WO2022085607A1 - Robot and program - Google Patents

Robot and program Download PDF

Info

Publication number
WO2022085607A1
WO2022085607A1 PCT/JP2021/038341 JP2021038341W WO2022085607A1 WO 2022085607 A1 WO2022085607 A1 WO 2022085607A1 JP 2021038341 W JP2021038341 W JP 2021038341W WO 2022085607 A1 WO2022085607 A1 WO 2022085607A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
mesh network
information
robots
area
Prior art date
Application number
PCT/JP2021/038341
Other languages
French (fr)
Japanese (ja)
Inventor
昂 深堀
ケビン 梶谷
Original Assignee
avatarin株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by avatarin株式会社 filed Critical avatarin株式会社
Publication of WO2022085607A1 publication Critical patent/WO2022085607A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to robots and programs.
  • Patent Document 1 discloses a technique for forming a mesh network with a plurality of communication nodes.
  • a sensor node arranged at a specific location is used as a communication node forming a mesh network.
  • the data measured by each sensor node is data that can be measured at the place where each sensor node is arranged. Therefore, it is not possible to measure and collect data in places where sensor nodes are not located.
  • the present invention has been made to solve the above-mentioned problems, and one of the objects thereof is to provide a robot capable of fluidly forming a mesh network.
  • the robot according to one aspect of the present invention is based on a communication unit capable of wireless communication with a plurality of non-fixed robots forming a mesh network, area information regarding an area for constructing the mesh network, and position information of the robot.
  • the robot is provided with a movement control unit that moves the robot to a position that functions as a node constituting the mesh network.
  • the own robot can be autonomously moved to a position that can function as a node constituting the mesh network based on the position information of a plurality of robots arranged in the area where the mesh network is constructed. Therefore, it is possible to form a mesh network in a fluid manner while moving the robot autonomously.
  • the movement control unit may move its own robot so that the distance from the other robots located in the area and in the vicinity is within a predetermined range. According to this aspect, it is possible to fluidly form a mesh network while autonomously moving each robot arranged in the same area to a position where the distance between the robots is within a predetermined range.
  • the movement control unit goes through the other robot having the insufficient data transmission capability.
  • the robot may be moved to a position where the path for duplicating the path to be performed is formed. According to this aspect, even if a robot having insufficient data transmission capability occurs among the robots forming the communication path, the path passing through the robot can be duplicated, so that a stable communication environment can be achieved. Can be provided.
  • the movement control unit determines whether or not the movement control unit lacks the data transmission capacity of the other robots selected as a part of the communication path based on the transmission capacity information regarding the data transmission capacity of each robot. If it is determined that the data transmission capacity is insufficient, the own robot may be moved to a position where the path for duplication is formed. According to this aspect, it is possible to determine whether or not the data transmission capacity is insufficient based on the transmission capacity information, and to duplicate the route via the robot having the insufficient data transmission capacity according to the determination result.
  • a program according to another aspect of the present invention is a communication unit capable of wirelessly communicating a computer with a plurality of non-fixed robots forming a mesh network, area information regarding an area for constructing the mesh network, and a position of the robot. Based on the information, it functions as a movement control unit that moves the own robot to a position that functions as a node constituting the mesh network.
  • the own robot can be autonomously moved to a position that can function as a node constituting the mesh network based on the position information of a plurality of robots arranged in the area where the mesh network is constructed. Therefore, it is possible to form a mesh network in a fluid manner while moving the robot autonomously.
  • System configuration An exemplary configuration of a system including a robot according to an embodiment will be described with reference to FIG.
  • the system 1 can perform processing such as searching for a usable robot 4 and making a reservation for using the robot 4, for example.
  • the system 1 includes a server device 2, one or more terminal devices 3, and a plurality of robots 4.
  • Each device or robot is configured to be able to communicate with other devices or robots wirelessly or by wire (or both).
  • Each terminal device 3 may have the same configuration or may have a different configuration.
  • Each robot 4 may have the same configuration or may have a different configuration. The outline of each device and robot will be described below.
  • the server device 2 is, for example, a device that manages a robot 4 that forms a mesh network.
  • the server device 2 is composed of an information processing device such as a server computer.
  • the server device 2 may be configured by one information processing device or may be configured by a plurality of information processing devices (for example, cloud computing or edge computing).
  • the terminal device 3 is an information processing device used by the user for operating the robot 4 and making a reservation for the robot 4.
  • the terminal device 3 is a general-purpose or dedicated information processing device such as a smartphone, a tablet terminal, a PDA (Personal Digital Assistants), a personal computer, a head-mounted display, and an operation system for a specific purpose.
  • Robot 4 is a non-fixed robot.
  • the term "non-fixed" means, for example, that the robot 4 is a mobile type having a drive unit for moving wheels or the like, or a wearable type that can be worn by a person and has a drive unit for operation of a manipulator or the like. Including cases.
  • Mobile robots include, for example, one-wheeled, two-wheeled or multi-wheeled vehicles, caterpillar vehicles, railroad vehicles, jumping vehicles, bipedal, quadrupedal or multi-legged walking. Includes those that use a screw, those that navigate on or under water with a screw, and those that fly with a propeller or the like.
  • Wearable robots include, for example, MHD Yaman Saraiji, Tomoya Sasaki, Reo Matsumura, Kouta Minamizawa and Masahiko Inami, "Fusion: full body surrogacy for collaborative communication," Proceeding SIGGRAPH '18 Including those published in Japan.
  • Robot 4 also includes the following: Vehicles and heavy machinery capable of automatic or semi-automatic driving, robots equipped with cameras that can move on rails installed in drones, airplanes, sports stadiums, etc., satellite robots launched into space for posture control A robot that can control the shooting direction of the camera. Further, the robot 4 may be a so-called telepresence robot or an avatar robot.
  • the user operates the robot 4 (for example, the movement of the robot 4 or the operation of the camera mounted on the robot 4) via the terminal device 3.
  • the signal for operating the robot 4 is transmitted from the terminal device 3 to the robot 4 via the server device 2 or other devices.
  • the signal for the operation may be directly transmitted from the terminal device 3 to the robot 4.
  • the robot 4 operates in response to a received signal, and the robot 4 acquires or detects the location where the robot 4 is located, such as image data and audio data acquired through a camera, a microphone, and other devices mounted on the robot 4.
  • the data is transmitted to the terminal device 3.
  • the user can obtain the experience as if he / she is in the place where the robot 4 is located through the terminal device 3 and the robot 4.
  • the data transmitted from the robot 4 may be transmitted to the terminal device 3 via the server device 2 or other devices, or may be transmitted directly to the terminal device 3.
  • a mesh network is a communication network in which a plurality of communication nodes form a mesh-like transmission path.
  • FIG. 2 illustrates that 11 robots 4 are arranged in a certain area A, and a mesh network is formed by these 11 robots 4.
  • the size of the area A and the number of robots 4 arranged in the area A can be arbitrarily set.
  • the user U remotely controls the robot 4e having the robot ID "A11" by using the terminal device 3.
  • the robot 4e remotely controlled by the user U is selected, for example, as follows.
  • the user U operates the terminal device 3, specifies a desired place or position in the area A, and searches for the robot 4 to be remotely controlled. Subsequently, the server device 2 selects the robot 4e arranged at the place or position designated by the user U as the robot 4 remotely controlled by the user U.
  • the terminal device 3 communicates with the robot 4e via the robot 4a, the robot 4b, the robot 4c, and the robot 4d on the mesh network.
  • the communication path on the mesh network is selected, for example, as follows.
  • the server device 2 acquires the position information of each robot 4 on the mesh network that may intervene between the terminal device 3 and the robot 4e, and the status information of each robot 4.
  • the situations included in the status information include, for example, the activation status of the robot 4, the charging status of the robot 4, the communication status of the robot 4, the usage status of the robot 4, and the like. Details of the position information of the robot 4 and the situation information of the robot 4 will be described later.
  • the server device 2 selects the optimum route as the communication route on the mesh network based on the acquired position information and status information of each robot 4.
  • the optimum route can be selected by appropriately combining the following criteria (1) to (6).
  • the priority may be calculated by weighting each criterion, and the route with the highest priority may be selected.
  • the robot that forms the shortest path is preferentially selected.
  • the currently activated robot is preferentially selected.
  • the robot having a large remaining battery capacity is preferentially selected.
  • the robot having a high radio field strength in the communication unit is preferentially selected.
  • the robot that has been recently charged or maintained is preferentially selected.
  • the robot whose failure flag is turned off is preferentially selected.
  • each robot 4 and the server device 2 store, for example, area information, robot information, robot position information, robot status information, and robot transmission capability information in their respective storage devices (storage units) for management. do.
  • Area information is information about the area where the mesh network is constructed.
  • the area information includes, for example, an area ID for identifying the area, map information including the area, information indicating the range of the area, the number of robots 4 that can be arranged in the area, and the like.
  • Robot information is information about each robot 4.
  • the robot information includes, for example, a robot ID that identifies the robot 4, information on the communicable range of the robot 4, information on the capabilities of the robot 4, information on the performance of the camera of the robot 4, and the like.
  • the robot position information is information about the position of each robot 4.
  • the robot position information includes, for example, a robot ID, an area ID of an area where the robot 4 is arranged, a current position of the robot 4, and the like.
  • the current position of the robot 4 can be measured by, for example, a GPS (Global Positioning System) function mounted on the robot 4.
  • GPS Global Positioning System
  • the robot status information is information regarding the status of each robot 4.
  • the robot status information includes, for example, a robot ID, information on the activation status of the robot 4, information on the charging status of the robot 4, information on the communication status of the robot 4, information on the usage status of the robot 4, and the like. included.
  • the transmission capacity information of the robot is information related to the data transmission capacity of each robot 4.
  • the transmission capability information includes, for example, a robot ID, a robot ID of another robot 4, a throughput based on communication with the other robot 4, a transmission speed, a communication band, and the like.
  • Each data included in area information, robot information, robot position information, robot status information, and robot transmission capability information is set for each robot 4 or sequentially measured by each robot 4 and stored in a storage device. , Further transmitted to the server device 2.
  • the server device 2 collects and manages area information, robot information, robot position information, robot status information, and robot transmission capability information based on each data received from each robot 4.
  • the server device 2 periodically transmits each data acquired from other robots 4 arranged in the same area to each robot 4 arranged in the same area.
  • Each robot 4 updates area information, robot information, robot position information, robot status information, and robot transmission capability information based on each data received from the server device 2.
  • the data structure of each of the above information stored in each robot 4 and the server device 2 and the combination of the respective data are not limited to the above, and can be arbitrarily set according to the operation.
  • the robot 4 has, for example, a communication unit 41, a movement control unit 42, and a database 43 as functional configurations.
  • the functions of the robot 4 are not limited to these, and may have functions generally possessed by a computer and other functions.
  • the database 43 stores various data such as data necessary for the processing executed by the robot 4 and data generated or set by the processing.
  • the various data include the above-mentioned area information, robot information, robot position information, robot status information, and robot transmission capability information, and also includes, for example, user information regarding a user who uses the robot 4.
  • the communication unit 41 wirelessly communicates with, for example, a plurality of robots 4 forming a mesh network.
  • the communication unit 41 may directly communicate with the robot 4, or may communicate with the robot 4 via the server device 2 or another device. In addition to wireless communication, wired communication may intervene in communication with the server device 2 and other devices.
  • the movement control unit 42 moves its own robot to a position that functions as a node constituting the mesh network, for example, based on the area information and the position information of the robot. Area information and robot position information can be acquired from the database 43.
  • the movement control unit 42 moves the own robot so that the distance from other robots located in the same area as the own robot and located around the own robot is within a predetermined range.
  • the robot 4c having the robot ID "A5" exists at a position slightly distant from other robots 4b, 4d, and 4g located in the same area A and in the vicinity.
  • the movement control unit 42 of the robot 4c moves the own robot 4c so that the distance from the other robots 4b, 4d, and 4g is within a predetermined range.
  • the area of the own robot 4c can be specified by referring to the area information of the database 43 by using, for example, "A5" which is the robot ID of the own robot 4c.
  • the position of the own robot 4c can be specified by referring to the position information of the robot in the database 43 by using, for example, "A5" which is the robot ID of the own robot 4c.
  • the positions of the other robots 4b, 4d, and 4g located around the own robot 4c can be specified by referring to the position information of the robot in the database 43, for example, by using the area ID of the area A.
  • the predetermined range may be uniformly set to the same range for each robot 4, or a different range may be set for each robot 4. Further, as a predetermined range, a communicable range of each robot 4 may be set. At this time, different ranges may be set within the communicable range of each robot 4.
  • each robot 4 arranged in the same area can be moved autonomously and surely function as a node constituting a mesh network. It becomes possible.
  • the robot 4 does not always exist in a fixed place because the place where the robot 4 exists may change depending on, for example, the user's use. Therefore, this function that allows the robot 4 that has moved to a location to autonomously move to a position that constitutes a mesh network is useful. Further, each robot 4 forming the mesh network has this function, so that the mesh network can be formed fluidly.
  • the other robots 4 located in and around the same area A are not limited to the robots 4b, 4d, and 4g described above, and can be arbitrarily selected.
  • robots 4f and 4h may be added.
  • the movement control unit 42 has insufficient data transmission capability when the data transmission capability of another robot 4 selected as a part of the communication path between the terminal device 3 and the robot 4 is insufficient.
  • the robot 4 is moved to a position where a route for duplicating the route via the robot 4 is formed. A specific description will be given with reference to FIG.
  • the communication paths between the terminal device 3 and the robot 4e include a path connecting the robot 4a to the robot 4e via the robots 4b, 4c, and 4d, and a path from the robot 4a to the robot 4f, 4g. It is duplicated by a route connecting to the robot 4e via 4h.
  • the robots 4f, 4g, and 4h move from a reference fixed position to a position close to the robots 4b, 4c, and 4d, and the communication path is duplicated.
  • the movement control unit 42 of the robots 4f, 4g, and 4h lack the data transmission capability of any of the robots 4a to 4e forming the communication path between the terminal device 3 and the robot 4e? Judge whether or not.
  • the data transmission capability of the robots 4a to 4e can be specified by referring to the transmission capability information of the robot in the database 43 using the robot IDs of the robots 4a to 4e.
  • Whether or not the data transmission capacity is insufficient can be determined, for example, by setting a predetermined lower limit value and if it is below the lower limit value, it can be determined that the data transmission capacity is insufficient.
  • a predetermined lower limit value can be appropriately set based on a network transmission standard or the like.
  • the robots 4f, 4g, and 4h determines that the data transmission capability of the robots 4b, 4c, and 4d is insufficient, the robots 4b, 4c, and 4d are located close to the robots 4b, 4c, and 4d.
  • the robots 4f, 4g, and 4h are moved, respectively, and the communication path is duplicated as shown in FIG.
  • the robots 4f, 4g, and 4h are moved to duplicate the communication path, but the route to be duplicated is not limited to this.
  • the robot 4g may be moved to a position close to the robot 4c to duplicate the communication path.
  • the communication path between the robot 4b and the robot 4d is duplicated by two paths, a path via the robot 4c and a path via the robot 4g.
  • the own robot is placed at a position that can function as a node constituting the mesh network based on the position information of a plurality of robots arranged in the area for constructing the mesh network. It can be moved autonomously. Therefore, it is possible to fluidly form a mesh network while autonomously moving the robot 4.
  • the own robot is moved so that the distance from other robots located in the same area as the own robot and located in the vicinity of the own robot is within a predetermined range. be able to. Therefore, it is possible to form a mesh network while autonomously moving each robot 4 arranged in the same area to a position where the distance between the robots 4 is within a predetermined range.
  • the robot 4 even if the data transmission capacity of the other robot selected as a part of the communication path is insufficient, the robot passes through the other robot having the insufficient data transmission capacity.
  • the robot can be moved to a position that forms a route for duplicating the route. Therefore, it is possible to provide a stable communication environment in a mesh network using a robot.
  • the robot 4 includes, for example, a processor 401, a RAM (Random Access Memory) 402, a ROM (Read only Memory) 403, a communication unit 404, an input unit 405, a display unit 406, a drive unit 407, and a camera 408.
  • a processor 401 the robot 4 includes, for example, a processor 401, a RAM (Random Access Memory) 402, a ROM (Read only Memory) 403, a communication unit 404, an input unit 405, a display unit 406, a drive unit 407, and a camera 408.
  • the robot 4 may or may not include some of these configurations, or may include other configurations.
  • the robot 4 may include a speaker, a microphone, and various sensors.
  • the processor 401 is a calculation unit of the robot 4, and is, for example, a CPU (Central Processing Unit).
  • the processor 401 is a control unit that controls execution of a program stored in RAM 402 or ROM 403, calculates data, and processes data.
  • the processor 401 realizes the function of the robot 4 described in the above embodiment by cooperating with the program and other configurations included in the robot 4.
  • the processor 401 executes, for example, a program (communication program) for controlling communication via a robot.
  • the processor 401 receives various data from the input unit 405 and the communication unit 404, displays the calculation result of the data on the display unit 406, and stores the data in the RAM 402.
  • the communication program may be stored in a storage medium readable by a computer such as RAM 402 or ROM 403 and provided, or may be provided via a communication network connected by the communication unit 404.
  • various operations for controlling the robot 4 are realized by the processor 401 executing the communication program.
  • the robot 4 may include an LSI (Large-Scale Integration) in which a processor 401 and a RAM 402 or a ROM 403 are integrated.
  • LSI Large-Scale Integration
  • the RAM 402 and ROM 403 are storage units for storing data required for various processes and data of processing results.
  • the robot 4 may include a large-capacity storage unit such as a hard disk drive (HDD).
  • HDD hard disk drive
  • the communication unit 404 is a device for performing data communication via a network with an external device by wire or wirelessly.
  • the input unit 405 is a device for inputting data from the outside of the robot 4.
  • the input unit 405 may include, for example, a keyboard and a touch panel for receiving data input from the user. Further, the input unit 405 may include a microphone for voice input.
  • the display unit 406 is a device for displaying various information.
  • the display unit 406 may be configured by, for example, an LCD (Liquid Crystal Display) as a device for visually displaying the calculation result by the processor 401.
  • the display unit 406 may display an image taken by the camera 408 of the robot 4.
  • the drive unit 407 includes an actuator that can be remotely controlled, and includes a moving unit such as a wheel, a manipulator, and the like.
  • the drive unit 407 includes at least a moving unit such as a wheel, but may include a manipulator.
  • the drive unit 407 includes at least a manipulator.
  • the camera 408 includes an image sensor that captures a still image or a moving image, and transmits the captured still image or the moving image to an external device via the communication unit 404.
  • FIG. 7 An exemplary hardware configuration of a computer (information processing device) for mounting the server device 2 and the terminal device 3 in the present embodiment will be described with reference to FIG. 7.
  • the hardware configuration of the server device 2 will be described, but since the hardware configuration of the terminal device 3 is also the same, the description thereof will be omitted.
  • the server device 2 includes, for example, a processor 201, a memory 202, a storage device 203, a communication unit 204, an input unit 205, and a display unit 206 as hardware configurations.
  • the server device 2 does not have to include a part of these configurations.
  • the server device 2 may have other configurations generally provided by a general-purpose computer or a dedicated computer.
  • the processor 201 is, for example, a CPU.
  • the processor 201 is a control unit that controls various processes in the server device 2 by executing a program stored in the memory 202.
  • the processor 201 realizes the function of the server device 2 by cooperating with the program and other configurations included in the server device 2.
  • the memory 202 is a storage medium such as RAM.
  • the program code of the program executed by the processor 201 and the data required for executing the program are temporarily read from the storage device 203 or the like, or stored in advance.
  • the storage device 203 is a non-volatile storage medium such as a hard disk drive.
  • the storage device 203 stores an operating system, various programs, data, and the like.
  • the communication unit 204 is a device for performing data communication via a network with an external device of the server device 2 by wire or wirelessly.
  • the communication unit 204 may be detachably connected to the server device 2.
  • the communication unit 204 is connected to the server device 2 via an interface such as USB (Universal Serial Bus).
  • the input unit 205 is a device for receiving input from the user and a device for inputting data from the outside of the server device 2.
  • Specific examples of the input unit 205 include a keyboard, a mouse, a touch panel, a joystick, various sensors, a wearable device, a drive device for reading data stored in various storage media, and the like.
  • the input unit 205 may be detachably connected to the server device 2. In that case, the input unit 205 is connected to the server device 2 via an interface such as USB.
  • the display unit 206 is a device for displaying various information. Specific examples of the display unit 206 include a liquid crystal display, an organic EL display, a display of a wearable device, and the like.
  • the display unit 206 may be detachably connected to the outside of the server device 2. In that case, the display unit 206 is connected to the server device 2 via, for example, a display cable or the like. Further, when the touch panel is adopted as the input unit 205, the display unit 206 can be integrally configured with the input unit 205.
  • the program for mounting the system 1 (or the server device 2, the terminal device 3 or the robot 4) in the present embodiment is a computer-readable recording of various computer-readable records such as an optical disk such as a CD-ROM, a magnetic disk, and a semiconductor memory. It can be recorded on a medium. It can also be installed or loaded on a computer by downloading the above program through a recording medium or via a communication network or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a robot that enables a mesh network to be fluidly formed. A robot 4 is provided with a communication unit capable of wirelessly communicating with a plurality of robots 4 forming a mesh network, and a movement control unit that causes an own robot to move to a position functioning as a node constituting the mesh network, on the basis of area information related to an area where the mesh network is to be built and positional information of the robot 4.

Description

ロボット及びプログラムRobots and programs
 本発明は、ロボット及びプログラムに関する。 The present invention relates to robots and programs.
 下記特許文献1には、複数の通信ノードでメッシュネットワークを形成する技術が開示されている。 The following Patent Document 1 discloses a technique for forming a mesh network with a plurality of communication nodes.
特開2017-169019号JP-A-2017-169019
 特許文献1では、メッシュネットワークを形成する通信ノードとして、特定の場所に配置されたセンサノードが用いられている。この場合、各センサノードが測定するデータは、各センサノードが配置されている場所で測定可能なデータとなる。したがって、センサノードが配置されていない場所のデータを測定して収集することはできない。 In Patent Document 1, a sensor node arranged at a specific location is used as a communication node forming a mesh network. In this case, the data measured by each sensor node is data that can be measured at the place where each sensor node is arranged. Therefore, it is not possible to measure and collect data in places where sensor nodes are not located.
 本発明は、上述した課題を解決するためになされたものであり、メッシュネットワークを流動的に形成させることができるロボットを提供することを、その目的の一つとする。 The present invention has been made to solve the above-mentioned problems, and one of the objects thereof is to provide a robot capable of fluidly forming a mesh network.
 本発明の一態様であるロボットは、メッシュネットワークを形成する固定されていない複数のロボットと無線通信可能な通信部と、前記メッシュネットワークを構築するエリアに関するエリア情報、及び前記ロボットの位置情報に基づいて、前記メッシュネットワークを構成するノードとして機能する位置に自ロボットを移動させる移動制御部と、を備える。 The robot according to one aspect of the present invention is based on a communication unit capable of wireless communication with a plurality of non-fixed robots forming a mesh network, area information regarding an area for constructing the mesh network, and position information of the robot. The robot is provided with a movement control unit that moves the robot to a position that functions as a node constituting the mesh network.
 この態様によれば、メッシュネットワークを構築するエリアに配置された複数のロボットの位置情報に基づいて、メッシュネットワークを構成するノードとして機能できる位置に自ロボットを自律的に移動させることができる。したがって、ロボットを自律的に移動させながら、メッシュネットワークを流動的に形成させることが可能となる。 According to this aspect, the own robot can be autonomously moved to a position that can function as a node constituting the mesh network based on the position information of a plurality of robots arranged in the area where the mesh network is constructed. Therefore, it is possible to form a mesh network in a fluid manner while moving the robot autonomously.
 上記態様において、前記移動制御部は、前記エリア内に位置し、かつ周辺に位置する他の前記ロボットとの距離が所定の範囲におさまるように自ロボットを移動させることとしてもよい。この態様によれば、同一エリア内に配置された各ロボットを、それぞれの間隔が所定の範囲におさまる位置に自律的に移動させながら、メッシュネットワークを流動的に形成させることが可能となる。 In the above aspect, the movement control unit may move its own robot so that the distance from the other robots located in the area and in the vicinity is within a predetermined range. According to this aspect, it is possible to fluidly form a mesh network while autonomously moving each robot arranged in the same area to a position where the distance between the robots is within a predetermined range.
 上記態様において、前記移動制御部は、通信経路の一部に選定された他の前記ロボットにおけるデータ伝送能力が不足している場合に、当該データ伝送能力が不足している他の前記ロボットを経由する経路を二重化するための経路を形成する位置に自ロボットを移動させることとしてもよい。この態様によれば、通信経路を形成するロボットの中に、データ伝送能力が不足するロボットが発生した場合であっても、そのロボットを経由する経路を二重化させることができるため、安定した通信環境を提供することが可能となる。 In the above embodiment, when the data transmission capability of the other robot selected as a part of the communication path is insufficient, the movement control unit goes through the other robot having the insufficient data transmission capability. The robot may be moved to a position where the path for duplicating the path to be performed is formed. According to this aspect, even if a robot having insufficient data transmission capability occurs among the robots forming the communication path, the path passing through the robot can be duplicated, so that a stable communication environment can be achieved. Can be provided.
 上記態様において、前記移動制御部は、各前記ロボットにおけるデータ伝送能力に関する伝送能力情報に基づいて、前記通信経路の一部に選定された他の前記ロボットにおけるデータ伝送能力が不足しているか否かを判定し、当該データ伝送能力が不足していると判定した場合に、前記二重化するための経路を形成する位置に自ロボットを移動させることとしてもよい。この態様によれば、伝送能力情報に基づいてデータ伝送能力が不足しているかどうかを判定し、その判定結果に従って、データ伝送能力が不足しているロボットを経由する経路を二重化させることができる。 In the above aspect, whether or not the movement control unit lacks the data transmission capacity of the other robots selected as a part of the communication path based on the transmission capacity information regarding the data transmission capacity of each robot. If it is determined that the data transmission capacity is insufficient, the own robot may be moved to a position where the path for duplication is formed. According to this aspect, it is possible to determine whether or not the data transmission capacity is insufficient based on the transmission capacity information, and to duplicate the route via the robot having the insufficient data transmission capacity according to the determination result.
 本発明の他の態様であるプログラムは、コンピュータを、メッシュネットワークを形成する固定されていない複数のロボットと無線通信可能な通信部、前記メッシュネットワークを構築するエリアに関するエリア情報、及び前記ロボットの位置情報に基づいて、前記メッシュネットワークを構成するノードとして機能する位置に自ロボットを移動させる移動制御部、として機能させる。 A program according to another aspect of the present invention is a communication unit capable of wirelessly communicating a computer with a plurality of non-fixed robots forming a mesh network, area information regarding an area for constructing the mesh network, and a position of the robot. Based on the information, it functions as a movement control unit that moves the own robot to a position that functions as a node constituting the mesh network.
 この態様によれば、メッシュネットワークを構築するエリアに配置された複数のロボットの位置情報に基づいて、メッシュネットワークを構成するノードとして機能できる位置に自ロボットを自律的に移動させることができる。したがって、ロボットを自律的に移動させながら、メッシュネットワークを流動的に形成させることが可能となる。 According to this aspect, the own robot can be autonomously moved to a position that can function as a node constituting the mesh network based on the position information of a plurality of robots arranged in the area where the mesh network is constructed. Therefore, it is possible to form a mesh network in a fluid manner while moving the robot autonomously.
 本発明によれば、メッシュネットワークを流動的に形成させることができるロボット及びプログラムを提供することが可能となる。 According to the present invention, it is possible to provide a robot and a program capable of fluidly forming a mesh network.
実施形態に係るロボットを含むシステムの構成を例示する図である。It is a figure which illustrates the structure of the system including the robot which concerns on embodiment. 実施形態に係るロボットの機能構成を例示するブロック図である。It is a block diagram which illustrates the functional structure of the robot which concerns on embodiment. ロボットにより形成されるメッシュネットワークを説明するための模式図である。It is a schematic diagram for demonstrating the mesh network formed by a robot. ロボットにより形成されるメッシュネットワークを説明するための模式図である。It is a schematic diagram for demonstrating the mesh network formed by a robot. ロボットにより形成されるメッシュネットワークを説明するための模式図である。It is a schematic diagram for demonstrating the mesh network formed by a robot. 実施形態に係るロボットのハードウェア構成を例示するブロック図である。It is a block diagram which illustrates the hardware composition of the robot which concerns on embodiment. サーバ装置のハードウェア構成を例示するブロック図である。It is a block diagram which illustrates the hardware configuration of a server apparatus.
 以下に、本発明の一実施形態について説明する。なお、以下の実施形態は、本発明を説明するための例示であり、本発明をその実施形態に限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。さらに、当業者であれば、以下に述べる各要素を均等なものに置換した実施の形態を採用することが可能であり、かかる実施の形態も本発明の範囲に含まれる。 Hereinafter, an embodiment of the present invention will be described. It should be noted that the following embodiments are examples for explaining the present invention, and the present invention is not intended to be limited to the embodiments. Further, the present invention can be modified in various ways as long as it does not deviate from the gist thereof. Further, those skilled in the art can adopt an embodiment in which each element described below is replaced with an equal one, and such an embodiment is also included in the scope of the present invention.
 [システムの構成]
 図1を参照して、実施形態に係るロボットを含むシステムの例示的な構成について説明する。本実施形態において、システム1は、例えば、使用可能なロボット4の検索やロボット4を使用するための予約等の処理を行うことができる。
[System configuration]
An exemplary configuration of a system including a robot according to an embodiment will be described with reference to FIG. In the present embodiment, the system 1 can perform processing such as searching for a usable robot 4 and making a reservation for using the robot 4, for example.
 図1に示すように、システム1は、サーバ装置2、一台以上の端末装置3、及び複数のロボット4を備える。各装置又はロボットは、他の装置又はロボットと、無線若しくは有線により(又はその両者により)通信可能に構成されている。各端末装置3は、それぞれ同様の構成を有してもよいし、異なる構成を有してもよい。各ロボット4は、それぞれ同様の構成を有してもよいし、異なる構成を有してもよい。以下に、それぞれの装置及びロボットの概要を説明する。 As shown in FIG. 1, the system 1 includes a server device 2, one or more terminal devices 3, and a plurality of robots 4. Each device or robot is configured to be able to communicate with other devices or robots wirelessly or by wire (or both). Each terminal device 3 may have the same configuration or may have a different configuration. Each robot 4 may have the same configuration or may have a different configuration. The outline of each device and robot will be described below.
 サーバ装置2は、例えば、メッシュネットワークを形成するロボット4を管理する装置である。サーバ装置2は、サーバコンピュータ等の情報処理装置により構成される。サーバ装置2は、1つの情報処理装置により構成されてもよいし、複数の情報処理装置(例えば、クラウドコンピューティング又はエッヂコンピューティング)により構成されてもよい。 The server device 2 is, for example, a device that manages a robot 4 that forms a mesh network. The server device 2 is composed of an information processing device such as a server computer. The server device 2 may be configured by one information processing device or may be configured by a plurality of information processing devices (for example, cloud computing or edge computing).
 端末装置3は、ロボット4の操作や、ロボット4の予約のために、ユーザにより使用される情報処理装置である。端末装置3は、例えば、スマートフォン、タブレット端末、PDA(Personal Digital Assistants)、パーソナルコンピュータ、ヘッドマウントディスプレイ、特定用途の操作系等の汎用又は専用の情報処理装置である。 The terminal device 3 is an information processing device used by the user for operating the robot 4 and making a reservation for the robot 4. The terminal device 3 is a general-purpose or dedicated information processing device such as a smartphone, a tablet terminal, a PDA (Personal Digital Assistants), a personal computer, a head-mounted display, and an operation system for a specific purpose.
 ロボット4は、固定されていないロボットである。固定されていないとは、例えば、ロボット4が車輪等の移動のための駆動部を有する移動型である場合や、人が装着でき、マニピュレータ等の動作のための駆動部を有する装着型である場合を含む。 Robot 4 is a non-fixed robot. The term "non-fixed" means, for example, that the robot 4 is a mobile type having a drive unit for moving wheels or the like, or a wearable type that can be worn by a person and has a drive unit for operation of a manipulator or the like. Including cases.
 移動型のロボットは、例えば、一輪、二輪又は多輪により走行するもの、キャタピラにより走行するもの、レールの上を走行するもの、飛び跳ねて移動するもの、二足歩行、四足歩行又は多足歩行するもの、スクリューにより水上又は水中を航行するもの、及びプロペラ等により飛行するものを含む。 Mobile robots include, for example, one-wheeled, two-wheeled or multi-wheeled vehicles, caterpillar vehicles, railroad vehicles, jumping vehicles, bipedal, quadrupedal or multi-legged walking. Includes those that use a screw, those that navigate on or under water with a screw, and those that fly with a propeller or the like.
 装着型のロボットは、例えば、MHD Yamen Saraiji, Tomoya Sasaki, Reo Matsumura, Kouta Minamizawa and Masahiko Inami, "Fusion: full body surrogacy for collaborative communication," Proceeding SIGGRAPH '18 ACM SIGGRAPH 2018 Emerging Technologies Article No. 7.にて公開されているものを含む。 Wearable robots include, for example, MHD Yaman Saraiji, Tomoya Sasaki, Reo Matsumura, Kouta Minamizawa and Masahiko Inami, "Fusion: full body surrogacy for collaborative communication," Proceeding SIGGRAPH '18 Including those published in Japan.
 ロボット4には、以下のものもさらに含まれる。自動走行若しくは半自動走行が可能な車両や重機、ドローンや飛行機、スポーツスタジアム等に設置されてレールの上を移動可能なカメラを備えたロボット、宇宙空間に打ち上げられる衛星型ロボットであって姿勢制御やカメラの撮影方向の制御が可能なロボット。また、ロボット4は、いわゆるテレプレゼンスロボットやアバターロボットであってよい。 Robot 4 also includes the following: Vehicles and heavy machinery capable of automatic or semi-automatic driving, robots equipped with cameras that can move on rails installed in drones, airplanes, sports stadiums, etc., satellite robots launched into space for posture control A robot that can control the shooting direction of the camera. Further, the robot 4 may be a so-called telepresence robot or an avatar robot.
 ユーザは、端末装置3を介してロボット4の操作(例えば、ロボット4の移動やロボット4に搭載されたカメラの操作)を行う。ロボット4を操作するための信号は、端末装置3からサーバ装置2又はその他の装置を介して、ロボット4に送信される。当該操作するための信号が端末装置3からロボット4に直接送信されてもよい。ロボット4は、受信した信号に応じて動作し、ロボット4に搭載されたカメラ、マイク及びその他の装置を通じて取得された画像データ及び音声データ等、ロボット4がいる場所に関してロボット4が取得又は検知等したデータを端末装置3に送信する。これにより、ユーザは、端末装置3及びロボット4を介して、ロボット4がいる場所に自分もいるかのようなエクスペリエンスを得ることができる。ロボット4から送信されるデータは、サーバ装置2又はその他の装置を介して端末装置3に送信されてもよいし、端末装置3に直接送信されてもよい。 The user operates the robot 4 (for example, the movement of the robot 4 or the operation of the camera mounted on the robot 4) via the terminal device 3. The signal for operating the robot 4 is transmitted from the terminal device 3 to the robot 4 via the server device 2 or other devices. The signal for the operation may be directly transmitted from the terminal device 3 to the robot 4. The robot 4 operates in response to a received signal, and the robot 4 acquires or detects the location where the robot 4 is located, such as image data and audio data acquired through a camera, a microphone, and other devices mounted on the robot 4. The data is transmitted to the terminal device 3. As a result, the user can obtain the experience as if he / she is in the place where the robot 4 is located through the terminal device 3 and the robot 4. The data transmitted from the robot 4 may be transmitted to the terminal device 3 via the server device 2 or other devices, or may be transmitted directly to the terminal device 3.
 [メッシュネットワーク]
 本実施形態では、複数のロボット4が特定のエリアに配置され、その特定のエリアに配置された複数のロボット4がメッシュネットワークを形成する態様について説明する。メッシュネットワークは、複数の通信ノードが網の目(メッシュ)状の伝送経路を形成する通信ネットワークである。図2を参照して、具体的に説明する。
[Mesh network]
In the present embodiment, a mode in which a plurality of robots 4 are arranged in a specific area and a plurality of robots 4 arranged in the specific area form a mesh network will be described. A mesh network is a communication network in which a plurality of communication nodes form a mesh-like transmission path. A specific description will be given with reference to FIG.
 図2は、あるエリアAに11台のロボット4が配置され、それら11台のロボット4によりメッシュネットワークが形成されていることを例示する。エリアAの大きさや、エリアAに配置するロボット4の台数は、任意に設定することができる。 FIG. 2 illustrates that 11 robots 4 are arranged in a certain area A, and a mesh network is formed by these 11 robots 4. The size of the area A and the number of robots 4 arranged in the area A can be arbitrarily set.
 図2では、ユーザUが端末装置3を用いて、ロボットIDが“A11”であるロボット4eを遠隔操作する。ユーザUが遠隔操作するロボット4eは、例えば、以下のように選定される。 In FIG. 2, the user U remotely controls the robot 4e having the robot ID "A11" by using the terminal device 3. The robot 4e remotely controlled by the user U is selected, for example, as follows.
 最初に、ユーザUが端末装置3を操作して、エリアAの中で所望する場所又は位置を指定し、遠隔操作するロボット4を検索する。続いて、サーバ装置2は、ユーザUにより指定された場所又は位置に配置されたロボット4eを、ユーザUが遠隔操作するロボット4として選定する。 First, the user U operates the terminal device 3, specifies a desired place or position in the area A, and searches for the robot 4 to be remotely controlled. Subsequently, the server device 2 selects the robot 4e arranged at the place or position designated by the user U as the robot 4 remotely controlled by the user U.
 図2では、端末装置3とロボット4eとの間の通信経路として、メッシュネットワーク上のロボット4a、ロボット4b、ロボット4c及びロボット4dを経由する経路が選定されている。したがって、端末装置3は、メッシュネットワーク上のロボット4a、ロボット4b、ロボット4c及びロボット4dを介して、ロボット4eと通信することになる。メッシュネットワーク上の通信経路は、例えば、以下のように選定される。 In FIG. 2, as a communication path between the terminal device 3 and the robot 4e, a route via the robot 4a, the robot 4b, the robot 4c, and the robot 4d on the mesh network is selected. Therefore, the terminal device 3 communicates with the robot 4e via the robot 4a, the robot 4b, the robot 4c, and the robot 4d on the mesh network. The communication path on the mesh network is selected, for example, as follows.
 最初に、サーバ装置2は、端末装置3とロボット4eとの間に介在し得るメッシュネットワーク上の各ロボット4の位置情報及び各ロボット4の状況情報を取得する。状況情報に含まれる状況には、例えば、ロボット4の起動状況、ロボット4の充電状況、ロボット4の通信状況及びロボット4の利用状況等がある。ロボット4の位置情報及びロボット4の状況情報の詳細については、後述する。 First, the server device 2 acquires the position information of each robot 4 on the mesh network that may intervene between the terminal device 3 and the robot 4e, and the status information of each robot 4. The situations included in the status information include, for example, the activation status of the robot 4, the charging status of the robot 4, the communication status of the robot 4, the usage status of the robot 4, and the like. Details of the position information of the robot 4 and the situation information of the robot 4 will be described later.
 続いて、サーバ装置2は、取得した各ロボット4の位置情報及び状況情報に基づいて、メッシュネットワーク上の通信経路として最適な経路を選定する。例えば、以下(1)乃至(6)の基準を適宜組み合わせる等して、最適な経路を選定することができる。その際、基準ごとに重みを付ける等して優先度を算定し、優先度の最も高い経路を選定することとしてもよい。 Subsequently, the server device 2 selects the optimum route as the communication route on the mesh network based on the acquired position information and status information of each robot 4. For example, the optimum route can be selected by appropriately combining the following criteria (1) to (6). At that time, the priority may be calculated by weighting each criterion, and the route with the highest priority may be selected.
 (1)ロボット4の位置情報に基づいて、最短経路を形成するロボットを優先的に選定する。
 (2)ロボット4の起動状況に基づいて、現在起動しているロボットを優先的に選定する。
 (3)ロボット4の充電状況に基づいて、バッテリーの残容量が多いロボットを優先的に選定する。
 (4)ロボット4の通信状況に基づいて、通信部の電波強度が高いロボットを優先的に選定する。
 (5)ロボット4の利用状況に基づいて、直近に充電又はメンテナンスがなされたロボットを優先的に選定する。
 (6)ロボット4の利用状況に基づいて、故障フラグがOFFになっているロボットを優先的に選定する。
(1) Based on the position information of the robot 4, the robot that forms the shortest path is preferentially selected.
(2) Based on the activation status of the robot 4, the currently activated robot is preferentially selected.
(3) Based on the charging status of the robot 4, the robot having a large remaining battery capacity is preferentially selected.
(4) Based on the communication status of the robot 4, the robot having a high radio field strength in the communication unit is preferentially selected.
(5) Based on the usage status of the robot 4, the robot that has been recently charged or maintained is preferentially selected.
(6) Based on the usage status of the robot 4, the robot whose failure flag is turned off is preferentially selected.
 ここで、各ロボット4及びサーバ装置2は、例えば、エリア情報、ロボット情報、ロボットの位置情報、ロボットの状況情報及びロボットの伝送能力情報を、それぞれの記憶装置(記憶部)に記憶して管理する。 Here, each robot 4 and the server device 2 store, for example, area information, robot information, robot position information, robot status information, and robot transmission capability information in their respective storage devices (storage units) for management. do.
 エリア情報は、メッシュネットワークを構築するエリアに関する情報である。エリア情報には、例えば、エリアを識別するエリアID、当該エリアを含む地図情報、当該エリアの範囲を示す情報、及び当該エリアに配置可能なロボット4の台数等が含まれる。 Area information is information about the area where the mesh network is constructed. The area information includes, for example, an area ID for identifying the area, map information including the area, information indicating the range of the area, the number of robots 4 that can be arranged in the area, and the like.
 ロボット情報は、各ロボット4に関する情報である。ロボット情報には、例えば、ロボット4を識別するロボットID、当該ロボット4の通信可能な範囲に関する情報、当該ロボット4の能力に関する情報、及び当該ロボット4のカメラの性能に関する情報等が含まれる。 Robot information is information about each robot 4. The robot information includes, for example, a robot ID that identifies the robot 4, information on the communicable range of the robot 4, information on the capabilities of the robot 4, information on the performance of the camera of the robot 4, and the like.
 ロボットの位置情報は、各ロボット4の位置に関する情報である。ロボット位置情報には、例えば、ロボットID、当該ロボット4が配置されているエリアのエリアID、及び当該ロボット4の現在位置等が含まれる。ロボット4の現在位置は、例えば、ロボット4に搭載されるGPS(Global Positioning System)機能により測定することができる。 The robot position information is information about the position of each robot 4. The robot position information includes, for example, a robot ID, an area ID of an area where the robot 4 is arranged, a current position of the robot 4, and the like. The current position of the robot 4 can be measured by, for example, a GPS (Global Positioning System) function mounted on the robot 4.
 ロボットの状況情報は、各ロボット4の状況に関する情報である。ロボットの状況情報には、例えば、ロボットID、当該ロボット4の起動状況に関する情報、当該ロボット4の充電状況に関する情報、当該ロボット4の通信状況に関する情報、及び当該ロボット4の利用状況に関する情報等が含まれる。 The robot status information is information regarding the status of each robot 4. The robot status information includes, for example, a robot ID, information on the activation status of the robot 4, information on the charging status of the robot 4, information on the communication status of the robot 4, information on the usage status of the robot 4, and the like. included.
 ロボットの伝送能力情報は、各ロボット4におけるデータ伝送能力に関する情報である。伝送能力情報には、例えば、ロボットID、他のロボット4のロボットID、並びに当該他のロボット4との間の通信に基づくスループット、伝送速度及び通信帯域等が含まれる。 The transmission capacity information of the robot is information related to the data transmission capacity of each robot 4. The transmission capability information includes, for example, a robot ID, a robot ID of another robot 4, a throughput based on communication with the other robot 4, a transmission speed, a communication band, and the like.
 エリア情報、ロボット情報、ロボットの位置情報、ロボットの状況情報及びロボットの伝送能力情報に含まれる各データは、各ロボット4に対して設定又は各ロボット4で逐次測定されて、記憶装置に記憶され、さらにサーバ装置2に送信される。サーバ装置2は、各ロボット4から受信した各データに基づいて、エリア情報、ロボット情報、ロボットの位置情報、ロボットの状況情報及びロボットの伝送能力情報を集積して管理する。サーバ装置2は、同一エリアに配置される各ロボット4に対し、同一エリアに配置される他のロボット4から取得した各データを、定期的に送信する。各ロボット4は、サーバ装置2から受信した各データに基づいて、エリア情報、ロボット情報、ロボットの位置情報、ロボットの状況情報及びロボットの伝送能力情報を更新する。 Each data included in area information, robot information, robot position information, robot status information, and robot transmission capability information is set for each robot 4 or sequentially measured by each robot 4 and stored in a storage device. , Further transmitted to the server device 2. The server device 2 collects and manages area information, robot information, robot position information, robot status information, and robot transmission capability information based on each data received from each robot 4. The server device 2 periodically transmits each data acquired from other robots 4 arranged in the same area to each robot 4 arranged in the same area. Each robot 4 updates area information, robot information, robot position information, robot status information, and robot transmission capability information based on each data received from the server device 2.
 なお、各ロボット4及びサーバ装置2に記憶される上記各情報のデータ構成やそれぞれのデータの組合せは、上記に限定されず、運用に合わせて任意に設定することができる。 The data structure of each of the above information stored in each robot 4 and the server device 2 and the combination of the respective data are not limited to the above, and can be arbitrarily set according to the operation.
 [ロボットの機能的な構成]
 図3を参照して、ロボット4の機能的な構成について説明する。これらの機能は、ロボット4のプロセッサ(制御部)が、記憶装置(記憶部)に記憶されたコンピュータプログラムを読み込んで実行することにより実現される。ロボット4のハードウェア構成については、後述する。
[Functional configuration of robot]
The functional configuration of the robot 4 will be described with reference to FIG. These functions are realized by the processor (control unit) of the robot 4 reading and executing a computer program stored in the storage device (storage unit). The hardware configuration of the robot 4 will be described later.
 図3に示すように、ロボット4は、機能的な構成として、例えば、通信部41、移動制御部42、及びデータベース43を有する。ロボット4が有する機能は、これらに限定されず、コンピュータが一般的に有する機能、及び他の機能を有してもよい。 As shown in FIG. 3, the robot 4 has, for example, a communication unit 41, a movement control unit 42, and a database 43 as functional configurations. The functions of the robot 4 are not limited to these, and may have functions generally possessed by a computer and other functions.
 データベース43は、ロボット4で実行される処理に必要なデータ、及び当該処理により生成又は設定されたデータ等、各種のデータを記憶する。各種のデータには、上述したエリア情報、ロボット情報、ロボットの位置情報、ロボットの状況情報及びロボットの伝送能力情報が含まれる他、例えば、ロボット4を使用するユーザに関するユーザ情報が含まれる。 The database 43 stores various data such as data necessary for the processing executed by the robot 4 and data generated or set by the processing. The various data include the above-mentioned area information, robot information, robot position information, robot status information, and robot transmission capability information, and also includes, for example, user information regarding a user who uses the robot 4.
 通信部41は、例えば、メッシュネットワークを形成する複数のロボット4と無線通信する。通信部41は、ロボット4と直接通信してもよいし、サーバ装置2や他の装置を介してロボット4と通信してもよい。サーバ装置2や他の装置との通信には、無線による通信に加え、有線による通信が介在してもよい。 The communication unit 41 wirelessly communicates with, for example, a plurality of robots 4 forming a mesh network. The communication unit 41 may directly communicate with the robot 4, or may communicate with the robot 4 via the server device 2 or another device. In addition to wireless communication, wired communication may intervene in communication with the server device 2 and other devices.
 移動制御部42は、例えば、エリア情報及びロボットの位置情報に基づいて、メッシュネットワークを構成するノードとして機能する位置に自ロボットを移動させる。エリア情報及びロボット位置情報は、データベース43から取得することができる。 The movement control unit 42 moves its own robot to a position that functions as a node constituting the mesh network, for example, based on the area information and the position information of the robot. Area information and robot position information can be acquired from the database 43.
 例えば、移動制御部42は、自ロボットと同じエリア内に位置し、かつ自ロボットの周辺に位置する他のロボットとの距離が所定の範囲におさまるように自ロボットを移動させる。図4を参照して、具体的に説明する。 For example, the movement control unit 42 moves the own robot so that the distance from other robots located in the same area as the own robot and located around the own robot is within a predetermined range. A specific description will be given with reference to FIG.
 図4に示すように、ロボットIDが“A5”であるロボット4cは、同じエリアA内かつ周辺に位置する他のロボット4b、4d、4gから少し離れた位置に存在している。この場合、ロボット4cの移動制御部42は、他のロボット4b、4d、4gとの距離が、それぞれ所定の範囲におさまるように自ロボット4cを移動させる。 As shown in FIG. 4, the robot 4c having the robot ID "A5" exists at a position slightly distant from other robots 4b, 4d, and 4g located in the same area A and in the vicinity. In this case, the movement control unit 42 of the robot 4c moves the own robot 4c so that the distance from the other robots 4b, 4d, and 4g is within a predetermined range.
 自ロボット4cのエリアは、例えば、自ロボット4cのロボットIDである“A5”を用いて、データベース43のエリア情報を参照することで特定することができる。自ロボット4cの位置は、例えば、自ロボット4cのロボットIDである“A5”を用いて、データベース43のロボットの位置情報を参照することで特定することができる。自ロボット4cの周辺に位置する他のロボット4b、4d、4gの位置は、例えば、エリアAのエリアIDを用いて、データベース43のロボットの位置情報を参照することで特定することができる。 The area of the own robot 4c can be specified by referring to the area information of the database 43 by using, for example, "A5" which is the robot ID of the own robot 4c. The position of the own robot 4c can be specified by referring to the position information of the robot in the database 43 by using, for example, "A5" which is the robot ID of the own robot 4c. The positions of the other robots 4b, 4d, and 4g located around the own robot 4c can be specified by referring to the position information of the robot in the database 43, for example, by using the area ID of the area A.
 所定の範囲は、各ロボット4に対して一律に同じ範囲を設定してもよいし、ロボット4ごとに異なる範囲を設定してもよい。また、所定の範囲として、各ロボット4の通信可能な範囲を設定してもよい。この際、各ロボット4の通信可能な範囲内で、それぞれ異なる範囲を設定してもよい。 The predetermined range may be uniformly set to the same range for each robot 4, or a different range may be set for each robot 4. Further, as a predetermined range, a communicable range of each robot 4 may be set. At this time, different ranges may be set within the communicable range of each robot 4.
 所定の範囲を、各ロボット4の通信可能な範囲に設定することで、同一エリア内に配置された各ロボット4を、それぞれ自律的に移動させ、かつメッシュネットワークを構成するノードとして確実に機能させることが可能となる。 By setting a predetermined range to the communicable range of each robot 4, each robot 4 arranged in the same area can be moved autonomously and surely function as a node constituting a mesh network. It becomes possible.
 ここで、ロボット4は、例えばユーザが使用することによって存在する場所が変わり得るため、いつも決まった場所に存在するとは限らない。したがって、場所を移動したロボット4が、自律的にメッシュネットワークを構成する位置に移動することができる本機能は有用となる。また、メッシュネットワークを形成する各ロボット4が本機能を有することで、メッシュネットワークを流動的に形成させることが可能となる。 Here, the robot 4 does not always exist in a fixed place because the place where the robot 4 exists may change depending on, for example, the user's use. Therefore, this function that allows the robot 4 that has moved to a location to autonomously move to a position that constitutes a mesh network is useful. Further, each robot 4 forming the mesh network has this function, so that the mesh network can be formed fluidly.
 なお、同じエリアA内かつ周辺に位置する他のロボット4は、上述したロボット4b、4d、4gに限定されず、任意に選定することができる。例えば、上記ロボット4b、4d、4gの他に、ロボット4f、4hを加えることとしてもよい。 The other robots 4 located in and around the same area A are not limited to the robots 4b, 4d, and 4g described above, and can be arbitrarily selected. For example, in addition to the robots 4b, 4d, and 4g, robots 4f and 4h may be added.
 図3の説明に戻る。移動制御部42は、端末装置3とロボット4との間の通信経路の一部に選定された他のロボット4におけるデータ伝送能力が不足している場合に、データ伝送能力が不足している他のロボット4を経由する経路を二重化するための経路を形成する位置に自ロボット4を移動させる。図5を参照して、具体的に説明する。 Return to the explanation in Fig. 3. The movement control unit 42 has insufficient data transmission capability when the data transmission capability of another robot 4 selected as a part of the communication path between the terminal device 3 and the robot 4 is insufficient. The robot 4 is moved to a position where a route for duplicating the route via the robot 4 is formed. A specific description will be given with reference to FIG.
 図5に示すように、端末装置3とロボット4eとの間の通信経路は、ロボット4aからロボット4b、4c、4dを経由してロボット4eに接続する経路と、ロボット4aからロボット4f、4g、4hを経由してロボット4eに接続する経路とによって、二重化されている。ここでは、ロボット4f、4g、4hが、基準となる定位置から、ロボット4b、4c、4dに近接する位置に移動し、通信経路を二重化している。 As shown in FIG. 5, the communication paths between the terminal device 3 and the robot 4e include a path connecting the robot 4a to the robot 4e via the robots 4b, 4c, and 4d, and a path from the robot 4a to the robot 4f, 4g. It is duplicated by a route connecting to the robot 4e via 4h. Here, the robots 4f, 4g, and 4h move from a reference fixed position to a position close to the robots 4b, 4c, and 4d, and the communication path is duplicated.
 この場合、最初に、ロボット4f、4g、4hの移動制御部42は、端末装置3とロボット4eとの間の通信経路を形成するロボット4a乃至4eのいずれかのデータ伝送能力が不足しているか否かを判定する。ロボット4a乃至4eのデータ伝送能力は、ロボット4a乃至4eのロボットIDを用いて、データベース43のロボットの伝送能力情報を参照することで特定することができる。 In this case, first, does the movement control unit 42 of the robots 4f, 4g, and 4h lack the data transmission capability of any of the robots 4a to 4e forming the communication path between the terminal device 3 and the robot 4e? Judge whether or not. The data transmission capability of the robots 4a to 4e can be specified by referring to the transmission capability information of the robot in the database 43 using the robot IDs of the robots 4a to 4e.
 データ伝送能力が不足しているか否かは、例えば、所定の下限値を定め、その下限値を下回る場合に、データ伝送能力が不足していると判定することができる。所定の下限値は、ネットワークの伝送基準等に基づいて適宜定めることができる。 Whether or not the data transmission capacity is insufficient can be determined, for example, by setting a predetermined lower limit value and if it is below the lower limit value, it can be determined that the data transmission capacity is insufficient. A predetermined lower limit value can be appropriately set based on a network transmission standard or the like.
 データ伝送能力が不足しているか否かの判定は、端末装置3とロボット4eとの間の通信経路が確立するときから切断するまでの間、継続的又は断続的に実行することが望ましい。 It is desirable to determine whether or not the data transmission capacity is insufficient continuously or intermittently from the time when the communication path between the terminal device 3 and the robot 4e is established to the time when the communication path is disconnected.
 続いて、ロボット4f、4g、4hの移動制御部42は、例えばロボット4b、4c、4dのデータ伝送能力が不足していると判定した場合に、ロボット4b、4c、4dに近接する位置に自ロボット4f、4g、4hをそれぞれ移動させ、図5に示すように通信経路を二重化させる。 Subsequently, when the movement control unit 42 of the robots 4f, 4g, and 4h determines that the data transmission capability of the robots 4b, 4c, and 4d is insufficient, the robots 4b, 4c, and 4d are located close to the robots 4b, 4c, and 4d. The robots 4f, 4g, and 4h are moved, respectively, and the communication path is duplicated as shown in FIG.
 ここで、図5では、ロボット4f、4g、4hを移動させて、通信経路を二重化させているが、二重化させる経路は、これに限定されない。例えば、ロボット4cのデータ伝送能力が不足していると判定した場合に、ロボット4cに近接する位置にロボット4gを移動させ、通信経路を二重化させてもよい。この場合の通信経路は、ロボット4bとロボット4dとの間の経路が、ロボット4cを経由する経路と、ロボット4gを経由する経路との二つの経路によって二重化されることになる。 Here, in FIG. 5, the robots 4f, 4g, and 4h are moved to duplicate the communication path, but the route to be duplicated is not limited to this. For example, when it is determined that the data transmission capacity of the robot 4c is insufficient, the robot 4g may be moved to a position close to the robot 4c to duplicate the communication path. In this case, the communication path between the robot 4b and the robot 4d is duplicated by two paths, a path via the robot 4c and a path via the robot 4g.
 このような機能を有することで、通信経路を形成するロボット4の中に、例えば通信帯域が不足するロボット4が発生した場合であっても、そのロボット4を経由する経路を二重化させることができるため、安定した通信環境を提供することが可能となる。 By having such a function, even if a robot 4 having a insufficient communication band is generated among the robots 4 forming the communication path, the path via the robot 4 can be duplicated. Therefore, it is possible to provide a stable communication environment.
 [効果]
 以上のように、本実施形態に係るロボット4によれば、メッシュネットワークを構築するエリアに配置された複数のロボットの位置情報に基づいて、メッシュネットワークを構成するノードとして機能できる位置に自ロボットを自律的に移動させることができる。したがって、ロボット4を自律的に移動させながら、メッシュネットワークを流動的に形成させることが可能となる。
[effect]
As described above, according to the robot 4 according to the present embodiment, the own robot is placed at a position that can function as a node constituting the mesh network based on the position information of a plurality of robots arranged in the area for constructing the mesh network. It can be moved autonomously. Therefore, it is possible to fluidly form a mesh network while autonomously moving the robot 4.
 また、本実施形態に係るロボット4によれば、自ロボットと同一エリア内に位置し、かつ自ロボットの周辺に位置する他のロボットとの距離が所定の範囲におさまるように自ロボットを移動させることができる。したがって、同一エリア内に配置された各ロボット4を、それぞれの間隔が所定の範囲におさまる位置に自律的に移動させながら、メッシュネットワークを形成させることが可能となる。 Further, according to the robot 4 according to the present embodiment, the own robot is moved so that the distance from other robots located in the same area as the own robot and located in the vicinity of the own robot is within a predetermined range. be able to. Therefore, it is possible to form a mesh network while autonomously moving each robot 4 arranged in the same area to a position where the distance between the robots 4 is within a predetermined range.
 さらに、本実施形態に係るロボット4によれば、通信経路の一部に選定された他のロボットのデータ伝送能力が不足した場合であっても、データ伝送能力が不足した他のロボットを経由する経路を二重化するための経路を形成する位置に自ロボットを移動させることができる。したがって、ロボットによるメッシュネットワークにおいて、安定した通信環境を提供することが可能となる。 Further, according to the robot 4 according to the present embodiment, even if the data transmission capacity of the other robot selected as a part of the communication path is insufficient, the robot passes through the other robot having the insufficient data transmission capacity. The robot can be moved to a position that forms a route for duplicating the route. Therefore, it is possible to provide a stable communication environment in a mesh network using a robot.
 [コンピュータのハードウェア構成]
 図6を参照して、本実施形態におけるロボット4に搭載されるコンピュータ(情報処理装置)及びその他の主な構成の例示的なハードウェア構成を説明する。ロボット4は、ハードウェア構成として、例えば、プロセッサ401、RAM(Random Access Memory)402、ROM(Read only Memory)403、通信部404、入力部405、表示部406、駆動部407、及びカメラ408を備える。図6に示す構成は一例であり、ロボット4は、これらの構成のうち一部を備えなくてもよいし、これら以外の構成を備えてもよい。例えば、ロボット4は、スピーカ、マイク、各種センサを備えてもよい。
[Computer hardware configuration]
With reference to FIG. 6, an exemplary hardware configuration of a computer (information processing device) mounted on the robot 4 and other main configurations in the present embodiment will be described. As a hardware configuration, the robot 4 includes, for example, a processor 401, a RAM (Random Access Memory) 402, a ROM (Read only Memory) 403, a communication unit 404, an input unit 405, a display unit 406, a drive unit 407, and a camera 408. Be prepared. The configuration shown in FIG. 6 is an example, and the robot 4 may or may not include some of these configurations, or may include other configurations. For example, the robot 4 may include a speaker, a microphone, and various sensors.
 プロセッサ401は、ロボット4の演算部であり、例えば、CPU(Central Processing Unit)である。プロセッサ401は、RAM402又はROM403に記憶されたプログラムの実行に関する制御やデータの演算、加工を行う制御部である。プロセッサ401は、ロボット4が備える他の構成と、プログラムとの協働により、上記実施形態で説明したロボット4の機能を実現する。 The processor 401 is a calculation unit of the robot 4, and is, for example, a CPU (Central Processing Unit). The processor 401 is a control unit that controls execution of a program stored in RAM 402 or ROM 403, calculates data, and processes data. The processor 401 realizes the function of the robot 4 described in the above embodiment by cooperating with the program and other configurations included in the robot 4.
 また、プロセッサ401は、例えば、ロボットを介したコミュニケーションを制御するプログラム(コミュニケーションプログラム)を実行する。プロセッサ401は、入力部405や通信部404から種々のデータを受け取り、データの演算結果を表示部406に表示したり、RAM402に格納したりする。 Further, the processor 401 executes, for example, a program (communication program) for controlling communication via a robot. The processor 401 receives various data from the input unit 405 and the communication unit 404, displays the calculation result of the data on the display unit 406, and stores the data in the RAM 402.
 コミュニケーションプログラムは、RAM402やROM403等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部404により接続される通信ネットワークを介して提供されてもよい。ロボット4では、プロセッサ401がコミュニケーションプログラムを実行することで、ロボット4を制御するための様々な動作が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、ロボット4は、プロセッサ401とRAM402やROM403が一体化したLSI(Large-Scale Integration)を備えていてもよい。 The communication program may be stored in a storage medium readable by a computer such as RAM 402 or ROM 403 and provided, or may be provided via a communication network connected by the communication unit 404. In the robot 4, various operations for controlling the robot 4 are realized by the processor 401 executing the communication program. It should be noted that these physical configurations are examples and do not necessarily have to be independent configurations. For example, the robot 4 may include an LSI (Large-Scale Integration) in which a processor 401 and a RAM 402 or a ROM 403 are integrated.
 RAM402及びROM403は、各種処理に必要なデータ及び処理結果のデータを記憶する記憶部である。ロボット4は、RAM402及びROM403以外に、ハードディスクドライブ(HDD)等の大容量の記憶部を備えてもよい。 The RAM 402 and ROM 403 are storage units for storing data required for various processes and data of processing results. In addition to the RAM 402 and the ROM 403, the robot 4 may include a large-capacity storage unit such as a hard disk drive (HDD).
 通信部404は、外部装置と有線又は無線により、ネットワークを介したデータ通信を行うための装置である。 The communication unit 404 is a device for performing data communication via a network with an external device by wire or wirelessly.
 入力部405は、ロボット4の外部からデータを入力するためのデバイスである。入力部405は、ユーザからデータの入力を受け付けるものとして、例えば、キーボード及びタッチパネルを含むこととしてよい。また、入力部405は、音声入力のためのマイクを含んでもよい。 The input unit 405 is a device for inputting data from the outside of the robot 4. The input unit 405 may include, for example, a keyboard and a touch panel for receiving data input from the user. Further, the input unit 405 may include a microphone for voice input.
 表示部406は、各種情報を表示するためのデバイスである。表示部406は、プロセッサ401による演算結果を視覚的に表示するものとして、例えば、LCD(Liquid Crystal Display)により構成されてもよい。表示部406は、ロボット4のカメラ408で撮影された画像を表示してもよい。 The display unit 406 is a device for displaying various information. The display unit 406 may be configured by, for example, an LCD (Liquid Crystal Display) as a device for visually displaying the calculation result by the processor 401. The display unit 406 may display an image taken by the camera 408 of the robot 4.
 駆動部407は、遠隔操作可能なアクチュエータを含み、車輪等の移動部やマニピュレータ等を含む。ロボット4が移動型のロボットである場合、駆動部407は、少なくとも車輪等の移動部を含むが、マニピュレータを含んでもよい。ロボット4が装着型である場合、駆動部407は、少なくともマニピュレータを含む。 The drive unit 407 includes an actuator that can be remotely controlled, and includes a moving unit such as a wheel, a manipulator, and the like. When the robot 4 is a mobile robot, the drive unit 407 includes at least a moving unit such as a wheel, but may include a manipulator. When the robot 4 is wearable, the drive unit 407 includes at least a manipulator.
 カメラ408は、静止画又は動画を撮像する撮像素子を含み、撮像した静止画又は動画を、通信部404を介して外部装置に送信する。 The camera 408 includes an image sensor that captures a still image or a moving image, and transmits the captured still image or the moving image to an external device via the communication unit 404.
 図7を参照して、本実施形態におけるサーバ装置2及び端末装置3を実装するためのコンピュータ(情報処理装置)の例示的なハードウェア構成を説明する。ここでは、サーバ装置2のハードウェア構成について説明するが、端末装置3のハードウェア構成も同様であるため、その説明を省略する。 An exemplary hardware configuration of a computer (information processing device) for mounting the server device 2 and the terminal device 3 in the present embodiment will be described with reference to FIG. 7. Here, the hardware configuration of the server device 2 will be described, but since the hardware configuration of the terminal device 3 is also the same, the description thereof will be omitted.
 図7に示すように、サーバ装置2は、ハードウェア構成として、例えば、プロセッサ201、メモリ202、記憶装置203、通信部204、入力部205、及び表示部206を備える。サーバ装置2は、これらの構成のうち一部を備えなくてもよい。また、サーバ装置2は、これらの構成以外に、汎用コンピュータ又は専用コンピュータが一般的に備える他の構成を備えてもよい。 As shown in FIG. 7, the server device 2 includes, for example, a processor 201, a memory 202, a storage device 203, a communication unit 204, an input unit 205, and a display unit 206 as hardware configurations. The server device 2 does not have to include a part of these configurations. In addition to these configurations, the server device 2 may have other configurations generally provided by a general-purpose computer or a dedicated computer.
 プロセッサ201は、例えば、CPUである。プロセッサ201は、メモリ202に記憶されているプログラムを実行することにより、サーバ装置2における各種の処理を制御する制御部である。プロセッサ201は、サーバ装置2が備える他の構成と、プログラムとの協働により、サーバ装置2の機能を実現する。 The processor 201 is, for example, a CPU. The processor 201 is a control unit that controls various processes in the server device 2 by executing a program stored in the memory 202. The processor 201 realizes the function of the server device 2 by cooperating with the program and other configurations included in the server device 2.
 メモリ202は、例えばRAM等の記憶媒体である。メモリ202には、プロセッサ201によって実行されるプログラムのプログラムコードや、プログラムの実行時に必要となるデータが、記憶装置203等から一時的に読み出される、又は予め記憶されている。 The memory 202 is a storage medium such as RAM. In the memory 202, the program code of the program executed by the processor 201 and the data required for executing the program are temporarily read from the storage device 203 or the like, or stored in advance.
 記憶装置203は、例えばハードディスクドライブ等の不揮発性の記憶媒体である。記憶装置203は、オペレーティングシステム、各種プログラム、及びデータ等を記憶する。 The storage device 203 is a non-volatile storage medium such as a hard disk drive. The storage device 203 stores an operating system, various programs, data, and the like.
 通信部204は、サーバ装置2の外部の装置と有線又は無線により、ネットワークを介したデータ通信を行うための装置である。通信部204は、サーバ装置2に取り外し可能に接続されてもよい。その場合、通信部204は、例えばUSB(Universal Serial Bus)等のインタフェースを介してサーバ装置2に接続される。 The communication unit 204 is a device for performing data communication via a network with an external device of the server device 2 by wire or wirelessly. The communication unit 204 may be detachably connected to the server device 2. In that case, the communication unit 204 is connected to the server device 2 via an interface such as USB (Universal Serial Bus).
 入力部205は、ユーザからの入力を受け付けるためのデバイスや、サーバ装置2の外部からデータを入力するためのデバイスである。入力部205の具体例として、キーボード、マウス、タッチパネル、ジョイスティック、各種センサ、ウェアラブルデバイスや、各種記憶媒体に記憶されているデータを読み取るためのドライブ装置等がある。入力部205は、サーバ装置2に取り外し可能に接続されてもよい。その場合、入力部205は、例えばUSB等のインタフェースを介してサーバ装置2に接続される。 The input unit 205 is a device for receiving input from the user and a device for inputting data from the outside of the server device 2. Specific examples of the input unit 205 include a keyboard, a mouse, a touch panel, a joystick, various sensors, a wearable device, a drive device for reading data stored in various storage media, and the like. The input unit 205 may be detachably connected to the server device 2. In that case, the input unit 205 is connected to the server device 2 via an interface such as USB.
 表示部206は、各種情報を表示するためのデバイスである。表示部206の具体例としては、例えば液晶ディスプレイや有機ELディスプレイ、ウェアラブルデバイスのディスプレイ等が挙げられる。表示部206は、サーバ装置2の外部に取り外し可能に接続されてもよい。その場合、表示部206は、例えばディスプレイケーブル等を介してサーバ装置2に接続される。また、入力部205としてタッチパネルが採用される場合に、表示部206は、入力部205と一体化して構成することも可能である。 The display unit 206 is a device for displaying various information. Specific examples of the display unit 206 include a liquid crystal display, an organic EL display, a display of a wearable device, and the like. The display unit 206 may be detachably connected to the outside of the server device 2. In that case, the display unit 206 is connected to the server device 2 via, for example, a display cable or the like. Further, when the touch panel is adopted as the input unit 205, the display unit 206 can be integrally configured with the input unit 205.
 [変形例]
 本実施形態におけるシステム1(又は、サーバ装置2、端末装置3若しくはロボット4)を実装するためのプログラムは、CD-ROM等の光学ディスク、磁気ディスク、半導体メモリ等の各種のコンピュータ読み取り可能な記録媒体に記録しておくことができる。また、記録媒体を通じて、又は通信ネットワーク等を介して上記のプログラムをダウンロードすることにより、コンピュータにインストール又はロードすることができる。
[Modification example]
The program for mounting the system 1 (or the server device 2, the terminal device 3 or the robot 4) in the present embodiment is a computer-readable recording of various computer-readable records such as an optical disk such as a CD-ROM, a magnetic disk, and a semiconductor memory. It can be recorded on a medium. It can also be installed or loaded on a computer by downloading the above program through a recording medium or via a communication network or the like.
 1…システム、2…サーバ装置、3…端末装置、4…ロボット、41…通信部、42…移動制御部、43…データベース、201…プロセッサ、202…メモリ、203…記憶装置、204…通信部、205…入力部、206…表示部、401…プロセッサ、402…RAM、403…ROM、404…通信部、405…入力部、406…表示部、407…駆動部、408…カメラ 1 ... system, 2 ... server device, 3 ... terminal device, 4 ... robot, 41 ... communication unit, 42 ... mobile control unit, 43 ... database, 201 ... processor, 202 ... memory, 203 ... storage device, 204 ... communication unit , 205 ... Input unit, 206 ... Display unit, 401 ... Processor, 402 ... RAM, 403 ... ROM, 404 ... Communication unit, 405 ... Input unit, 406 ... Display unit, 407 ... Drive unit, 408 ... Camera

Claims (5)

  1.  メッシュネットワークを形成する固定されていない複数のロボットと無線通信可能な通信部と、
     前記メッシュネットワークを構築するエリアに関するエリア情報、及び前記ロボットの位置情報に基づいて、前記メッシュネットワークを構成するノードとして機能する位置に自ロボットを移動させる移動制御部と、
     を備えるロボット。
    A communication unit capable of wireless communication with multiple non-fixed robots that form a mesh network,
    Based on the area information about the area for constructing the mesh network and the position information of the robot, a movement control unit that moves the own robot to a position that functions as a node constituting the mesh network, and a movement control unit.
    A robot equipped with.
  2.  前記移動制御部は、前記エリア内に位置し、かつ周辺に位置する他の前記ロボットとの距離が所定の範囲におさまるように自ロボットを移動させる、
     請求項1記載のロボット。
    The movement control unit moves its own robot so that the distance from other robots located in the area and in the vicinity is within a predetermined range.
    The robot according to claim 1.
  3.  前記移動制御部は、通信経路の一部に選定された他の前記ロボットにおけるデータ伝送能力が不足している場合に、当該データ伝送能力が不足している他の前記ロボットを経由する経路を二重化するための経路を形成する位置に自ロボットを移動させる、
     請求項1又は2記載のロボット。
    When the data transmission capability of the other robot selected as a part of the communication path is insufficient, the movement control unit duplicates the path via the other robot having the insufficient data transmission capability. Move your robot to a position that forms a path for
    The robot according to claim 1 or 2.
  4.  前記移動制御部は、各前記ロボットにおけるデータ伝送能力に関する伝送能力情報に基づいて、前記通信経路の一部に選定された他の前記ロボットにおけるデータ伝送能力が不足しているか否かを判定し、当該データ伝送能力が不足していると判定した場合に、前記二重化するための経路を形成する位置に自ロボットを移動させる、
     請求項3記載のロボット。
    The movement control unit determines whether or not the data transmission capacity of the other robots selected as a part of the communication path is insufficient based on the transmission capacity information regarding the data transmission capacity of each robot. When it is determined that the data transmission capacity is insufficient, the own robot is moved to a position forming the path for duplication.
    The robot according to claim 3.
  5.  コンピュータを、
     メッシュネットワークを形成する固定されていない複数のロボットと無線通信可能な通信部、
     前記メッシュネットワークを構築するエリアに関するエリア情報、及び前記ロボットの位置情報に基づいて、前記メッシュネットワークを構成するノードとして機能する位置に自ロボットを移動させる移動制御部、
     として機能させるためのプログラム。
    Computer,
    A communication unit that can wirelessly communicate with multiple non-fixed robots that form a mesh network,
    A movement control unit that moves its own robot to a position that functions as a node constituting the mesh network based on the area information about the area for constructing the mesh network and the position information of the robot.
    A program to function as.
PCT/JP2021/038341 2020-10-20 2021-10-18 Robot and program WO2022085607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-176157 2020-10-20
JP2020176157A JP2022067445A (en) 2020-10-20 2020-10-20 Robot and program

Publications (1)

Publication Number Publication Date
WO2022085607A1 true WO2022085607A1 (en) 2022-04-28

Family

ID=81290471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038341 WO2022085607A1 (en) 2020-10-20 2021-10-18 Robot and program

Country Status (2)

Country Link
JP (1) JP2022067445A (en)
WO (1) WO2022085607A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216768A1 (en) * 2017-05-26 2018-11-29 京セラ株式会社 Communication system, communication buoy, and control device
JP2019033323A (en) * 2017-08-04 2019-02-28 株式会社デンソー Base station device, communication system, and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216768A1 (en) * 2017-05-26 2018-11-29 京セラ株式会社 Communication system, communication buoy, and control device
JP2019033323A (en) * 2017-08-04 2019-02-28 株式会社デンソー Base station device, communication system, and communication method

Also Published As

Publication number Publication date
JP2022067445A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
US11383382B2 (en) Safety system for integrated human/robotic environments
JP6440745B2 (en) Method and system for augmented reality displaying a virtual representation of the action of a robotic device
US9223494B1 (en) User interfaces for wearable computers
KR20200084934A (en) Apparatus for controlling driving of vehicle and method for performing calibration thereof
CN109131340A (en) Active vehicle adjusting performance based on driving behavior
CN103885444A (en) Information processing method, mobile electronic equipment and decision-making control equipment
WO2022085607A1 (en) Robot and program
CN115357311A (en) Travel information sharing method and device, computer equipment and storage medium
JP6663309B2 (en) Clients and programs
JP2012026750A (en) Portable terminal and communication system
US9071929B2 (en) Portable device and associated position method
JP2022094838A (en) Information processing device, information processing system, and program
WO2022091787A1 (en) Communication system, robot, and storage medium
JP2023099556A (en) Imaging method
KR101262936B1 (en) Gps logger for mobile equipment and interconnection method thereof
WO2022038794A1 (en) Information processing device, information processing method, and program
US20210249130A1 (en) Information processing device, information processing method, and system
KR20160057647A (en) System and method for driving robot using user terminal
JP7409282B2 (en) Servers, charging systems and programs
JP2019063952A (en) Management system and control method
JP7287254B2 (en) Information processing device, information processing method, and program
CN114872051B (en) Traffic map acquisition system, method, robot and computer readable storage medium
WO2022065507A1 (en) Communication system and terminal device
JP7370707B2 (en) computer system
EP3945513A1 (en) Selection of an alternate destination in response to a contingency event

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882748

Country of ref document: EP

Kind code of ref document: A1