020-0137062 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022086169A1 true WO2022086169A1 (en) 2022-04-28

Family

ID=81290899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014704 WO2022086169A1 (en) 2020-10-21 2021-10-20 Method and apparatus for managing beam for cell-to-cell cooperative communication in wireless communication system

Country Status (2)

Country Link
KR (1) KR20220052758A (en)
WO (1) WO2022086169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230163831A1 (en) * 2021-11-23 2023-05-25 Qualcomm Incorporated Beam switching in near-field operations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187047A1 (en) * 2016-10-19 2020-06-11 Huawei Technologies Co., Ltd. Method and apparatus for transmitting buffer status report

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187047A1 (en) * 2016-10-19 2020-06-11 Huawei Technologies Co., Ltd. Method and apparatus for transmitting buffer status report

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Multi-TRP enhancements for inter-cell operation", 3GPP DRAFT; R1-2005860, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917761 *
NOKIA, NOKIA SHANGHAI BELL: "Enhancements to enable inter-cell multi-TRP operations", 3GPP DRAFT; R1-2006845, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915490 *
VIVO: "Discussion on inter-cell multi-TRP operation", 3GPP DRAFT; R1-2005365, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917390 *
XIAOMI: "Enhancement on Inter-cell Multi-TRP operations", 3GPP DRAFT; R1-2006545, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915391 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230163831A1 (en) * 2021-11-23 2023-05-25 Qualcomm Incorporated Beam switching in near-field operations
US11909496B2 (en) * 2021-11-23 2024-02-20 Qualcomm Incorporated Beam switching in near-field operations

Also Published As

Publication number Publication date
KR20220052758A (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2020032580A1 (en) Operation method of node in wireless communication system and apparatus using same method
WO2019160353A1 (en) Method and apparatus for power savings at a user equipment
WO2021060766A1 (en) Method and apparatus for changing beam of terminal in wireless communication system
WO2021040338A1 (en) Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system
WO2020032578A1 (en) Resource using method of node in wireless communication system and device using same method
WO2018203650A1 (en) Method and device for allocating resources in wireless communication system
WO2020032666A1 (en) Method and apparatus for measuring remote cross-link interference
WO2018203680A1 (en) Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method
WO2018012899A1 (en) Method and apparatus for transmitting and receiving random access preamble in wireless cellular communication system
WO2021172942A1 (en) Method and apparatus for supporting beam indication channel
WO2018203679A1 (en) Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method
WO2019050323A1 (en) A method and system for handling radio link monitoring (rlm) using bandwidth part (bwp) configurations.
WO2019027242A1 (en) Method and apparatus for detecting indication information, and methods and devices for relaying transmission
EP3685619A1 (en) Method and network node for performing data transmission and measurements on multiple bandwidth parts
WO2021066622A1 (en) Method for transmitting and receiving phase tracking reference signal in wireless communication system, and apparatus therefor
WO2021066630A1 (en) Method for transmitting and receiving phase tracking reference signal in wireless communication system, and apparatus therefor
WO2022031142A1 (en) Method and apparatus for inter-cell downlink and uplink beam indication, measurement, and reporting
EP2992626A1 (en) Methods and apparatus for device-to-device communications system
WO2020096433A1 (en) Apparatus and method for selecting radio access technology for direct communication between terminals in wireless communication system
WO2019031879A1 (en) Method for reporting channel state information in wireless communication system, and apparatus therefor
WO2021066624A1 (en) Method for transmitting and receiving pdsch in wireless communication system, and device for same
WO2021086147A1 (en) Operating method for iab node in wireless communication system, and device using method
WO2014109580A2 (en) Method for enhancing small cell
WO2022015028A1 (en) Method and apparatus for handling small data transmission in rrc_inactive state in a wireless communication system
WO2021015475A1 (en) Method and device for reporting channel state information in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883237

Country of ref document: EP

Kind code of ref document: A1