WO2022085873A1 - Thin, wide viewing angle, near-eye display device, and method for same - Google Patents

Thin, wide viewing angle, near-eye display device, and method for same Download PDF

Info

Publication number
WO2022085873A1
WO2022085873A1 PCT/KR2021/002099 KR2021002099W WO2022085873A1 WO 2022085873 A1 WO2022085873 A1 WO 2022085873A1 KR 2021002099 W KR2021002099 W KR 2021002099W WO 2022085873 A1 WO2022085873 A1 WO 2022085873A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fresnel
polarized light
display device
beam splitter
Prior art date
Application number
PCT/KR2021/002099
Other languages
French (fr)
Korean (ko)
Inventor
방기승
조영진
이병호
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210011041A external-priority patent/KR102595351B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2022085873A1 publication Critical patent/WO2022085873A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • An embodiment of the present invention relates to a near-eye display device having a wide field of view (FOV) and having a thin thickness, such as in the form of glasses, and a method therefor.
  • FOV wide field of view
  • a wearable display By combining a wearable display with real-time posture tracking technology to provide a screen as if the user is in a virtual space, the user can feel a lively experience as if they are in a virtual space. This is called Virtual Reality (VR).
  • VR Virtual Reality
  • AR Augmented Reality
  • An object of the present invention is to provide a display apparatus and method capable of providing a wide viewing angle as well as being implemented as a device in the form of glasses by reducing a volume.
  • a display panel for outputting light; a folding unit for forming an optical path using a plurality of polarizing elements; Fresnel lens array in which Fresnel lenses are arranged; and a Fresnel light collecting device formed in a Fresnel structure to form an eye box at a predetermined distance.
  • an example of a display method includes the steps of outputting light using a display panel; forming an optical path over a predetermined distance by repeatedly reflecting light over a predetermined number of times using a plurality of polarizing elements; Floating an image of a display panel over a predetermined distance using a Fresnel lens array in which a plurality of Fresnel lenses are arranged; and forming an eye box at a predetermined distance by refracting light in an eye box direction using a Fresnel light collecting device formed in a Fresnel structure.
  • a VR device in the form of glasses instead of the existing headset by securing a wide viewing angle while significantly reducing the volume of the optical system.
  • a transparent augmented reality (AR) device can be implemented in a size as small as the shape of glasses.
  • FIG. 1 is a view showing the configuration of an example of a near-eye display device according to an embodiment of the present invention
  • FIG. 2 is a view showing an example of a detailed configuration of a folding unit according to an embodiment of the present invention
  • FIG. 3 is a view showing the configuration of another embodiment of a display device according to an embodiment of the present invention.
  • FIG. 4 is a view showing an example of a prototype of a display device according to an embodiment of the present invention.
  • FIG. 5 is an enlarged view showing a layer structure of an optical system of a display device according to an embodiment of the present invention.
  • 6 and 7 are diagrams illustrating an example of an image display experiment result using a display device according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of an example of a near-eye display apparatus according to an embodiment of the present invention.
  • the display apparatus 100 includes a display panel 110 , a folding unit 120 , a Fresnel lens array 130 , and a Fresnel light collecting device 140 .
  • the display device 100 is in the form of glasses for outputting images to both eyes as shown in FIG. 4 or It can be manufactured in various forms, such as a VR device that can be worn on the head.
  • the display panel 110 may be implemented with various types of conventional panels, such as a liquid crystal display (LCD) or a light emitting diode (LED). In another embodiment, the display panel 110 may be implemented as a transparent panel as shown in FIG. 3 . The display panel may output an image for virtual reality or augmented reality.
  • LCD liquid crystal display
  • LED light emitting diode
  • the display panel 110 may be implemented as a transparent panel as shown in FIG. 3 .
  • the display panel may output an image for virtual reality or augmented reality.
  • the folding unit 120 extends the length of the transmission path of the light output from the display panel 110 beyond the physical thickness d of the folding unit 120 to reduce the thickness of the display device 100 . It is composed of a polarizing element. The light output from the display panel 110 is reflected several times within the folding unit 120 to increase the optical travel distance. An example of the detailed configuration of the folding unit 120 is shown in FIG. 2 .
  • the Fresnel lens array 130 is composed of a plurality of cells in which the Fresnel lens is present. That is, the Fresnel lens array 130 has a structure in which a plurality of Fresnel lenses are arranged. All of the Fresnel lenses may be arranged at the same interval, or all or some of the Fresnel lenses may be arranged at different intervals. The size of each cell of the Fresnel lens array 130 may be all the same or all or part of the size may be different from each other. In addition, all of the Fresnel lenses of each cell constituting the Fresnel lens array 130 may have the same shape, or some or all of them may be implemented in different shapes.
  • the Fresnel lens of each cell of the Fresnel lens array 130 has the effect that the image output from the display panel 110 appears at a distance (eg, 2m or more or infinity distance) at a distance (that is, floating) ) can contribute to making
  • a general optical element should have a very thick curved shape, but the Fresnel lens array 130 may implement a short focal length or a large refraction angle with a thin thickness. That is, when using the Fresnel lens array 130 compared to using a single lens, the focal length can be shortened, thereby reducing the volume of the display device 100 . Since the Fresnel lens array 130 can be implemented in a very thin and flat structure, it can be implemented in close contact with the folding unit 120 .
  • the Fresnel light collecting device 140 serves to collect the light output from the Fresnel lens array 130 toward the user's eyes.
  • the viewing angle can be amplified through the Fresnel lens array 130 and the Fresnel light collecting device 140 , and an eye box can be formed with an appropriate eye relief.
  • the eye box refers to an area in which a projected image can be maintained clearly.
  • the Fresnel light collecting device 140 may be implemented as a Fresnel lens or as a Fresnel prism array.
  • a Fresnel prism array is a structure in which very small prisms (ie, micro prisms) are arranged.
  • a VR optical system performs a floating function that floats the image of a display panel at a long distance and a light collection function that collects light toward the user's eyes at the same time. It is possible for one lens to simultaneously perform both functions when the focal length is long, but when the focal length is short and the f-number is small, it is difficult to satisfy both the floating function and the condensing function with one lens. In order to design a single lens that satisfies both functions, the complexity of the system increases, such as the thickness of the lens must be thick or the need for multiple layers, which makes it impossible to compose the optical system compactly. will fall out If the condensing function is not secured among the two functions, the viewing angle cannot be secured, and if the floating function is not secured, severe optical aberration occurs.
  • the present embodiment achieves the floating function and the light collecting function through the combination of the Fresnel lens array 130 and the Fresnel light collecting device 140 .
  • the Fresnel lens array 130 mainly focuses on the floating function to optimize the Fresnel lens structure of each cell
  • the Fresnel light collecting device 140 mainly focuses on the light collecting function to focus on the Fresnel lens structure or The prism structure is optimized. Therefore, it is possible to implement a floating function and a light collecting function through the combination of the Fresnel lens array 130 and the Fresnel light collecting device 140, so that it is possible to implement an optical system having a wide viewing angle and little distortion while having a very thin form factor.
  • various conventional methods for optimizing the structure of each Fresnel lens for a desired floating function and a desired light collecting function may be applied to the present embodiment.
  • the refraction-based Fresnel optical elements 130 and 140 are more capable of realizing a full-color display than diffraction-based elements such as SRG (Surface Relief Grating), HOE (Holographic Optical Element), and PBP (Pancharanam Berry Phase). It is advantageous.
  • a diffraction-based element has a very large chromatic aberration when a lens is formed because the diffraction angle is proportional to the wavelength of light.
  • multiple diffraction crystals must be multiplexed, and three laser light sources with very thin spectral characteristics must be used for each color, which greatly increases the complexity of the system.
  • the Fresnel optical elements 130 and 140 are refractive-based elements and have very small chromatic aberration compared to the diffraction-based elements. Since the chromatic aberration of the refraction-based device depends on the refractive index change characteristic with respect to the wavelength of the medium, the degree of change is very small in the visible light region, so that only one device can constitute a full-color display.
  • the Fresnel optical elements 130 and 140 are more advantageous than the diffraction-based elements in realizing a compact system.
  • optical elements 120 , 130 , and 140 of the present embodiment can be implemented in a thin structure, there is little thickness required for the optical system other than a predetermined physical distance d for forming the optical path of the folding unit 120 .
  • all optical elements can be designed in a flat structure, they can be implemented in the form of flat glasses as shown in FIG. 4 .
  • FIG. 2 is a diagram illustrating an example of a detailed configuration of a folding unit according to an embodiment of the present invention.
  • the folding unit 120 includes a circular polarizer 200 , a beam splitter 210 , a wave plate 220 , and a polarization beam splitter. ) (230).
  • the beam splitter 210 and the polarization beam splitter 230 are spaced apart by a predetermined distance to form an optical path.
  • the circularly polarized light unit 200 converts incident light into circularly polarized light.
  • the circularly polarized light unit 200 converts light (unpolarized light) emitted from the display panel 110 into circularly polarized light and outputs the converted light.
  • the beam splitter 210 transmits a portion of the incident light and reflects the rest.
  • the beam splitter 210 may reflect 50% of incident light and transmit 50% of the incident light.
  • 50% of the circularly polarized light emitted from the circularly polarized part 200 passes through the beam splitter 210 .
  • the transmittance of the beam splitter 210 may be variously modified according to an embodiment.
  • the wave plate 220 forms an optical path difference of a predetermined wavelength to the incident light.
  • the wave plate 220 may be implemented as a QWP (Quarter Wave Plate) that forms an optical path difference of 1/4 ⁇ .
  • the wave plate 220 outputs linearly polarized light obtained by shifting the circularly polarized light emitted from the beam splitter 210 by a phase of 1/4 ⁇ .
  • the polarization beam splitter 230 transmits polarized light in a predefined direction.
  • the polarization beam splitter 230 may transmit p-polarized light or transmit s-polarized light.
  • the polarization beam splitter may reflect 100% of incident light, not p-polarized light, and transmit 100% of the p-polarized light.
  • Circularly polarized light emitted from the circular polarizer 200 passes through the beam splitter 210 and is incident on the wave plate 220 , and the wave plate 220 outputs linearly polarized light having a phase shift of 1/4 ⁇ . Since the linearly polarized light emitted from the wave plate 220 is not p-polarized, it is reflected toward the wave plate 220 by the polarization beam splitter. The reflected linearly polarized light is directed toward the beam splitter 210 after a phase shift of 1/4 ⁇ occurs again while passing through the wave plate 220 .
  • the beam splitter 210 reflects the light emitted from the wave plate 220 back to the wave plate 220 .
  • the beam splitter 210 may reflect 50% of the light emitted from the wave plate 200 .
  • the light reflected back to the wave plate 220 by the beam splitter 210 has a phase shift of 1/4 ⁇ again by the wave plate 220, and as a result, the linearly polarized light transmitted through the wave plate 220 is p - It becomes polarized. Accordingly, the linearly polarized light (ie, p-polarized light) emitted from the wave plate 220 passes through the polarization beam splitter 230 and is incident on the next optical element.
  • the beam splitter 210 reflects 50% of the incident light, the energy of the p-polarized light finally output from the polarization beam splitter 230 is 25% compared to the light initially incident on the folding unit 120 . .
  • the display panel 110 Since the light emitted from the display panel 110 is repeated three times back and forth between the beam splitter 210 and the polarization beam splitter 230 of the folding unit 120, the display panel 110 and the Fresnel lens array 130. An optical distance equivalent to three times the physical distance between them can be secured. Since the physical distance of the optical system of the display apparatus 100 can be reduced by 1/3 through the folding unit 120 , the volume of the display apparatus 100 can be reduced. Since the physical distance can be further reduced through the folding unit 120 in addition to the reduced optical distance due to the use of the Fresnel lens array 130 , the distance of the optical system of the display apparatus 100 can be implemented very short.
  • FIG. 3 is a diagram showing the configuration of another embodiment of a display device according to an embodiment of the present invention.
  • the display device includes a linear polarizer 300 , a transparent screen 310 , a waveguide 320 , and a polarization-dependent optical device 330 .
  • the polarization-dependent optical device 330 includes a salpin Fresnel lens array 130 and a Fresnel light collecting device 140 in FIG. 1 .
  • the folding unit 120 may be omitted.
  • the transparent screen 310 is a transparent panel implemented with a holographic diffusion plate or a polarization-dependent diffusion plate.
  • the waveguide 320 provides a path for the light 340 to travel from the image source to the transparent screen 310 .
  • the structure and method of the waveguide 320 for transmitting the light 340 from the image source to the transparent screen may be variously modified.
  • the external light 350 of the real world and the light 345 output from the transparent screen 310 are both incident to the user's eyes. That is, when the display device of the present embodiment is used, augmented reality may be provided.
  • the external light 350 is directly incident to the user's eye, and the light 345 of the transparent screen 310 must be incident to the user's eye through a predetermined optical system salpin in FIGS. 1 and 2 .
  • the polarization directions of the external light 350 and the light 345 of the transparent screen are different from each other.
  • light output from the transparent screen 310 may be implemented as p-polarized light.
  • the transparent screen 310 may receive the p-polarized image light 340 through the waveguide 320 and output it.
  • the external light 350 in the real world may be converted into s-polarized light through the linear polarizer 300 . That is, the linear polarization unit 300 converts real-world light (unpolarized light) 350 coming from the outside of the display device into s-polarized light 360 and outputs it.
  • the linear polarizer 300 may be implemented to convert the external light 350 into p-polarized light and output it. The following embodiment will be described on the assumption that the linear polarizer 300 outputs the s-polarized light 360 .
  • the s-polarized light 360 emitted from the linear polarizer 300 passes through the transparent screen 310 and the waveguide 320 as it is and is incident on the polarization-dependent optical device 330 . Since the s-polarized light 360 is light incident from the real world, it is preferable to pass through the polarization-dependent optical element 330 as it is and enter the user's eyes.
  • the polarization-dependent optical element 330 may be implemented as a p-polarization-dependent optical element so that the s-polarization 360 can pass through the polarization-dependent optical element 330 as it is.
  • both of the Fresnel lens array 130 and the Fresnel light collecting device 140 constituting the polarization-dependent optical device 330 transmit p-polarized light and cause refraction for only s-polarized light (birefringent). ) can be implemented as a material with properties.
  • the p-polarized light 345 emitted from the transparent screen 310 is refracted by the polarization-dependent light element 330 in the salpin method shown in FIG. 1 and is incident on the user's eyes.
  • FIG. 4 is a diagram illustrating an example of a prototype of a display device according to an embodiment of the present invention.
  • the display device can be implemented in the form of thin glasses.
  • the display device of the present embodiment can be implemented with a thin thickness and light weight, portability can be greatly improved, and wearability can be improved to increase the range of a user's virtual reality utilization time and environment.
  • the display method of the present embodiment can be used to implement mixed reality (MR), a true meaning that can be worn for a long time even in daily life.
  • MR mixed reality
  • augmented reality device when used as an augmented reality device, it provides the advantage of observing images of the real world with the naked eye without digital processing and provides a wide viewing angle comparable to that of a virtual reality device, so that users can feel a deeper sense of immersion. It is possible to implement mixed reality and augmented reality without concern.
  • FIG. 5 is an enlarged view illustrating a layer structure of an optical system of a display device according to an embodiment of the present invention.
  • the thickness of the folding part implemented by QWP, a beam splitter, QWP, which serves as a circular polarizer, a spacer, glass, and a polarizing beam splitter that forms a predetermined interval to form an optical path is several mm.
  • the display device can be implemented with a thickness of about 8.8 mm including the display panel.
  • This embodiment is only one example to show that the thickness of the display device can be reduced, and the thickness of each element and the distance between the elements are not limited to this embodiment. For example, since the thickness of each element can be made thinner, it is also possible to implement a display device thinner than the present embodiment.
  • 6 and 7 are diagrams illustrating an example of an image display experiment result using a display device according to an embodiment of the present invention.
  • the left image 600 is rearranged to correspond to each cell of the Fresnel lens array of the display device to generate the right image 610, and then the right image 610 is input to the display panel of the display device .
  • various conventional methods for rearranging an image input to a display panel as shown in FIG. 6 may be applied to this embodiment.
  • the display device when the display device outputs the right image 610 of FIG. 6 through the display panel, the user's eyes see the image 700 of a wide viewing angle as shown in FIG. 7 .
  • the display device of this embodiment has a thin structure, it is possible to provide a user with a high-resolution full-color image having a viewing angle of 102 degrees * 102 degrees, and also can secure an eye box of a stable size of 8 mm * 8 mm or more.

Abstract

Disclosed are a thin, wide viewing angle, near-eye display device, and a method for same. The display device comprises: a display panel that outputs light; a folding part which forms an optical path using a plurality of polarizing elements; a fresnel lens array in which fresnel lenses are disposed at set intervals; and a fresnel collector which is formed of a fresnel structure and forms an eye box at a set distance.

Description

얇은 광시야각 근안 디스플레이장치 및 그 방법Thin wide viewing angle near-eye display device and method therefor
본 발명의 실시 예는, 광시야각(wide FOV(field of view))을 가지면서 안경 형태 등과 같은 얇은 두께를 가진 근안 디스플레이장치 및 그 방법에 관한 것이다. An embodiment of the present invention relates to a near-eye display device having a wide field of view (FOV) and having a thin thickness, such as in the form of glasses, and a method therefor.
착용형 디스플레이를 실시간 자세 추적 기술과 접목하여 마치 사용자가 가상의 공간 내에 있는 것 같은 화면을 제공하면 사용자는 가상 공간 안에 들어가 있는 것 같은 생동감 있는 경험을 느낄 수 있다. 이를 가상현실(VR, Virtual Reality)이라 한다. 또한 투명(See-through) 디스플레이를 사용하여 구현하면 사용자는 현실세계와 혼합된 가상세계를 경험할 수 있다. 이를 증강현실(AR, Augmented Reality)이라 한다.By combining a wearable display with real-time posture tracking technology to provide a screen as if the user is in a virtual space, the user can feel a lively experience as if they are in a virtual space. This is called Virtual Reality (VR). In addition, if implemented using a see-through display, users can experience the virtual world mixed with the real world. This is called Augmented Reality (AR).
시중에 판매되고 있는 VR 기기들이 대부분 헤드셋 형태의 무거운 구조를 가지고 있는 이유는 렌즈 1개를 이용한 단순한 광학계가 차지하는 큰 부피 때문이다. 렌즈로부터 렌즈 초점거리만큼의 간격을 두고 디스플레이가 위치해야 하므로 잘 설계된 광학계라 할지라도 5Cm 수준의 빈 공간이 요구된다.The reason most VR devices on the market have a heavy headset-type structure is because of the large volume occupied by a simple optical system using one lens. Since the display must be positioned at a distance from the lens to the focal length of the lens, even a well-designed optical system requires an empty space of 5cm.
본 발명의 실시 예가 이루고자 하는 기술적 과제는, 부피를 줄여 안경 형태의 디바이스로 구현할 수 있을 뿐만 아니라 넓은 시야각을 제공할 수 있는 디스플레이장치 및 그 방법을 제공하는 데 있다.SUMMARY An object of the present invention is to provide a display apparatus and method capable of providing a wide viewing angle as well as being implemented as a device in the form of glasses by reducing a volume.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 디스플레이장치의 일 예는, 광을 출력하는 디스플레이패널; 복수의 편광소자를 이용하여 광경로를 형성하는 폴딩부; 프레넬렌즈가 배열된 프레넬렌즈어레이; 및 프레넬 구조로 형성되어 일정 거리에 아이박스(eye box)를 형성하는 프레넬집광소자;를 포함한다.In order to achieve the above technical object, an example of a display device according to an embodiment of the present invention, a display panel for outputting light; a folding unit for forming an optical path using a plurality of polarizing elements; Fresnel lens array in which Fresnel lenses are arranged; and a Fresnel light collecting device formed in a Fresnel structure to form an eye box at a predetermined distance.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 디스플레이방법의 일 예는, 디스플레이패널을 이용하여 광을 출력하는 단계; 복수의 편광소자를 이용하여 광을 일정 횟수 이상 반복 반사시켜 일정 거리 이상의 광경로를 형성하는 단계; 복수의 프레넬렌즈가 배열된 프레넬렌즈어레이를 이용하여 디스플레이패널의 이미지를 기 정의된 거리 이상으로 플로팅시키는 단계; 및 프레넬 구조로 형성된 프레넬집광소자를 이용하여 광을 아이박스(eye box) 방향으로 굴절시켜 일정 거리에 아이박스를 형성하는 단계;를 포함한다.In order to achieve the above technical problem, an example of a display method according to an embodiment of the present invention includes the steps of outputting light using a display panel; forming an optical path over a predetermined distance by repeatedly reflecting light over a predetermined number of times using a plurality of polarizing elements; Floating an image of a display panel over a predetermined distance using a Fresnel lens array in which a plurality of Fresnel lenses are arranged; and forming an eye box at a predetermined distance by refracting light in an eye box direction using a Fresnel light collecting device formed in a Fresnel structure.
본 발명의 실시 예에 따르면, 광학계의 부피를 대폭 줄이면서도 넓은 시야각을 확보하여 기존 헤드셋 형태가 아닌 안경 형태의 VR 디바이스를 만들 수 있게 한다. 또한 투명한 형태의 증강현실(AR) 다바이스를 안경 형태 정도의 작은 크기로 구현할 수 있다.According to an embodiment of the present invention, it is possible to make a VR device in the form of glasses instead of the existing headset by securing a wide viewing angle while significantly reducing the volume of the optical system. In addition, a transparent augmented reality (AR) device can be implemented in a size as small as the shape of glasses.
도 1은 본 발명의 실시 예에 따른 근안 디스플레이 장치의 일 예의 구성을 도시한 도면,1 is a view showing the configuration of an example of a near-eye display device according to an embodiment of the present invention;
도 2는 본 발명의 실시 예에 따른 폴딩부의 상세 구성의 일 예를 도시한 도면,2 is a view showing an example of a detailed configuration of a folding unit according to an embodiment of the present invention;
도 3는 본 발명의 실시 예에 따른 디스플레이장치의 다른 실시 예의 구성을 도시한 도면,3 is a view showing the configuration of another embodiment of a display device according to an embodiment of the present invention;
도 4는 본 발명의 실시 예에 따른 디스플레이장치의 프로토타입의 일 예를 도시한 도면,4 is a view showing an example of a prototype of a display device according to an embodiment of the present invention;
도 5는 본 발명의 실시 예에 따른 디스플레이장치의 광학계의 레이어 구조를 확대 도시한 도면, 그리고,5 is an enlarged view showing a layer structure of an optical system of a display device according to an embodiment of the present invention;
도 6 및 도 7은 본 발명의 실시 예에 따른 디스플레이장치를 이용한 영상 표시 실험 결과의 일 예를 도시한 도면이다.6 and 7 are diagrams illustrating an example of an image display experiment result using a display device according to an embodiment of the present invention.
이하에서, 첨부된 도면들을 참조하여 본 발명이 실시 예에 따른 근안 디스플레이 장치 및 그 방법에 대해 상세히 살펴본다.Hereinafter, a near-eye display apparatus and method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시 예에 따른 근안 디스플레이 장치의 일 예의 구성을 도시한 도면이다.1 is a diagram illustrating a configuration of an example of a near-eye display apparatus according to an embodiment of the present invention.
도 1을 참조하면, 디스플레이장치(100)는 디스플레이패널(110), 폴딩부(120), 프레넬렌즈어레이(130) 및 프레넬집광소자(140)를 포함한다. 본 실시 예는 설명의 편의를 위하여 사용자의 한 쪽 눈(150)에 대한 디스플레이장치(100)를 도시하고 있으나, 디스플레이장치(100)는 도 4와 같이 양쪽 눈 모두에 이미지를 출력하는 안경형태 또는 머리에 착용 가능한 VR 기기 형태 등 다양한 형태로 제작될 수 있다. Referring to FIG. 1 , the display apparatus 100 includes a display panel 110 , a folding unit 120 , a Fresnel lens array 130 , and a Fresnel light collecting device 140 . Although the present embodiment shows the display device 100 for one eye 150 of the user for convenience of explanation, the display device 100 is in the form of glasses for outputting images to both eyes as shown in FIG. 4 or It can be manufactured in various forms, such as a VR device that can be worn on the head.
디스플레이패널(110)은 LCD(Liquid Crystal Display) 또는 LED(Light Emitting Diode) 등 종래의 다양한 종류의 패널로 구현될 수 있다. 다른 실시 예로, 디스플레이패널(110)은 도 3과 같이 투명패널로 구현될 수도 있다. 디스플레이패널은 가상현실 또는 증강현실을 위한 이미지를 출력할 수 있다. The display panel 110 may be implemented with various types of conventional panels, such as a liquid crystal display (LCD) or a light emitting diode (LED). In another embodiment, the display panel 110 may be implemented as a transparent panel as shown in FIG. 3 . The display panel may output an image for virtual reality or augmented reality.
폴딩부(120)는 디스플레이패널(110)에서 출력된 광의 전송 경로의 길이를 폴딩부(120)의 물리적 두께(d) 이상으로 확장하여 디스플레이장치(100)의 두께를 줄이는 역할을 수행하는 복수 개의 편광소자로 구성된다. 디스플레이패널(110)에서 출력된 광은 폴딩부(120) 내에서 여러 번 반사되어 광학적 진행 거리가 길어진다. 폴딩부(120)의 상세 구성의 일 예가 도 2에 도시되어 있다.The folding unit 120 extends the length of the transmission path of the light output from the display panel 110 beyond the physical thickness d of the folding unit 120 to reduce the thickness of the display device 100 . It is composed of a polarizing element. The light output from the display panel 110 is reflected several times within the folding unit 120 to increase the optical travel distance. An example of the detailed configuration of the folding unit 120 is shown in FIG. 2 .
프레넬렌즈어레이(130)는 프레넬렌즈가 존재하는 복수 개의 셀로 구성된다. 즉, 프레넬렌즈어레이(130)는 복수 개의 프레넬렌즈가 배열된 구조이다. 프레넬렌즈는 모두 동일 간격으로 배열되거나 전부 또는 일부가 서로 다른 간격으로 배열될 수 있다. 프레넬렌즈어레이(130)의 각 셀의 크기는 모두 동일하거나 전부 또는 일부의 크기가 서로 다를 수 있다. 또한, 프레넬렌즈어레이(130)를 구성하는 각 셀의 프레넬렌즈는 모두 동일한 형태이거나 일부 또는 전부가 서로 다른 형태로 구현될 수 있다. The Fresnel lens array 130 is composed of a plurality of cells in which the Fresnel lens is present. That is, the Fresnel lens array 130 has a structure in which a plurality of Fresnel lenses are arranged. All of the Fresnel lenses may be arranged at the same interval, or all or some of the Fresnel lenses may be arranged at different intervals. The size of each cell of the Fresnel lens array 130 may be all the same or all or part of the size may be different from each other. In addition, all of the Fresnel lenses of each cell constituting the Fresnel lens array 130 may have the same shape, or some or all of them may be implemented in different shapes.
프레넬렌즈어레이(130)의 각 셀의 프레넬렌즈는 디스플레이패널(110)에서 출력되는 이미지가 일정 거리(예를 들어, 2m 이상 또는 무한대 거리) 떨어진 위치에 나타나는 효과(즉, 플로팅(floating))를 만드는데 기여할 수 있다. 짧은 초점거리 또는 큰 굴절각도를 구현하기 위하여 일반 광학 소자는 매우 두꺼운 곡면 형태를 가져야 하지만, 프레넬렌즈어레이(130)는 얇은 두께로 짧은 초점거리나 큰 굴절각도를 구현할 수 있다. 즉, 단일의 렌즈를 사용하는 것에 비해 프레넬렌즈어레이(130)를 사용하는 경우 초점거리를 짧게 할 수 있어 디스플레이장치(100)의 부피를 줄일 수 있다. 프레넬렌즈어레이(130)는 매우 얇고 평평한 구조한 구현될 수 있으므로 폴딩부(120)에 밀착시켜 구현할 수 있다. The Fresnel lens of each cell of the Fresnel lens array 130 has the effect that the image output from the display panel 110 appears at a distance (eg, 2m or more or infinity distance) at a distance (that is, floating) ) can contribute to making In order to implement a short focal length or a large refraction angle, a general optical element should have a very thick curved shape, but the Fresnel lens array 130 may implement a short focal length or a large refraction angle with a thin thickness. That is, when using the Fresnel lens array 130 compared to using a single lens, the focal length can be shortened, thereby reducing the volume of the display device 100 . Since the Fresnel lens array 130 can be implemented in a very thin and flat structure, it can be implemented in close contact with the folding unit 120 .
프레넬집광소자(140)는 프레넬렌즈어레이(130)로부터 출력된 광을 사용자 눈을 향해 모으는 역할을 수행한다. 프레넬렌즈어레이(130)와 프레넬집광소자(140)를 통해 시야각을 증폭시키고 적절한 눈동자거리(eye relief)에 아이박스를 형성할 수 있다. 여기서, 아이박스라고 함은 투영되는 영상이 선명하게 유지될 수 있는 영역을 의미한다. 프레넬집광소자(140)는 프레넬렌즈로 구현되거나 프레넬 프리즘 어레이로 구현될 수 있다. 프레넬 프리즘 어레이는 매우 작은 프리즘(즉, 마이크로 프리즘)들이 배열된 구조이다. The Fresnel light collecting device 140 serves to collect the light output from the Fresnel lens array 130 toward the user's eyes. The viewing angle can be amplified through the Fresnel lens array 130 and the Fresnel light collecting device 140 , and an eye box can be formed with an appropriate eye relief. Here, the eye box refers to an area in which a projected image can be maintained clearly. The Fresnel light collecting device 140 may be implemented as a Fresnel lens or as a Fresnel prism array. A Fresnel prism array is a structure in which very small prisms (ie, micro prisms) are arranged.
일반적으로 VR 광학계는 단일 렌즈를 위하여 디스플레이패널의 이미지를 먼 거리에 띄우는 플로팅 기능과 광을 사용자의 눈을 향해 모아주는 집광 기능을 동시에 수행한다. 초점거리가 길 때에 두 기능을 하나의 렌즈가 동시에 수행하는 것은 가능하지만, 초점거리가 짧고 f-number이 작아야 하는 경우에 하나의 렌즈로 플로팅 기능과 집광 기능을 모두 만족하기는 힘들다. 두 가지 기능을 모두 만족하는 단일 렌즈를 설계하기 위해서는 렌즈의 두께가 두꺼워야 하거나 여러 레이어가 필요하는 등 시스템의 복잡도가 증가하여 오히려 광학계를 컴팩트하게 구성할 수 없게 되는 트레이드 오프(trade-off)에 빠지게 된다. 만약 두 가지 기능 중 집광 기능을 확보하지 못하면 시야각을 확보할 수 없고 플로팅 기능을 확보하지 못하면 심각한 광학 수차를 가지게 된다. In general, for a single lens, a VR optical system performs a floating function that floats the image of a display panel at a long distance and a light collection function that collects light toward the user's eyes at the same time. It is possible for one lens to simultaneously perform both functions when the focal length is long, but when the focal length is short and the f-number is small, it is difficult to satisfy both the floating function and the condensing function with one lens. In order to design a single lens that satisfies both functions, the complexity of the system increases, such as the thickness of the lens must be thick or the need for multiple layers, which makes it impossible to compose the optical system compactly. will fall out If the condensing function is not secured among the two functions, the viewing angle cannot be secured, and if the floating function is not secured, severe optical aberration occurs.
이에 본 실시 예는 플로팅 기능과 집광 기능을 프레넬렌즈어레이(130)와 프레넬집광소자(140)의 조합을 통해 달성한다. 예를 들어, 프레넬렌즈어레이(130)는 주로 플로팅 기능에 초점을 맞추어 각 셀의 프레넬렌즈 구조가 최적화되고, 프레넬집광소자(140)는 주로 집광 기능에 초점을 맞추어 프레넬렌즈 구조 또는 프리즘 구조가 최적화된다. 따라서 프레넬렌즈어레이(130)와 프레넬집광소자(140)의 조합을 통해 플로팅 기능과 집광 기능을 구현할 수 있어 매우 얇은 폼팩터를 가지면서도 넓은 시야각과 적은 왜곡을 가지는 광학계의 구현이 가능하다. 실시 예에 따라 원하는 플로팅 기능과 원하는 집광 기능을 위한 각 프레넬렌즈의 구조를 최적화하는 종래의 다양한 방법이 본 실시 예에 적용될 수 있다.Accordingly, the present embodiment achieves the floating function and the light collecting function through the combination of the Fresnel lens array 130 and the Fresnel light collecting device 140 . For example, the Fresnel lens array 130 mainly focuses on the floating function to optimize the Fresnel lens structure of each cell, and the Fresnel light collecting device 140 mainly focuses on the light collecting function to focus on the Fresnel lens structure or The prism structure is optimized. Therefore, it is possible to implement a floating function and a light collecting function through the combination of the Fresnel lens array 130 and the Fresnel light collecting device 140, so that it is possible to implement an optical system having a wide viewing angle and little distortion while having a very thin form factor. According to an embodiment, various conventional methods for optimizing the structure of each Fresnel lens for a desired floating function and a desired light collecting function may be applied to the present embodiment.
본 실시 예는 굴절 기반의 프레넬 광학 소자(130,140)는 SRG(Surface Relief Grating), HOE(Holographic Optical Element), PBP(Pancharanam Berry Phase) 등의 회절기반 소자들에 비해 풀컬러 디스플레이를 구현하는데 더 유리하다. 회절기반 소자는 회절 각도가 빛의 파장에 비례하는 관계를 가지므로 렌즈를 구성할 경우 매우 큰 색수차를 가진다. 이를 극복하고 풀컬러 디스플레이를 구현하기 위해서는 여러 개의 회절결자를 다중화(multiplexing) 하여야 하고, 스펙트럼 특성이 매우 얇은 레이저 광원 3개를 각 색상을 위해 사용해야 하는 등 시스템의 복잡성이 매우 증가한다. 그러나 프레넬 광학소자(130,140)는 굴절 기반 소자로써 색수차가 회절기반 소자에 비해 매우 작다. 굴절 기반 소자의 색수차는 매질의 파장에 대한 굴절률 변화 특성에 의존하므로, 그 변화 정도는 가시광 영역에서 매우 작아 하나의 소자만으로도 풀컬러 디스플레이를 구성할 수 있다. 프레넬 광학소자(130,140)가 컴팩트한 시스템을 구현하는 데 회절기반 소자보다 더 유리하다.In this embodiment, the refraction-based Fresnel optical elements 130 and 140 are more capable of realizing a full-color display than diffraction-based elements such as SRG (Surface Relief Grating), HOE (Holographic Optical Element), and PBP (Pancharanam Berry Phase). It is advantageous. A diffraction-based element has a very large chromatic aberration when a lens is formed because the diffraction angle is proportional to the wavelength of light. In order to overcome this and realize a full-color display, multiple diffraction crystals must be multiplexed, and three laser light sources with very thin spectral characteristics must be used for each color, which greatly increases the complexity of the system. However, the Fresnel optical elements 130 and 140 are refractive-based elements and have very small chromatic aberration compared to the diffraction-based elements. Since the chromatic aberration of the refraction-based device depends on the refractive index change characteristic with respect to the wavelength of the medium, the degree of change is very small in the visible light region, so that only one device can constitute a full-color display. The Fresnel optical elements 130 and 140 are more advantageous than the diffraction-based elements in realizing a compact system.
본 실시 예의 모든 광학 소자(120,130,140)는 얇은 구조로 구현가능하므로 폴딩부(120)의 광학적 경로를 형성하기 위한 일정한 물리적인 간격(d) 외에 광학계에 요구되는 두께가 거의 없다. 또한 모든 광학 소자를 평평한 구조로 설계할 수 있으므로 도 4와 같이 평평한 안경 형태로 구현할 수 있다. Since all the optical elements 120 , 130 , and 140 of the present embodiment can be implemented in a thin structure, there is little thickness required for the optical system other than a predetermined physical distance d for forming the optical path of the folding unit 120 . In addition, since all optical elements can be designed in a flat structure, they can be implemented in the form of flat glasses as shown in FIG. 4 .
도 2는 본 발명의 실시 예에 따른 폴딩부의 상세 구성의 일 예를 도시한 도면이다.2 is a diagram illustrating an example of a detailed configuration of a folding unit according to an embodiment of the present invention.
도 2를 참조하면, 폴딩부(120)는 원편광부(circular polarizer)(200), 빔스플리터(beam splitter)(210), 파장판(wave plate)(220) 및 편광빔스플리터(polarization beam splitter)(230)를 포함한다. 빔스플리터(210)와 편광빔스플리터(230)는 광 경로 형성을 위하여 일정 거리 이격되어 있다.Referring to FIG. 2 , the folding unit 120 includes a circular polarizer 200 , a beam splitter 210 , a wave plate 220 , and a polarization beam splitter. ) (230). The beam splitter 210 and the polarization beam splitter 230 are spaced apart by a predetermined distance to form an optical path.
원편광부(200)는 입사광을 원편광으로 변환한다. 예를 들어, 원편광부(200)는 디스플레이패널(110)에서 나온 광(편광되지 않은 광)을 원편광으로 변환하여 출력한다. The circularly polarized light unit 200 converts incident light into circularly polarized light. For example, the circularly polarized light unit 200 converts light (unpolarized light) emitted from the display panel 110 into circularly polarized light and outputs the converted light.
빔스플리터(210)는 입사광의 일부를 투과하고 나머지를 반사한다. 예를 들어, 빔스플리터(210)는 입사광의 50%를 반사하고 50% 투과할 수 있다. 이 경우, 원편광부(200)에서 나온 원편광의 50%가 빔스플리터(210)를 투과한다. 빔스플리터(210)의 투과율은 실시 예에 따라 다양하게 변형 가능하다. The beam splitter 210 transmits a portion of the incident light and reflects the rest. For example, the beam splitter 210 may reflect 50% of incident light and transmit 50% of the incident light. In this case, 50% of the circularly polarized light emitted from the circularly polarized part 200 passes through the beam splitter 210 . The transmittance of the beam splitter 210 may be variously modified according to an embodiment.
파장판(220)은 입사광에 일정 파장의 광로차를 형성한다. 예를 들어, 파장판(220)은 1/4λ의 광로차를 형성하는 QWP(Quarter Wave Plate)로 구현될 수 있다. 이 경우 파장판(220)은 빔스플리터(210)로부터 나온 원편광을 1/4λ의 위상만큼 변이시킨 선편광을 출력한다. The wave plate 220 forms an optical path difference of a predetermined wavelength to the incident light. For example, the wave plate 220 may be implemented as a QWP (Quarter Wave Plate) that forms an optical path difference of 1/4λ. In this case, the wave plate 220 outputs linearly polarized light obtained by shifting the circularly polarized light emitted from the beam splitter 210 by a phase of 1/4λ.
편광빔스플리터(230)는 기 정의된 방향의 편광을 투과한다. 예를 들어, 편광빔스플리터(230)는 p-편광을 투과시키거나 s-편광을 투과시킬 수 있다. 예를 들어, 편광빔스플리터(230)가 p-편광을 투과시키도록 구현된 경우에 편광빔스플리터는 p-편광이 아닌 입사광을 100% 반사하고, p-편광이면 이를 100% 투과할 수 있다.The polarization beam splitter 230 transmits polarized light in a predefined direction. For example, the polarization beam splitter 230 may transmit p-polarized light or transmit s-polarized light. For example, when the polarization beam splitter 230 is implemented to transmit p-polarized light, the polarization beam splitter may reflect 100% of incident light, not p-polarized light, and transmit 100% of the p-polarized light.
예를 들어, 편광빔스플리터(230)가 p-편광을 투과시키고, 파장판(220)이 QWP로 구현된 경우를 살펴본다. 원편광부(200)에서 나온 원편광은 빔스플리터(210)를 통과하여 파장판(220)에 입사되고, 파장판(220)은 1/4λ의 위상 변이가 일어난 선편광을 출력한다. 파장판(220)에서 나온 선편광은 p-편광이 아니므로 편광빔스플리터에 의해 파장판(220) 방향으로 반사된다. 반사된 선편광은 파장판(220)을 지나면서 다시 1/4λ의 위상 변이가 일어난 후 빔스플리터(210)쪽으로 향한다. 빔스플리터(210)는 파장판(220)으로부터 나온 광을 다시 파장판(220)으로 재반사된다. 빔스플리터(210)은 파장판(200)에서 나온 광의 50%를 반사할 수 있다. 빔스플리터(210)에 의해 파장판(220)으로 재반사된 광은 파장판(220)에 의해 다시 1/4λ의 위상 변이가 발생하며, 그 결과 파장판(220)을 투과하여 나온 선편광은 p-편광이 된다. 따라서 파장판(220)에서 나온 선편광(즉, p-편광)은 편광빔스플리터(230)를 투과하여 다음 광학소자로 입사된다. 빔스플리터(210)가 입사광의 50%를 반사하는 경우에, 편광빔스플리터(230)에서 최종적으로 출력되는 p-편광은 폴딩부(120)에 최초 입사되는 광에 비해 그 에너지가 25%가 된다.For example, a case in which the polarization beam splitter 230 transmits p-polarized light and the wave plate 220 is implemented as QWP will be described. Circularly polarized light emitted from the circular polarizer 200 passes through the beam splitter 210 and is incident on the wave plate 220 , and the wave plate 220 outputs linearly polarized light having a phase shift of 1/4λ. Since the linearly polarized light emitted from the wave plate 220 is not p-polarized, it is reflected toward the wave plate 220 by the polarization beam splitter. The reflected linearly polarized light is directed toward the beam splitter 210 after a phase shift of 1/4λ occurs again while passing through the wave plate 220 . The beam splitter 210 reflects the light emitted from the wave plate 220 back to the wave plate 220 . The beam splitter 210 may reflect 50% of the light emitted from the wave plate 200 . The light reflected back to the wave plate 220 by the beam splitter 210 has a phase shift of 1/4λ again by the wave plate 220, and as a result, the linearly polarized light transmitted through the wave plate 220 is p - It becomes polarized. Accordingly, the linearly polarized light (ie, p-polarized light) emitted from the wave plate 220 passes through the polarization beam splitter 230 and is incident on the next optical element. When the beam splitter 210 reflects 50% of the incident light, the energy of the p-polarized light finally output from the polarization beam splitter 230 is 25% compared to the light initially incident on the folding unit 120 . .
디스플레이패널(110)로부터 나온 광은 폴딩부(120)의 빔스플리터(210)와 편광빔스플리터(230) 사이에서 앞뒤로 3번 반복하여 진행되므로, 디스플레이패널(110)과 프레넬렌즈어레이(130) 사이의 물리적 거리의 3배에 해당하는 광학적 거리를 확보할 수 있다. 폴딩부(120)를 통해 디스플레이장치(100)의 광학계의 물리적 거리를 1/3으로 줄일 수 있으므로 디스플레이장치(100)의 부피를 작게 할 수 있다. 프레넬렌즈어레이(130)의 사용으로 인해 줄어드는 광학적 거리에 더불어 폴딩부(120)를 통해 물리적 거리를 추가적으로 줄일 수 있으므로, 디스플레이장치(100)의 광학계의 거리를 매우 짧게 구현할 수 있다.Since the light emitted from the display panel 110 is repeated three times back and forth between the beam splitter 210 and the polarization beam splitter 230 of the folding unit 120, the display panel 110 and the Fresnel lens array 130. An optical distance equivalent to three times the physical distance between them can be secured. Since the physical distance of the optical system of the display apparatus 100 can be reduced by 1/3 through the folding unit 120 , the volume of the display apparatus 100 can be reduced. Since the physical distance can be further reduced through the folding unit 120 in addition to the reduced optical distance due to the use of the Fresnel lens array 130 , the distance of the optical system of the display apparatus 100 can be implemented very short.
도 3는 본 발명의 실시 예에 따른 디스플레이장치의 다른 실시 예의 구성을 도시한 도면이다. 3 is a diagram showing the configuration of another embodiment of a display device according to an embodiment of the present invention.
도 3을 참조하면, 디스플레이장치는 선편광부(300), 투명스크린(310), 도파관(320) 및 편광의존성광학소자(330)를 포함한다. 편광의존성광학소자(330)는 도 1에서 살핀 프레넬렌즈어레이(130) 및 프레넬집광소자(140)를 포함한다. 본 실시 예에서 폴딩부(120)는 생략될 수 있다.Referring to FIG. 3 , the display device includes a linear polarizer 300 , a transparent screen 310 , a waveguide 320 , and a polarization-dependent optical device 330 . The polarization-dependent optical device 330 includes a salpin Fresnel lens array 130 and a Fresnel light collecting device 140 in FIG. 1 . In this embodiment, the folding unit 120 may be omitted.
투명스크린(310)은 홀로그래픽 확산판 또는 편광 의존성 확산판 등으로 구현된 투명한 패널이다. The transparent screen 310 is a transparent panel implemented with a holographic diffusion plate or a polarization-dependent diffusion plate.
도파관(320)은 이미지 소스에서 투명스크린(310)으로 광(340)이 이동하는 경로를 제공한다. 이미지 소스로부터 투명 스크린에 광(340)을 전달하는 도파관(320)의 구조 및 방법은 다양하게 변형 가능하다.The waveguide 320 provides a path for the light 340 to travel from the image source to the transparent screen 310 . The structure and method of the waveguide 320 for transmitting the light 340 from the image source to the transparent screen may be variously modified.
투명스크린(310)을 이용하여 실 세계의 외부 광(350)과 투명스크린(310)에서 출력되는 광(345)이 모두 함께 사용자의 눈으로 입사된다. 즉, 본 실시 예의 디스플레이장치를 이용하는 경우 증강현실을 제공할 수 있다. 외부 광(350)은 그대로 사용자 눈으로 입사되고, 투명스크린(310)의 광(345)은 도 1 및 도 2에서 살핀 소정의 광학계를 거쳐 사용자 눈으로 입사되어야 한다. Using the transparent screen 310, the external light 350 of the real world and the light 345 output from the transparent screen 310 are both incident to the user's eyes. That is, when the display device of the present embodiment is used, augmented reality may be provided. The external light 350 is directly incident to the user's eye, and the light 345 of the transparent screen 310 must be incident to the user's eye through a predetermined optical system salpin in FIGS. 1 and 2 .
이를 위하여, 본 실시 예는 외부 광(350)과 투명스크린의 광(345)의 편광 방향을 서로 다르게 한다. 일 실시 예로, 투명스크린(310)에서 출력되는 광을 p-편광으로 구현할 수 있다. 예를 들어, 투명스크린(310)은 도파관(320)을 통해 p-편광의 이미지 광(340)을 입력받아 이를 출력할 수 있다. 이 경우 실세계의 외부 광(350)은 선편광부(300)를 통해 s-편광으로 변환시킬 수 있다. 즉, 선편광부(300)는 디스플레이장치의 외부에서 들어오는 실세계의 광(편광되지 않은 광)(350)을 s-편광(360)으로 변환하여 출력한다. 다른 실시 예로, 투명스크린(310)의 출력 광(345)이 s-편광이면, 선편광부(300)는 외부 광(350)을 p-편광으로 변환하여 출력하도록 구현할 수 있다. 이하의 실시 예는 선편광부(300)가 s-편광(360)을 출력하는 경우를 가정하여 설명한다.To this end, in the present embodiment, the polarization directions of the external light 350 and the light 345 of the transparent screen are different from each other. As an embodiment, light output from the transparent screen 310 may be implemented as p-polarized light. For example, the transparent screen 310 may receive the p-polarized image light 340 through the waveguide 320 and output it. In this case, the external light 350 in the real world may be converted into s-polarized light through the linear polarizer 300 . That is, the linear polarization unit 300 converts real-world light (unpolarized light) 350 coming from the outside of the display device into s-polarized light 360 and outputs it. In another embodiment, when the output light 345 of the transparent screen 310 is s-polarized light, the linear polarizer 300 may be implemented to convert the external light 350 into p-polarized light and output it. The following embodiment will be described on the assumption that the linear polarizer 300 outputs the s-polarized light 360 .
선편광부(300)에서 나온 s-편광(360)은 투명스크린(310) 및 도파관(320)을 그대로 투과하여 편광의존성광학소자(330)에 입사된다. s-편광(360)은 실세계로부터 입사된 광이므로 편광의존성광학소자(330)를 그대로 투과하여 사용자의 눈으로 입사되는 것이 바람직하다. s-편광(360)이 편광의존성광학소자(330)를 그대로 투과할 수 있도록 편광의존성광학소자(330)는 p-편광 의존성 광학소자로 구현될 수 있다. 예를 들어, 편광의존성광학소자(330)를 구성하는 프레넬렌즈어레이(130) 및 프레넬집광소자(140)는 모두 p-편광을 그대로 투과하고 s-편광에 대해서만 굴절 등을 일으키는 복굴절(birefringent) 성질을 가진 물질로 구현될 수 있다. 이때, 투명스크린(310)에서 나온 p-편광(345)은 도 1에서 살핀 방법으로 편광의존성광소자(330)에 의해 굴절되어 사용자 눈으로 입사된다.The s-polarized light 360 emitted from the linear polarizer 300 passes through the transparent screen 310 and the waveguide 320 as it is and is incident on the polarization-dependent optical device 330 . Since the s-polarized light 360 is light incident from the real world, it is preferable to pass through the polarization-dependent optical element 330 as it is and enter the user's eyes. The polarization-dependent optical element 330 may be implemented as a p-polarization-dependent optical element so that the s-polarization 360 can pass through the polarization-dependent optical element 330 as it is. For example, both of the Fresnel lens array 130 and the Fresnel light collecting device 140 constituting the polarization-dependent optical device 330 transmit p-polarized light and cause refraction for only s-polarized light (birefringent). ) can be implemented as a material with properties. At this time, the p-polarized light 345 emitted from the transparent screen 310 is refracted by the polarization-dependent light element 330 in the salpin method shown in FIG. 1 and is incident on the user's eyes.
도 4는 본 발명의 실시 예에 따른 디스플레이장치의 프로토타입의 일 예를 도시한 도면이다. 도 4를 참조하면, 광학계의 부피를 매우 작게 구현할 수 있으므로 디스플레이장치를 얇은 두께의 안경 형태로 구현할 수 있다. 4 is a diagram illustrating an example of a prototype of a display device according to an embodiment of the present invention. Referring to FIG. 4 , since the volume of the optical system can be very small, the display device can be implemented in the form of thin glasses.
본 실시 예의 디스플레이장치는 얇은 두께와 가벼운 무게로 구현할 수 있으므로 휴대성을 크게 개선시킬 수 있으며, 착용성의 개선으로 사용자의 가상현실 활용시간 및 사용환경에 대한 범위를 늘려줄 수 있다. 특히 외부 시야를 찍는 카메라와 함께 연동된다면, 본 실시 예의 디스플레이방법은 일상생활에서도 장시간 착용가능한 진정한 의미를 혼합현실(MR, Mixed Reality)을 구현하는데 사용될 수 있다.Since the display device of the present embodiment can be implemented with a thin thickness and light weight, portability can be greatly improved, and wearability can be improved to increase the range of a user's virtual reality utilization time and environment. In particular, if it is linked with a camera that takes an external view, the display method of the present embodiment can be used to implement mixed reality (MR), a true meaning that can be worn for a long time even in daily life.
예를 들어, 기존 일정한 범위의 공간 내에서 게이밍 및 가상체험 등의 목적으로 사용되던 가상현실 활용분야를 넘어, 일상 생활에서 업무공간 내에 가상의 모니터 등 업무환경을 제공하거나, 포켓몬-고의 예 처럼 현실세계와 융합된 가상현실경험을 제공하거나, 적외선 카메라 정보 및 고배율 카메라 정보 등을 활용하여 군사적 목적으로 사용자의 시각 정보를 강화하거나, 저시력자에게 고배율 영상을 제공하는 등 많은 분야에서 혁신적인 시각 경험을 제공할 수 있다.For example, beyond the field of virtual reality used for gaming and virtual experience within a certain range of space, it provides a work environment such as a virtual monitor in the work space in daily life, or as in the example of Pokemon-Go. Innovative visual experience in many fields, such as providing a virtual reality experience fused with the real world, enhancing user's visual information for military purposes using infrared camera information and high magnification camera information, or providing high magnification images to people with low vision can provide
또한 증강현실 디바이스로 활용될 경우에는 현실 세계의 영상을 디지털 프로세싱 없이 맨눈으로 관측하는 장점과 함께 가상현실 디바이스 급의 넓은 시야각을 제공함으로써 사용자가 더욱 깊은 몰입감을 느낄 수 있게 할 수 있으므로, 시야 차단에 대한 우려 없는 혼합현실 및 증강현실을 구현할 수 있다.In addition, when used as an augmented reality device, it provides the advantage of observing images of the real world with the naked eye without digital processing and provides a wide viewing angle comparable to that of a virtual reality device, so that users can feel a deeper sense of immersion. It is possible to implement mixed reality and augmented reality without concern.
도 5는 본 발명의 실시 예에 따른 디스플레이장치의 광학계의 레이어 구조를 확대 도시한 도면이다.5 is an enlarged view illustrating a layer structure of an optical system of a display device according to an embodiment of the present invention.
도 5를 참조하면, 원편광부 역할을 수행하는 QWP, 빔스플리터, QWP, 광 경로를 형성하기 위하여 일정 간격을 형성하는 스페이서, 유리, 편광빔스플리터로 구현된 폴딩부의 두께는 수mm로 구현될 수 있다. 또한 프레넬렌즈어레이와 프레넬렌즈를 얇고 평평한 구조로 구현할 수 있다. 그러므로 디스플레이장치는 디스플레이패널을 포함하여 대략 8.8mm의 두께로 구현가능하다. 본 실시 예는 디스플레이장치의 두께를 얇게 구현 가능함을 보여주기 위한 하나의 예일 뿐 각 소자의 두께가 각 소자 사이의 간격이 본 실시 예에 한정되는 것은 아니다. 예를 들어, 각 소자들의 두께를 더 얇게 구현할 수 있으므로 본 실시 예보다 더 얇은 디스플레이장치의 구현도 가능하다.Referring to FIG. 5, the thickness of the folding part implemented by QWP, a beam splitter, QWP, which serves as a circular polarizer, a spacer, glass, and a polarizing beam splitter that forms a predetermined interval to form an optical path is several mm. can In addition, it is possible to implement a Fresnel lens array and a Fresnel lens in a thin and flat structure. Therefore, the display device can be implemented with a thickness of about 8.8 mm including the display panel. This embodiment is only one example to show that the thickness of the display device can be reduced, and the thickness of each element and the distance between the elements are not limited to this embodiment. For example, since the thickness of each element can be made thinner, it is also possible to implement a display device thinner than the present embodiment.
도 6 및 도 7은 본 발명의 실시 예에 따른 디스플레이장치를 이용한 영상 표시 실험 결과의 일 예를 도시한 도면이다.6 and 7 are diagrams illustrating an example of an image display experiment result using a display device according to an embodiment of the present invention.
도 6을 참조하면, 왼쪽 이미지(600)를 디스플레이장치의 프레넬렌즈어레이의 각 셀에 대응되도록 재배치하여 오른쪽 이미지(610)를 생성한 후 오른쪽 이미지(610)를 디스플레이장치의 디스플레이패널에 입력한다. 가상현실 또는 증강현실의 구현을 위하여 디스플레이패널에 입력되는 이미지를 도 6과 같이 재배치하는 종래의 다양한 방법이 본 실시 예에 적용될 수 있다. 6, the left image 600 is rearranged to correspond to each cell of the Fresnel lens array of the display device to generate the right image 610, and then the right image 610 is input to the display panel of the display device . In order to implement virtual reality or augmented reality, various conventional methods for rearranging an image input to a display panel as shown in FIG. 6 may be applied to this embodiment.
도 7을 참조하면, 디스플레이장치가 디스플레이패널을 통해 도 6의 오른쪽 이미지(610)를 출력하면, 사용자의 눈에는 도 7과 같이 광시야각의 이미지(700)가 보인다. 본 실시 예의 디스플레이장치는 얇은 구조임에도 불구하고 102도*102도의 시야각을 가진 고해상도 풀컬러 영상을 사용자에게 제공할 수 있으며, 또한 8mm*8mm 이상의 안정적인 크기의 아이박스를 확보할 수 있다.Referring to FIG. 7 , when the display device outputs the right image 610 of FIG. 6 through the display panel, the user's eyes see the image 700 of a wide viewing angle as shown in FIG. 7 . Although the display device of this embodiment has a thin structure, it is possible to provide a user with a high-resolution full-color image having a viewing angle of 102 degrees * 102 degrees, and also can secure an eye box of a stable size of 8 mm * 8 mm or more.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to preferred embodiments thereof. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (7)

  1. 광을 출력하는 디스플레이패널;a display panel for outputting light;
    복수의 편광소자를 이용하여 광경로를 형성하는 폴딩부;a folding unit for forming an optical path using a plurality of polarizing elements;
    프레넬렌즈가 배열된 프레넬렌즈어레이; 및a Fresnel lens array in which Fresnel lenses are arranged; and
    프레넬 구조로 형성되어 일정 거리에 아이박스(eye box)를 형성하는 프레넬집광소자;를 포함하는 것을 특징으로 하는 디스플레이장치.A display device comprising: a Fresnel light collecting device formed in a Fresnel structure to form an eye box at a predetermined distance.
  2. 제 1항에 있어서, 상기 프레넬 집광소자는,According to claim 1, wherein the Fresnel light collecting device,
    프레넬 렌즈 또는 프레넬 프리즘 어레이로 구성되는 것을 특징으로 하는 디스플레이장치.A display device comprising a Fresnel lens or a Fresnel prism array.
  3. 제 1항에 있어서, 상기 폴딩부는,According to claim 1, wherein the folding unit,
    상기 디스플레이패널로부터 출력된 광을 원편광으로 변환하는 원편광부;a circularly polarizing unit converting the light output from the display panel into circularly polarized light;
    입사광의 일부를 투과하고 일부를 반사하는 빔스플리터;a beam splitter that transmits a portion of incident light and reflects a portion;
    일정 파장의 광로차를 형성하는 파장판; 및a wave plate forming an optical path difference of a predetermined wavelength; and
    기 정의된 방향의 편광을 투과하는 편광빔스플리터;를 포함하고,Including; a polarization beam splitter that transmits polarized light in a predefined direction;
    상기 원편광은 상기 빔스플리터를 통과하여 상기 파장판으로 입사되고, The circularly polarized light passes through the beam splitter and is incident on the wave plate,
    상기 파장판에서 출력되는 선편광은 편광상태에 따라 상기 편광빔스플리터에서 반사 또는 투과되는 것을 특징으로 하는 디스플레이장치.The linearly polarized light output from the wave plate is reflected or transmitted by the polarizing beam splitter according to a polarization state.
  4. 제 3항에 있어서, 상기 파장판은,The method of claim 3, wherein the wave plate comprises:
    1/4λ의 광로차를 형성하는 QWP(Quater Wave Plate)로 구성되는 것을 특징으로 하는 디스플레이장치.A display device, characterized in that it is composed of a QWP (Quater Wave Plate) that forms an optical path difference of 1/4λ.
  5. 제 3항에 있어서, 상기 편광빔스플리터는,According to claim 3, The polarization beam splitter,
    p-편광 또는 s-편광을 투과하는 것을 특징으로 하는 디스플레이장치.A display device, characterized in that it transmits p-polarized light or s-polarized light.
  6. 제 1항에 있어서, 상기 디스플레이패널은,According to claim 1, wherein the display panel,
    홀로그래픽 확산판 또는 편광 의존성 확산판으로 구성된 투명 스크린; 및a transparent screen composed of a holographic diffuser or a polarization-dependent diffuser; and
    상기 투명 스크린에 제1 방향의 편광으로 구성된 광을 전달하는 도파관;을 포함하는 것을 특징으로 하는 디스플레이장치.and a waveguide that transmits light composed of polarized light in a first direction to the transparent screen.
  7. 디스플레이패널을 이용하여 광을 출력하는 단계;outputting light using a display panel;
    복수의 편광소자를 이용하여 광을 일정 횟수 이상 반복 반사시켜 일정 거리 이상의 광경로를 형성하는 단계;forming an optical path over a predetermined distance by repeatedly reflecting light over a predetermined number of times using a plurality of polarizing elements;
    복수의 프레넬렌즈가 배열된 프레넬렌즈어레이를 이용하여 디스플레이패널의 이미지를 기 정의된 거리 이상으로 플로팅시키는 단계; 및Floating an image of a display panel over a predetermined distance using a Fresnel lens array in which a plurality of Fresnel lenses are arranged; and
    프레넬 구조로 형성된 프레넬집광소자를 이용하여 광을 아이박스(eye box) 방향으로 굴절시켜 일정 거리에 아이박스를 형성하는 단계;를 포함하는 것을 특징으로 하는 디스플레이방법.A display method comprising: forming an eye box at a predetermined distance by refracting light in an eye box direction using a Fresnel light collecting device formed in a Fresnel structure.
PCT/KR2021/002099 2020-10-21 2021-02-19 Thin, wide viewing angle, near-eye display device, and method for same WO2022085873A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200137090 2020-10-21
KR10-2020-0137090 2020-10-21
KR1020210011041A KR102595351B1 (en) 2020-10-21 2021-01-26 Thin, flat and wide -FOV near-eye displaying apparatus and method
KR10-2021-0011041 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022085873A1 true WO2022085873A1 (en) 2022-04-28

Family

ID=81290605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002099 WO2022085873A1 (en) 2020-10-21 2021-02-19 Thin, wide viewing angle, near-eye display device, and method for same

Country Status (1)

Country Link
WO (1) WO2022085873A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074940A (en) * 2016-12-26 2018-07-04 엘지디스플레이 주식회사 Head mounted display
KR20180084263A (en) * 2017-01-16 2018-07-25 엘지이노텍 주식회사 Lens system, optical device and head mount display device for realization of virtual reality including the same
US20180239177A1 (en) * 2017-02-23 2018-08-23 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
KR20180129639A (en) * 2017-05-27 2018-12-05 이문기 Transparent head mound displey using mirror
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074940A (en) * 2016-12-26 2018-07-04 엘지디스플레이 주식회사 Head mounted display
KR20180084263A (en) * 2017-01-16 2018-07-25 엘지이노텍 주식회사 Lens system, optical device and head mount display device for realization of virtual reality including the same
US20180239177A1 (en) * 2017-02-23 2018-08-23 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
KR20180129639A (en) * 2017-05-27 2018-12-05 이문기 Transparent head mound displey using mirror
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens

Similar Documents

Publication Publication Date Title
JP3429320B2 (en) Image combining system for eyeglasses and face mask
EP2138886A2 (en) Compact virtual display
US6791760B2 (en) Planar diffractive relay
US6563648B2 (en) Compact wide field of view imaging system
US20220308343A1 (en) Near-to-eye display device and augmented reality apparatus
GB2388673A (en) Wearable display having objective and ocular lenses and light guide
US11733520B2 (en) Light projector
CN210243962U (en) Optical structure for augmented reality display and augmented reality display
US11194158B2 (en) Light guide with beam separator for dual images
WO2022120253A1 (en) Display device with transparent illuminator
CN113805344A (en) AR glasses
KR20100002085A (en) Compact virtual display
WO2022085873A1 (en) Thin, wide viewing angle, near-eye display device, and method for same
CN216351551U (en) AR glasses
CN216622845U (en) Augmented reality optical system and binocular optical system
CN113109942B (en) Display device and head-mounted display equipment
KR102595351B1 (en) Thin, flat and wide -FOV near-eye displaying apparatus and method
CN114326123A (en) Near-to-eye display device
EP0943934A2 (en) Optical device with holographic elements
US11740471B2 (en) Display device with transparent illuminator
CN114895469B (en) Optical module and head-mounted display device
CN214151259U (en) Optical imaging system and head-mounted display device
CN112925102A (en) Optical imaging system and head-mounted display device
CN116762024A (en) Display device with transparent illuminator
IL173452A (en) Substrate-guided optical device particularly for vision enhanced optical systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882948

Country of ref document: EP

Kind code of ref document: A1