WO2022085606A1 - Method for removing viruses in protein solution - Google Patents

Method for removing viruses in protein solution Download PDF

Info

Publication number
WO2022085606A1
WO2022085606A1 PCT/JP2021/038339 JP2021038339W WO2022085606A1 WO 2022085606 A1 WO2022085606 A1 WO 2022085606A1 JP 2021038339 W JP2021038339 W JP 2021038339W WO 2022085606 A1 WO2022085606 A1 WO 2022085606A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
protein solution
lrv
irradiation
treatment
Prior art date
Application number
PCT/JP2021/038339
Other languages
French (fr)
Japanese (ja)
Other versions
WO2022085606A9 (en
Inventor
幹弘 柚木
健 浦山
Original Assignee
一般社団法人日本血液製剤機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人日本血液製剤機構 filed Critical 一般社団法人日本血液製剤機構
Priority to JP2022557504A priority Critical patent/JPWO2022085606A1/ja
Publication of WO2022085606A1 publication Critical patent/WO2022085606A1/en
Publication of WO2022085606A9 publication Critical patent/WO2022085606A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units

Definitions

  • the present invention relates to a method for removing a virus in a protein solution and a method for producing a protein solution from which the virus has been removed.
  • virus inactivation and / or removal (hereinafter abbreviated as "virus inactivation / removal") steps are included. It has been incorporated.
  • virus inactivation condition is designed as long as both the condition that the protein is not denatured and the condition that the virus is inactivated are satisfied. Therefore, if an attempt is made to effectively inactivate all viruses, the amount of protein denatured increases, the purpose of formulation cannot be achieved, or profitability deteriorates.
  • virus inactivation / removal techniques are, in a sense, incomplete techniques, and it is extremely difficult to completely inactivate and remove all viruses while avoiding protein denaturation with one method. It is difficult, and in the production of biopharmaceuticals, it is common to simply combine multiple virus inactivation / removal steps.
  • Non-Patent Document 1 As virus inactivation / removal methods, liquid / dry heat treatment, organic solvent / surfactant treatment (SD treatment), low pH treatment, virus removal membrane treatment, etc. are the virus inactivation / removal steps for manufacturing biopharmaceuticals, etc. It has been introduced into the process (Patent Documents 1 to 3 and Non-Patent Document 1).
  • the above-mentioned liquid / dry heat treatment and SD treatment are known as effective inactivating treatments against enveloped viruses such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV).
  • enveloped viruses such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV).
  • HCV hepatitis C virus
  • non-enveloped viruses such as human parvovir B19 (hereinafter abbreviated as "B19”) and hepatitis A virus (hereinafter abbreviated as "HAV”) resist the above-mentioned virus inactivation treatment. It has sex and has the problem that it cannot be expected to have a certain degree of effect on enveloped viruses.
  • the separation operation is performed according to the size of the particles, so that the virus is removed only according to the size regardless of the chemical or thermal properties of the object to be separated. There is an advantage that it can be done. Therefore, in recent years, a membrane filtration method using a virus removing membrane has been generally adopted from the viewpoint of contamination with non-enveloped viruses and the like.
  • parvovirus which is a non-enveloped virus
  • examples of parvovirus include B19, mouse microvirus (hereinafter abbreviated as "MVM”), and porcine parvovirus (hereinafter abbreviated as "PPV”).
  • B19 is a linear single-stranded DNA virus belonging to the Parvoviridae family, and its size is about 23 to 28 nm (ICTV, https://talk.ictvonline.org/ictv-reports/).
  • PCV porcine circovirus
  • PCV is resistant to low pH treatment and heat treatment, and it is difficult to capture the virus in solutions containing PCV even using a virus removal membrane with a pore size of 15 nm, and many biopharmacy There is a problem that the virus removing membrane introduced in the manufacturing process of pharmaceutical products cannot be sufficiently removed. Further, for example, although treatment using an ion exchange resin or the like is performed, it cannot be said that a sufficient effect is obtained.
  • Non-Patent Document 1 Currently, optimization of virus inactivation / removal conditions in the manufacturing process of plasma fractionated products and biopharmacy is designed for each process desired to be introduced, and is based on the guidelines of the International Council for Harmonization of Pharmaceutical Regulations (ICH). Characteristic evaluation is carried out for each process. In addition, in the evaluation of the virus inactivation / removal ability in the entire biopharmacy manufacturing process, a plurality of individually optimized virus inactivation / removal steps are carried out, and the inactivation and removal ability in each step and the total thereof are carried out. It is evaluated in (Non-Patent Document 1).
  • the conditions (band) that can be introduced into the manufacturing process of biopharmacy, etc. are narrow or biased, despite having excellent virus inactivation and removal ability other than the above.
  • radiation eg, ultraviolet rays, electron beams, ⁇ -rays, etc.
  • the mechanism of virus inactivation by irradiation with radiation is to damage viral nucleic acids by energy such as electromagnetic waves and electron beams, and the genome. The smaller the size (that is, the smaller the particle size of the virus), the lower the energy required for inactivation (Non-Patent Document 2).
  • the irradiation amount of radiation eg, ultraviolet rays, electron beams, ⁇ -rays, etc.
  • the irradiation amount of radiation may differ depending on the type of detector even under the same conditions, so it is difficult to standardize the irradiation amount, which also hinders the introduction. It is thought that it is.
  • the subject of the present invention includes a method for inactivating / removing a virus in a protein solution, which comprises a step of integrating irradiation treatment with a virus removing membrane treatment or SD treatment to optimize those conditions, and the above steps. It is to provide a method for producing a protein solution in which a virus has been inactivated and removed.
  • the present inventors are keen to introduce the irradiation treatment, which is extremely difficult to introduce into the manufacturing process of biopharmacy, etc., in spite of its excellent virus inactivating / removing ability. Study was carried out. As a result of this study, the present inventors focused on the characteristics of the process centering on virus inactivation / removal and protein denaturation, and (i) a virus inactivation method by irradiation treatment and (ii) a virus. The idea was to design virus inactivation / removal conditions in a mutually complementary manner by integrating the virus removal method by removal membrane treatment or the virus inactivation method by SD treatment.
  • a method for removing a virus in a protein solution which is as follows: (A) By irradiating the protein solution with radiation, the removal coefficient for viruses with a virus particle size of less than 33 nm in the protein solution (the degree of decrease of the virus represented by a logarithm, hereinafter referred to as "LRV") is The step of treating to 1.00 or more, and (b1) the step of removing the virus from the treated protein solution with a virus removing membrane having an LRV of 4.00 or more for Bacterophage PP7, or (b2) the above-mentioned treatment.
  • LRV degree of decrease of the virus represented by a logarithm
  • a method comprising the step of inactivating a virus.
  • (a) is a step of irradiating the protein solution with radiation so that the removal coefficient for the virus having a virus particle diameter of 30 nm or less in the protein solution is 1.00 or more [1]. ] The method described in. [2] The method according to [1] or [1-1], wherein the radiation is ultraviolet rays or ⁇ -rays. [3] The method according to [2], wherein the radiation is ultraviolet light.
  • [8] The method according to [7], wherein the virus removing membrane having a pore size of 20 nm or less is a virus removing membrane having a pore diameter of 15 nm or more.
  • [8-1] The method according to any one of [1] to [6], wherein the LRV for bacteriophage PP7 is 4.00 or more and the pore size of the virus removing membrane is less than 33 nm.
  • [8-2] The method according to [8-1], wherein the virus removing membrane has a pore size of 13 to 33 nm.
  • [8-3] The method according to [8-1], wherein the virus removing membrane has a pore size of 15 to 33 nm.
  • a method for producing a protein solution from which a virus has been removed (A) The step of irradiating the protein solution with radiation so that the removal coefficient (LRV) for the virus having a virus particle diameter of less than 33 nm in the protein solution is 1.00 or more, and (b1) the treatment. The step of filtering the protein solution with a virus-removing membrane having an LRV of 4.00 or higher for Bacterophage PP7, or (b2) contacting the treated protein solution with the SD mixture and LRV against the enveloped virus in the protein solution.
  • LRV removal coefficient
  • (a) is a step of irradiating the protein solution with radiation so that the removal coefficient for the virus having a virus particle diameter of 30 nm or less in the protein solution is 1.00 or more [10]. ] The method described in. [11] The method according to [1] or [1-1], wherein the LRV in (a) is 2.00 or more. [12] The method according to [1] or [1-1], wherein the LRV in (a) is 4.00 or more. [13] The method according to [1], [1-1] or [12], wherein the LRV in (b2) is 4.00 or more.
  • a virus in a protein solution comprises a step of integrating virus inactivation by irradiation treatment and virus removal by virus removal membrane treatment or virus inactivation by SD treatment to optimize those conditions. It is possible to provide a removal method and a method for producing a protein solution from which a virus has been removed, which comprises the step.
  • viruses with a particle size of 30 nm or less eg, parvovirus, circoviridae
  • radiation eg, ultraviolet rays, ⁇ -rays
  • viruses with a particle size of less than 33 nm are effectively inactivated by radiation (eg, ultraviolet, ⁇ -ray), resulting in a pore size of 13 nm or more. It is also possible to synergistically achieve extremely high LRV by using a virus-removing membrane having. Further, in the virus inactivation / removal step, a pore diameter larger than that of a virus removing membrane generally used in the past can be adopted, so that the yield of a desired protein can be further increased.
  • a drug other than a buffer solution or a stabilizer it is not necessary to add a drug other than a buffer solution or a stabilizer, and a step such as removal of the added drug is performed in a subsequent step of the step. There is no need to add it, which can contribute to the simplification of the manufacturing process.
  • Figure 1 shows IgG denaturation (polymer) when a 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 3.0 to 6.8) was irradiated with ultraviolet C waves (UVC) (0 to 1,024 mJ / cm 2 ). It is a figure which shows the relationship of the (formation) rate.
  • Figure 2 shows the relationship between the IgG denaturation (polymer formation) rates when a 5% (50 mg / ml) IgG solution (5% sorbitol, pH 4.1) was irradiated with UVC (0 to 1,024 mJ / cm 2 ). It is a figure which shows.
  • FIG. 1 shows IgG denaturation (polymer) when a 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 3.0 to 6.8) was irradiated with ultraviolet C waves (UVC) (0 to 1,024 mJ / cm 2 ). It is a
  • FIG 3 is a diagram showing the relationship of inactivation when B19 in PBS is irradiated with UVC (0 to 512 mJ / cm 2 ).
  • Figure 4 shows the inactivation relationship when UVC is applied to MVM in 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 4.1) or PBS (0 to 512 mJ / cm 2 ).
  • Figure 5 shows Bovine viral diarrheavirus (hereinafter abbreviated as "BVDV" or "BVD”) in 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 4.1) or PBS irradiated with UVC (0).
  • BVDV Bovine viral diarrheavirus
  • Figure 6 shows the concentration of fibrinogen (hereinafter abbreviated as "Fib") (including 0.5% sodium chloride and 1.6% sodium citrate as stabilizers) by UVC irradiation (0 to 768 mJ / cm 2 ) at 3.9 mg / It is a figure which shows the relationship between the coagulation activity and the protein denaturation rate at the time of ml (E 280 : 5.8, E 1% 280 : 15-16).
  • Fib fibrinogen
  • Figure 7 shows B19 in a solution with a Fib concentration of 3.3 to 13.3 mg / ml (E 280 : 5 to 20, absorption coefficient (E 1% 280 : 15 to 16)) irradiated with UVC (0 to 384 mJ /). It is a figure which shows the relationship of B19 inactivation at the time of cm 2 ).
  • Figure 8 shows B19 in a solution or PBS with a Fib concentration of 0.004 to 3.6 mg / ml (E 280 : 0.0054 to 5.4, extinction coefficient (E 1% 280 : 15 to 16)) irradiated with UVC (0 to 384).
  • Figure 9 shows UVC irradiation (0 to 384) of PPV in a solution or PBS with a Fib concentration of 0.04 to 3.6 mg / ml (E 280 : 0.054 to 5.4, extinction coefficient (E 1% 280 : 15 to 16)). It is a figure which shows the relationship of PPV inactivation at the time of mJ / cm 2 ).
  • Figure 10 shows trombin (hereinafter abbreviated as “Thr”) by UVC irradiation (0 to 768 mJ / cm 2 ) (including 0.34% sodium chloride, 0.23% sodium citrate, and 0.27% calcium chloride as stabilizers). It is a figure which shows the relationship between the coagulation activity and the protein denaturation rate when the concentration is 2.48 mg / ml (E 280 : 5.3, absorption coefficient (E 1% 280 : 21.4)).
  • Figure 11 shows B19 in a solution with a Thr concentration of 0.47 to 4.7 mg / ml (E 280 : 1 to 10, absorption coefficient (E 1% 280 : 21.4)) irradiated with UVC (0 to 384 mJ / cm 2 ). It is a figure which shows the relationship of B19 inactivation at the time of).
  • Figure 12 shows PPV in a solution with a Thr concentration of 0.47 to 4.7 mg / ml (E 280 : 1 to 10, extinction coefficient (E 1% 280 : 21.4)) irradiated with UVC (0 to 384 mJ / cm 2 ). It is a figure which shows the relationship of PPV inactivation at the time of).
  • FIG. 13 is a diagram showing the relationship of protein denaturation when Fib (containing sodium citrate and L-alginate salt as stabilizers / excipients) is freeze-dried and irradiated with gamma rays.
  • FIG. 14 is a diagram showing the relationship of protein denaturation when Thr (including D-mannitol, sodium citrate, and L-alginate salt as stabilizers / excipients) is freeze-dried and irradiated with gamma rays. .. In FIG.
  • FIG. 16 is a diagram showing the relationship of B19 inactivation when the above Fib, Thr, Alb (a), and Alb (b) including B19 are freeze-dried and irradiated with gamma rays.
  • FIG. 17 is a diagram for estimating the UVC irradiation dose (mJ / cm 2 ) from the absorbance (E 352 ) of 1% sodium iodide (NaI).
  • the method of the present invention is a method for inactivating / removing a virus in a protein solution, and the following: (A) Irradiate the protein solution so that the LRV for viruses with a virus particle size of 30 nm or less in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and even more preferably 4.00 or more.
  • the LRV for viruses with a virus particle size of less than 33 nm in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further by irradiating the protein solution with radiation.
  • inactivation / removal of a virus in a protein solution means not only making the virus absent in the protein solution, but also causing a health hazard due to the amount of virus present in the protein solution. It includes not keeping the amount below a certain level and making the infectious virus present in the protein non-infectious (so-called virus inactivation).
  • the protein solution contains a protein that passes through the membrane when filtered through a virus-removing membrane having an LRV of 4.00 or more for bacteriophage PP7, and is particularly a solution that may contain a virus.
  • a solution made from an animal-derived component including humans or a gene has a high possibility of containing a virus
  • a protein solution from which the virus has been removed can be used as a protein solution to be used in the virus removing method of the present invention. It can be provided efficiently.
  • Protein solutions that may contain viruses include, for example, peptides, proteins, and animal-derived components produced using biotechnology such as genetic engineering and cell culture, which are raw materials for biopharmacy, as active ingredients. Examples include solutions. Further, a medium containing an animal-derived component to be used for cell culture and an enzyme such as trypsin derived from an animal can also be mentioned.
  • examples of the protein solution that may contain a virus include body fluids of humans and animals. Specifically, for example, blood, plasma, serum, saliva, sweat, urine, lymph, enzyme, tissue fluid, etc., or a solution obtained by purifying these tissues, body fluids, etc. as raw materials may be used. It may be a solution containing the above. Further, for example, a raw material for a plasma fractionation product obtained by purifying from plasma can also be mentioned. Examples of the plasma fractionation product include immunoglobulin preparations, albumin preparations, blood coagulation factor preparations, and the like. In particular, blood coagulation factor preparations include blood coagulation factor VIII preparations, blood coagulation factor IX preparations, fibrinogen preparations, and anticoagulation factors.
  • the protein solution to be used in the virus removal method of the present invention may be, for example, prepared at the time of use, thawed in cryopreserved state, or lyophilized in a desired solution again. But it may be.
  • Specific proteins include, for example, antibodies (eg, polyclonal antibodies, monoclonal antibodies (eg IgG, IgM, IgA, IgD, IgE), etc.), hematopoietic factors (erythropoetin, thrombopoetin, etc.), proteins involved in blood coagulation (line).
  • antibodies eg, polyclonal antibodies, monoclonal antibodies (eg IgG, IgM, IgA, IgD, IgE), etc.
  • hematopoietic factors erythropoetin, thrombopoetin, etc.
  • proteins involved in blood coagulation line.
  • Hydrolytic factors tissue-type plasminogen activator, prourokinase, thrombomodulin, etc.
  • blood coagulation factors antithrombin, protein C, blood coagulation factor VII, blood coagulation factor VIII, blood coagulation factor IX, blood coagulation factor X, blood coagulation factor XI, Blood coagulation factor XII, prothrombin complex, thrombin, fibrinogen, etc.
  • plasma protein albumin, globulin, etc.
  • hormone gonad stimulating hormone, thyroid stimulating hormone, etc.
  • growth factor epihelial growth factor (EGF), hepatocellular proliferation
  • HGF epidermal growth factor
  • HGF keratinocyte growth factors, activins, bone-forming factors, etc.
  • stem cell factors SCF
  • cytokines interferon ⁇ , interferon ⁇ , interferon ⁇ , interleukin 2, interleukin, etc.
  • Interleukin 5 Interleukin 5
  • polyclonal antibodies, monoclonal antibodies, proteins involved in blood coagulation, plasma proteins, and unstable biological activities are exhibited from the viewpoint of achieving both viral inactivation or removal and production conditions that can maintain protein quality and activity and economic efficiency.
  • Proteins and the like are preferable, and IgG, IgM, IgA, IgD, IgE, thrombin, fibrinogen, antithrompine, albumin and the like are more preferable.
  • the protein contained in the protein solution is a protein as exemplified above or a fragment of the protein thereof, and is a radioactive isotope, a low molecular weight drug, a high molecular weight drug, or a different protein. It may be a protein in which a partial fragment of the protein or the like is chemically or genetically engineered, or a partial fragment of the protein.
  • Examples of the above-mentioned antibody include humanized antibodies such as human antibodies, human chimeric antibodies and human complementarity determining region transplanted antibodies, and antibody fragments thereof.
  • An antibody is composed of a variable region (V region) and a constant region (C region).
  • the heavy chain variable region is called VH
  • the light chain variable region is called VL
  • the heavy chain constant region is called CH
  • the light chain constant region is called CL.
  • the human chimeric antibody refers to an antibody consisting of VH and VL of non-human animal antibodies and CH and CL of human antibodies.
  • the human chimeric transplant antibody first designs and constructs a cDNA encoding VH and VL of a non-human mammalian antibody. Next, each of the above cDNAs is inserted into an expression vector for animal cells having a cDNA encoding CH and CL of a human antibody to construct a human chimeric transplanted antibody expression vector.
  • the above antibody can be expressed and produced by introducing the constructed vector into animal cells.
  • the CH of the human chimeric antibody is not particularly limited as long as it belongs to human immunoglobulin (hereinafter, may be abbreviated as "hIg"), but hIgG class is preferable, and hIgG1 belonging to hIgG class, Any of the subclasses such as hIgG2, hIgG3 and hIgG4 can be used.
  • the CL of the human chimeric antibody is not particularly limited as long as it belongs to hIg, and ⁇ class or ⁇ class can be used. Mammals other than humans are, for example, mice, rats, hamsters, rabbits and the like.
  • antibody fragment examples include peptides containing Fab, F (ab') 2 , Fab', scFv, diabody, dsFv and CDR.
  • Fab is a fragment obtained by treating an IgG antibody molecule with the proteolytic enzyme papain (cleaved at the 224th amino acid residue of the H chain), and about half of the N-terminal side of the H chain and the entire L chain are It is an antibody fragment having an antigen-binding activity with a molecular weight of about 50,000 bound by a disulfide bond.
  • Fab treats an antibody with the proteolytic enzyme papain or inserts the Fab-encoding DNA of the antibody into a prokaryotic or eukaryotic expression vector and inserts the vector into a prokaryotic or eukaryotic expression vector. It can be manufactured by introducing it into.
  • the protein concentration in the protein solution used for the virus removing method of the present invention is a concentration that can be filtered by a virus removing membrane having an LRV of 4.00 or more with respect to bacteriophage PP7, preferably a virus removing membrane having a pore size of 15 nm to 20 nm.
  • the LRV for a virus having a virus particle diameter of 30 nm or less is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further, within the range of the predetermined radiation irradiation amount used in the virus removal method of the present invention described later.
  • the concentration is not particularly limited as long as it can achieve 4.00 or more.
  • the protein concentration in the protein solution used in the virus removal method of the present invention is filtered by a virus removal membrane having an LRV of 4.00 or more against bacteriophage PP7, preferably a virus removal membrane having a pore size of 13 nm to 33 nm.
  • the LRV for viruses with a virus particle size of less than 33 nm is 1.00 or more, preferably 2.00 or more, more preferably within the range of the predetermined radiation dose used in the virus removal method of the present invention, which is a possible concentration and will be described later. Is not particularly limited as long as the concentration can achieve 3.00 or higher, more preferably 4.00 or higher.
  • Specific protein concentrations include, for example, 30 w / v% or less, 25 w / v% or less, 20 w / v% or less, 15 w / v% or less, 10 w / v% or less. , 5.0 w / v% or less, 2.5 w / v% or less, 1.0 w / v% or less, 0.7 w / v% or less, 0.5 w / v% or less.
  • the specific protein concentration (including the lower limit) is, for example, 0.001 w / v% or more, 0.01 w / v% or more, 0.1 w / v% or more, 0.2 w / v% or more, 0.3 w / v. % Or more.
  • the virus that can be contained in the protein solution is not particularly limited, but is B19, MVM, PPV, bovine parvovirus (BPV), canine parvovirus (hereinafter abbreviated as "CPV”), poliovirus, PCV, HAV, E type. Hepatitis virus (hereinafter abbreviated as "HEV”) and the like can be mentioned.
  • parvovirus has been reported in the past to be infected with B19, which is one of the parvoviruses, in the field of plasma fractionation preparations, and the guideline on the virus safety of plasma-derived preparations is EMEA. (European Pharmaceutical Examination Agency, EMA / CHMP / BWP / 706271/2010). Furthermore, in the field of biopharmacy, there is an example of contamination of the biopharmacy manufacturing process due to contamination of rodent-derived MVM into CHO cells (derived from hamster), and the virus safety of biopharmacy made using animal cells. Guidelines for sexual evaluation (ICH Topic Q5A) have been issued.
  • PCV is the smallest non-enveloped virus currently known, and its particle size is about 15 to 25 nm (ICTV, https://talk.ictvonline.org). / ictv-reports / ictv_online_report / ssdna-viruses / w / circoviridae).
  • PCV belongs to the circoviridae family (FamilyCircoviridae) and is classified into PCV1, PCV2, etc.
  • PCV is also one of the viruses with a high risk of being contaminated in the manufacturing process of biopharmacy and the like, and cases of contaminated with it have been reported.
  • PCV is resistant to low pH treatment and heat treatment, and it is difficult to capture and remove PCV even by using a virus removing membrane having an average pore size of 15 nm.
  • parvovirus having a particle size larger than that of PCV is effectively inactivated (eg, LRV ⁇ 1.0, LRV ⁇ 2.0, LRV ⁇ 4.0, LRV ⁇ LRV ⁇ ). Since the irradiation amount of radiation that can be 6.0 etc.) is used, circoviruses having a particle size or smaller can be inactivated in the same manner.
  • viruses such as HAV (27 to 30 nm), poliovirus (30 nm), HEV (32 nm) of the picornavirus family, and viruses having a larger particle size than these, etc.
  • viruses such as HAV (27 to 30 nm), poliovirus (30 nm), HEV (32 nm) of the picornavirus family, and viruses having a larger particle size than these, etc.
  • the LRV for the bacteriophage PP7 used in the virus removal method of the present invention is 4.00 or higher. It can be effectively filtered by a virus-removing membrane.
  • the protein solution that may contain the virus used in the virus removal method of the present invention is selected from the group consisting of amino acids, inorganic salts, buffer components, surfactants and saccharides. It may contain one or more components.
  • the above components may be added to a protein solution containing a virus before the step (a) or (a') included in the virus removing method of the present invention, and the step (a) or (a') may be added. And may be added during step (b1) or (b2).
  • examples of the basic amino acid include arginine, histidine, guanidine, lysine or a derivative thereof, or a salt thereof, and preferably arginine, histidine, lysine or a derivative thereof, or a salt thereof. More preferably, it is arginine or a derivative thereof, or a salt thereof.
  • examples of the neutral amino acid include glycine or a derivative thereof, or a salt thereof.
  • examples of acidic amino acids include aspartic acid or derivatives thereof, or salts thereof.
  • the inorganic salt may contain NaCl, CaCl 2 , a buffer salt and the like.
  • a buffer solution component acetate buffer solution, citrate buffer solution, phosphate buffer solution, phosphate buffered saline (PBS), Tris-HCl buffer solution, glycine buffer solution and the like may be used.
  • concentrations of the inorganic salt and the buffer solution component may be appropriately determined by a method known per se.
  • surfactant examples include nonionic surfactants such as Tween20 (registered trademark), Tween80 (registered trademark), Triton X100 (registered trademark), NP-40 (registered trademark), and Pluronic F-127 (registered trademark). Is exemplified, and may be contained in a protein solution at a concentration of 0.01 to 5 wt%.
  • saccharides include, but are not limited to, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, sugar alcohols and the like, and specific examples thereof include glucose, mannose, galactose, fructose, sorbitol, maltose and sucrose ( Sucrose), sorbitol, mannitol, dextran, alginic acid and a plurality of kinds thereof may be combined and contained in a protein solution in an amount of 1 to 10 wt%, preferably 1 to 5 wt%.
  • the temperature of the protein solution that may contain the virus is, for example, in the range of 1 ° C to 40 ° C, preferably 4 ° C to 35 ° C throughout the entire steps of the virus removal method of the present invention from the viewpoint of preventing protein denaturation. May be.
  • the temperature affects the viscosity of the protein solution and the Flux during filtration using a virus-removing membrane, which will be described later. Therefore, it depends on the stability of the protein itself with respect to the temperature, but it is in the range of 20 ° C to 35 ° C. May be.
  • the pH of the protein solution that may contain the virus is not particularly limited as long as the protein contained in the solution does not cause denaturation, but is, for example, pH 3.0 to pH 8.0. More specifically, when the protein contained in the solution is polyclonal IgG, pH 4.1 to pH 7.2 is preferable, and in the case of monoclonal IgG, the optimum pH varies depending on the PI value of the IgG molecule.
  • the radiation used in the step (a) or (a') included in the virus removing method of the present invention includes both ionizing radiation and non-ionizing radiation, and specifically, for example, ultraviolet rays, ⁇ rays, ⁇ rays, and the like. Examples include ⁇ -rays, X-rays, electron beams, and neutrons. Radiation can be obtained from radioactive isotopes such as cobalt-60, strontium-90, and cesium-137, or by an X-ray machine, an electron beam accelerator, an ultraviolet (continuous) irradiation device, etc., and the device is a commercially available product. May be.
  • ultraviolet rays include UVC (100 to 280 nm), UVB (280 to 320 nm) and UVA (320 to 400 nm).
  • UVC irradiation is preferable, UVC irradiation in the range of 250 to 280 nm is more preferable, and UVC irradiation in the vicinity of 254 nm is more preferable.
  • a low-pressure mercury lamp, LED, or the like may be used as the ultraviolet irradiation source, and the irradiation source is not limited.
  • the method of irradiating radiation in the virus removing method of the present invention is not particularly limited as long as it can be treated so that the LRV for a virus having a virus particle size of 30 nm or less in the protein solution to be irradiated is 1.00 or more. Further, if the LRV is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further preferably 4.00 or more, it can be said that the virus is effectively removed, but if desired, for example, 5.00 or more, It may be processed so that LRV of 6.00 or higher can be achieved.
  • the irradiation method of radiation in the virus removing method of the present invention is not particularly limited as long as it can be treated so that the LRV for a virus having a virus particle size of less than 33 nm in the protein solution to be irradiated is 1.00 or more. Further, if the LRV is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further preferably 4.00 or more, it can be said that the virus is effectively removed, but if desired, for example, 5.00 or more, It may be processed so that LRV of 6.00 or higher can be achieved.
  • the irradiated radiation when it is ultraviolet light, it has a cylindrical rotating cylinder in which the protein solution is thinly and uniformly distributed, and the rotation is about the rotation center axis of the cylinder.
  • An irradiation method using a device such as the above can be mentioned.
  • the principle of the device is to adjust the flow velocity of the protein solution using a pump so that the film thickness of the solution forms a thin film (for example, 0.1 mm) for which UVC irradiation is effective on the inner wall of the rotating cylinder. Then, it diffuses uniformly to the inner wall, and the low-pressure mercury lamp located in the center of the cylinder irradiates the inner wall of the cylinder with ultraviolet rays.
  • the amount of ultraviolet rays irradiated to the protein in the protein solution is increased or decreased depending on the time that the solution passes through the inner wall of the cylinder, and the passage time is also changed by changing the angle of the cylinder, so that the irradiation amount can be changed to a desired amount.
  • a coiled tube made of a resin or quartz glass that transmits ultraviolet rays is placed around an ultraviolet ray source such as a low-pressure mercury lamp or a deep ultraviolet LED, and a protein solution is passed by a pump.
  • an ultraviolet ray source such as a low-pressure mercury lamp or a deep ultraviolet LED
  • the ultraviolet source is arranged in a plane, and the protein solution is passed by a pump between two flat plates shaped with a resin or quartz glass that transmits ultraviolet rays on the irradiation surface to irradiate the thin film layer.
  • the flat plate may be cut with irregularities or grooves patterned so that the flow velocity becomes uniform. Then, by changing the flow velocity, the transit time also changes, and the irradiation amount can be changed to a desired amount.
  • the amount of radiation used in the virus removal method of the present invention is such that the LRV for a virus having a virus particle size of 30 nm or less in the protein solution used for the irradiation is 1.00 or more, preferably 2.00 or more, depending on the type of radiation used. It may be set so that it can be processed so that it is more preferably 3.00 or more, and even more preferably 4.00 or more.
  • the irradiation amount of the radiation used in the virus removing method of the present invention has an LRV of 1.00 or more for a virus having a virus particle size of less than 33 nm in the protein solution used for the irradiation, depending on the type of radiation used.
  • the virus is effectively removed if the LRV is 4.00 or higher, but if desired, it may be processed so as to achieve an LRV of 5.00 or higher and 6.00 or higher, for example.
  • the LRV can be obtained by the formula described later.
  • the irradiation amount is specifically 256 mJ / cm 2 or less, 192 mJ / cm 2 or less, and 96 mJ / cm 2 or less. Specifically, it is 32 mJ / cm 2 or more, 64 mJ / cm 2 or more, and 128 mJ / cm 2 or more.
  • the irradiation amount is a combination of the above ranges (example: 32 mJ / cm 2-256 mJ / cm 2 , 64 mJ / cm 2-256 mJ / cm 2 , 128 mJ / cm 2-256 mJ / cm 2 , It may be 32 mJ / cm 2 to 192 mJ / cm 2 , 64 mJ / cm 2 to 192 mJ / cm 2 , 128 mJ / cm 2 to 192 mJ / cm 2 , etc.).
  • the formation rate of the IgG antibody polymer after UVC irradiation is 2% or less.
  • the maximum UVC dose is preferably 256 mJ / cm 2 to 1024 mJ / cm 2 , more preferably 512 mJ / cm 2 . More specifically, the maximum when a protein solution containing a Fib concentration of 3.9 mg / ml (E 280 : 5.8, E 1% 280 : 15-16) is set on the condition that the coagulation activity is maintained at 90% or more.
  • the irradiation dose is preferably 96 mJ / cm 2 to 192 mJ / cm 2 , and more preferably 192 mJ / cm 2 . More specifically, for a protein solution containing a Thr concentration of 2.48 mg / ml (E 280 : 5.3, E 1% 280 : 21.4), the maximum irradiation dose is set on the condition that the coagulation activity is maintained at 90% or more. Is preferably 96 mJ / cm 2 to 192 mJ / cm 2 , more preferably 192 mJ / cm 2 .
  • the irradiation amount is specifically 5 kGy or more, 10 kGy or more, 15 kGy or more, 20 kGy or more, 25 kGy or more, 30 kGy or more, 35 kGy or more, 40 kGy or more. , 45 kGy or more, 50 kGy or more, 60 kGy or more.
  • the irradiation amount of ⁇ -rays is 5 kGy to 50 kGy, 10 kGy to 50 kGy, and 25 kGy to 50 kGy.
  • the irradiation amount of radiation in the virus removing method of the present invention may be appropriately calibrated and validated according to the type of radiation to be irradiated in order to obtain an accurate measured value.
  • the indicated value may have an error depending on the type of the ultraviolet illuminance meter used for measuring UVC. Therefore, for example, by applying the principle of the estimation method of UVC irradiation amount using the change in the absorbance of existing NaI as an index, a calibration curve related to the UVC irradiation amount is created, and the calibration curve is used between measuring instruments. Calibration may be performed.
  • the absorbance (A352) is measured under experimental conditions that reflect the actual treatment conditions (particularly the total energy amount and film thickness), and the calibration curve and formula for obtaining the irradiation dose are used. demand.
  • the UVC irradiation amount does not obtain the absolute value of the UVC irradiation amount, but if a specific reference measuring device is set, the calibration for the measuring device becomes possible.
  • the UVC irradiation dose can be standardized using any measuring device by the calibration, the LRV for viruses with a virus particle size of 30 nm or less in protein solutions that can be used at the industrial level is 1.00 or more, preferably 1.00 or more. It can define a range of UVC doses that can be treated to be 2.00 or higher, more preferably 3.00 or higher, and even more preferably 4.00 or higher.
  • the range of UVC irradiation that can be treated so that the LRV for viruses with a virus particle size of less than 33 nm in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and even more preferably 4.00 or more.
  • the above-mentioned UVC irradiation amount is a value having a critical significance even when any measuring device is used by using the calibration.
  • the virus removing membrane used in the step (b1) included in the virus removing method of the present invention is not particularly limited as long as it is a virus removing membrane having an LRV of 4.00 or more with respect to bacteriophage PP7.
  • a virus removing membrane having an LRV of 4.00 or more with respect to bacteriophage PP7 By filtering with the virus removing membrane, the virus having a virus particle diameter of more than 30 nm in the protein solution can be effectively removed. Similarly, by filtering with the virus removing membrane, the virus having a virus particle diameter of 33 nm or more in the protein solution can be effectively removed.
  • a virus-removing membrane having an LRV of 4.00 or more for bacteriophage PP7 is a membrane having an LRV of 4.00 or more when a solution containing bacteriophage PP7 is loaded at 50 l / m 2 on the virus-removing membrane to be used.
  • a solution containing bacteriophage PP7 a 1 mg / ml BSA solution (PBS buffer, pH 7.4) with a bacteriophage PP7 concentration of 10 7 pfu / ml is used.
  • the shape of the virus removing membrane to be used is not particularly limited, but may be, for example, a flat membrane or a hollow fiber membrane.
  • filtration may be performed with one sheet, or a plurality of sheets may be stacked for filtration.
  • the pH-adjusted solution By filtering a pH-adjusted solution through a virus-removing membrane with an LRV of 4.00 or higher for bacteriophage PP7, the pH-adjusted solution is a virus-removing membrane with an LRV of 4.00 or higher for bacteriophage PP7. Is processed by.
  • the filtration method may be the Dead end method or the Cross flow method. Before treatment with a virus-removing membrane having an LRV of 4 or more for bacteriophage PP7, it may be preliminarily treated with a membrane having a pore size larger than 20 nm.
  • the pore size of the virus removal membrane having an LRV of 4.00 or more for bacteriophage PP7 is not limited as long as it can remove viruses having a particle size of less than 33 nm, but is usually 30 nm or less, preferably 21 nm or less, and more preferably 20 nm. It is as follows.
  • the pore diameter is usually 13 nm or more, preferably 15 nm or more, more preferably 17 nm or more, and particularly preferably 19 nm or more.
  • the pore sizes of the virus removal membrane are 13 nm to 33 nm, 15 nm to 33 nm, 17 nm to 33 nm, 13 nm to 30 nm, 15 nm to 30 nm, 17 nm to 30 nm, and 13 nm to 21.
  • Examples include nm, 15 nm to 21 nm, 17 nm to 21 nm, 19 nm to 21 nm, 13 nm to 20 nm, 15 nm to 20 nm, 17 nm to 20 nm, and 19 nm to 20 nm.
  • virus-removing membranes having an LRV of 4.00 or higher against bacterial offer PP7 are Planova (registered trademark) 15N (manufactured by Asahi Kasei Medical) and Planova (registered trademark) 20N (Asahi Kasei Medical) made of regenerated cellulose.
  • Planova (registered trademark) BioEX manufactured by Asahi Kasei Medical
  • Virosart CPV consisting of hydrophilized PES (manufactured by Asahi Kasei Medical).
  • Sartorius and Viresolve Pro (Millipore) and the like.
  • a preferable membrane can be defined by the average pore size of the pores of the virus-removing membrane.
  • the average pore diameter of the virus-removing membrane is, for example, 15 nm (eg, Planova® 15N; 15 ⁇ 2nm), 19nm (eg, Planova® 20N; 19 ⁇ 2nm), 20 nm (eg Pegasus® SV4).
  • the average pore diameter of the pores can be calculated by the following formula with reference to the method described in International Publication No. 2015/156401.
  • Average pore size (nm) 2 ⁇ 10 3 ⁇ ⁇ (V ⁇ d ⁇ ⁇ / P ⁇ A ⁇ Pr)
  • V is the permeability (ml / min)
  • d is the film thickness ( ⁇ m)
  • is the viscosity of water (cp)
  • P is the pressure difference (mmHg)
  • A is the membrane area (cm 2 )
  • Pr is empty. Indicates the porosity (%).
  • bundle 10 threads make a module so that it has an effective length of 16 cm, close one end of the obtained module, apply a pressure of 200 mmHg to the other end, and let water pass at 37 ° C. ..
  • the film area is calculated by measuring the inner diameter in a dry state. Further, the film thickness means the film thickness in a dry state.
  • the apparent density ⁇ a of the hollow fiber is calculated by the following formula, and ⁇ p means the density of cellulose (g / cm 3 ).
  • Wd means the absolute dry weight of the hollow thread (g)
  • Vw means the apparent volume of the hollow thread (cm 3 )
  • l means the length of the hollow thread (cm)
  • Do means the outer diameter of the hollow thread (cm).
  • Di means the inner diameter (cm) of the hollow thread.
  • the viral load of bacteriophage PP7 is not particularly limited, but can be measured by a plaque assay method or the like.
  • the plaque assay can be performed according to the method described in the Journal of Pharmaceutical Science and Technology 2008; Supplement Volume 62 No. S-4.
  • Solution samples containing bacteriophage PP7 are serially diluted, each sample is mixed with Pseudomonas aeruginosa, and then soft agar is added. Pour the mixed solution onto an agar plate, allow it to solidify, and then incubate at 37 ° C for 1 day. The next day, the number of plaques is measured with the naked eye, and the phage concentration pfu (plaque forming unit) / ml contained in the original solution is calculated by the following formula. (Number of plaques x dilution ratio) pfu / sample amount (ml) pfu / ml
  • the filtration by the virus removing membrane in the step (b1) of the virus removing method of the present invention can be confirmed by LRV as an index for removing viruses (eg, B19, MVM, PPV, etc.) having a virus particle diameter of 30 nm or less.
  • LRV an index for removing viruses (eg, B19, MVM, PPV, etc.) having a virus particle diameter of 30 nm or less.
  • the viral load of viruses with a virus particle diameter of 30 nm or less is measured in the above formula. It can be obtained by.
  • the amount of virus (eg, B19, MVM, PPV, etc.) having a virus particle diameter of 30 nm or less is not particularly limited, but can be measured by the infectious titer or the amount of viral nucleic acid.
  • the infectious titer is obtained by inoculating the indicator cells with the virus and then culturing for a certain period of time to measure the degeneration of the cells after culturing and the viral antigens and nucleic acids (TCID 50 method, plaque method, etc.).
  • the Quantitative polymerase chain reaction (Q-PCR) for measuring the amount of nucleic acid can be carried out by a method known per se.
  • Q-PCR quantitative polymerase chain reaction
  • the LRV in the performance evaluation of virus removal membranes, if the LRV is 1.00 or more, it is limited, if it is 2.00 or more and 4.00 or less, it is moderate, and if it is 4.00 or more, the virus is effectively removed. If is 5.00 or more, the virus is removed to 1/5 or less of 10, and if the LRV is 6.00 or more, the virus is removed to 1/6 or less of 10 and most of the virus leaks. It is said that it is not.
  • the filtration by the virus removing membrane in the step (b1) of the virus removing method of the present invention can be confirmed by LRV as an index for removing viruses (eg, B19, MVM, PPV, etc.) having a virus particle size of less than 33 nm.
  • viruses eg, B19, MVM, PPV, etc.
  • LRV for viruses with a virus particle size of less than 33 nm measures the viral load of viruses with a virus particle size of less than 33 nm (eg, B19, MVM, PPV, etc.) in the above formula. It can be obtained by.
  • the amount of virus having a virus particle size of less than 33 nm is not particularly limited, but can be measured by the infectious titer or the amount of viral nucleic acid.
  • the infectious titer is obtained by inoculating the indicator cells with the virus and then culturing for a certain period of time to measure the degeneration of the cells after culturing and the viral antigens and nucleic acids (TCID 50 method, plaque method, etc.).
  • the Quantitative polymerase chain reaction (Q-PCR) for measuring the amount of nucleic acid can be carried out by a method known per se.
  • Q-PCR quantitative polymerase chain reaction
  • the protein solution after the irradiation treatment according to the step (a) or (a'), which is applied to the virus removal membrane having an LRV of 4.00 or more for bacteriophage PP7 is per virus removal membrane area.
  • the amount of the filtrate may be, for example, 50 to 100 l / m 2 .
  • the virus removal membrane area is calculated as the area of the filtration surface (primary side surface).
  • the amount of the filtrate can be adjusted by the filtration time in the filtration under a constant filtration pressure condition.
  • the filtration pressure in the step (b1) of the virus removing method of the present invention depends on the material of the virus removing membrane, but is within the range of the pressure resistance of the membrane or less.
  • a virus removing membrane made of regenerated cellulose it may be carried out in the range of 0.00 kgf / cm 2 (0.0 kPa) to 1.00 kgf / cm 2 (9.8 ⁇ 10 kPa).
  • a virus-removing membrane made of hydrophilized PVDF or hydrophilized PES it may be carried out in the range of 0.00 kgf / cm 2 (0.0 kPa) to 5.00 kgf / cm 2 (4.9 ⁇ 10 2 kPa).
  • the SD treatment in the step (b2) included in the virus inactivating method of the present invention is not particularly limited as long as it can be treated so that the LRV against the enveloped virus in the protein solution used for the SD treatment is 2.00 or more.
  • LRV it can be said that moderate inactivation is moderate if it is 2.00 or more, and virus is effectively inactivated if it is 4.00 or more, but if desired, for example, 3.00 or more, 4.00 or more, 5.00 or more, 6.00. It may be processed so that the above LRV can be achieved.
  • the virus removing membrane treatment in the above-mentioned step (b1) may be separately performed in the subsequent steps.
  • the SD mixture can be any combination of organic solvent and surfactant known in the art of organic solvents and surfactants that can chemically inactivate enveloped viruses as long as the above LRV conditions can be achieved.
  • organic solvent include dialkyl or trialkyl phosphate having an alkyl group having 1 to 10 carbon atoms, and among them, trialkyl phosphate having an alkyl group having 2 to 10 carbon atoms is preferable.
  • tri- (n-butyl) phosphate hereinafter abbreviated as "TNBP"
  • tri- (t-butyl) phosphate tri- (n-hexyl) phosphate
  • tri- (2-ethylhexyl) phosphate examples thereof include tri- (n-decyl) phosphate and ethyl-di (n-butyl) phosphate.
  • a surfactant one that can disperse fat by 0.1 w / w% in a solution of 0.01 g / ml at room temperature is usually used.
  • Specific examples thereof include polyoxyethylene derivatives of fatty acids, polyoxyethylene sorbitan fatty acid esters, oxyethylated alkylphenols, polyoxyethylene alcohols, polyoxyethylene oils, polyoxyethylene oxypropylene fatty acids and the like.
  • polyoxyethylene derivatives of fatty acids such as Tween (registered trademark) 80 and Tween (registered trademark) 20, partial esters of sorbitol anhydride such as polysorbate 80, and polyoxyethylene octylphenyl ether (Triton (Registered Trademark)).
  • Oxyethylated alkylphenols such as registered trademark) X-100), sodium colalate, sodium deoxycholate, sulfobetaines such as N-dodecyl-N, N-dimethyl-2-ammonio-1-ethanesulfonate, octyl- ⁇
  • nonionic detergents such as D-glucopyranoside.
  • it is a nonionic oil-soluble aqueous detergent such as Tween® 80, Triton® X-100, sodium corate and the like.
  • the SD mixture may contain two or more organic solvents and / or surfactants independently. Further, the SD mixed solution may contain other additive components for promoting the effect, for example, a reducing agent, if necessary.
  • the SD mixture preferably contains the above-mentioned organic solvent (S) and surfactant (D) in an amount such that the S / D (w / w ratio) is 1 to 20.
  • the SD treatment can be performed by contacting the protein solution and the SD mixture at a temperature of 0 to 40 ° C, preferably 4 to 25 ° C, more preferably 7 to 12 ° C.
  • the contact usually shows its effect after a few minutes of contact, preferably 10 minutes or more and 2 hours or less, typically about 30 to 60 minutes. Although the effect cannot be expected to increase even if the treatment is performed for a time longer than 2 hours, the treatment may be performed for a longer period of time, for example, 6 hours or more in order to ensure the effect.
  • the method for producing a protein solution from which the virus has been removed is the method for producing a protein solution from which the virus has been removed.
  • the LRV for viruses with a virus particle size of less than 33 nm in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further by irradiating the protein solution with radiation.
  • step (b1) Before step (a) or (a') of the method for producing a protein solution from which the virus of the present invention has been removed, or between steps (a) or (a') and step (b1), in step (b1).
  • Preliminary filtration may be performed with a filter having a pore size larger than that of the virus removing membrane used.
  • the filter made of a film having a large pore size include Planova (registered trademark) 35N (manufactured by Asahi Kasei Medical Co., Ltd.), Planova (registered trademark) 75N (manufactured by Asahi Kasei Medical Co., Ltd.), 0.1 ⁇ m filter, 0.2 ⁇ m filter and the like. ..
  • step (b1) of the method for producing a protein solution from which the virus of the present invention has been removed the protein inside the membrane is washed out to the filtrate side by appropriately filtering the protein-free solution (washing solution).
  • a cleaning step may be added.
  • step (a) or (a') of the method for producing a protein solution from which the virus of the present invention has been removed between steps (a) or (a') and step (b1) or (b2), or After the step (b1) or (b2), any one or more of a chromatography treatment, a virus removing membrane treatment, an SD treatment, a concentration treatment and a concentration / buffer exchange treatment may be performed.
  • a virus removing membrane treatment the content of the step (b1) described in "1. Method for removing virus in protein solution of the present invention" can be incorporated.
  • Examples of the chromatography treatment include column chromatography in which an ion exchange resin and a gel filtration resin are packed in a column, and membrane chromatography in which an ion exchange group is added to the surface of a porous membrane.
  • the chromatographic separation modes include gel filtration chromatography, ion exchange chromatography (cation exchange: CEX, anion exchange: AEX), hydrophobic chromatography (HIC), affinity chromatography, metal chelate affinity chromatography, hydroxyapatite. Chromatography and the like can be mentioned. Chromatography in which ion exchange and hydrophobic interaction are combined may be used as the ligand for chromatography.
  • the content of the step (b2) described in "1. Method for removing virus in protein solution of the present invention" can be incorporated.
  • the concentration treatment may be carried out by a method using an ultrafiltration (UF) membrane according to a method known per se. Further, it may be carried out by centrifugal concentration.
  • UF ultrafiltration
  • the buffer solution exchange treatment may be carried out at the same time as concentration using an ultrafiltration membrane according to a method known per se. Further, it may be carried out by a gel filtration method or a dialysis method using a dialysis membrane.
  • the protein solution from which the virus has been removed may be purified, for example, by chromatographic treatment.
  • the protein solution from which the virus of the present invention has been removed may be further concentrated by UF treatment.
  • virus-removed protein solution obtained in step (b1) or (b2), a purified product thereof or a concentrate thereof may be formulated with the same liquid composition, or, for example, a solvent having another composition.
  • the buffer solution may be exchanged (may include removal of SD by a method known per se) and then formulated.
  • protein solution from which the virus has been removed, a purified product thereof or a concentrate thereof may be freeze-dried and then formulated.
  • a protein solution from which the virus obtained by the production method of the present invention has been removed, or a lyophilized product thereof, which is pharmacologically acceptable is one kind that is pharmacologically acceptable by a method well known in the technical field of pharmaceutical science. It can be mixed with the above carrier and produced as a pharmaceutical preparation or a pharmaceutical composition.
  • various conventional organic or inorganic carrier substances are used as the pharmaceutical material, and specific examples thereof include excipients, lubricants, binders, disintegrants, and liquids in solid formulations. Examples thereof include a solvent, a solubilizing agent, a suspending agent, an tonicity agent, a buffering agent, and a pain-relieving agent in the pharmaceutical product.
  • pharmaceutical additives such as preservatives, antioxidants, colorants, and sweeteners may be used.
  • Excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, pregelatinized starch, dextrin, crystalline cellulose, low-substituted hydroxypropyl cellulose, sodium carboxymethyl cellulose, gum arabic, pullulan, soft anhydrous silicic acid, Examples thereof include synthetic aluminum silicate, magnesium aluminometasilicate, xylitol, sorbitol, and erythritol.
  • the lubricant include magnesium stearate, calcium stearate, talc, colloidal silica, polyethylene glycol 6000 and the like.
  • Binders include pregelatinized starch, sucrose, gelatin, gum arabic, methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, crystalline cellulose, sucrose, D-mannitol, trehalose, dextrin, pullulan, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinyl. Examples include pyrrolidone.
  • disintegrant examples include lactose, sucrose, starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, croscarmellose sodium, carboxymethyl starch sodium, low degree of substitution hydroxypropyl cellulose, soft anhydrous silicic acid, calcium carbonate and the like.
  • solvent examples include water for injection, physiological saline, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, sesame oil, corn oil, olive oil, cottonseed oil and the like.
  • solubilizing agent examples include polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate, sodium salicylate, sodium acetate and the like. ..
  • a surfactant such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glycerin monostearate; for example, polyvinyl alcohol, polyvinylpyrrolidone.
  • Hydrophilic polymers such as sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose; polysorbates, polyoxyethylene hydrogenated castor oil and the like.
  • Examples of the tonicity agent include sodium chloride, glycerin, D-mannitol, D-sorbitol, glucose, xylitol, fructose and the like.
  • Examples of the buffering agent include buffer solutions such as phosphates, acetates, carbonates and citrates.
  • Examples of the soothing agent include propylene glycol, lidocaine hydrochloride, benzyl alcohol and the like.
  • Examples of the preservative include paraoxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
  • Examples of the antioxidant include sulfites, ascorbic acid salts and the like.
  • Coloring agents include water-soluble colored tar pigments (eg, edible pigments such as Edible Red Nos. 2 and 3, Edible Yellow Nos. 4 and 5, Edible Blue Nos. 1 and 2), and insoluble lake dyes (eg, said water-soluble). (Aluminum salt of food coloring), natural food coloring (eg ⁇ -carotene, chlorophyll, red iron oxide) and the like.
  • Examples of the sweetener include sodium saccharin, dipotassium glycyrrhizinate, aspartame, stevia and the like.
  • oral preparation examples include tablets (including sublingual tablets and orally disintegrating agents), capsules (including soft capsules and microcapsules), powders, granules, troches, syrups, emulsions and suspensions. ..
  • oral preparation examples include tablets (including sublingual tablets and orally disintegrating agents), capsules (including soft capsules and microcapsules), powders, granules, troches, syrups, emulsions and suspensions. ..
  • examples of the injection include intradermal injection, subcutaneous injection, intravenous injection, intramuscular injection, intraspinal injection, epidural injection, and local injection.
  • transdermal preparation examples include patches, ointments, and sprays. These formulations may be release controlled formulations such as immediate release formulations or sustained release formulations (eg, sustained release microcapsules).
  • the dose or frequency of administration varies depending on the target therapeutic effect, administration method, treatment period, age, body weight, etc., but the amount of active ingredient (protein) is usually 10 ⁇ g / kg to 5,000 mg / kg per day for adults. May be good.
  • Example 1 Examination of inactivation of virus in the presence of IgG by UVC irradiation The effect of UVC irradiation on IgG molecules was evaluated using an intravenous human immunoglobulin preparation (IVIG). UVC irradiation was performed while shaking with the sample (IVIG) added to the petri dish to form a thin film. The UVC irradiation amount (irradiation energy) was measured using UVR-300 (manufactured by Topcon Techno House) or the like.
  • IVIG intravenous human immunoglobulin preparation
  • UVC irradiation is a condition that can be irradiated up to 512 mJ / cm 2
  • polyclonal IgG around pH 4.1 is a condition that further suppresses polymer formation.
  • the pH at which the solubility of monoclonal IgG becomes optimal changes depending on the PI value of the IgG molecule, the optimum conditions differ for each IgG molecule.
  • the LRV indicating the logarithmic reduction rate is calculated from the value obtained by subtracting the index value of the infectious value after inactivation from the index value of the infectious value before inactivation.
  • UVC irradiation was performed under IgG coexistence conditions in which MVM and BVDV were added to 0.1 M glycine buffer (pH 4.1) containing 2.5% IgG, and changes in infectivity (degree of inactivation) were evaluated (Fig. 4, Fig. 4, Five). Since the IgG used contained an anti-B19 antibody, B19 was not used in this experiment under IgG coexistence conditions. Table 1 summarizes the properties of the viruses used.
  • MVM infectious (inactivated) by UVC irradiation of 32 mJ / cm 2 or higher, and virus LRV was> 3.8 and> 5.0, respectively.
  • the viral LRVs at UVC irradiation of 64 mJ / cm 2 or more were 7.8, 7.4, and 7.2, respectively, whereas BVDV showed no inactivating effect at the irradiation dose evaluated this time. If LRV is 4.00 or more, it is evaluated as effective virus inactivation / removal, but if it is less than 4.00, it is evaluated as moderate if it is 2.00 or more, if it is 1.00 or more, it is evaluated as limited, and if it is 1.00 or less.
  • BVDV with larger particles and genome size did not have a significant change in infectivity (ie, not inactivated) even at an energy amount of 512 mJ / cm 2 under both PBS and IgG coexistence conditions (Figs. 3-5). ..
  • the particle size (genome size) of the virus is important as a factor influencing virus inactivation by UVC irradiation.
  • the type and concentration of the protein coexisting with the virus may be the factor, and the pH may be the factor.
  • the optimum virus inactivation / removal conditions are virus removal membrane treatment with a pore size of 20 nm, IgG concentration of 10% or less, pH 4.1 to 5.5, and It was shown that the UVC irradiation dose was 256 mJ / cm 2 , or the virus removal membrane treatment with a pore size of less than 33 nm, the IgG concentration was 10% or less, the pH was 4.1 to 5.5, and the UVC irradiation dose was 256 mJ / cm 2 . ..
  • Example 2 Examination of inactivation of virus in coexistence with Fib by UVC irradiation Fib (containing 0.5% sodium chloride and 1.6% sodium citrate as stabilizers) concentration is 3.9 mg / ml (E 280 : 5.8, E 1 ) The effect of UVC irradiation on Fib molecules was evaluated using the solution of % 280 : 15-16). In this experiment, the amount of UVC energy was measured using UVC-254 (manufactured by Custom Co., Ltd.), but the measuring instrument was about 1/3 lower than UVR-300 (manufactured by Topcon Techno House Co., Ltd.) used in Example 1. The values are shown (Table 2). Therefore, in this experiment, a correction value obtained by multiplying the measured value by 3 was used so as to be the same as the measured value with UVR-300 (manufactured by Topcon Techno House Co., Ltd.).
  • Fib is a protein with coagulation activity
  • its coagulation activity and polymer formation were evaluated.
  • UVC irradiation the coagulation activity was maintained at almost 100% up to 192 mJ / cm 2 , but the polymer increased according to the irradiation dose.
  • the polymer was detected before irradiation, but the amount of polymer reached 20% after irradiation at 96 mJ / cm 2 compared to before irradiation (Fig. 6).
  • the polymer is not an important index for the purpose of forming a fibrin film before administration, and the coagulation activity is an important index in UVC irradiation.
  • B19 or PPV was added to Fib solutions of various concentrations, and irradiation was performed at different UVC irradiation doses, and changes in virus infectivity (degree of inactivation) were evaluated in the same manner as in Example 1.
  • the properties of the virus used are as shown in Table 1.
  • the detection limit of B19 in the solution was obtained by irradiation with Fib concentration 3.3 mg / ml (E 280 : 5, extinction coefficient (E 1% 280 : 15-16)) and 120 mJ / cm 2 . Inactivated until (LRV:> 4.6).
  • Example 3 Examination of inactivation of virus in coexistence with Thr by UVC irradiation Thr (containing 0.34% sodium chloride, 0.23% sodium citrate, 0.27% calcium chloride as stabilizers) concentration is 2.48 mg / ml (E 280 ) : 5.3, E 1% 280 : 21.4) was used to evaluate the effect of UVC irradiation on Thr molecules.
  • the amount of UVC energy was measured using UVC-254 (manufactured by Custom Co., Ltd.), and the measuring instrument showed a value about 1/3 lower than that of UVR-300 (manufactured by Topcon Techno House Co., Ltd.) (Table). 2). Therefore, in this experiment, a correction value obtained by multiplying the measured value by 3 was used so as to be the measured value with UVR-300 (manufactured by Topcon Techno House Co., Ltd.).
  • Thr is a protein with coagulation activity
  • the coagulation activity decreased with the irradiation dose at 192 mJ / cm 2 , which decreased to almost 90%.
  • the polymer also increased with irradiation dose and increased to 3.8% at 192 mJ / cm 2 (Fig. 10).
  • B19 or PPV was added to the Fib solution diluted to various concentrations, and irradiation was performed at different UVC irradiation doses, and the change in virus infectivity (degree of inactivation) was evaluated in the same manner as in Example 1. ..
  • the properties of the virus used are as shown in Table 1.
  • B19 and PPV drew an approximate inactivated curve.
  • B19 virus in a solution with a Thr concentration of 4.67 mg / ml (E 280 : 10, E 1% 280 : 21.4) was inactivated to the detection limit by irradiation at 192 mJ / cm 2 (LRV:> 5.00).
  • LRV 192 mJ / cm 2
  • PPV the condition for achieving LRV: 4.00, although not below the detection limit, was an irradiation dose of 96 mJ / cm 2 .
  • Thr concentration is 4.67 mg / ml (E 280 : 10, E 1%). If the concentration is 280 : 21.4) or less, it exceeds the critical point at 192 mJ / cm 2 , and if the Thr concentration is 2.34 mg / ml (E 280 : 5, E 1% 280 : 21.4), it exceeds the critical point at 96 mJ / cm 2 . It was shown (Figs. 11 and 12).
  • a virus removal membrane treatment having a pore size of 20 nm and a Thr concentration of 4.67 mg / ml (E 280 : 10, E 1% 280 : 21.4) or less, UVC irradiation of 192 mJ / cm 2 (or 96 mJ / cm 2 ), or virus removal membrane treatment with pore size less than 33 nm, Thr concentration 4.67 mg / It was shown that the UVC irradiation was 192 mJ / cm 2 (or 96 mJ / cm 2 ) or less under ml (E 280 : 10, E 1% 280 : 21.4).
  • Example 4 Examination of inactivation by gamma beam irradiation for viruses in the coexistence of Fib, Thr, and Alb 26.65 mg / ml as Fib (53.3 mg / vial after freeze-drying, sodium citrate and L as stabilizers / excipients -Contains alginate), 3.5 mg / ml as Thr (7.0 mg / vial after freeze-drying, contains D-mannitol, sodium citrate, L-arginate as stabilizers / excipients), Alb As a 10 mg / ml (20 mg / vial after freeze-drying, containing a) sodium citrate, sodium chloride, b) D-mannitol as stabilizers / excipients), freeze-dry each solution and irradiate with gamma rays. The effect on each protein was evaluated.
  • the degree of decomposition product formation of these proteins by gamma-ray irradiation was evaluated by the Peak area ratio by SEC (HPLC) analysis.
  • the Fib polymer increased by 20% with 25 kGy irradiation compared with non-irradiation.
  • the Thr polymer did not show a significant change even after irradiation with 50 kGy.
  • Albumin increased by 10-15% after irradiation with 50 kGy (Fig. 13-15).
  • the sample freeze-dried after adding B19 was irradiated with different gamma doses, and the change in virus infectivity (degree of inactivation) was evaluated in the same manner as in Example 1.
  • the properties of the virus used are as shown in Table 1.
  • Example 5 Examination of calibration of measurement value error due to difference in UVC measuring device When virus inactivation by UVC irradiation is performed, it is necessary to correctly measure UVC irradiation amount (energy amount). However, as a result of examination, as shown in Table 2, it was found that the indicated value may differ depending on the detector even under the same conditions.
  • virus inactivation by irradiation treatment and virus removal by virus removal membrane treatment or virus inactivation by SD treatment are integrated, and their characteristics are complementarily optimized for the conditions. It is useful for inactivating / removing the virus in the solution and for producing a protein solution in which the virus has been inactivated / removed.

Abstract

Provided is a method for deactivating or removing viruses in a protein solution, the method including a step in which radiation treatment and virus removal membrane treatment or SD treatment are integrated and the conditions of these treatments are optimized to be mutually complementary. More specifically, the method includes: (a) a step in which a protein solution is treated by being irradiated with radiation so that the removal coefficient (LRV) for viruses with a virus particle diameter of less than 33 nm in the protein solution is at least 1.00; and (b1) a step in which viruses are removed from the treated protein solution by a virus removal membrane with an LRV of at least 4.00 for bacteriophage PP7, or (b2) a step in which the treated protein solution is brought into contact with a liquid mixture (SD liquid mixture) of an organic solvent and a surfactant and viruses are deactivated by organic solvent/surfactant treatment (SD treatment) so that the LRV for envelope viruses in the protein solution is at least 2.00. Also provided is a method for manufacturing a protein solution in/from which viruses have been deactivated/removed, the method including the abovementioned steps.

Description

タンパク質溶液中のウイルス除去方法Virus removal method in protein solution
 本発明は、タンパク質溶液中のウイルス除去方法、及びウイルスが除去されたタンパク質溶液の製造方法に関する。 The present invention relates to a method for removing a virus in a protein solution and a method for producing a protein solution from which the virus has been removed.
 血漿分画製剤やバイオ医薬品の製造工程には、当該製剤等の安全性及び安定性の観点等から、ウイルス不活化及び/又は除去(以下、「ウイルス不活化・除去」と略記する)工程が組み込まれている。一般的にウイルス不活化条件は、タンパク質が変性を起こさない条件とウイルスが不活化される条件の両方が成立する範囲で設計される。そのため、全てのウイルスを効果的に不活化しようとすれば、タンパク質の変性量が増加し、製剤化という目的が達成されなくなるか、あるいは収益性が悪化する。 In the manufacturing process of plasma fractionation preparations and biopharmacy, from the viewpoint of safety and stability of the preparations, virus inactivation and / or removal (hereinafter abbreviated as "virus inactivation / removal") steps are included. It has been incorporated. Generally, the virus inactivation condition is designed as long as both the condition that the protein is not denatured and the condition that the virus is inactivated are satisfied. Therefore, if an attempt is made to effectively inactivate all viruses, the amount of protein denatured increases, the purpose of formulation cannot be achieved, or profitability deteriorates.
 また、凝固因子などのタンパク質は物理化学的負荷に耐性が低い。このため、安定性の低いタンパク質が変性を起こさない範囲にウイルス不活化条件を設定すると、一部のウイルスにしか不活化効果を示さないなどの問題が生じる。上記から理解されるように、ウイルス不活化・除去技術は、ある意味で不完全技術であり、1つの手法でタンパク質の変性を避けながら、全てのウイルスを完全に不活化及び除去することは極めて困難であり、バイオ医薬品の製造においては、複数のウイルス不活化・除去工程を単純に組み合わせるのが一般的である。 In addition, proteins such as coagulation factors have low resistance to physicochemical loads. Therefore, if the virus inactivating condition is set in a range where the protein having low stability does not cause denaturation, there arises a problem that the inactivating effect is shown only to some viruses. As can be understood from the above, virus inactivation / removal techniques are, in a sense, incomplete techniques, and it is extremely difficult to completely inactivate and remove all viruses while avoiding protein denaturation with one method. It is difficult, and in the production of biopharmaceuticals, it is common to simply combine multiple virus inactivation / removal steps.
 現在、ウイルス不活化・除去方法として、液状・乾燥加熱処理、有機溶媒・界面活性剤処理(SD処理)、低pH処理、ウイルス除去膜処理などがウイルス不活化・除去工程としてバイオ医薬品等の製造工程に導入されている(特許文献1~3、及び非特許文献1)。 Currently, as virus inactivation / removal methods, liquid / dry heat treatment, organic solvent / surfactant treatment (SD treatment), low pH treatment, virus removal membrane treatment, etc. are the virus inactivation / removal steps for manufacturing biopharmaceuticals, etc. It has been introduced into the process (Patent Documents 1 to 3 and Non-Patent Document 1).
 上述の液状・乾燥加熱処理やSD処理は、ヒト免疫不全ウイルス(HIV)やC型肝炎ウイルス(HCV)等のエンベロープウイルスに対して有効な不活化処理として知られている。しかしながら、ヒトパルボウイルスB19(以下、「B19」と略記する)やA型肝炎ウイルス(以下、「HAV」と略記する)等のノンエンベロープウイルスは、上記のようなウイルス不活化処理に対して抵抗性を有しており、エンベロープウイルスに対する程度の効果を期待できないという問題を有している。 The above-mentioned liquid / dry heat treatment and SD treatment are known as effective inactivating treatments against enveloped viruses such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, non-enveloped viruses such as human parvovir B19 (hereinafter abbreviated as "B19") and hepatitis A virus (hereinafter abbreviated as "HAV") resist the above-mentioned virus inactivation treatment. It has sex and has the problem that it cannot be expected to have a certain degree of effect on enveloped viruses.
 上述のウイルス除去膜処理であれは、粒子の大きさに応じて分離操作を行うので、分離する対象の化学的特性や熱的性質に拘わらず、大きさのみに応じて、ウイルスを除去することができるという利点がある。そのため、近年、ノンエンベロープウイルス等の混入の観点から、ウイルス除去膜による膜ろ過法が、一般的に採用されている。 In the above-mentioned virus removing membrane treatment, the separation operation is performed according to the size of the particles, so that the virus is removed only according to the size regardless of the chemical or thermal properties of the object to be separated. There is an advantage that it can be done. Therefore, in recent years, a membrane filtration method using a virus removing membrane has been generally adopted from the viewpoint of contamination with non-enveloped viruses and the like.
 ノンエンベロープウイルスであるパルボウイルスとしては、例えば、B19、マウス微小ウイルス(以下、「MVM」と略記する)、ブタパルボウイルス(以下、「PPV」と略記する)等が存在する。B19は、パルボウイルス科(Parvoviridae)に属する直鎖一本鎖DNAウイルスであり、その大きさは、約23~28 nmである(ICTV, https://talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/w/parvoviridae)。過去にバイオ医薬品等の製造において、細胞培養時にげっ歯類由来のMVMの混入事例が発生したことがあり、上記の製造におけるリスクとして認識されている。パルボウイルス等に対する効果的なウイルス除去方法としても、ウイルス除去膜による膜ろ過法が普及している。当該膜ろ過法の基本原理は、使用するウイルス除去膜の孔径によって、目的タンパク質はウイルス除去膜を通過するが、ウイルスは通過できない条件を設定することによって達成される。 Examples of parvovirus, which is a non-enveloped virus, include B19, mouse microvirus (hereinafter abbreviated as "MVM"), and porcine parvovirus (hereinafter abbreviated as "PPV"). B19 is a linear single-stranded DNA virus belonging to the Parvoviridae family, and its size is about 23 to 28 nm (ICTV, https://talk.ictvonline.org/ictv-reports/). ictv_online_report / ssdna-viruses / w / parvoviridae). In the past, in the production of biopharmacy and the like, cases of contamination with rodent-derived MVM have occurred during cell culture, and this is recognized as a risk in the above production. As an effective virus removing method for parvovirus and the like, a membrane filtration method using a virus removing membrane is widely used. The basic principle of the membrane filtration method is achieved by setting conditions under which the target protein passes through the virus-removing membrane but the virus cannot pass, depending on the pore size of the virus-removing membrane used.
 現在知られている最小のノンエンベロープウイルスは、ブタサーコウイルス(以下、「PCV」と略記する場合がある)であり、その粒子径は、約15~25 nmである(ICTV, https://talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/w/circoviridae)。PCVは、サーコウイルス科(Family Circoviridae)に属し、例えば、PCV1、PCV2等に分類される。PCVも、バイオ医薬品等の製造工程に混入するリスクの高いウイルスの一つであり、過去に混入事例が報告されている。PCVは、低pH処理、加熱処理にも耐性であり、PCVを含む溶液については、たとえ15 nmの孔径を有するウイルス除去膜を用いても当該ウイルスを捕捉することは困難であり、多くのバイオ医薬品等の製造工程で導入されているウイルス除去膜では、十分には除去できないという問題を有する。また、例えば、イオン交換樹脂等を用いた処理等も行われているものの、十分な効果を得られているとは言い難い。 The smallest non-enveloped virus currently known is porcine circovirus (hereinafter sometimes abbreviated as "PCV"), which has a particle size of about 15 to 25 nm (ICTV, https: //). talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/w/circoviridae). PCV belongs to the family Circoviridae, and is classified into, for example, PCV1, PCV2 and the like. PCV is also one of the viruses with a high risk of being contaminated in the manufacturing process of biopharmacy and the like, and cases of contamination have been reported in the past. PCV is resistant to low pH treatment and heat treatment, and it is difficult to capture the virus in solutions containing PCV even using a virus removal membrane with a pore size of 15 nm, and many biopharmacy There is a problem that the virus removing membrane introduced in the manufacturing process of pharmaceutical products cannot be sufficiently removed. Further, for example, although treatment using an ion exchange resin or the like is performed, it cannot be said that a sufficient effect is obtained.
 現在、血漿分画製剤やバイオ医薬品の製造工程におけるウイルス不活化・除去条件の最適化は、導入を所望する各々の工程ごとに設計され、医薬品規制調和国際会議(ICH)のガイドラインに基づいて、各々の工程ごとに特性評価を実施している。また、バイオ医薬品の製造工程全体におけるウイルス不活化・除去能力の評価は、個々に最適化された複数のウイルス不活化・除去工程を複数実施し、各々の工程における不活化及び除去能力及びその総和で評価されている(非特許文献1)。 Currently, optimization of virus inactivation / removal conditions in the manufacturing process of plasma fractionated products and biopharmacy is designed for each process desired to be introduced, and is based on the guidelines of the International Council for Harmonization of Pharmaceutical Regulations (ICH). Characteristic evaluation is carried out for each process. In addition, in the evaluation of the virus inactivation / removal ability in the entire biopharmacy manufacturing process, a plurality of individually optimized virus inactivation / removal steps are carried out, and the inactivation and removal ability in each step and the total thereof are carried out. It is evaluated in (Non-Patent Document 1).
 上記のような評価手法等に起因して、上述以外の優れたウイルス不活化や除去能力があるにも関わらず、バイオ医薬品等の製造工程への導入可能条件(帯域)が狭い、あるいは偏っているなどの特性をもつ手法は、当該製造工程に導入され難いという問題が存在している。放射線(例:紫外線、電子線、γ線等)を例に挙げると、まず、放射線の照射によるウイルス不活化のメカニズムは、電磁波や電子線等のエネルギーによりウイルス核酸を傷害することであり、ゲノムサイズが小さい(即ち、ウイルスの粒子径が小さい)ほど、低エネルギーで不活化し得るという特徴を有する(非特許文献2)。従って、照射エネルギーが大きくなるほどタンパク質も変性し易くなり、大型のウイルスの不活化まで達成し得る放射線(例:紫外線、電子線、γ線等)の照射条件ではタンパク質の変性が著しく、バイオ医薬品等の製造工程への導入は非常に困難であると考えられている。また、放射線(例:紫外線、電子線、γ線等)の照射量は、同じ条件下でも検出器の種類によって異なることがあるため、照射量の標準化が困難である点も導入の妨げとなっていると考えられる。 Due to the above-mentioned evaluation methods, etc., the conditions (band) that can be introduced into the manufacturing process of biopharmacy, etc. are narrow or biased, despite having excellent virus inactivation and removal ability other than the above. There is a problem that it is difficult to introduce a method having characteristics such as virus into the manufacturing process. Taking radiation (eg, ultraviolet rays, electron beams, γ-rays, etc.) as an example, first, the mechanism of virus inactivation by irradiation with radiation is to damage viral nucleic acids by energy such as electromagnetic waves and electron beams, and the genome. The smaller the size (that is, the smaller the particle size of the virus), the lower the energy required for inactivation (Non-Patent Document 2). Therefore, the larger the irradiation energy, the easier it is for proteins to denature, and under irradiation conditions of radiation (eg, ultraviolet rays, electron beams, γ-rays, etc.) that can achieve inactivation of large viruses, protein denaturation is remarkable, and biopharmaceuticals, etc. Is considered to be very difficult to introduce into the manufacturing process. In addition, the irradiation amount of radiation (eg, ultraviolet rays, electron beams, γ-rays, etc.) may differ depending on the type of detector even under the same conditions, so it is difficult to standardize the irradiation amount, which also hinders the introduction. It is thought that it is.
特開2006-151840号公報Japanese Unexamined Patent Publication No. 2006-151840 国際公開第2010/109920号International Publication No. 2010/109920 国際公開第2018/030437号International Publication No. 2018/030437
 本発明の課題は、放射線照射処理とウイルス除去膜処理又はSD処理とを一体としてそれらの条件を好適化させた工程を含む、タンパク質溶液中のウイルス不活化・除去方法、及び上記工程を含む、ウイルスが不活化・除去されたタンパク質溶液の製造方法を提供することである。 The subject of the present invention includes a method for inactivating / removing a virus in a protein solution, which comprises a step of integrating irradiation treatment with a virus removing membrane treatment or SD treatment to optimize those conditions, and the above steps. It is to provide a method for producing a protein solution in which a virus has been inactivated and removed.
 本発明者らは、優れたウイルス不活化・除去能力があるにも関わらず、バイオ医薬品等の製造工程への導入が非常に困難とされている放射線照射処理について、当該工程に導入すべく鋭意検討を行った。当該検討の結果、本発明者らは、ウイルスの不活化・除去とタンパク質の変性を中心とした工程の特性に着目し、(i)放射線照射処理によるウイルスの不活化方法と、(ii)ウイルス除去膜処理によるウイルスの除去方法又はSD処理によるウイルスの不活化方法とを一体化して、相互補完的にウイルスの不活化・除去条件を設計することを着想した。当該着想は、上述したような、製造工程への導入を所望するウイルス不活化・除去工程ごとに、工程特性評価を実施するといった既存の手法からは想到することが極めて困難なものである。そして、これまでにこの様な着想で工程がデザインされ、ウイルス不活化・除去能力を評価した報告は見出せない。また、放射線、特に紫外線においては絶対照射量を測定することが困難であることから該照射量の標準化についても、特定の化合物の吸光度の変化に着目し、当該吸光度の変化を指標として測定機器間の校正を行うことを着想した。そして、当該着想に基づいて、さらに研究を重ねた結果、バイオ医薬品等の製造工程への導入が可能となる、上記2つの方法を一体として好適化させたウイルス不活化・除去工程を設計し、本発明を完成するに至った。 The present inventors are keen to introduce the irradiation treatment, which is extremely difficult to introduce into the manufacturing process of biopharmacy, etc., in spite of its excellent virus inactivating / removing ability. Study was carried out. As a result of this study, the present inventors focused on the characteristics of the process centering on virus inactivation / removal and protein denaturation, and (i) a virus inactivation method by irradiation treatment and (ii) a virus. The idea was to design virus inactivation / removal conditions in a mutually complementary manner by integrating the virus removal method by removal membrane treatment or the virus inactivation method by SD treatment. It is extremely difficult to come up with this idea from the existing method of performing process characteristic evaluation for each virus inactivation / removal process that is desired to be introduced into the manufacturing process as described above. So far, no report has been found that the process was designed with such an idea and the virus inactivation / removal ability was evaluated. In addition, since it is difficult to measure the absolute irradiation amount with radiation, especially ultraviolet rays, the standardization of the irradiation amount also focuses on the change in the absorbance of a specific compound and uses the change in the absorbance as an index between measuring instruments. I came up with the idea of calibrating. Then, based on this idea, as a result of further research, we designed a virus inactivation / removal process that is suitable for the above two methods as a whole, which enables introduction into the manufacturing process of biopharmacy and the like. The present invention has been completed.
 即ち、本発明は以下の通りである。
[1]タンパク質溶液中のウイルスを除去する方法であって、以下:
(a)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対する除去係数(対数で表されるウイルスの減少度であって以下「LRV」と表記する)が1.00以上になるように処理する工程、及び
(b1)前記処理されたタンパク質溶液を、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でウイルスを除去する工程、又は
(b2)前記処理されたタンパク質溶液を、有機溶媒及び界面活性剤の混合液(SD混合液)と接触させ、前記タンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるように有機溶媒・界面活性剤処理(SD処理)によりウイルスを不活化する工程
を含む、方法。
[1-1](a)が、タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対する除去係数が1.00以上になるように処理する工程である、[1]に記載の方法。
[2]前記放射線が紫外線又はγ線である、[1]または[1-1]に記載の方法。
[3]前記放射線が紫外線である、[2]に記載の方法。
[4]前記紫外線が32 mJ/cm2~256 mJ/cm2の範囲で照射される、[3]に記載の方法。
[5]前記放射線がγ線である、[2]に記載の方法。
[6]前記γ線が5 kGy~50 kGyの範囲で照射される、[5]に記載の方法。
[7]バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜が、孔径20 nm以下のウイルス除去膜である、[1]~[6]の何れか1つに記載の方法。
[8]前記孔径20 nm以下のウイルス除去膜が、孔径15 nm以上のウイルス除去膜である、[7]に記載の方法。
[8-1]バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜の孔径が33 nm未満である、[1]~[6]の何れか1つに記載の方法。
[8-2]前記ウイルス除去膜の孔径が、13~33nmである、[8-1]に記載の方法。
[8-3]前記ウイルス除去膜の孔径が、15~33nmである、[8-1]に記載の方法。
[8-4]前記ウイルス除去膜の孔径が、17~33nmである、[8-1]に記載の方法。
[8-5]前記ウイルス除去膜の孔径が、17~30nmである、[8-1]に記載の方法。
[8-6]前記ウイルス除去膜の孔径が、17~21nmである、[8-1]に記載の方法。
[8-7]前記ウイルス除去膜の孔径が、19~21nmである、[8-1]に記載の方法。
[8-8]前記ウイルス除去膜の孔径が、19~20nmである、[8-1]に記載の方法。
[9]前記ウイルス除去膜が、孔径約20 nmのウイルス除去膜である、[7]又は[8]に記載の方法。
[10]ウイルスが除去されたタンパク質溶液の製造方法であって、以下:
(a)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対する除去係数(LRV)が1.00以上になるように処理する工程、及び
(b1)前記処理されたタンパク質溶液を、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でろ過する工程、又は
(b2)前記処理されたタンパク質溶液を、SD混合液と接触させ、前記タンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるようにSD処理する工程
を含む、方法。
[10-1](a)が、タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対する除去係数が1.00以上になるように処理する工程である、[10]に記載の方法。
[11](a)におけるLRVが2.00以上である、[1]又は[1-1]に記載の方法。
[12](a)におけるLRVが4.00以上である、[1]又は[1-1]に記載の方法。
[13](b2)におけるLRVが4.00以上である、[1]、[1-1]又は[12]に記載の方法。
[14](a)におけるLRVが2.00以上である、[10]又は[10-1]に記載の方法。
[15](a)におけるLRVが4.00以上である、[10]又は[10-1]に記載の方法。
[16](b2)におけるLRVが4.00以上である、[10]、[10-1]又は[15]に記載の方法。
That is, the present invention is as follows.
[1] A method for removing a virus in a protein solution, which is as follows:
(A) By irradiating the protein solution with radiation, the removal coefficient for viruses with a virus particle size of less than 33 nm in the protein solution (the degree of decrease of the virus represented by a logarithm, hereinafter referred to as "LRV") is The step of treating to 1.00 or more, and (b1) the step of removing the virus from the treated protein solution with a virus removing membrane having an LRV of 4.00 or more for Bacterophage PP7, or (b2) the above-mentioned treatment. The protein solution is brought into contact with a mixed solution of an organic solvent and a surfactant (SD mixed solution), and the organic solvent / surfactant treatment (SD treatment) is performed so that the LRV against the enveloped virus in the protein solution becomes 2.00 or more. A method comprising the step of inactivating a virus.
[1-1] (a) is a step of irradiating the protein solution with radiation so that the removal coefficient for the virus having a virus particle diameter of 30 nm or less in the protein solution is 1.00 or more [1]. ] The method described in.
[2] The method according to [1] or [1-1], wherein the radiation is ultraviolet rays or γ-rays.
[3] The method according to [2], wherein the radiation is ultraviolet light.
[4] The method according to [3], wherein the ultraviolet rays are irradiated in the range of 32 mJ / cm 2 to 256 mJ / cm 2 .
[5] The method according to [2], wherein the radiation is gamma rays.
[6] The method according to [5], wherein the γ-rays are irradiated in the range of 5 kGy to 50 kGy.
[7] The method according to any one of [1] to [6], wherein the virus-removing membrane having an LRV of 4.00 or more for bacteriophage PP7 is a virus-removing membrane having a pore size of 20 nm or less.
[8] The method according to [7], wherein the virus removing membrane having a pore size of 20 nm or less is a virus removing membrane having a pore diameter of 15 nm or more.
[8-1] The method according to any one of [1] to [6], wherein the LRV for bacteriophage PP7 is 4.00 or more and the pore size of the virus removing membrane is less than 33 nm.
[8-2] The method according to [8-1], wherein the virus removing membrane has a pore size of 13 to 33 nm.
[8-3] The method according to [8-1], wherein the virus removing membrane has a pore size of 15 to 33 nm.
[8-4] The method according to [8-1], wherein the virus removing membrane has a pore size of 17 to 33 nm.
[8-5] The method according to [8-1], wherein the virus removing membrane has a pore size of 17 to 30 nm.
[8-6] The method according to [8-1], wherein the virus removing membrane has a pore size of 17 to 21 nm.
[8-7] The method according to [8-1], wherein the virus removing membrane has a pore size of 19 to 21 nm.
[8-8] The method according to [8-1], wherein the virus removing membrane has a pore size of 19 to 20 nm.
[9] The method according to [7] or [8], wherein the virus removing membrane is a virus removing membrane having a pore size of about 20 nm.
[10] A method for producing a protein solution from which a virus has been removed.
(A) The step of irradiating the protein solution with radiation so that the removal coefficient (LRV) for the virus having a virus particle diameter of less than 33 nm in the protein solution is 1.00 or more, and (b1) the treatment. The step of filtering the protein solution with a virus-removing membrane having an LRV of 4.00 or higher for Bacterophage PP7, or (b2) contacting the treated protein solution with the SD mixture and LRV against the enveloped virus in the protein solution. A method that includes a step of SD processing so that is 2.00 or higher.
[10-1] (a) is a step of irradiating the protein solution with radiation so that the removal coefficient for the virus having a virus particle diameter of 30 nm or less in the protein solution is 1.00 or more [10]. ] The method described in.
[11] The method according to [1] or [1-1], wherein the LRV in (a) is 2.00 or more.
[12] The method according to [1] or [1-1], wherein the LRV in (a) is 4.00 or more.
[13] The method according to [1], [1-1] or [12], wherein the LRV in (b2) is 4.00 or more.
[14] The method according to [10] or [10-1], wherein the LRV in (a) is 2.00 or more.
[15] The method according to [10] or [10-1], wherein the LRV in (a) is 4.00 or more.
[16] The method according to [10], [10-1] or [15], wherein the LRV in (b2) is 4.00 or more.
 本発明によれば、放射線照射処理によるウイルス不活化と、ウイルス除去膜処理によるウイルス除去又はSD処理によるウイルス不活化とを一体としてそれらの条件を好適化させた工程を含む、タンパク質溶液中のウイルス除去方法、及び当該工程を含む、ウイルスが除去されたタンパク質溶液の製造方法を提供することができる。
 また、当該工程では、粒子径が30 nm以下のウイルス(例:パルボウイルス、サーコウイルス)は放射線(例:紫外線、γ線)により効果的に不活化されるため、15 nm以上の孔径を有するウイルス除去膜を用いても、相乗的に極めて高いLRVを達成することができる。別の態様では、当該工程では、粒子径が33nm未満のウイルス(例:パルボウイルス、サーコウイルス)は放射線(例:紫外線、γ線)により効果的に不活化されるため、13 nm以上の孔径を有するウイルス除去膜を用いても、相乗的に極めて高いLRVを達成することができる。さらに、当該ウイルス不活化・除去工程においては、従来一般的に採用されているウイルス除去膜よりも大きい孔径を採用し得るため、より所望するタンパク質の収率を高めることができる。その上、当該ウイルス不活化・除去工程に用いる放射線照射処理では、緩衝液や安定化剤以外の薬剤の添加は不要であり、当該工程の後工程にて、添加した薬剤の除去等の工程を追加する必要がなく、製造工程の簡素化に寄与することができる。
According to the present invention, a virus in a protein solution comprises a step of integrating virus inactivation by irradiation treatment and virus removal by virus removal membrane treatment or virus inactivation by SD treatment to optimize those conditions. It is possible to provide a removal method and a method for producing a protein solution from which a virus has been removed, which comprises the step.
In addition, in this step, viruses with a particle size of 30 nm or less (eg, parvovirus, circoviridae) are effectively inactivated by radiation (eg, ultraviolet rays, γ-rays), and therefore have a pore size of 15 nm or more. Even with a virus-removing membrane, extremely high LRV can be synergistically achieved. In another embodiment, in the step, viruses with a particle size of less than 33 nm (eg, parvovir, circoviridae) are effectively inactivated by radiation (eg, ultraviolet, γ-ray), resulting in a pore size of 13 nm or more. It is also possible to synergistically achieve extremely high LRV by using a virus-removing membrane having. Further, in the virus inactivation / removal step, a pore diameter larger than that of a virus removing membrane generally used in the past can be adopted, so that the yield of a desired protein can be further increased. Moreover, in the irradiation treatment used in the virus inactivation / removal step, it is not necessary to add a drug other than a buffer solution or a stabilizer, and a step such as removal of the added drug is performed in a subsequent step of the step. There is no need to add it, which can contribute to the simplification of the manufacturing process.
図1は、2.5% (25 mg/ml) IgG溶液(0.1M グリシン、pH 3.0~6.8)に紫外線C波(UVC)を照射(0~1,024 mJ/cm2)した時のIgG変性(重合体の形成)率の関係を示す図である。Figure 1 shows IgG denaturation (polymer) when a 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 3.0 to 6.8) was irradiated with ultraviolet C waves (UVC) (0 to 1,024 mJ / cm 2 ). It is a figure which shows the relationship of the (formation) rate. 図2は、5% (50 mg/ml) IgG溶液(5% ソルビトール、pH 4.1)にUVCを照射(0~1,024 mJ/cm2)した時のIgG変性(重合体の形成)率の関係を示す図である。Figure 2 shows the relationship between the IgG denaturation (polymer formation) rates when a 5% (50 mg / ml) IgG solution (5% sorbitol, pH 4.1) was irradiated with UVC (0 to 1,024 mJ / cm 2 ). It is a figure which shows. 図3は、PBS中のB19にUVCを照射(0~512 mJ/cm2)した時の不活化の関係を示す図である。FIG. 3 is a diagram showing the relationship of inactivation when B19 in PBS is irradiated with UVC (0 to 512 mJ / cm 2 ). 図4は、2.5% (25 mg/ml) IgG溶液(0.1M グリシン、pH 4.1)またはPBS中のMVMにUVCを照射(0~512 mJ/cm2)した時の不活化の関係を示す図である。Figure 4 shows the inactivation relationship when UVC is applied to MVM in 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 4.1) or PBS (0 to 512 mJ / cm 2 ). Is. 図5は、2.5% (25 mg/ml) IgG溶液(0.1M グリシン、pH 4.1)またはPBS中の牛ウイルス性下痢ウイルス(以下、「BVDV」又は「BVD」と略記)にUVCを照射(0~512 mJ/cm2)した時の不活化の関係を示す図である。Figure 5 shows Bovine viral diarrheavirus (hereinafter abbreviated as "BVDV" or "BVD") in 2.5% (25 mg / ml) IgG solution (0.1 M glycine, pH 4.1) or PBS irradiated with UVC (0). It is a figure which shows the relationship of inactivation at the time of ~ 512 mJ / cm 2 ). 図6は、UVC照射(0~768 mJ/cm2)によるフィブリノゲン(以下、「Fib」と略記する)(安定化剤として0.5% 塩化ナトリウム、1.6%クエン酸ナトリウムを含む)濃度が3.9 mg/ml(E280: 5.8、E1% 280:15~16)の時の凝固活性とタンパク変性率の関係を示す図である。Figure 6 shows the concentration of fibrinogen (hereinafter abbreviated as "Fib") (including 0.5% sodium chloride and 1.6% sodium citrate as stabilizers) by UVC irradiation (0 to 768 mJ / cm 2 ) at 3.9 mg / It is a figure which shows the relationship between the coagulation activity and the protein denaturation rate at the time of ml (E 280 : 5.8, E 1% 280 : 15-16). 図7は、Fib濃度を3.3~13.3 mg/ml(E280: 5~20、吸光係数(E1% 280:15~16))とした溶液中のB19にUVCを照射(0~384 mJ/cm2)した時のB19不活化の関係を示す図である。Figure 7 shows B19 in a solution with a Fib concentration of 3.3 to 13.3 mg / ml (E 280 : 5 to 20, absorption coefficient (E 1% 280 : 15 to 16)) irradiated with UVC (0 to 384 mJ /). It is a figure which shows the relationship of B19 inactivation at the time of cm 2 ). 図8は、Fib濃度を0.004~3.6 mg/ml(E280: 0.0054~5.4、吸光係数(E1% 280:15~16))とした溶液またはPBS中のB19にUVCを照射(0~384 mJ/cm2)した時のB19不活化の関係を示す図である。Figure 8 shows B19 in a solution or PBS with a Fib concentration of 0.004 to 3.6 mg / ml (E 280 : 0.0054 to 5.4, extinction coefficient (E 1% 280 : 15 to 16)) irradiated with UVC (0 to 384). It is a figure which shows the relationship of B19 inactivation at the time of mJ / cm 2 ). 図9は、Fib濃度を0.04~3.6 mg/ml(E280: 0.054~5.4、吸光係数(E1% 280:15~16))とした溶液またはPBS中のPPVにUVCを照射(0~384 mJ/cm2)した時のPPV不活化の関係を示す図である。Figure 9 shows UVC irradiation (0 to 384) of PPV in a solution or PBS with a Fib concentration of 0.04 to 3.6 mg / ml (E 280 : 0.054 to 5.4, extinction coefficient (E 1% 280 : 15 to 16)). It is a figure which shows the relationship of PPV inactivation at the time of mJ / cm 2 ). 図10は、UVC照射(0~768 mJ/cm2)によるトロンビン(以下、「Thr」と略記する)(安定化剤として0.34%塩化ナトリウム、0.23%クエン酸ナトリウム、0.27%塩化カルシウムを含む)濃度が2.48 mg/ml(E280: 5.3、吸光係数(E1% 280:21.4))の時の凝固活性とタンパク変性率の関係を示す図である。Figure 10 shows trombin (hereinafter abbreviated as “Thr”) by UVC irradiation (0 to 768 mJ / cm 2 ) (including 0.34% sodium chloride, 0.23% sodium citrate, and 0.27% calcium chloride as stabilizers). It is a figure which shows the relationship between the coagulation activity and the protein denaturation rate when the concentration is 2.48 mg / ml (E 280 : 5.3, absorption coefficient (E 1% 280 : 21.4)). 図11は、Thr濃度を0.47~4.7 mg/ml(E280: 1~10、吸光係数(E1% 280:21.4))とした溶液中のB19にUVCを照射(0~384 mJ/cm2)した時のB19不活化の関係を示す図である。Figure 11 shows B19 in a solution with a Thr concentration of 0.47 to 4.7 mg / ml (E 280 : 1 to 10, absorption coefficient (E 1% 280 : 21.4)) irradiated with UVC (0 to 384 mJ / cm 2 ). It is a figure which shows the relationship of B19 inactivation at the time of). 図12は、Thr濃度を0.47~4.7 mg/ml(E280: 1~10、吸光係数(E1% 280:21.4))とした溶液中のPPVにUVCを照射(0~384 mJ/cm2)した時のPPV不活化の関係を示す図である。Figure 12 shows PPV in a solution with a Thr concentration of 0.47 to 4.7 mg / ml (E 280 : 1 to 10, extinction coefficient (E 1% 280 : 21.4)) irradiated with UVC (0 to 384 mJ / cm 2 ). It is a figure which shows the relationship of PPV inactivation at the time of). 図13は、Fib(安定化剤・賦形剤としてクエン酸ナトリウムとL-アルギン酸塩酸塩を含む)を凍結乾燥し、ガンマ線を照射した時のタンパク変性の関係を示す図である。FIG. 13 is a diagram showing the relationship of protein denaturation when Fib (containing sodium citrate and L-alginate salt as stabilizers / excipients) is freeze-dried and irradiated with gamma rays. 図14は、Thr(安定化剤・賦形剤としてD-マンニトール、クエン酸ナトリウム、L-アルギン酸塩酸塩を含む)を凍結乾燥し、ガンマ線を照射した時のタンパク変性の関係を示す図である。FIG. 14 is a diagram showing the relationship of protein denaturation when Thr (including D-mannitol, sodium citrate, and L-alginate salt as stabilizers / excipients) is freeze-dried and irradiated with gamma rays. .. 図15は、アルブミン(以下、「Alb」と略記する)(安定化剤・賦形剤としてa)クエン酸ナトリウム、塩化ナトリウム、b)D-マンニトールを含む)を凍結乾燥し、ガンマ線を照射した時のタンパク変性の関係を示す図である。In FIG. 15, albumin (hereinafter abbreviated as “Alb”) (including a) sodium citrate, sodium chloride, and b) D-mannitol as stabilizers / excipients was freeze-dried and irradiated with gamma rays. It is a figure which shows the relationship of the protein denaturation at the time. 図16は、B19を含む上記Fib、Thr、Alb (a)、Alb (b)を凍結乾燥し、ガンマ線を照射した時のB19不活化の関係を示す図である。FIG. 16 is a diagram showing the relationship of B19 inactivation when the above Fib, Thr, Alb (a), and Alb (b) including B19 are freeze-dried and irradiated with gamma rays. 図17は、1% ヨウ化ナトリウム(NaI)の吸光度(E352)からUVC照射量(mJ/cm2)を推定するための図である。FIG. 17 is a diagram for estimating the UVC irradiation dose (mJ / cm 2 ) from the absorbance (E 352 ) of 1% sodium iodide (NaI).
1.本発明のタンパク質溶液中のウイルスの除去方法
 本発明の方法は、タンパク質溶液中のウイルスを不活化・除去する方法であって、以下:
(a)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理する工程、もしくは(a´)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理する工程、及び
(b1)前記処理されたタンパク質溶液を、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でろ過する工程、又は
(b2)前記処理されたタンパク質溶液を、SD混合液と接触させ、前記タンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるようにSD処理する工程
を含む、方法である。
1. 1. Method for removing virus in protein solution of the present invention The method of the present invention is a method for inactivating / removing a virus in a protein solution, and the following:
(A) Irradiate the protein solution so that the LRV for viruses with a virus particle size of 30 nm or less in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and even more preferably 4.00 or more. The LRV for viruses with a virus particle size of less than 33 nm in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further by irradiating the protein solution with radiation. A step of treating to preferably 4.00 or more, and (b1) a step of filtering the treated protein solution with a virus-removing membrane having an LRV of 4.00 or more for Bacterophage PP7, or (b2) the treated. It is a method comprising contacting a protein solution with an SD mixture and performing SD treatment so that the LRV against enveloped virus in the protein solution is 2.00 or more.
 本明細書中において、タンパク質溶液中のウイルスの不活化・除去とは、当該タンパク質溶液中にウイルスが存在しない状態にすることだけでなく、当該タンパク質溶液中に存在するウイルス量を健康被害が発生しない一定量以下にすること、及び当該タンパク質中に存在する感染性を有するウイルスについて、感染性を有しない状態にすること(いわゆる、ウイルスの不活化)を含むものである。 In the present specification, inactivation / removal of a virus in a protein solution means not only making the virus absent in the protein solution, but also causing a health hazard due to the amount of virus present in the protein solution. It includes not keeping the amount below a certain level and making the infectious virus present in the protein non-infectious (so-called virus inactivation).
 本明細書中において、タンパク質溶液は、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でろ過した際に、該膜を通過するタンパク質を含み、ウイルスを含む可能性のある溶液であれば特に限定されない。特に、ヒトを含む動物由来成分や遺伝子等を原料とする溶液は、ウイルスを含む可能性が高いため、本発明のウイルス除去方法に供するタンパク質溶液として用いることで、ウイルスが除去されたタンパク質溶液を効率よく提供することができる。 In the present specification, the protein solution contains a protein that passes through the membrane when filtered through a virus-removing membrane having an LRV of 4.00 or more for bacteriophage PP7, and is particularly a solution that may contain a virus. Not limited. In particular, since a solution made from an animal-derived component including humans or a gene has a high possibility of containing a virus, a protein solution from which the virus has been removed can be used as a protein solution to be used in the virus removing method of the present invention. It can be provided efficiently.
 ウイルスを含む可能性のあるタンパク質溶液としては、例えば、バイオ医薬品の原料である、遺伝子工学、細胞培養等のバイオテクノロジーを利用して生産される、ペプチドやタンパク質、動物由来成分を有効成分として含む溶液が挙げられる。さらに、細胞培養に供する動物由来成分を含有する培地や動物由来のトリプシンなどの酵素も挙げられる。 Protein solutions that may contain viruses include, for example, peptides, proteins, and animal-derived components produced using biotechnology such as genetic engineering and cell culture, which are raw materials for biopharmacy, as active ingredients. Examples include solutions. Further, a medium containing an animal-derived component to be used for cell culture and an enzyme such as trypsin derived from an animal can also be mentioned.
 また、ウイルスを含む可能性のあるタンパク質溶液としては、例えば、ヒトや動物等の体液等が挙げられる。具体的には、例えば、血液、血漿、血清、唾液、汗、尿、リンパ液、酵素、組織液等、あるいはこれらの組織や体液等を原料として精製して得られた溶液であってもよく、体液等を含む溶液であってもよい。また、例えば、血漿から精製して得られる血漿分画製剤の原料も挙げられる。血漿分画製剤としては、免疫グロブリン製剤、アルブミン製剤、血液凝固因子製剤等が例示され、特に、血液凝固因子製剤としては、血液凝固第VIII因子製剤、血液凝固第IX因子製剤、フィブリノゲン製剤、アンチトロンビンIII製剤等が例示される。
 本発明のウイルス除去方法に供するタンパク質溶液は、例えば、用時調製されたものでもよく、凍結保存されたものを融解したものでもよく、あるいは凍結乾燥されたものを再度所望する溶液に溶解したものでもよい。
In addition, examples of the protein solution that may contain a virus include body fluids of humans and animals. Specifically, for example, blood, plasma, serum, saliva, sweat, urine, lymph, enzyme, tissue fluid, etc., or a solution obtained by purifying these tissues, body fluids, etc. as raw materials may be used. It may be a solution containing the above. Further, for example, a raw material for a plasma fractionation product obtained by purifying from plasma can also be mentioned. Examples of the plasma fractionation product include immunoglobulin preparations, albumin preparations, blood coagulation factor preparations, and the like. In particular, blood coagulation factor preparations include blood coagulation factor VIII preparations, blood coagulation factor IX preparations, fibrinogen preparations, and anticoagulation factors. Examples thereof include a thrombin III preparation.
The protein solution to be used in the virus removal method of the present invention may be, for example, prepared at the time of use, thawed in cryopreserved state, or lyophilized in a desired solution again. But it may be.
 具体的なタンパク質としては、例えば、抗体(例:ポリクローナル抗体、モノクローナル抗体(例:IgG、IgM、IgA、IgD、IgE)等)、造血因子(エリスロポエチン、トロンボポエチン等)、血液凝固に関わるタンパク質(線溶系因子(組織型プラスミノゲン アクチベータ、プロウロキナーゼ、トロンボモジュリン等)、血液凝固因子(アンチトロンビン、プロテインC、血液凝固因子VII、血液凝固因子VIII、血液凝固因子IX、血液凝固因子X、血液凝固因子XI、血液凝固因子XII、プロトロンビン複合体、トロンビン、フィブリノゲン等))、血漿タンパク質(アルブミン、グロブリン等)、ホルモン(性腺刺激ホルモン、甲状腺刺激ホルモン等)、増殖因子(上皮増殖因子(EGF)、肝細胞増殖因子(HGF)、ケラチノサイト増殖因子、アクチビン、骨形成因子等)、幹細胞因子(SCF)(G-CSF、M-CSF等)、サイトカイン(インターフェロンα、インターフェロンβ、インターフェロンγ、インターロイキン2、インターロイキン4、インターロイキン5、インターロイキン6、インターロイキン10、インターロイキン11、可溶性インターロイキン4受容体、腫瘍壊死因子α等)、核酸分解酵素(Dnasel等)、酵素(ガラクトシダーゼ、α-グルコシダーゼ、グルコセレブロシダーゼ等)、ヘモグロビン、トランスフェリン等のタンパク質、及びこれらタンパク質の部分断片、生物活性を有する不安定なタンパク質等が挙げられる。なかでも、ウイルス不活化又は除去とタンパク質の品質や活性を維持できる製造条件と経済性の両立という観点から、ポリクローナル抗体、モノクローナル抗体、血液凝固に関わるタンパク質、血漿タンパク質、生物活性を有する不安定なタンパク質等が好ましく、IgG、IgM、IgA、IgD、IgE、トロンビン、フィブリノゲン、アンチトロンピン、アルブミン等がより好ましい。 Specific proteins include, for example, antibodies (eg, polyclonal antibodies, monoclonal antibodies (eg IgG, IgM, IgA, IgD, IgE), etc.), hematopoietic factors (erythropoetin, thrombopoetin, etc.), proteins involved in blood coagulation (line). Hydrolytic factors (tissue-type plasminogen activator, prourokinase, thrombomodulin, etc.), blood coagulation factors (antithrombin, protein C, blood coagulation factor VII, blood coagulation factor VIII, blood coagulation factor IX, blood coagulation factor X, blood coagulation factor XI, Blood coagulation factor XII, prothrombin complex, thrombin, fibrinogen, etc.)), plasma protein (albumin, globulin, etc.), hormone (gonad stimulating hormone, thyroid stimulating hormone, etc.), growth factor (epithelial growth factor (EGF), hepatocellular proliferation) Factors (HGF), keratinocyte growth factors, activins, bone-forming factors, etc.), stem cell factors (SCF) (G-CSF, M-CSF, etc.), cytokines (interferon α, interferon β, interferon γ, interleukin 2, interleukin, etc.) 4, Interleukin 5, Interleukin 6, Interleukin 10, Interleukin 11, Soluble interleukin 4 receptor, Tumor necrosis factor α, etc.), Nucleic acid degrading enzyme (Dnasel, etc.), Enzyme (galactosidase, α-glucosidase, Glucocerebero) Examples thereof include proteins such as cedase), hemoglobin, and transferase, and partial fragments of these proteins, unstable proteins having biological activity, and the like. Among them, polyclonal antibodies, monoclonal antibodies, proteins involved in blood coagulation, plasma proteins, and unstable biological activities are exhibited from the viewpoint of achieving both viral inactivation or removal and production conditions that can maintain protein quality and activity and economic efficiency. Proteins and the like are preferable, and IgG, IgM, IgA, IgD, IgE, thrombin, fibrinogen, antithrompine, albumin and the like are more preferable.
 また、本明細書中において、タンパク質溶液中に含まれるタンパク質は、上に例示したようなタンパク質又はそのタンパク質の部分断片に、放射性同位元素、低分子の薬剤、高分子の薬剤、又は異なるタンパク質又はそのタンパク質の部分断片等を化学的又は遺伝子工学的に結合させたようなタンパク質又はそのタンパク質の部分断片であってもよい。 Further, in the present specification, the protein contained in the protein solution is a protein as exemplified above or a fragment of the protein thereof, and is a radioactive isotope, a low molecular weight drug, a high molecular weight drug, or a different protein. It may be a protein in which a partial fragment of the protein or the like is chemically or genetically engineered, or a partial fragment of the protein.
 上述の抗体としては、例えば、ヒト抗体、ヒト型キメラ抗体及びヒト型相補性決定領域移植抗体等のヒト化抗体、並びにこれらの抗体断片等が挙げられる。抗体は可変領域(V領域)と定常領域(C領域)より構成され、重鎖可変領域をVH、軽鎖可変領域をVL、重鎖定常領域をCH、軽鎖定常領域をCLという。 Examples of the above-mentioned antibody include humanized antibodies such as human antibodies, human chimeric antibodies and human complementarity determining region transplanted antibodies, and antibody fragments thereof. An antibody is composed of a variable region (V region) and a constant region (C region). The heavy chain variable region is called VH, the light chain variable region is called VL, the heavy chain constant region is called CH, and the light chain constant region is called CL.
 ヒト型キメラ抗体とは、ヒト以外の動物の抗体のVH及びVLとヒト抗体のCH及びCLとからなる抗体をいう。ヒト型キメラ移植抗体は、まず、ヒト以外の哺乳動物の抗体のVH及びVLをコードするcDNAを設計、構築する。次に、ヒト抗体のCH及びCLをコードするcDNAを有する動物細胞用発現ベクターに、上記cDNAのそれぞれを挿入して、ヒト型キメラ移植抗体発現ベクターを構築する。当該構築したベクターを動物細胞へ導入することにより上記抗体を発現させ、製造することができる。
 ヒト型キメラ抗体のCHとしては、ヒト免疫グロブリン(以下、「hIg」と略記する場合がある)に属するものであれば特に限定されないが、hIgGクラスのものが好ましく、さらにhIgGクラスに属するhIgG1、hIgG2、hIgG3、hIgG4といったサブクラスのいずれも用いることができる。また、ヒト型キメラ抗体のCLとしては、hIgに属すれば特に限定されず、κクラスあるいはλクラスのものを用いることができる。ヒト以外の哺乳動物とは、例えば、マウス、ラット、ハムスター、ラビット等である。
The human chimeric antibody refers to an antibody consisting of VH and VL of non-human animal antibodies and CH and CL of human antibodies. The human chimeric transplant antibody first designs and constructs a cDNA encoding VH and VL of a non-human mammalian antibody. Next, each of the above cDNAs is inserted into an expression vector for animal cells having a cDNA encoding CH and CL of a human antibody to construct a human chimeric transplanted antibody expression vector. The above antibody can be expressed and produced by introducing the constructed vector into animal cells.
The CH of the human chimeric antibody is not particularly limited as long as it belongs to human immunoglobulin (hereinafter, may be abbreviated as "hIg"), but hIgG class is preferable, and hIgG1 belonging to hIgG class, Any of the subclasses such as hIgG2, hIgG3 and hIgG4 can be used. The CL of the human chimeric antibody is not particularly limited as long as it belongs to hIg, and κ class or λ class can be used. Mammals other than humans are, for example, mice, rats, hamsters, rabbits and the like.
 抗体の断片としては、Fab、F(ab')2、Fab'、scFv、diabody、dsFv及びCDRを含むペプチド等が挙げられる。Fabは、IgG型抗体分子をタンパク質分解酵素パパインで処理して得られる断片のうち(H鎖の224番目のアミノ酸残基で切断される)、H鎖のN末端側約半分とL鎖全体がジスルフィド結合で結合した、分子量約5万の抗原結合活性を有する抗体断片である。Fabは、抗体をタンパク質分解酵素パパインで処理することにより、又は該抗体のFabをコードするDNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該ベクターを原核生物あるいは真核生物へ導入することにより、製造することができる。 Examples of the antibody fragment include peptides containing Fab, F (ab') 2 , Fab', scFv, diabody, dsFv and CDR. Fab is a fragment obtained by treating an IgG antibody molecule with the proteolytic enzyme papain (cleaved at the 224th amino acid residue of the H chain), and about half of the N-terminal side of the H chain and the entire L chain are It is an antibody fragment having an antigen-binding activity with a molecular weight of about 50,000 bound by a disulfide bond. Fab treats an antibody with the proteolytic enzyme papain or inserts the Fab-encoding DNA of the antibody into a prokaryotic or eukaryotic expression vector and inserts the vector into a prokaryotic or eukaryotic expression vector. It can be manufactured by introducing it into.
 本発明のウイルス除去方法に供するタンパク質溶液中のタンパク質濃度は、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜、好ましくは、孔径15 nm~20 nmのウイルス除去膜によりろ過可能な濃度であり、且つ後述する本発明のウイルス除去方法において使用される所定の放射線の照射量の範囲において、ウイルス粒子径30 nm以下のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上を達成し得る濃度であれば特に限定されない。
 別の態様では、本発明のウイルス除去方法に供するタンパク質溶液中のタンパク質濃度は、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜、好ましくは、孔径13 nm~33 nmのウイルス除去膜によりろ過可能な濃度であり、且つ後述する本発明のウイルス除去方法において使用される所定の放射線の照射量の範囲において、ウイルス粒子径33 nm未満のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上を達成し得る濃度であれば特に限定されない。
 具体的なタンパク質濃度(上限値を含む)としては、例えば、30 w/v%以下、25 w/v%以下、20 w/v%以下、15 w/v%以下、10 w/v%以下、5.0 w/v%以下、2.5 w/v%以下、1.0 w/v%以下、0.7 w/v%以下、0.5 w/v%以下である。また、具体的なタンパク質濃度(下限値を含む)としては、例えば、0.001 w/v%以上、0.01 w/v%以上、0.1 w/v%以上、0.2 w/v%以上、0.3 w/v%以上である。
The protein concentration in the protein solution used for the virus removing method of the present invention is a concentration that can be filtered by a virus removing membrane having an LRV of 4.00 or more with respect to bacteriophage PP7, preferably a virus removing membrane having a pore size of 15 nm to 20 nm. In addition, the LRV for a virus having a virus particle diameter of 30 nm or less is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further, within the range of the predetermined radiation irradiation amount used in the virus removal method of the present invention described later. Desirably, the concentration is not particularly limited as long as it can achieve 4.00 or more.
In another embodiment, the protein concentration in the protein solution used in the virus removal method of the present invention is filtered by a virus removal membrane having an LRV of 4.00 or more against bacteriophage PP7, preferably a virus removal membrane having a pore size of 13 nm to 33 nm. The LRV for viruses with a virus particle size of less than 33 nm is 1.00 or more, preferably 2.00 or more, more preferably within the range of the predetermined radiation dose used in the virus removal method of the present invention, which is a possible concentration and will be described later. Is not particularly limited as long as the concentration can achieve 3.00 or higher, more preferably 4.00 or higher.
Specific protein concentrations (including the upper limit) include, for example, 30 w / v% or less, 25 w / v% or less, 20 w / v% or less, 15 w / v% or less, 10 w / v% or less. , 5.0 w / v% or less, 2.5 w / v% or less, 1.0 w / v% or less, 0.7 w / v% or less, 0.5 w / v% or less. The specific protein concentration (including the lower limit) is, for example, 0.001 w / v% or more, 0.01 w / v% or more, 0.1 w / v% or more, 0.2 w / v% or more, 0.3 w / v. % Or more.
 タンパク質溶液に含まれ得るウイルスは、特に限定されないが、B19、MVM、PPV、ウシパルボウイルス(BPV)、イヌパルボウイルス(以下、「CPV」と略記する)、ポリオウイルス、PCV、HAV、E型肝炎ウイルス(以下、「HEV」と略記する)等が挙げられる。 The virus that can be contained in the protein solution is not particularly limited, but is B19, MVM, PPV, bovine parvovirus (BPV), canine parvovirus (hereinafter abbreviated as "CPV"), poliovirus, PCV, HAV, E type. Hepatitis virus (hereinafter abbreviated as "HEV") and the like can be mentioned.
 上で例示したウイルスのうち、パルボウイルスは、血漿分画製剤分野において、パルボウイルスの一つであるB19による感染疑い事例が過去に報告されており、血漿由来製剤のウイルス安全性に関する指針がEMEA(欧州医薬品審査庁, EMA/CHMP/BWP/706271/2010)から出されている。さらに、バイオ医薬品分野においても、齧歯類由来MVMのCHO細胞(ハムスター由来)への混入による、バイオ医薬品製造プロセスへの汚染の実例があり、動物細胞を用いて作られたバイオ医薬品のウイルス安全性評価に関するガイドライン(ICH Topic Q5A)が発出されている。 Among the viruses exemplified above, parvovirus has been reported in the past to be infected with B19, which is one of the parvoviruses, in the field of plasma fractionation preparations, and the guideline on the virus safety of plasma-derived preparations is EMEA. (European Pharmaceutical Examination Agency, EMA / CHMP / BWP / 706271/2010). Furthermore, in the field of biopharmacy, there is an example of contamination of the biopharmacy manufacturing process due to contamination of rodent-derived MVM into CHO cells (derived from hamster), and the virus safety of biopharmacy made using animal cells. Guidelines for sexual evaluation (ICH Topic Q5A) have been issued.
 また、上で例示したウイルスのうち、PCVは、現在知られている最小のノンエンベロープウイルスであり、その粒子径は、約15~25 nmである(ICTV, https://talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/w/circoviridae)。PCVは、サーコウイルス科(Family Circoviridae)に属し、PCV1、PCV2等に分類される。PCVも、バイオ医薬品等の製造工程に混入するリスクの高いウイルスの一つであり、実際に混入事例が報告されている。PCVは、低pH処理、加熱処理にも耐性であり、平均孔径15 nmの孔径を有するウイルス除去膜を用いてもPCVを捕捉・除去することは困難である。本発明のウイルス不活化・除去方法においては、後述するように、PCVよりも大きい粒子径を有するパルボウイルスを効果的に不活化(例:LRV≧1.0、LRV≧2.0、LRV≧4.0、LRV≧6.0等)し得る放射線の照射量を用いているため、当該粒子径以下のサーコウイルスについても同様に不活化し得る。 Among the viruses exemplified above, PCV is the smallest non-enveloped virus currently known, and its particle size is about 15 to 25 nm (ICTV, https://talk.ictvonline.org). / ictv-reports / ictv_online_report / ssdna-viruses / w / circoviridae). PCV belongs to the circoviridae family (FamilyCircoviridae) and is classified into PCV1, PCV2, etc. PCV is also one of the viruses with a high risk of being contaminated in the manufacturing process of biopharmacy and the like, and cases of contaminated with it have been reported. PCV is resistant to low pH treatment and heat treatment, and it is difficult to capture and remove PCV even by using a virus removing membrane having an average pore size of 15 nm. In the virus inactivation / removal method of the present invention, as will be described later, parvovirus having a particle size larger than that of PCV is effectively inactivated (eg, LRV ≧ 1.0, LRV ≧ 2.0, LRV ≧ 4.0, LRV ≧ LRV ≧). Since the irradiation amount of radiation that can be 6.0 etc.) is used, circoviruses having a particle size or smaller can be inactivated in the same manner.
 さらに、上で例示したウイルスのうち、ピコルナウイルス科のHAV(27~30 nm)、ポリオウイルス(30 nm)、HEV(32 nm)等のウイルスや、これら以上の大型の粒子径を有するウイルスに関しては、本発明のウイルス不活化方法で用いる放射線の照射量では一部不活化されないウイルスが存在する可能性があるが、本発明のウイルス除去方法で用いるバクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜により効果的にろ過し得る。 Furthermore, among the viruses exemplified above, viruses such as HAV (27 to 30 nm), poliovirus (30 nm), HEV (32 nm) of the picornavirus family, and viruses having a larger particle size than these, etc. However, there may be some viruses that are not partially inactivated by the amount of radiation used in the virus inactivation method of the present invention, but the LRV for the bacteriophage PP7 used in the virus removal method of the present invention is 4.00 or higher. It can be effectively filtered by a virus-removing membrane.
 本発明のウイルス除去方法に供されるウイルスを含む可能性のあるタンパク質溶液中には、上記のタンパク質及びウイルスのほか、アミノ酸、無機塩、緩衝液成分、界面活性剤及び糖類からなる群から選ばれる1種以上の成分を含んでいてもよい。上記成分は、本発明のウイルス除去方法に含まれる工程(a)もしくは(a´)の前にウイルスを含む可能性のあるタンパク質溶液に添加してもよく、工程(a)もしくは(a´)と工程(b1)又は(b2)の間に添加してもよい。 In addition to the above proteins and viruses, the protein solution that may contain the virus used in the virus removal method of the present invention is selected from the group consisting of amino acids, inorganic salts, buffer components, surfactants and saccharides. It may contain one or more components. The above components may be added to a protein solution containing a virus before the step (a) or (a') included in the virus removing method of the present invention, and the step (a) or (a') may be added. And may be added during step (b1) or (b2).
 アミノ酸の中でも、塩基性アミノ酸としては、アルギニン、ヒスチジン、グアニジン、リジン又はそれらの誘導体、あるいはそれらの塩が挙げられ、好ましくは、アルギニン、ヒスチジン、リジン又はそれらの誘導体、あるいはそれらの塩であり、より好ましくはアルギニン又はその誘導体、あるいはそれらの塩である。
 中性アミノ酸としては、グリシン又はそれらの誘導体、あるいはそれらの塩が挙げられる。
 酸性アミノ酸としては、アスパラギン酸又はそれらの誘導体、あるいはそれらの塩が挙げられる。
Among the amino acids, examples of the basic amino acid include arginine, histidine, guanidine, lysine or a derivative thereof, or a salt thereof, and preferably arginine, histidine, lysine or a derivative thereof, or a salt thereof. More preferably, it is arginine or a derivative thereof, or a salt thereof.
Examples of the neutral amino acid include glycine or a derivative thereof, or a salt thereof.
Examples of acidic amino acids include aspartic acid or derivatives thereof, or salts thereof.
 無機塩としては、NaCl、CaCl2、緩衝塩等を含んでもよい。
 緩衝液成分としては、酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水(PBS)、Tris-HCl緩衝液、グリシン緩衝液等を用いてもよい。無機塩及び緩衝液成分の濃度は、自体公知の方法により適宜決定してもよい。
The inorganic salt may contain NaCl, CaCl 2 , a buffer salt and the like.
As the buffer solution component, acetate buffer solution, citrate buffer solution, phosphate buffer solution, phosphate buffered saline (PBS), Tris-HCl buffer solution, glycine buffer solution and the like may be used. The concentrations of the inorganic salt and the buffer solution component may be appropriately determined by a method known per se.
 界面活性剤としては、非イオン性界面活性剤であるTween20(登録商標)、Tween80(登録商標)、Triton X100(登録商標)、NP-40(登録商標)、Pluronic F-127(登録商標)等が例示され、タンパク質溶液に0.01~5 wt%の濃度で含んでもよい。 Examples of the surfactant include nonionic surfactants such as Tween20 (registered trademark), Tween80 (registered trademark), Triton X100 (registered trademark), NP-40 (registered trademark), and Pluronic F-127 (registered trademark). Is exemplified, and may be contained in a protein solution at a concentration of 0.01 to 5 wt%.
 糖類としては、特に限定されないが、単糖、二糖、三糖、オリゴ糖、多糖類、糖アルコール等が挙げられ、具体的には、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、マルトース、スクロース(ショ糖)、ソルビトール、マンニトール、デキストラン、アルギン酸及びその塩酸塩等を1種又は複数種組み合わせて、タンパク質溶液に1~10 wt%、好ましくは1~5 wt%含んでもよい。 Examples of saccharides include, but are not limited to, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, sugar alcohols and the like, and specific examples thereof include glucose, mannose, galactose, fructose, sorbitol, maltose and sucrose ( Sucrose), sorbitol, mannitol, dextran, alginic acid and a plurality of kinds thereof may be combined and contained in a protein solution in an amount of 1 to 10 wt%, preferably 1 to 5 wt%.
 ウイルスを含む可能性のあるタンパク質溶液の温度は、タンパク質の変性を防ぐという観点から、本発明のウイルス除去方法の全工程を通して、例えば、1℃~40℃、好ましくは4℃~35℃の範囲であってもよい。温度は、タンパク質溶液の粘度等に影響し、後述するウイルス除去膜を用いたろ過の際のFluxに影響するので、タンパク質自体の温度に対する安定性にも依拠するが、20℃~35℃の範囲であってもよい。 The temperature of the protein solution that may contain the virus is, for example, in the range of 1 ° C to 40 ° C, preferably 4 ° C to 35 ° C throughout the entire steps of the virus removal method of the present invention from the viewpoint of preventing protein denaturation. May be. The temperature affects the viscosity of the protein solution and the Flux during filtration using a virus-removing membrane, which will be described later. Therefore, it depends on the stability of the protein itself with respect to the temperature, but it is in the range of 20 ° C to 35 ° C. May be.
 ウイルスを含む可能性のあるタンパク質溶液のpHは、当該溶液中に含まれるタンパク質が変性を起こさない範囲であれば特に限定されないが、例えば、pH 3.0~pH 8.0である。より具体的には、当該溶液中に含まれるタンパク質がポリクローナルIgGの場合、pH 4.1~pH 7.2が好ましく、モノクローナルIgGの場合はそのIgG分子のPI値によって至適pHは変動する。 The pH of the protein solution that may contain the virus is not particularly limited as long as the protein contained in the solution does not cause denaturation, but is, for example, pH 3.0 to pH 8.0. More specifically, when the protein contained in the solution is polyclonal IgG, pH 4.1 to pH 7.2 is preferable, and in the case of monoclonal IgG, the optimum pH varies depending on the PI value of the IgG molecule.
 本発明のウイルス除去方法に含まれる工程(a)又は(a´)で用いられる放射線は、電離放射線と非電離放射線の両方を含み、具体的には、例えば、紫外線、α線、β線、γ線、X線、電子線、中性子等が挙げられる。また、放射線は、例えば、コバルト60、ストロンチウム90、及びセシウム137などの放射性同位体から、又はX線撮影装置、電子線加速器、及び紫外線(連続)照射装置等により得られ、当該装置は市販品であってもよい。 The radiation used in the step (a) or (a') included in the virus removing method of the present invention includes both ionizing radiation and non-ionizing radiation, and specifically, for example, ultraviolet rays, α rays, β rays, and the like. Examples include γ-rays, X-rays, electron beams, and neutrons. Radiation can be obtained from radioactive isotopes such as cobalt-60, strontium-90, and cesium-137, or by an X-ray machine, an electron beam accelerator, an ultraviolet (continuous) irradiation device, etc., and the device is a commercially available product. May be.
 上記具体例のうち、紫外線には、UVC(100~280 nm)、UVB(280~320 nm)及びUVA(320~400 nm)が含まれる。本発明のウイルス除去方法においては、UVCの照射が好ましく、より好ましくは250~280 nmの範囲のUVCの照射であり、さらに好ましくは254 nm付近のUVCの照射である。紫外線照射源として、低圧水銀ランプやLEDなどを用いても良く、照射源に限定されない。 Among the above specific examples, ultraviolet rays include UVC (100 to 280 nm), UVB (280 to 320 nm) and UVA (320 to 400 nm). In the virus removing method of the present invention, UVC irradiation is preferable, UVC irradiation in the range of 250 to 280 nm is more preferable, and UVC irradiation in the vicinity of 254 nm is more preferable. A low-pressure mercury lamp, LED, or the like may be used as the ultraviolet irradiation source, and the irradiation source is not limited.
 本発明のウイルス除去方法における放射線の照射方法は、照射に供するタンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対するLRVが1.00以上になるように処理し得る限り特に限定されない。また、LRVは、1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上であれば効果的にウイルスが除去されていると言えるが、所望する場合は、例えば、5.00以上、6.00以上のLRVを達成し得るように処理してもよい。
 また別の態様の本発明のウイルス除去方法における放射線の照射方法は、照射に供するタンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対するLRVが1.00以上になるように処理し得る限り特に限定されない。また、LRVは、1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上であれば効果的にウイルスが除去されていると言えるが、所望する場合は、例えば、5.00以上、6.00以上のLRVを達成し得るように処理してもよい。
 具体的には、例えば、照射される放射線が紫外線の場合、薄く均一にタンパク質溶液が分布される円筒状の回転する筒を有し、該回転が、該円筒の回転中心軸線を中心とした回転であるような装置を使用した照射方法が挙げられる。該装置の原理は、回転する筒の内壁に溶液の膜厚が例えばUVC照射が有効となる薄膜(例えば0.1 mm)を形成するようにポンプを用いてタンパク質溶液の流速を調整して注入することで、均一性をもって内壁に拡散し、円筒の中心に位置する低圧水銀ランプより円筒の内壁に向い紫外線が照射されるというものである。タンパク質溶液中のタンパク質に照射される紫外線量は、当該溶液が筒の内壁を通過する時間によって増減され、筒の角度を変化させることで通過時間も変わり、照射量を所望する量に変えることができる。また、低圧水銀ランプや深紫外線LEDなどの紫外線発生源の周囲に紫外線を透過する樹脂や石英ガラスなどで成型されたコイル状チューブを配置し、ポンプでタンパク質溶液を通過させる方法もある。この方法ではタンパク質溶液がコイル状チューブを通過する際に液の撹拌が生じるので、均一に照射が行われる。また、紫外線発生源を平面的に配置し、その照射面に紫外線を透過させる樹脂や石英ガラスなどで整形させた2枚の平板間にポンプでタンパク質溶液を通過させ、薄膜層に照射する方法もある。平板には流速が均一になる様にパターン化した凹凸や溝を切っても良い。そして、流速を変化させることで通過時間も変わり、照射量を所望する量に変えることができる。
The method of irradiating radiation in the virus removing method of the present invention is not particularly limited as long as it can be treated so that the LRV for a virus having a virus particle size of 30 nm or less in the protein solution to be irradiated is 1.00 or more. Further, if the LRV is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further preferably 4.00 or more, it can be said that the virus is effectively removed, but if desired, for example, 5.00 or more, It may be processed so that LRV of 6.00 or higher can be achieved.
Further, the irradiation method of radiation in the virus removing method of the present invention according to another aspect is not particularly limited as long as it can be treated so that the LRV for a virus having a virus particle size of less than 33 nm in the protein solution to be irradiated is 1.00 or more. Further, if the LRV is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further preferably 4.00 or more, it can be said that the virus is effectively removed, but if desired, for example, 5.00 or more, It may be processed so that LRV of 6.00 or higher can be achieved.
Specifically, for example, when the irradiated radiation is ultraviolet light, it has a cylindrical rotating cylinder in which the protein solution is thinly and uniformly distributed, and the rotation is about the rotation center axis of the cylinder. An irradiation method using a device such as the above can be mentioned. The principle of the device is to adjust the flow velocity of the protein solution using a pump so that the film thickness of the solution forms a thin film (for example, 0.1 mm) for which UVC irradiation is effective on the inner wall of the rotating cylinder. Then, it diffuses uniformly to the inner wall, and the low-pressure mercury lamp located in the center of the cylinder irradiates the inner wall of the cylinder with ultraviolet rays. The amount of ultraviolet rays irradiated to the protein in the protein solution is increased or decreased depending on the time that the solution passes through the inner wall of the cylinder, and the passage time is also changed by changing the angle of the cylinder, so that the irradiation amount can be changed to a desired amount. can. There is also a method in which a coiled tube made of a resin or quartz glass that transmits ultraviolet rays is placed around an ultraviolet ray source such as a low-pressure mercury lamp or a deep ultraviolet LED, and a protein solution is passed by a pump. In this method, the protein solution is agitated as it passes through the coiled tube, so that the irradiation is uniformly performed. In addition, there is also a method in which the ultraviolet source is arranged in a plane, and the protein solution is passed by a pump between two flat plates shaped with a resin or quartz glass that transmits ultraviolet rays on the irradiation surface to irradiate the thin film layer. be. The flat plate may be cut with irregularities or grooves patterned so that the flow velocity becomes uniform. Then, by changing the flow velocity, the transit time also changes, and the irradiation amount can be changed to a desired amount.
 本発明のウイルス除去方法において用いる放射線の照射量は、使用する放射線の種類に応じて、当該照射に供するタンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理し得るように設定すればよい。
 また別の態様では、本発明のウイルス除去方法において用いる放射線の照射量は、使用する放射線の種類に応じて、当該照射に供するタンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理し得るように設定すればよい。
 LRVは、4.00以上であれば効果的にウイルスが除去されていると言えるが、所望する場合は、例えば、5.00以上、6.00以上のLRVを達成し得るように処理してもよい。LRVは後述する計算式によって求め得る。
The amount of radiation used in the virus removal method of the present invention is such that the LRV for a virus having a virus particle size of 30 nm or less in the protein solution used for the irradiation is 1.00 or more, preferably 2.00 or more, depending on the type of radiation used. It may be set so that it can be processed so that it is more preferably 3.00 or more, and even more preferably 4.00 or more.
In another aspect, the irradiation amount of the radiation used in the virus removing method of the present invention has an LRV of 1.00 or more for a virus having a virus particle size of less than 33 nm in the protein solution used for the irradiation, depending on the type of radiation used. , Desirably 2.00 or more, more preferably 3.00 or more, and even more preferably 4.00 or more.
It can be said that the virus is effectively removed if the LRV is 4.00 or higher, but if desired, it may be processed so as to achieve an LRV of 5.00 or higher and 6.00 or higher, for example. The LRV can be obtained by the formula described later.
 例えば、UVCを用いる場合の照射量は、具体的には、256 mJ/cm2以下、192 mJ/cm2以下、96 mJ/cm2以下である。また、具体的には、32 mJ/cm2以上、64 mJ/cm2以上、128 mJ/cm2以上である。また、当該照射量は、上記範囲の組み合わせ(例:32 mJ/cm2~256 mJ/cm2、64 mJ/cm2~256 mJ/cm2、128 mJ/cm2~256 mJ/cm2、32 mJ/cm2~192 mJ/cm2、64 mJ/cm2~192 mJ/cm2、128 mJ/cm2~192 mJ/cm2等)であってもよい。
 より具体的には、10 % w/v (100 mg/ml)以下のIgG抗体を含むタンパク質溶液(pH 3.5~6.8)ついて、UVC照射後のIgG抗体の重合体の形成率を2%以下と設定した場合、UVCの最大照射量は、好ましくは256 mJ/cm2~1024 mJ/cm2であり、より好ましくは512 mJ/cm2である。
 より具体的には、Fib濃度が3.9 mg/ml(E280: 5.8、E1% 280:15~16)を含むタンパク質溶液について、凝固活性の90%以上の維持を条件として設定した場合の最大照射量は、好ましくは96 mJ/cm2~192 mJ/cm2、より好ましくは192 mJ/cm2である。
 より具体的には、Thr濃度が2.48 mg/ml(E280: 5.3、E1% 280:21.4)を含むタンパク質溶液について、凝固活性の90%以上の維持を条件として設定した場合の最大照射量は、好ましくは96 mJ/cm2~192 mJ/cm2、より好ましくは192 mJ/cm2である。
For example, when UVC is used, the irradiation amount is specifically 256 mJ / cm 2 or less, 192 mJ / cm 2 or less, and 96 mJ / cm 2 or less. Specifically, it is 32 mJ / cm 2 or more, 64 mJ / cm 2 or more, and 128 mJ / cm 2 or more. In addition, the irradiation amount is a combination of the above ranges (example: 32 mJ / cm 2-256 mJ / cm 2 , 64 mJ / cm 2-256 mJ / cm 2 , 128 mJ / cm 2-256 mJ / cm 2 , It may be 32 mJ / cm 2 to 192 mJ / cm 2 , 64 mJ / cm 2 to 192 mJ / cm 2 , 128 mJ / cm 2 to 192 mJ / cm 2 , etc.).
More specifically, for a protein solution (pH 3.5 to 6.8) containing an IgG antibody of 10% w / v (100 mg / ml) or less, the formation rate of the IgG antibody polymer after UVC irradiation is 2% or less. When set, the maximum UVC dose is preferably 256 mJ / cm 2 to 1024 mJ / cm 2 , more preferably 512 mJ / cm 2 .
More specifically, the maximum when a protein solution containing a Fib concentration of 3.9 mg / ml (E 280 : 5.8, E 1% 280 : 15-16) is set on the condition that the coagulation activity is maintained at 90% or more. The irradiation dose is preferably 96 mJ / cm 2 to 192 mJ / cm 2 , and more preferably 192 mJ / cm 2 .
More specifically, for a protein solution containing a Thr concentration of 2.48 mg / ml (E 280 : 5.3, E 1% 280 : 21.4), the maximum irradiation dose is set on the condition that the coagulation activity is maintained at 90% or more. Is preferably 96 mJ / cm 2 to 192 mJ / cm 2 , more preferably 192 mJ / cm 2 .
 また、例えば、γ線を用いる場合の照射量は、具体的には、5 kGy以上、10 kGy以上、15 kGy以上、20 kGy以上、25 kGy以上、30 kGy以上、35 kGy以上、40 kGy以上、45 kGy以上、50 kGy以上、60 kGy以上である。また、γ線の照射量は、具体的には、5 kGy~50 kGy、10 kGy~50 kGy、25 kGy~50 kGyである。 Further, for example, when using γ-rays, the irradiation amount is specifically 5 kGy or more, 10 kGy or more, 15 kGy or more, 20 kGy or more, 25 kGy or more, 30 kGy or more, 35 kGy or more, 40 kGy or more. , 45 kGy or more, 50 kGy or more, 60 kGy or more. Specifically, the irradiation amount of γ-rays is 5 kGy to 50 kGy, 10 kGy to 50 kGy, and 25 kGy to 50 kGy.
 本発明のウイルス除去方法における放射線の照射量については、正確な測定値を得るために、照射される放射線の種類に応じて、適宜、キャリブレーションとバリデーションを行ってもよい。
 具体的には、例えば、UVCを用いる場合、UVCの測定に用いる紫外線照度計の種類により、その指示値に誤差がある場合がある。そのため、例えば、既存のNaIの吸光度の変化を指標としたUVC照射量の推定方法の原理を応用して、UVCの照射量に関する検量線を作成し、当該検量線を用いて、測定機器間のキャリブレーションを行ってもよい。検量線は処理条件によって異なることから、実際の処理条件(特に、総エネルギー量、膜厚)を反映させた実験条件下で吸光度(A352)を測定して、照射量を求める検量線と数式を求める。図17の実験で求めた、1% NaIの吸光度を用いてUVC照射量を推定するための式は、以下の通りである。
 UVC照射量(エネルギー量)(mJ/cm2)= 10(2×Log 10 [A352 nm]+2.6)
The irradiation amount of radiation in the virus removing method of the present invention may be appropriately calibrated and validated according to the type of radiation to be irradiated in order to obtain an accurate measured value.
Specifically, for example, when UVC is used, the indicated value may have an error depending on the type of the ultraviolet illuminance meter used for measuring UVC. Therefore, for example, by applying the principle of the estimation method of UVC irradiation amount using the change in the absorbance of existing NaI as an index, a calibration curve related to the UVC irradiation amount is created, and the calibration curve is used between measuring instruments. Calibration may be performed. Since the calibration curve differs depending on the treatment conditions, the absorbance (A352) is measured under experimental conditions that reflect the actual treatment conditions (particularly the total energy amount and film thickness), and the calibration curve and formula for obtaining the irradiation dose are used. demand. The formula for estimating the UVC irradiation dose using the absorbance of 1% NaI obtained in the experiment of FIG. 17 is as follows.
UVC irradiation amount (energy amount) (mJ / cm 2 ) = 10 (2 x Log 10 [A352 nm] +2.6)
 当該検量線を用いたUVCの照射量のキャリブレーションは、UVCの照射量の絶対値を求めるものではないが、特定の基準測定機器を設定すれば、当該測定機器に対するキャリブレーションが可能となる。また、当該キャリブレーションにより、如何なる測定機器を用いてもUVCの照射量を標準化できるため、工業レベルで利用可能であるタンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理し得るUVCの照射量の範囲を規定し得る。同様に当該タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理し得るUVCの照射量の範囲を規定し得る。従って、上述のUVCの照射量は、当該キャリブレーションを用いることで、如何なる測定機器を用いた場合でも臨界的意義を有する値である。 Calibration of the UVC irradiation amount using the calibration curve does not obtain the absolute value of the UVC irradiation amount, but if a specific reference measuring device is set, the calibration for the measuring device becomes possible. In addition, since the UVC irradiation dose can be standardized using any measuring device by the calibration, the LRV for viruses with a virus particle size of 30 nm or less in protein solutions that can be used at the industrial level is 1.00 or more, preferably 1.00 or more. It can define a range of UVC doses that can be treated to be 2.00 or higher, more preferably 3.00 or higher, and even more preferably 4.00 or higher. Similarly, the range of UVC irradiation that can be treated so that the LRV for viruses with a virus particle size of less than 33 nm in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and even more preferably 4.00 or more. Can be specified. Therefore, the above-mentioned UVC irradiation amount is a value having a critical significance even when any measuring device is used by using the calibration.
 本発明のウイルス除去方法に含まれる工程(b1)で用いるウイルス除去膜は、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜であれば特に限定されない。当該ウイルス除去膜でろ過することにより、タンパク質溶液中のウイルス粒子径30 nm超のウイルスを効果的に除去し得る。同様に、当該ウイルス除去膜でろ過することにより、タンパク質溶液中のウイルス粒子径33 nm以上のウイルスを効果的に除去し得る。
 バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜とは、使用するウイルス除去膜に対し、バクテリオファージPP7を含む溶液を50 l/m2負荷した場合におけるLRVが4.00以上となる膜である。バクテリオファージPP7を含む溶液としては、1mg/mlのBSA溶液(PBS緩衝液、pH 7.4)にバクテリオファージPP7濃度を、10pfu/mlとしたものを用いる。
The virus removing membrane used in the step (b1) included in the virus removing method of the present invention is not particularly limited as long as it is a virus removing membrane having an LRV of 4.00 or more with respect to bacteriophage PP7. By filtering with the virus removing membrane, the virus having a virus particle diameter of more than 30 nm in the protein solution can be effectively removed. Similarly, by filtering with the virus removing membrane, the virus having a virus particle diameter of 33 nm or more in the protein solution can be effectively removed.
A virus-removing membrane having an LRV of 4.00 or more for bacteriophage PP7 is a membrane having an LRV of 4.00 or more when a solution containing bacteriophage PP7 is loaded at 50 l / m 2 on the virus-removing membrane to be used. As the solution containing bacteriophage PP7, a 1 mg / ml BSA solution (PBS buffer, pH 7.4) with a bacteriophage PP7 concentration of 10 7 pfu / ml is used.
 使用するウイルス除去膜の形状は、特に限定されるものではないが、例えば、平膜であってもよく、中空糸膜であってもよい。平膜を用いる場合、一枚でろ過を行ってもよいし、複数枚重ねてろ過を行ってもよい。 The shape of the virus removing membrane to be used is not particularly limited, but may be, for example, a flat membrane or a hollow fiber membrane. When a flat film is used, filtration may be performed with one sheet, or a plurality of sheets may be stacked for filtration.
 バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜に、pHを調整した溶液を通液してろ過することにより、pHを調整した溶液は、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜で処理される。ろ過方法は、Dead end法で行ってもよいし、Cross flow法で行ってもよい。バクテリオファージPP7に対するLRVが4以上であるウイルス除去膜で処理する前に、平均孔径が20 nmよりも大きい孔径の膜で予備的に処理してもよい。 By filtering a pH-adjusted solution through a virus-removing membrane with an LRV of 4.00 or higher for bacteriophage PP7, the pH-adjusted solution is a virus-removing membrane with an LRV of 4.00 or higher for bacteriophage PP7. Is processed by. The filtration method may be the Dead end method or the Cross flow method. Before treatment with a virus-removing membrane having an LRV of 4 or more for bacteriophage PP7, it may be preliminarily treated with a membrane having a pore size larger than 20 nm.
 バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜の孔径は、33 nm未満の粒子径のウイルスを除去できれば限定されないが、通常30 nm以下であり、好ましくは21 nm以下、より好ましくは20 nm以下である。また孔径は通常13 nm以上であり、好ましくは15 nm以上、より好ましくは17 nm以上、特に好ましくは19 nm以上である。例えば、ウイルス除去膜の孔径としては、13 nm~33 nm、15 nm~33 nm、17 nm~33 nm、13 nm~30 nm、15 nm~30 nm、17 nm~30 nm、 13 nm~21 nm、15 nm~21 nm、 17 nm~21 nm、19 nm~21 nm、13 nm~20 nm、 15 nm~20 nm、 17 nm~20 nm、19 nm~20 nmが挙げられる。 The pore size of the virus removal membrane having an LRV of 4.00 or more for bacteriophage PP7 is not limited as long as it can remove viruses having a particle size of less than 33 nm, but is usually 30 nm or less, preferably 21 nm or less, and more preferably 20 nm. It is as follows. The pore diameter is usually 13 nm or more, preferably 15 nm or more, more preferably 17 nm or more, and particularly preferably 19 nm or more. For example, the pore sizes of the virus removal membrane are 13 nm to 33 nm, 15 nm to 33 nm, 17 nm to 33 nm, 13 nm to 30 nm, 15 nm to 30 nm, 17 nm to 30 nm, and 13 nm to 21. Examples include nm, 15 nm to 21 nm, 17 nm to 21 nm, 19 nm to 21 nm, 13 nm to 20 nm, 15 nm to 20 nm, 17 nm to 20 nm, and 19 nm to 20 nm.
 バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜の具体例としては、再生セルロースからなるPlanova(登録商標)15N(旭化成メディカル(Asahi Kasei Medical)社製)及びPlanova(登録商標)20N(旭化成メディカル(Asahi Kasei Medical)社製)、親水化PVDFからなるPlanova(登録商標)BioEX(旭化成メディカル(Asahi Kasei Medical)社製)、及びPegasus SV4(Pall社製)、並びに親水化PESからなるVirosart CPV(Sartorius社製)及びViresolve Pro(Millipore社製)等が挙げられる。 Specific examples of virus-removing membranes having an LRV of 4.00 or higher against bacterial offer PP7 are Planova (registered trademark) 15N (manufactured by Asahi Kasei Medical) and Planova (registered trademark) 20N (Asahi Kasei Medical) made of regenerated cellulose. (Manufactured by Asahi Kasei Medical), Planova (registered trademark) BioEX (manufactured by Asahi Kasei Medical) consisting of hydrophilized PVDF, Pegasus SV4 (manufactured by Pall), and Virosart CPV consisting of hydrophilized PES (manufactured by Asahi Kasei Medical). Sartorius) and Viresolve Pro (Millipore) and the like.
 バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜として、再生セルロースからなるウイルス除去膜の場合、ウイルス除去膜が有する空孔の平均孔径によって好ましい膜を規定することもできる。ウイルス除去膜が有する空孔の平均孔径は、例えば、15 nm(例:Planova(登録商標)15N;15±2 nm)、19 nm(例:Planova(登録商標)20N;19±2 nm)、20 nm(例:Pegasus(登録商標)SV4)である。 In the case of a virus-removing membrane made of regenerated cellulose as a virus-removing membrane having an LRV of 4.00 or more for bacteriophage PP7, a preferable membrane can be defined by the average pore size of the pores of the virus-removing membrane. The average pore diameter of the virus-removing membrane is, for example, 15 nm (eg, Planova® 15N; 15 ± 2nm), 19nm (eg, Planova® 20N; 19 ± 2nm), 20 nm (eg Pegasus® SV4).
 空孔の平均孔径は、国際公開第2015/156401号に記載の方法を参考にして、以下の計算式により算出し得る。
 平均孔径(nm)=2×103×√(V・d・μ/P・A・Pr)
 ここで、Vは透水量(ml/分)、dは膜厚(μm)、μは水の粘度(cp)、Pは圧力差(mmHg)、Aは膜面積(cm2)、Prは空孔率(%)を示す。
 透水量は、10本の糸を束ね、16cmの有効長になるようにモジュールを作成し、得られたモジュールの一端を閉とし、他端に200 mmHgの圧力をかけ、37℃で水を通す。このとき膜を通して出てくる水の量を透水量として測定する。
 膜面積は、乾燥状態での内径を測定して算出する。また、膜厚は、乾燥状態における膜厚を意味する。
 空孔率は、以下の計算式により算出する。
 空孔率(%)=(1-ρa/ρp)×100
 中空糸の見掛け密度ρaは、以下の計算式により算出し、ρpはセルロースの密度(g/cm3)を意味する。
 中空糸の見掛け密度(g/cm3)=Wd/Vw=4Wd/πl(Do2-Di2
 ここで、Wdは中空糸の絶乾重量(g)、Vwは中空糸の見かけ体積(cm3)を意味し、lは中空糸の長さ(cm)、Doは中空糸の外径(cm)、Diは中空糸の内径(cm)を意味する。
The average pore diameter of the pores can be calculated by the following formula with reference to the method described in International Publication No. 2015/156401.
Average pore size (nm) = 2 × 10 3 × √ (V ・ d ・ μ / P ・ A ・ Pr)
Here, V is the permeability (ml / min), d is the film thickness (μm), μ is the viscosity of water (cp), P is the pressure difference (mmHg), A is the membrane area (cm 2 ), and Pr is empty. Indicates the porosity (%).
For the water permeability, bundle 10 threads, make a module so that it has an effective length of 16 cm, close one end of the obtained module, apply a pressure of 200 mmHg to the other end, and let water pass at 37 ° C. .. At this time, the amount of water that comes out through the membrane is measured as the amount of water permeation.
The film area is calculated by measuring the inner diameter in a dry state. Further, the film thickness means the film thickness in a dry state.
The porosity is calculated by the following formula.
Porosity (%) = (1-ρa / ρp) x 100
The apparent density ρa of the hollow fiber is calculated by the following formula, and ρp means the density of cellulose (g / cm 3 ).
Apparent density of hollow fibers (g / cm 3 ) = Wd / Vw = 4Wd / πl (Do 2 -Di 2 )
Here, Wd means the absolute dry weight of the hollow thread (g), Vw means the apparent volume of the hollow thread (cm 3 ), l means the length of the hollow thread (cm), and Do means the outer diameter of the hollow thread (cm). ), Di means the inner diameter (cm) of the hollow thread.
 本明細書中において、LRVとは、ウイルス除去係数(Log Reduction Value)を意味し、対数で表されるウイルスの減少度であって、除去係数ともいう。LRVは、以下の計算式により求められる。
 LRV=Log[(V1×T1))]/[(V2×T2))]
 V1: ウイルス除去処理工程前の試料の容量
 T1: ウイルス除去処理工程前のウイルス量(力価)
 V2: ウイルス除去処理工程後の試料の容量
 T2: ウイルス除去処理工程後のウイルス量(力価)
In the present specification, LRV means a virus removal coefficient (Log Reduction Value), is a logarithmic reduction degree of a virus, and is also referred to as a removal coefficient. LRV is calculated by the following formula.
LRV = Log [(V 1 x T 1 ))] / [(V 2 x T 2 ))]
V 1 : Volume of sample before virus removal treatment process T 1 : Virus amount (titer) before virus removal treatment process
V 2 : Volume of sample after virus removal treatment process T 2 : Virus amount (titer) after virus removal treatment process
 バクテリオファージPP7のウイルス量は、特に限定されるものではないが、プラークアッセイ法(Plaque assay method)などで測定することができる。プラークアッセイ法は、Journal of Pharmaceutical Science and Technology 2008;Supplement Volume 62 No. S-4に記載の方法に従い、実施することができる。バクテリオファージPP7を含む溶液サンプルを段階希釈し、それぞれのサンプルを緑膿菌(Pseudomonas aeruginosa)と混合した後、軟寒天を加える。混合溶液を寒天プレート上に注ぎ、固化させた後に37℃で1日培養する。翌日肉眼でプラーク数を計測し、下記式により元の溶液に含まれていたファージ濃度pfu(plaque forming unit)/mlを算出する。
(プラーク数×希釈倍率)pfu/サンプル量(ml)pfu/ml
The viral load of bacteriophage PP7 is not particularly limited, but can be measured by a plaque assay method or the like. The plaque assay can be performed according to the method described in the Journal of Pharmaceutical Science and Technology 2008; Supplement Volume 62 No. S-4. Solution samples containing bacteriophage PP7 are serially diluted, each sample is mixed with Pseudomonas aeruginosa, and then soft agar is added. Pour the mixed solution onto an agar plate, allow it to solidify, and then incubate at 37 ° C for 1 day. The next day, the number of plaques is measured with the naked eye, and the phage concentration pfu (plaque forming unit) / ml contained in the original solution is calculated by the following formula.
(Number of plaques x dilution ratio) pfu / sample amount (ml) pfu / ml
 本発明のウイルス除去方法の工程(b1)におけるウイルス除去膜によるろ過について、ウイルス粒子径30 nm以下のウイルス(例:B19、MVM、PPV等)除去の指標として、LRVにより確認し得る。 The filtration by the virus removing membrane in the step (b1) of the virus removing method of the present invention can be confirmed by LRV as an index for removing viruses (eg, B19, MVM, PPV, etc.) having a virus particle diameter of 30 nm or less.
 ウイルス粒子径30 nm以下のウイルス(例:B19、MVM、PPV等)に対するLRVは、上記式において、ウイルス粒子径30 nm以下のウイルス(例:B19、MVM、PPV等)のウイルス量を測定することにより求め得る。ウイルス粒子径30 nm以下のウイルス(例:B19、MVM、PPV等)の量は、特に限定されないが、感染価やウイルス核酸量で測定し得る。感染価はウイルスを指標細胞に接種した後、一定期間培養して培養後の細胞の変性やウイルス抗原や核酸を測定することによって得られる(TCID50法やプラーク法など)。核酸量を測定する定量PCR法(Quantitative polymerase chain reaction:Q-PCR)は、自体公知の方法によって行うことができる。ウイルス粒子径30 nm以下のウイルス(例:B19、MVM、PPV等)のLRVを測定した場合に、4.00以上である場合に効果的にウイルス粒子径30 nm以下のウイルスが除去されたと判断し得る。一般に、ウイルス除去膜の性能評価などにおいて、LRVが1.00以上であれば限定的、2.00以上4.00以下であれば中等度、4.00以上であれば効果的にウイルスが除去されていると位置付けられ、LRVが5.00以上であれば、10の5乗分の1以下までウイルスが除去されており、LRVが6.00以上であれば、10の6乗分の1以下までウイルスが除去され、ほとんどウイルスの漏れがないとされている。 For LRV for viruses with a virus particle diameter of 30 nm or less (eg, B19, MVM, PPV, etc.), the viral load of viruses with a virus particle diameter of 30 nm or less (eg, B19, MVM, PPV, etc.) is measured in the above formula. It can be obtained by. The amount of virus (eg, B19, MVM, PPV, etc.) having a virus particle diameter of 30 nm or less is not particularly limited, but can be measured by the infectious titer or the amount of viral nucleic acid. The infectious titer is obtained by inoculating the indicator cells with the virus and then culturing for a certain period of time to measure the degeneration of the cells after culturing and the viral antigens and nucleic acids (TCID 50 method, plaque method, etc.). The Quantitative polymerase chain reaction (Q-PCR) for measuring the amount of nucleic acid can be carried out by a method known per se. When the LRV of a virus with a virus particle diameter of 30 nm or less (eg, B19, MVM, PPV, etc.) is measured, it can be judged that the virus with a virus particle diameter of 30 nm or less was effectively removed when the virus particle diameter was 4.00 or more. .. Generally, in the performance evaluation of virus removal membranes, if the LRV is 1.00 or more, it is limited, if it is 2.00 or more and 4.00 or less, it is moderate, and if it is 4.00 or more, the virus is effectively removed. If is 5.00 or more, the virus is removed to 1/5 or less of 10, and if the LRV is 6.00 or more, the virus is removed to 1/6 or less of 10 and most of the virus leaks. It is said that it is not.
 本発明のウイルス除去方法の工程(b1)におけるウイルス除去膜によるろ過について、ウイルス粒子径33 nm未満のウイルス(例:B19、MVM、PPV等)除去の指標として、LRVにより確認し得る。 The filtration by the virus removing membrane in the step (b1) of the virus removing method of the present invention can be confirmed by LRV as an index for removing viruses (eg, B19, MVM, PPV, etc.) having a virus particle size of less than 33 nm.
 ウイルス粒子径33 nm未満のウイルス(例:B19、MVM、PPV等)に対するLRVは、上記式において、ウイルス粒子径33 nm未満のウイルス(例:B19、MVM、PPV等)のウイルス量を測定することにより求め得る。ウイルス粒子径33 nm未満のウイルス(例:B19、MVM、PPV等)の量は、特に限定されないが、感染価やウイルス核酸量で測定し得る。感染価はウイルスを指標細胞に接種した後、一定期間培養して培養後の細胞の変性やウイルス抗原や核酸を測定することによって得られる(TCID50法やプラーク法など)。核酸量を測定する定量PCR法(Quantitative polymerase chain reaction:Q-PCR)は、自体公知の方法によって行うことができる。ウイルス粒子径33 nm未満のウイルス(例:B19、MVM、PPV等)のLRVを測定した場合に、4.00以上である場合に効果的にウイルス粒子径33 nm未満のウイルスが除去されたと判断し得る。 LRV for viruses with a virus particle size of less than 33 nm (eg, B19, MVM, PPV, etc.) measures the viral load of viruses with a virus particle size of less than 33 nm (eg, B19, MVM, PPV, etc.) in the above formula. It can be obtained by. The amount of virus having a virus particle size of less than 33 nm (eg, B19, MVM, PPV, etc.) is not particularly limited, but can be measured by the infectious titer or the amount of viral nucleic acid. The infectious titer is obtained by inoculating the indicator cells with the virus and then culturing for a certain period of time to measure the degeneration of the cells after culturing and the viral antigens and nucleic acids (TCID 50 method, plaque method, etc.). The Quantitative polymerase chain reaction (Q-PCR) for measuring the amount of nucleic acid can be carried out by a method known per se. When the LRV of a virus with a virus particle size of less than 33 nm (eg, B19, MVM, PPV, etc.) is measured, it can be determined that the virus with a virus particle size of less than 33 nm was effectively removed when the virus particle size was 4.00 or more. ..
 本発明のウイルス除去方法では、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜に供される、工程(a)又は(a´)による放射線照射処理後のタンパク質溶液は、ウイルス除去膜面積当たりのろ過液量として、例えば、50~100 l/m2で処理してもよい。50~100 l/m2で処理することにより、ウイルス除去膜にタンパク質等の目詰まりを生じさせることなく、効率的に当該溶液をろ過し得る。ウイルス除去膜面積は、ろ過面(一次側の表面)の面積として計算する。平膜の場合は、2辺の長さから算出した面積であり、中空糸膜の場合は、中空糸の内側(内表面)の面積となる。ろ過液量は、一定のろ過圧力条件下でのろ過において、ろ過時間により調節し得る。 In the virus removal method of the present invention, the protein solution after the irradiation treatment according to the step (a) or (a'), which is applied to the virus removal membrane having an LRV of 4.00 or more for bacteriophage PP7, is per virus removal membrane area. The amount of the filtrate may be, for example, 50 to 100 l / m 2 . By treating at 50 to 100 l / m 2 , the solution can be efficiently filtered without causing clogging of the virus removing membrane with proteins or the like. The virus removal membrane area is calculated as the area of the filtration surface (primary side surface). In the case of a flat membrane, it is the area calculated from the lengths of the two sides, and in the case of a hollow fiber membrane, it is the area inside (inner surface) of the hollow fiber. The amount of the filtrate can be adjusted by the filtration time in the filtration under a constant filtration pressure condition.
 本発明のウイルス除去方法の工程(b1)におけるろ過圧力は、ウイルス除去膜の材質によるが、膜の耐圧力以下の範囲で行う。例えば、再生セルロースからなるウイルス除去膜の場合は、0.00 kgf/cm2(0.0 kPa)~1.00 kgf/cm2(9.8×10 kPa)の範囲で行ってもよい。親水化PVDF又は親水化PESからなるウイルス除去膜の場合、0.00 kgf/cm2(0.0 kPa)~5.00 kgf/cm2(4.9×10kPa)の範囲で行ってもよい。 The filtration pressure in the step (b1) of the virus removing method of the present invention depends on the material of the virus removing membrane, but is within the range of the pressure resistance of the membrane or less. For example, in the case of a virus removing membrane made of regenerated cellulose, it may be carried out in the range of 0.00 kgf / cm 2 (0.0 kPa) to 1.00 kgf / cm 2 (9.8 × 10 kPa). In the case of a virus-removing membrane made of hydrophilized PVDF or hydrophilized PES, it may be carried out in the range of 0.00 kgf / cm 2 (0.0 kPa) to 5.00 kgf / cm 2 (4.9 × 10 2 kPa).
 本発明のウイルス不活化方法に含まれる工程(b2)におけるSD処理は、該SD処理に供するタンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるように処理し得る限り特に限定されない。LRVは、2.00以上であれば中等度の不活化、4.00以上であれば効果的にウイルスが不活化されていると言えるが、所望する場合は、例えば、3.00以上、4.00以上、5.00以上、6.00以上のLRVを達成し得るように処理してもよい。また、工程(b2)においてSD処理を選択する場合、その後の工程において上述の工程(b1)のウイルス除去膜処理を別途行ってもよい。 The SD treatment in the step (b2) included in the virus inactivating method of the present invention is not particularly limited as long as it can be treated so that the LRV against the enveloped virus in the protein solution used for the SD treatment is 2.00 or more. For LRV, it can be said that moderate inactivation is moderate if it is 2.00 or more, and virus is effectively inactivated if it is 4.00 or more, but if desired, for example, 3.00 or more, 4.00 or more, 5.00 or more, 6.00. It may be processed so that the above LRV can be achieved. Further, when the SD treatment is selected in the step (b2), the virus removing membrane treatment in the above-mentioned step (b1) may be separately performed in the subsequent steps.
 SD混合液は、上記LRVの条件を達成し得る限り、一般にエンベロープを有するウイルスを化学的に不活化しうる有機溶媒・界面活性剤の技術分野において既知の如何なる有機溶媒と界面活性剤の組み合わせであってもよい。
 有機溶媒としては、例えば、炭素数1~10のアルキル基を有するジアルキル又はトリアルキルホスフェートが挙げられ、なかでも炭素数2~10のアルキル基を有するトリアルキルホスフェートが好ましい。具体的には、トリ-(n-ブチル)ホスフェート(以下、「TNBP」と略記)、トリ-(t-ブチル)ホスフェート、トリ-(n-ヘキシル)ホスフェート、トリ-(2-エチルヘキシル)ホスフェート、トリ-(n-デシル)ホスフェート、エチル-ジ(n-ブチル)ホスフェート等が挙げられる。
The SD mixture can be any combination of organic solvent and surfactant known in the art of organic solvents and surfactants that can chemically inactivate enveloped viruses as long as the above LRV conditions can be achieved. There may be.
Examples of the organic solvent include dialkyl or trialkyl phosphate having an alkyl group having 1 to 10 carbon atoms, and among them, trialkyl phosphate having an alkyl group having 2 to 10 carbon atoms is preferable. Specifically, tri- (n-butyl) phosphate (hereinafter abbreviated as "TNBP"), tri- (t-butyl) phosphate, tri- (n-hexyl) phosphate, tri- (2-ethylhexyl) phosphate, Examples thereof include tri- (n-decyl) phosphate and ethyl-di (n-butyl) phosphate.
 界面活性剤としては、通常、0.01 g/mlの溶液中に、常温下で、脂肪を0.1 w/w%分散し得るものが使用される。具体的には、脂肪酸のポリオキシエチレン誘導体、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチル化アルキルフェノール、ポリオキシエチレンアルコール、ポリオキシエチレン油、ポリオキシエチレンオキシプロピレン脂肪酸等が挙げられる。より具体的には、例えば、Tween(登録商標)80、Tween(登録商標)20等の脂肪酸のポリオキシエチレン誘導体、ポリソルベート80等のソルビトール無水物の部分エステル、ポリオキシエチレンオクチルフェニルエーテル(Triton(登録商標)X-100)等のオキシエチル化アルキルフェノール、ナトリウムコーレート、デオキシコール酸ナトリウム、N-ドデシル-N,N-ジメチル-2-アンモニオ-1-エタンスルホネート等のスルホベタイン類、オクチル-β,D-グルコピラノシド等の非イオン性洗剤が挙げられる。好ましくは、Tween(登録商標)80、Triton(登録商標)X-100、ナトリウムコーレート等の非イオン性オイル可溶性水性洗剤である。 As a surfactant, one that can disperse fat by 0.1 w / w% in a solution of 0.01 g / ml at room temperature is usually used. Specific examples thereof include polyoxyethylene derivatives of fatty acids, polyoxyethylene sorbitan fatty acid esters, oxyethylated alkylphenols, polyoxyethylene alcohols, polyoxyethylene oils, polyoxyethylene oxypropylene fatty acids and the like. More specifically, for example, polyoxyethylene derivatives of fatty acids such as Tween (registered trademark) 80 and Tween (registered trademark) 20, partial esters of sorbitol anhydride such as polysorbate 80, and polyoxyethylene octylphenyl ether (Triton (Registered Trademark)). Oxyethylated alkylphenols such as registered trademark) X-100), sodium colalate, sodium deoxycholate, sulfobetaines such as N-dodecyl-N, N-dimethyl-2-ammonio-1-ethanesulfonate, octyl-β, Examples thereof include nonionic detergents such as D-glucopyranoside. Preferably, it is a nonionic oil-soluble aqueous detergent such as Tween® 80, Triton® X-100, sodium corate and the like.
 上記SD混合液中、有機溶媒及び/又は界面活性剤を、それぞれ独立に2種以上含んでいてもよい。またSD混合液は、その効果を助長するための他の添加成分、例えば、還元剤などを必要に応じて含んでもよい。SD混合液は、上記のような有機溶媒(S)及び界面活性剤(D)を、S/D(w/w比)が1~20となる量で含有することが好ましい。 The SD mixture may contain two or more organic solvents and / or surfactants independently. Further, the SD mixed solution may contain other additive components for promoting the effect, for example, a reducing agent, if necessary. The SD mixture preferably contains the above-mentioned organic solvent (S) and surfactant (D) in an amount such that the S / D (w / w ratio) is 1 to 20.
 SD処理は、0~40℃、好ましくは4~25℃、さらに好ましくは7~12℃の温度下で、タンパク質溶液とSD混合液とを接触させることにより行い得る。該接触は、通常、数分の接触で効果が表れ、好ましくは10分以上2時間以内、典型的には30~60分程度である。なお、2時間より長い時間処理しても効果の上昇は期待できないが、効果を確実にするためにさらに長時間、例えば6時間以上の処理を行ってもよい。 The SD treatment can be performed by contacting the protein solution and the SD mixture at a temperature of 0 to 40 ° C, preferably 4 to 25 ° C, more preferably 7 to 12 ° C. The contact usually shows its effect after a few minutes of contact, preferably 10 minutes or more and 2 hours or less, typically about 30 to 60 minutes. Although the effect cannot be expected to increase even if the treatment is performed for a time longer than 2 hours, the treatment may be performed for a longer period of time, for example, 6 hours or more in order to ensure the effect.
2.本発明のウイルスが除去されたタンパク質溶液の製造方法
 本発明の製造方法は、ウイルスが除去されたタンパク質溶液の製造方法であって、以下:
(a)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理する工程、もしくは(a´)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対するLRVが1.00以上、望ましくは2.00以上、より望ましくは3.00以上、さらに望ましくは4.00以上になるように処理する工程、及び
(b1)前記処理されたタンパク質溶液を、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でろ過する工程、又は
(b2)前記処理されたタンパク質溶液を、SD混合液と接触させ、前記タンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるようにSD処理する工程
を含む、方法である。
 上記工程(a)もしくは(a´)並びに工程(b1)及び(b2)に関しては、上記「1.本発明のタンパク質溶液中のウイルスの除去方法」中に記載の内容を援用し得る。
2. The method for producing a protein solution from which the virus has been removed according to the present invention The method for producing a protein solution from which the virus has been removed is the method for producing a protein solution from which the virus has been removed.
(A) Irradiate the protein solution so that the LRV for viruses with a virus particle size of 30 nm or less in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and even more preferably 4.00 or more. The LRV for viruses with a virus particle size of less than 33 nm in the protein solution is 1.00 or more, preferably 2.00 or more, more preferably 3.00 or more, and further by irradiating the protein solution with radiation. A step of treating to preferably 4.00 or more, and (b1) a step of filtering the treated protein solution with a virus-removing membrane having an LRV of 4.00 or more for Bacterophage PP7, or (b2) the treated. It is a method comprising contacting a protein solution with an SD mixture and performing SD treatment so that the LRV against enveloped virus in the protein solution is 2.00 or more.
With respect to the above steps (a) or (a') and steps (b1) and (b2), the contents described in the above "1. Method for removing virus in protein solution of the present invention" can be incorporated.
 本発明のウイルスが除去されたタンパク質溶液の製造方法の工程(a)もしくは(a´)の前、あるいは工程(a)もしくは(a´)と工程(b1)の間に、工程(b1)で用いるウイルス除去膜よりも大きい孔径の膜からなるフィルターで予備ろ過を行ってもよい。当該大きい孔径の膜からなるフィルターとしては、例えば、Planova(登録商標)35N(旭化成メディカル社製)、Planova(登録商標)75N(旭化成メディカル社製)、0.1μmフィルター、0.2μmフィルター等が挙げられる。 Before step (a) or (a') of the method for producing a protein solution from which the virus of the present invention has been removed, or between steps (a) or (a') and step (b1), in step (b1). Preliminary filtration may be performed with a filter having a pore size larger than that of the virus removing membrane used. Examples of the filter made of a film having a large pore size include Planova (registered trademark) 35N (manufactured by Asahi Kasei Medical Co., Ltd.), Planova (registered trademark) 75N (manufactured by Asahi Kasei Medical Co., Ltd.), 0.1 μm filter, 0.2 μm filter and the like. ..
 また、本発明のウイルスが除去されたタンパク質溶液の製造方法の工程(b1)の後に、適宜、タンパク質を含まない溶液(洗浄液)をろ過することにより、膜内部のタンパク質を、ろ液側に洗い出す洗浄工程を追加してもよい。 Further, after the step (b1) of the method for producing a protein solution from which the virus of the present invention has been removed, the protein inside the membrane is washed out to the filtrate side by appropriately filtering the protein-free solution (washing solution). A cleaning step may be added.
 さらに、本発明のウイルスが除去されたタンパク質溶液の製造方法の工程(a)もしくは(a´)の前、工程(a)もしくは(a´)と工程(b1)又は(b2)の間、あるいは工程(b1)又は(b2)の後に、クロマトグラフィー処理、ウイルス除去膜処理、SD処理、濃縮処理及び濃縮/緩衝液交換処理のいずれか1つ以上を行ってもよい。なお、ウイルス除去膜処理は、上記「1.本発明のタンパク質溶液中のウイルスの除去方法」に記載の工程(b1)の内容を援用し得る。 Further, before step (a) or (a') of the method for producing a protein solution from which the virus of the present invention has been removed, between steps (a) or (a') and step (b1) or (b2), or After the step (b1) or (b2), any one or more of a chromatography treatment, a virus removing membrane treatment, an SD treatment, a concentration treatment and a concentration / buffer exchange treatment may be performed. For the virus removing membrane treatment, the content of the step (b1) described in "1. Method for removing virus in protein solution of the present invention" can be incorporated.
 クロマトグラフィー処理としては、例えば、イオン交換樹脂、ゲルろ過樹脂をカラムに詰めたカラムクロマトグラフィー、多孔膜の表面にイオン交換基を付与したメンブレンクロマトグラフィーが挙げられる。クロマトグラフィーの分離モードとしては、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー(陽イオン交換:CEX、陰イオン交換:AEX)、疎水クロマトグラフィー(HIC)、アフィニティクロマトグラフィー、金属キレートアフィニティクロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー等が挙げられる。クロマトグラフィーのリガンドとしてイオン交換と疎水相互作用を複合させたクロマトグラフィーを用いてもよい。なお、SD処理については、上記「1.本発明のタンパク質溶液中のウイルスの除去方法」に記載の工程(b2)の内容を援用し得る。 Examples of the chromatography treatment include column chromatography in which an ion exchange resin and a gel filtration resin are packed in a column, and membrane chromatography in which an ion exchange group is added to the surface of a porous membrane. The chromatographic separation modes include gel filtration chromatography, ion exchange chromatography (cation exchange: CEX, anion exchange: AEX), hydrophobic chromatography (HIC), affinity chromatography, metal chelate affinity chromatography, hydroxyapatite. Chromatography and the like can be mentioned. Chromatography in which ion exchange and hydrophobic interaction are combined may be used as the ligand for chromatography. For the SD treatment, the content of the step (b2) described in "1. Method for removing virus in protein solution of the present invention" can be incorporated.
 濃縮処理は、自体公知の方法に従って、限外ろ過(UF)膜を用いた方法で行ってもよい。また、遠心濃縮により行なってもよい。 The concentration treatment may be carried out by a method using an ultrafiltration (UF) membrane according to a method known per se. Further, it may be carried out by centrifugal concentration.
 緩衝液交換処理は、自体公知の方法に従って、限外ろ過膜を用いて濃縮と同時に行なってもよい。また、ゲルろ過法や透析膜を用いた透析法によって行ってもよい。 The buffer solution exchange treatment may be carried out at the same time as concentration using an ultrafiltration membrane according to a method known per se. Further, it may be carried out by a gel filtration method or a dialysis method using a dialysis membrane.
 本発明のウイルスが除去されたタンパク質溶液の製造方法の工程(b1、b2)の後、ウイルスが除去されたタンパク質溶液について、例えば、クロマトグラフィー処理により精製処理を行ってもよい。UF処理により、本発明のウイルスが除去されたタンパク質溶液をさらに高濃度化してもよい。 After the steps (b1, b2) of the method for producing a protein solution from which the virus has been removed according to the present invention, the protein solution from which the virus has been removed may be purified, for example, by chromatographic treatment. The protein solution from which the virus of the present invention has been removed may be further concentrated by UF treatment.
 また、工程(b1)又は(b2)で得られたウイルスが除去されたタンパク質溶液、その精製物又は濃縮物は、そのままの液組成で製剤化してもよく、あるいは、例えば、他の組成の溶媒と緩衝液交換(自体公知の方法によるSDの除去を含んでもよい)を行った後に製剤化してもよい。また、上記ウイルスが除去されたタンパク質溶液、その精製物又は濃縮物について凍結乾燥処理を行った後、製剤化してもよい。 In addition, the virus-removed protein solution obtained in step (b1) or (b2), a purified product thereof or a concentrate thereof may be formulated with the same liquid composition, or, for example, a solvent having another composition. And the buffer solution may be exchanged (may include removal of SD by a method known per se) and then formulated. Further, the protein solution from which the virus has been removed, a purified product thereof or a concentrate thereof may be freeze-dried and then formulated.
 上記製剤化に際しては、製剤学の技術分野において周知の方法により、本発明の製造方法により得られたウイルスが除去されたタンパク質溶液、又はその凍結乾燥物を、薬理学的に許容される1種以上の担体と一緒に混合し、医薬製剤あるいは医薬組成物として製造し得る。 In the above-mentioned formulation, a protein solution from which the virus obtained by the production method of the present invention has been removed, or a lyophilized product thereof, which is pharmacologically acceptable, is one kind that is pharmacologically acceptable by a method well known in the technical field of pharmaceutical science. It can be mixed with the above carrier and produced as a pharmaceutical preparation or a pharmaceutical composition.
 薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、その具体例としては、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤、液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤などが挙げられる。製剤化の際には、必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの製剤添加剤を用いてもよい。 As the pharmacologically acceptable carrier, various conventional organic or inorganic carrier substances are used as the pharmaceutical material, and specific examples thereof include excipients, lubricants, binders, disintegrants, and liquids in solid formulations. Examples thereof include a solvent, a solubilizing agent, a suspending agent, an tonicity agent, a buffering agent, and a pain-relieving agent in the pharmaceutical product. When formulating, if necessary, pharmaceutical additives such as preservatives, antioxidants, colorants, and sweeteners may be used.
 賦形剤としては、乳糖、白糖、D-マンニトール、D-ソルビトール、デンプン、α化デンプン、デキストリン、結晶セルロース、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アラビアゴム、プルラン、軟質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウム、キシリトール、ソルビトール、エリスリトールなどが挙げられる。
 滑沢剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカ、ポリエチレングリコール6000などが挙げられる。
Excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, pregelatinized starch, dextrin, crystalline cellulose, low-substituted hydroxypropyl cellulose, sodium carboxymethyl cellulose, gum arabic, pullulan, soft anhydrous silicic acid, Examples thereof include synthetic aluminum silicate, magnesium aluminometasilicate, xylitol, sorbitol, and erythritol.
Examples of the lubricant include magnesium stearate, calcium stearate, talc, colloidal silica, polyethylene glycol 6000 and the like.
 結合剤としては、α化デンプン、ショ糖、ゼラチン、アラビアゴム、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、結晶セルロース、白糖、D-マンニトール、トレハロース、デキストリン、プルラン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドンなどが挙げられる。 Binders include pregelatinized starch, sucrose, gelatin, gum arabic, methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, crystalline cellulose, sucrose, D-mannitol, trehalose, dextrin, pullulan, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinyl. Examples include pyrrolidone.
 崩壊剤としては、乳糖、白糖、デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、低置換度ヒドロキシプロピルセルロース、軟質無水ケイ酸、炭酸カルシウムなどが挙げられる。 Examples of the disintegrant include lactose, sucrose, starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, croscarmellose sodium, carboxymethyl starch sodium, low degree of substitution hydroxypropyl cellulose, soft anhydrous silicic acid, calcium carbonate and the like.
 溶剤としては、注射用水、生理食塩水、リンゲル液、アルコール、プロピレングリコール、ポリエチレングリコール、ゴマ油、トウモロコシ油、オリーブ油、綿実油などが挙げられる。
 溶解補助剤としては、ポリエチレングリコール、プロピレングリコール、D-マンニトール、トレハロース、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウムなどが挙げられる。
Examples of the solvent include water for injection, physiological saline, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, sesame oil, corn oil, olive oil, cottonseed oil and the like.
Examples of the solubilizing agent include polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate, sodium salicylate, sodium acetate and the like. ..
 懸濁化剤としては、例えば、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤;例えば、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分子;ポリソルベート類、ポリオキシエチレン硬化ヒマシ油などが挙げられる。 As the suspending agent, for example, a surfactant such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glycerin monostearate; for example, polyvinyl alcohol, polyvinylpyrrolidone. , Hydrophilic polymers such as sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose; polysorbates, polyoxyethylene hydrogenated castor oil and the like.
 等張化剤としては、塩化ナトリウム、グリセリン、D-マンニトール、D-ソルビトール、ブドウ糖、キシリトール、果糖などが挙げられる。
 緩衝剤としては、リン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。
 無痛化剤としては、プロピレングリコール、塩酸リドカイン、ベンジルアルコールなどが挙げられる。
Examples of the tonicity agent include sodium chloride, glycerin, D-mannitol, D-sorbitol, glucose, xylitol, fructose and the like.
Examples of the buffering agent include buffer solutions such as phosphates, acetates, carbonates and citrates.
Examples of the soothing agent include propylene glycol, lidocaine hydrochloride, benzyl alcohol and the like.
 防腐剤としては、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。
 抗酸化剤としては、亜硫酸塩、アスコルビン酸塩などが挙げられる。
 着色剤としては、水溶性着色タール色素(例、食用赤色2号及び3号、食用黄色4号及び5号、食用青色1号及び2号などの食用色素)、不溶性レーキ色素(例:前記水溶性食用タール色素のアルミニウム塩)、天然色素(例:β-カロチン、クロロフィル、ベンガラ)などが挙げられる。
 甘味剤としては、サッカリンナトリウム、グリチルリチン酸ニカリウム、アスパルテーム、ステビアなどが挙げられる。
Examples of the preservative include paraoxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
Examples of the antioxidant include sulfites, ascorbic acid salts and the like.
Coloring agents include water-soluble colored tar pigments (eg, edible pigments such as Edible Red Nos. 2 and 3, Edible Yellow Nos. 4 and 5, Edible Blue Nos. 1 and 2), and insoluble lake dyes (eg, said water-soluble). (Aluminum salt of food coloring), natural food coloring (eg β-carotene, chlorophyll, red iron oxide) and the like.
Examples of the sweetener include sodium saccharin, dipotassium glycyrrhizinate, aspartame, stevia and the like.
 また、投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口製剤、注射剤又は経皮製剤などで投与可能である。経口製剤としては、錠剤(舌下錠、口腔内崩壊剤を含む)、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、散剤、顆粒剤、トローチ剤、シロップ剤、乳剤、懸濁剤などが挙げられる。また、注射剤としては、皮内注射、皮下注射、静脈内注射、筋肉内注射、脊髄腔内注射、硬膜外注射、局所注射などが挙げられる。また、経皮製剤としては、貼付剤、軟膏剤、散布剤などが挙げられる。これらの製剤は、速放性製剤又は徐放性製剤などの放出制御製剤(例:徐放性マイクロカプセル)であってもよい。 In addition, it is desirable to use the most effective route of administration for treatment, and it can be administered by oral preparation, injection or transdermal preparation. Examples of the oral preparation include tablets (including sublingual tablets and orally disintegrating agents), capsules (including soft capsules and microcapsules), powders, granules, troches, syrups, emulsions and suspensions. .. Examples of the injection include intradermal injection, subcutaneous injection, intravenous injection, intramuscular injection, intraspinal injection, epidural injection, and local injection. In addition, examples of the transdermal preparation include patches, ointments, and sprays. These formulations may be release controlled formulations such as immediate release formulations or sustained release formulations (eg, sustained release microcapsules).
 投与量又は投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、有効成分(タンパク質)の量として、通常、成人1日当たり10μg/kg~5,000mg/kgとしてもよい。 The dose or frequency of administration varies depending on the target therapeutic effect, administration method, treatment period, age, body weight, etc., but the amount of active ingredient (protein) is usually 10 μg / kg to 5,000 mg / kg per day for adults. May be good.
 以下に、本発明を実施例により説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to these examples.
実施例1:IgG共存下のウイルスに対するUVC照射による不活化の検討
 静注用人免疫グロブリン製剤(IVIG)を用いて、UVC照射によるIgG分子への影響を評価した。シャーレに検体(IVIG)を添加し薄膜を形成させた状態で振盪しつつ、UVC照射を行なった。UVC照射量(照射エネルギー)の測定はUVR-300(トプコンテクノハウス社製)などを用いて行なった。
Example 1: Examination of inactivation of virus in the presence of IgG by UVC irradiation The effect of UVC irradiation on IgG molecules was evaluated using an intravenous human immunoglobulin preparation (IVIG). UVC irradiation was performed while shaking with the sample (IVIG) added to the petri dish to form a thin film. The UVC irradiation amount (irradiation energy) was measured using UVR-300 (manufactured by Topcon Techno House) or the like.
 上記測定を0.1 Mグリシン緩衝液(pH 3.0~6.8)中の2.5%または5% IgGにUVCを照射したところ、IgG濃度の違いによるIgG重合体生成への影響は軽微であった。一方、UVC照射量に応じてIgG分子の重合体は形成され、pHの違いによっても重合体形成の程度が異なることが示された。ポリクローナルIgGは低いpHで溶解度が高くなり、pH 4.2付近で最も安定になることが知られているが、UVC照射においても同様にpH 3.5~5.5付近で重合体形成が少なかった(図1及び2)。上記検討から、重合体形成2%を上限とした場合、UVC照射は512 mJ/cm2までが照射可能な条件であり、ポリクローナルIgGにおいて、pH 4.1付近がより重合体形成を抑制する条件であることが示された。モノクローナルIgGはIgG分子のPI値によって溶解性が至適になるpHが変化するので、IgG分子ごとに至適な条件が異なる。 When the above measurement was performed by irradiating 2.5% or 5% IgG in 0.1 M glycine buffer (pH 3.0 to 6.8) with UVC, the effect of the difference in IgG concentration on the formation of IgG polymer was slight. On the other hand, it was shown that a polymer of IgG molecule was formed according to the UVC irradiation dose, and the degree of polymer formation was different depending on the difference in pH. It is known that polyclonal IgG has high solubility at low pH and is most stable at around pH 4.2, but polymer formation was also low at around pH 3.5 to 5.5 even under UVC irradiation (Figs. 1 and 2). ). From the above examination, when the upper limit of polymer formation is 2%, UVC irradiation is a condition that can be irradiated up to 512 mJ / cm 2 , and in polyclonal IgG, around pH 4.1 is a condition that further suppresses polymer formation. Was shown. Since the pH at which the solubility of monoclonal IgG becomes optimal changes depending on the PI value of the IgG molecule, the optimum conditions differ for each IgG molecule.
 ウイルス不活化実験は、PBSにB19、MVM、BVDVを添加し、UVR-300(トプコンテクノハウス社製)を用いて、UVC照射量を変化させて照射し、照射による感染性の変化(不活化の程度)を評価した(図3~5)。感染性の変化は、感染価をTCID50法で算出し、ウイルス不活化前後のサンプルの感染価の変化から評価した。図の縦軸は感染価の指数値を示す。なお対数減少率を示すLRVは、不活化前の感染価の指数値から不活化後の感染価の指数値を減じた値から計算される。
 また、2.5% IgGを含む0.1 Mグリシン緩衝液(pH 4.1)にMVM及びBVDVを添加したIgG共存条件でUVC照射を実施し、感染性の変化(不活化の程度)を評価した(図4、5)。なお、使用したIgGに抗B19 抗体が含まれることからB19はIgG共存条件での本実験には使用しなかった。使用したウイルスの性状を表1に纏める。
In the virus inactivation experiment, B19, MVM, and BVDV were added to PBS, and UVR-300 (manufactured by Topcon Techno House) was used to irradiate with different UVC irradiation doses, and the infectivity was changed by irradiation (inactivation). (Degree of) was evaluated (Figs. 3-5). The change in infectivity was evaluated by calculating the infectious titer by the TCID 50 method and evaluating the change in the infectious titer of the sample before and after virus inactivation. The vertical axis of the figure shows the index value of the infectious titer. The LRV indicating the logarithmic reduction rate is calculated from the value obtained by subtracting the index value of the infectious value after inactivation from the index value of the infectious value before inactivation.
In addition, UVC irradiation was performed under IgG coexistence conditions in which MVM and BVDV were added to 0.1 M glycine buffer (pH 4.1) containing 2.5% IgG, and changes in infectivity (degree of inactivation) were evaluated (Fig. 4, Fig. 4, Five). Since the IgG used contained an anti-B19 antibody, B19 was not used in this experiment under IgG coexistence conditions. Table 1 summarizes the properties of the viruses used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 PBS条件下では、MVMは32 mJ/cm2以上のUVC照射で感染性が消失(不活化)し、ウイルスLRVはそれぞれ>3.8、>5.0であった。B19は64 mJ/cm2以上のUVC照射でのウイルスLRVはそれぞれ7.8、7.4、7.2であったのに対してBVDVでは今回評価した照射量では不活化効果を示さなかった。LRVは4.00以上であれば効果的なウイルス不活化・除去と評価されるが、4.00未満であっても2.00以上であれば中等度、1.00以上であれば限定的と評価され、1.00以下であれば効果がないと評価される。また、IgG共存下では、MVMは256 mJ/cm2以上のUVC照射で感染性が消失した(LRV:>3.8、>4.6)が、それ以下の照射量におけるウイルス不活化曲線は、IgGの存在する場合と存在しない場合とで異なっていた。これはUVC照射によってこれらのウイルスは不活化されるものの、IgGの共存によってウイルスは安定化され、不活化に要する照射量は増加するが、256 mJ/cm2で臨界点を超えることが示された。一方、より大きな粒子とゲノムサイズを有するBVDVはPBS及びIgG共存条件共に512 mJ/cm2のエネルギー量でも感染性に大きな変化はなかった(即ち、不活化されなかった)(図3~5)。 Under PBS conditions, MVM was infectious (inactivated) by UVC irradiation of 32 mJ / cm 2 or higher, and virus LRV was> 3.8 and> 5.0, respectively. In B19, the viral LRVs at UVC irradiation of 64 mJ / cm 2 or more were 7.8, 7.4, and 7.2, respectively, whereas BVDV showed no inactivating effect at the irradiation dose evaluated this time. If LRV is 4.00 or more, it is evaluated as effective virus inactivation / removal, but if it is less than 4.00, it is evaluated as moderate if it is 2.00 or more, if it is 1.00 or more, it is evaluated as limited, and if it is 1.00 or less. If it is evaluated as ineffective. In addition, in the coexistence of IgG, the infectivity of MVM disappeared by UVC irradiation of 256 mJ / cm 2 or more (LRV:>3.8,> 4.6), but the virus inactivation curve at irradiation doses lower than that showed the presence of IgG. It was different when it did and when it did not exist. It was shown that although UVC irradiation inactivates these viruses, the coexistence of IgG stabilizes the viruses and increases the amount of irradiation required for inactivation, but exceeds the critical point at 256 mJ / cm 2 . rice field. On the other hand, BVDV with larger particles and genome size did not have a significant change in infectivity (ie, not inactivated) even at an energy amount of 512 mJ / cm 2 under both PBS and IgG coexistence conditions (Figs. 3-5). ..
 これらの結果から、UVC照射によるウイルス不活化に影響する因子は、まずウイルスの粒子径(ゲノムサイズ)が重要であることが理解できる。上記ウイルスの粒子径以外では、当該ウイルスと共存するタンパク質の種類やその濃度も当該因子たり得、pHも当該因子たり得る。一例ではあるが、IgGを目的タンパク質として含む溶液の場合、至適なウイルス不活化・除去条件は、20 nmの孔径を有するウイルス除去膜処理、IgG濃度10%以下、pH4.1~5.5、及びUVC照射量256 mJ/cm2、または33 nm未満の孔径を有するウイルス除去膜処理、IgG濃度10%以下、pH4.1~5.5、及びUVC照射量256 mJ/cm2であることが示された。 From these results, it can be understood that the particle size (genome size) of the virus is important as a factor influencing virus inactivation by UVC irradiation. Other than the particle size of the virus, the type and concentration of the protein coexisting with the virus may be the factor, and the pH may be the factor. As an example, in the case of a solution containing IgG as a target protein, the optimum virus inactivation / removal conditions are virus removal membrane treatment with a pore size of 20 nm, IgG concentration of 10% or less, pH 4.1 to 5.5, and It was shown that the UVC irradiation dose was 256 mJ / cm 2 , or the virus removal membrane treatment with a pore size of less than 33 nm, the IgG concentration was 10% or less, the pH was 4.1 to 5.5, and the UVC irradiation dose was 256 mJ / cm 2 . ..
実施例2:Fib共存下のウイルスに対するUVC照射による不活化の検討
 Fib(安定化剤として0.5% 塩化ナトリウム、1.6%クエン酸ナトリウムを含む)濃度が3.9 mg/ml(E280: 5.8、E1% 280:15~16)の溶液を用いて、UVC照射によるFib分子への影響を評価した。本実験において、UVCエネルギー量はUVC-254(株式会社カスタム製)を用いて測定したが、当該測定器は実施例1で使用したUVR-300(トプコンテクノハウス社製)より約1/3低い値を示す(表2)。従って、本実験では、UVR-300(トプコンテクノハウス社製)での測定値と同じになるように、実測値を3倍した補正値を用いた。
Example 2: Examination of inactivation of virus in coexistence with Fib by UVC irradiation Fib (containing 0.5% sodium chloride and 1.6% sodium citrate as stabilizers) concentration is 3.9 mg / ml (E 280 : 5.8, E 1 ) The effect of UVC irradiation on Fib molecules was evaluated using the solution of % 280 : 15-16). In this experiment, the amount of UVC energy was measured using UVC-254 (manufactured by Custom Co., Ltd.), but the measuring instrument was about 1/3 lower than UVR-300 (manufactured by Topcon Techno House Co., Ltd.) used in Example 1. The values are shown (Table 2). Therefore, in this experiment, a correction value obtained by multiplying the measured value by 3 was used so as to be the same as the measured value with UVR-300 (manufactured by Topcon Techno House Co., Ltd.).
 Fibは凝固活性を持つタンパク質であるので、凝固活性と重合体形成について評価した。UVC照射によって、凝固活性は192 mJ/cm2までほぼ100%を維持していたものの、重合体については照射量に応じて増加した。重合体は照射前から検出されていたが、96 mJ/cm2の照射で照射前に比べて重合体量は20%に達した(図6)。なお、重合体については投与前にフィブリン膜を形成させるなどの目的においては重要な指標とはならず、凝固活性がUVC照射における重要な指標となる。 Since Fib is a protein with coagulation activity, its coagulation activity and polymer formation were evaluated. By UVC irradiation, the coagulation activity was maintained at almost 100% up to 192 mJ / cm 2 , but the polymer increased according to the irradiation dose. The polymer was detected before irradiation, but the amount of polymer reached 20% after irradiation at 96 mJ / cm 2 compared to before irradiation (Fig. 6). The polymer is not an important index for the purpose of forming a fibrin film before administration, and the coagulation activity is an important index in UVC irradiation.
 次に種々の濃度のFib溶液にB19又はPPVを添加し、UVC照射量を変化させて照射し、ウイルスの感染性の変化(不活化の程度)を実施例1と同様に評価した。使用したウイルスの性状は表1に示す通りである。B19を用いた検討では、Fib濃度3.3 mg/ml(E280: 5、吸光係数(E1% 280:15~16))、120 mJ/cm2の照射で、溶液中のB19は、検出限界まで不活化された(LRV: >4.6)。これよりタンパク質濃度の高い、Fib濃度6.7 mg/ml(E280: 10、吸光係数(E1% 280:15~16))ではLRV: >4.0を達成するには192 mJ/cm2の照射が必要であり、Fib濃度13.3 mg/ml(E280: 20、吸光係数(E1% 280:15~16))では本実験の範囲において、LRV: >4.00を達成できなかった(図7及び8)。 Next, B19 or PPV was added to Fib solutions of various concentrations, and irradiation was performed at different UVC irradiation doses, and changes in virus infectivity (degree of inactivation) were evaluated in the same manner as in Example 1. The properties of the virus used are as shown in Table 1. In the study using B19, the detection limit of B19 in the solution was obtained by irradiation with Fib concentration 3.3 mg / ml (E 280 : 5, extinction coefficient (E 1% 280 : 15-16)) and 120 mJ / cm 2 . Inactivated until (LRV:> 4.6). At a higher protein concentration, Fib concentration 6.7 mg / ml (E 280 : 10, extinction coefficient (E 1% 280 : 15-16)), irradiation with 192 mJ / cm 2 is required to achieve LRV:> 4.0. At a Fib concentration of 13.3 mg / ml (E 280 : 20, extinction coefficient (E 1% 280 : 15-16)), LRV:> 4.00 could not be achieved in the range of this experiment (Figs. 7 and 8). ).
 PPVを用いた検討では、Fib濃度3.6 mg/ml(E280: 5.4、吸光係数(E1% 280:15~16))、192 mJ/cm2の照射で、溶液中のPPVは検出限界まで不活化されて臨界点を超えることが示された(図9)。本実施例から、一例ではあるが、Fibを目的タンパク質として含む溶液の場合、至適なウイルス不活化・除去条件の例としては、20 nmの孔径を有するウイルス除去膜処理、Fib吸光度A280=10以下、192 mJ/cm2のUVC照射、または33 nm未満の孔径を有するウイルス除去膜処理、Fib吸光度A280=10以下、192 mJ/cm2のUVC照射であることが示された。 In the study using PPV, the PPV in the solution reached the detection limit by irradiation with Fib concentration 3.6 mg / ml (E 280 : 5.4, extinction coefficient (E 1% 280 : 15-16)) and 192 mJ / cm 2 . It was shown to be inactivated and above the critical point (Fig. 9). From this example, although it is an example, in the case of a solution containing Fib as a target protein, examples of optimal virus inactivation / removal conditions include virus removal membrane treatment with a pore size of 20 nm and Fib absorbance A280 = 10. Below, it was shown that UVC irradiation was 192 mJ / cm 2 , or virus removal membrane treatment with a pore size of less than 33 nm, Fib absorbance A280 = 10 or less, and UVC irradiation of 192 mJ / cm 2 .
実施例3:Thr共存下のウイルスに対するUVC照射による不活化の検討
 Thr(安定化剤として0.34%塩化ナトリウム、0.23%クエン酸ナトリウム、0.27%塩化カルシウムを含む)濃度が2.48 mg/ml(E280: 5.3、E1% 280:21.4)の溶液を用いて、UVC照射によるThr分子への影響を評価した。本実験において、UVCエネルギー量はUVC-254(株式会社カスタム製)を用いて測定したが、当該測定器はUVR-300(トプコンテクノハウス社製)より約1/3低い値を示した(表2)。従って、本実験ではUVR-300(トプコンテクノハウス社製)での測定値になるように、実測値を3倍した補正値を用いた。
Example 3: Examination of inactivation of virus in coexistence with Thr by UVC irradiation Thr (containing 0.34% sodium chloride, 0.23% sodium citrate, 0.27% calcium chloride as stabilizers) concentration is 2.48 mg / ml (E 280 ) : 5.3, E 1% 280 : 21.4) was used to evaluate the effect of UVC irradiation on Thr molecules. In this experiment, the amount of UVC energy was measured using UVC-254 (manufactured by Custom Co., Ltd.), and the measuring instrument showed a value about 1/3 lower than that of UVR-300 (manufactured by Topcon Techno House Co., Ltd.) (Table). 2). Therefore, in this experiment, a correction value obtained by multiplying the measured value by 3 was used so as to be the measured value with UVR-300 (manufactured by Topcon Techno House Co., Ltd.).
 Thrは凝固活性を持つタンパク質であるので、凝固活性と重合体形成について評価した。凝固活性は照射量に応じて低下し192 mJ/cm2で、ほぼ90%まで低下した。重合体も照射量に応じて増加し、192 mJ/cm2で3.8%まで増加した(図10)。次に、種々の濃度に希釈したFib溶液にB19又はPPVを添加し、UVC照射量を変化させて照射し、ウイルスの感染性の変化(不活化の程度)を実施例1と同様に評価した。使用したウイルスの性状は表1に示した通りである。 Since Thr is a protein with coagulation activity, the coagulation activity and polymer formation were evaluated. The coagulation activity decreased with the irradiation dose at 192 mJ / cm 2 , which decreased to almost 90%. The polymer also increased with irradiation dose and increased to 3.8% at 192 mJ / cm 2 (Fig. 10). Next, B19 or PPV was added to the Fib solution diluted to various concentrations, and irradiation was performed at different UVC irradiation doses, and the change in virus infectivity (degree of inactivation) was evaluated in the same manner as in Example 1. .. The properties of the virus used are as shown in Table 1.
 B19及びPPVは近似した不活化曲線を描いた。Thr濃度が4.67 mg/ml(E280: 10、E1% 280:21.4)の溶液中のB19ウイルスは、192 mJ/cm2の照射で検出限界まで不活化された(LRV: >5.00)。また、PPVに関して、検出限界以下ではないがLRV: 4.00を達成する条件は、96 mJ/cm2の照射量であった。UVC照射によってこれらのウイルスは不活化されるものの、Thrの共存によってウイルスは安定化され、不活化に要する照射量は増加するが、Thr濃度が4.67 mg/ml(E280: 10、E1% 280:21.4)以下の濃度であれば、192 mJ/cm2、Thr濃度が2.34 mg/ml(E280: 5、E1% 280:21.4)であれば96 mJ/cm2で臨界点を超えることが示された(図11及び12)。本実施例から、一例ではあるが、Thrを目的タンパク質として含む溶液の場合、至適なウイルス不活化・除去条件の例として、20nmの孔径を有するウイルス除去膜処理、Thr濃度が4.67 mg/ml(E280: 10、E1% 280:21.4)以下、192 mJ/cm2(又は96 mJ/cm2)のUVC照射、または33nm未満の孔径を有するウイルス除去膜処理、Thr濃度が4.67 mg/ml(E280: 10、E1% 280:21.4)以下、192 mJ/cm2(又は96 mJ/cm2)のUVC照射であることが示された。 B19 and PPV drew an approximate inactivated curve. B19 virus in a solution with a Thr concentration of 4.67 mg / ml (E 280 : 10, E 1% 280 : 21.4) was inactivated to the detection limit by irradiation at 192 mJ / cm 2 (LRV:> 5.00). Regarding PPV, the condition for achieving LRV: 4.00, although not below the detection limit, was an irradiation dose of 96 mJ / cm 2 . Although UVC irradiation inactivates these viruses, the coexistence of Thr stabilizes the virus and increases the amount of irradiation required for inactivation, but the Thr concentration is 4.67 mg / ml (E 280 : 10, E 1%). If the concentration is 280 : 21.4) or less, it exceeds the critical point at 192 mJ / cm 2 , and if the Thr concentration is 2.34 mg / ml (E 280 : 5, E 1% 280 : 21.4), it exceeds the critical point at 96 mJ / cm 2 . It was shown (Figs. 11 and 12). From this example, although it is an example, in the case of a solution containing Thr as a target protein, as an example of optimal virus inactivation / removal conditions, a virus removal membrane treatment having a pore size of 20 nm and a Thr concentration of 4.67 mg / ml (E 280 : 10, E 1% 280 : 21.4) or less, UVC irradiation of 192 mJ / cm 2 (or 96 mJ / cm 2 ), or virus removal membrane treatment with pore size less than 33 nm, Thr concentration 4.67 mg / It was shown that the UVC irradiation was 192 mJ / cm 2 (or 96 mJ / cm 2 ) or less under ml (E 280 : 10, E 1% 280 : 21.4).
実施例4:Fib、Thr、Alb共存下のウイルスに対するガンマ線照射による不活化の検討
 Fibとして26.65 mg/ml(凍結乾燥後は53.3 mg/vial、安定化剤・賦形剤としてクエン酸ナトリウムとL-アルギン酸塩酸塩を含む)、Thrとして3.5 mg/ml(凍結乾燥後は7.0 mg/vial、安定化剤・賦形剤としてD-マンニトール、クエン酸ナトリウム、L-アルギン酸塩酸塩を含む)、Albとして10 mg/ml(凍結乾燥後は20 mg/vial、安定化剤・賦形剤としてa)クエン酸ナトリウム、塩化ナトリウム、b)D-マンニトールを含む)溶液をそれぞれ凍結乾燥し、ガンマ線照射による各タンパク質に対する影響を評価した。
Example 4: Examination of inactivation by gamma beam irradiation for viruses in the coexistence of Fib, Thr, and Alb 26.65 mg / ml as Fib (53.3 mg / vial after freeze-drying, sodium citrate and L as stabilizers / excipients -Contains alginate), 3.5 mg / ml as Thr (7.0 mg / vial after freeze-drying, contains D-mannitol, sodium citrate, L-arginate as stabilizers / excipients), Alb As a 10 mg / ml (20 mg / vial after freeze-drying, containing a) sodium citrate, sodium chloride, b) D-mannitol as stabilizers / excipients), freeze-dry each solution and irradiate with gamma rays. The effect on each protein was evaluated.
 ガンマ線照射によるこれらのタンパク質の分解物形成の程度をSEC(HPLC)解析によるPeak area比で評価した。Fib重合体は25 kGyの照射で非照射に比べて20%増加した。Thr重合体は50 kGyの照射でも大きな変化は示さなかった。アルブミンは50kGyの照射で、10~15%ほど増加した(図13-15)。次に、B19を添加した後に凍結乾燥したサンプルについて、ガンマ線量を変化させて照射し、ウイルスの感染性の変化(不活化の程度)を実施例1と同様に評価した。使用したウイルスの性状は、表1に示した通りである。 The degree of decomposition product formation of these proteins by gamma-ray irradiation was evaluated by the Peak area ratio by SEC (HPLC) analysis. The Fib polymer increased by 20% with 25 kGy irradiation compared with non-irradiation. The Thr polymer did not show a significant change even after irradiation with 50 kGy. Albumin increased by 10-15% after irradiation with 50 kGy (Fig. 13-15). Next, the sample freeze-dried after adding B19 was irradiated with different gamma doses, and the change in virus infectivity (degree of inactivation) was evaluated in the same manner as in Example 1. The properties of the virus used are as shown in Table 1.
 アルブミン共存下のB19は25 kGy照射でそれぞれ検出限界以下(LRV:>4.4, >4.2)まで不活化された。Thr共存下では50 kGy照射で検出限界以下(LRV: >3.8)まで不活化された。また、Fib共存下では25 kGy照射でLRV: 4.6まで不活化され、50 kGy照射では検出限界以下(LRV: >5.0)まで不活化された(図16)。本実施例からガンマ線照射によるB19の不活化の至適条件の一例として、アルブミン存在下では25 kGy以上、Thr存在下では50 kGy以上、Fib存在下では25 kGy以上であることが示された。 B19 in the presence of albumin was inactivated to below the detection limit (LRV:> 4.4,> 4.2) by irradiation with 25 kGy, respectively. In the coexistence of Thr, it was inactivated to below the detection limit (LRV:> 3.8) by irradiation with 50 kGy. In the coexistence of Fib, 25 kGy irradiation was inactivated to LRV: 4.6, and 50 kGy irradiation was inactivated to below the detection limit (LRV:> 5.0) (Fig. 16). From this example, it was shown that as an example of the optimum conditions for inactivating B19 by gamma-ray irradiation, it is 25 kGy or more in the presence of albumin, 50 kGy or more in the presence of Thr, and 25 kGy or more in the presence of Fib.
実施例5:UVC測定器の違いによる測定値の誤差の校正の検討
 UVC照射によるウイルス不活化を実施する場合、UVC照射量(エネルギー量)を正しく測定する必要がある。しかしながら、検討したところ、表2に示すように、同じ条件下でも検出器によって指示値が異なる場合があることが分かった。
Example 5: Examination of calibration of measurement value error due to difference in UVC measuring device When virus inactivation by UVC irradiation is performed, it is necessary to correctly measure UVC irradiation amount (energy amount). However, as a result of examination, as shown in Table 2, it was found that the indicated value may differ depending on the detector even under the same conditions.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2から、同じ検出器を使わない場合、UVC照射によるウイルス不活化条件の標準化が困難であることが理解される。上記標準化問題を解決すべく、UVC照射によって吸光度が変化することが知られている1% NaIを用いて、UVC照射量を標準化することを試みた。図17に示すようにNaIを用い、検量線法を採用することで、所望する標準化が達成できた。 From Table 2 above, it is understood that it is difficult to standardize virus inactivation conditions by UVC irradiation unless the same detector is used. In order to solve the above standardization problem, we tried to standardize the UVC irradiation dose using 1% NaI, which is known to change the absorbance by UVC irradiation. By using NaI and adopting the calibration curve method as shown in FIG. 17, the desired standardization could be achieved.
 本発明は、放射線照射処理によるウイルス不活化と、ウイルス除去膜処理によるウイルス除去又はSD処理によるウイルス不活化とを一体として、それらの特徴を相互補完的に条件を好適化させているため、タンパク質溶液中のウイルス不活化・除去、及び、ウイルスが不活化・除去されたタンパク質溶液の製造に有用である。 In the present invention, virus inactivation by irradiation treatment and virus removal by virus removal membrane treatment or virus inactivation by SD treatment are integrated, and their characteristics are complementarily optimized for the conditions. It is useful for inactivating / removing the virus in the solution and for producing a protein solution in which the virus has been inactivated / removed.
 本出願は日本で出願された特願2020-175610を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2020-175610, the contents of which are all included in the present specification.

Claims (13)

  1.  タンパク質溶液中のウイルスを除去する方法であって、以下:
    (a)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対する除去係数(LRV)が1.00以上になるように処理する工程、及び
    (b1)前記処理されたタンパク質溶液を、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でウイルスを除去する工程、又は
    (b2)前記処理されたタンパク質溶液を、有機溶媒及び界面活性剤の混合液(SD混合液)と接触させ、前記タンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるように有機溶媒・界面活性剤処理(SD処理)によりウイルスを不活化する工程
    を含む、方法。
    A method for removing viruses in protein solutions, such as:
    (A) The step of irradiating the protein solution with radiation so that the removal coefficient (LRV) for the virus having a virus particle diameter of less than 33 nm in the protein solution is 1.00 or more, and (b1) the treatment. The step of removing the virus from the protein solution with a virus removing membrane having an LRV of 4.00 or more for Bacterophage PP7, or (b2) the treated protein solution is a mixture of an organic solvent and a surfactant (SD mixture). A method comprising a step of inactivating the virus by an organic solvent / surfactant treatment (SD treatment) so that the LRV against the enveloped virus in the protein solution is 2.00 or more.
  2.  (a)が、タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対する除去係数(LRV)が1.00以上になるように処理する工程である、請求項1の方法。 (A) is the step of irradiating the protein solution with radiation so that the removal coefficient (LRV) for the virus having a virus particle diameter of 30 nm or less in the protein solution is 1.00 or more. Method.
  3.  前記放射線が紫外線又はγ線である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the radiation is ultraviolet rays or γ-rays.
  4.  前記放射線が紫外線である、請求項3に記載の方法。 The method according to claim 3, wherein the radiation is ultraviolet rays.
  5.  前記紫外線が32 mJ/cm2~256 mJ/cm2の範囲で照射される、請求項4に記載の方法。 The method according to claim 4, wherein the ultraviolet rays are irradiated in the range of 32 mJ / cm 2 to 256 mJ / cm 2 .
  6.  前記放射線がγ線である、請求項3に記載の方法。 The method according to claim 3, wherein the radiation is γ-rays.
  7.  前記γ線が5 kGy~50 kGyの範囲で照射される、請求項6に記載の方法。 The method according to claim 6, wherein the γ-rays are irradiated in the range of 5 kGy to 50 kGy.
  8.  バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜が、孔径33 nm未満のウイルス除去膜である、請求項1~7の何れか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the virus removing membrane having an LRV of 4.00 or more for bacteriophage PP7 is a virus removing membrane having a pore size of less than 33 nm.
  9.  前記ウイルス除去膜が、孔径13 nm以上33 nm未満のウイルス除去膜である、請求項8に記載の方法。 The method according to claim 8, wherein the virus removing membrane is a virus removing membrane having a pore size of 13 nm or more and less than 33 nm.
  10.  前記ウイルス除去膜が、孔径15 nm以上20 nm未満のウイルス除去膜である、請求項9に記載の方法。 The method according to claim 9, wherein the virus removing membrane is a virus removing membrane having a pore size of 15 nm or more and less than 20 nm.
  11.  前記ウイルス除去膜が、孔径17~21 nmのウイルス除去膜である、請求項9に記載の方法。 The method according to claim 9, wherein the virus removing membrane is a virus removing membrane having a pore size of 17 to 21 nm.
  12.  ウイルスが除去されたタンパク質溶液の製造方法であって、以下:
    (a)タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径33 nm未満のウイルスに対する除去係数(LRV)が1.00以上になるように処理する工程、及び
    (b1)前記処理されたタンパク質溶液を、バクテリオファージPP7に対するLRVが4.00以上であるウイルス除去膜でろ過する工程、又は
    (b2)前記処理されたタンパク質溶液を、SD混合液と接触させ、前記タンパク質溶液中のエンベロープウイルスに対するLRVが2.00以上になるようにSD処理する工程
    を含む、方法。
    A method for producing a protein solution from which a virus has been removed.
    (A) The step of irradiating the protein solution with radiation so that the removal coefficient (LRV) for the virus having a virus particle diameter of less than 33 nm in the protein solution is 1.00 or more, and (b1) the treatment. The step of filtering the protein solution with a virus-removing membrane having an LRV of 4.00 or higher for Bacterophage PP7, or (b2) contacting the treated protein solution with the SD mixture and LRV against the enveloped virus in the protein solution. A method that includes a step of SD processing so that is 2.00 or higher.
  13.  (a)が、タンパク質溶液に放射線を照射して、前記タンパク質溶液中のウイルス粒子径30 nm以下のウイルスに対する除去係数(LRV)が1.00以上になるように処理する工程である、請求項12の方法。 (A) is the step of irradiating the protein solution with radiation so that the removal coefficient (LRV) for the virus having a virus particle diameter of 30 nm or less in the protein solution is 1.00 or more. Method.
PCT/JP2021/038339 2020-10-19 2021-10-18 Method for removing viruses in protein solution WO2022085606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022557504A JPWO2022085606A1 (en) 2020-10-19 2021-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020175610 2020-10-19
JP2020-175610 2020-10-19

Publications (2)

Publication Number Publication Date
WO2022085606A1 true WO2022085606A1 (en) 2022-04-28
WO2022085606A9 WO2022085606A9 (en) 2023-03-23

Family

ID=81290474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038339 WO2022085606A1 (en) 2020-10-19 2021-10-18 Method for removing viruses in protein solution

Country Status (2)

Country Link
JP (1) JPWO2022085606A1 (en)
WO (1) WO2022085606A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030230A1 (en) * 1997-01-09 1998-07-16 Yoshitomi Pharmaceutical Industries, Ltd. Protein-containing compositions and process for producing the same
JP2005505552A (en) * 2001-08-31 2005-02-24 クリアラント・インコーポレイテッド Method for disinfecting a preparation containing albumin
JP2005517631A (en) * 2001-06-14 2005-06-16 クリアラント・インコーポレイテッド Method for disinfecting monoclonal immunoglobulin preparations
WO2018030437A1 (en) * 2016-08-09 2018-02-15 旭化成メディカル株式会社 Method for treating solution contaminated with porcine circoviruses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030230A1 (en) * 1997-01-09 1998-07-16 Yoshitomi Pharmaceutical Industries, Ltd. Protein-containing compositions and process for producing the same
JP2005517631A (en) * 2001-06-14 2005-06-16 クリアラント・インコーポレイテッド Method for disinfecting monoclonal immunoglobulin preparations
JP2005505552A (en) * 2001-08-31 2005-02-24 クリアラント・インコーポレイテッド Method for disinfecting a preparation containing albumin
WO2018030437A1 (en) * 2016-08-09 2018-02-15 旭化成メディカル株式会社 Method for treating solution contaminated with porcine circoviruses

Also Published As

Publication number Publication date
JPWO2022085606A1 (en) 2022-04-28
WO2022085606A9 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
KR101872747B1 (en) Process for preparing an immunoglobulin composition
EP2412817B1 (en) Method for removing viruses in high-concentration monoclonal antibody solution
TWI445714B (en) A method to produce a highly concentrated immunoglobulin preparation for subcutaneous use
JP5711369B2 (en) Method for producing protein preparation
KR100632312B1 (en) Intravenous Intravenous Immunoglobulin Formulations Store at Room Temperature
Hart et al. Inactivation of viruses during ultraviolet light treatment of human intravenous immunoglobulin and albumin
KR20060055410A (en) Optimal placement of a robust solvent/detergent process post viral ultrafiltration of an immune gamma globulin
Hickerson et al. Type I interferon underlies severe disease associated with Junin virus infection in mice
JP2506370B2 (en) Inactivation of vegetative filterable pathogens
WO2022085606A1 (en) Method for removing viruses in protein solution
JP3024073B2 (en) How to inactivate viruses in proteins
EP0900089A1 (en) Biological material free of viral and molecular pathogens and a process for the production thereof
JPH04346934A (en) Liquid preparation of gamma-globulin
EP3498828B1 (en) Method for treating solution contaminated with porcine circoviruses
Roberts et al. Virus inactivation in albumin by a combination of alkali conditions and high temperature
JPH0825903B2 (en) γ-globulin-containing aqueous solution
JP2008094722A (en) Method for producing immunoglobulin preparation
JP7272557B2 (en) Virus inactivation method using ultraviolet irradiation
JPH11199511A (en) Room temperature-preservable formulation
Roberts Virus Safety of Cell‐derived Biological Products
KR20180033904A (en) Method for the preparation of immunoglobulins
JP2011184299A (en) Method for producing preparation containing monoclonal antibody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882747

Country of ref document: EP

Kind code of ref document: A1