WO2022085767A1 - Method of producing antibody-drug conjugate - Google Patents

Method of producing antibody-drug conjugate Download PDF

Info

Publication number
WO2022085767A1
WO2022085767A1 PCT/JP2021/039001 JP2021039001W WO2022085767A1 WO 2022085767 A1 WO2022085767 A1 WO 2022085767A1 JP 2021039001 W JP2021039001 W JP 2021039001W WO 2022085767 A1 WO2022085767 A1 WO 2022085767A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
reaction
flow path
drug
micromixer
Prior art date
Application number
PCT/JP2021/039001
Other languages
French (fr)
Japanese (ja)
Inventor
豊 松田
祐一 中原
ブライアン アラン メンデルソン
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2022085767A1 publication Critical patent/WO2022085767A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment

Definitions

  • the present invention relates to a method for producing an antibody drug conjugate.
  • the flow microreactor is a flow type reactor that reacts in a microchannel, which is also simply called a microreactor.
  • FMR is mainly used for organic synthesis of small molecule organic compounds.
  • a micromixer having a microstructure is utilized in order to enable mixing and reaction of a plurality of components in a microenvironment.
  • Various mixed types can be used in the micromixer in FMR.
  • Examples of such a mixed type include a sheath flow type in which a plurality of solutions flowing in the forward direction merge, a static type in which mixing is promoted by a structure in the flow path after the merging of a plurality of solutions, and a three-dimensional spiral.
  • Examples thereof include various mixed type micromixers such as a Helix type in which mixing is performed by formation, and a multi-layer flow type in which a plurality of channels are merged so that a plurality of solutions alternately flow at short intervals.
  • the micromixer has characteristics according to its mixed type.
  • the sheath flow type typically, by inserting the tube of the second solution into the tube through which the first solution flows, the first and second solutions flowing in the forward direction merge.
  • the sheath flow type having such characteristics is suitable for mixing a plurality of solutions having greatly different flow rates, but the mixing rate is not high.
  • the Static type tends to avoid problems such as blockage of the flow path, but the degree of mixing of a plurality of solutions at the time of contact is not high.
  • FMR antibody drug conjugates
  • Patent Document 1 describes a method for synthesizing an ADC, which comprises the following treatment, which comprises using an inhibitor against a reducing agent for the purpose of controlling the value of the drug-antibody ratio (DAR) of the ADC.
  • DAR drug-antibody ratio
  • the batch method (Examples 1 and 6), the microreactor method (Examples 2, 3, 5, 7 to 9), and the analysis of DAT (Example 4) are performed. It is done.
  • the sheath flow described in Patent Document 2 describes that the flow path of the first raw material having a high flow rate is branched into a plurality of channels and then merges with the flow path of the second raw material having a low flow rate.
  • the Patent mold (Example 8) adopted in the YMC microreactor Spica is used.
  • the reactions include a reduction reaction at 35 ° C.
  • Patent Document 3 is characterized by using single-pass tangential flow filtration (SPTFF) for ADC enrichment and removal of unreacted products (particularly unreacted drugs).
  • SPTFF single-pass tangential flow filtration
  • conjugation reaction Generating an antibody-drug conjugate (conjugation reaction); and (3) purifying the ADC by single-pass tangential flow filtration (SPTFF).
  • conjugation reaction requires a long time (at least about 1 hour or more).
  • Patent Document 4 and Non-Patent Document 1 describe a method for synthesizing an ADC, which comprises performing the following processing using a microreactor (see Examples): (1) A drug derivatized in advance so as to be able to react with an amino group in the lysine residue side chain in the antibody is reacted with the antibody via an ADC (amino group in the lysine residue side chain in the antibody). (Amino acid and drug conjugated) (drug derivatization reaction).
  • An object of the present invention is a method capable of accelerating the production of ADC in a method for producing a drug antibody complex (ADC) including (a) antibody derivatization reaction and (b) antibody-drug conjugation reaction using FMR. Is to provide. Further, an object of the present invention is to provide a method for rapidly producing an ADC having a good DAT in the method for producing an ADC including the above two reactions.
  • ADC drug antibody complex
  • a cleavage reaction as the antibody derivatization reaction, and then obtained (a') an antibody cleavage reaction (antibody derivatization reaction) and (b') the cleavage reaction.
  • a high-quality ADC can be rapidly produced by carrying out a specific ADC production method including an antibody derivative having a specific reactive site and a drug reaction (conjugation reaction) in a specific FMR format. That is, an antibody derivative having a specific reactive site obtained after mixing and reacting a solution containing a raw material antibody having a specific cleaving site and a solution containing a cleaving agent having a cleaving ability of a specific cleaving site.
  • the collision type micromixer is a micromixer that promotes mixing by generating a mixing vortex at the time of contact of a plurality of solutions.
  • the present inventors also found that, according to the method as described above, the cleavage reaction can be carried out at a relatively high temperature, so that the production of the ADC can be further accelerated, and the ADC with a higher DAR can be produced. I found it.
  • the present inventors have further found that the generation of unwanted by-products (aggregates and decomposition products) in the production of ADC can be reduced by the above-mentioned method, and have completed the present invention.
  • the present invention is as follows.
  • a method for producing an antibody-drug conjugate (1) A solution containing a raw material antibody having a specific cleaving site and a solution containing a cutting agent having a cleaving ability of the specific cleaving site are mixed with an arbitrary micromixer, and the raw material antibody and the cleaving site are mixed. Producing a first mixture containing the agent; (2) An antibody derivative having a specific reactive site and the above by passing the first mixed solution through the first reaction flow path and reacting the raw material antibody and the cleavage agent in the first reaction flow path.
  • a solution containing a cleaving agent wherein the antibody derivative having the specific reactive site is a raw material by cleaving the specific cleaving site with the cleaving agent in the reaction. It is produced from antibodies; (3) Mixing the antibody derivative, the solution containing the cleavage agent, and the solution containing the drug with a collision-type micromixer to produce a second mixed solution containing the antibody derivative, the cleavage agent, and the drug; (4) The antibody drug conjugate is produced by passing the second mixed solution through the second reaction flow path and reacting the antibody derivative and the drug in the second reaction flow path.
  • the processes (1) to (4) are continuously performed in the flow microreactor, and the representative diameter ratio between the collision type micromixer and the first reaction flow path (collision type micromixer / first reaction flow path) is determined.
  • a method that is 0.95 or less.
  • [2] The method of [1], wherein the total value of the flow rate of the solution containing the antibody derivative and the cleavage agent and the flow rate of the solution containing the drug is 2.0 mL / min or more.
  • [3] The method of [1] or [2], wherein the solution containing the drug is introduced into the collision type micromixer at a flow rate of 0.4 mL / min or more.
  • the additional reaction of the raw material antibody and the cleavage agent, and the reaction of the antibody derivative and the drug produced by the additional reaction proceed in parallel, according to [1] to [8]. Either way.
  • the residence time of the second mixed solution in the second reaction flow path is less than 5 minutes.
  • the flow rate of the solution containing the drug introduced into the collision type micromixer includes the flow rate of the solution containing the raw material antibody introduced into any micromixer, and the cutting agent introduced into any micromixer.
  • the time required from the arrival of the solution containing the raw material antibody and the solution containing the cleavage agent to any micromixer to the passage through the second reaction flow path is less than 20 minutes, [1] to [13]. ] Any method.
  • [20] The method of any of [1] to [19], wherein the drug has a maleimide group and / or a disulfide group, or is derivatized to have a maleimide group and / or a disulfide group.
  • [21] The method according to any one of [1] to [20], wherein the antibody-drug conjugate has a drug-antibody ratio of 2.0 or more.
  • [22] The method according to any one of [1] to [21], wherein the monomer ratio in the antibody drug conjugate analyzed by size exclusion chromatography is 98% or more.
  • the drug is a drug, a labeling substance, or a stabilizer.
  • an ADC having a good DAR can be produced in a short time. Further, according to the method of the present invention, since the derivatization reaction (cutting reaction) of the antibody can be carried out at a relatively high temperature, the production of the ADC can be further accelerated, and the ADC having a higher DAT can be obtained. Can be manufactured. Furthermore, according to the method of the present invention, it is possible to reduce the generation of unwanted by-products (aggregates and decomposition products) in the production of ADC.
  • FIG. 1 is a diagram showing an example of an FMR configuration that can be used by the method of the present invention.
  • FIG. 2 is a diagram showing the analysis results of an antibody drug conjugate (trastuzumab-MMAE) by reverse phase high performance liquid chromatography (RP-HPLC) (Example 1).
  • FIG. 3 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-DM1) by RP-HPLC (Example 4).
  • FIG. 4 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-MMAF) by RP-HPLC (Example 5).
  • FIG. 5 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-PEG) by RP-HPLC (Example 11).
  • FIG. 6 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-MMAE) by size exclusion chromatography (SEC) (Example 13).
  • FIG. 7 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-MMAE) by SEC (Comparative Example 1).
  • the present invention provides a method for producing an antibody drug conjugate.
  • the method of the present invention includes the following treatments (1) to (4).
  • a solution containing a raw material antibody having a specific cleaving site and a solution containing a cutting agent having a cleaving ability of the specific cleaving site are mixed with an arbitrary micromixer, and the raw material antibody and the cleaving site are mixed.
  • An antibody derivative having a specific reactive site and the above by passing the first mixed solution through the first reaction flow path and reacting the raw material antibody and the cleavage agent in the first reaction flow path.
  • a solution containing a cleaving agent wherein the antibody derivative having the specific reactive site is a raw material by cleaving the specific cleaving site with the cleaving agent in the reaction. It is produced from antibodies; (3) Mixing the antibody derivative, the solution containing the cleavage agent, and the solution containing the drug with a collision-type micromixer to produce a second mixed solution containing the antibody derivative, the cleavage agent, and the drug; (4) The antibody drug conjugate is produced by passing the second mixed solution through the second reaction flow path and reacting the antibody derivative and the drug in the second reaction flow path.
  • the above processes (1) to (4) are continuously performed in the flow microreactor (FMR), and the representative diameter ratio between the collision type micromixer and the first reaction flow path (collision type micromixer). / 1st reaction flow path) is 0.95 or less.
  • a solution containing a raw material antibody having a specific cleavage site is introduced into the first introduction flow path, and a solution containing a cleavage agent having a cleavage ability of the specific cleavage site is introduced into the second introduction flow. It can be introduced into the path so that both solutions are mixed by an arbitrary micromixer at the confluence of the first introduction flow path and the second introduction flow path. Such mixing produces a first mixed solution containing a solution containing a raw material antibody and a solution containing a cleavage agent.
  • the introduction of the solution into the first and second introduction channels is performed, for example, by sending liquid from the reservoir or passing the liquid from the upstream channel (eg, the confluence of the first upstream channel and the second upstream channel). It can be done by passing liquid from the road).
  • the liquid feeding can be performed using a pump.
  • liquid flow for example, by sending liquid from the upstream reservoir to the upstream flow path using a pump, liquid flow from the upstream flow path can be promoted.
  • the raw material antibody used in the treatment (1) is the reaction of the treatment (2) (that is, the derivative of the antibody) for producing the antibody derivative used in the reaction of the treatment (4) (that is, the conjugation reaction of the antibody and the drug). It is an antibody used for (derivatization reaction). Therefore, the raw material antibody is not particularly limited as long as it is an antibody used for such a derivatization reaction, and may be an unmodified antibody or a modified antibody. When the raw material antibody is an unmodified antibody, a solution containing the unmodified antibody can be introduced from the reservoir into the first introduction channel.
  • a solution containing the modified antibody may be introduced from the reservoir into the first introduction channel, or a modified antibody production system existing upstream of the first introduction channel (eg, non-modified antibody).
  • a first upstream introduction channel for introducing a modified antibody a second upstream introduction channel containing a modification reagent for an unmodified antibody, a micromixer at the confluence of these channels, and an unmodified antibody and a modifying reagent.
  • a solution containing the modified antibody may be introduced from the outflow channel of the flow path system including the upstream reaction channel that reacts to generate the modified antibody.
  • antibody in the raw material antibody, the antibody derivative produced from the raw material antibody, and the antibody drug conjugate is as follows.
  • the origin of the antibody is not particularly limited, and may be derived from an animal such as a mammal, a bird (eg, a chicken), for example.
  • the immunoglobulin unit is derived from a mammal.
  • mammals include, for example, primates (eg, humans, monkeys, chimpanzees), rodents (eg, mice, rats, guinea pigs, hamsters, rabbits), pet animals (eg, dogs, cats), domestic animals. (Eg, cows, pigs, goats), servants (eg, horses, sheep), preferably primates or rodents, more preferably humans.
  • the type of antibody may be polyclonal antibody or monoclonal antibody.
  • the antibody may also be a divalent antibody (eg, IgG, IgD, IgE) or a tetravalent or higher antibody (eg, IgA antibody, IgM antibody).
  • the antibody is a monoclonal antibody.
  • the monoclonal antibody is modified to have, for example, a chimeric antibody, a humanized antibody, a human antibody, or an antibody to which a predetermined sugar chain is added (eg, a sugar chain binding consensus sequence such as an N-type sugar chain binding consensus sequence).
  • Antibodies bispecific antibodies, Fc region proteins, Fc fusion proteins.
  • Isotypes of monoclonal antibodies include, for example, IgG (eg, IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, IgE, and IgY.
  • a full-length antibody or an antibody fragment containing a variable region and CH1 domain and CH2 domain can be used as the monoclonal antibody, but a full-length antibody is preferable.
  • the antibody is preferably an IgG monoclonal antibody, more preferably an IgG full-length monoclonal antibody.
  • any antigen can be used as the antigen of the antibody.
  • antigens include proteins [oligopeptides, polypeptides. It may be a protein modified with a biomolecule such as sugar (eg, glycoprotein)], sugar chains, nucleic acids, small molecule compounds.
  • the antibody may be an antibody that uses a protein as an antigen.
  • proteins include cell membrane receptors, cell membrane proteins other than cell membrane receptors (eg, extracellular matrix proteins, channel proteins, transporter proteins), ligands, and soluble receptors.
  • the protein that is the antigen of the antibody may be a disease target protein.
  • diseases target proteins include the following.
  • Amyloid AL Hereditary and rare diseases Amyloid AL, SEMA4D (CD100), insulin receptor, ANGPTL3, IL4, IL13, FGF23, corticostimulatory hormone, transthyretin, huntingtin
  • monoclonal antibodies include specific chimeric antibodies (eg, rituximab, baciliximab, infliximab, cetuximab, siltuximab, dinutuximab, altertoximab), specific humanized antibodies (eg, dacrizumab, paribizmab, trastuzumab, trussumab, allenzumab).
  • specific chimeric antibodies eg, rituximab, baciliximab, infliximab, cetuximab, siltuximab, dinutuximab, altertoximab
  • specific humanized antibodies eg, dacrizumab, paribizmab, trastuzumab, trussumab, allenzumab.
  • Efarizumab Efarizumab, Bebashizumab, Natarizumab (IgG4), Toshirizumab, Ekurizumab (IgG2), Mogamurizumab, Pertsuzumab, Obinutsuzumab, Bedrizumab, Penproridumab (IgG4), Mepolidumab, Erotsumub Human antibodies (eg, adalimumab (IgG1), panitumumab, golimumab, ustequinumab, canaquinumab, ofatumumab, denosmab (IgG2), ipilimumab, berimumab, rapiximab, lambsilmab, nibolumab, dupilumab (IgG4) Cetuximab, Brodalmab (IgG2), Oralatumab) can be mentioned (if the IgG subtype is not
  • the raw material antibody may be an unmodified antibody.
  • Unmodified antibodies are antibodies that have not been modified by genetic engineering and organic chemistry techniques. Modifications by genetic engineering techniques include, for example, introduction of mutations into the antibody chain gene for modification of the amino acid sequence of the antibody chain. Modifications by organic chemistry techniques include, for example, the introduction of specific cleavage sites for the side chains of amino acid residues present in antibody chains (particularly the constant regions of heavy and / or light chains).
  • the source antibody may be a modified antibody.
  • the modification in the modified antibody include the above-mentioned genetic engineering technique and modification by an organic chemical technique.
  • a raw material antibody having a specific cleavage site can be obtained.
  • Amino acid residues in the antibody utilized when introducing a specific cleavage site into the raw material antibody include, for example, lysine residue, tyrosine residue, serine residue, and threonine residue.
  • human IgG such as human IgG1
  • the following amino acid residues existing in the heavy chain constant region can be exposed on the antibody surface, and these amino acid residues can be used for introduction of a specific cleavage site (for example).
  • the modified antibody may be a regioselectively modified antibody.
  • the antibody derivative an antibody derivative having a specific reactive site regioselectively is produced.
  • Regioselective modifications of antibodies are well known in the art and can be performed, for example, by organic chemistry or genetic engineering techniques.
  • the modified antibody may be a position-nonselectively modified antibody.
  • an antibody derivative having a specific reactive site non-regioselectively is produced.
  • the modified antibody may be a modified antibody containing a modified site having a specific cleavable site.
  • the specific cleavage site may be a cleavage site that produces a bioorthogonal functional group on the antibody side by cleavage of the specific cleavage site using a cleavage agent.
  • Bioorthogonal functional groups are those that do not react with biological constituents (eg, amino acids, nucleic acids, lipids, sugars, phosphates) or that react slowly with biological constituents, but with respect to components other than biological constituents. A group that reacts selectively. Bioorthogonal functional groups are well known in the art (eg, Sharpless KB et al., Angelw. Chem.
  • a bioorthogonal functional group containing a thiol group can be utilized.
  • the combination of the cleavable site that generates a bioorthogonal functional group on the antibody side by cleaving with a cleaving agent and the bioorthogonal functional group is, for example, as follows.
  • the cleavage site is a disulfide group or a thioester group capable of producing a thiol group on the antibody side by cleavage using a cleavage agent.
  • a modified antibody containing a modified site having such a specific cleaving site preferably a disulfide group or a thioester group
  • the reaction in the first reaction flow path causes a bioorthogonal functional group (preferably, preferably).
  • An antibody derivative having a thiol group is produced as an antibody derivative having a specific reaction site.
  • the antibody derivative is linked to the drug by the reaction in the second reaction flow path to form an antibody drug complex. Can be generated.
  • the raw material antibody is an antibody having a disulfide group.
  • the antibody having a disulfide group may be a modified antibody containing a modification site having a disulfide group.
  • the reaction in the first reaction channel produces a modified antibody derivative containing a modified site having a thiol group.
  • the antibody having a disulfide group may be an unmodified antibody having a disulfide group.
  • the unmodified antibody has a disulfide group because the heavy chain and the heavy chain / light chain are linked by a disulfide bond.
  • an IgG antibody composed of two heavy chains and two light chains has four disulfide groups because the heavy chains and the heavy and light chains are linked by four disulfide bonds.
  • the reaction in the first reaction flow path produces an unmodified antibody derivative having a thiol group.
  • the concentration of the raw material antibody in the solution is not particularly limited as long as it can sufficiently react with the cleavage agent, and may be, for example, 0.1 to 30 mg / mL.
  • the concentration may be preferably 0.2 mg / mL or more, more preferably 0.3 mg / mL or more, still more preferably 0.4 mg / mL or more, and particularly preferably 0.5 mg / mL or more.
  • the concentration may also be 25 mg / mL or less, 20 mg / mL or less, 18 mg / mL or less, 16 mg / mL or less, or 14 mg / mL or less.
  • the cleavage agent used in the treatment (1) is a substance having the ability to cleave a specific cleavage site in the raw material antibody.
  • the cleaving agent include reducing agents (eg, tricarboxyethylphosphine (TCEP), cysteine, dithiothreitol, reduced glutathione, ⁇ -mercaptoethanol), acidic substances (eg, inorganic acidic substances such as hydrochloric acid and sulfuric acid, etc.).
  • organic acidic substances such as acetic acid and citric acid
  • basic substances eg, inorganic basic substances such as sodium hydroxide and potassium hydroxide, and organic basic substances such as hydroxylamine and triethylamine
  • oxidizing agents eg,) Sodium periodate, oxidized glutathione
  • enzymes e.g, the cutting agent is a reducing agent.
  • the cleavage agent is a reducing agent having the ability to cleave a disulfide bond.
  • reducing agents include tricarboxyethylphosphine (TCEP), cysteine, dithiothreitol, reduced glutathione, and ⁇ -mercaptoethanol.
  • the reducing agent is TCEP.
  • the concentration of the cleavage agent in the solution is not particularly limited as long as it can sufficiently react with the antibody, and may be, for example, 0.1 to 50 mM.
  • the concentration may be preferably 0.3 mM or more, more preferably 0.5 mM or more, still more preferably 0.8 mM or more, and particularly preferably 1.0 mM or more.
  • the concentration may also be 40 mM or less, 30 mM or less, 20 mM or less, 10 mM or less, or 5 mM or less.
  • the concentration of the cleavage agent may also be defined as an equivalent to the antibody.
  • the concentration of the cleavage agent is, for example, 1 to 100 molar equivalents, preferably 1 to 50 molar equivalents (or 2 to 50 molar equivalents), more preferably 1 to 30 molar equivalents (or 3 to 30 molar equivalents), relative to the antibody. Equivalents), even more preferably 1-20 molar equivalents (or 4-20 molar equivalents), particularly preferably 1-15 molar equivalents (or 5-15 molar equivalents).
  • An aqueous solution can be used as a solution such as a solution containing a raw material antibody and a solution containing a cutting agent.
  • the aqueous solution include water (eg, distilled water, sterile distilled water, purified water, physiological saline), buffer solution (eg, phosphoric acid aqueous solution, Tris-hydrochloride buffer solution, carbonic acid-dicarbonate buffer solution, boric acid aqueous solution). , Glycin-sodium hydroxide buffer, citrate buffer), but a buffer is preferred.
  • the pH of the solution is, for example, 5.0 to 9.0, preferably 5.5 to 8.5.
  • the aqueous solution may contain other components. Examples of such other components include arbitrary components such as chelating agents and organic solvents (eg, alcohol).
  • the first and second introduction channels can be designed to be the same or different channels.
  • the length, representative diameter, shape and material of the first and second introduction channels are the confluence of the first introduction channel and the second introduction channel, respectively, for the solution containing the raw material antibody and the solution containing the cutting agent. It is not particularly limited as long as it can be introduced into.
  • the length of the first and second introduction channels is, for example, 0.1 to 10 meters, preferably 0.1 to 5 meters, more preferably 0.2 to 3 meters, still more preferably 0.2 to 3 meters. be.
  • the representative diameters of the first and second introduction channels are, for example, 0.05 to 3.0 mm, preferably 0.10 to 0.75 mm, and more preferably 0.25 to 0.5 mm.
  • the "representative diameter” means the diameter of a circular tube equivalent to the cross section of the flow path. Therefore, when the shape of the flow path cross section has a circular cross section, the representative diameter is the inner diameter. On the other hand, when the shape of the flow path cross section has a non-circular cross section having the same or different width and depth, the representative diameter is the diameter of a circular pipe having a cross section equivalent to the cross section obtained by the product of the width and the depth. Is.
  • the shapes of the first and second introduction channels may be straight or non-straight.
  • Materials of the first and second introduction channels include, for example, metal materials [eg, stainless steel (SUS), Hasteroy®, Inconel], resins [eg, polytetrafluoroethylene (PTFE), polyethersalkane. Examples include phon (PES), polyetheretherketone (PEEK), polydimethylsiloxane (PDMS), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)], and glass.
  • metal materials eg, stainless steel (SUS), Hasteroy®, Inconel
  • resins eg, polytetrafluoroethylene (PTFE), polyethersalkane.
  • PTFE polytetrafluoroethylene
  • PES polytetrafluoroethylene
  • PEEK polyetheretherketone
  • PDMS polydimethylsiloxane
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the flow rates of the solutions in the first introduction channel and the second introduction channel may be the same or different, and may be, for example, 0.05 to 30 mL / min.
  • the flow rate may be preferably 0.1 mL / min or more, more preferably 0.2 mL / min or more, still more preferably 0.4 mL / min or more, and particularly preferably 0.5 mL / min or more.
  • the flow rate is also 20 mL / min or less, 15 mL / min or less, 10 mL / min or less, 8 mL / min or less, 6 mL / min or less, 5 mL / min or less, 4 mL / min or less, 3 mL / min or less, or 2 mL / min or less.
  • the flow rate is preferably 0.1 to 20 mL / min, more preferably 0.2 to 15 mL / min, even more preferably 0.4 to 10 mL / min, and particularly preferably 0.5 to 8 mL. It may be / minute.
  • any micromixer can be used at the confluence of the first introduction flow path and the second introduction flow path.
  • a micromixer include various mixed type micromixers such as collision type (eg, T-shaped), sheath flow type, Static type, Helix type, and multi-layer flow type.
  • the representative diameter of the micromixer at the confluence of the first introduction flow path and the second introduction flow path is not particularly limited, but is preferably equal to or smaller than the representative diameter of the first introduction flow path and / or the second introduction flow path.
  • Typical diameters of such micromixers are, for example, 1.0 mm or less, 0.9 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm. It may be less than or equal to 0.25 mm or less.
  • the representative diameter of the micromixer may also be 0.05 mm or more, or 0.1 mm or more.
  • the shape of the flow path cross section of the confluence in the micromixer may have a non-circular cross section having the same or different width and depth, or may have a circular cross section.
  • the confluence of the first introduction flow path and the second introduction flow path may be single or a plurality (when there are a plurality of first introduction flow paths and / or a plurality of second introduction flow paths). From the viewpoint of easy design and manufacture of FMR, a single unit is preferable.
  • Materials for the micromixer include, for example, metal materials [eg, stainless steel (SUS), Hasteroy®, Inconel], resins [eg, polytetrafluoroethylene (PTFE), polyethersulfone (PES), poly. Ether ether ketone (PEEK), polydimethylsiloxane (PDMS), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)], and glass.
  • metal materials eg, stainless steel (SUS), Hasteroy®, Inconel
  • resins eg, polytetrafluoroethylene (PTFE), polyethersulfone (PES), poly. Ether ether ketone (P
  • the micromixer used at the confluence of the first introduction flow path and the second introduction flow path is a collision type micromixer used at the confluence of the first reaction flow path and the third introduction flow path, which will be described later. It may be the same or different collision type micromixer.
  • the representative diameter ratio of the micromixer to the first introduction channel (micromixer / first introduction channel) and / or the micromixer / first at the confluence of the first introduction channel and the second introduction channel. 2
  • the representative diameter ratio of the introduction flow path may be less than 1.0. According to such a representative diameter ratio, the solution is accelerated at the confluence to generate finer solution units, so that a uniform solution can be produced more quickly.
  • Such representative diameter ratios are, for example, 0.95 or less, 0.90 or less, 0.85 or less, 0.80 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, It may be 0.55 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, 0.30 or less, or 0.25 or less.
  • the smaller the representative diameter ratio the faster the uniform solution can be produced.
  • Such a representative diameter ratio may also be 0.05 or more, or 0.1 or more.
  • the micromixer used at the confluence of the first introduction flow path and the second introduction flow path may have a representative diameter of 0.8 mm or less.
  • the representative diameter of the micromixer is preferably 0.7 mm or less, more preferably 0.6 mm or less, still more preferably 0.5 mm or less, particularly preferably 0.4 mm or less, 0.3 mm or less, or 0.25 mm or less. There may be.
  • the representative diameter of the micromixer may also be 0.05 mm or more, or 0.1 mm or more.
  • the first reaction flow path controls the reaction time in the reaction between the raw material antibody and the cleavage agent
  • the first reaction flow path can be designed so as to achieve the desired residence time of the first mixed solution in the first reaction flow path.
  • Such residence time is not particularly limited, but may be, for example, less than 15 minutes, preferably less than 10 minutes, more preferably less than 8 minutes, and even more preferably less than 6 minutes.
  • the residence time of the first mixed solution in the first reaction flow path adjusts, for example, the flow rate of the solutions in the first introduction flow path and the second introduction flow path, and the length and representative diameter of the first reaction flow path. It can be controlled by this.
  • the first reaction flow path is designed to achieve a shorter residence time. You may.
  • Such a short residence time is, for example, less than 5 minutes, preferably less than 4 minutes, more preferably less than 3 minutes.
  • the reaction temperature in the first reaction flow path can be easily controlled. In FMR, which has a large surface area per unit volume, heat transfer occurs at high speed, so that the temperature can be controlled precisely and quickly. Controlling the reaction temperature is described, for example, by using a temperature controller mounted outside the reaction flow path, or by using a bath (eg, a water bath) capable of immersing the reaction flow path, or by a pre-temperature control mechanism (eg, Examples). It can be done by using a coil retention tube).
  • the reaction in the first reaction flow path can be carried out at an arbitrary reaction temperature under mild conditions described later. Alternatively, the reaction temperature may be set to a relatively high temperature in order to shorten the reaction time. Therefore, the reaction temperature may be, for example, 30 to 60 ° C, preferably 35 to 55 ° C, and more preferably 37 to 50 ° C.
  • the first reaction flow path is not particularly limited as long as it is configured so as to achieve the residence time of the first mixed solution as described above, and for example, the length, representative diameter, shape and material of the first reaction flow path may be used. , May be set as follows.
  • the length of the first reaction flow path may be, for example, 1 to 30 meters, preferably 2 to 20 meters, more preferably 3 to 15 meters, and even more preferably 4 to 10 meters.
  • the representative diameter of the first reaction flow path is, for example, 0.5 to 3 mm, preferably 0.6 to 2.5 mm, more preferably 0.7 to 2.0 mm, and even more preferably 0.8 to 1.5 mm. There may be.
  • the shape of the first reaction flow path may be a straight line or a non-straight line [eg, a shape having one or more curved portions and a straight portion, a circular shape (eg, a coil shape, a spiral shape)].
  • a straight line or a non-straight line eg, a shape having one or more curved portions and a straight portion, a circular shape (eg, a coil shape, a spiral shape)].
  • the same materials as those of the first and second introduction flow paths can be used.
  • the reaction in the first reaction channel can be carried out under mild conditions that cannot cause denaturation / degradation of the antibody (eg, cleavage of the amide bond) (eg, GJL Bernardes et al., Chem. Rev., 115, 2174 (2015); GG Bernardes et al., Chem. Asian.J., 4,630 (2009); BG Devices et al., Nat. Commun. , 5, 4740 (2014); see A. Wagner et al., Bioconjugate. Chem., 25, 825 (2014)).
  • the reaction can be complete or partial.
  • the degree of reaction can be controlled, for example, by adjusting conditions such as the concentrations of the raw material antibody and the cleavage agent, the residence time of the first mixed solution in the first reaction flow path, and the reaction temperature in the first reaction flow path. can.
  • the outflow solution from the first reaction flow path is mixed with the solution containing the drug introduced through the third introduction flow path and the confluence of the first reaction flow path and the third introduction flow path. This can be done by mixing with a collision type micromixer. Such mixing produces a second mixture containing the antibody derivative, cleavage agent and drug.
  • the drug used in the present invention is not particularly limited as long as it is a substance that imparts an arbitrary function to the antibody, and examples thereof include pharmaceuticals, labeling substances, and stabilizers.
  • the drug may also be a single drug or a substance in which two or more drugs are linked.
  • the medicine may be a medicine for any disease.
  • diseases include, for example, cancer (eg, lung cancer, gastric cancer, colon cancer, pancreatic cancer, kidney cancer, liver cancer, thyroid cancer, prostate cancer, bladder cancer, ovarian cancer, uterine cancer, bone cancer, skin cancer, etc.
  • Brain tumor, melanoma autoimmune and inflammatory diseases (eg, allergic disease, rheumatoid arthritis, systemic erythematosus), neurological diseases (eg, cerebral infarction, Alzheimer's disease, Parkinson's disease, muscular atrophic lateral sclerosis), Infectious diseases (eg, bacterial infections, viral infections), hereditary and rare diseases (eg, hereditary globular erythema, non-dystrophy myotension), eye diseases (eg, age-related luteal degeneration, diabetic retinopathy, etc.) Retinal pigment degeneration), diseases in the field of bone and orthopedic surgery (eg, osteoarthritis), blood diseases (eg, leukemia, purpura), and other diseases (eg, diabetes, hyperlipidemia, etc.) , Liver disease, kidney disease, lung disease, cardiovascular disease, digestive system disease).
  • the medicine may be a preventive or therapeutic drug for a disease, or a palliative drug for side effects.
  • the drug is an anticancer drug.
  • Anti-cancer agents include, for example, chemotherapeutic agents, toxins, radioisotopes or substances containing them.
  • the chemotherapeutic agent include DNA damaging agents, metabolic antagonists, enzyme inhibitors, DNA intercalating agents, DNA cleavage agents, topoisomerase inhibitors, DNA binding inhibitors, tubularin binding inhibitors, cytotoxic nucleosides, and the like.
  • Examples include platinum compounds.
  • toxins include bacterial toxins (eg, diphtheria toxins) and plant toxins (eg, ricin).
  • Radioisotopes include, for example, radioisotopes of hydrogen atoms (eg, 3H ), radioisotopes of carbon atoms (eg, 14C ), radioisotopes of phosphorus atoms (eg, 32P ), and sulfur atoms.
  • radioisotopes of hydrogen atoms eg, 3H
  • radioisotopes of carbon atoms eg, 14C
  • radioisotopes of phosphorus atoms eg, 32P
  • sulfur atoms include, for example, radioisotopes of hydrogen atoms (eg, 3H ), radioisotopes of carbon atoms (eg, 14C ), radioisotopes of phosphorus atoms (eg, 32P ), and sulfur atoms.
  • Radioisotopes eg, 35 S ), yttrium radioisotopes (eg 90 Y), technetium radioisotopes (eg 99m Tc), indium radioisotopes (eg 111 In), iodine atom radioactivity Isotopes (eg 123 I, 125 I, 129 I, 131 I), samarium radioisotopes (eg 153 Sm), renium radioisotopes (eg 186 Re), asstatin radioisotopes (eg 156 Re). 211 At), a radioisotope of bismuth (eg, 212 Bi).
  • auristatin MMAE, MMAF
  • maytancin DM1, DM4
  • PBD pyrrolobenzodiazepine
  • IGN camptothecin analog
  • calicheamicin duocarminine
  • eribulin anthracycline
  • dmDNA31 tubricin.
  • the labeling substance is a substance that enables the detection of targets (eg, tissues, cells, substances).
  • Labeling substances include, for example, enzymes (eg, peroxidase, alkaline phosphatase, luciferase, ⁇ -galactosidase), affinity substances (eg, streptavidin, biotin, digoxygenin, aptamer), fluorescent substances (eg, fluorescein, fluorescein isothiocyanate, rhodomin).
  • Green fluorescent protein Green fluorescent protein, red fluorescent protein
  • luminescent substances eg, luciferin, equolin, acridinium ester, tris (2,2'-bipyridyl) ruthenium, luminol
  • radioactive isotopes eg, those mentioned above
  • examples include substances containing it.
  • the stabilizer is a substance that enables the stabilization of the antibody.
  • Stabilizers include, for example, high molecular weight compounds (eg polyethylene glycol (PEG)), diols, glycerin, nonionic surfactants, anionic surfactants, natural surfactants, saccharides, and polyols. Can be mentioned.
  • Drugs are also peptides, proteins (eg, antibodies), nucleic acids (eg, DNA, RNA, and artificial nucleic acids), small molecule organic compounds (eg, small molecule organic compounds described below), chelators, sugar chains, lipids, polymers. It may be a compound, a metal (eg, gold).
  • the functional group of the drug can be appropriately reacted with the bioorthogonal functional group in the antibody derivative.
  • the functional group that easily reacts with the bioorthogonal functional group may also differ depending on the specific type of the bioorthogonal functional group. Those skilled in the art can appropriately select an appropriate functional group as a functional group that easily reacts with a bioorthogonal functional group (eg, Boutureira et al., Chem. Rev., 2015, 115, 2174-2195). ).
  • Examples of the functional group that easily reacts with the bioorthogonal functional group include, but are not limited to, maleimide residues and disulfide residues when the bioorthogonal functional group is a thiol residue.
  • the drug may be derivatized to have such a functional group.
  • Derivatization is a common technical practice in the art (eg, International Publication No. 2004/010957, US Patent Application Publication No. 2006/0074008, US Patent Application Publication No. 2005/0238649).
  • derivatization may be carried out using any cross-linking agent.
  • the derivatization may be carried out using a specific linker having the desired functional group.
  • such a linker may be one in which the drug and the antibody can be separated by cleavage of the linker in an appropriate environment (eg, intracellular or extracellular).
  • linkers include, for example, peptidyl linkers that are degraded by specific proteases [eg, intracellular proteases (eg, proteases present in lysosomes or endosomes), extracellular proteases (eg, secretory proteases)].
  • specific proteases eg, intracellular proteases (eg, proteases present in lysosomes or endosomes), extracellular proteases (eg, secretory proteases)
  • proteases eg, intracellular proteases (eg, proteases present in lysosomes or endosomes), extracellular proteases (eg, secretory proteases)
  • US Pat. No. 6,214,345 Dubowchik et al., Pharma. Therapeutics 83: 67-123 (1999)
  • the linker may be self-immolative (eg, WO 02/083180, WO 04/043493, WO 05/1192919).
  • derivatized drugs are also simply referred to as "drugs".
  • the drug has a maleimide group and / or a disulfide group (preferably a maleimide group) or is derivatized to have a maleimide group and / or a disulfide group (preferably a maleimide group). It is preferable to have.
  • the concentration of the drug in the solution is not particularly limited as long as it can sufficiently react with the antibody derivative, and may be, for example, 0.1 to 50 mM.
  • the concentration may be preferably 0.15 mM or more, more preferably 0.2 mM or more, still more preferably 0.25 mM or more, and particularly preferably 0.3 mM or more.
  • the concentration may also be 40 mM or less, 30 mM or less, 20 mM or less, 10 mM or less, or 5 mM or less.
  • the concentration of the drug may also be defined as an equivalent relative to the antibody derivative.
  • the concentration of the drug is, for example, 1 to 100 molar equivalents, preferably 1 to 50 molar equivalents, more preferably 1 to 30 molar equivalents, even more preferably 1 to 20 molar equivalents, particularly preferably 1 to 20 molar equivalents, relative to the antibody derivative. It may be 1 to 15 molar equivalents.
  • the introduction of the solution into the third introduction channel can be performed in the same manner as the introduction of the solution into the first and second introduction channels.
  • the length, representative diameter, shape and material of the third introduction channel, and the flow rate of the solution in the third introduction channel may be the same as those of the first and second introduction channels.
  • the total flow rate of the solution containing the antibody derivative and the cleavage agent and the flow rate of the solution containing the drug may be 2.0 mL / min or more.
  • Such a total value is preferably 2.5 mL / min or more, more preferably 3.0 mL / min or more, even more preferably 3.5 mL / min or more, and particularly preferably 4.0 mL / min or more. good.
  • Such total values may also be 60 mL / min or less, 50 mL / min or less, 40 mL / min or less, 30 mL / min or less, 20 mL / min or less, or 10 mL / min or less. More specifically, such total values are preferably 2.0 to 60 mL / min, more preferably 2.5 to 50 mL / min, even more preferably 3.0 to 40 mL / min, and particularly preferably 4 It may be 0.0 to 30 mL / min, 4.0 to 20 mL / min, or 4.0 to 10 mL / min.
  • the flow rate of the solution in the first reaction channel may be 0.2 mL / min or higher.
  • the flow rate of the solution in the first reaction flow path can be indirectly adjusted by adjusting the flow rate of the solution in the first introduction flow path and the second introduction flow path.
  • the flow rate of the solution in the first reaction channel is preferably 0.5 mL / min or more, more preferably 1.0 mL / min or more, even more preferably 1.5 mL / min or more, and particularly preferably 2.0 mL / min. It may be the above.
  • Such flow rates may also be 40 mL / min or less, 30 mL / min or less, 20 mL / min or less, or 10 mL / min or less.
  • the flow rate is preferably 0.2-40 mL / min, more preferably 0.5-30 mL / min, even more preferably 1.0-20 mL / min, and particularly preferably 1.5-10 mL. It may be / min, or 2.0 mL to 10 mL / min.
  • the flow rate of the solution in the third introduction channel is greater than either (a) the flow rate of the solution in the first introduction channel and (b) the flow rate of the solution in the second introduction channel. It may be fast. By adopting such a flow rate in the third introduction flow path, the solutions collide strongly at the confluence to generate finer solution units, so that a uniform solution can be generated more quickly.
  • the flow rate of the solution into the third introduction flow path is, for example, 1.2 times or more, 1.4 times or more, 1.6 times or more, 1.8 times or more, or the flow rate of (a) or (b). It may be 2.0 times or more.
  • the flow rate of the solution in the third introduction channel may also be 0.4 mL / min or higher (eg 0.4-30 mL / min).
  • the flow rate may be preferably 0.6 mL / min or more, more preferably 0.8 mL / min or more, still more preferably 1.0 mL / min or more, and particularly preferably 1.5 mL / min or more.
  • the flow rate is also 20 mL / min or less, 15 mL / min or less, 10 mL / min or less, 8 mL / min or less, 6 mL / min or less, 5 mL / min or less, 4 mL / min or less, 3 mL / min or less, or 2 mL / min or less.
  • the flow rate is preferably 0.6 to 20 mL / min, more preferably 0.8 to 15 mL / min, even more preferably 1.0 to 10 mL / min, and particularly preferably 1.5 to 8 mL. It may be / minute.
  • a collision type micromixer is used at the confluence of the first reaction flow path and the third introduction flow path as described above.
  • the collision type micromixer refers to a micromixer that promotes mixing by generating a mixing vortex when a plurality of solutions are in contact with each other.
  • a first solution eg, a solution containing an antibody derivative having a specific reaction site and a cleavage agent
  • a second solution eg, a drug
  • a micromixer provided with a confluence of multiple solutions from multiple inflow channels, including at least two inflow paths arranged in a positional relationship that allows a mixed vortex to be generated upon contact of the containing solution).
  • the two inflow paths are in a facing position, or a constant angle (angles X and Y, respectively) on the outflow path side with respect to the facing position.
  • the relationship is in a position where it may be tilted (Table B).
  • the angle X set with respect to the first inflow path eg, at least one first reaction flow path
  • the angle Y set with respect to the inflow path is an angle tilted toward the outflow path with respect to the facing position.
  • two solutions in at least two inflow paths can collide with each other in a flow completely or substantially opposite to each other, and the collision force is significantly increased. Even if collision is not possible due to a completely opposite flow, strong collision is possible because the collision force does not escape by colliding with the flow path wall (solid phase) in the micromixer.
  • the angles X and Y are the same or different, respectively, within 30 °, preferably within 25 °, more preferably within 20 °, even more preferably within 15 °, and particularly preferably within 10 °.
  • Such a collision type micromixer used in the present invention is different from the Static type micromixer in which mixing is promoted by a structure in the flow path after merging a plurality of solutions.
  • both the first solution and the second solution containing different components to be reacted with each other flow into the micromixer in a forward positional relationship and flow out into the outflow path.
  • Sheath-flow type micromixer for example, at least one inflow solution flows into the micromixer in the forward direction with the outflow solution and flows out into the outflow path to reduce the collision force. It is different from the sheath flow type micromixer described in Patent Document 2 which is easy to miss.
  • the collision-type micromixer comprises two inflow channels (eg, a solution containing an antibody derivative having a specific reaction site and a cleavage agent) through a first solution and a second solution containing different components to be reacted with each other.
  • T-shaped micromixer including a combined flow path in which a first reaction flow path through which a drug is passed and a third introduction flow path through which a solution containing a drug is passed are facing each other, and two inflow paths and one outflow path are orthogonal to each other.
  • the microreactor in which the outflow path is flush with the first inflow path and the second inflow path is a T-shaped microreactor.
  • the representative diameter of the collision type micromixer is not particularly limited, but is preferably equal to or smaller than the representative diameter of the first reaction flow path and / or the third introduction flow path.
  • Typical diameters of such micromixers are, for example, 1.0 mm or less, 0.9 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm. It may be less than or equal to 0.25 mm or less.
  • the representative diameter of the micromixer may also be 0.05 mm or more, or 0.1 mm or more.
  • the shape of the flow path cross section of the confluence in the collision type micromixer may have a non-circular cross section having the same or different width and depth, or may have a circular cross section.
  • the confluence of the first reaction flow path and the third introduction flow path may be single or plural (when there are a plurality of confluence portions of the first reaction flow path and the third introduction flow path). , Single is preferable from the viewpoint of easy design / manufacturing of FMR.
  • Materials for collision-type micromixers include, for example, metal materials [eg, stainless steel (SUS), Hasteroy®, Inconel], resins [eg, polytetrafluoroethylene (PTFE), polyethersulfone (PES)). , Polyetheretherketone (PEEK), polydimethylsiloxane (PDMS), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)], and glass.
  • the representative diameter ratio of the collision type micromixer and the first reaction flow path (collision type micromixer / first reaction flow path) and / or at the confluence of the first reaction flow path and the third introduction flow path.
  • the representative diameter ratio (collision type micromixer / second introduction flow path) between the collision type micromixer and the third introduction flow path may be 0.95 or less. With such a representative diameter ratio, the solution is significantly accelerated at the confluence to produce smaller solution units, so that a uniform solution can be produced very quickly.
  • Such a representative diameter ratio is preferably 0.90 or less, more preferably 0.85 or less, still more preferably 0.80 or less, particularly preferably 0.75 or less, 0.70 or less, 0.65 or less, It may be 0.60 or less, 0.55 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, 0.30 or less, or 0.25 or less.
  • the smaller the representative diameter ratio the faster the uniform solution can be produced.
  • Such a representative diameter ratio may also be 0.05 or more, or 0.1 or more.
  • the collision type micromixer preferably has a representative diameter of 0.8 mm or less among the above-mentioned representative diameters.
  • the solution is further accelerated at the confluence to generate finer solution units, so that a uniform solution can be produced more quickly.
  • the flow rate of the drug-containing solution introduced into the impact micromixer is faster than either the flow rate of the solution in the first introduction channel and the flow rate of the solution in the second introduction channel. May be.
  • the solution is further accelerated at the confluence to generate finer solution units, so that a uniform solution can be produced more quickly.
  • the second reaction flow path controls the reaction time in the reaction between the antibody derivative and the drug
  • the second reaction flow path can be designed so as to achieve the desired residence time of the second mixed solution in the second reaction flow path.
  • Such residence time is not particularly limited, but may be, for example, less than 30 minutes, preferably less than 20 minutes, more preferably less than 15 minutes, still more preferably less than 10 minutes, and particularly preferably less than 5 minutes.
  • Such residence time may also be 30 seconds or longer, preferably 40 seconds or longer, more preferably 50 seconds or longer, and even more preferably 1 minute or longer.
  • the residence time of the second mixed solution in the second reaction flow path adjusts, for example, the flow rate of the solution in the first, second and third introduction flow paths, and the length and representative diameter of the second reaction flow path. It can be controlled by this.
  • the reaction in the second reaction flow path can be carried out under the above-mentioned mild conditions that cannot cause denaturation / decomposition of the antibody (eg, cleavage of the amide bond).
  • the reaction in the second reaction flow path may be, for example, room temperature, preferably 10 to 30 ° C.
  • the reaction temperature in the second reaction flow path can be easily controlled in the same manner as the reaction temperature in the first reaction flow path.
  • the second reaction flow path is not particularly limited as long as it is configured so as to achieve the residence time of the second mixed solution as described above.
  • the length, representative diameter, shape and material of the second reaction channel may be set as follows.
  • the length of the second reaction flow path may be, for example, 1 to 30 meters, preferably 2 to 20 meters, more preferably 3 to 15 meters, and even more preferably 4 to 10 meters.
  • the length of the second reaction flow path may be set so as to adjust the relationship between the residence time in the second reaction flow path and the residence time in the first reaction flow path.
  • the length of the second reaction flow path may be set so that the residence time of the second mixed solution in the second reaction flow path is equal to or less than the residence time of the first mixed solution in the first reaction flow path. can.
  • the length of the second reaction flow path may be set to be equal to or less than the length of the first reaction flow path (for example, 3/4 length, preferably 1/2 length).
  • the representative diameter of the second reaction flow path is, for example, 0.5 to 3 mm, preferably 0.6 to 2.5 mm, more preferably 0.7 to 2.0 mm, and even more preferably 0.8 to 1.5 mm. There may be.
  • the representative diameter of the second reaction flow path may be set so as to adjust the relationship between the residence time in the second reaction flow path and the residence time in the first reaction flow path.
  • the representative diameter of the second reaction flow path may be set so that the residence time of the second mixed solution in the second reaction flow path is equal to or less than the residence time of the first mixed solution in the first reaction flow path.
  • the representative diameter of the second reaction flow path may be set to be equal to or less than the representative diameter of the first reaction flow path (for example, a representative diameter of 3/4 or less, preferably a representative diameter of 1/2 or less).
  • the shape and material of the second reaction flow path are the same as those of the first reaction flow path.
  • the raw material antibody and the cleavage agent in the first mixed solution are not completely consumed by the reaction in the first reaction flow path, and are described in Patent Document 1.
  • the inflow path of the inhibitor for the cutting agent is not arranged upstream of the second reaction flow path, the unreacted raw material antibody and the cutting agent can be contained in addition to the antibody derivative and the drug.
  • the reaction between the antibody derivative and the drug not only the reaction between the antibody derivative and the drug but also the reaction between the raw material antibody and the cleavage agent proceed in parallel in the second reaction flow path. That is, an antibody derivative produced by the reaction of the raw material antibody and the cleavage agent, which progresses in parallel, can also be used for the reaction with the drug.
  • the present invention has the above-mentioned feature that the reaction temperature in the first reaction flow path can be set to a relatively high temperature, and that the raw material antibody and the cleavage agent can be reacted also in the second reaction flow path. Combined with further features, the residence time of the first mixed solution in the first reaction flow path can be set short. Therefore, in a particular embodiment, the present invention is that the raw antibody and cleavage agent in the first mixture are not completely consumed by the reaction in the first reaction flow path, and the inflow path of the inhibitor to the cleavage agent is the first.
  • the invention is an inhibitor of an inhibitor against a cleavage agent [eg, an inhibitor of a reducing agent (eg, TCEP), to allow further control of the drug-antibody binding ratio of the drug-antibody complex.
  • pH neutralizers eg, acidic or basic substances
  • the residence time of the first mixed solution in the first reaction flow path can be set short, and the residence time of the second mixed solution in the second reaction flow path can be set to be short in the first reaction flow path. Since the residence time of the first mixed solution can be set to be less than or equal to that of the first mixed solution, the antibody-drug conjugate can be produced in a short time.
  • the time required to produce an antibody-drug conjugate is from the arrival of the solution containing the raw material antibody and the solution containing the cleavage agent to any micromixer to the passage through the second reaction channel. It can be specified by time.
  • the time required for producing the antibody-drug conjugate is mainly the residence time of the first mixed solution in the first reaction flow path and the residence time in the second reaction flow path. It can be determined according to the residence time of the second mixed solution of.
  • the time required to produce an antibody-drug conjugate is, for example, less than 20 minutes, preferably less than 15 minutes, less than 14 minutes, less than 13 minutes, less than 12 minutes, less than 11 minutes, less than 10 minutes. , Less than 9 minutes, less than 8 minutes, less than 7 minutes, less than 6 minutes, or less than 5 minutes.
  • an antibody drug conjugate having a good drug-antibody ratio (DAR) of 2.0 or more can be produced.
  • the DAT will vary depending on the type of source antibody used in the method of the invention (eg, the number of heavy and light chains). Therefore, in the present invention, DAT can be defined as the number per immunoglobulin unit having two heavy chains and two light chains.
  • the DAT may be preferably 2.5 or more, more preferably 3.0 or more, still more preferably 3.5 or more, and particularly preferably 4.0 or more.
  • the DAT may also be 8.0 or less, 6.0 or less, or 4.0 or less.
  • the DAT can be measured by reverse phase high performance liquid chromatography (RP-HPLC) according to the previous report (Anal.
  • the antibody-drug conjugate produced by the method of the present invention can be defined by its purity.
  • the purity of an antibody-drug conjugate can be evaluated by the ratio of monomers (units containing two light chains and two heavy chains) in the antibody-drug conjugate.
  • the monomer ratio in the antibody-drug conjugate may be, for example, 98% or more, preferably 98.5% or more, more preferably 99% or more, and even more preferably 99.5% or more.
  • the measurement of the monomer ratio in the antibody drug conjugate can be performed by size exclusion chromatography (SEC) according to the previously reported (ACS Omega 2020, 5, 7193-7200).
  • the antibody drug conjugate produced by the reaction in the second reaction flow path can be appropriately recovered and purified.
  • recovery can be performed in a container (eg, fraction collector) located at the outlet of the second reaction channel.
  • the drug antibody complex may be purified.
  • the recovered drug-antibody complex is chromatographed (eg, gel filtration chromatography, ion exchange chromatography, reverse phase column chromatography, high performance liquid chromatography, affinity chromatography) or the like. It can be done by attaching to any method of.
  • Purification of the drug-antibody complex may also be performed continuously in the FMR.
  • a purification channel for the antibody-drug conjugate eg, single-pass tangential flow filtration as described in Patent Document 3 can be arranged downstream of the second reaction channel.
  • the drug-antibody complex produced in the present invention may be provided in the form of a salt.
  • a salt include a salt with an inorganic acid, a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, and a salt with an amino acid.
  • the salt with an inorganic acid include salts with hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, and nitric acid.
  • salts with organic acids include formic acid, acetic acid, trifluoroacetic acid, lactic acid, tartaric acid, fumaric acid, oxalic acid, maleic acid, citric acid, succinic acid, malic acid, benzenesulfonic acid, and p-toluenesulfonic acid. Salt is mentioned.
  • Salts with inorganic bases include, for example, alkali metals (eg, sodium, potassium), alkaline earth metals (eg, calcium, magnesium), and other metals such as zinc, aluminum, and salts with ammonium. ..
  • Examples of the salt with an organic base include salts with trimethylamine, triethylamine, propylenediamine, ethylenediamine, pyridine, ethanolamine, monoalkylethanolamine, dialkylethanolamine, diethanolamine, and triethanolamine.
  • Examples of salts with amino acids include salts with basic amino acids (eg, arginine, histidine, lysine, ornithine) and acidic amino acids (eg, aspartic acid, glutamic acid).
  • the salt is preferably a salt with an inorganic acid (eg, hydrogen chloride) or a salt with an organic acid (eg, trifluoroacetic acid).
  • the drug-antibody complex produced in the present invention may be provided in a non-salt form.
  • FIG. 1 shows an outline of the configuration of the FMR used in the following examples.
  • the flow path, the micromixer, and the reaction tube used had a circular cross section. Therefore, in the following, the expression "inner diameter" is used as the representative diameter.
  • Third reservoir containing payload solution (3) 2)
  • Flow path from the reservoir to the micromixer The first introduction flow path (4) for introducing the antibody solution, which connects the first reservoir (1) to the first micromixer (M1).
  • Micromixer A first micromixer (M1) for producing a first mixed solution of an antibody solution and a reducing agent solution.
  • a second micromixer (M2) for producing a second mixture of the first reaction solution and the payload solution.
  • a T-shaped micromixer that merges the first flow path and the second flow path facing each other was used.
  • Table 1 shows the inner diameters and shapes of the flow paths in the first micromixer (M1) and the second micromixer (M2).
  • the inner diameter of the flow path indicates the flow path width of the mixed portion of the two kinds of solutions.
  • Reaction tube The first reaction tube (R1) for reacting the antibody and the reducing agent in the mixed solution of the antibody solution and the reducing agent solution.
  • a second reaction tube R2 for reacting the reducing antibody and the payload in the mixed solution of the first reaction solution and the payload solution.
  • Fraction collector Fraction collector (10) that collects the second reaction solution from the second reaction tube.
  • the first reaction tube (R1) and the second reaction tube (R2) were designed so that a coil retention tube for pre-temperature control and a water bath for temperature control could be used as needed.
  • the length of the first, second and third introduction channels is 1.0 m.
  • the inner diameter of the first introduction flow path is 1.0 mm
  • the inner diameter of the second introduction flow path is 1.0 mm
  • the inner diameter of the third introduction flow path is 1.0 mm.
  • Table 1 shows the inner diameters and shapes of the flow paths in the first micromixer (M1) and the second micromixer (M2).
  • Table 2 shows the inner diameters and lengths of the flow paths of the first reaction tube (R1) and the second reaction tube (R2).
  • the FMR apparatus constructed in this manner is used to perform (A) partial reduction of the interchain disulfide bond of the antibody and (B) conjugation of the partially reduced antibody and the payload, and the residence time.
  • the antibody drug conjugate (ADC) was synthesized within 10 minutes. More specifically, the antibody solution and the reducing agent solution are pumped, mixed in the first micromixer, the mixed solution is passed through the first reaction tube, and the payload solution is sent thereto.
  • the ADC was prepared by mixing in a second micromixer, passing the liquid through a second reaction tube, and collecting the solution with a fraction collector. When changing the mixing temperature, the micromixer was immersed in a water bath. Unless otherwise specified, the mixing temperature was set to 25 ° C.
  • the measurement of DA by RP-HPLC was in accordance with the previous report (Anal. Chem., 2019, 91, 20, 12724-12732). More specifically, the conditions are as follows. (Pretreatment conditions before measurement by RP-HPLC) To ADC (1 mg / mL), add 8 M guanidine hydrochloride solution, 500 mM Tris buffer (pH 7.5), and 1 M DTT solution to make a 0.6 mg / mL ADC solution. The ADC solution is heated at 80 ° C. for 5 minutes to cleave all disulfide bonds of the antibody.
  • TCEP phosphate buffered saline
  • TCEP reducing agent
  • the antibody solution is introduced at a flow rate of 1.0 mL / min and the TCEP solution is introduced at a flow rate of 1.0 mL / min, mixed with the first micromixer (M1), and reduced in the first reaction tube (R1) for 3 minutes. I let you. Subsequently, the reaction solution flowing in the first reaction tube (R1) at a flow rate of 2.0 mL / min is mixed with the payload solution introduced at a flow rate of 2.0 mL / min with a second micromixer (M2). Then, it was subjected to a conjugation reaction in the second reaction tube (R2).
  • the length of the second reaction tube (R2) and the conjugation reaction time defined by the length of the reaction tube are as shown in Table 3.
  • NAC N-acetylcysteine
  • R1 indicates the length of the flow path of the first reaction tube.
  • R2 indicates the length of the flow path of the second reaction tube.
  • the reduction reaction time corresponds to the time during which the mixed solution of the antibody and the reducing agent stays in the first reaction tube (R1).
  • the conjugation reaction time corresponds to the time that the partially reduced antibody and payload mixture stays in the second reaction tube (R2).
  • ADC with a DAT of 3.0 or more could be obtained within a total residence time of 10 minutes by high-speed mixing using a T-shaped micromixer in FMR. Further, as shown in Table 3, by setting a flow path of an appropriate length in the second reaction tube (R2) and adjusting the conjugation reaction time, it is possible to stably obtain an ADC having a DAT of 3.2. did it.
  • Example 2 Synthesis of trastuzumab-MMAE under aging conditions Payload for anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.) using the reaction conditions of FMR (Fig. 1) and Table 3 (Condition 2) of Example 1.
  • MC-VC-MMAE (Compound 1) was reacted. NAC was not added in advance to the fraction collector receiving the reaction solution, and each fraction was aged at room temperature for 30 minutes. After 30 minutes, NAC was added and aged for another 15 minutes, and then DAR was measured by RP-HPLC. As a result, the DAT was calculated to be 3.2.
  • the conjugation reaction is the second reaction tube of FMR. It was shown to be completed in 0.75 minutes, which is the residence time in (R2).
  • the antibody solution was introduced at a flow rate of 1.0 mL / min and the TCEP solution was introduced at a flow rate of 1.0 mL / min, mixed with the first micromixer (M1), and reduced in the first reaction tube (R1). ..
  • the length of the first reaction tube (R1) and the reduction reaction time defined by the length are as shown in Table 4.
  • reaction solution flowing in the first reaction tube (R1) at a flow rate of 2.0 mL / min is mixed with the payload solution introduced at a flow rate of 2.0 mL / min with a second micromixer (M2).
  • M2 second micromixer
  • the solution after the conjugation reaction in the second reaction tube (R2) was collected with a fraction collector pre-added with an excess amount of N-acetylcysteine (NAC).
  • NAC N-acetylcysteine
  • the total residence time is the sum of the reduction reaction time (1.5 minutes or 3.0 minutes) and the conjugation reaction time (1.5 minutes).
  • the calculation of DAT was performed as follows.
  • the ratio of HPLC area% is unreacted heavy chains (12.5%), antibody heavy chains with one payload (MMAE) added (35.5%), and antibody heavy chains. Two payloads (MMAE) were added to the antibody (23.6%), and three payloads (MMAE) were added to the antibody heavy chain (28.4%).
  • Example 4 Synthesis of trastuzumab-DM1 SMCC which is a payload against anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -DM1 (Compound 2) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • the result of RP-HPLC is shown in FIG.
  • the relationship between the observed retention time and the antibody chain was as follows. 6.5 minutes: unreacted antibody light chain 8.0 minutes: antibody light chain with one payload added 10.2 minutes: unreacted antibody heavy chain 11.1 minutes: antibody heavy chain with one payload 12.5 minutes: 2 payloads added to the antibody heavy chain 14.0 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.3. ..
  • Example 5 Synthesis of trastuzumab-MMAF MC which is a payload against anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -MMAF (Compound 3) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • the result of RP-HPLC is shown in FIG.
  • the relationship between the observed retention time and the antibody chain was as follows. 6.7 minutes: Unreacted antibody light chain 9.6 minutes: One payload added to the antibody light chain 10.6 minutes: Unreacted antibody heavy chain 12.0 minutes: One payload to the antibody heavy chain 14.6 minutes: 2 payloads added to the antibody heavy chain 17.2 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.4. ..
  • Example 6 Synthesis of rituximab-MMAE MC which is a payload against the anti-CD20 IgG antibody rituximab (Roche) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -MMAE (Compound 1) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • the relationship between the observed retention time and the antibody chain was as follows. 5.0 minutes: Unreacted antibody light chain 8.8 minutes: One payload added to the antibody light chain 9.3 minutes: Unreacted antibody heavy chain 11.4 minutes: One payload to the antibody heavy chain 14.4 minutes: 2 payloads added to the antibody heavy chain 16.8 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.3. ..
  • Example 7 Synthesis of rituximab-DM1 MC which is a payload against anti-CD20 IgG antibody rituximab (Roche) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -DM1 (Compound 2) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • the relationship between the observed retention time and the antibody chain was as follows. 4.5 minutes: unreacted antibody light chain 7.2 minutes: antibody light chain with one payload added 9.6 minutes: unreacted antibody heavy chain 10.5 minutes: antibody heavy chain with one payload 12.5 minutes: 2 payloads added to the antibody heavy chain 13.7 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.8. ..
  • Example 8 Synthesis of rituximab-MMAF MC which is a payload against anti-CD20 IgG antibody rituximab (Roche) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -MMAF (Compound 3) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • Example 9 Synthesis of infliximab-MMAE Using the reaction conditions of FMR (Fig. 1) and Table 4 (Condition 6) of Example 3, the anti-TNF- ⁇ IgG antibody rituximab (Centocor) was used as a payload. A certain MC-MMAE (Compound 1) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • the relationship between the observed retention time and the antibody chain was as follows. 8.6 minutes: unreacted antibody light chain 10.95 minutes: unreacted antibody heavy chain 10.96 minutes: antibody light chain with one payload added 12.6 minutes: antibody heavy chain with one payload 15.6 minutes: 2 payloads added to the antibody heavy chain 18.1 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.7. ..
  • Example 10 Synthesis of infliximab-DM1 Using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3, the anti-TNF- ⁇ IgG antibody infliximab (Centocor) was used as a payload. A certain MC-DM1 (Compound 2) was reacted. After the reaction, DAR was measured by RP-HPLC.
  • the relationship between the observed retention time and the antibody chain was as follows. 8.2 minutes: unreacted antibody light chain 10.3 minutes: unreacted antibody heavy chain 10.4 minutes: antibody light chain with one payload added 12.2 minutes: antibody heavy chain with one payload 14.2 minutes: 2 payloads added to the antibody heavy chain 16.7 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.8. ..
  • Example 11 Synthesis of trastuzumab-PEG Using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3, m-dPEG- was used against the anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.). Maleimide (Compound 4 manufactured by quanta bodysign) was reacted. After the reaction, the molecular species was measured by Q-TOFMS.
  • Example 13 Synthesis of trastuzumab-MMAE using a T-shaped micromixer with a flow path inner diameter of 0.5 mm
  • the first and second micromixers (M1, M2) in the FMR (FIG. 1) are used as a T-shaped micromixer (flow path).
  • the inner diameter was changed to 0.5 mm) and ADC synthesis was performed.
  • Other conditions were in accordance with the reaction conditions in Table 4 (Condition 6) of Example 3. After the reaction, RP-HPLC was measured and the DA was calculated to be 3.1.
  • the first and second micromixers (M1 and M2) in the FMR (FIG. 1) are T-shaped micromixers (flow path inner diameter 1 mm). ) was changed to ADC synthesis.
  • the ratio (collision type micromixer / first reaction flow path) between the representative diameter (1 mm) of the T-shaped micromixer, which is a collision type micromixer, and the representative diameter (1 mm) of the first reaction flow path is 1. be.
  • the antibody solution was introduced at a flow rate of 1.0 mL / min and the TCEP solution was introduced at a flow rate of 1.0 mL / min, mixed with the first micromixer (M1), and reduced in the first reaction tube (R1). ..
  • the length of the first reaction tube (R1) and the reduction reaction time defined by the length are as shown in Table 5.
  • the reaction solution was mixed with the payload solution introduced at a flow rate of 2.0 mL / min with a second micromixer (M2), and subjected to a conjugation reaction in the second reaction tube (R2) for 1.5 minutes. bottom.
  • the solution after the conjugation reaction in the second reaction tube (R2) was collected by a fraction collector to which an excess amount of NAC was previously added.
  • the ADC DAT contained in the collected fractions was measured by RP-HPLC. The results are shown in Table 5.
  • the total residence time is the sum of the reduction reaction time (3.0 minutes) and the conjugation reaction time (1.5 minutes).
  • Example 13 Monomer ratio analysis of trastuzumab-MMAE For trastuzumab-MMAE synthesized in Table 4 (Condition 6) of Example 3, size exclusion chromatography was performed according to the previous report (ACS Omega 2020, 5, 7193-7200). (SEC) analysis was performed. More specifically, the analysis of the monomer (unit containing two light chains and two heavy chains of IgG) ratio in the antibody drug conjugate by SEC is as follows.
  • AdvantageBio SEC 300 ⁇ (manufactured by Agilent) was used for the column, and 100 mM NaHPO 4 / NaH 2 PO 4 , 250 mM NaCl, 10% v / v isopropanol, pH 6.8 was used as the eluent.
  • 40 ⁇ L of ADC sample (1 mg / mL) dissolved in buffer was injected into HPLC and eluted for 15 minutes. As a result, the monomer ratio exceeded 99% even though the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C. (FIG. 6).
  • Example 14 Monomer ratio analysis of trastuzumab-DM1
  • the trastuzumab-DM1 synthesized in Example 4 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report.
  • SEC size exclusion chromatography
  • Example 15 Monomer ratio analysis of trastuzumab-MMAF
  • the trastuzumab-MMAF synthesized in Example 5 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report.
  • SEC size exclusion chromatography
  • Example 16 Monomer ratio analysis of rituximab-MMAE
  • SEC size exclusion chromatography
  • Example 17 Monomer ratio analysis of rituximab-DM1
  • the rituximab-DM1 synthesized in Example 7 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report.
  • SEC size exclusion chromatography
  • Example 18 Monomer ratio analysis of rituximab-MMAF
  • the rituximab-MMAF synthesized in Example 8 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report.
  • SEC size exclusion chromatography
  • Example 19 Monomer ratio analysis of infliximab-MMAE
  • SEC size exclusion chromatography
  • Example 20 Monomer ratio analysis of infliximab-DM1
  • the infliximab-MMAE synthesized in Example 8 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report.
  • SEC size exclusion chromatography
  • the method of the present invention reduces the generation of aggregates even when the antibody derivatization reaction (disulfide reduction reaction) is carried out at a high temperature (50 ° C.). It has been shown that ADCs showing good DAT can be synthesized.
  • the trastuzumab-MMAE synthesized by the batch method was analyzed by size exclusion chromatography (SEC) according to the previous report (ACS Omega 2020, 5, 7193-7200). As a result, the monomer ratio was 89.7%, and aggregates (6.2%) and decomposition products (4.1%) were confirmed (FIG. 7).

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention provides a method that can speed up the production of an antibody-drug conjugate (ADC). More particularly, the present invention provides a method of producing an ADC, said method comprising: (1) preparing a first liquid mixture that contains a solution containing a starting antibody having a specific cleavable site and a solution containing a cleaving agent capable of cleaving the specific cleavable site; (2) passing the first liquid mixture through a first reaction channel to give a solution that contains an antibody derivative having a specific reaction site and the cleaving agent; (3) by mixing in a collision type micromixer, preparing a second liquid mixture that contains the antibody derivative, the cleaving agent and a drug; and (4) passing the second liquid mixture through a second reaction channel to give the ADC. In this method, the treatments (1) to (4) are continuously performed in a flow microreactor and the representative diameter ratio of the collision type micromixer to the first reaction channel (collision type micromixer/first reaction channel) is not more than 0.95.

Description

抗体薬物複合体の製造方法Method for producing antibody drug conjugate
 本発明は、抗体薬物複合体の製造方法に関する。 The present invention relates to a method for producing an antibody drug conjugate.
 液相系での複数分子の反応では、異なる分子を含む異なる溶液が反応前に混合される。均一な溶液を得るために必要な混合時間は、溶液中における分子の拡散距離に依存する。バッチ法における混合(例、フラスコにおける撹拌子での混合)は、分子の拡散距離が大きいため、異なる溶液の混合により均一溶液を得るために少なくとも数秒の時間を要する。したがって、バッチ法では、混合に時間を要することから、秒オーダー未満のような短時間で複数分子を反応させることは困難である。複数分子を短時間で反応させるためには、複数成分の迅速な混合が必要である。 In the reaction of multiple molecules in a liquid phase system, different solutions containing different molecules are mixed before the reaction. The mixing time required to obtain a uniform solution depends on the diffusion distance of the molecules in the solution. Mixing in the batch method (eg, mixing with a stir bar in a flask) requires at least a few seconds to obtain a uniform solution by mixing different solutions due to the large diffusion distance of the molecules. Therefore, in the batch method, it is difficult to react a plurality of molecules in a short time such as less than a second order because it takes time to mix. In order to react multiple molecules in a short time, rapid mixing of multiple components is required.
 フローマイクロリアクター(Flow MicroReactor:FMR)は、単にマイクロリアクターとも呼ばれる、微小流路において反応を行うフロー型の反応器である。FMRは、主に、低分子有機化合物の有機合成に利用されている。FMRでは、微小環境下での複数成分の混合および反応を可能にするために、マイクロ構造を有するマイクロミキサーが利用されている。 The flow microreactor (FMR) is a flow type reactor that reacts in a microchannel, which is also simply called a microreactor. FMR is mainly used for organic synthesis of small molecule organic compounds. In FMR, a micromixer having a microstructure is utilized in order to enable mixing and reaction of a plurality of components in a microenvironment.
 FMRにおけるマイクロミキサーによる溶液の混合は、微小流路における混合であり、分子の拡散距離が小さい。したがって、FMRでは、マイクロミキサーによる混合の高速化により均一溶液を迅速に得ることができ、秒オーダー未満のような短時間で複数成分を反応させることができる。 Mixing of solutions by a micromixer in FMR is mixing in a microchannel, and the diffusion distance of molecules is small. Therefore, in FMR, a uniform solution can be obtained quickly by speeding up mixing with a micromixer, and a plurality of components can be reacted in a short time such as less than a second order.
 FMRにおけるマイクロミキサーでは、種々の混合型を利用することができる。このような混合型としては、例えば、順方向に流れる複数の溶液が合流するシースフロー型、複数の溶液の合流後に流路内の構造物によって混合を促進するStatic型、三次元的な螺旋の形成により混合を行うHelix型、複数の溶液が交互に短い間隔で流れるように複数の流路を合流させる多層流型等の種々の混合型のマイクロミキサーが挙げられる。マイクロミキサーは、その混合型に応じた特徴を有する。例えば、シースフロー型は、典型的には、第1溶液が流れるチューブ中に第2溶液のチューブを差し込むことにより、順方向に流れる第1および第2溶液が合流する。このような特徴を有するシースフロー型は、流量が大きく異なる複数の溶液の混合に適するが、その混合速度は高くない。Static型は、流路の閉塞等の問題を回避し易い傾向があるが、複数の溶液の接触時の混合の程度は高くない。 Various mixed types can be used in the micromixer in FMR. Examples of such a mixed type include a sheath flow type in which a plurality of solutions flowing in the forward direction merge, a static type in which mixing is promoted by a structure in the flow path after the merging of a plurality of solutions, and a three-dimensional spiral. Examples thereof include various mixed type micromixers such as a Helix type in which mixing is performed by formation, and a multi-layer flow type in which a plurality of channels are merged so that a plurality of solutions alternately flow at short intervals. The micromixer has characteristics according to its mixed type. For example, in the sheath flow type, typically, by inserting the tube of the second solution into the tube through which the first solution flows, the first and second solutions flowing in the forward direction merge. The sheath flow type having such characteristics is suitable for mixing a plurality of solutions having greatly different flow rates, but the mixing rate is not high. The Static type tends to avoid problems such as blockage of the flow path, but the degree of mixing of a plurality of solutions at the time of contact is not high.
 最近、FMRは、低分子有機化合物のみならず、抗体薬物複合体(ADC)の合成にも利用されている。 Recently, FMR has been used not only for the synthesis of small molecule organic compounds but also for the synthesis of antibody drug conjugates (ADCs).
 例えば、特許文献1には、ADCの薬物抗体比(DAR)の値の制御の目的のために、還元剤に対する阻害剤を使用することを特徴とする、下記処理を含むADCの合成方法が記載されている(実施例を参照):
(1)IgG抗体と還元剤とを混合することにより、IgG抗体を部分的に還元すること(抗体の誘導体化反応);ならびに
(2)(A)(a1)還元剤と(a2)部分的に還元されたIgG抗体と(a3)薬物を連結したリンカーとを含む溶液と、(B)還元剤に対する阻害剤を含む溶液とを混合することにより、リンカーを介して抗体と薬物とを連結すること(コンジュゲーション反応)。
 上記目的のため、特許文献1の実施例では、バッチ法(実施例1、6)、マイクロリアクター法(実施例2、3、5、7~9)、およびDARの分析(実施例4)が行われている。特許文献1におけるマイクロリアクター法における成分の混合型については、高流量の第1原料の流路が複数に分岐した後、低流量の第2原料の流路に合流する特許文献2記載のシースフロー型(実施例2、3、5、7、9)に加えて、YMC社製マイクロリアクターSpicaで採用されるStatic型(実施例8)を利用している。反応として、35℃で15分間の還元反応(抗体の誘導体化反応)および35℃で15分間のコンジュゲーション反応(実施例2、3)、ならびに室温で10秒間~2分間の還元反応(抗体の誘導体化反応)および室温で20分間~35分間のコンジュゲーション反応(実施例5、7~9)が行われるため、ADCの合成には20分以上の時間を要する。
For example, Patent Document 1 describes a method for synthesizing an ADC, which comprises the following treatment, which comprises using an inhibitor against a reducing agent for the purpose of controlling the value of the drug-antibody ratio (DAR) of the ADC. Has been (see example):
(1) Partial reduction of IgG antibody by mixing IgG antibody and reducing agent (antibody derivatization reaction); and (2) (A) (a1) reducing agent and (a2) partial reduction. By mixing a solution containing an IgG antibody reduced to (a3) and a linker containing a drug (a3) and a solution containing an inhibitor against the reducing agent (B), the antibody and the drug are linked via the linker. That (conjugation reaction).
For the above purposes, in the examples of Patent Document 1, the batch method (Examples 1 and 6), the microreactor method (Examples 2, 3, 5, 7 to 9), and the analysis of DAT (Example 4) are performed. It is done. Regarding the mixed type of components in the microreactor method in Patent Document 1, the sheath flow described in Patent Document 2 describes that the flow path of the first raw material having a high flow rate is branched into a plurality of channels and then merges with the flow path of the second raw material having a low flow rate. In addition to the mold (Examples 2, 3, 5, 7, 9), the Patent mold (Example 8) adopted in the YMC microreactor Spica is used. The reactions include a reduction reaction at 35 ° C. for 15 minutes (antibody derivatization reaction), a conjugation reaction at 35 ° C. for 15 minutes (Examples 2 and 3), and a reduction reaction at room temperature for 10 seconds to 2 minutes (antibody reaction). Since the derivatization reaction) and the conjugation reaction (Examples 5 and 7 to 9) are carried out at room temperature for 20 minutes to 35 minutes, it takes 20 minutes or more to synthesize the ADC.
 特許文献3には、ADCの濃縮、および未反応産物(特に未反応薬物)の除去のため、単一パス接線流濾過(single-pass tangential flow filtration:SPTFF)を使用することを特徴とする、下記処理を連続的に行うことを含むADC組成物の調製方法が記載されている:
(1)薬物を、抗体におけるリジン残基側鎖中のアミノ基と反応可能となるように誘導体化すること(薬物の誘導体化反応);
(2)抗体におけるリジン残基側鎖中のアミノ基と反応可能となるように誘導体化された薬物を、抗体と反応させて、ADC(抗体におけるリジン残基側鎖中のアミノ基を介して抗体と薬物がコンジュゲートしたもの)を生成すること(コンジュゲーション反応);および
(3)単一パス接線流濾過(single-pass tangential flow filtration:SPTFF)によりADCを精製すること。
 特許文献3の実施例では、上記方法がマイクロリアクター法により行われているところ、コンジュゲーション反応には長時間(少なくとも約1時間以上)を要している。
Patent Document 3 is characterized by using single-pass tangential flow filtration (SPTFF) for ADC enrichment and removal of unreacted products (particularly unreacted drugs). A method for preparing an ADC composition comprising continuously performing the following treatments is described:
(1) Derivatizing a drug so that it can react with an amino group in the side chain of a lysine residue in an antibody (drug derivatization reaction);
(2) A drug derivatized so as to be capable of reacting with an amino group in the lysine residue side chain in the antibody is reacted with the antibody via ADC (amino group in the lysine residue side chain in the antibody). Generating an antibody-drug conjugate (conjugation reaction); and (3) purifying the ADC by single-pass tangential flow filtration (SPTFF).
In the examples of Patent Document 3, when the above method is performed by the microreactor method, the conjugation reaction requires a long time (at least about 1 hour or more).
 特許文献4および非特許文献1には、マイクロリアクターを用いて下記処理を行うことを特徴とする、ADCの合成方法が記載されている(実施例を参照):
(1)抗体におけるリジン残基側鎖中のアミノ基と反応可能となるように予め誘導体化された薬物を、抗体と反応させて、ADC(抗体におけるリジン残基側鎖中のアミノ基を介して抗体と薬物がコンジュゲートしたもの)を生成すること(薬物の誘導体化反応)。
Patent Document 4 and Non-Patent Document 1 describe a method for synthesizing an ADC, which comprises performing the following processing using a microreactor (see Examples):
(1) A drug derivatized in advance so as to be able to react with an amino group in the lysine residue side chain in the antibody is reacted with the antibody via an ADC (amino group in the lysine residue side chain in the antibody). (Amino acid and drug conjugated) (drug derivatization reaction).
国際公開第2020/075817号International Publication No. 2020/07518 国際公開第2017/179353号International Publication No. 2017/179353 米国特許出願公開第2019/0270769号明細書U.S. Patent Application Publication No. 2019/0270769 国際公開第2019/016067号International Publication No. 2019/016067
 本発明の目的は、FMRを用いる(a)抗体の誘導体化反応ならびに(b)抗体および薬物のコンジュゲーション反応を含む薬物抗体複合体(ADC)の製造方法において、ADCの製造を迅速化できる方法を提供することである。また、本発明のさらなる目的は、上記2つの反応を含むADCの製造方法において、良好なDARを有するADCを迅速に製造できる方法を提供することである。 An object of the present invention is a method capable of accelerating the production of ADC in a method for producing a drug antibody complex (ADC) including (a) antibody derivatization reaction and (b) antibody-drug conjugation reaction using FMR. Is to provide. Further, an object of the present invention is to provide a method for rapidly producing an ADC having a good DAT in the method for producing an ADC including the above two reactions.
 本発明者らは、鋭意検討した結果、抗体の誘導体化反応として切断反応を選択した上で、(a’)抗体の切断反応(抗体の誘導体化反応)ならびに(b’)当該切断反応により得られる特定の反応性部位を有する抗体誘導体および薬物の反応(コンジュゲーション反応)を含む特定のADC製造方法を特定のFMR様式で行うことにより、良質なADCを迅速に製造できることを見出した。すなわち、特定の切断性部位を有する原料抗体を含む溶液、および特定の切断性部位の切断能を有する切断剤を含む溶液を混合して反応させた後に得られる特定の反応性部位を有する抗体誘導体を、薬物を含む溶液と衝突型マイクロミキサーで迅速に混合して反応させることにより、良好なDARを有するADCを迅速に製造することができる。衝突型マイクロミキサーは、複数の溶液の接触時に混合渦を発生させることにより混合を促進するマイクロミキサーである。本発明者らはまた、上記のような方法によれば、切断反応を比較的高温で行うことができるため、ADCの製造をさらに迅速化でき、また、より高いDARを有するADCを製造できることを見出した。本発明者らはさらに、上記のような方法によれば、ADCの製造において所望されない副生物(凝集体および分解物)の発生を低減できることなどを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors selected a cleavage reaction as the antibody derivatization reaction, and then obtained (a') an antibody cleavage reaction (antibody derivatization reaction) and (b') the cleavage reaction. It has been found that a high-quality ADC can be rapidly produced by carrying out a specific ADC production method including an antibody derivative having a specific reactive site and a drug reaction (conjugation reaction) in a specific FMR format. That is, an antibody derivative having a specific reactive site obtained after mixing and reacting a solution containing a raw material antibody having a specific cleaving site and a solution containing a cleaving agent having a cleaving ability of a specific cleaving site. Can be rapidly mixed and reacted with a solution containing a drug in a collision-type micromixer to rapidly produce an ADC having a good DAT. The collision type micromixer is a micromixer that promotes mixing by generating a mixing vortex at the time of contact of a plurality of solutions. The present inventors also found that, according to the method as described above, the cleavage reaction can be carried out at a relatively high temperature, so that the production of the ADC can be further accelerated, and the ADC with a higher DAR can be produced. I found it. The present inventors have further found that the generation of unwanted by-products (aggregates and decomposition products) in the production of ADC can be reduced by the above-mentioned method, and have completed the present invention.
 すなわち、本発明は、以下のとおりである。
〔1〕抗体薬物複合体の製造方法であって、
(1)特定の切断性部位を有する原料抗体を含む溶液、および前記特定の切断性部位の切断能を有する切断剤を含む溶液を、任意のマイクロミキサーで混合して、前記原料抗体および前記切断剤を含む第1混合液を生成すること;
(2)前記第1混合液を第1反応流路内に通して、前記原料抗体および前記切断剤を第1反応流路内で反応させることにより、特定の反応性部位を有する抗体誘導体および前記切断剤を含む溶液を生成することであって、ここで、前記特定の反応性部位を有する抗体誘導体は、前記反応において前記特定の切断性部位が前記切断剤により切断されることにより、前記原料抗体から生成されるものであり;
(3)前記抗体誘導体および前記切断剤を含む溶液、ならびに薬物を含む溶液を、衝突型マイクロミキサーで混合して、前記抗体誘導体、前記切断剤および薬物を含む第2混合液を生成すること;ならびに
(4)前記第2混合液を第2反応流路内に通して、前記抗体誘導体および薬物を第2反応流路内で反応させることにより、抗体薬物複合体を生成することを含み、
 (1)~(4)の処理がフローマイクロリアクターにおいて連続的に行われるものであり、衝突型マイクロミキサーと第1反応流路の代表径比(衝突型マイクロミキサー/第1反応流路)が0.95以下である、方法。
〔2〕前記抗体誘導体および前記切断剤を含む溶液の流速、および薬物を含む溶液の流速の合計値が2.0mL/分以上である、〔1〕の方法。
〔3〕薬物を含む溶液が0.4mL/分以上の流速で衝突型マイクロミキサーに導入される、〔1〕または〔2〕の方法。
〔4〕衝突型マイクロミキサーが0.8mm以下の代表径を有する、〔1〕~〔3〕のいずれかの方法。
〔5〕衝突型マイクロミキサーがT字マイクロミキサーである、〔1〕~〔4〕のいずれかの方法。
〔6〕前記任意のマイクロミキサーが衝突型マイクロミキサーである、〔1〕~〔5〕のいずれかの方法。
〔7〕第1反応流路内の反応が30~60℃で行われる、〔1〕~〔6〕のいずれかの方法。
〔8〕第1反応流路内の反応が37~50℃で行われる、〔1〕~〔7〕のいずれかの方法。
〔9〕第2反応流路内において、前記原料抗体および前記切断剤の追加反応、ならびに当該追加反応により生成した抗体誘導体および薬物の反応が並行して進行する、〔1〕~〔8〕のいずれかの方法。
〔10〕第1反応流路における前記第1混合液の滞留時間が5分未満である、〔1〕~〔9〕のいずれかの方法。
〔11〕第2反応流路における前記第2混合液の滞留時間が15分未満である、〔1〕~〔9〕のいずれかの方法。
〔12〕第2反応流路における前記第2混合液の滞留時間が5分未満である、〔1〕~〔11〕のいずれかの方法。
〔13〕衝突型マイクロミキサーに導入される薬物を含む溶液の流速が、任意のマイクロミキサーに導入される前記原料抗体を含む溶液の流速、および任意のマイクロミキサーに導入される前記切断剤を含む溶液の流速のいずれよりも速い、〔1〕~〔12〕のいずれかの方法。
〔14〕前記原料抗体を含む溶液、および前記切断剤を含む溶液の任意のマイクロミキサーへの到達から第2反応流路の通過までに要する時間が20分未満である、〔1〕~〔13〕のいずれかの方法。
〔15〕前記特定の反応性部位がチオール基である、〔1〕~〔14〕のいずれかの方法。
〔16〕前記特定の切断性部位を有する原料抗体が、ジスルフィド基を有する抗体である、〔1〕~〔15〕のいずれかの方法。
〔17〕前記ジスルフィド基を有する抗体が、ジスルフィド基を有する非修飾抗体である、〔1〕~〔16〕のいずれかの方法。
〔18〕前記原料抗体が、鎖間に4個のジスルフィド結合を有する抗体である、〔16〕の方法。
〔19〕前記原料抗体がIgGである、〔1〕~〔18〕のいずれかの方法。
〔20〕薬物が、マレイミド基、および/またはジスルフィド基を有するか、またはマレイミド基、および/またはジスルフィド基を有するように誘導体化されている、〔1〕~〔19〕のいずれかの方法。
〔21〕抗体薬物複合体の薬物抗体比が2.0以上である、〔1〕~〔20〕のいずれかの方法。
〔22〕サイズ排除クロマトグラフィーにより分析される抗体薬物複合体におけるモノマー比率が98%以上である、〔1〕~〔21〕のいずれかの方法。
〔23〕薬物が、医薬、標識物質、または安定化剤である、〔1〕~〔22〕のいずれかの方法。
That is, the present invention is as follows.
[1] A method for producing an antibody-drug conjugate.
(1) A solution containing a raw material antibody having a specific cleaving site and a solution containing a cutting agent having a cleaving ability of the specific cleaving site are mixed with an arbitrary micromixer, and the raw material antibody and the cleaving site are mixed. Producing a first mixture containing the agent;
(2) An antibody derivative having a specific reactive site and the above by passing the first mixed solution through the first reaction flow path and reacting the raw material antibody and the cleavage agent in the first reaction flow path. It is to generate a solution containing a cleaving agent, wherein the antibody derivative having the specific reactive site is a raw material by cleaving the specific cleaving site with the cleaving agent in the reaction. It is produced from antibodies;
(3) Mixing the antibody derivative, the solution containing the cleavage agent, and the solution containing the drug with a collision-type micromixer to produce a second mixed solution containing the antibody derivative, the cleavage agent, and the drug; (4) The antibody drug conjugate is produced by passing the second mixed solution through the second reaction flow path and reacting the antibody derivative and the drug in the second reaction flow path.
The processes (1) to (4) are continuously performed in the flow microreactor, and the representative diameter ratio between the collision type micromixer and the first reaction flow path (collision type micromixer / first reaction flow path) is determined. A method that is 0.95 or less.
[2] The method of [1], wherein the total value of the flow rate of the solution containing the antibody derivative and the cleavage agent and the flow rate of the solution containing the drug is 2.0 mL / min or more.
[3] The method of [1] or [2], wherein the solution containing the drug is introduced into the collision type micromixer at a flow rate of 0.4 mL / min or more.
[4] The method according to any one of [1] to [3], wherein the collision type micromixer has a representative diameter of 0.8 mm or less.
[5] The method according to any one of [1] to [4], wherein the collision type micromixer is a T-shaped micromixer.
[6] The method according to any one of [1] to [5], wherein the arbitrary micromixer is a collision type micromixer.
[7] The method according to any one of [1] to [6], wherein the reaction in the first reaction flow path is carried out at 30 to 60 ° C.
[8] The method according to any one of [1] to [7], wherein the reaction in the first reaction flow path is carried out at 37 to 50 ° C.
[9] In the second reaction flow path, the additional reaction of the raw material antibody and the cleavage agent, and the reaction of the antibody derivative and the drug produced by the additional reaction proceed in parallel, according to [1] to [8]. Either way.
[10] The method according to any one of [1] to [9], wherein the residence time of the first mixed solution in the first reaction flow path is less than 5 minutes.
[11] The method according to any one of [1] to [9], wherein the residence time of the second mixed solution in the second reaction flow path is less than 15 minutes.
[12] The method according to any one of [1] to [11], wherein the residence time of the second mixed solution in the second reaction flow path is less than 5 minutes.
[13] The flow rate of the solution containing the drug introduced into the collision type micromixer includes the flow rate of the solution containing the raw material antibody introduced into any micromixer, and the cutting agent introduced into any micromixer. The method of any of [1] to [12], which is faster than any of the flow rates of the solution.
[14] The time required from the arrival of the solution containing the raw material antibody and the solution containing the cleavage agent to any micromixer to the passage through the second reaction flow path is less than 20 minutes, [1] to [13]. ] Any method.
[15] The method according to any one of [1] to [14], wherein the specific reactive site is a thiol group.
[16] The method according to any one of [1] to [15], wherein the raw material antibody having the specific cleavage site is an antibody having a disulfide group.
[17] The method according to any one of [1] to [16], wherein the antibody having a disulfide group is an unmodified antibody having a disulfide group.
[18] The method of [16], wherein the raw material antibody is an antibody having four disulfide bonds between chains.
[19] The method according to any one of [1] to [18], wherein the raw material antibody is IgG.
[20] The method of any of [1] to [19], wherein the drug has a maleimide group and / or a disulfide group, or is derivatized to have a maleimide group and / or a disulfide group.
[21] The method according to any one of [1] to [20], wherein the antibody-drug conjugate has a drug-antibody ratio of 2.0 or more.
[22] The method according to any one of [1] to [21], wherein the monomer ratio in the antibody drug conjugate analyzed by size exclusion chromatography is 98% or more.
[23] The method according to any one of [1] to [22], wherein the drug is a drug, a labeling substance, or a stabilizer.
 本発明の方法によれば、良好なDARを有するADCを短時間で製造することができる。また、本発明の方法によれば、抗体の誘導体化反応(切断反応)を比較的高温で行うことができるため、ADCの製造をさらに迅速化することができ、また、より高いDARを有するADCを製造することができる。さらに、本発明の方法によれば、ADCの製造において所望されない副生物(凝集体および分解物)の発生を低減することができる。 According to the method of the present invention, an ADC having a good DAR can be produced in a short time. Further, according to the method of the present invention, since the derivatization reaction (cutting reaction) of the antibody can be carried out at a relatively high temperature, the production of the ADC can be further accelerated, and the ADC having a higher DAT can be obtained. Can be manufactured. Furthermore, according to the method of the present invention, it is possible to reduce the generation of unwanted by-products (aggregates and decomposition products) in the production of ADC.
図1は、本発明の方法で使用できるFMRの構成の一例を示す図である。FIG. 1 is a diagram showing an example of an FMR configuration that can be used by the method of the present invention. 図2は、逆相高速液体クロマトグラフィー(RP-HPLC)による抗体薬物複合体(トラスツズマブ-MMAE)の分析結果を示す図である(実施例1)。FIG. 2 is a diagram showing the analysis results of an antibody drug conjugate (trastuzumab-MMAE) by reverse phase high performance liquid chromatography (RP-HPLC) (Example 1). 図3は、RP-HPLCによる抗体薬物複合体(トラスツズマブ-DM1)の分析結果を示す図である(実施例4)。FIG. 3 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-DM1) by RP-HPLC (Example 4). 図4は、RP-HPLCによる抗体薬物複合体(トラスツズマブ-MMAF)の分析結果を示す図である(実施例5)。FIG. 4 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-MMAF) by RP-HPLC (Example 5). 図5は、RP-HPLCによる抗体薬物複合体(トラスツズマブ-PEG)の分析結果を示す図である(実施例11)。FIG. 5 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-PEG) by RP-HPLC (Example 11). 図6は、サイズ排除クロマトグラフィー(SEC)による抗体薬物複合体(トラスツズマブ-MMAE)の分析結果を示す図である(実施例13)。FIG. 6 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-MMAE) by size exclusion chromatography (SEC) (Example 13). 図7は、SECによる抗体薬物複合体(トラスツズマブ-MMAE)の分析結果を示す図である(比較例1)。FIG. 7 is a diagram showing the results of analysis of an antibody drug conjugate (trastuzumab-MMAE) by SEC (Comparative Example 1).
 本発明は、抗体薬物複合体の製造方法を提供する。本発明の方法は、以下(1)~(4)の処理を含む。
(1)特定の切断性部位を有する原料抗体を含む溶液、および前記特定の切断性部位の切断能を有する切断剤を含む溶液を、任意のマイクロミキサーで混合して、前記原料抗体および前記切断剤を含む第1混合液を生成すること;
(2)前記第1混合液を第1反応流路内に通して、前記原料抗体および前記切断剤を第1反応流路内で反応させることにより、特定の反応性部位を有する抗体誘導体および前記切断剤を含む溶液を生成することであって、ここで、前記特定の反応性部位を有する抗体誘導体は、前記反応において前記特定の切断性部位が前記切断剤により切断されることにより、前記原料抗体から生成されるものであり;
(3)前記抗体誘導体および前記切断剤を含む溶液、ならびに薬物を含む溶液を、衝突型マイクロミキサーで混合して、前記抗体誘導体、前記切断剤および薬物を含む第2混合液を生成すること;ならびに
(4)前記第2混合液を第2反応流路内に通して、前記抗体誘導体および薬物を第2反応流路内で反応させることにより、抗体薬物複合体を生成すること。
 加えて、上記(1)~(4)の処理は、フローマイクロリアクター(FMR)において連続的に行われるものであり、衝突型マイクロミキサーと第1反応流路の代表径比(衝突型マイクロミキサー/第1反応流路)は0.95以下である。
The present invention provides a method for producing an antibody drug conjugate. The method of the present invention includes the following treatments (1) to (4).
(1) A solution containing a raw material antibody having a specific cleaving site and a solution containing a cutting agent having a cleaving ability of the specific cleaving site are mixed with an arbitrary micromixer, and the raw material antibody and the cleaving site are mixed. Producing a first mixture containing the agent;
(2) An antibody derivative having a specific reactive site and the above by passing the first mixed solution through the first reaction flow path and reacting the raw material antibody and the cleavage agent in the first reaction flow path. It is to generate a solution containing a cleaving agent, wherein the antibody derivative having the specific reactive site is a raw material by cleaving the specific cleaving site with the cleaving agent in the reaction. It is produced from antibodies;
(3) Mixing the antibody derivative, the solution containing the cleavage agent, and the solution containing the drug with a collision-type micromixer to produce a second mixed solution containing the antibody derivative, the cleavage agent, and the drug; (4) The antibody drug conjugate is produced by passing the second mixed solution through the second reaction flow path and reacting the antibody derivative and the drug in the second reaction flow path.
In addition, the above processes (1) to (4) are continuously performed in the flow microreactor (FMR), and the representative diameter ratio between the collision type micromixer and the first reaction flow path (collision type micromixer). / 1st reaction flow path) is 0.95 or less.
 以下、(1)~(4)の処理の詳細を順に説明する。 Hereinafter, the details of the processes (1) to (4) will be described in order.
処理(1)
 (1)の処理は、特定の切断性部位を有する原料抗体を含む溶液を第1導入流路内に導入し、特定の切断性部位の切断能を有する切断剤を含む溶液を第2導入流路内に導入し、第1導入流路と第2導入流路の合流部において任意のマイクロミキサーで両溶液が混合されるように行うことができる。このような混合により、原料抗体を含む溶液、および切断剤を含む溶液を含む第1混合液が生成される。第1および第2導入流路内への溶液の導入は、例えば、リザーバーからの送液により、または上流流路からの通液(例、第1上流流路および第2上流流路の合流流路からの通液)により行うことができる。例えば、送液は、ポンプを用いて行うことができる。通液については、例えば、ポンプを用いて上流リザーバーから上流流路に送液することにより、上流流路からの通液を促進することができる。
Processing (1)
In the treatment of (1), a solution containing a raw material antibody having a specific cleavage site is introduced into the first introduction flow path, and a solution containing a cleavage agent having a cleavage ability of the specific cleavage site is introduced into the second introduction flow. It can be introduced into the path so that both solutions are mixed by an arbitrary micromixer at the confluence of the first introduction flow path and the second introduction flow path. Such mixing produces a first mixed solution containing a solution containing a raw material antibody and a solution containing a cleavage agent. The introduction of the solution into the first and second introduction channels is performed, for example, by sending liquid from the reservoir or passing the liquid from the upstream channel (eg, the confluence of the first upstream channel and the second upstream channel). It can be done by passing liquid from the road). For example, the liquid feeding can be performed using a pump. With regard to liquid flow, for example, by sending liquid from the upstream reservoir to the upstream flow path using a pump, liquid flow from the upstream flow path can be promoted.
 処理(1)で用いられる原料抗体は、処理(4)の反応(すなわち、抗体および薬物のコンジュゲーション反応)に用いられる抗体誘導体を生成するための処理(2)の反応(すなわち、抗体の誘導体化反応)に用いられる抗体である。したがって、原料抗体は、このような誘導体化反応に用いられる抗体である限り特に限定されず、非修飾抗体であっても修飾抗体であってもよい。原料抗体が非修飾抗体である場合、非修飾抗体を含む溶液をリザーバーから第1導入流路内に導入することができる。原料抗体が修飾抗体である場合、修飾抗体を含む溶液をリザーバーから第1導入流路内に導入してもよいし、第1導入流路の上流に存在する修飾抗体の生成系(例、非修飾抗体を導入する第1上流導入流路と、非修飾抗体の修飾試薬を含む第2上流導入流路と、これらの流路の合流部にあるマイクロミキサーと、非修飾抗体と修飾試薬とを反応させて修飾抗体を生成する上流反応流路を含む流路系)の流出路から修飾抗体を含む溶液を導入してもよい。 The raw material antibody used in the treatment (1) is the reaction of the treatment (2) (that is, the derivative of the antibody) for producing the antibody derivative used in the reaction of the treatment (4) (that is, the conjugation reaction of the antibody and the drug). It is an antibody used for (derivatization reaction). Therefore, the raw material antibody is not particularly limited as long as it is an antibody used for such a derivatization reaction, and may be an unmodified antibody or a modified antibody. When the raw material antibody is an unmodified antibody, a solution containing the unmodified antibody can be introduced from the reservoir into the first introduction channel. When the raw material antibody is a modified antibody, a solution containing the modified antibody may be introduced from the reservoir into the first introduction channel, or a modified antibody production system existing upstream of the first introduction channel (eg, non-modified antibody). A first upstream introduction channel for introducing a modified antibody, a second upstream introduction channel containing a modification reagent for an unmodified antibody, a micromixer at the confluence of these channels, and an unmodified antibody and a modifying reagent. A solution containing the modified antibody may be introduced from the outflow channel of the flow path system including the upstream reaction channel that reacts to generate the modified antibody.
 原料抗体、ならびに原料抗体から生成される抗体誘導体および抗体薬物複合体における用語「抗体」は、以下のとおりである。 The term "antibody" in the raw material antibody, the antibody derivative produced from the raw material antibody, and the antibody drug conjugate is as follows.
 抗体の由来は、特に限定されず、例えば、哺乳動物、鳥類(例、ニワトリ)等の動物に由来するものであってもよい。好ましくは、イムノグロブリン単位は、哺乳動物に由来する。このような哺乳動物としては、例えば、霊長類(例、ヒト、サル、チンパンジー)、齧歯類(例、マウス、ラット、モルモット、ハムスター、ウサギ)、愛玩動物(例、イヌ、ネコ)、家畜(例、ウシ、ブタ、ヤギ)、使役動物(例、ウマ、ヒツジ)が挙げられ、好ましくは霊長類または齧歯類、より好ましくはヒトである。 The origin of the antibody is not particularly limited, and may be derived from an animal such as a mammal, a bird (eg, a chicken), for example. Preferably, the immunoglobulin unit is derived from a mammal. Such mammals include, for example, primates (eg, humans, monkeys, chimpanzees), rodents (eg, mice, rats, guinea pigs, hamsters, rabbits), pet animals (eg, dogs, cats), domestic animals. (Eg, cows, pigs, goats), servants (eg, horses, sheep), preferably primates or rodents, more preferably humans.
 抗体の種類は、ポリクローナル抗体またはモノクローナル抗体であってもよい。抗体はまた、2価の抗体(例、IgG、IgD、IgE)、または4価以上の抗体(例、IgA抗体、IgM抗体)であってもよい。好ましくは、抗体は、モノクローナル抗体である。モノクローナル抗体としては、例えば、キメラ抗体、ヒト化抗体、ヒト抗体、所定の糖鎖が付加された抗体(例、N型糖鎖結合コンセンサス配列等の糖鎖結合コンセンサス配列を有するように改変された抗体)、二重特異性抗体、Fc領域タンパク質、Fc融合タンパク質が挙げられる。モノクローナル抗体のアイソタイプとしては、例えば、IgG(例、IgG1、IgG2、IgG3、IgG4)、IgM、IgA、IgD、IgE、およびIgYが挙げられる。本発明では、モノクローナル抗体として、全長抗体、または可変領域ならびにCH1ドメインおよびCH2ドメインを含む抗体断片を利用できるが、全長抗体が好ましい。抗体は、好ましくはIgGモノクローナル抗体、より好ましくはIgG全長モノクローナル抗体である。 The type of antibody may be polyclonal antibody or monoclonal antibody. The antibody may also be a divalent antibody (eg, IgG, IgD, IgE) or a tetravalent or higher antibody (eg, IgA antibody, IgM antibody). Preferably, the antibody is a monoclonal antibody. The monoclonal antibody is modified to have, for example, a chimeric antibody, a humanized antibody, a human antibody, or an antibody to which a predetermined sugar chain is added (eg, a sugar chain binding consensus sequence such as an N-type sugar chain binding consensus sequence). Antibodies), bispecific antibodies, Fc region proteins, Fc fusion proteins. Isotypes of monoclonal antibodies include, for example, IgG (eg, IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, IgE, and IgY. In the present invention, a full-length antibody or an antibody fragment containing a variable region and CH1 domain and CH2 domain can be used as the monoclonal antibody, but a full-length antibody is preferable. The antibody is preferably an IgG monoclonal antibody, more preferably an IgG full-length monoclonal antibody.
 抗体の抗原としては、任意の抗原を用いることができる。例えば、このような抗原としては、タンパク質〔オリゴペプチド、ポリペプチドを含む。糖等の生体分子で修飾されたタンパク質(例、糖タンパク質)であってもよい〕、糖鎖、核酸、低分子化合物が挙げられる。好ましくは、抗体は、タンパク質を抗原とする抗体であってもよい。タンパク質としては、例えば、細胞膜受容体、細胞膜受容体以外の細胞膜タンパク質(例、細胞外マトリクスタンパク質、チャネルタンパク質、トランスポータータンパク質)、リガンド、可溶性受容体が挙げられる。 Any antigen can be used as the antigen of the antibody. For example, such antigens include proteins [oligopeptides, polypeptides. It may be a protein modified with a biomolecule such as sugar (eg, glycoprotein)], sugar chains, nucleic acids, small molecule compounds. Preferably, the antibody may be an antibody that uses a protein as an antigen. Examples of proteins include cell membrane receptors, cell membrane proteins other than cell membrane receptors (eg, extracellular matrix proteins, channel proteins, transporter proteins), ligands, and soluble receptors.
 より具体的には、抗体の抗原であるタンパク質は、疾患標的タンパク質であってもよい。疾患標的タンパク質としては、例えば、以下が挙げられる。 More specifically, the protein that is the antigen of the antibody may be a disease target protein. Examples of disease target proteins include the following.
(1)がん領域
 PD-L1、GD2、PDGFRα(血小板由来成長因子受容体)、CD22、HER2、ホスファチジルセリン(PS)、EpCAM、フィブロネクチン、PD-1、VEGFR-2、CD33、HGF、gpNMB、CD27、DEC-205、葉酸受容体、CD37、CD19、Trop2、CEACAM5、S1P、HER3、IGF-1R、DLL4、TNT-1/B、CPAAs、PSMA、CD20、CD105(エンドグリン)、ICAM-1、CD30、CD16A、CD38、MUC1、EGFR、KIR2DL1,2,、NKG2A、tenascin-C、IGF(Insulin-like growth factor)、CTLA-4、mesothelin、CD138、c-Met、Ang2、VEGF-A、CD79b、ENPD3、葉酸受容体α、TEM-1、GM2、グリピカン3、macrophage inhibitory factor、CD74、Notch1、Notch2、Notch3、CD37、TLR-2、CD3、CSF-1R、FGFR2b、HLA-DR、GM-CSF、EphA3、B7-H3、CD123、gpA33、Frizzled7受容体、DLL4、VEGF、RSPO、LIV-1、SLITRK6、Nectin-4、CD70、CD40、CD19、SEMA4D(CD100)、CD25、MET、Tissue Factor、IL-8、EGFR、cMet、KIR3DL2、Bst1(CD157)、P-カドヘリン、CEA、GITR、TAM(tumor associated macrophage)、CEA、DLL4、Ang2、CD73、FGFR2、CXCR4、LAG-3、GITR、Fucosyl GM1、IGF-1、Angiopoietin 2、CSF-1R、FGFR3、OX40、BCMA、ErbB3、CD137(4-1BB)、PTK7、EFNA4、FAP、DR5、CEA、Ly6E、CA6、CEACAM5、LAMP1、tissue factor、EPHA2、DR5、B7-H3、FGFR4、FGFR2、α2-PI、A33、GDF15、CAIX、CD166、ROR1、GITR、BCMA、TBA、LAG-3、EphA2、TIM-3、CD-200、EGFRvIII、CD16A、CD32B、PIGF、Axl、MICA/B、Thomsen-Friedenreich、CD39、CD37、CD73、CLEC12A、Lgr3、トランスフェリン受容体、TGFβ、IL-17、5T4、RTK、Immune Suppressor Protein、NaPi2b、ルイス血液型B抗原、A34、Lysil-Oxidase、DLK-1、TROP-2、α9インテグリン、TAG-72(CA72-4)、CD70
(1) Oncology area PD-L1, GD2, PDGFRα (platelet-derived growth factor receptor), CD22, HER2, phosphatidylserine (PS), EpCAM, fibronectin, PD-1, VEGFR-2, CD33, HGF, gpNMB, CD27, DEC-205, Folic Acid Receptor, CD37, CD19, Trop2, CEACAM5, S1P, HER3, IGF-1R, DLL4, TNT-1 / B, CPAAs, PSMA, CD20, CD105 (Endoglin), ICAM-1, CD30, CD16A, CD38, MUC1, EGFR, KIR2DL1,2, NKG2A, tenascin-C, IGF (Insulin-like growth factor), CTLA-4, meshothelin, CD138, c-Met, Ang2, VEGF-A, CD79 ENPD3, Folic Acid Receptor α, TEM-1, GM2, Glypican 3, macrophage inhibitory factor, CD74, Notch1, Notch2, Notch3, CD37, TLR-2, CD3, CSF-1R, FGFR2b, HLA-DR, GM-CSF EphA3, B7-H3, CD123, gpA33, Frizzled7 receptor, DLL4, VEGF, RSPO, LIV-1, SLITRK6, Nectin-4, CD70, CD40, CD19, SEMA4D (CD100), CD25, MET, Tissue Factor, IL- 8, EGFR, cMet, KIR3DL2, Bst1 (CD157), P-cadherin, CEA, GITR, TAM (tumor associated macropage), CEA, DLL4, Ang2, CD73, FGFR2, CXCR4, LAG-3, GI -1, Angioceptin 2, CSF-1R, FGFR3, OX40, BCMA, ErbB3, CD137 (4-1BB), PTK7, EFNA4, FAP, DR5, CEA, Ly6E, CA6, CEACAM5, LAMP1, this B7-H3, FGFR4, FGFR2, α2-PI, A33, GDF15, CAIX, CD166, ROR1, GITR, BCMA, TBA, LAG-3, EphA2, TIM-3, CD-200, EGFRvIII, CD16A, CD32B, PIGF, Axl, MICA / B, Thomasen-Friendenrich, CD39, CD37, CD73, CLEC12A, Lgr3, transferrin receptor, TGFβ, IL-17, 5T4, RTK, Immune Suppressor Protein, NaPi2b, Lewis blood group B antigen, A34, Lysyl-Oxid -1, TROP-2, α9 integrin, TAG-72 (CA72-4), CD70
(2)自己免疫疾患・炎症性疾患
 IL-17、IL-6R、IL-17R、INF-α、IL-5R、IL-13、IL-23、IL-6、ActRIIB、β7-Integrin、IL-4αR、HAS、Eotaxin-1、CD3、CD19、TNF-α、IL-15、CD3ε、Fibronectin、IL-1β、IL-1α、IL-17、TSLP(Thymic Stromal Lymphopoietin)、LAMP(Alpha4 Beta 7 Integrin)、IL-23、GM-CSFR、TSLP、CD28、CD40、TLR-3、BAFF-R、MAdCAM、IL-31R、IL-33、CD74、CD32B、CD79B、IgE(免疫グロブリンE)、IL-17A、IL-17F、C5、FcRn、CD28、TLR4、MCAM、B7RP1、CXCR1,2 Ligands、IL-21、Cadherin-11、CX3CL1、CCL20、IL-36R、IL-10R、CD86、TNF-α、IL-7R、Kv1.3、α9インテグリン、LIFHT
(2) Autoimmune diseases / inflammatory diseases IL-17, IL-6R, IL-17R, INF-α, IL-5R, IL-13, IL-23, IL-6, ActRIIB, β7-Integrin, IL- 4αR, HAS, Eotaxin-1, CD3, CD19, TNF-α, IL-15, CD3ε, Fibronectin, IL-1β, IL-1α, IL-17, TSLP (Thymic stromal Integrin), LAMP (Alpha4 Integrin) , IL-23, GM-CSFR, TSLP, CD28, CD40, TLR-3, BAFF-R, MAdCAM, IL-31R, IL-33, CD74, CD32B, CD79B, IgE (immunoglobulin E), IL-17A, IL-17F, C5, FcRn, CD28, TLR4, MCAM, B7RP1, CXCR1, 2 Lands, IL-21, Cadherin-11, CX3CL1, CCL20, IL-36R, IL-10R, CD86, TNF-α, IL-7R , Kv1.3, α9 integrin, LIFT
(3)脳神経疾患
 CGRP、CD20、βアミロイド、βアミロイドプロトフィブリン、Calcitonin Gene-Related Peptide Receptor、LINGO(Ig Domain Containing1)、αシヌクレイン、細胞外tau、CD52、インスリン受容体、tauタンパク、TDP-43、SOD1、TauC3、JCウイルス
(3) Neurological disorders CGRP, CD20, β-amyloid, β-amyloid protofibrin, Calcitonin Gene-Related Peptide Receptor, LINGO (Ig Domain Contining 1), α-synuclein, α-synuclein, extracellular tau, CD52, insulin receptor T, , SOD1, TauC3, JC virus
(4)感染症
 Clostridium Difficile toxin B、サイトメガロウイルス、RSウイルス、LPS、S.Aureus Alpha-toxin、M2eタンパク、Psl、PcrV、S.Aureus toxin、インフルエンザA、Alginate、黄色ブドウ球菌、PD-L1、インフルエンザB、アシネトバクター、F-protein、Env、CD3、病原性大腸菌、クレブシエラ、肺炎球菌
(4) Infectious diseases Clostridium difficile toxin B, cytomegalovirus, RS virus, LPS, S. Aureus Alpha-toxin, M2e protein, Psl, PcrV, S. et al. Aureus toxin, influenza A, Alginate, Staphylococcus aureus, PD-L1, influenza B, Acinetobacter, F-protein, Env, CD3, pathogenic Escherichia coli, Klebsiella, Streptococcus pneumoniae
(5)遺伝性・希少疾患
 アミロイドAL、SEMA4D(CD100)、インスリン受容体、ANGPTL3、IL4、IL13、FGF23、副腎皮質刺激ホルモン、トランスサイレチン、ハンチンチン
(5) Hereditary and rare diseases Amyloid AL, SEMA4D (CD100), insulin receptor, ANGPTL3, IL4, IL13, FGF23, corticostimulatory hormone, transthyretin, huntingtin
(6)眼疾患
 Factor D、IGF-1R、PGDFR、Ang2、VEGF-A、CD-105(Endoglin)、IGF-1R、βアミロイド
(6) Eye diseases Factor D, IGF-1R, PGDFR, Ang2, VEGF-A, CD-105 (Endoglin), IGF-1R, β-amyloid
(7)骨・整形外科領域
 Sclerostin、Myostatin、Dickkopf-1、GDF8、RNAKL、HAS、Siglec-15
(7) Bone and Orthopedic Surgery Area Sklerostin, Myostatin, Dickkopf-1, GDF8, RNAKL, HAS, Siglec-15
(8)血液疾患
 vWF、Factor IXa、Factor X、IFNγ、C5、BMP-6、Ferroportin、TFPI
(8) Blood diseases vWF, Factor IXa, Factor X, IFNγ, C5, BMP-6, Ferroportin, TFPI
(9)その他の疾患
 BAFF(B cell activating factor)、IL-1β、PCSK9、NGF、CD45、TLR-2、GLP-1、TNFR1、C5、CD40、LPA、プロラクチン受容体、VEGFR-1、CB1、Endoglin、PTH1R、CXCL1、CXCL8、IL-1β、AT2-R、IAPP
(9) Other diseases BAFF (B cell activating factor), IL-1β, PCSK9, NGF, CD45, TLR-2, GLP-1, TNFR1, C5, CD40, LPA, prolactin receptor, VEGFR-1, CB1, Endoglin, PTH1R, CXCL1, CXCL8, IL-1β, AT2-R, IAPP
 モノクローナル抗体の具体例としては、特定のキメラ抗体(例、リツキシマブ、バシリキシマブ、インフリキシマブ、セツキシマブ、シルツキシマブ、ディヌツキシマブ、オルタトキサシマブ)、特定のヒト化抗体(例、ダクリヅマブ、パリビズマブ、トラスツズマブ、アレンツズマブ、オマリヅマブ、エファリヅマブ、ベバシヅマブ、ナタリヅマブ(IgG4)、トシリヅマブ、エクリヅマブ(IgG2)、モガムリヅマブ、ペルツヅマブ、オビヌツヅマブ、ベドリヅマブ、ペンプロリヅマブ(IgG4)、メポリヅマブ、エロツヅマブ、ダラツムマブ、イケセキヅマブ(IgG4)、レスリヅマブ(IgG4)、アテゾリヅマブ)、特定のヒト抗体(例、アダリムマブ(IgG1)、パニツムマブ、ゴリムマブ、ウステキヌマブ、カナキヌマブ、オファツムマブ、デノスマブ(IgG2)、イピリムマブ、ベリムマブ、ラキシバクマブ、ラムシルマブ、ニボルマブ、デュピルマブ(IgG4)、セクキヌマブ、エボロクマブ(IgG2)、アリロクマブ、ネシツムマブ、ブロダルマブ(IgG2)、オララツマブ)が挙げられる(IgGサブタイプに言及していない場合、IgG1であることを示す)。 Specific examples of monoclonal antibodies include specific chimeric antibodies (eg, rituximab, baciliximab, infliximab, cetuximab, siltuximab, dinutuximab, altertoximab), specific humanized antibodies (eg, dacrizumab, paribizmab, trastuzumab, trussumab, allenzumab). , Efarizumab, Bebashizumab, Natarizumab (IgG4), Toshirizumab, Ekurizumab (IgG2), Mogamurizumab, Pertsuzumab, Obinutsuzumab, Bedrizumab, Penproridumab (IgG4), Mepolidumab, Erotsumub Human antibodies (eg, adalimumab (IgG1), panitumumab, golimumab, ustequinumab, canaquinumab, ofatumumab, denosmab (IgG2), ipilimumab, berimumab, rapiximab, lambsilmab, nibolumab, dupilumab (IgG4) Cetuximab, Brodalmab (IgG2), Oralatumab) can be mentioned (if the IgG subtype is not mentioned, it indicates IgG1).
 一実施形態では、原料抗体は、非修飾抗体であってもよい。非修飾抗体は、遺伝子工学的手法および有機化学的手法により修飾されていない抗体である。遺伝子工学的手法による修飾としては、例えば、抗体鎖のアミノ酸配列の改変のための抗体鎖遺伝子中への変異導入が挙げられる。有機化学的手法による修飾としては、例えば、抗体鎖(特に重鎖および/または軽鎖の定常領域)に存在するアミノ酸残基の側鎖に対する特定の切断性部位の導入が挙げられる。 In one embodiment, the raw material antibody may be an unmodified antibody. Unmodified antibodies are antibodies that have not been modified by genetic engineering and organic chemistry techniques. Modifications by genetic engineering techniques include, for example, introduction of mutations into the antibody chain gene for modification of the amino acid sequence of the antibody chain. Modifications by organic chemistry techniques include, for example, the introduction of specific cleavage sites for the side chains of amino acid residues present in antibody chains (particularly the constant regions of heavy and / or light chains).
 別の実施形態では、原料抗体は、修飾抗体であってもよい。修飾抗体における修飾としては、例えば、上述したような遺伝子工学的手法、および有機化学的手法による修飾が挙げられる。このような手法による特定の切断性部位の導入により、特定の切断性部位を有する原料抗体を得ることができる。特定の切断性部位を原料抗体に導入する場合に利用される抗体中のアミノ酸残基としては、例えば、リジン残基、チロシン残基、セリン残基、およびスレオニン残基が挙げられる。例えば、ヒトIgG1等のヒトIgGでは、重鎖定常領域に存在する下記アミノ酸残基が抗体表面に露出し得るので、これらのアミノ酸残基を特定の切断性部位の導入に利用することができる(アミノ酸残基の位置はEU numberingによる;http://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.htmlを参照)。
(1)露出リジン残基
CH2ドメイン(例、246位、248位、274位、288位、290位、317位、320位、322位)
CH3ドメイン(例、360位、414位、439位)
(2)露出チロシン残基
CH2ドメイン(例、278位、296位、300位)
CH3ドメイン(例、436位)
(3)露出セリン残基
CH2ドメイン(例、254位、267位、298位)
CH3ドメイン(例、400位、415位、440位)
(4)露出スレオニン残基
CH2ドメイン(例、256位、289位)
CH3ドメイン(例、335位、359位)
In another embodiment, the source antibody may be a modified antibody. Examples of the modification in the modified antibody include the above-mentioned genetic engineering technique and modification by an organic chemical technique. By introducing a specific cleavage site by such a method, a raw material antibody having a specific cleavage site can be obtained. Amino acid residues in the antibody utilized when introducing a specific cleavage site into the raw material antibody include, for example, lysine residue, tyrosine residue, serine residue, and threonine residue. For example, in human IgG such as human IgG1, the following amino acid residues existing in the heavy chain constant region can be exposed on the antibody surface, and these amino acid residues can be used for introduction of a specific cleavage site (for example). The position of the amino acid residue is according to EU numbering; see http: //www.imgt.org/IMGTScientificCart/Numering/Hu_IGHGnber.html).
(1) Exposed lysine residue CH2 domain (eg, 246th, 248th, 274th, 288th, 290th, 317th, 320th, 322nd)
CH3 domain (eg, 360th, 414th, 439th)
(2) Exposed tyrosine residue CH2 domain (eg, 278th, 296th, 300th)
CH3 domain (eg, 436th)
(3) Exposed serine residue CH2 domain (eg, 254th, 267th, 298th)
CH3 domain (eg, 400th, 415th, 440th)
(4) Exposed threonine residue CH2 domain (eg, positions 256 and 289)
CH3 domain (eg, 335th and 359th)
 原料抗体が修飾抗体である場合、修飾抗体は、位置選択的に修飾された抗体であってもよい。このような場合、抗体誘導体として、特定の反応性部位を位置選択的に有する抗体誘導体が生成される。抗体の位置選択的な修飾は、当該分野で周知であり、例えば、有機化学的手法、または遺伝子工学的な手法により行うことができる。あるいは、修飾抗体は、位置非選択的に修飾された抗体であってもよい。このような場合、抗体誘導体として、特定の反応性部位を非位置選択的に有する抗体誘導体が生成される。 When the raw material antibody is a modified antibody, the modified antibody may be a regioselectively modified antibody. In such a case, as the antibody derivative, an antibody derivative having a specific reactive site regioselectively is produced. Regioselective modifications of antibodies are well known in the art and can be performed, for example, by organic chemistry or genetic engineering techniques. Alternatively, the modified antibody may be a position-nonselectively modified antibody. In such a case, as the antibody derivative, an antibody derivative having a specific reactive site non-regioselectively is produced.
 原料抗体が修飾抗体である場合、修飾抗体は、特定の切断性部位を有する修飾部位を含む修飾抗体であってもよい。特定の切断性部位は、切断剤を用いる特定の切断性部位の切断により生体直交性官能基を抗体側に生成する切断性部位であってもよい。生体直交性官能基とは、生体構成成分(例、アミノ酸、核酸、脂質、糖、リン酸)とは反応しない、もしくは生体構成成分に対する反応の速度が遅いが、生体構成成分以外の成分に対して選択的に反応する基をいう。生体直交性官能基は、当該技術分野において周知である(例、Sharpless K.B.et al.,Angew.Chem.Int.Ed.40,2004(2015);Bertozzi C.R.et al.,Science 291,2357(2001);Bertozzi C.R.et al.,Nature Chemical Biology 1,13(2005)を参照)。本発明では、チオール基を含む生体直交性官能基を利用することができる。切断剤を用いる切断により生体直交性官能基を抗体側に生成する切断性部位と当該生体直交性官能基との組み合わせは、例えば、以下である。 When the raw material antibody is a modified antibody, the modified antibody may be a modified antibody containing a modified site having a specific cleavable site. The specific cleavage site may be a cleavage site that produces a bioorthogonal functional group on the antibody side by cleavage of the specific cleavage site using a cleavage agent. Bioorthogonal functional groups are those that do not react with biological constituents (eg, amino acids, nucleic acids, lipids, sugars, phosphates) or that react slowly with biological constituents, but with respect to components other than biological constituents. A group that reacts selectively. Bioorthogonal functional groups are well known in the art (eg, Sharpless KB et al., Angelw. Chem. Int. Ed. 40, 2004 (2015); Bertozzi CR et al., See Science 291 and 357 (2001); Bertozzi CR et al., Nature Chemical Biology 1, 13 (2005)). In the present invention, a bioorthogonal functional group containing a thiol group can be utilized. The combination of the cleavable site that generates a bioorthogonal functional group on the antibody side by cleaving with a cleaving agent and the bioorthogonal functional group is, for example, as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 好ましくは、切断性部位は、切断剤を用いる切断によりチオール基を抗体側に生成することができるジスルフィド基またはチオエステル基である。このような特定の切断性部位(好ましくは、ジスルフィド基またはチオエステル基)を有する修飾部位を含む修飾抗体を使用する場合、第1反応流路内の反応により、生体直交性官能基(好ましくは、チオール基)を有する抗体誘導体が、特定の反応部位を有する抗体誘導体として生成される。次いで、抗体誘導体中の生体直交性官能基と特異的に反応する官能基を有する薬物を利用することで、第2反応流路内の反応により抗体誘導体を薬物と連結させて、抗体薬物複合を生成することができる。 Preferably, the cleavage site is a disulfide group or a thioester group capable of producing a thiol group on the antibody side by cleavage using a cleavage agent. When a modified antibody containing a modified site having such a specific cleaving site (preferably a disulfide group or a thioester group) is used, the reaction in the first reaction flow path causes a bioorthogonal functional group (preferably, preferably). An antibody derivative having a thiol group) is produced as an antibody derivative having a specific reaction site. Next, by utilizing a drug having a functional group that specifically reacts with the bioorthogonal functional group in the antibody derivative, the antibody derivative is linked to the drug by the reaction in the second reaction flow path to form an antibody drug complex. Can be generated.
 特定の実施形態では、原料抗体は、ジスルフィド基を有する抗体である。 In a particular embodiment, the raw material antibody is an antibody having a disulfide group.
 好ましい実施形態では、ジスルフィド基を有する抗体は、ジスルフィド基を有する修飾部位を含む修飾抗体であってもよい。この場合、第1反応流路内の反応により、チオール基を有する修飾部位を含む修飾抗体誘導体が生成される。 In a preferred embodiment, the antibody having a disulfide group may be a modified antibody containing a modification site having a disulfide group. In this case, the reaction in the first reaction channel produces a modified antibody derivative containing a modified site having a thiol group.
 好ましい別の実施形態では、ジスルフィド基を有する抗体は、ジスルフィド基を有する非修飾抗体であってもよい。非修飾抗体は、重鎖間および重鎖・軽鎖間がジスルフィド結合により連結されているため、ジスルフィド基を有する。例えば、2個の重鎖と2個の軽鎖から構成されるIgG抗体は、重鎖間および重鎖・軽鎖間が4個のジスルフィド結合により連結されているため、4個のジスルフィド基を有する。したがって、原料抗体がジスルフィド基を有する非修飾抗体である場合、第1反応流路内の反応により、チオール基を有する非修飾抗体誘導体が生成される。例えば、第1反応流路内の反応により4個のジスルフィド結合が全て切断された場合、8個のチオール基を有する非修飾IgG抗体誘導体が生成される。ちなみに、4つの鎖間ジスルフィド結合すべてが還元されたとしても、抗体の重鎖および軽鎖は解離しない。これは、各鎖が非共有結合により抗体の高次構造を維持できるためである。この非共有結合により、抗体特性(標的および結合力)も維持される。例えば、エンハーツ(登録商標)として知られるトラスツズマブ・デルクステカンは、4個の鎖間ジスルフィド結合全てを還元(切断)した後に薬物を結合させたDAR=8のADCである。このようなADCは、その抗体特性の維持により、抗原特異的な薬剤として働くことが知られている。 In another preferred embodiment, the antibody having a disulfide group may be an unmodified antibody having a disulfide group. The unmodified antibody has a disulfide group because the heavy chain and the heavy chain / light chain are linked by a disulfide bond. For example, an IgG antibody composed of two heavy chains and two light chains has four disulfide groups because the heavy chains and the heavy and light chains are linked by four disulfide bonds. Have. Therefore, when the raw material antibody is an unmodified antibody having a disulfide group, the reaction in the first reaction flow path produces an unmodified antibody derivative having a thiol group. For example, when all four disulfide bonds are cleaved by the reaction in the first reaction flow path, an unmodified IgG antibody derivative having eight thiol groups is produced. By the way, even if all four interchain disulfide bonds are reduced, the heavy chain and the light chain of the antibody are not dissociated. This is because each chain can maintain the higher-order structure of the antibody by non-covalent bonding. This non-covalent bond also maintains antibody properties (target and binding strength). For example, trastuzumab derkustecan, known as Enhertz®, is a DA = 8 ADC in which all four interchain disulfide bonds have been reduced (cleaved) and then the drug has been attached. Such ADCs are known to act as antigen-specific agents by maintaining their antibody properties.
 溶液中の原料抗体の濃度は、切断剤と十分に反応できる濃度である限り特に限定されず、例えば、0.1~30mg/mLであってもよい。濃度は、好ましくは0.2mg/mL以上、より好ましくは0.3mg/mL以上、さらにより好ましくは0.4mg/mL以上、特に好ましくは0.5mg/mL以上であってもよい。濃度はまた、25mg/mL以下、20mg/mL以下、18mg/mL以下、16mg/mL以下、または14mg/mL以下であってもよい。 The concentration of the raw material antibody in the solution is not particularly limited as long as it can sufficiently react with the cleavage agent, and may be, for example, 0.1 to 30 mg / mL. The concentration may be preferably 0.2 mg / mL or more, more preferably 0.3 mg / mL or more, still more preferably 0.4 mg / mL or more, and particularly preferably 0.5 mg / mL or more. The concentration may also be 25 mg / mL or less, 20 mg / mL or less, 18 mg / mL or less, 16 mg / mL or less, or 14 mg / mL or less.
 処理(1)で用いられる切断剤は、原料抗体における特定の切断性部位の切断能を有する物質である。切断剤としては、例えば、還元剤(例、トリカルボキシルエチルホスフィン(TCEP)、システイン、ジチオトレイトール、還元型グルタチオン、β-メルカプトエタノール)、酸性物質(例、塩酸、硫酸等の無機酸性物質、および酢酸、クエン酸等の有機酸性物質)、塩基性物質(例、水酸化ナトリウム、水酸化カリウム等の無機塩基性物質、およびヒドロキシルアミン、トリエチルアミン等の有機塩基性物質)、酸化剤(例、過ヨウ素酸ナトリウム、酸化型グルタチオン)、および酵素が挙げられる。好ましくは、切断剤は、還元剤である。 The cleavage agent used in the treatment (1) is a substance having the ability to cleave a specific cleavage site in the raw material antibody. Examples of the cleaving agent include reducing agents (eg, tricarboxyethylphosphine (TCEP), cysteine, dithiothreitol, reduced glutathione, β-mercaptoethanol), acidic substances (eg, inorganic acidic substances such as hydrochloric acid and sulfuric acid, etc.). And organic acidic substances such as acetic acid and citric acid), basic substances (eg, inorganic basic substances such as sodium hydroxide and potassium hydroxide, and organic basic substances such as hydroxylamine and triethylamine), oxidizing agents (eg,) Sodium periodate, oxidized glutathione), and enzymes. Preferably, the cutting agent is a reducing agent.
 好ましい実施形態では、切断剤は、ジスルフィド結合の切断能を有する還元剤である。このような還元剤としては、例えば、トリカルボキシルエチルホスフィン(TCEP)、システイン、ジチオトレイトール、還元型グルタチオン、β-メルカプトエタノールが挙げられる。好ましくは、還元剤は、TCEPである。このような還元剤を使用する場合、第1反応流路内の反応により、ジスルフィド基を開裂させてチオール基を有する抗体誘導体を生成し、次いで、第2反応流路内の反応により、チオール基と反応する官能基を利用することで、抗体誘導体を薬物と連結させて、抗体薬物複合を生成することができる。 In a preferred embodiment, the cleavage agent is a reducing agent having the ability to cleave a disulfide bond. Examples of such reducing agents include tricarboxyethylphosphine (TCEP), cysteine, dithiothreitol, reduced glutathione, and β-mercaptoethanol. Preferably, the reducing agent is TCEP. When such a reducing agent is used, the disulfide group is cleaved by the reaction in the first reaction flow path to generate an antibody derivative having a thiol group, and then the thiol group is generated by the reaction in the second reaction flow path. By utilizing a functional group that reacts with, an antibody derivative can be linked to a drug to form an antibody-drug complex.
 溶液中の切断剤の濃度は、例えば、抗体と十分に反応できる濃度である限り特に限定されず、例えば、0.1~50mMであってもよい。濃度は、好ましくは0.3mM以上、より好ましくは0.5mM以上、さらにより好ましくは0.8mM以上、特に好ましくは1.0mM以上であってもよい。濃度はまた、40mM以下、30mM以下、20mM以下、10mM以下、または5mM以下であってもよい。また、切断剤の濃度は、抗体に対する当量として規定されてもよい。したがって、切断剤の濃度は、抗体に対して、例えば1~100モル当量、好ましくは1~50モル当量(または2~50モル当量)、より好ましくは1~30モル当量(または3~30モル当量)、さらにより好ましくは1~20モル当量(または4~20モル当量)、特に好ましくは1~15モル当量(または5~15モル当量)であってもよい。 The concentration of the cleavage agent in the solution is not particularly limited as long as it can sufficiently react with the antibody, and may be, for example, 0.1 to 50 mM. The concentration may be preferably 0.3 mM or more, more preferably 0.5 mM or more, still more preferably 0.8 mM or more, and particularly preferably 1.0 mM or more. The concentration may also be 40 mM or less, 30 mM or less, 20 mM or less, 10 mM or less, or 5 mM or less. The concentration of the cleavage agent may also be defined as an equivalent to the antibody. Therefore, the concentration of the cleavage agent is, for example, 1 to 100 molar equivalents, preferably 1 to 50 molar equivalents (or 2 to 50 molar equivalents), more preferably 1 to 30 molar equivalents (or 3 to 30 molar equivalents), relative to the antibody. Equivalents), even more preferably 1-20 molar equivalents (or 4-20 molar equivalents), particularly preferably 1-15 molar equivalents (or 5-15 molar equivalents).
 原料抗体を含む溶液、および切断剤を含む溶液等の溶液としては、水溶液を用いることができる。水溶液としては、例えば、水(例、蒸留水、滅菌蒸留水、精製水、生理食塩水)、緩衝液(例、リン酸水溶液、Tris-塩酸緩衝液、炭酸-重炭酸緩衝液、ホウ酸水溶液、グリシン-水酸化ナトリウム緩衝液、クエン酸緩衝液)が挙げられるが、緩衝液が好ましい。溶液のpHは、例えば5.0~9.0、好ましくは5.5~8.5である。水溶液は、他の成分を含んでいてもよい。このような他の成分としては、例えば、キレート剤、有機溶媒(例、アルコール)等の任意の成分が挙げられる。 An aqueous solution can be used as a solution such as a solution containing a raw material antibody and a solution containing a cutting agent. Examples of the aqueous solution include water (eg, distilled water, sterile distilled water, purified water, physiological saline), buffer solution (eg, phosphoric acid aqueous solution, Tris-hydrochloride buffer solution, carbonic acid-dicarbonate buffer solution, boric acid aqueous solution). , Glycin-sodium hydroxide buffer, citrate buffer), but a buffer is preferred. The pH of the solution is, for example, 5.0 to 9.0, preferably 5.5 to 8.5. The aqueous solution may contain other components. Examples of such other components include arbitrary components such as chelating agents and organic solvents (eg, alcohol).
 第1および第2導入流路は、同一または異なる流路であるように設計することができる。例えば、第1および第2導入流路の長さ、代表径、形状および材料は、原料抗体を含む溶液、および切断剤を含む溶液をそれぞれ第1導入流路と第2導入流路の合流部に導入できる限り特に限定されない。第1および第2導入流路の長さは、例えば0.1~10メートル、好ましくは0.1~5メートル、より好ましくは0.2~3メートル、さらに好ましくは0.2~3メートルである。第1および第2導入流路の代表径は、例えば0.05~3.0mm、好ましくは0.10~0.75mm、より好ましくは0.25~0.5mmである。「代表径」とは、流路断面と等価な円管の直径をいう。したがって、流路断面の形状が円形断面を有する場合、代表径は、内径である。一方、流路断面の形状が同一または異なる幅および深さの非円形断面を有する場合、代表径は、その幅および深さの積により求められる断面積と等価な断面積を有する円管の直径である。第1および第2導入流路の形状は、直線であっても非直線であってもよい。第1および第2導入流路の材料としては、例えば、金属材料〔例、ステンレス鋼材(SUS)、ハステロイ(登録商標)、インコネル〕、樹脂〔例、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリジメチルシロキサン(PDMS)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)〕、およびガラスが挙げられる。 The first and second introduction channels can be designed to be the same or different channels. For example, the length, representative diameter, shape and material of the first and second introduction channels are the confluence of the first introduction channel and the second introduction channel, respectively, for the solution containing the raw material antibody and the solution containing the cutting agent. It is not particularly limited as long as it can be introduced into. The length of the first and second introduction channels is, for example, 0.1 to 10 meters, preferably 0.1 to 5 meters, more preferably 0.2 to 3 meters, still more preferably 0.2 to 3 meters. be. The representative diameters of the first and second introduction channels are, for example, 0.05 to 3.0 mm, preferably 0.10 to 0.75 mm, and more preferably 0.25 to 0.5 mm. The "representative diameter" means the diameter of a circular tube equivalent to the cross section of the flow path. Therefore, when the shape of the flow path cross section has a circular cross section, the representative diameter is the inner diameter. On the other hand, when the shape of the flow path cross section has a non-circular cross section having the same or different width and depth, the representative diameter is the diameter of a circular pipe having a cross section equivalent to the cross section obtained by the product of the width and the depth. Is. The shapes of the first and second introduction channels may be straight or non-straight. Materials of the first and second introduction channels include, for example, metal materials [eg, stainless steel (SUS), Hasteroy®, Inconel], resins [eg, polytetrafluoroethylene (PTFE), polyethersalkane. Examples include phon (PES), polyetheretherketone (PEEK), polydimethylsiloxane (PDMS), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)], and glass.
 第1導入流路および第2導入流路内の溶液の流速は、同一であっても異なっていてもよく、例えば0.05~30mL/分であってもよい。流速は、好ましくは0.1mL/分以上、より好ましくは0.2mL/分以上、さらにより好ましくは0.4mL/分以上、特に好ましくは0.5mL/分以上であってもよい。流速はまた、20mL/分以下、15mL/分以下、10mL/分以下、8mL/分以下、6mL/分以下、5mL/分以下、4mL/分以下、3mL/分以下、または2mL/分以下であってもよい。より具体的には、流速は、好ましくは0.1~20mL/分、より好ましくは0.2~15mL/分、さらにより好ましくは0.4~10mL/分、特に好ましくは0.5~8mL/分であってもよい。 The flow rates of the solutions in the first introduction channel and the second introduction channel may be the same or different, and may be, for example, 0.05 to 30 mL / min. The flow rate may be preferably 0.1 mL / min or more, more preferably 0.2 mL / min or more, still more preferably 0.4 mL / min or more, and particularly preferably 0.5 mL / min or more. The flow rate is also 20 mL / min or less, 15 mL / min or less, 10 mL / min or less, 8 mL / min or less, 6 mL / min or less, 5 mL / min or less, 4 mL / min or less, 3 mL / min or less, or 2 mL / min or less. There may be. More specifically, the flow rate is preferably 0.1 to 20 mL / min, more preferably 0.2 to 15 mL / min, even more preferably 0.4 to 10 mL / min, and particularly preferably 0.5 to 8 mL. It may be / minute.
 第1導入流路と第2導入流路の合流部では、任意のマイクロミキサーを利用することができる。このようなマイクロミキサーとしては、例えば、衝突型(例、T字)、シースフロー型、Static型、Helix型、多層流型等の種々の混合型のマイクロミキサーが挙げられる。第1導入流路と第2導入流路の合流部におけるマイクロミキサーの代表径は、特に限定されないが、第1導入流路および/または第2導入流路の代表径以下であることが好ましい。このようなマイクロミキサーの代表径は、例えば、1.0mm以下、0.9mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、0.3mm以下、または0.25mm以下であってもよい。マイクロミキサーの代表径はまた、0.05mm以上、または0.1mm以上であってもよい。マイクロミキサー内の合流部の流路断面の形状は、幅および深さが同一または異なる非円形断面を有するものであっても、円形断面を有するものであってもよい。第1導入流路と第2導入流路の合流部は、単一であっても、複数(第1導入流路および/または第2導入流路が複数の場合)であってもよいが、FMRの容易な設計および製造等の観点では、単一が好ましい。マイクロミキサーの材料としては、例えば、金属材料〔例、ステンレス鋼材(SUS)、ハステロイ(登録商標)、インコネル〕、樹脂〔例、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリジメチルシロキサン(PDMS)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)〕、およびガラスが挙げられる。 Any micromixer can be used at the confluence of the first introduction flow path and the second introduction flow path. Examples of such a micromixer include various mixed type micromixers such as collision type (eg, T-shaped), sheath flow type, Static type, Helix type, and multi-layer flow type. The representative diameter of the micromixer at the confluence of the first introduction flow path and the second introduction flow path is not particularly limited, but is preferably equal to or smaller than the representative diameter of the first introduction flow path and / or the second introduction flow path. Typical diameters of such micromixers are, for example, 1.0 mm or less, 0.9 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm. It may be less than or equal to 0.25 mm or less. The representative diameter of the micromixer may also be 0.05 mm or more, or 0.1 mm or more. The shape of the flow path cross section of the confluence in the micromixer may have a non-circular cross section having the same or different width and depth, or may have a circular cross section. The confluence of the first introduction flow path and the second introduction flow path may be single or a plurality (when there are a plurality of first introduction flow paths and / or a plurality of second introduction flow paths). From the viewpoint of easy design and manufacture of FMR, a single unit is preferable. Materials for the micromixer include, for example, metal materials [eg, stainless steel (SUS), Hasteroy®, Inconel], resins [eg, polytetrafluoroethylene (PTFE), polyethersulfone (PES), poly. Ether ether ketone (PEEK), polydimethylsiloxane (PDMS), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)], and glass.
 好ましくは、第1導入流路と第2導入流路の合流部で利用されるマイクロミキサーは、第1反応流路と第3導入流路の合流部で利用される後述の衝突型マイクロミキサーと同一または異なる衝突型マイクロミキサーであってもよい。 Preferably, the micromixer used at the confluence of the first introduction flow path and the second introduction flow path is a collision type micromixer used at the confluence of the first reaction flow path and the third introduction flow path, which will be described later. It may be the same or different collision type micromixer.
 特定の実施形態では、第1導入流路と第2導入流路の合流部におけるマイクロミキサーと第1導入流路の代表径比(マイクロミキサー/第1導入流路)および/またはマイクロミキサー/第2導入流路の代表径比(マイクロミキサー/第2導入流路)は、1.0未満であってもよい。このような代表径比によれば、合流部において溶液が加速され、より微小な溶液単位を生じるので、より迅速に均一溶液を生成することができる。このような代表径比は、例えば、0.95以下、0.90以下、0.85以下、0.80以下、0.75以下、0.70以下、0.65以下、0.60以下、0.55以下、0.50以下、0.45以下、0.40以下、0.35以下、0.30以下、または0.25以下であってもよい。このような代表径比が小さい程、均一溶液をより迅速に生成することができる。このような代表径比はまた、0.05以上、または0.1以上であってもよい。 In a particular embodiment, the representative diameter ratio of the micromixer to the first introduction channel (micromixer / first introduction channel) and / or the micromixer / first at the confluence of the first introduction channel and the second introduction channel. 2 The representative diameter ratio of the introduction flow path (micromixer / second introduction flow path) may be less than 1.0. According to such a representative diameter ratio, the solution is accelerated at the confluence to generate finer solution units, so that a uniform solution can be produced more quickly. Such representative diameter ratios are, for example, 0.95 or less, 0.90 or less, 0.85 or less, 0.80 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, It may be 0.55 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, 0.30 or less, or 0.25 or less. The smaller the representative diameter ratio, the faster the uniform solution can be produced. Such a representative diameter ratio may also be 0.05 or more, or 0.1 or more.
 特定の実施形態では、第1導入流路と第2導入流路の合流部で利用されるマイクロミキサーは、0.8mm以下の代表径を有していてもよい。マイクロミキサーの代表径は、好ましくは0.7mm以下、より好ましくは0.6mm以下、さらにより好ましくは0.5mm以下、特に好ましくは0.4mm以下、0.3mm以下、または0.25mm以下であってもよい。マイクロミキサーの代表径はまた、0.05mm以上、または0.1mm以上であってもよい。 In a specific embodiment, the micromixer used at the confluence of the first introduction flow path and the second introduction flow path may have a representative diameter of 0.8 mm or less. The representative diameter of the micromixer is preferably 0.7 mm or less, more preferably 0.6 mm or less, still more preferably 0.5 mm or less, particularly preferably 0.4 mm or less, 0.3 mm or less, or 0.25 mm or less. There may be. The representative diameter of the micromixer may also be 0.05 mm or more, or 0.1 mm or more.
処理(2)
 上述のように生成された第1混合液が第1反応流路内に通されると、特定の切断性部位を有する原料抗体、および特定の切断性部位の切断能を有する切断剤が、第1反応流路内で反応する。これにより、特定の反応性部位を有する抗体誘導体および切断剤を含む溶液が生成される。
Processing (2)
When the first mixed solution produced as described above is passed through the first reaction flow path, the raw material antibody having a specific cleavage site and the cleavage agent having a cleavage ability of the specific cleavage site become the first. 1 React in the reaction flow path. This produces a solution containing an antibody derivative and a cleavage agent having a specific reactive site.
 第1反応流路は、原料抗体と切断剤の反応における反応時間を制御するため、第1反応流路における第1混合液の所望の滞留時間を達成できるように設計することができる。このような滞留時間は、特に限定されないが、例えば15分未満、好ましくは10分未満、より好ましくは8分未満、さらにより好ましくは6分未満であってもよい。第1混合液の第1反応流路内の滞留時間は、例えば、第1導入流路および第2導入流路内の溶液の流速、ならびに第1反応流路の長さおよび代表径を調節することにより制御することができる。 Since the first reaction flow path controls the reaction time in the reaction between the raw material antibody and the cleavage agent, the first reaction flow path can be designed so as to achieve the desired residence time of the first mixed solution in the first reaction flow path. Such residence time is not particularly limited, but may be, for example, less than 15 minutes, preferably less than 10 minutes, more preferably less than 8 minutes, and even more preferably less than 6 minutes. The residence time of the first mixed solution in the first reaction flow path adjusts, for example, the flow rate of the solutions in the first introduction flow path and the second introduction flow path, and the length and representative diameter of the first reaction flow path. It can be controlled by this.
 第1反応流路内の反応温度を比較的高温に設定することで原料抗体と切断剤の反応を短時間化できるため、第1反応流路は、より短い滞留時間を達成するように設計されてもよい。このような短い滞留時間は、例えば5分未満、好ましくは4分未満、より好ましくは3分未満である。 Since the reaction between the raw material antibody and the cleavage agent can be shortened by setting the reaction temperature in the first reaction flow path to a relatively high temperature, the first reaction flow path is designed to achieve a shorter residence time. You may. Such a short residence time is, for example, less than 5 minutes, preferably less than 4 minutes, more preferably less than 3 minutes.
 第1反応流路内の反応温度は、容易に制御することができる。単位容積あたりの表面積が大きいFMRでは、熱移動が高速に起こるため、精密かつ迅速に温度を制御できる。反応温度の制御は、例えば、反応流路の外側に取り付けられた温度制御器、もしくは反応流路を浸漬できる浴(例、水浴)の使用により、またはプレ温度調整機構(例、実施例に記載されるようなコイル滞留管)の使用により行うことができる。第1反応流路内の反応は、後述の温和な条件下の任意の反応温度で行うことができる。あるいは、反応を短時間化するため、反応温度は比較的高温に設定されてもよい。したがって、反応温度は、例えば30~60℃、好ましくは35~55℃、より好ましくは37~50℃であってもよい。 The reaction temperature in the first reaction flow path can be easily controlled. In FMR, which has a large surface area per unit volume, heat transfer occurs at high speed, so that the temperature can be controlled precisely and quickly. Controlling the reaction temperature is described, for example, by using a temperature controller mounted outside the reaction flow path, or by using a bath (eg, a water bath) capable of immersing the reaction flow path, or by a pre-temperature control mechanism (eg, Examples). It can be done by using a coil retention tube). The reaction in the first reaction flow path can be carried out at an arbitrary reaction temperature under mild conditions described later. Alternatively, the reaction temperature may be set to a relatively high temperature in order to shorten the reaction time. Therefore, the reaction temperature may be, for example, 30 to 60 ° C, preferably 35 to 55 ° C, and more preferably 37 to 50 ° C.
 第1反応流路は、上記のような第1混合液の滞留時間を達成できるように構成される限り特に限定されず、例えば、第1反応流路の長さ、代表径、形状および材料は、以下のように設定されてもよい。第1反応流路の長さは、例えば1~30メートル、好ましくは2~20メートル、より好ましくは3~15メートル、さらにより好ましくは4~10メートルであってもよい。第1反応流路の代表径は、例えば0.5~3mm、好ましくは0.6~2.5mm、より好ましくは0.7~2.0mm、さらにより好ましくは0.8~1.5mmであってもよい。第1反応流路の形状は、直線であっても、非直線〔例、1以上の湾曲部と直線部を有する形状、円形状(例、コイル状、渦巻き状)〕であってもよい。第1反応流路の材料としては、第1および第2導入流路と同様の材料を用いることができる。 The first reaction flow path is not particularly limited as long as it is configured so as to achieve the residence time of the first mixed solution as described above, and for example, the length, representative diameter, shape and material of the first reaction flow path may be used. , May be set as follows. The length of the first reaction flow path may be, for example, 1 to 30 meters, preferably 2 to 20 meters, more preferably 3 to 15 meters, and even more preferably 4 to 10 meters. The representative diameter of the first reaction flow path is, for example, 0.5 to 3 mm, preferably 0.6 to 2.5 mm, more preferably 0.7 to 2.0 mm, and even more preferably 0.8 to 1.5 mm. There may be. The shape of the first reaction flow path may be a straight line or a non-straight line [eg, a shape having one or more curved portions and a straight portion, a circular shape (eg, a coil shape, a spiral shape)]. As the material of the first reaction flow path, the same materials as those of the first and second introduction flow paths can be used.
 第1反応流路内の反応は、抗体の変性・分解(例、アミド結合の切断)を引き起こし得ない温和な条件下で行うことができる(例えば、G.J.L.Bernardes et al.,Chem.Rev.,115,2174(2015);G.J.L.Bernardes et al.,Chem.Asian.J.,4,630(2009);B.G.Davies et al.,Nat.Commun.,5,4740(2014);A.Wagner et al.,Bioconjugate.Chem.,25,825(2014)を参照)。反応は、完全または部分的に行うことができる。反応の程度は、例えば、原料抗体および切断剤の濃度、第1反応流路内の第1混合液の滞留時間、ならびに第1反応流路内の反応温度等の条件の調節により制御することができる。 The reaction in the first reaction channel can be carried out under mild conditions that cannot cause denaturation / degradation of the antibody (eg, cleavage of the amide bond) (eg, GJL Bernardes et al., Chem. Rev., 115, 2174 (2015); GG Bernardes et al., Chem. Asian.J., 4,630 (2009); BG Devices et al., Nat. Commun. , 5, 4740 (2014); see A. Wagner et al., Bioconjugate. Chem., 25, 825 (2014)). The reaction can be complete or partial. The degree of reaction can be controlled, for example, by adjusting conditions such as the concentrations of the raw material antibody and the cleavage agent, the residence time of the first mixed solution in the first reaction flow path, and the reaction temperature in the first reaction flow path. can.
処理(3)
 (3)の処理は、第1反応流路からの流出溶液を、第3導入流路を介して導入された薬物を含む溶液と、第1反応流路と第3導入流路の合流部において衝突型マイクロミキサーで混合することにより行うことができる。このような混合により、抗体誘導体、切断剤および薬物を含む第2混合液が生成される。
Processing (3)
In the treatment of (3), the outflow solution from the first reaction flow path is mixed with the solution containing the drug introduced through the third introduction flow path and the confluence of the first reaction flow path and the third introduction flow path. This can be done by mixing with a collision type micromixer. Such mixing produces a second mixture containing the antibody derivative, cleavage agent and drug.
 本発明において用いられる薬物は、抗体に任意の機能を付与する物質である限り特に限定されず、例えば、医薬、標識物質、安定化剤が挙げられる。薬物はまた、単一の薬物であってもよく、または2以上の薬物が連結された物質であってもよい。 The drug used in the present invention is not particularly limited as long as it is a substance that imparts an arbitrary function to the antibody, and examples thereof include pharmaceuticals, labeling substances, and stabilizers. The drug may also be a single drug or a substance in which two or more drugs are linked.
 医薬としては、任意の疾患に対する医薬であってもよい。このような疾患としては、例えば、癌(例、肺癌、胃癌、大腸癌、膵臓癌、腎臓癌、肝臓癌、甲状腺癌、前立腺癌、膀胱癌、卵巣癌、子宮癌、骨癌、皮膚癌、脳腫瘍、黒色腫)、自己免疫疾患・炎症性疾患(例、アレルギー疾患、関節リウマチ、全身性エリテマトーデス)、脳神経疾患(例、脳梗塞、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症)、感染症(例、細菌感染症、ウイルス感染症)、遺伝性・希少疾患(例、遺伝性球状赤血球症、非ジストロフィー筋緊張症)、眼疾患(例、加齢黄斑変性症、糖尿病網膜症、網膜色素変性症)、骨・整形外科領域の疾患(例、変形性関節症)、血液疾患(例、白血病、紫斑病)、その他の疾患(例、糖尿病、高脂血症等の代謝異常症、肝臓疾患、腎疾患、肺疾患、循環器系疾患、消化器官系疾患)が挙げられる。医薬は、疾患の予防または治療薬、副作用の緩和薬であってもよい。 The medicine may be a medicine for any disease. Such diseases include, for example, cancer (eg, lung cancer, gastric cancer, colon cancer, pancreatic cancer, kidney cancer, liver cancer, thyroid cancer, prostate cancer, bladder cancer, ovarian cancer, uterine cancer, bone cancer, skin cancer, etc. Brain tumor, melanoma), autoimmune and inflammatory diseases (eg, allergic disease, rheumatoid arthritis, systemic erythematosus), neurological diseases (eg, cerebral infarction, Alzheimer's disease, Parkinson's disease, muscular atrophic lateral sclerosis), Infectious diseases (eg, bacterial infections, viral infections), hereditary and rare diseases (eg, hereditary globular erythema, non-dystrophy myotension), eye diseases (eg, age-related luteal degeneration, diabetic retinopathy, etc.) Retinal pigment degeneration), diseases in the field of bone and orthopedic surgery (eg, osteoarthritis), blood diseases (eg, leukemia, purpura), and other diseases (eg, diabetes, hyperlipidemia, etc.) , Liver disease, kidney disease, lung disease, cardiovascular disease, digestive system disease). The medicine may be a preventive or therapeutic drug for a disease, or a palliative drug for side effects.
 より具体的には、医薬は、抗癌剤である。抗癌剤としては、例えば、化学療法剤、毒素、放射性同位体またはそれを含む物質が挙げられる。化学療法剤としては、例えば、DNA損傷剤、代謝拮抗薬、酵素阻害剤、DNAインターカレート剤、DNA切断剤、トポイソメラーゼ阻害剤、DNA結合阻害剤、チューブリン結合阻害剤、細胞傷害性ヌクレオシド、白金化合物が挙げられる。毒素としては、例えば、細菌毒素(例、ジフテリア毒素)、植物毒素(例、リシン)が挙げられる。放射性同位体としては、例えば、水素原子の放射性同位体(例、H)、炭素原子の放射性同位体(例、14C)、リン原子の放射性同位体(例、32P)、硫黄原子の放射性同位体(例、35)、イットリウムの放射性同位体(例、90Y)、テクネチウムの放射性同位体(例、99mTc)、インジウムの放射性同位体(例、111In)、ヨウ素原子の放射性同位体(例、123I、125I、129I、131I)、サマリウムの放射性同位体(例、153Sm)、レニウムの放射性同位体(例、186Re)、アスタチンの放射性同位体(例、211At)、ビスマスの放射性同位体(例、212Bi)が挙げられる。更に具体的には、医薬として、オーリスタチン(MMAE、MMAF)、メイタンシン(DM1、DM4)、PBD(ピロロベンゾジアゼピン)、IGN、カンプトテシン類縁体、カリケアミシン、デュオカルミシン、エリブリン、アントラサイクリン、dmDNA31、ツブリシンが挙げられる。 More specifically, the drug is an anticancer drug. Anti-cancer agents include, for example, chemotherapeutic agents, toxins, radioisotopes or substances containing them. Examples of the chemotherapeutic agent include DNA damaging agents, metabolic antagonists, enzyme inhibitors, DNA intercalating agents, DNA cleavage agents, topoisomerase inhibitors, DNA binding inhibitors, tubularin binding inhibitors, cytotoxic nucleosides, and the like. Examples include platinum compounds. Examples of toxins include bacterial toxins (eg, diphtheria toxins) and plant toxins (eg, ricin). Radioisotopes include, for example, radioisotopes of hydrogen atoms (eg, 3H ), radioisotopes of carbon atoms (eg, 14C ), radioisotopes of phosphorus atoms (eg, 32P ), and sulfur atoms. Radioisotopes (eg, 35 S ), yttrium radioisotopes (eg 90 Y), technetium radioisotopes (eg 99m Tc), indium radioisotopes (eg 111 In), iodine atom radioactivity Isotopes (eg 123 I, 125 I, 129 I, 131 I), samarium radioisotopes (eg 153 Sm), renium radioisotopes (eg 186 Re), asstatin radioisotopes (eg 156 Re). 211 At), a radioisotope of bismuth (eg, 212 Bi). More specifically, as pharmaceuticals, auristatin (MMAE, MMAF), maytancin (DM1, DM4), PBD (pyrrolobenzodiazepine), IGN, camptothecin analog, calicheamicin, duocarminine, eribulin, anthracycline, dmDNA31, tubricin. Can be mentioned.
 標識物質は、標的(例、組織、細胞、物質)の検出を可能にする物質である。標識物質としては、例えば、酵素(例、ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼ、βガラクトシダーゼ)、親和性物質(例、ストレプトアビジン、ビオチン、ジゴキシゲニン、アプタマー)、蛍光物質(例、フルオレセイン、フルオレセインイソチオシアネート、ローダミン、緑色蛍光タンパク質、赤色蛍光タンパク質)、発光物質(例、ルシフェリン、エクオリン、アクリジニウムエステル、トリス(2,2’-ビピリジル)ルテニウム、ルミノール)、放射性同位体(例、上述したもの)、またはそれを含む物質が挙げられる。 The labeling substance is a substance that enables the detection of targets (eg, tissues, cells, substances). Labeling substances include, for example, enzymes (eg, peroxidase, alkaline phosphatase, luciferase, β-galactosidase), affinity substances (eg, streptavidin, biotin, digoxygenin, aptamer), fluorescent substances (eg, fluorescein, fluorescein isothiocyanate, rhodomin). , Green fluorescent protein, red fluorescent protein), luminescent substances (eg, luciferin, equolin, acridinium ester, tris (2,2'-bipyridyl) ruthenium, luminol), radioactive isotopes (eg, those mentioned above), or Examples include substances containing it.
 安定化剤は、抗体の安定化を可能にする物質である。安定化剤としては、例えば、高分子化合物(例、ポリエチレングリコール(PEG))、ジオール類、グリセリン、非イオン界面活性剤、陰イオン界面活性剤、天然系界面活性剤、サッカリド、およびポリオール類が挙げられる。 The stabilizer is a substance that enables the stabilization of the antibody. Stabilizers include, for example, high molecular weight compounds (eg polyethylene glycol (PEG)), diols, glycerin, nonionic surfactants, anionic surfactants, natural surfactants, saccharides, and polyols. Can be mentioned.
 薬物はまた、ペプチド、タンパク質(例、抗体)、核酸(例、DNA、RNA、および人工核酸)、低分子有機化合物(例、後述する低分子有機化合物)、キレーター、糖鎖、脂質、高分子化合物、金属(例、金)であってもよい。 Drugs are also peptides, proteins (eg, antibodies), nucleic acids (eg, DNA, RNA, and artificial nucleic acids), small molecule organic compounds (eg, small molecule organic compounds described below), chelators, sugar chains, lipids, polymers. It may be a compound, a metal (eg, gold).
 薬物が、生体直交性官能基と反応し易い官能基を有する場合、薬物の当該官能基と、抗体誘導体中の生体直交性官能基とを適宜反応させることができる。生体直交性官能基と反応し易い官能基は、生体直交性官能基の具体的な種類によっても異なり得る。当業者であれば、適切な官能基を、生体直交性官能基と反応し易い官能基として適宜選択することができる(例、Boutureira et al., Chem. Rev.,2015,115,2174-2195)。生体直交性官能基と反応し易い官能基としては、例えば、生体直交性官能基がチオール残基の場合はマレイミド残基およびジスルフィド残基が挙げられるが、これらに限定されない。 When the drug has a functional group that easily reacts with the bioorthogonal functional group, the functional group of the drug can be appropriately reacted with the bioorthogonal functional group in the antibody derivative. The functional group that easily reacts with the bioorthogonal functional group may also differ depending on the specific type of the bioorthogonal functional group. Those skilled in the art can appropriately select an appropriate functional group as a functional group that easily reacts with a bioorthogonal functional group (eg, Boutureira et al., Chem. Rev., 2015, 115, 2174-2195). ). Examples of the functional group that easily reacts with the bioorthogonal functional group include, but are not limited to, maleimide residues and disulfide residues when the bioorthogonal functional group is a thiol residue.
 薬物が、抗体誘導体中の生体直交性官能基(例、チオール基)と反応し易い官能基を有しない場合、薬物は、このような官能基を有するように誘導体化されてもよい。誘導体化は、当該分野における技術常識である(例、国際公開第2004/010957号、米国特許出願公開第2006/0074008号明細書、米国特許出願公開第2005/0238649号明細書)。例えば、誘導体化は、任意の架橋剤を用いて行われてもよい。あるいは、誘導体化は、所望の官能基を有する特定のリンカーを用いて行われてもよい。例えば、このようなリンカーは、適切な環境(例、細胞内または細胞外)において薬物と抗体とをリンカーの切断により分離可能なものであってもよい。このようなリンカーとしては、例えば、特定のプロテアーゼ〔例、細胞内プロテアーゼ(例、リソソーム、またはエンドソーム中に存在するプロテアーゼ)、細胞外プロテアーゼ(例、分泌性プロテアーゼ)〕で分解されるペプチジルリンカー(例、米国特許第6,214,345号;Dubowchik et al.,Pharm.Therapeutics 83:67-123(1999))、生体内に存在する局所酸性部位で切断され得るリンカー(例、米国特許第5,622,929号、同第5,122,368号;同第5,824,805号)が挙げられる。リンカーは、自壊的(self-immolative)であってもよい(例、国際公開第02/083180号、国際公開第04/043493号、国際公開第05/112919号)。本発明では、誘導体化された薬物も、単に「薬物」と呼称される。 If the drug does not have a functional group that is likely to react with a bioorthogonal functional group (eg, a thiol group) in the antibody derivative, the drug may be derivatized to have such a functional group. Derivatization is a common technical practice in the art (eg, International Publication No. 2004/010957, US Patent Application Publication No. 2006/0074008, US Patent Application Publication No. 2005/0238649). For example, derivatization may be carried out using any cross-linking agent. Alternatively, the derivatization may be carried out using a specific linker having the desired functional group. For example, such a linker may be one in which the drug and the antibody can be separated by cleavage of the linker in an appropriate environment (eg, intracellular or extracellular). Such linkers include, for example, peptidyl linkers that are degraded by specific proteases [eg, intracellular proteases (eg, proteases present in lysosomes or endosomes), extracellular proteases (eg, secretory proteases)]. For example, US Pat. No. 6,214,345; Dubowchik et al., Pharma. Therapeutics 83: 67-123 (1999), a linker that can be cleaved at a locally acidic site present in vivo (eg, US Pat. No. 5, US Pat. No. 5). , 622,929, 5,122,368; 5,824,805). The linker may be self-immolative (eg, WO 02/083180, WO 04/043493, WO 05/1192919). In the present invention, derivatized drugs are also simply referred to as "drugs".
 特定の実施形態では、薬物は、マレイミド基、および/またはジスルフィド基(好ましくはマレイミド基)を有するか、またはマレイミド基、および/またはジスルフィド基(好ましくはマレイミド基)を有するように誘導体化されていることが好ましい。 In certain embodiments, the drug has a maleimide group and / or a disulfide group (preferably a maleimide group) or is derivatized to have a maleimide group and / or a disulfide group (preferably a maleimide group). It is preferable to have.
 溶液中の薬物の濃度は、例えば、抗体誘導体と十分に反応できる濃度である限り特に限定されず、例えば、0.1~50mMであってもよい。濃度は、好ましくは0.15mM以上、より好ましくは0.2mM以上、さらにより好ましくは0.25mM以上、特に好ましくは0.3mM以上であってもよい。濃度はまた、40mM以下、30mM以下、20mM以下、10mM以下、または5mM以下であってもよい。また、薬物の濃度は、抗体誘導体に対する当量として規定されてもよい。したがって、薬物の濃度は、抗体誘導体に対して、例えば1~100モル当量、好ましくは1~50モル当量、より好ましくは1~30モル当量、さらにより好ましくは1~20モル当量、特に好ましくは1~15モル当量であってもよい。 The concentration of the drug in the solution is not particularly limited as long as it can sufficiently react with the antibody derivative, and may be, for example, 0.1 to 50 mM. The concentration may be preferably 0.15 mM or more, more preferably 0.2 mM or more, still more preferably 0.25 mM or more, and particularly preferably 0.3 mM or more. The concentration may also be 40 mM or less, 30 mM or less, 20 mM or less, 10 mM or less, or 5 mM or less. The concentration of the drug may also be defined as an equivalent relative to the antibody derivative. Therefore, the concentration of the drug is, for example, 1 to 100 molar equivalents, preferably 1 to 50 molar equivalents, more preferably 1 to 30 molar equivalents, even more preferably 1 to 20 molar equivalents, particularly preferably 1 to 20 molar equivalents, relative to the antibody derivative. It may be 1 to 15 molar equivalents.
 第3導入流路内への溶液の導入は、第1および第2導入流路内への溶液の導入と同様に行うことができる。例えば、第3導入流路の長さ、代表径、形状および材料、ならびに第3導入流路内の溶液の流速は、第1および第2導入流路のものと同じであってもよい。 The introduction of the solution into the third introduction channel can be performed in the same manner as the introduction of the solution into the first and second introduction channels. For example, the length, representative diameter, shape and material of the third introduction channel, and the flow rate of the solution in the third introduction channel may be the same as those of the first and second introduction channels.
 特定の実施形態では、抗体誘導体および切断剤を含む溶液の流速、および薬物を含む溶液の流速の合計値は、2.0mL/分以上であってもよい。このような合計値の流速を有する溶液が衝突型マイクロミキサー内に流入することにより強い衝突が可能となり、迅速な混合を達成することができる。このような合計値は、好ましくは2.5mL/分以上、より好ましくは3.0mL/分以上、さらにより好ましくは3.5mL/分以上、特に好ましくは4.0mL/分以上であってもよい。このような合計値はまた、60mL/分以下、50mL/分以下、40mL/分以下、30mL/分以下、20mL/分以下、または10mL/分以下であってもよい。より具体的には、このような合計値は、好ましくは2.0~60mL/分、より好ましくは2.5~50mL/分、さらにより好ましくは3.0~40mL/分、特に好ましくは4.0~30mL/分、4.0~20mL/分、または4.0~10mL/分であってもよい。 In a particular embodiment, the total flow rate of the solution containing the antibody derivative and the cleavage agent and the flow rate of the solution containing the drug may be 2.0 mL / min or more. By flowing the solution having such a total flow rate into the collision type micromixer, strong collision is possible and rapid mixing can be achieved. Such a total value is preferably 2.5 mL / min or more, more preferably 3.0 mL / min or more, even more preferably 3.5 mL / min or more, and particularly preferably 4.0 mL / min or more. good. Such total values may also be 60 mL / min or less, 50 mL / min or less, 40 mL / min or less, 30 mL / min or less, 20 mL / min or less, or 10 mL / min or less. More specifically, such total values are preferably 2.0 to 60 mL / min, more preferably 2.5 to 50 mL / min, even more preferably 3.0 to 40 mL / min, and particularly preferably 4 It may be 0.0 to 30 mL / min, 4.0 to 20 mL / min, or 4.0 to 10 mL / min.
 特定の実施形態では、第1反応流路内の溶液の流速は、0.2mL/分以上であってもよい。第1反応流路内の溶液の流速は、第1導入流路および第2導入流路内の溶液の流速を調節することにより、間接的に調節することができる。第1反応流路内の溶液の流速は、好ましくは0.5mL/分以上、より好ましくは1.0mL/分以上、さらにより好ましくは1.5mL/分以上、特に好ましくは2.0mL/分以上であってもよい。このような流速はまた、40mL/分以下、30mL/分以下、20mL/分以下、または10mL/分以下であってもよい。より具体的には、流速は、好ましくは0.2~40mL/分、より好ましくは0.5~30mL/分、さらにより好ましくは1.0~20mL/分、特に好ましくは1.5~10mL/分、または2.0mL~10mL/分であってもよい。 In a particular embodiment, the flow rate of the solution in the first reaction channel may be 0.2 mL / min or higher. The flow rate of the solution in the first reaction flow path can be indirectly adjusted by adjusting the flow rate of the solution in the first introduction flow path and the second introduction flow path. The flow rate of the solution in the first reaction channel is preferably 0.5 mL / min or more, more preferably 1.0 mL / min or more, even more preferably 1.5 mL / min or more, and particularly preferably 2.0 mL / min. It may be the above. Such flow rates may also be 40 mL / min or less, 30 mL / min or less, 20 mL / min or less, or 10 mL / min or less. More specifically, the flow rate is preferably 0.2-40 mL / min, more preferably 0.5-30 mL / min, even more preferably 1.0-20 mL / min, and particularly preferably 1.5-10 mL. It may be / min, or 2.0 mL to 10 mL / min.
 特定の実施形態では、第3導入流路内の溶液の流速は、(a)第1導入流路内の溶液の流速、および(b)第2導入流路内の溶液の流速のいずれよりも速いものであってもよい。このような流速を第3導入流路で採用することで、合流部において溶液が強く衝突し、より微小な溶液単位を生じるので、さらに迅速に均一溶液を生成することができる。第3導入流路内への溶液の流速は、例えば、(a)または(b)の流速の1.2倍以上、1.4倍以上、1.6倍以上、1.8倍以上、または2.0倍以上であってもよい。第3導入流路内の溶液の流速はまた、0.4mL/分以上(例えば0.4~30mL/分)であってもよい。流速は、好ましくは0.6mL/分以上、より好ましくは0.8mL/分以上、さらにより好ましくは1.0mL/分以上、特に好ましくは1.5mL/分以上であってもよい。流速はまた、20mL/分以下、15mL/分以下、10mL/分以下、8mL/分以下、6mL/分以下、5mL/分以下、4mL/分以下、3mL/分以下、または2mL/分以下であってもよい。より具体的には、流速は、好ましくは0.6~20mL/分、より好ましくは0.8~15mL/分、さらにより好ましくは1.0~10mL/分、特に好ましくは1.5~8mL/分であってもよい。 In certain embodiments, the flow rate of the solution in the third introduction channel is greater than either (a) the flow rate of the solution in the first introduction channel and (b) the flow rate of the solution in the second introduction channel. It may be fast. By adopting such a flow rate in the third introduction flow path, the solutions collide strongly at the confluence to generate finer solution units, so that a uniform solution can be generated more quickly. The flow rate of the solution into the third introduction flow path is, for example, 1.2 times or more, 1.4 times or more, 1.6 times or more, 1.8 times or more, or the flow rate of (a) or (b). It may be 2.0 times or more. The flow rate of the solution in the third introduction channel may also be 0.4 mL / min or higher (eg 0.4-30 mL / min). The flow rate may be preferably 0.6 mL / min or more, more preferably 0.8 mL / min or more, still more preferably 1.0 mL / min or more, and particularly preferably 1.5 mL / min or more. The flow rate is also 20 mL / min or less, 15 mL / min or less, 10 mL / min or less, 8 mL / min or less, 6 mL / min or less, 5 mL / min or less, 4 mL / min or less, 3 mL / min or less, or 2 mL / min or less. There may be. More specifically, the flow rate is preferably 0.6 to 20 mL / min, more preferably 0.8 to 15 mL / min, even more preferably 1.0 to 10 mL / min, and particularly preferably 1.5 to 8 mL. It may be / minute.
 第1反応流路と第3導入流路の合流部では、上述のように衝突型マイクロミキサーが利用される。本発明では、衝突型マイクロミキサーとは、複数の溶液の接触時に混合渦を発生させることにより混合を促進するマイクロミキサーをいう。本発明では、衝突型マイクロミキサーとして、互いに反応されるべき異なる成分をそれぞれ含む第1溶液(例、特定の反応部位を有する抗体誘導体および切断剤を含む溶液)および第2溶液(例、薬物を含む溶液)の接触時に混合渦を発生することを可能にする位置関係において配置されている少なくとも2つの流入路を含む複数の流入路からの複数の溶液が流入する合流部が設けられたマイクロミキサーが用いられる。ここで、上記位置関係としては、上記2つの流入路(溶液の流入方向)が、正対位置にある関係、または当該正対位置を基準として、流出路側に一定角度(それぞれ角度XおよびY)傾いていてもよい位置にある関係である(表B)。上記2つの流入路において、第1流入路(例、少なくとも1つの第1反応流路)に対して設定される角度Xは、正対位置を基準として、流出側に傾く角度であり、第2流入路(例、少なくとも1つの第3導入流路)に対して設定される角度Yは、正対位置を基準として、流出路側に傾く角度である。このような場合、少なくとも2つの流入路(第1流入路および第2流入路)中の2つの溶液が互いに完全にまたは実質的に逆向きの流れで衝突でき衝突力が著しく高まるため、また、完全に逆向きの流れで衝突できない場合であってもマイクロミキサー内の流路壁(固相)と衝突することで衝突力を逃がすことがないため、強い衝突が可能である。角度XおよびYはそれぞれ、同一または異なって、30°以内であり、好ましくは25°以内、より好ましくは20°以内であり、さらにより好ましくは15°以内であり、特に好ましくは10°以内、9°以内、8°以内、7°以内、6°以内、5°以内、4°以内、3°以内、2°以内、または1°以内である。角度が小さい程、2つの流入路からの溶液の衝突力が強くなるので、均一溶液をより迅速に生成することができる。本発明で用いられるこのような衝突型マイクロミキサーは、複数の溶液の合流後に流路内の構造物によって混合を促進するStatic型マイクロミキサーとは異なる。本発明で用いられる衝突型マイクロミキサーはまた、互いに反応されるべき異なる成分をそれぞれ含む第1溶液および第2溶液の双方が順方向の位置関係でマイクロミキサー中に流入して流出路へと流出し衝突力を逃し易い(すなわち、強く衝突できない)シースフロー型のマイクロミキサー(例えば、少なくとも1つの流入溶液が流出溶液と順方向でマイクロミキサー中に流入して流出路へと流出し衝突力を逃し易い特許文献2記載のシースフロー型のマイクロミキサー)とは異なる。好ましくは、衝突型マイクロミキサーは、互いに反応されるべき異なる成分をそれぞれ含む第1溶液および第2溶液を通す2つの流入路(例、特定の反応部位を有する抗体誘導体および切断剤を含む溶液を通す第1反応流路、および薬物を含む溶液を通す第3導入流路)が正対し、かつ2つの流入路と1つの流出路が直交する合流路を含むT字マイクロミキサーである。 A collision type micromixer is used at the confluence of the first reaction flow path and the third introduction flow path as described above. In the present invention, the collision type micromixer refers to a micromixer that promotes mixing by generating a mixing vortex when a plurality of solutions are in contact with each other. In the present invention, as a collision-type micromixer, a first solution (eg, a solution containing an antibody derivative having a specific reaction site and a cleavage agent) and a second solution (eg, a drug) containing different components to be reacted with each other are used. A micromixer provided with a confluence of multiple solutions from multiple inflow channels, including at least two inflow paths arranged in a positional relationship that allows a mixed vortex to be generated upon contact of the containing solution). Is used. Here, as the positional relationship, the two inflow paths (solution inflow directions) are in a facing position, or a constant angle (angles X and Y, respectively) on the outflow path side with respect to the facing position. The relationship is in a position where it may be tilted (Table B). In the above two inflow paths, the angle X set with respect to the first inflow path (eg, at least one first reaction flow path) is an angle tilted toward the outflow side with respect to the facing position, and is the second angle. The angle Y set with respect to the inflow path (eg, at least one third introduction channel) is an angle tilted toward the outflow path with respect to the facing position. In such a case, two solutions in at least two inflow paths (first inflow path and second inflow path) can collide with each other in a flow completely or substantially opposite to each other, and the collision force is significantly increased. Even if collision is not possible due to a completely opposite flow, strong collision is possible because the collision force does not escape by colliding with the flow path wall (solid phase) in the micromixer. The angles X and Y are the same or different, respectively, within 30 °, preferably within 25 °, more preferably within 20 °, even more preferably within 15 °, and particularly preferably within 10 °. Within 9 °, within 8 °, within 7 °, within 6 °, within 5 °, within 4 °, within 3 °, within 2 °, or within 1 °. The smaller the angle, the stronger the collision force of the solutions from the two inflow paths, so that a uniform solution can be produced more quickly. Such a collision type micromixer used in the present invention is different from the Static type micromixer in which mixing is promoted by a structure in the flow path after merging a plurality of solutions. In the collision type micromixer used in the present invention, both the first solution and the second solution containing different components to be reacted with each other flow into the micromixer in a forward positional relationship and flow out into the outflow path. Sheath-flow type micromixer (for example, at least one inflow solution flows into the micromixer in the forward direction with the outflow solution and flows out into the outflow path to reduce the collision force). It is different from the sheath flow type micromixer described in Patent Document 2 which is easy to miss. Preferably, the collision-type micromixer comprises two inflow channels (eg, a solution containing an antibody derivative having a specific reaction site and a cleavage agent) through a first solution and a second solution containing different components to be reacted with each other. It is a T-shaped micromixer including a combined flow path in which a first reaction flow path through which a drug is passed and a third introduction flow path through which a solution containing a drug is passed are facing each other, and two inflow paths and one outflow path are orthogonal to each other.
Figure JPOXMLDOC01-appb-T000002
(a)において流出路が第1流入路および第2流入路と同一平面上にあるマイクロリアクターは、T字マイクロリアクターである。
Figure JPOXMLDOC01-appb-T000002
In (a), the microreactor in which the outflow path is flush with the first inflow path and the second inflow path is a T-shaped microreactor.
 衝突型マイクロミキサーの代表径は、特に限定されないが、第1反応流路および/または第3導入流路の代表径以下であることが好ましい。このようなマイクロミキサーの代表径は、例えば、1.0mm以下、0.9mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、0.3mm以下、または0.25mm以下であってもよい。マイクロミキサーの代表径はまた、0.05mm以上、または0.1mm以上であってもよい。 The representative diameter of the collision type micromixer is not particularly limited, but is preferably equal to or smaller than the representative diameter of the first reaction flow path and / or the third introduction flow path. Typical diameters of such micromixers are, for example, 1.0 mm or less, 0.9 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm. It may be less than or equal to 0.25 mm or less. The representative diameter of the micromixer may also be 0.05 mm or more, or 0.1 mm or more.
 衝突型マイクロミキサー内の合流部の流路断面の形状は、幅および深さが同一または異なる非円形断面を有するものであっても、円形断面を有するものであってもよい。第1反応流路と第3導入流路の合流部は、単一であっても、複数(第1反応流路と第3導入流路の合流部が複数の場合)であってもよいが、FMRの容易な設計・製造等の観点では、単一が好ましい。衝突型マイクロミキサーの材料としては、例えば、金属材料〔例、ステンレス鋼材(SUS)、ハステロイ(登録商標)、インコネル〕、樹脂〔例、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリジメチルシロキサン(PDMS)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)〕、およびガラスが挙げられる。 The shape of the flow path cross section of the confluence in the collision type micromixer may have a non-circular cross section having the same or different width and depth, or may have a circular cross section. The confluence of the first reaction flow path and the third introduction flow path may be single or plural (when there are a plurality of confluence portions of the first reaction flow path and the third introduction flow path). , Single is preferable from the viewpoint of easy design / manufacturing of FMR. Materials for collision-type micromixers include, for example, metal materials [eg, stainless steel (SUS), Hasteroy®, Inconel], resins [eg, polytetrafluoroethylene (PTFE), polyethersulfone (PES)). , Polyetheretherketone (PEEK), polydimethylsiloxane (PDMS), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)], and glass.
 特定の実施形態では、第1反応流路と第3導入流路の合流部における衝突型マイクロミキサーと第1反応流路の代表径比(衝突型マイクロミキサー/第1反応流路)および/または衝突型マイクロミキサーと第3導入流路の代表径比(衝突型マイクロミキサー/第2導入流路)は、0.95以下であってもよい。このような代表径比によれば、合流部において溶液が著しく加速され、より微小な溶液単位を生じるので、非常に迅速に均一溶液を生成することができる。このような代表径比は、好ましくは0.90以下、より好ましくは0.85以下、さらにより好ましくは0.80以下、特に好ましくは0.75以下、0.70以下、0.65以下、0.60以下、0.55以下、0.50以下、0.45以下、0.40以下、0.35以下、0.30以下、または0.25以下であってもよい。このような代表径比が小さい程、均一溶液をより迅速に生成することができる。このような代表径比はまた、0.05以上、または0.1以上であってもよい。 In a particular embodiment, the representative diameter ratio of the collision type micromixer and the first reaction flow path (collision type micromixer / first reaction flow path) and / or at the confluence of the first reaction flow path and the third introduction flow path. The representative diameter ratio (collision type micromixer / second introduction flow path) between the collision type micromixer and the third introduction flow path may be 0.95 or less. With such a representative diameter ratio, the solution is significantly accelerated at the confluence to produce smaller solution units, so that a uniform solution can be produced very quickly. Such a representative diameter ratio is preferably 0.90 or less, more preferably 0.85 or less, still more preferably 0.80 or less, particularly preferably 0.75 or less, 0.70 or less, 0.65 or less, It may be 0.60 or less, 0.55 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, 0.30 or less, or 0.25 or less. The smaller the representative diameter ratio, the faster the uniform solution can be produced. Such a representative diameter ratio may also be 0.05 or more, or 0.1 or more.
 特定の実施形態では、衝突型マイクロミキサーは、上述した代表径のなかでも、0.8mm以下の代表径を有することが好ましい。このような狭い代表径を有する衝突型マイクロミキサーを用いることで、合流部において溶液が一層加速され、より微小な溶液単位を生じるので、さらに迅速に均一溶液を生成することができる。 In a specific embodiment, the collision type micromixer preferably has a representative diameter of 0.8 mm or less among the above-mentioned representative diameters. By using a collision type micromixer having such a narrow representative diameter, the solution is further accelerated at the confluence to generate finer solution units, so that a uniform solution can be produced more quickly.
 特定の実施形態では、衝突型マイクロミキサーに導入される薬物を含む溶液の流速は、第1導入流路内の溶液の流速、および第2導入流路内の溶液の流速のいずれよりも速いものであってもよい。このような狭い代表径を有する衝突型マイクロミキサーを用いることで、合流部において溶液が一層加速され、より微小な溶液単位を生じるので、さらに迅速に均一溶液を生成することができる。 In certain embodiments, the flow rate of the drug-containing solution introduced into the impact micromixer is faster than either the flow rate of the solution in the first introduction channel and the flow rate of the solution in the second introduction channel. May be. By using a collision type micromixer having such a narrow representative diameter, the solution is further accelerated at the confluence to generate finer solution units, so that a uniform solution can be produced more quickly.
処理(4)
 上述のように生成された第2混合液が第2反応流路内に通されると、特定の反応性部位を有する抗体誘導体、および薬物が、第2反応流路内で反応する。これにより、抗体薬物複合体が生成される。
Processing (4)
When the second mixed solution produced as described above is passed through the second reaction flow path, the antibody derivative having a specific reactive site and the drug react in the second reaction flow path. This produces an antibody drug conjugate.
 第2反応流路は、抗体誘導体と薬物の反応における反応時間を制御するため、第2反応流路における第2混合液の所望の滞留時間を達成できるように設計することができる。このような滞留時間は、特に限定されないが、例えば30分未満、好ましくは20分未満、より好ましくは15分未満、さらにより好ましくは10分未満、特に好ましくは5分未満であってもよい。このような滞留時間はまた、30秒以上、好ましくは40秒以上、より好ましくは50秒以上、さらにより好ましくは1分以上であってもよい。第2混合液の第2反応流路内の滞留時間は、例えば、第1、第2および第3導入流路内の溶液の流速、ならびに第2反応流路の長さおよび代表径を調節することにより制御することができる。 Since the second reaction flow path controls the reaction time in the reaction between the antibody derivative and the drug, the second reaction flow path can be designed so as to achieve the desired residence time of the second mixed solution in the second reaction flow path. Such residence time is not particularly limited, but may be, for example, less than 30 minutes, preferably less than 20 minutes, more preferably less than 15 minutes, still more preferably less than 10 minutes, and particularly preferably less than 5 minutes. Such residence time may also be 30 seconds or longer, preferably 40 seconds or longer, more preferably 50 seconds or longer, and even more preferably 1 minute or longer. The residence time of the second mixed solution in the second reaction flow path adjusts, for example, the flow rate of the solution in the first, second and third introduction flow paths, and the length and representative diameter of the second reaction flow path. It can be controlled by this.
 第2反応流路内の反応は、抗体の変性・分解(例、アミド結合の切断)を引き起こし得ない上述の温和な条件下で行うことができる。第2反応流路内の反応は、例えば室温、好ましくは10~30℃であってもよい。第2反応流路内の反応温度は、第1反応流路内の反応温度と同様に、容易に制御することができる。 The reaction in the second reaction flow path can be carried out under the above-mentioned mild conditions that cannot cause denaturation / decomposition of the antibody (eg, cleavage of the amide bond). The reaction in the second reaction flow path may be, for example, room temperature, preferably 10 to 30 ° C. The reaction temperature in the second reaction flow path can be easily controlled in the same manner as the reaction temperature in the first reaction flow path.
 第2反応流路は、上記のような第2混合液の滞留時間を達成できるように構成される限り特に限定されない。例えば、第2反応流路の長さ、代表径、形状および材料は、以下のように設定されてもよい。 The second reaction flow path is not particularly limited as long as it is configured so as to achieve the residence time of the second mixed solution as described above. For example, the length, representative diameter, shape and material of the second reaction channel may be set as follows.
 第2反応流路の長さは、例えば1~30メートル、好ましくは2~20メートル、より好ましくは3~15メートル、さらにより好ましくは4~10メートルであってもよい。あるいは、第2反応流路の長さは、第2反応流路内の滞留時間と第1反応流路内の滞留時間との関係を調整するように設定されてもよい。例えば、第2反応流路の長さは、第2反応流路内の第2混合液の滞留時間が第1反応流路内の第1混合液の滞留時間以下となるように設定することができる。この場合、第2反応流路の長さは、第1反応流路の長さ以下(例えば3/4の長さ、好ましくは1/2の長さ)に設定されてもよい。 The length of the second reaction flow path may be, for example, 1 to 30 meters, preferably 2 to 20 meters, more preferably 3 to 15 meters, and even more preferably 4 to 10 meters. Alternatively, the length of the second reaction flow path may be set so as to adjust the relationship between the residence time in the second reaction flow path and the residence time in the first reaction flow path. For example, the length of the second reaction flow path may be set so that the residence time of the second mixed solution in the second reaction flow path is equal to or less than the residence time of the first mixed solution in the first reaction flow path. can. In this case, the length of the second reaction flow path may be set to be equal to or less than the length of the first reaction flow path (for example, 3/4 length, preferably 1/2 length).
 第2反応流路の代表径は、例えば0.5~3mm、好ましくは0.6~2.5mm、より好ましくは0.7~2.0mm、さらにより好ましくは0.8~1.5mmであってもよい。あるいは、第2反応流路の代表径は、第2反応流路内の滞留時間と第1反応流路内の滞留時間との関係を調整するように設定されてもよい。例えば、第2反応流路の代表径は、第2反応流路内の第2混合液の滞留時間が第1反応流路内の第1混合液の滞留時間以下となるように設定することができる。この場合、第2反応流路の代表径は、第1反応流路の代表径以下(例えば3/4以下の代表径、好ましくは1/2以下の代表径)に設定されてもよい。 The representative diameter of the second reaction flow path is, for example, 0.5 to 3 mm, preferably 0.6 to 2.5 mm, more preferably 0.7 to 2.0 mm, and even more preferably 0.8 to 1.5 mm. There may be. Alternatively, the representative diameter of the second reaction flow path may be set so as to adjust the relationship between the residence time in the second reaction flow path and the residence time in the first reaction flow path. For example, the representative diameter of the second reaction flow path may be set so that the residence time of the second mixed solution in the second reaction flow path is equal to or less than the residence time of the first mixed solution in the first reaction flow path. can. In this case, the representative diameter of the second reaction flow path may be set to be equal to or less than the representative diameter of the first reaction flow path (for example, a representative diameter of 3/4 or less, preferably a representative diameter of 1/2 or less).
 第2反応流路の形状および材料は、第1反応流路のものと同様である。 The shape and material of the second reaction flow path are the same as those of the first reaction flow path.
 第2反応流路内の第2混合液は、第1混合液中の原料抗体および切断剤が第1反応流路内の反応により完全に消費されず、かつ、特許文献1に記載されるような切断剤に対する阻害剤の流入路が第2反応流路の上流に配置されていない場合、抗体誘導体および薬物に加えて、未反応の原料抗体および切断剤を含むことができる。この場合、第2反応流路内において、抗体誘導体と薬物の反応のみならず、原料抗体と切断剤との反応も並行して進行する。すなわち、並行して進行する原料抗体と切断剤との反応により生成する抗体誘導体もまた、薬物との反応に利用することができる。したがって、第1反応流路内の第1混合液に含まれる原料抗体および切断剤は、第1反応流路内で完全に反応する必要はない。そのため、本発明は、第1反応流路内の反応温度を比較的高温に設定することができるという上述の特徴と、第2反応流路内でも原料抗体および切断剤を反応させることができるというさらなる特徴とが相俟って、第1反応流路内の第1混合液の滞留時間を短く設定することができる。したがって、特定の実施形態では、本発明は、第1混合液中の原料抗体および切断剤が第1反応流路内の反応により完全に消費されず、かつ切断剤に対する阻害剤の流入路が第2反応流路の上流(例、第1反応流路と第3導入路との合流部の上流)に配置されていないFMRにおいて行われてもよい。あるいは、別の実施形態では、本発明は、薬物抗体複合体の薬物抗体結合比のさらなる制御を可能にするために、切断剤に対する阻害剤〔例、還元剤(例、TCEP)の阻害剤、およびpH中和剤(例、酸性物質または塩基性物質)〕の流入路が第2反応流路の上流に配置されているFMRにおいて行われてもよい(例、特許文献1を参照)。 In the second mixed solution in the second reaction flow path, the raw material antibody and the cleavage agent in the first mixed solution are not completely consumed by the reaction in the first reaction flow path, and are described in Patent Document 1. When the inflow path of the inhibitor for the cutting agent is not arranged upstream of the second reaction flow path, the unreacted raw material antibody and the cutting agent can be contained in addition to the antibody derivative and the drug. In this case, not only the reaction between the antibody derivative and the drug but also the reaction between the raw material antibody and the cleavage agent proceed in parallel in the second reaction flow path. That is, an antibody derivative produced by the reaction of the raw material antibody and the cleavage agent, which progresses in parallel, can also be used for the reaction with the drug. Therefore, the raw material antibody and the cleavage agent contained in the first mixed solution in the first reaction flow path do not need to completely react in the first reaction flow path. Therefore, the present invention has the above-mentioned feature that the reaction temperature in the first reaction flow path can be set to a relatively high temperature, and that the raw material antibody and the cleavage agent can be reacted also in the second reaction flow path. Combined with further features, the residence time of the first mixed solution in the first reaction flow path can be set short. Therefore, in a particular embodiment, the present invention is that the raw antibody and cleavage agent in the first mixture are not completely consumed by the reaction in the first reaction flow path, and the inflow path of the inhibitor to the cleavage agent is the first. 2 It may be performed in an FMR that is not located upstream of the reaction flow path (eg, upstream of the confluence of the first reaction flow path and the third introduction path). Alternatively, in another embodiment, the invention is an inhibitor of an inhibitor against a cleavage agent [eg, an inhibitor of a reducing agent (eg, TCEP), to allow further control of the drug-antibody binding ratio of the drug-antibody complex. And pH neutralizers (eg, acidic or basic substances)] may be performed in the FMR located upstream of the second reaction channel (see, eg, Patent Document 1).
 本発明は、第1反応流路内の第1混合液の滞留時間を短く設定することができ、また、第2反応流路内の第2混合液の滞留時間を第1反応流路内の第1混合液の滞留時間以下となるように設定することもできるので、抗体薬物複合体の製造を短時間で行うことができる。 In the present invention, the residence time of the first mixed solution in the first reaction flow path can be set short, and the residence time of the second mixed solution in the second reaction flow path can be set to be short in the first reaction flow path. Since the residence time of the first mixed solution can be set to be less than or equal to that of the first mixed solution, the antibody-drug conjugate can be produced in a short time.
 特定の実施形態では、抗体薬物複合体の製造に要する時間は、前記原料抗体を含む溶液、および前記切断剤を含む溶液の任意のマイクロミキサーへの到達から第2反応流路の通過までに要する時間により規定することができる。マイクロミキサーによる混合を瞬間的に実行できることに照らすと、抗体薬物複合体の製造に要する時間は、主に、第1反応流路内の第1混合液の滞留時間、および第2反応流路内の第2混合液の滞留時間に応じて決定することができる。したがって、特定の実施形態では、抗体薬物複合体の製造に要する上記時間は、例えば20分未満、好ましくは15分未満、14分未満、13分未満、12分未満、11分未満、10分未満、9分未満、8分未満、7分未満、6分未満、または5分未満であってもよい。 In certain embodiments, the time required to produce an antibody-drug conjugate is from the arrival of the solution containing the raw material antibody and the solution containing the cleavage agent to any micromixer to the passage through the second reaction channel. It can be specified by time. In light of the fact that mixing with a micromixer can be performed instantaneously, the time required for producing the antibody-drug conjugate is mainly the residence time of the first mixed solution in the first reaction flow path and the residence time in the second reaction flow path. It can be determined according to the residence time of the second mixed solution of. Thus, in certain embodiments, the time required to produce an antibody-drug conjugate is, for example, less than 20 minutes, preferably less than 15 minutes, less than 14 minutes, less than 13 minutes, less than 12 minutes, less than 11 minutes, less than 10 minutes. , Less than 9 minutes, less than 8 minutes, less than 7 minutes, less than 6 minutes, or less than 5 minutes.
 本発明によれば、2.0以上の良好な薬物抗体比(DAR)を有する抗体薬物複合体を製造することができる。DARは、本発明の方法で使用される原料抗体の種類(例、重鎖および軽鎖の数)に応じて変動する。したがって、本発明では、DARは、2個の重鎖および2個の軽鎖を有するイムノグロブリン単位当たりの数として規定することができる。DARは、好ましくは2.5以上、より好ましくは3.0以上、さらにより好ましくは3.5以上、特に好ましくは4.0以上であってもよい。DARはまた、8.0以下、6.0以下、または4.0以下であってもよい。DARの測定は、既報(Anal.Chem.,2019,91,20,12724-12732)に従い、逆相高速液体クロマトグラフィー(RP-HPLC)により行うことができる。DARは、RP-HPLCにおける各ピークの薬物結合数(例えばIgGであれば、典型的にはDAR=0、2、4、6、8)とそのピーク面積を乗算して得られる各値の和を100で割ることによって決定することができる。 According to the present invention, an antibody drug conjugate having a good drug-antibody ratio (DAR) of 2.0 or more can be produced. The DAT will vary depending on the type of source antibody used in the method of the invention (eg, the number of heavy and light chains). Therefore, in the present invention, DAT can be defined as the number per immunoglobulin unit having two heavy chains and two light chains. The DAT may be preferably 2.5 or more, more preferably 3.0 or more, still more preferably 3.5 or more, and particularly preferably 4.0 or more. The DAT may also be 8.0 or less, 6.0 or less, or 4.0 or less. The DAT can be measured by reverse phase high performance liquid chromatography (RP-HPLC) according to the previous report (Anal. Chem., 2019, 91, 20, 12724-12732). DA is the sum of the number of drug bonds of each peak in RP-HPLC (for example, in the case of IgG, typically DA = 0, 2, 4, 6, 8) and each value obtained by multiplying the peak area. Can be determined by dividing by 100.
 本発明によれば、抗体薬物複合体の製造において所望されない副生物(凝集体および分解物)の発生を低減することができる。したがって、本発明の方法により製造される抗体薬物複合体は、その純度により規定することができる。抗体薬物複合体の純度は、抗体薬物複合体におけるモノマー(2つの軽鎖および2つの重鎖を含む単位)比率により評価することができる。抗体薬物複合体におけるモノマー比率は、例えば98%以上、好ましくは98.5%以上、より好ましくは99%以上であり、さらにより好ましくは99.5%以上であってもよい。本発明では、抗体薬物複合体におけるモノマー比率の測定は、既報(ACS Omega 2020,5,7193-7200)に従い、サイズ排除クロマトグラフィー(SEC)により行うことができる。 According to the present invention, it is possible to reduce the generation of unwanted by-products (aggregates and decomposition products) in the production of antibody-drug conjugates. Therefore, the antibody-drug conjugate produced by the method of the present invention can be defined by its purity. The purity of an antibody-drug conjugate can be evaluated by the ratio of monomers (units containing two light chains and two heavy chains) in the antibody-drug conjugate. The monomer ratio in the antibody-drug conjugate may be, for example, 98% or more, preferably 98.5% or more, more preferably 99% or more, and even more preferably 99.5% or more. In the present invention, the measurement of the monomer ratio in the antibody drug conjugate can be performed by size exclusion chromatography (SEC) according to the previously reported (ACS Omega 2020, 5, 7193-7200).
 第2反応流路内の反応により生成される抗体薬物複合体は、適宜回収および精製することができる。例えば、回収は、第2反応流路の出口に配置された容器(例、フラクションコレクター)で回収することができる。薬物抗体複合体は、精製されてもよい。例えば、薬物抗体複合体の精製は、回収された薬物抗体複合体を、クロマトグラフィー(例、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、逆相カラムクロマトグラフィー、高速液体クロマトグラフィー、アフィニティークロマトグラフィー)等の任意の方法に付すことにより行うことができる。薬物抗体複合体の精製はまた、FMRにおいて連続的に行われてもよい。例えば、このような場合、第2反応流路の下流に、抗体薬物複合体の精製流路(例、特許文献3に記載されるような単一パス接線流濾過)を配置することができる。 The antibody drug conjugate produced by the reaction in the second reaction flow path can be appropriately recovered and purified. For example, recovery can be performed in a container (eg, fraction collector) located at the outlet of the second reaction channel. The drug antibody complex may be purified. For example, for purification of the drug-antibody complex, the recovered drug-antibody complex is chromatographed (eg, gel filtration chromatography, ion exchange chromatography, reverse phase column chromatography, high performance liquid chromatography, affinity chromatography) or the like. It can be done by attaching to any method of. Purification of the drug-antibody complex may also be performed continuously in the FMR. For example, in such a case, a purification channel for the antibody-drug conjugate (eg, single-pass tangential flow filtration as described in Patent Document 3) can be arranged downstream of the second reaction channel.
 本発明において製造される薬物抗体複合体は、塩の形態で提供されてもよい。このような塩としては、例えば、無機酸との塩、有機酸との塩、無機塩基との塩、有機塩基との塩、およびアミノ酸との塩が挙げられる。無機酸との塩としては、例えば、塩化水素、臭化水素、リン酸、硫酸、硝酸との塩が挙げられる。有機酸との塩としては、例えば、ギ酸、酢酸、トリフルオロ酢酸、乳酸、酒石酸、フマル酸、シュウ酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、ベンゼンスルホン酸、p-トルエンスルホン酸との塩が挙げられる。無機塩基との塩としては、例えば、アルカリ金属(例、ナトリウム、カリウム)、アルカリ土類金属(例、カルシウム、マグネシウム)、および亜鉛、アルミニウム等の他の金属、ならびにアンモニウムとの塩が挙げられる。有機塩基との塩としては、例えば、トリメチルアミン、トリエチルアミン、プロピレンジアミン、エチレンジアミン、ピリジン、エタノールアミン、モノアルキルエタノールアミン、ジアルキルエタノールアミン、ジエタノールアミン、トリエタノールアミンとの塩が挙げられる。アミノ酸との塩としては、例えば、塩基性アミノ酸(例、アルギニン、ヒスチジン、リジン、オルニチン)、および酸性アミノ酸(例、アスパラギン酸、グルタミン酸)との塩が挙げられる。塩は、好ましくは、無機酸(例、塩化水素)との塩、または有機酸(例、トリフルオロ酢酸)との塩である。勿論、本発明において製造される薬物抗体複合体は、塩ではない形態で提供されてもよい。 The drug-antibody complex produced in the present invention may be provided in the form of a salt. Examples of such a salt include a salt with an inorganic acid, a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, and a salt with an amino acid. Examples of the salt with an inorganic acid include salts with hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, and nitric acid. Examples of salts with organic acids include formic acid, acetic acid, trifluoroacetic acid, lactic acid, tartaric acid, fumaric acid, oxalic acid, maleic acid, citric acid, succinic acid, malic acid, benzenesulfonic acid, and p-toluenesulfonic acid. Salt is mentioned. Salts with inorganic bases include, for example, alkali metals (eg, sodium, potassium), alkaline earth metals (eg, calcium, magnesium), and other metals such as zinc, aluminum, and salts with ammonium. .. Examples of the salt with an organic base include salts with trimethylamine, triethylamine, propylenediamine, ethylenediamine, pyridine, ethanolamine, monoalkylethanolamine, dialkylethanolamine, diethanolamine, and triethanolamine. Examples of salts with amino acids include salts with basic amino acids (eg, arginine, histidine, lysine, ornithine) and acidic amino acids (eg, aspartic acid, glutamic acid). The salt is preferably a salt with an inorganic acid (eg, hydrogen chloride) or a salt with an organic acid (eg, trifluoroacetic acid). Of course, the drug-antibody complex produced in the present invention may be provided in a non-salt form.
 以下の実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples.
フローマイクロリアクター(FMR)の概要
 以下の実施例で用いられたFMRの構成の概要を図1に示す。
 なお、実施例では、流路、マイクロミキサーおよび反応管として、流路断面の形状が円形断面を有するものを用いた。したがって、以下では、代表径として内径という表現を用いた。
1)リザーバー
 抗体溶液を入れた第1リザーバー(1)
 還元剤溶液を入れた第2リザーバー(2)
 ペイロード溶液を入れた第3リザーバー(3)
2)リザーバーからマイクロミキサーまでの流路
 第1リザーバー(1)から第1マイクロミキサー(M1)までを連絡する、抗体溶液の導入のための第1導入流路(4)
 第2リザーバー(2)から第1マイクロミキサー(M1)までを連絡する、還元剤溶液の導入のための第2導入流路(5)
 第3リザーバー(3)から第2マイクロミキサー(M2)まで連絡する、ペイロード溶液の導入のための第3導入流路(6)
3)ポンプ
 第1流路(4)に備え付けられた第1ポンプ(7)
 第2流路(5)に備え付けられた第2ポンプ(8)
 第3流路(6)に備え付けられた第3ポンプ(9)
4)マイクロミキサー
 抗体溶液および還元剤溶液の第1混合液を生成するための第1マイクロミキサー(M1)
 第1反応液およびペイロード溶液の第2混合液を生成するための第2マイクロミキサー(M2)
 第1および第2マイクロミキサーとして、互いに対向する第1流路および第2流路を合流させるT字マイクロミキサーを用いた。
 第1マイクロミキサー(M1)、第2マイクロミキサー(M2)内の流路の内径及び形状は、表1のとおりである。流路の内径は、2種の溶液の混合部の流路幅を示す。
5)反応管
 抗体溶液および還元剤溶液の混合液中の抗体および還元剤を反応させるための第1反応管(R1)
 第1反応液およびペイロード溶液の混合液中の還元抗体およびペイロードを反応させるための第2反応管(R2)
6)フラクションコレクター
 第2反応管からの第2反応液を回収するフラクションコレクター(10)
Outline of Flow Microreactor (FMR) FIG. 1 shows an outline of the configuration of the FMR used in the following examples.
In the examples, the flow path, the micromixer, and the reaction tube used had a circular cross section. Therefore, in the following, the expression "inner diameter" is used as the representative diameter.
1) Reservoir First reservoir containing antibody solution (1)
Second reservoir containing reducing agent solution (2)
Third reservoir containing payload solution (3)
2) Flow path from the reservoir to the micromixer The first introduction flow path (4) for introducing the antibody solution, which connects the first reservoir (1) to the first micromixer (M1).
A second introduction flow path (5) for introducing a reducing agent solution, which connects the second reservoir (2) to the first micromixer (M1).
A third introduction channel (6) for the introduction of the payload solution, which connects from the third reservoir (3) to the second micromixer (M2).
3) The first pump (7) provided in the first pump flow path (4).
A second pump (8) provided in the second flow path (5)
A third pump (9) provided in the third flow path (6)
4) Micromixer A first micromixer (M1) for producing a first mixed solution of an antibody solution and a reducing agent solution.
A second micromixer (M2) for producing a second mixture of the first reaction solution and the payload solution.
As the first and second micromixers, a T-shaped micromixer that merges the first flow path and the second flow path facing each other was used.
Table 1 shows the inner diameters and shapes of the flow paths in the first micromixer (M1) and the second micromixer (M2). The inner diameter of the flow path indicates the flow path width of the mixed portion of the two kinds of solutions.
5) Reaction tube The first reaction tube (R1) for reacting the antibody and the reducing agent in the mixed solution of the antibody solution and the reducing agent solution.
A second reaction tube (R2) for reacting the reducing antibody and the payload in the mixed solution of the first reaction solution and the payload solution.
6) Fraction collector Fraction collector (10) that collects the second reaction solution from the second reaction tube.
(温度調整)
 温度調整のため、第1反応管(R1)、第2反応管(R2)において、必要に応じて、プレ温度調整用のコイル滞留管および温度調整用のウォーターバスを使用できるように設計した。
(Temperature adjustment)
For temperature control, the first reaction tube (R1) and the second reaction tube (R2) were designed so that a coil retention tube for pre-temperature control and a water bath for temperature control could be used as needed.
(流路、マイクロミキサーおよび反応管の規格)
 第1、第2および第3導入流路の長さは1.0mである。第1導入流路の内径は1.0mmであり、第2導入流路の内径は1.0mmであり、第3導入流路の内径は1.0mmである。
 第1マイクロミキサー(M1)、第2マイクロミキサー(M2)内の流路の内径及び形状は、表1のとおりである。
 第1反応管(R1),第2反応管(R2)の流路の内径および長さは表2のとおりである。
(Standards for flow paths, micromixers and reaction tubes)
The length of the first, second and third introduction channels is 1.0 m. The inner diameter of the first introduction flow path is 1.0 mm, the inner diameter of the second introduction flow path is 1.0 mm, and the inner diameter of the third introduction flow path is 1.0 mm.
Table 1 shows the inner diameters and shapes of the flow paths in the first micromixer (M1) and the second micromixer (M2).
Table 2 shows the inner diameters and lengths of the flow paths of the first reaction tube (R1) and the second reaction tube (R2).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以下の実施例では、このようにして構築したFMR装置を用い、(A)抗体の鎖間ジスルフィド結合の部分的還元、および(B)部分的還元抗体とペイロードとのコンジュゲーションを行い、滞留時間10分以内で抗体薬物複合体(ADC)を合成した。より具体的には、抗体溶液および還元剤溶液をそれぞれポンプによって送液し、第1マイクロミキサー内で混合し、混合液を第1反応管に通液し、これにペイロード溶液を送液し、第2マイクロミキサー内で混合し、第2反応管に通液し、フラクションコレクターにより溶液を収集することにより、ADCを調製した。なお、混合温度を変える際はウォーターバスにマイクロミキサーを浸漬させた。特に記載の無い限り、混合温度は25℃に設定した。 In the following examples, the FMR apparatus constructed in this manner is used to perform (A) partial reduction of the interchain disulfide bond of the antibody and (B) conjugation of the partially reduced antibody and the payload, and the residence time. The antibody drug conjugate (ADC) was synthesized within 10 minutes. More specifically, the antibody solution and the reducing agent solution are pumped, mixed in the first micromixer, the mixed solution is passed through the first reaction tube, and the payload solution is sent thereto. The ADC was prepared by mixing in a second micromixer, passing the liquid through a second reaction tube, and collecting the solution with a fraction collector. When changing the mixing temperature, the micromixer was immersed in a water bath. Unless otherwise specified, the mixing temperature was set to 25 ° C.
 以下の実施例では、RP-HPLCによるDARの測定(前処理および測定条件)は、既報(Anal.Chem.,2019,91,20,12724-12732)に従った。より具体的には、条件は、以下である。
(RP-HPLCによる測定前の前処理条件)
 ADC(1mg/mL)に対して、8Mのグアニジン塩酸塩溶液、500mMのトリスbuffer(pH7.5)、1M DTT溶液をそれぞれ加えて、0.6mg/mLのADC溶液とする。このADC溶液を80℃で5分間加熱し、抗体のジスルフィド結合を全て切断する。
(RP-HPLCによる測定条件)
 溶離液Aとして0.1%TFA含有水溶液、溶離液Bとして0.1%TFA含有アセトニトリル溶液を用いた。上記の還元処理後のADC(0.6mg/mL)20μLをHPLCにインジェクションして測定を行った。カラムはAdvanceBio RP-mAb Diphenyl(アジレント社製)を用い、カラム温度は70℃とした。グラジエント条件は70%溶離液A、30%溶離液Bの条件で2分間、22分間かけて溶離液Bの比率を30%から48%へと上昇させる条件を用いた。最後に95%溶離液Bの比率で3分間カラムを洗浄した。
In the following examples, the measurement of DA by RP-HPLC (pretreatment and measurement conditions) was in accordance with the previous report (Anal. Chem., 2019, 91, 20, 12724-12732). More specifically, the conditions are as follows.
(Pretreatment conditions before measurement by RP-HPLC)
To ADC (1 mg / mL), add 8 M guanidine hydrochloride solution, 500 mM Tris buffer (pH 7.5), and 1 M DTT solution to make a 0.6 mg / mL ADC solution. The ADC solution is heated at 80 ° C. for 5 minutes to cleave all disulfide bonds of the antibody.
(Measurement conditions by RP-HPLC)
A 0.1% TFA-containing aqueous solution was used as the eluent A, and a 0.1% TFA-containing acetonitrile solution was used as the eluent B. 20 μL of ADC (0.6 mg / mL) after the above reduction treatment was injected into HPLC and measured. The column used was AdvantageBio RP-mAb Biphenyl (manufactured by Agilent), and the column temperature was 70 ° C. As the gradient condition, the condition of 70% eluent A and 30% eluent B was used, and the condition of increasing the ratio of eluent B from 30% to 48% over 2 minutes and 22 minutes was used. Finally, the column was washed for 3 minutes at a ratio of 95% eluent B.
〔実施例1〕トラスツズマブ-MMAEの合成
 抗体薬物複合体(ADC)の薬物抗体比(DAR)に対するコンジュゲーション反応時間の影響を検討した。
[Example 1] Synthesis of trastuzumab-MMAE The effect of the conjugation reaction time on the drug-antibody ratio (DAR) of an antibody-drug conjugate (ADC) was investigated.
 FMR(図1)の第1リザーバー(1)に、抗HER2 IgG抗体トラスツズマブ(中外製薬)10mg/mL PBSE緩衝液(50mM phosphate buffered saline(PBS),10mM etylenediaminetetraacetic acid(EDTA),pH=7.4)を入れた。第2リザーバー(2)に、1.3mM tris(2-carboxyethyl)phosphine hydrochloride(TCEP;還元剤)のPBSE溶液を入れた。第3リザーバー(3)に、ペイロードであるMC-VC-MMAE(化合物1)をコンジュゲーション緩衝液(PBSE:DMA=9:1)により0.25mM溶液としたものを入れた。抗体溶液を1.0mL/minの流速で、TCEP溶液を1.0mL/minの流速で導入し、第1マイクロミキサー(M1)で混合し、第1反応管(R1)内で3分間還元反応させた。続いて、第1反応管(R1)内を2.0mL/minの流速で流れている反応液を、2.0mL/minの流速で導入されたペイロード溶液と第2マイクロミキサー(M2)で混合し、第2反応管(R2)内でコンジュゲーション反応に供した。第2反応管(R2)の長さ、および当該反応管の長さにより規定されるコンジュゲーション反応時間は、表3に記載のとおりである。第2反応管(R2)内のコンジュゲーション反応後の溶液は、過剰量のN-アセチルシステイン(NAC)を予め加えたフラクションコレクターで収集した。NACは、第2反応管(R2)内を通液中のコンジュゲーション反応で生成したADCのDARを正確に評価するため、フラクションコレクター収集後のコンジュゲーション反応を停止させるために用いられている。次いで、収集したフラクションに含まれるADCのDARを、RP-HPLCにより測定した。結果を表3に示す。 In the first reservoir (1) of FMR (Fig. 1), anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical) 10 mg / mL PBSE buffer (50 mM phosphate buffered saline (PBS), 10 mM ethylenediaminetetraacid (EDTA), pH = 7. ) Was put in. In the second reservoir (2), a PBSE solution of 1.3 mM tris (2-carboxyethyl) phosphate chloride (TCEP; reducing agent) was placed. The payload MC-VC-MMAE (Compound 1) was placed in a third reservoir (3) as a 0.25 mM solution with a conjugation buffer (PBSE: DMA = 9: 1). The antibody solution is introduced at a flow rate of 1.0 mL / min and the TCEP solution is introduced at a flow rate of 1.0 mL / min, mixed with the first micromixer (M1), and reduced in the first reaction tube (R1) for 3 minutes. I let you. Subsequently, the reaction solution flowing in the first reaction tube (R1) at a flow rate of 2.0 mL / min is mixed with the payload solution introduced at a flow rate of 2.0 mL / min with a second micromixer (M2). Then, it was subjected to a conjugation reaction in the second reaction tube (R2). The length of the second reaction tube (R2) and the conjugation reaction time defined by the length of the reaction tube are as shown in Table 3. The solution after the conjugation reaction in the second reaction tube (R2) was collected with a fraction collector pre-added with an excess amount of N-acetylcysteine (NAC). NAC is used to stop the conjugation reaction after collection of fraction collectors in order to accurately evaluate the DAT of the ADC generated by the conjugation reaction in the liquid through the second reaction tube (R2). The ADC DAT contained in the collected fractions was then measured by RP-HPLC. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-T000006
R1は、第1反応管の流路の長さを示す。
R2は、第2反応管の流路の長さを示す。
還元反応時間は、抗体および還元剤の混合液が第1反応管(R1)内に滞留する時間に対応する。
コンジュゲーション反応時間は、部分的に還元された抗体およびペイロードの混合液が第2反応管(R2)内に滞留する時間に対応する。
Figure JPOXMLDOC01-appb-T000006
R1 indicates the length of the flow path of the first reaction tube.
R2 indicates the length of the flow path of the second reaction tube.
The reduction reaction time corresponds to the time during which the mixed solution of the antibody and the reducing agent stays in the first reaction tube (R1).
The conjugation reaction time corresponds to the time that the partially reduced antibody and payload mixture stays in the second reaction tube (R2).
 観測された保持時間と抗体鎖との関係は、以下であった(表3 条件2)。
6.3分:未反応の抗体軽鎖
9.8分:抗体軽鎖に1つのペイロード(MMAE)が付加したもの
10.4分:未反応の抗体重鎖
12.3分:抗体重鎖に1つのペイロードが付加したもの
15.4分:抗体重鎖に2つのペイロードが付加したもの
17.8分:抗体重鎖に3つのペイロードが付加したもの
 DARの計算は後述の実施例3に示すように行った。
 これらの結果から、反応で得られたADCの平均DARは3.2と算出された。
The relationship between the observed retention time and the antibody chain was as follows (Table 3, Condition 2).
6.3 minutes: unreacted antibody light chain 9.8 minutes: antibody light chain with one payload (MMAE) 10.4 minutes: unreacted antibody heavy chain 12.3 minutes: antibody heavy chain 15.4 minutes with one payload added: 2 payloads added to the antibody heavy chain 17.8 minutes: 3 payloads added to the antibody heavy chain The calculation of DAT is shown in Example 3 below. I went like that.
From these results, the average DAT of the ADC obtained in the reaction was calculated to be 3.2.
 以上より、FMRにおけるT字マイクロミキサーを用いた高速混合により、3.0以上のDARを有するADCを、総滞留時間10分以内で得ることができた。また、表3に示すように第2反応管(R2)において適切な長さの流路を設定してコンジュゲーション反応時間を調整すると、3.2のDARを有するADCを安定して得ることができた。 From the above, ADC with a DAT of 3.0 or more could be obtained within a total residence time of 10 minutes by high-speed mixing using a T-shaped micromixer in FMR. Further, as shown in Table 3, by setting a flow path of an appropriate length in the second reaction tube (R2) and adjusting the conjugation reaction time, it is possible to stably obtain an ADC having a DAT of 3.2. did it.
〔実施例2〕エージング条件によるトラスツズマブ-MMAEの合成
 FMR(図1)および実施例1の表3(条件2)の反応条件を用いて、抗HER2 IgG抗体トラスツズマブ(中外製薬)に対して、ペイロードであるMC-VC-MMAE(化合物1)を反応させた。反応液を受けるフラクションコレクターにNACを予め加えることはせず、各フラクションを室温で30分間エージングさせた。30分後、NACを加えさらに15分間エージングした後、RP-HPLCにてDARを測定した。その結果、DARは3.2と算出された。
[Example 2] Synthesis of trastuzumab-MMAE under aging conditions Payload for anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.) using the reaction conditions of FMR (Fig. 1) and Table 3 (Condition 2) of Example 1. MC-VC-MMAE (Compound 1) was reacted. NAC was not added in advance to the fraction collector receiving the reaction solution, and each fraction was aged at room temperature for 30 minutes. After 30 minutes, NAC was added and aged for another 15 minutes, and then DAR was measured by RP-HPLC. As a result, the DAT was calculated to be 3.2.
 実施例1および2の結果より、NACの有無によるコンジュゲーション反応の進行または停止の別にかかわらず、コンジュゲーションの程度はDAR 3.2に留まることから、コンジュゲーション反応は、FMRの第2反応管(R2)内の滞留時間である0.75分で完結することが示された。 From the results of Examples 1 and 2, the degree of conjugation remains at DA 3.2 regardless of the progress or cessation of the conjugation reaction depending on the presence or absence of NAC. Therefore, the conjugation reaction is the second reaction tube of FMR. It was shown to be completed in 0.75 minutes, which is the residence time in (R2).
〔実施例3〕トラスツズマブ-MMAEの合成
 ADCのDARに対する還元剤の濃度および還元反応の温度の影響を検討した。
 FMR(図1)の第1リザーバー(1)に、抗HER2 IgG抗体トラスツズマブ(中外製薬)10mg/mL PBSE緩衝液(50mM phosphate buffered saline(PBS),10mM EDTA,pH=7.4)を入れた。第2リザーバー(2)に、還元剤(TCEP)のPBSE溶液を入れた。還元剤の濃度は、表4に記載のとおり変更した。第3リザーバー(3)に、ペイロードであるMC-VC-MMAE(化合物1)をコンジュゲーション緩衝液(PBSE:DMA=9:1)により0.25mM溶液としたものを入れた。抗体溶液を1.0mL/minの流速で、TCEP溶液を1.0mL/minの流速で導入し、第1マイクロミキサー(M1)で混合し、第1反応管(R1)内で還元反応させた。第1反応管(R1)の長さ、および当該長さにより規定される還元反応時間は、表4に記載のとおりである。続いて、第1反応管(R1)内を2.0mL/minの流速で流れている反応液を、2.0mL/minの流速で導入されたペイロード溶液と第2マイクロミキサー(M2)で混合し、第2反応管(R2)内で1.5分間コンジュゲーション反応に供した。第2反応管(R2)内のコンジュゲーション反応後の溶液は、過剰量のN-アセチルシステイン(NAC)を予め加えたフラクションコレクターで収集した。収集したフラクションに含まれるADCのDARを、RP-HPLCにより測定した。結果を表4に示す。
[Example 3] Synthesis of trastuzumab-MMAE The effects of the concentration of the reducing agent and the temperature of the reduction reaction on the DAT of the ADC were investigated.
Anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical) 10 mg / mL PBSE buffer (50 mM phosphate buffered saline (PBS), 10 mM EDTA, pH = 7.4) was placed in the first reservoir (1) of FMR (FIG. 1). .. A PBSE solution of a reducing agent (TCEP) was placed in the second reservoir (2). The concentration of the reducing agent was changed as shown in Table 4. The payload MC-VC-MMAE (Compound 1) was placed in a third reservoir (3) as a 0.25 mM solution with a conjugation buffer (PBSE: DMA = 9: 1). The antibody solution was introduced at a flow rate of 1.0 mL / min and the TCEP solution was introduced at a flow rate of 1.0 mL / min, mixed with the first micromixer (M1), and reduced in the first reaction tube (R1). .. The length of the first reaction tube (R1) and the reduction reaction time defined by the length are as shown in Table 4. Subsequently, the reaction solution flowing in the first reaction tube (R1) at a flow rate of 2.0 mL / min is mixed with the payload solution introduced at a flow rate of 2.0 mL / min with a second micromixer (M2). Then, it was subjected to the conjugation reaction for 1.5 minutes in the second reaction tube (R2). The solution after the conjugation reaction in the second reaction tube (R2) was collected with a fraction collector pre-added with an excess amount of N-acetylcysteine (NAC). The ADC DAT contained in the collected fractions was measured by RP-HPLC. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
総滞留時間は、還元反応時間(1.5分または3.0分)およびコンジュゲーション反応時間(1.5分)の合計である。
Figure JPOXMLDOC01-appb-T000007
The total residence time is the sum of the reduction reaction time (1.5 minutes or 3.0 minutes) and the conjugation reaction time (1.5 minutes).
 表4(条件6)のRP-HPLC結果を図2に示す。観測された保持時間と抗体鎖との関係は、以下であった。
6.8分:未反応の抗体軽鎖
9.7分:抗体軽鎖に1つのペイロード(MMAE)が付加したもの
10.4分:未反応の抗体重鎖
12.4分:抗体重鎖に1つのペイロードが付加したもの
15.6分:抗体重鎖に2つのペイロードが付加したもの
17.7分:抗体重鎖に3つのペイロードが付加したもの
The RP-HPLC results in Table 4 (Condition 6) are shown in FIG. The relationship between the observed retention time and the antibody chain was as follows.
6.8 minutes: Unreacted antibody light chain 9.7 minutes: Antibody light chain with one payload (MMAE) added 10.4 minutes: Unreacted antibody heavy chain 12.4 minutes: Antibody heavy chain One payload added 15.6 minutes: Two payloads added to the antibody heavy chain 17.7 minutes: Three payloads added to the antibody heavy chain
 DARの計算は下記のように行った。
 抗体軽鎖については、HPLCのエリア%の比率が、未反応の軽鎖(59.4%)、抗体軽鎖に1つのペイロード(MMAE)が付加したもの(40.6%)となった。これにより、0×0.594+1×0.406=0.406と計算でき、平均DARは0.41となる。
 抗体重鎖については、HPLCのエリア%の比率が、未反応の重鎖(12.5%)、抗体重鎖に1つのペイロード(MMAE)が付加したもの(35.5%)、抗体重鎖に2つのペイロード(MMAE)が付加したもの(23.6%)、抗体重鎖に3つのペイロード(MMAE)が付加したもの(28.4%)となった。これにより、平均DARは0×0.125+1×0.355+2×0.236+3×0.284=1.679と計算でき、平均DARは1.68となる。
 重鎖と軽鎖のDARを合計すると、0.41+1.68=2.09となり、これをIgG抗体全体(重鎖2つ、軽鎖二つの分子)に変換すると2.09×2=4.18となる。
これらの結果から、反応で得られたADCの平均DARは4.2と算出された(条件6)。
The calculation of DAT was performed as follows.
For the antibody light chain, the ratio of the area% of HPLC was the unreacted light chain (59.4%) and the antibody light chain with one payload (MMAE) added (40.6%). As a result, it can be calculated as 0 × 0.594 + 1 × 0.406 = 0.406, and the average DA is 0.41.
For antibody heavy chains, the ratio of HPLC area% is unreacted heavy chains (12.5%), antibody heavy chains with one payload (MMAE) added (35.5%), and antibody heavy chains. Two payloads (MMAE) were added to the antibody (23.6%), and three payloads (MMAE) were added to the antibody heavy chain (28.4%). As a result, the average DA can be calculated as 0 × 0.125 + 1 × 0.355 + 2 × 0.236 + 3 × 0.284 = 1.679, and the average DA is 1.68.
The sum of the DAs of the heavy chain and the light chain is 0.41 + 1.68 = 2.09, and when this is converted into the whole IgG antibody (two heavy chains and two light chain molecules), 2.09 × 2 = 4. It becomes 18.
From these results, the average DR of the ADC obtained in the reaction was calculated to be 4.2 (Condition 6).
 以上より、FMRにおける、T字マイクロミキサーを用いた高速混合、および抗体の還元反応条件の制御により、2.0以上のDARを有するADCを得ることができた。また、還元反応を高温(50℃)で行うことで、高いDAR(4.2)を有するADCを得ることができた。 From the above, it was possible to obtain an ADC having a DA of 2.0 or more by high-speed mixing using a T-shaped micromixer in FMR and control of the reduction reaction conditions of the antibody. Further, by carrying out the reduction reaction at a high temperature (50 ° C.), an ADC having a high DAT (4.2) could be obtained.
〔実施例4〕トラスツズマブ-DM1の合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗HER2 IgG抗体トラスツズマブ(中外製薬)に対して、ペイロードであるSMCC-DM1(化合物2)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 4] Synthesis of trastuzumab-DM1 SMCC which is a payload against anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -DM1 (Compound 2) was reacted. After the reaction, DAR was measured by RP-HPLC.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 RP-HPLCの結果を図3に示す。観測された保持時間と抗体鎖との関係は、以下であった。
6.5分:未反応の抗体軽鎖
8.0分:抗体軽鎖に1つのペイロードが付加したもの
10.2分:未反応の抗体重鎖
11.1分:抗体重鎖に1つのペイロードが付加したもの
12.5分:抗体重鎖に2つのペイロードが付加したもの
14.0分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.3と算出された。
The result of RP-HPLC is shown in FIG. The relationship between the observed retention time and the antibody chain was as follows.
6.5 minutes: unreacted antibody light chain 8.0 minutes: antibody light chain with one payload added 10.2 minutes: unreacted antibody heavy chain 11.1 minutes: antibody heavy chain with one payload 12.5 minutes: 2 payloads added to the antibody heavy chain 14.0 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.3. ..
〔実施例5〕トラスツズマブ-MMAFの合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗HER2 IgG抗体トラスツズマブ(中外製薬)に対して、ペイロードであるMC-MMAF(化合物3)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 5] Synthesis of trastuzumab-MMAF MC which is a payload against anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -MMAF (Compound 3) was reacted. After the reaction, DAR was measured by RP-HPLC.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 RP-HPLCの結果を図4に示す。観測された保持時間と抗体鎖との関係は、以下であった。
6.7分:未反応の抗体軽鎖
9.6分:抗体軽鎖に1つのペイロードが付加したもの
10.6分:未反応の抗体重鎖
12.0分:抗体重鎖に1つのペイロードが付加したもの
14.6分:抗体重鎖に2つのペイロードが付加したもの
17.2分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.4と算出された。
The result of RP-HPLC is shown in FIG. The relationship between the observed retention time and the antibody chain was as follows.
6.7 minutes: Unreacted antibody light chain 9.6 minutes: One payload added to the antibody light chain 10.6 minutes: Unreacted antibody heavy chain 12.0 minutes: One payload to the antibody heavy chain 14.6 minutes: 2 payloads added to the antibody heavy chain 17.2 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.4. ..
〔実施例6〕リツキシマブ-MMAEの合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗CD20 IgG抗体リツキシマブ(ロッシュ社)に対して、ペイロードであるMC-MMAE(化合物1)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 6] Synthesis of rituximab-MMAE MC which is a payload against the anti-CD20 IgG antibody rituximab (Roche) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -MMAE (Compound 1) was reacted. After the reaction, DAR was measured by RP-HPLC.
 その結果、観測された保持時間と抗体鎖との関係は、以下であった。
5.0分:未反応の抗体軽鎖
8.8分:抗体軽鎖に1つのペイロードが付加したもの
9.3分:未反応の抗体重鎖
11.4分:抗体重鎖に1つのペイロードが付加したもの
14.4分:抗体重鎖に2つのペイロードが付加したもの
16.8分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.3と算出された。
As a result, the relationship between the observed retention time and the antibody chain was as follows.
5.0 minutes: Unreacted antibody light chain 8.8 minutes: One payload added to the antibody light chain 9.3 minutes: Unreacted antibody heavy chain 11.4 minutes: One payload to the antibody heavy chain 14.4 minutes: 2 payloads added to the antibody heavy chain 16.8 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.3. ..
〔実施例7〕リツキシマブ-DM1の合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗CD20 IgG抗体リツキシマブ(ロッシュ社)に対して、ペイロードであるMC-DM1(化合物2)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 7] Synthesis of rituximab-DM1 MC which is a payload against anti-CD20 IgG antibody rituximab (Roche) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -DM1 (Compound 2) was reacted. After the reaction, DAR was measured by RP-HPLC.
 その結果、観測された保持時間と抗体鎖との関係は、以下であった。
4.5分:未反応の抗体軽鎖
7.2分:抗体軽鎖に1つのペイロードが付加したもの
9.6分:未反応の抗体重鎖
10.5分:抗体重鎖に1つのペイロードが付加したもの
12.5分:抗体重鎖に2つのペイロードが付加したもの
13.7分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.8と算出された。
As a result, the relationship between the observed retention time and the antibody chain was as follows.
4.5 minutes: unreacted antibody light chain 7.2 minutes: antibody light chain with one payload added 9.6 minutes: unreacted antibody heavy chain 10.5 minutes: antibody heavy chain with one payload 12.5 minutes: 2 payloads added to the antibody heavy chain 13.7 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.8. ..
〔実施例8〕リツキシマブ-MMAFの合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗CD20 IgG抗体リツキシマブ(ロッシュ社)に対して、ペイロードであるMC-MMAF(化合物3)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 8] Synthesis of rituximab-MMAF MC which is a payload against anti-CD20 IgG antibody rituximab (Roche) using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3. -MMAF (Compound 3) was reacted. After the reaction, DAR was measured by RP-HPLC.
 その結果、観測された保持時間と抗体鎖との関係は、以下であった。
5.7分:未反応の抗体軽鎖
8.6分:抗体軽鎖に1つのペイロードが付加したもの
9.8分:未反応の抗体重鎖
11.2分:抗体重鎖に1つのペイロードが付加したもの
14.3分:抗体重鎖に2つのペイロードが付加したもの
16.3分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.3と算出された。
As a result, the relationship between the observed retention time and the antibody chain was as follows.
5.7 minutes: Unreacted antibody light chain 8.6 minutes: One payload added to the antibody light chain 9.8 minutes: Unreacted antibody heavy chain 11.2 minutes: One payload to the antibody heavy chain 14.3 minutes: antibody heavy chain with two payloads 16.3 minutes: antibody heavy chain with three payloads DAT was calculated to be 3.3 from these results. ..
〔実施例9〕インフリキシマブ-MMAEの合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗TNF-α IgG抗体リツキシマブ(セントコア社)に対して、ペイロードであるMC-MMAE(化合物1)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 9] Synthesis of infliximab-MMAE Using the reaction conditions of FMR (Fig. 1) and Table 4 (Condition 6) of Example 3, the anti-TNF-α IgG antibody rituximab (Centocor) was used as a payload. A certain MC-MMAE (Compound 1) was reacted. After the reaction, DAR was measured by RP-HPLC.
 その結果、観測された保持時間と抗体鎖との関係は、以下であった。
8.6分:未反応の抗体軽鎖
10.95分:未反応の抗体重鎖
10.96分:抗体軽鎖に1つのペイロードが付加したもの
12.6分:抗体重鎖に1つのペイロードが付加したもの
15.6分:抗体重鎖に2つのペイロードが付加したもの
18.1分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.7と算出された。
As a result, the relationship between the observed retention time and the antibody chain was as follows.
8.6 minutes: unreacted antibody light chain 10.95 minutes: unreacted antibody heavy chain 10.96 minutes: antibody light chain with one payload added 12.6 minutes: antibody heavy chain with one payload 15.6 minutes: 2 payloads added to the antibody heavy chain 18.1 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.7. ..
〔実施例10〕インフリキシマブ-DM1の合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗TNF-α IgG抗体インフリキシマブ(セントコア社)に対して、ペイロードであるMC-DM1(化合物2)を反応させた。反応後、RP-HPLCにてDARを測定した。
[Example 10] Synthesis of infliximab-DM1 Using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3, the anti-TNF-α IgG antibody infliximab (Centocor) was used as a payload. A certain MC-DM1 (Compound 2) was reacted. After the reaction, DAR was measured by RP-HPLC.
 その結果、観測された保持時間と抗体鎖との関係は、以下であった。
8.2分:未反応の抗体軽鎖
10.3分:未反応の抗体重鎖
10.4分:抗体軽鎖に1つのペイロードが付加したもの
12.2分:抗体重鎖に1つのペイロードが付加したもの
14.2分:抗体重鎖に2つのペイロードが付加したもの
16.7分:抗体重鎖に3つのペイロードが付加したもの
 これらの結果から、DARは3.8と算出された。
As a result, the relationship between the observed retention time and the antibody chain was as follows.
8.2 minutes: unreacted antibody light chain 10.3 minutes: unreacted antibody heavy chain 10.4 minutes: antibody light chain with one payload added 12.2 minutes: antibody heavy chain with one payload 14.2 minutes: 2 payloads added to the antibody heavy chain 16.7 minutes: 3 payloads added to the antibody heavy chain From these results, the DA was calculated to be 3.8. ..
〔実施例11〕トラスツズマブ-PEGの合成
 FMR(図1)および実施例3の表4(条件6)の反応条件を用いて、抗HER2 IgG抗体トラスツズマブ(中外製薬)に対して、m-dPEG-maleimide(quanta biodesign社製、化合物4)を反応させた。反応後、Q-TOFMSにて分子種を測定した。
[Example 11] Synthesis of trastuzumab-PEG Using the reaction conditions of FMR (FIG. 1) and Table 4 (condition 6) of Example 3, m-dPEG- was used against the anti-HER2 IgG antibody trastuzumab (Chugai Pharmaceutical Co., Ltd.). Maleimide (Compound 4 manufactured by quanta bodysign) was reacted. After the reaction, the molecular species was measured by Q-TOFMS.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 既報(国際公開第2019/240288号)に従い、還元条件でESI-Q-TOFMSを測定した。解析結果を図5に示す。 ESI-Q-TOFMS was measured under the reduction conditions according to the previous report (International Publication No. 2019/240288). The analysis result is shown in FIG.
 その結果、観測された質量ピークと抗体鎖との関係は、以下であった。
23441:未反応の抗体軽鎖
24681:軽鎖に1つの化合物4が導入されたもの
50600:未反応の抗体重鎖
51840:重鎖に1つの化合物4が導入されたもの
53081:重鎖に2つの化合物4が導入されたもの
54315:重鎖に3つの化合物4が導入されたもの
As a result, the relationship between the observed mass peak and the antibody chain was as follows.
23441: Unreacted antibody light chain 24681: One compound 4 introduced into the light chain 50600: Unreacted antibody heavy chain 51840: One compound 4 introduced into the heavy chain 53081: 2 in the heavy chain One with one compound 4 introduced 54315: One with three compounds 4 introduced into the heavy chain
〔実施例13〕流路内径0.5mmのT字マイクロミキサーを用いたトラスツズマブ-MMAEの合成
 FMR(図1)における第1、第2マイクロミキサー(M1、M2)をT字マイクロミキサー(流路内径0.5mm)に変更してADC合成を行った。それ以外の条件は実施例3の表4(条件6)の反応条件に従った。反応後、RP-HPLCを測定したところ、DARは3.1と算出された。
[Example 13] Synthesis of trastuzumab-MMAE using a T-shaped micromixer with a flow path inner diameter of 0.5 mm The first and second micromixers (M1, M2) in the FMR (FIG. 1) are used as a T-shaped micromixer (flow path). The inner diameter was changed to 0.5 mm) and ADC synthesis was performed. Other conditions were in accordance with the reaction conditions in Table 4 (Condition 6) of Example 3. After the reaction, RP-HPLC was measured and the DA was calculated to be 3.1.
〔比較例1〕流路内径1mmのT字マイクロミキサーを用いたトラスツズマブ-MMAEの合成
 FMR(図1)における第1、第2マイクロミキサー(M1、M2)をT字マイクロミキサー(流路内径1mm)に変更してADC合成を行った。この場合、衝突型マイクロミキサーであるT字マイクロミキサーの代表径(1mm)と第1反応流路の代表径(1mm)との比率(衝突型マイクロミキサー/第1反応流路)は、1である。
 抗体溶液を1.0mL/minの流速で、TCEP溶液を1.0mL/minの流速で導入し、第1マイクロミキサー(M1)で混合し、第1反応管(R1)内で還元反応させた。第1反応管(R1)の長さ、および当該長さにより規定される還元反応時間は、表5に記載のとおりである。続いて、反応液を、2.0mL/minの流速で導入されたペイロード溶液と第2マイクロミキサー(M2)で混合し、第2反応管(R2)内で1.5分間コンジュゲーション反応に供した。第2反応管(R2)内のコンジュゲーション反応後の溶液は、過剰量のNACを予め加えたフラクションコレクターで収集した。収集したフラクションに含まれるADCのDARを、RP-HPLCにより測定した。結果を表5に示す。
[Comparative Example 1] Synthesis of trastuzumab-MMAE using a T-shaped micromixer with a flow path inner diameter of 1 mm The first and second micromixers (M1 and M2) in the FMR (FIG. 1) are T-shaped micromixers (flow path inner diameter 1 mm). ) Was changed to ADC synthesis. In this case, the ratio (collision type micromixer / first reaction flow path) between the representative diameter (1 mm) of the T-shaped micromixer, which is a collision type micromixer, and the representative diameter (1 mm) of the first reaction flow path is 1. be.
The antibody solution was introduced at a flow rate of 1.0 mL / min and the TCEP solution was introduced at a flow rate of 1.0 mL / min, mixed with the first micromixer (M1), and reduced in the first reaction tube (R1). .. The length of the first reaction tube (R1) and the reduction reaction time defined by the length are as shown in Table 5. Subsequently, the reaction solution was mixed with the payload solution introduced at a flow rate of 2.0 mL / min with a second micromixer (M2), and subjected to a conjugation reaction in the second reaction tube (R2) for 1.5 minutes. bottom. The solution after the conjugation reaction in the second reaction tube (R2) was collected by a fraction collector to which an excess amount of NAC was previously added. The ADC DAT contained in the collected fractions was measured by RP-HPLC. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000011
総滞留時間は、還元反応時間(3.0分)およびコンジュゲーション反応時間(1.5分)の合計である。
Figure JPOXMLDOC01-appb-T000011
The total residence time is the sum of the reduction reaction time (3.0 minutes) and the conjugation reaction time (1.5 minutes).
〔実施例13〕トラスツズマブ-MMAEのモノマー比率解析
 実施例3の表4(条件6)で合成したトラスツズマブ-MMAEに対して、既報(ACS Omega 2020,5,7193-7200)に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。より具体的には、SECによる抗体薬物複合体におけるモノマー(IgGの2つの軽鎖および2つの重鎖を含む単位)比率の分析は、以下である。カラムにAdvanceBio SEC 300Å(アジレント社製)を用い、溶離液として100 mM NaHPO/NaHPO,250mM NaCl,10%v/v isopropanol,pH6.8を用いた。緩衝液に溶解させたADCサンプル(1mg/mL)40μLをHPLCにインジェクションし、15分間溶出させた。
 その結果、抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は99%を超えていた(図6)。
[Example 13] Monomer ratio analysis of trastuzumab-MMAE For trastuzumab-MMAE synthesized in Table 4 (Condition 6) of Example 3, size exclusion chromatography was performed according to the previous report (ACS Omega 2020, 5, 7193-7200). (SEC) analysis was performed. More specifically, the analysis of the monomer (unit containing two light chains and two heavy chains of IgG) ratio in the antibody drug conjugate by SEC is as follows. AdvantageBio SEC 300 Å (manufactured by Agilent) was used for the column, and 100 mM NaHPO 4 / NaH 2 PO 4 , 250 mM NaCl, 10% v / v isopropanol, pH 6.8 was used as the eluent. 40 μL of ADC sample (1 mg / mL) dissolved in buffer was injected into HPLC and eluted for 15 minutes.
As a result, the monomer ratio exceeded 99% even though the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C. (FIG. 6).
〔実施例14〕トラスツズマブ-DM1のモノマー比率解析
 実施例4で合成したトラスツズマブ-DM1に対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は99%を超えていた。
[Example 14] Monomer ratio analysis of trastuzumab-DM1 The trastuzumab-DM1 synthesized in Example 4 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 99%.
〔実施例15〕トラスツズマブ-MMAFのモノマー比率解析
 実施例5で合成したトラスツズマブ-MMAFに対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は99%を超えていた。
[Example 15] Monomer ratio analysis of trastuzumab-MMAF The trastuzumab-MMAF synthesized in Example 5 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 99%.
〔実施例16〕リツキシマブ-MMAEのモノマー比率解析
 実施例6で合成したリツキシマブ-MMAEに対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は98%を超えていた。
[Example 16] Monomer ratio analysis of rituximab-MMAE The rituximab-MMAE synthesized in Example 6 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 98%.
〔実施例17〕リツキシマブ-DM1のモノマー比率解析
 実施例7で合成したリツキシマブ-DM1に対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は99%を超えていた。
[Example 17] Monomer ratio analysis of rituximab-DM1 The rituximab-DM1 synthesized in Example 7 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 99%.
〔実施例18〕リツキシマブ-MMAFのモノマー比率解析
 実施例8で合成したリツキシマブ-MMAFに対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は99%を超えていた。
[Example 18] Monomer ratio analysis of rituximab-MMAF The rituximab-MMAF synthesized in Example 8 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 99%.
〔実施例19〕インフリキシマブ-MMAEのモノマー比率解析
 実施例9で合成したインフリキシマブ-MMAEに対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は98%を超えていた。
[Example 19] Monomer ratio analysis of infliximab-MMAE The infliximab-MMAE synthesized in Example 9 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 98%.
〔実施例20〕インフリキシマブ-DM1のモノマー比率解析
 実施例8で合成したインフリキシマブ-MMAEに対して、上記既報に従い、サイズ排除クロマトグラフィー(SEC)分析を行った。抗体の誘導体化反応(ジスルフィド還元反応)を50℃で行っているにもかかわらず、モノマー比率は98%を超えていた。
[Example 20] Monomer ratio analysis of infliximab-DM1 The infliximab-MMAE synthesized in Example 8 was subjected to size exclusion chromatography (SEC) analysis according to the above-mentioned report. Although the antibody derivatization reaction (disulfide reduction reaction) was carried out at 50 ° C., the monomer ratio exceeded 98%.
 上記実施例12~19の結果より、本発明の方法は、抗体の誘導体化反応(ジスルフィド還元反応)を高温(50℃)で行った場合であっても、凝集体の発生を低減しつつ、良好なDARを示すADCを合成できることが示された。 From the results of Examples 12 to 19, the method of the present invention reduces the generation of aggregates even when the antibody derivatization reaction (disulfide reduction reaction) is carried out at a high temperature (50 ° C.). It has been shown that ADCs showing good DAT can be synthesized.
〔比較例2〕トラスツズマブ-MMAEのバッチ合成およびモノマー比率解析
 既報(ACS Omega 2020,5,7193-7200)を参考に、TCEPを用いる還元工程の反応温度のみ50℃に変更してバッチ法でトラスツズマブ-MMAEを合成した。得られたADCをRP-HPLC分析を行い、既報(Anal. Chem.2019,91,20,12724-12732)および図2と同様の保持時間にピークを確認した。
[Comparative Example 2] Batch synthesis and monomer ratio analysis of trastuzumab-MMAE With reference to the previous report (ACS Omega 2020, 5, 7193-7200), only the reaction temperature of the reduction step using TCEP was changed to 50 ° C., and trastuzumab was used in a batch method. -MMAE was synthesized. The obtained ADC was analyzed by RP-HPLC, and a peak was confirmed at the same retention time as in the previous report (Anal. Chem. 2019, 91, 20, 12724-12732) and FIG.
 バッチ法で合成した上記トラスツズマブ-MMAEを、既報(ACS Omega 2020,5,7193-7200)に従い、サイズ排除クロマトグラフィー(SEC)により分析した。その結果、モノマー比率は89.7%となり、凝集体(6.2%)および分解物(4.1%)が確認された(図7)。 The trastuzumab-MMAE synthesized by the batch method was analyzed by size exclusion chromatography (SEC) according to the previous report (ACS Omega 2020, 5, 7193-7200). As a result, the monomer ratio was 89.7%, and aggregates (6.2%) and decomposition products (4.1%) were confirmed (FIG. 7).
 1 第1リザーバー
 2 第2リザーバー
 3 第3リザーバー
 4 第1導入流路
 5 第2導入流路
 6 第3導入流路
 7 第1ポンプ
 8 第2ポンプ
 9 第3ポンプ
 10 フラクションコレクター
 M1 第1マイクロミキサー
 M2 第2マイクロミキサー
 R1 第1反応管
 R2 第2反応管
1 1st reservoir 2 2nd reservoir 3 3rd reservoir 4 1st introduction flow path 5 2nd introduction flow path 6 3rd introduction flow path 7 1st pump 8 2nd pump 9 3rd pump 10 Fraction collector M1 1st micromixer M2 2nd micromixer R1 1st reaction tube R2 2nd reaction tube

Claims (23)

  1.  抗体薬物複合体の製造方法であって、
    (1)特定の切断性部位を有する原料抗体を含む溶液、および前記特定の切断性部位の切断能を有する切断剤を含む溶液を、任意のマイクロミキサーで混合して、前記原料抗体および前記切断剤を含む第1混合液を生成すること;
    (2)前記第1混合液を第1反応流路内に通して、前記原料抗体および前記切断剤を第1反応流路内で反応させることにより、特定の反応性部位を有する抗体誘導体および前記切断剤を含む溶液を生成することであって、ここで、前記特定の反応性部位を有する抗体誘導体は、前記反応において前記特定の切断性部位が前記切断剤により切断されることにより、前記原料抗体から生成されるものであり;
    (3)前記抗体誘導体および前記切断剤を含む溶液、ならびに薬物を含む溶液を、衝突型マイクロミキサーで混合して、前記抗体誘導体、前記切断剤および薬物を含む第2混合液を生成すること;ならびに
    (4)前記第2混合液を第2反応流路内に通して、前記抗体誘導体および薬物を第2反応流路内で反応させることにより、抗体薬物複合体を生成することを含み、
     (1)~(4)の処理がフローマイクロリアクターにおいて連続的に行われるものであり、衝突型マイクロミキサーと第1反応流路の代表径比(衝突型マイクロミキサー/第1反応流路)が0.95以下である、方法。
    A method for producing an antibody-drug conjugate,
    (1) A solution containing a raw material antibody having a specific cleaving site and a solution containing a cutting agent having a cleaving ability of the specific cleaving site are mixed with an arbitrary micromixer, and the raw material antibody and the cleaving site are mixed. Producing a first mixture containing the agent;
    (2) An antibody derivative having a specific reactive site and the above by passing the first mixed solution through the first reaction flow path and reacting the raw material antibody and the cleavage agent in the first reaction flow path. It is to generate a solution containing a cleaving agent, wherein the antibody derivative having the specific reactive site is a raw material by cleaving the specific cleaving site with the cleaving agent in the reaction. It is produced from antibodies;
    (3) Mixing the antibody derivative, the solution containing the cleavage agent, and the solution containing the drug with a collision-type micromixer to produce a second mixed solution containing the antibody derivative, the cleavage agent, and the drug; (4) The antibody drug conjugate is produced by passing the second mixed solution through the second reaction flow path and reacting the antibody derivative and the drug in the second reaction flow path.
    The processes (1) to (4) are continuously performed in the flow microreactor, and the representative diameter ratio between the collision type micromixer and the first reaction flow path (collision type micromixer / first reaction flow path) is determined. A method that is 0.95 or less.
  2.  前記抗体誘導体および前記切断剤を含む溶液の流速、および薬物を含む溶液の流速の合計値が2.0mL/分以上である、請求項1記載の方法。 The method according to claim 1, wherein the total value of the flow rate of the solution containing the antibody derivative and the cleavage agent and the flow rate of the solution containing the drug is 2.0 mL / min or more.
  3.  薬物を含む溶液が0.4mL/分以上の流速で衝突型マイクロミキサーに導入される、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the solution containing the drug is introduced into the collision type micromixer at a flow rate of 0.4 mL / min or more.
  4.  衝突型マイクロミキサーが0.8mm以下の代表径を有する、請求項1~3のいずれか一項記載の方法。 The method according to any one of claims 1 to 3, wherein the collision type micromixer has a representative diameter of 0.8 mm or less.
  5.  衝突型マイクロミキサーがT字マイクロミキサーである、請求項1~4のいずれか一項記載の方法。 The method according to any one of claims 1 to 4, wherein the collision type micromixer is a T-shaped micromixer.
  6.  前記任意のマイクロミキサーが衝突型マイクロミキサーである、請求項1~5のいずれか一項記載の方法。 The method according to any one of claims 1 to 5, wherein the arbitrary micromixer is a collision type micromixer.
  7.  第1反応流路内の反応が30~60℃で行われる、請求項1~6のいずれか一項記載の方法。 The method according to any one of claims 1 to 6, wherein the reaction in the first reaction flow path is carried out at 30 to 60 ° C.
  8.  第1反応流路内の反応が37~50℃で行われる、請求項1~7のいずれか一項記載の方法。 The method according to any one of claims 1 to 7, wherein the reaction in the first reaction flow path is carried out at 37 to 50 ° C.
  9.  第2反応流路内において、前記原料抗体および前記切断剤の追加反応、ならびに当該追加反応により生成した抗体誘導体および薬物の反応が並行して進行する、請求項1~8のいずれか一項記載の方法。 The invention according to any one of claims 1 to 8, wherein the additional reaction of the raw material antibody and the cleavage agent and the reaction of the antibody derivative and the drug produced by the additional reaction proceed in parallel in the second reaction flow path. the method of.
  10.  第1反応流路における前記第1混合液の滞留時間が5分未満である、請求項1~9のいずれか一項記載の方法。 The method according to any one of claims 1 to 9, wherein the residence time of the first mixed solution in the first reaction flow path is less than 5 minutes.
  11.  第2反応流路における前記第2混合液の滞留時間が15分未満である、請求項1~9のいずれか一項記載の方法。 The method according to any one of claims 1 to 9, wherein the residence time of the second mixed solution in the second reaction flow path is less than 15 minutes.
  12.  第2反応流路における前記第2混合液の滞留時間が5分未満である、請求項1~11のいずれか一項記載の方法。 The method according to any one of claims 1 to 11, wherein the residence time of the second mixed solution in the second reaction flow path is less than 5 minutes.
  13.  衝突型マイクロミキサーに導入される薬物を含む溶液の流速が、任意のマイクロミキサーに導入される前記原料抗体を含む溶液の流速、および任意のマイクロミキサーに導入される前記切断剤を含む溶液の流速のいずれよりも速い、請求項1~12のいずれか一項記載の方法。 The flow rate of the solution containing the drug introduced into the collision type micromixer is the flow rate of the solution containing the raw material antibody introduced into any micromixer, and the flow rate of the solution containing the cutting agent introduced into any micromixer. The method according to any one of claims 1 to 12, which is faster than any of the above.
  14.  前記原料抗体を含む溶液、および前記切断剤を含む溶液の任意のマイクロミキサーへの到達から第2反応流路の通過までに要する時間が20分未満である、請求項1~13のいずれか一項記載の方法。 Any one of claims 1 to 13, wherein the time required from the arrival of the solution containing the raw material antibody and the solution containing the cleavage agent to any micromixer to the passage through the second reaction flow path is less than 20 minutes. The method described in the section.
  15.  前記特定の反応性部位がチオール基である、請求項1~14のいずれか一項記載の方法。 The method according to any one of claims 1 to 14, wherein the specific reactive site is a thiol group.
  16.  前記特定の切断性部位を有する原料抗体が、ジスルフィド基を有する抗体である、請求項1~15のいずれか一項記載の方法。 The method according to any one of claims 1 to 15, wherein the raw material antibody having the specific cleavage site is an antibody having a disulfide group.
  17.  前記ジスルフィド基を有する抗体が、ジスルフィド基を有する非修飾抗体である、請求項1~16のいずれか一項記載の方法。 The method according to any one of claims 1 to 16, wherein the antibody having a disulfide group is an unmodified antibody having a disulfide group.
  18.  前記原料抗体が、鎖間に4個のジスルフィド結合を有する抗体である、請求項16記載の方法。 The method according to claim 16, wherein the raw material antibody is an antibody having four disulfide bonds between chains.
  19.  前記原料抗体がIgGである、請求項1~18のいずれか一項記載の方法。 The method according to any one of claims 1 to 18, wherein the raw material antibody is IgG.
  20.  薬物が、マレイミド基、および/またはジスルフィド基を有するか、またはマレイミド基、および/またはジスルフィド基を有するように誘導体化されている、請求項1~19のいずれか一項記載の方法。 The method according to any one of claims 1 to 19, wherein the drug has a maleimide group and / or a disulfide group, or is derivatized so as to have a maleimide group and / or a disulfide group.
  21.  抗体薬物複合体の薬物抗体比が2.0以上である、請求項1~20のいずれか一項記載の方法。 The method according to any one of claims 1 to 20, wherein the antibody-drug conjugate has a drug-antibody ratio of 2.0 or more.
  22.  サイズ排除クロマトグラフィーにより分析される抗体薬物複合体におけるモノマー比率が98%以上である、請求項1~21のいずれか一項記載の方法。 The method according to any one of claims 1 to 21, wherein the monomer ratio in the antibody drug conjugate analyzed by size exclusion chromatography is 98% or more.
  23.  薬物が、医薬、標識物質、または安定化剤である、請求項1~22のいずれか一項記載の方法。
     
    The method according to any one of claims 1 to 22, wherein the drug is a drug, a labeling substance, or a stabilizer.
PCT/JP2021/039001 2020-10-22 2021-10-21 Method of producing antibody-drug conjugate WO2022085767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063104108P 2020-10-22 2020-10-22
US63/104,108 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022085767A1 true WO2022085767A1 (en) 2022-04-28

Family

ID=81290678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039001 WO2022085767A1 (en) 2020-10-22 2021-10-21 Method of producing antibody-drug conjugate

Country Status (1)

Country Link
WO (1) WO2022085767A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288254A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd Micro-device and method for confluence of fluids
WO2020075817A1 (en) * 2018-10-10 2020-04-16 武田薬品工業株式会社 Method for manufacturing antibody-drug conjugate
WO2020095894A1 (en) * 2018-11-05 2020-05-14 味の素株式会社 Method for producing refolded protein by using flow microreactor, and protein refolding apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288254A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd Micro-device and method for confluence of fluids
WO2020075817A1 (en) * 2018-10-10 2020-04-16 武田薬品工業株式会社 Method for manufacturing antibody-drug conjugate
WO2020095894A1 (en) * 2018-11-05 2020-05-14 味の素株式会社 Method for producing refolded protein by using flow microreactor, and protein refolding apparatus

Similar Documents

Publication Publication Date Title
Elgundi et al. The state-of-play and future of antibody therapeutics
JP7097923B2 (en) Antigen binding construct for target molecule
Kennedy et al. Antibodies and associates: Partners in targeted drug delivery
ES2975747T3 (en) Tumor-specific payload delivery and immune activation using a human antibody that targets a highly specific tumor cell surface antigen
JP2022516043A (en) Cluster of bioactive molecules
JP2018524296A (en) CD123 antibody and complex thereof
CN104395340A (en) Method for the selection and production of tailor-made, selective and multi-specific therapeutic molecules comprising at least two different targeting entities and uses thereof
JP7364584B2 (en) Method for producing antibody-drug conjugate
JP2021510694A (en) Methods for conjugation, purification, and formulation of antibody drugs
CN114127117B (en) Polypeptide complex for coupling and application thereof
CA3205707A1 (en) Immunoconjugates comprising kallikrein related peptidase 2 antigen binding domains and their uses
WO2022167689A9 (en) Multifunctional antibodies
CA3087058A1 (en) Human antibodies that bind and are internalized by mesothelioma and other cancer cells
Dimasi et al. Generation of bispecific antibodies using chemical conjugation methods
WO2018147960A1 (en) Extension sequences for diabodies
KR20210099660A (en) Compounds comprising cleavable linkers and uses thereof
WO2022085767A1 (en) Method of producing antibody-drug conjugate
EP3937975A1 (en) Sodium fluorescein as a reversal agent for an anti-fluorescein car t cells and fluorescein-phospholipid-ethers or profluorescein-phospholipid-ethers
WO2023038067A1 (en) Site-selectively modified antibody intermediate, and method for producing antibody derivative which site-selectively has bioorthogonal functional group or functional substance
WO2022255425A1 (en) Conjugate of antibody and functional substance or salt of said conjugate, and compound for use in production of said conjugate or salt of said compound
US20150182634A1 (en) Molecular Design and Chemical Synthesis of Pharmaceutical-Ligands and Pharmaceutical-Pharmaceutical Analogs with Multiple Mechanisms of Action
WO2024181570A1 (en) Antibody-drug conjugate containing anti-cd138 antibody
WO2022154127A1 (en) Compound or salt thereof, and antibody obtained therefrom
CN117412774A (en) Conjugate of antibody and functional substance or salt thereof, and compound or salt thereof used in production thereof
KR20240073034A (en) Regioselective conjugates of antibodies and functional substances or their salts, and antibody derivatives and compounds used for their production or their salts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP