WO2022085468A1 - Analysis system, processing device, analysis method, and program - Google Patents

Analysis system, processing device, analysis method, and program Download PDF

Info

Publication number
WO2022085468A1
WO2022085468A1 PCT/JP2021/037150 JP2021037150W WO2022085468A1 WO 2022085468 A1 WO2022085468 A1 WO 2022085468A1 JP 2021037150 W JP2021037150 W JP 2021037150W WO 2022085468 A1 WO2022085468 A1 WO 2022085468A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
analysis
analyzer
clock
data
Prior art date
Application number
PCT/JP2021/037150
Other languages
French (fr)
Japanese (ja)
Inventor
佳津紀 山口
康弘 米谷
春造 山下
信隆 木原
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Publication of WO2022085468A1 publication Critical patent/WO2022085468A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the present invention relates to an analysis system for analyzing particulate matter, a processing device for executing a predetermined process for the analysis device of the analysis system, and a method for analyzing particulate matter by the analysis system.
  • each device has its own clock, and the timing for executing various processes is determined based on the time output from the clock. If each device has its own clock, time lag may occur between multiple devices included in the analysis system.
  • a process of acquiring data obtained at a predetermined time in one device is executed by the other device and a time difference occurs between these devices, for example, data at a certain time is obtained in the other device.
  • the device may not be available.
  • a particular device eg, an analyzer
  • An object of the present invention is to minimize the effect that may occur due to the possibility that the time may be different between a plurality of devices included in the analysis system and that the time output in a specific device may not be changed. To be.
  • the analysis system includes an analysis device and a processing device.
  • the analyzer performs analysis on particulate matter according to the time output from the first clock.
  • the processing device has a second clock independent of the first clock, and the deviation obtained from the comparison result between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock.
  • a predetermined process related to the analyzer is executed based on the above.
  • the processing device executes predetermined processing related to the analyzer based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock, the analysis system is tentatively used. Even if there is a possibility that the time output in the analyzer cannot be changed due to a time lag between the analyzer and the processing device included in the above, the effect on the execution of the predetermined processing in the processing device. May be minimized.
  • the processing apparatus may execute the collection of analytical data regarding particulate matter acquired by the analyzer at predetermined time intervals as a predetermined processing. As a result, even if there is a possibility that the time is different between the analyzer and the processing device and the time output by the analyzer cannot be changed, the effect of this time difference is minimized for analysis. Since data can be collected, it may be possible to reduce the possibility of data loss if analysis data cannot be obtained.
  • the analyzer may add time-related information to the analysis data and output it to the processing appliance. This reduces the need for the processing device to directly check the time on the first clock.
  • the processing device determines the time difference between the time used by the analyzer and the time output from the second clock based on the time-related information added to the analysis data and the time-related information output from the second clock. It may be calculated. As a result, there is a possibility that the time difference that may occur between the time used in the analyzer and the time of the second clock can be concretely grasped.
  • the processing device may calculate the scheduled output time at which the analyzer outputs the analysis data.
  • the processing device may collect analysis data from the analyzer at the timing when the time output from the second clock becomes the scheduled output time. As a result, even if the time is different between the analyzer and the processing device and the time output by the analyzer may not be changed, the actual timing at which the analysis data is output is more accurate. There is a possibility that it can be grasped.
  • the analysis system may further include a server.
  • the server associates the analysis data collected by the processing device with the time lag calculated by the processing device and registers them in the database. As a result, even if the time stamp acquired together with the analysis result is different for each analyzer, the acquired analysis result may be recognized as the analysis result at the same time.
  • the processing device may determine the timing to execute a predetermined process based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. As a result, even if the time is different between the analyzer included in the analysis system and the processing device and the time output by the analysis device may not be changed, the predetermined processing in the processing device may not be possible. It may be possible to minimize the impact on the execution of.
  • the analyzer may be capable of analyzing particulate matter at a plurality of predetermined analysis points.
  • the analytical data regarding the particulate matter is classified for each analysis point from which the analytical data was acquired. This may facilitate the management of analysis data acquired at multiple analysis points.
  • the analysis system may further include a position information receiver that acquires position information indicating the position of the analyzer.
  • a position information receiver that acquires position information indicating the position of the analyzer.
  • the analysis data is classified as unclassified and the analysis point from which the data was acquired is unknown and retained. May be done. This may prevent valuable analytical data from being lost as unclassified.
  • the analysis data classified as unclassified may be reclassified as analysis data acquired at any of a plurality of analysis points. This has the potential to rescue valuable analytical data as classified data.
  • the processing apparatus is a processing apparatus that executes a predetermined process relating to the analyzer.
  • the analyzer performs analysis on particulate matter according to the time output from the first clock.
  • the processing device has a second clock independent of the first clock, and analyzes based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. Performs certain processes related to the device.
  • the predetermined processing in the processing device may not be possible. It may be possible to minimize the impact on the execution of.
  • the analysis method has an analyzer having a first clock to perform analysis on particulate matter, and a second clock independent of the first clock to perform predetermined processing on the analyzer. It is an analysis method in an analysis system including a processing device for executing the above.
  • the analysis method comprises the following steps. ⁇ A step in which the analyzer performs an analysis on particulate matter according to the time output from the first clock. ⁇ A step in which the processing device executes a predetermined process based on the difference between the time-related information related to the time used in the analyzer and the time-related information related to the time output from the second clock.
  • the program according to still another aspect of the present invention includes an analyzer that has a first clock and performs analysis on particulate matter according to the time output from the first clock, and a second clock that is independent of the first clock. It is a program that causes a processing device to execute an analysis method in an analysis system including a processing device that executes a predetermined process related to the analysis device.
  • This analysis method comprises the following steps: ⁇ A step to execute a predetermined process based on the difference between the time-related information used in the analyzer and the time-related information output from the second clock.
  • the predetermined time in the processing device is predetermined. It may be possible to minimize the impact on the execution of processing.
  • FIG. 3 is a diagram showing an example of a method of inputting a definition of a measurement point in particular in the process peculiar to the present invention shown in FIG.
  • FIG. 3 is a diagram showing a process of classifying analysis results for each measurement point in the process peculiar to the present invention shown in FIG. FIG.
  • FIG. 6 is a diagram showing an example of a user interface screen used when, for example, manually processing, in a process of reclassifying unclassified analysis results, which is a process peculiar to the present invention shown in FIG. The figure which showed the example of the environmental measurement monitoring screen of a multipoint realized by this invention.
  • FIG. 1 shows a typical configuration example of the environmental measurement system of the present invention.
  • the environment measurement system of the present invention is typically composed of a mobile environment measurement system (MST1), a wide area communication network (WAN1), a server (SV1), and a user terminal (UPC1).
  • MST1 mobile environment measurement system
  • WAN1 wide area communication network
  • SV1 server
  • UPC1 user terminal
  • the mobile environment measurement system (MST1) includes a plurality of analyzers (AN1 to AN3), data acquisition devices (LG1), position information receivers (GPS1), and them mounted on the mobile means (VE1). It is composed of a communication network (NW1) connecting the devices of.
  • NW1 communication network
  • the plurality of analyzers AN1 to AN3 of the mobile environment measurement system MST1, the data collection device LG1, and the position information receiver GPS1 form one closed network by the communication network NW1, and the mobile environment measurement is performed.
  • the system MST1, the server SV1, and the user terminal UPC1 are connected to the wide area communication network WAN1, but the present invention is not limited to this.
  • a plurality of analyzers AN1 to AN3 and a location information receiver GPS1 are configured by a closed network, and the closed network (a device constituting the) and a data collection device LG1 .
  • the server SV1 and the user terminal UPC1 may be connected to the wide area communication network WAN1.
  • the mobile environment measurement system MST1, the server SV1, and the user terminal UPC1 may all form one closed network. Further, the mobile environment measurement system MST1 and the server SV1 may form one closed network, and the closed network and the user terminal UPC1 may be connected to the wide area communication network WAN1. Further, the mobile environment measurement system MST1 and the user terminal UPC1 may form one closed network, and the closed network and the server SV1 may be connected to the wide area communication network WAN1. Which device is included in which closed network and the number of closed networks can be arbitrarily changed depending on the system configuration.
  • the mobile environment measurement system MST1 is periodically moved to a preset measurement point (MP1 to MP7) in the measurement target area (MF1) to perform environment measurement based on a process specific to the present invention described later.
  • the measurement results are aggregated in the server (SV1) via the wide area communication network (WAN1).
  • the server (SV1) stores the analysis results collected in this way in the database in the SV1 and, in response to a request from the user terminal (UPC1), tells the user the mass concentration of pollutants in the air, etc.
  • the time change of is displayed in a graph or the like.
  • FIG. 2 is a diagram showing the configuration of the first analyzer.
  • the analyzer AN1 includes a collection filter 11, a collection unit 13, a first analyzer SAN1, a second analyzer SAN2, and a control unit 19.
  • the collection filter 11 is formed of, for example, a porous fluororesin-based material having pores capable of collecting particulate matter PM on a reinforcing layer formed of a non-woven fabric of a polymer material (polyethylene or the like). It is a tape-shaped member formed by laminating a collection layer (sometimes called a collection area).
  • Particulate matter PM is used, for example, for combustion processes in factories, brakes for various transportation devices (automobiles, ships, etc.), tires, internal combustion engines, steam engines, exhaust gas purification devices and motors, natural disasters such as volcanic eruptions, and mine development. It is a particulate matter on the order of micrometer generated by the engine.
  • the collection filter 11 for example, another filter such as a one-layer glass filter and a one-layer fluororesin-based material filter can be used.
  • the collection filter 11 winds the collection filter 11 sent out from the delivery reel 11a by the rotation of the take-up reel 11b, so that the collection filter 11 is wound in the length direction (direction indicated by the thick arrow in FIG. 2). You can move.
  • the collection unit 13 is provided so as to correspond to the first position P1 in the length direction of the collection filter 11.
  • the collection unit 13 sprays, for example, the atmosphere A sucked by the suction force of the suction port 35 connected to the suction pump 31 from the discharge port 33 onto the collection area existing at the first position P1 of the collection filter 11. Then, the particulate matter PM contained in the atmosphere A is collected in the collection area.
  • the first analyzer SAN1 measures the amount of particulate matter PM collected by the collection filter 11.
  • the first analyzer SAN1 has a ⁇ -ray source 51 and a ⁇ -ray detector 53.
  • the ⁇ -ray source 51 is provided at the discharge port 33 of the collection unit 13, and emits ⁇ -rays to the collection region of the collection filter 11 arranged at the first position P1.
  • the ⁇ -radioactive source 51 is, for example, a ⁇ -ray source using carbon-14 ( 14 C).
  • the ⁇ -ray detector 53 is provided so as to face the ⁇ -ray source 51 at the suction port 35 of the collection unit 13, and the ⁇ -rays transmitted through the particulate matter PM collected in the collection region of the first position P1. Measure the strength.
  • the ⁇ -ray detector 53 is, for example, a photomultiplier tube equipped with a scintillator.
  • the collected amount (mass concentration) of the particulate matter PM is calculated based on the intensity of ⁇ rays measured by the ⁇ ray detector 53.
  • the second analyzer SAN2 is provided so as to correspond to the second position P2 in the length direction of the collection filter 11 and measures the data regarding the fluorescent X-rays generated from the particulate matter PM present at the second position P2. ..
  • the second analyzer SAN2 has an X-ray source 71 and a detector 73.
  • the X-ray source 71 irradiates the particulate matter PM existing at the second position P2 with X-rays.
  • the X-ray source 71 is a device that generates X-rays by irradiating a metal such as palladium with an electron beam.
  • the detector 73 detects fluorescent X-rays generated from the particulate matter PM.
  • the detector 73 is, for example, a silicon semiconductor detector or a silicon drift detector.
  • the control unit 19 controls each component of the analyzer AN1. Specifically, the control unit 19 acquires the mass concentration of the particulate matter PM by using the first analyzer SAN1 provided at the first position P1, and the second analysis provided at the second position P2. In order to acquire the elemental analysis result using the vessel SAN2, the take-up reel 11b is controlled to move the collection filter 11. Specifically, every time the control unit 19 finishes collecting the particulate matter PM by the collecting unit 13 and completes the measurement of the collected amount, the collecting region (particulate matter PM) of the collecting filter 11 is set. The collected region) is moved from the first position P1 provided with the first analyzer SAN1 toward the second position P2 provided with the second analyzer SAN2.
  • control unit 19 can adjust the amount of movement when moving the collection area of the collection filter 11 from the first position P1 to the second position P2. For example, when the distance from the first position P1 to the second position P2 is set to DIS, the amount of movement of the collection area per time can be adjusted to DIS / n (n: positive integer). That is, in order to move from the first position P1 to the second position P2, it can be set that n movements are required by the distance of DIS / n.
  • the particulate matter PM can be collected at narrow intervals on the collection filter 11 (that is, capture). Since the interval between the collecting regions can be narrowed), waste of the collecting filter 11 can be eliminated.
  • the "n" value is set to an integer larger than 1, between the timing when the measurement result of the collected amount is obtained and the timing when the elemental analysis result is obtained for the particulate matter PM in the same collection region. There is a time delay.
  • the control unit 19 acquires the measurement result of the collection amount of the particulate matter PM in a certain collection region. After about 4 hours, the elemental analysis results will be obtained for the particulate matter PM in the same collection area.
  • the control unit 19 acquires the ⁇ -ray intensity measured by the first analyzer SAN1 at predetermined times output by the internal clock ACLK1 and obtains the mass concentration of the particulate matter PM based on the ⁇ -ray intensity. Is calculated and output as an analysis result. Further, the control unit 19 acquires fluorescent X-ray data (for example, fluorescent X-ray spectrum) obtained by the second analyzer SAN2 at each predetermined time, and the particles are based on the fluorescent X-ray data. The elements contained in the state substance PM and their contents are calculated and output as analysis results.
  • fluorescent X-ray data for example, fluorescent X-ray spectrum
  • FIG. 3 illustrates the internal functional block configurations of the analyzers AN1 to AN3, the data acquisition devices LG1, the server SV1, and the user terminal UPC1 that constitute the mobile environment measurement system MST1 of the present invention of FIG. It is a figure.
  • the analyzer AN1 includes a communication network interface (ANIF1), a user interface (AUIF1), an internal clock (ACLK1) (an example of a first clock), and a first analysis related to the processing peculiar to the present invention. It is composed of an instrument (SAN1), a second analyzer (SAN2), and databases (SDA1 and SDA2) for storing the analysis results.
  • SAN1 instrument
  • SAN2 second analyzer
  • SDA1 and SDA2 databases
  • the data collection device LG1 includes a communication network interface (LNIF1), a user interface (LUIF1), and an internal clock (LCLK1) (second clock) related to the processing peculiar to the present invention.
  • LNIF1 communication network interface
  • LIF1 user interface
  • LCLK1 internal clock
  • LP1 program code
  • LCPUMEM1 processor and memory
  • GPS1 position information receiver
  • LDB1 database
  • LDB2 database
  • the function of the data acquisition device LG1 described in the first embodiment may be incorporated into the server SV1 so that the analysis device of the mobile environment measurement system MST1 and the server SV1 can directly communicate with each other.
  • the server SV1 is an example of the processing device.
  • the server SV1 includes a communication network interface (SNIF1), a user interface (SUIF1), an internal clock (SCLK1), a program code (SP1) that realizes processing peculiar to the present invention, a processor and a memory (SP1) that execute the program code.
  • SCPUMEM1 a database (SDB1 ⁇ ) that classifies and stores analysis results for each of the above-mentioned measurement points according to the position information from the data collection device LG1, and further, the position information from the data collection device LG1 is described later for various reasons. It is composed of a database (SDBX) peculiar to the present invention that stores analysis results that could not be classified into any measurement point when it was out of the set range. Further, as will be described later, a measurement point definition database (MA1) peculiar to the present invention, which defines the position information of the measurement points and the permissible range thereof, is also stored in the server SV1.
  • SDBX database
  • MA1 measurement point definition database
  • the user terminal UPC1 is derived from a communication network interface (UPNIF1), a user interface (UPUIF1), an internal clock (UPCLK1), a program code (UP1) on the user terminal, and a processor and a memory (UPCPUMEM1) that execute the program code. It is composed.
  • UNIF1 communication network interface
  • UUIF1 user interface
  • UPCLK1 internal clock
  • UPCPUMEM1 program code on the user terminal
  • UPCPUMEM1 processor and a memory
  • These analyzer AN1, data acquisition device LG1, server SV1, and user terminal UPC1 can communicate with each other via the wide area communication network WAN1.
  • the wide area communication network WAN1 and the communication network NW1 in the data collection device LG1 are distinguished, but all the devices of the analyzer AN1 to the user terminal UPC1 are in the same communication network NW1. It does not matter if it exists in. Similarly, it is possible to configure all devices to be connected to the wide area communication network WAN1. Since the details of the wide area communication network WAN1 and the communication network NW1 are known to those in the same industry, detailed description thereof will be omitted here.
  • the analyzers AN1 to AN3, the data collection device LG1, and the server SV1 each have an independent clock inside, but each internal clock is a method peculiar to the present invention described later.
  • the feature is that the time matching of the analysis results from a plurality of analyzers is maintained by the server SV1 even if the time is not forcibly synchronized by NTP or the like.
  • the results from the analyzer are automatically classified for each measurement point according to the definition. Furthermore, even if the location information receiver GPS1 does not output normal location information due to some factors such as the surrounding environment, by providing a mechanism to collect the analysis results later, a system that can utilize valuable measurement results without waste. Is characterized in that it is feasible.
  • the processing peculiar to the present invention implemented in order to realize these features will be described with reference to FIG.
  • the time output by the internal clock ACLK1 of the analyzer AN1 the time output by the internal clock LCLK1 of the data collection device LG1, and the time output by the internal clock SCLK1 of the server SV1.
  • the time of the internal clock of the analyzer AN2 may be synchronized with the time of the internal clock of the analyzer AN3.
  • This time synchronization can be performed, for example, manually using the user interface of each device (for example, the graphical user interface INF3 shown in FIG. 9 described later), and each internal clock can be set as an accurate reference clock. It can be executed by using NTP (Network Time Protocol) that synchronizes with.
  • NTP Network Time Protocol
  • the analyzer AN1 first, various processes necessary for starting the analysis are executed by the subroutine or step AP10. Since the details of the start processing have already been described in the description of FIG. 2, they will be omitted here.
  • the measurement of the particulate matter PM is completed by the first analyzer SAN1 and waits for the analysis result to be finalized.
  • the internal clock ACLK1 is accessed and the time when the analysis is completed is acquired as a time stamp.
  • a time stamp is added to the analysis result and output to the data acquisition device LG1 (SDA1).
  • the time stamp is time-related information including information related to the time used in the analyzer AN1, and is the time and time information determined based on a common agreement with the server SV1.
  • a time that serves as a delimiter such as the start / end of various processes executed by the analyzer AN1 can be used.
  • the first analyzer SAN1 and the second analyzer SAN2 have their respective measurement start times or measurement end times (for example, the acquisition of ⁇ -ray intensity by the first analyzer SAN1).
  • the time when the calculation is completed, the time when the calculation of the analysis result is completed), etc. can be used.
  • the case of using the collection time and the measurement completion time will be described as an example.
  • the collection time, the measurement completion time alone, or the time information itself of the internal clocks of the first analyzer SAN1 and the second analyzer SAN2 can be used. Further, as described later, for the purpose of correcting the time accuracy when stored in the database of the server SV1, the time shift information detected by the data collection device LG1 may be added to the time stamp as additional information. not.
  • the time of the internal clock LCLK1 at the timing when the data acquisition device LG1 acquires the analysis result or the like can be added to obtain a new time stamp.
  • any time and time information may be used for the time stamp as long as there is an agreement common to the server SV1.
  • the case of the measurement completion time will be described as an example.
  • FIG. 4 is a process in which the analyzer AN1 also has the second analyzer SAN2.
  • the analyzer AN1 and the data acquisition device LG1 are interconnected by a communication network NW1 (typically Ethernet®) and have a common protocol (typically Modbus®) on the communication network NW1. ) Etc.), and the analysis results and time stamps stored in the databases SDA1 and SDA2 are read out to the data collection device LG1 at any time.
  • NW1 typically Ethernet®
  • Modbus® protocol
  • the communication network NW1 RC232C, RS485 and the like can be used in addition to Ethernet (registered trademark).
  • protocols other than Modbus® can be used. The details of these networks and protocols are known to the same operator, and detailed description thereof will be omitted here. Any interface or protocol may be used as long as it is a common interface or protocol.
  • the above time stamp is first read by the subroutine or step LP10 in the data acquisition device LG1. Further, in the subroutine or step LP11, from the difference between the internal clock LCLK1 of the data acquisition device LG1 itself and the measurement completion time stored in the acquired time stamp, the inside of the analyzer AN1 as seen from its own internal clock LCLK1. The relative deviation of the time of the clock ACLK1 is detected. The subroutine or step LP13 checks whether or not the detected time deviation value has changed, and if there is a change, the time deviation value for each analyzer held in the database LDB2 is updated.
  • the time interval for reading the time stamp of the subroutine or step LP10 and the time for loop execution of the subroutine or steps LP10 to LP13 become error factors.
  • the read interval of the subroutine or step KP10 can be set to about 1 second interval, and the time required to execute the loops LP10 to LP13 of the subroutine or step is on the order of several tens of milliseconds.
  • the time is sufficiently short compared to the typical measurement time required for the analyzers SAN1 and SAN2, which is 30 minutes to several hours, and the error is within a range where there is no problem in practical use. In this way, the data acquisition device LG1 detects the time lag of the analyzer AN1.
  • the detection of relative time lag is the detection of relative time lag. Therefore, as described above, when the time stamp is other than the collection time and the measurement completion time, the deviation may be calculated by a combination in which a relative time deviation can be detected. Various time information and combinations thereof are possible.
  • the time shift of the analyzer AN1 or the like is corrected by the subroutine or step LP12, and then the time when the analysis result is output (scheduled output time). Predict one example).
  • the analysis result is read by the next subroutine or step LP14. If there are a plurality of analysis results, the reading process is repeated until all the analysis results have been read.
  • the position information of the mobile environment measurement system MST1 itself is acquired from the position information receiver GPS1 connected to the data acquisition device LG1 via the communication network NW1 by the subroutine or step LP15.
  • the position information receiver GPS1 typically, a GPS (Global Positioning System) or the like can be used.
  • GPS Global Positioning System
  • other types can be used as long as the coordinate information of the so-called geodetic system represented by WGS84 (World Geodetic System) can be output.
  • the position information from the position information receiver GPS1 is written to the database LDB1.
  • identification information of the analyzer typically so-called ID information such as a serial number unique to each analyzer is also written.
  • the ID, analysis result, time stamp, and location information of the analysis device aggregated in the data collection device LG1 are read by the subroutine or step SP10 via the wide area communication network WAN1.
  • the subroutine or step SP11 automatically determines the measurement point and executes the analysis result classification process.
  • the content of the present process peculiar to the present invention will be described with reference to FIG. 5 in which the content of the subroutine or step SP11 is described in detail.
  • the position information received by the position information receiver GPS1 is taken out by the subroutine or step SP20, and the measurement point definition database MA1 is accessed to read the registered measurement point definition.
  • the definition input to the measurement point definition database MA1 is realized by the subroutine or step SP12.
  • the subroutine or step SP21 calculates the distance to each measurement point, and the subroutine or step SP22 determines whether or not the distance is within the allowable range defined for each measurement point. If it is within the permissible range, the data such as the analysis result is interpreted as the data obtained at the measurement point by the subroutine or step SP24, and is registered in the databases SDB1 to classified for each measurement point.
  • the time information is registered based on the information stored in the time stamp by the process peculiar to the present invention.
  • the subroutine or step SP23 determines whether the determination has been made at all the measurement points, and if the determination has been made, the data is not classified into any of the measurement points. It is stored in the measurement point unclassified database SDBX, which is a database peculiar to the invention. If there are still measurement points for which determination has not been completed, the measurement points to be determined are changed in the subroutine or step SP26, and the processing of the subroutine or step SP20 or less is repeated.
  • the position information output from the GPS receiver which is an example of the position information receiver GPS1
  • the position information output from the GPS receiver is constantly fluctuating within a certain error range, typically an error range of several meters.
  • the reason why the position information from the GPS receiver fluctuates is known to those in the same industry and will not be described in detail, but it is caused by changes in the surrounding environment, changes in the ionospheric conditions, and the like. Therefore, even if the measurement is performed at the same measurement points MP1 to MP7 each time, the position information output of the position information receiver GPS1 may always fluctuate by about several meters.
  • the transportation means VE1 is typically an automobile such as a truck, and even if it is said that the measurement is performed at the same point, the measurement point is actually measured at a place deviated by several meters. It is possible that it will end up.
  • the environmental measurement system which is the target of the present invention, there is almost no problem in practical use even if the measurement points differ by several meters. For the above reasons, if it is within a range of several meters, it is necessary to treat it as data at the same measurement point. For example, in the technology used in the navigation system installed in a car, it is assumed that the car basically moves on the road after comparing the map data and the reception position information and adding the speed information. Based on this, the fluctuating GPS position information is corrected.
  • the measurement target area MF1 is an area where map data is not prepared, such as in a factory. Therefore, it is difficult to realize the target mobile environment measurement system of the present invention by the above technique.
  • the measurement point definition database MA1 the subroutine or steps SP11 to SP12 are implemented, the allowable range is defined for each measurement point, and the subroutine or step SP11 defines the allowable range.
  • the allowable range is defined for each measurement point
  • the subroutine or step SP11 defines the allowable range.
  • the present invention is characterized in that by implementing the measurement point unclassified database SDBX and the unclassified result reclassification subroutine or step SP13, a means for relieving valuable measurement data later is provided.
  • GPS receivers may not be able to receive position information from GPS satellites well due to the influence of the surrounding environment in addition to the above-mentioned error fluctuations. be. Therefore, by implementing the measurement point unclassified database SDBX and the unclassified result reclassification subroutine or step SP13, the valuable analysis results measured over a long period of time become unclassified at the measurement points and are discarded. It is possible to avoid being killed.
  • FIG. 7 shows an implementation example of the unclassified result reclassification subroutine or step SP13 implemented for the purpose of such data relief.
  • This implementation example is an example of manually classifying unclassified data, and is an implementation example of the user interface (RUI1).
  • the user interface RUI1 the user selects the target mobile environment measurement station RST1.
  • the date and time for manual classification and the period RTR1 are set, and the measurement point (RMP1) to which the unclassified data for that period belongs is selected. In this way, it is characterized in that valuable data can be collected later.
  • the present invention is characterized in that when the analysis result is registered in the database, the measurement time information of the analyzer is taken out from the time stamp and the analysis result is registered in the database with the time information.
  • the collection time information and the measurement completion time of each analyzer are added as time stamps.
  • the collection time may be taken out as it is and stored as the time of the analysis result of the database.
  • the time difference detected by the data acquisition device LG1 is added to the time stamp, and when the time difference is stored in the database, the time difference of the analyzer AN1 is corrected by software processing (SP1). It is also possible to improve the time accuracy by using it to correct the time deviation.
  • the internal clock LCLK1 of the data collection device LG1, the internal clock SCLK1 of the server SV1, and the internal clock UCLK1 of the user terminal UPC1 it is possible to use time synchronization by general NTP. By using it together with NTP, it is possible to realize highly accurate time accuracy at the time stored in the database.
  • the server SV1 associates the analysis result acquired from the data collection device LG1 with the time deviation added to the time stamp to the database. You may register. Further, the server SV1 may register the time when the data collecting device LG1 collects the analysis result from the analysis device in the database in addition to the analysis result and the time difference. Further, the server SV1 may consider the time deviation associated with the analysis result and register the analysis result registered in association with the time deviation in the database as the analysis result acquired at the same time. As a result, even if the time stamp acquired together with the analysis result is different for each analyzer, the acquired analysis result can be recognized as the analysis result at the same time.
  • FIG. 8 shows an example of measurement results actually measured by the environmental measurement system realized by the present invention.
  • the graphical user interface INF3 shown in FIG. 8 has a graph display unit DIS1 that displays the time change of the analysis result as a graph, a type display unit DIS2 that displays the type of the analysis result, and a point display that displays the measurement point from which the analysis result has been acquired. It has a unit DIS3, an object display unit DIS4 for displaying the analysis target in the analysis result, and a display period display unit DIS5 for displaying the display period of the analysis result.
  • a clock built in an electronic device is realized by a semiconductor integrated circuit called RTC (Real Time Clock).
  • RTCs used in industrial PCs may have a deviation of several minutes in one month when used in a constant ambient temperature of 25 ° C.
  • the analysis result is output from the analyzer in units of 30 minutes, 1 hour, and 2 hours, but if there is a deviation of several minutes between the analyzer and the receiving side, in the worst case, in one hour.
  • There is an analysis result but there is a data loss such as no analysis result in the next hour. Therefore, even if the deviation is several minutes, it becomes a problem for the measurement system.
  • NTP is widely used in PCs, servers, smartphones, etc. via network communication.
  • NTP cannot be used in the environmental measurement system targeted by the present invention.
  • the device having the reference clock is used as the NTP server
  • the other PCs and smartphones are used as the NTP client
  • the internal clock on the client side is forcibly set to the clock on the NTP server side.
  • the analyzers that make up this measurement system the time information of the internal clock is used for control processing that requires precise internal processing, and as a result, changing the time during measurement adversely affects the measurement itself. There is a fear. Therefore, it is necessary to provide a method for detecting and correcting the time difference without using NTP.
  • the system according to the present invention described above solves the above-mentioned problems and automatically handles measurement data even if the time shift occurs in a plurality of analyzers without manually editing and organizing the measurement data. be able to. Further, it is possible to provide a method for realizing an environmental measurement system at a plurality of points that can be used for estimating the source of environmental pollutants without introducing a plurality of expensive analyzers.
  • an upper limit value and / or a lower limit value are set for the data included in the analysis result (for example, the content of each element), and a warning is notified when the upper limit value / lower limit value is exceeded. May be good.
  • the time stamp may include not only information on the time used in the analyzer AN1 and the data acquisition device LG1, but also information on the time used in the analyzers AN2 and AN3.
  • the mobile environment measurement system MST1 of the first embodiment includes three analysis devices AN1 to AN3, but more devices such as analysis devices may be included in the system. Even in this case, according to the processing method of the present invention, it is possible to detect the time lag for each analyzer and secure the time system of each analyzer.
  • the data collecting device LG1 When a difference of a predetermined time or more (for example, a difference of 1 minute or more) occurs between the time of the clock provided in the analyzer and the time of the clock provided in the data collecting device LG1, the data collecting device LG1 May notify the environment measurement system server SV1 of a warning that a difference of a predetermined time or more has occurred between the time of the clock provided in the analyzer and the time of the clock provided in the data collection device LG1.
  • This warning notification can be realized, for example, by sending a warning mail from the data collection device LG1 to the environment measurement system server SV.
  • the clock of the analyzer and / or the clock of the data collecting device LG1 is adjusted. can.
  • AN1, AN2, AN3 Analyzer GPS1: Position information receiver MST1: Mobile environment measurement system LG1: Data acquisition device NW1: Communication network VE1: MST1 moving means MP1 that connects an analyzer such as AN1 and LG1 in MST1 ⁇ MP7: Measurement point MF1: Measurement target area WAN1: Communication network SV1: Environmental measurement system server UPC1: User terminal 11: Collection filter 11a: Delivery reel 11b: Take-up reel 13: Collection unit 19: Control unit 31: Suction pump 33: Discharge port 35: Suction port 51: ⁇ radiation source 53: ⁇ -ray detector 71: X-ray source 73: Detector ANIF1: AN1 communication network interface AUIF1: AN1 user interface ACLK1: AN1 internal clock SAN1: AN1 built-in first analyzer SAN2: AN1 built-in first Database for temporarily storing analysis results and time stamps of analyzer SDA1: SAN1 of 2 SDA2: Database for temporarily storing
  • SV1 communication network interface SUIN1 SV1 user interface
  • SCLK1 SV1 internal clock
  • SCPUMEM1 Microprocessor that executes SV1 communication, database control, display processing, etc., and analysis results and time stamps collected from memory SDB1: LG1.
  • the database SDB2 LG1 that stores the data related only to the measurement point 1
  • the analysis result and time stamp collected from the database SDB3 LG1 that stores the data related only to the measurement point 2. Therefore, the database SP1: SV1 that stores the data related only to the measurement point 3 and stores the data that cannot be classified into any measurement by the analysis result and time stamp collected from LG1 performs the processing peculiar to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

This invention minimizes the influence of there being deviation in the times of day of a plurality of devices included in an analysis system and it being possible that the time of day output by a specific device will be unchangeable. This analysis system comprises an analysis device (AN1) and a data collection device (LG1). The analysis device (AN1) carries out analysis regarding particulate matter (PM) according to a time of day output from an internal clock (ACLK1). The data collection device (LG1) has an internal clock (LCLK1) that is independent from the internal clock (ACLK1), and determines the timing at which to collect analysis data from the analysis device (AN1) on the basis of a deviation obtained from the result of comparing a timestamp including information about the time of day used by the analysis device (AN1) and a timestamp relating to the time of day output from the internal clock (LCLK1).

Description

分析システム、処理装置、分析方法、及びプログラムAnalytical systems, processing equipment, analytical methods, and programs
 本発明は、粒子状物質の分析行う分析システム、分析システムの分析装置に対する所定の処理を実行する処理装置、分析システムによる粒子状物質の分析方法に関する。 The present invention relates to an analysis system for analyzing particulate matter, a processing device for executing a predetermined process for the analysis device of the analysis system, and a method for analyzing particulate matter by the analysis system.
 近年、大気中の粒子状物質(例えば、PM2.5)が大きな環境問題になっている。粒子状物質の発生を抑制するためには、粒子状物質の発生源を把握することが重要であり、それを目的として、粒子状物資の発生源を推定するための方法及び装置が開発されている。
 例えば、粒子状物質を分析する複数の分析装置を発生源の周囲に配置し、各分析装置にて取得された粒子状物質の分析データをデータベースサーバに送信する分析システムが知られている(例えば、特許文献1を参照)。
In recent years, particulate matter in the atmosphere (for example, PM2.5) has become a major environmental problem. In order to suppress the generation of particulate matter, it is important to understand the source of particulate matter, and for that purpose, methods and devices for estimating the source of particulate matter have been developed. There is.
For example, an analysis system is known in which a plurality of analyzers for analyzing particulate matter are arranged around a source and the analysis data of the particulate matter acquired by each analyzer is transmitted to a database server (for example,). , Patent Document 1).
国際公開第2018/117146号International Publication No. 2018/11146
 複数の装置により構成される分析システムにおいて、各装置は、独自の時計を有しており、当該時計から出力される時刻に基づいて各種処理を実行するタイミングを決定している。各装置が独自の時計を有している場合、分析システムに含まれる複数の装置間で時刻のズレが生じる場合がある。 In an analysis system composed of a plurality of devices, each device has its own clock, and the timing for executing various processes is determined based on the time output from the clock. If each device has its own clock, time lag may occur between multiple devices included in the analysis system.
 例えば、一方の装置において所定の時刻に得られたデータを他方の装置で取得する処理を実行する場合に、これら装置間で時刻のズレが生じていると、例えば、ある時刻のデータを他方の装置が取得できない可能性がある。 For example, when a process of acquiring data obtained at a predetermined time in one device is executed by the other device and a time difference occurs between these devices, for example, data at a certain time is obtained in the other device. The device may not be available.
 しかし、分析システムに備わる特定の装置(例えば、分析装置)では、当該特定の装置の動作に影響を及ぼす可能性があるために、例えば、その装置で使用される時刻を他の装置の時刻に合わせるような変更ができない可能性がある。 However, a particular device (eg, an analyzer) in an analytical system can affect the operation of that particular device, so for example, the time used by that device may be set to the time of another device. It may not be possible to make changes to match.
 本発明の目的は、分析システムに含まれる複数の装置間で時刻がズレる可能性があり、特定の装置において出力される時刻を変更できない可能性があることにより生じる可能性がある影響を最小限にすることにある。 An object of the present invention is to minimize the effect that may occur due to the possibility that the time may be different between a plurality of devices included in the analysis system and that the time output in a specific device may not be changed. To be.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る分析システムは、分析装置と、処理装置と、を備える。
 分析装置は、第1時計から出力される時刻に従って粒子状物質に関する分析を実行する。
 処理装置は、第1時計とは独立した第2時計を有し、分析装置にて用いられる時刻に関する時刻関連情報と第2時計から出力される時刻に関する時刻関連情報との比較結果から得られるズレに基づいて、分析装置に関する所定の処理を実行する。
Hereinafter, a plurality of aspects will be described as means for solving the problem. These aspects can be arbitrarily combined as needed.
The analysis system according to the seemingly relevant aspect of the present invention includes an analysis device and a processing device.
The analyzer performs analysis on particulate matter according to the time output from the first clock.
The processing device has a second clock independent of the first clock, and the deviation obtained from the comparison result between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. A predetermined process related to the analyzer is executed based on the above.
 処理装置が、分析装置にて用いられる時刻に関する時刻関連情報と第2時計から出力される時刻に関する時刻関連情報とのズレに基づいて、分析装置に関する所定の処理を実行するので、仮に、分析システムに含まれる分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、処理装置における上記所定の処理の実行に対して生じる影響を最小限にできる可能性がある。 Since the processing device executes predetermined processing related to the analyzer based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock, the analysis system is tentatively used. Even if there is a possibility that the time output in the analyzer cannot be changed due to a time lag between the analyzer and the processing device included in the above, the effect on the execution of the predetermined processing in the processing device. May be minimized.
 処理装置は、所定の時刻毎に分析装置にて取得された粒子状物質に関する分析データを収集することを所定の処理として実行してもよい。
 これにより、仮に、分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、この時刻のズレの影響を最小限にして分析データの収集を実行できるので、分析データを取得できないとのデータ欠損の発生の可能性を抑制できる可能性がある。
The processing apparatus may execute the collection of analytical data regarding particulate matter acquired by the analyzer at predetermined time intervals as a predetermined processing.
As a result, even if there is a possibility that the time is different between the analyzer and the processing device and the time output by the analyzer cannot be changed, the effect of this time difference is minimized for analysis. Since data can be collected, it may be possible to reduce the possibility of data loss if analysis data cannot be obtained.
 分析装置は、分析データに時刻関連情報を付加して処理装置に出力してもよい。これにより、処理装置は、第1時計の時刻を直接確認する必要性が低くなる。 The analyzer may add time-related information to the analysis data and output it to the processing appliance. This reduces the need for the processing device to directly check the time on the first clock.
 処理装置は、分析データに付加された時刻関連情報と第2時計から出力される時刻関連情報とに基づいて、分析装置にて用いられる時刻と第2時計から出力される時刻との時刻ズレを算出してもよい。これにより、分析装置にて用いられる時刻と第2時計の時刻との間で生じうる時刻ズレを具体的に把握できる可能性がある。 The processing device determines the time difference between the time used by the analyzer and the time output from the second clock based on the time-related information added to the analysis data and the time-related information output from the second clock. It may be calculated. As a result, there is a possibility that the time difference that may occur between the time used in the analyzer and the time of the second clock can be concretely grasped.
 処理装置は、分析装置が分析データを出力する出力予定時刻を算出してもよい。この場合、処理装置は、第2時計から出力される時刻が出力予定時刻となったタイミングで、分析装置から分析データを収集してもよい。
 これにより、仮に、分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、分析データが出力される実際のタイミングをより正確に把握できる可能性がある。
The processing device may calculate the scheduled output time at which the analyzer outputs the analysis data. In this case, the processing device may collect analysis data from the analyzer at the timing when the time output from the second clock becomes the scheduled output time.
As a result, even if the time is different between the analyzer and the processing device and the time output by the analyzer may not be changed, the actual timing at which the analysis data is output is more accurate. There is a possibility that it can be grasped.
 分析システムは、サーバをさらに備えてもよい。サーバは、処理装置にて収集された分析データと、処理装置にて算出された時刻ズレと、を関連付けてデータベースに登録する。これにより、れにより、分析結果とともに取得したタイムスタンプが分析装置毎に異なっていても、取得した分析結果を同時刻の分析結果として認識できる可能性がある。 The analysis system may further include a server. The server associates the analysis data collected by the processing device with the time lag calculated by the processing device and registers them in the database. As a result, even if the time stamp acquired together with the analysis result is different for each analyzer, the acquired analysis result may be recognized as the analysis result at the same time.
 処理装置は、分析装置にて用いられる時刻に関する時刻関連情報と第2時計から出力される時刻に関する時刻関連情報とのズレに基づいて、所定の処理を実行するタイミングを決定してもよい。これにより、仮に、分析システムに含まれる分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、処理装置における上記所定の処理の実行に対して生じる影響を最小限にできる可能性がある。 The processing device may determine the timing to execute a predetermined process based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. As a result, even if the time is different between the analyzer included in the analysis system and the processing device and the time output by the analysis device may not be changed, the predetermined processing in the processing device may not be possible. It may be possible to minimize the impact on the execution of.
 分析装置は、予め決められた複数の分析地点において粒子状物質を分析可能であってもよい。この場合、粒子状物質に関する分析データは、当該分析データを取得した分析地点毎に分類される。これにより、複数の分析地点で取得した分析データの管理を容易にできる可能性がある。 The analyzer may be capable of analyzing particulate matter at a plurality of predetermined analysis points. In this case, the analytical data regarding the particulate matter is classified for each analysis point from which the analytical data was acquired. This may facilitate the management of analysis data acquired at multiple analysis points.
 分析システムは、分析装置の位置を示す位置情報を取得する位置情報受信機をさらに備えてもよい。
 この場合、分析データを取得した際に位置情報受信機が取得した位置情報に示される位置が特定の分析地点から所定の許容範囲内にある場合、当該分析データは、当該特定の分析地点で取得されたデータと分類されてもよい。
 これにより、仮に、位置情報受信機により取得された位置情報に示される位置が、予め決められた分析地点から多少ズレていたとしても、分析データを分析地点毎に適切に分類できる可能性がある。
The analysis system may further include a position information receiver that acquires position information indicating the position of the analyzer.
In this case, if the position shown in the position information acquired by the location information receiver when the analysis data is acquired is within a predetermined allowable range from the specific analysis point, the analysis data is acquired at the specific analysis point. It may be classified as the data.
As a result, even if the position shown in the position information acquired by the position information receiver deviates slightly from the predetermined analysis point, there is a possibility that the analysis data can be appropriately classified for each analysis point. ..
 分析データを取得した際に位置情報受信機にて取得された位置情報から分析装置の位置が特定できない場合、当該分析データは、データを取得した分析地点が不明である未分類と分類されて保持されてもよい。これにより、貴重な分析データが未分類として失われることを防止できる可能性がある。 If the position of the analyzer cannot be specified from the position information acquired by the location information receiver when the analysis data is acquired, the analysis data is classified as unclassified and the analysis point from which the data was acquired is unknown and retained. May be done. This may prevent valuable analytical data from being lost as unclassified.
 未分類と分類された分析データは、複数の分析地点のうちのいずれかで取得された分析データとして再分類可能であってもよい。これにより、貴重な分析データを分類されたデータとして救済できる可能性がある。 The analysis data classified as unclassified may be reclassified as analysis data acquired at any of a plurality of analysis points. This has the potential to rescue valuable analytical data as classified data.
 本発明の他の見地に係る処理装置は、分析装置に関する所定の処理を実行する処理装置である。分析装置は、第1時計から出力される時刻に従って粒子状物質に関する分析を実行する。
 処理装置は、第1時計とは独立した第2時計を有し、分析装置にて用いられる時刻に関する時刻関連情報と第2時計から出力される時刻に関する時刻関連情報とのズレに基づいて、分析装置に関する所定の処理を実行する。
 これにより、仮に、分析システムに含まれる分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、処理装置における上記所定の処理の実行に対して生じる影響を最小限にできる可能性がある。
The processing apparatus according to another aspect of the present invention is a processing apparatus that executes a predetermined process relating to the analyzer. The analyzer performs analysis on particulate matter according to the time output from the first clock.
The processing device has a second clock independent of the first clock, and analyzes based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. Performs certain processes related to the device.
As a result, even if the time is different between the analyzer included in the analysis system and the processing device and the time output by the analysis device may not be changed, the predetermined processing in the processing device may not be possible. It may be possible to minimize the impact on the execution of.
 本発明のさらに他の見地に係る分析方法は、第1時計を有し粒子状物質に関する分析を実行する分析装置と、第1時計とは独立した第2時計を有し分析装置に関する所定の処理を実行する処理装置と、を備える分析システムにおける分析方法である。分析方法は、以下のステップを備える。
 ◎分析装置が、第1時計から出力される時刻に従って粒子状物質に関する分析を実行するステップ。
 ◎処理装置が、分析装置にて用いられる時刻に関する時刻関連情報と第2時計から出力される時刻に関する時刻関連情報とのズレに基づいて、所定の処理を実行するステップ。
 これにより、仮に、分析システムに含まれる分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、処理装置における所定の処理の実行に対して生じる影響を最小限にできる可能性がある。
The analysis method according to still another aspect of the present invention has an analyzer having a first clock to perform analysis on particulate matter, and a second clock independent of the first clock to perform predetermined processing on the analyzer. It is an analysis method in an analysis system including a processing device for executing the above. The analysis method comprises the following steps.
◎ A step in which the analyzer performs an analysis on particulate matter according to the time output from the first clock.
◎ A step in which the processing device executes a predetermined process based on the difference between the time-related information related to the time used in the analyzer and the time-related information related to the time output from the second clock.
As a result, even if the time is different between the analyzer included in the analysis system and the processing device and the time output by the analysis device may not be changed, the predetermined processing in the processing device may not be possible. It may be possible to minimize the impact on execution.
 本発明のさらに他の見地に係るプログラムは、第1時計を有し第1時計から出力される時刻に従って粒子状物質に関する分析を実行する分析装置と、第1時計とは独立した第2時計を有し分析装置に関する所定の処理を実行する処理装置と、を備える分析システムにおける分析方法を、処理装置に実行させるプログラムである。この分析方法は、以下のステップを備える。
 ◎分析装置にて用いられる時刻に関する時刻関連情報と第2時計から出力される時刻に関連する時刻関連情報とのズレに基づいて、所定の処理を実行するステップ。
 これにより、仮に、分析システムに含まれる分析装置と処理装置との間で時刻がズレており、分析装置において出力される時刻を変更できない可能性があったとしても、処理装置における所定の処理の実行に対して生じる影響を最小限にできる可能性がある。
The program according to still another aspect of the present invention includes an analyzer that has a first clock and performs analysis on particulate matter according to the time output from the first clock, and a second clock that is independent of the first clock. It is a program that causes a processing device to execute an analysis method in an analysis system including a processing device that executes a predetermined process related to the analysis device. This analysis method comprises the following steps:
◎ A step to execute a predetermined process based on the difference between the time-related information used in the analyzer and the time-related information output from the second clock.
As a result, even if the time is different between the analyzer included in the analysis system and the processing device and the time output by the analysis device may not be changed, the predetermined processing in the processing device may not be possible. It may be possible to minimize the impact on execution.
 仮に、分析システムに含まれる分析装置と処理装置との間で時刻がズレており、分析装置及び/又は処理装置において出力される時刻を調整できない可能性があったとしても、処理装置における所定の処理の実行に対して生じる影響を最小限にできる可能性がある。 Even if there is a possibility that the time is different between the analyzer included in the analysis system and the processing device and the time output by the analysis device and / or the processing device cannot be adjusted, the predetermined time in the processing device is predetermined. It may be possible to minimize the impact on the execution of processing.
本発明が対象とする環境計測システムの構成例を示す図。The figure which shows the structural example of the environmental measurement system which is the object of this invention. 図1で使用する分析装置の構成例を示す図。The figure which shows the structural example of the analyzer used in FIG. 本発明の構成例を示す図。The figure which shows the structural example of this invention. 図3で示される本発明の構成に関して、特に本発明に特有な処理の流れを示す図。The figure which shows the flow of the process which is peculiar to this invention with respect to the structure of this invention shown in FIG. 図3で示される本発明に特有な処理において、特に測定地点の定義を入力する方法の例を示す図。FIG. 3 is a diagram showing an example of a method of inputting a definition of a measurement point in particular in the process peculiar to the present invention shown in FIG. 図3で示される本発明に特有な処理において、特に分析結果を測定地点毎に分類する処理を示す図。FIG. 3 is a diagram showing a process of classifying analysis results for each measurement point in the process peculiar to the present invention shown in FIG. 図6で示される本発明に特有の処理である未分類の分析結果を再分類する処理において、例えば手動で処理する際に使用されるユーザインタフェース画面例を示した図。FIG. 6 is a diagram showing an example of a user interface screen used when, for example, manually processing, in a process of reclassifying unclassified analysis results, which is a process peculiar to the present invention shown in FIG. 本発明によって実現される多地点の環境計測モニタリング画面例を示した図。The figure which showed the example of the environmental measurement monitoring screen of a multipoint realized by this invention.
1.第1実施形態
 以下、本発明に特有な処理方法に関して、図面を参照しながら詳細に説明する。なお、以下の図において、同一符号は、同一または類似部分を示すものである。
 本発明の環境計測システムの典型的な構成例を図1に示す。本発明の環境計測システムは、典型的には、移動型環境計測システム(MST1)、広域通信ネットワーク(WAN1)、サーバ(SV1)、ユーザ端末(UPC1)から構成される。このうち、移動型環境計測システム(MST1)は、移動手段(VE1)に搭載された複数の分析装置(AN1~AN3)、データ収集装置(LG1)、位置情報受信機(GPS1)、及び、それらの装置を接続する通信ネットワーク(NW1)から構成される。
1. 1. First Embodiment Hereinafter, the processing method peculiar to the present invention will be described in detail with reference to the drawings. In the following figures, the same reference numerals indicate the same or similar parts.
FIG. 1 shows a typical configuration example of the environmental measurement system of the present invention. The environment measurement system of the present invention is typically composed of a mobile environment measurement system (MST1), a wide area communication network (WAN1), a server (SV1), and a user terminal (UPC1). Of these, the mobile environment measurement system (MST1) includes a plurality of analyzers (AN1 to AN3), data acquisition devices (LG1), position information receivers (GPS1), and them mounted on the mobile means (VE1). It is composed of a communication network (NW1) connecting the devices of.
 なお、上記においては、移動型環境計測システムMST1の複数の分析装置AN1~AN3、データ収集装置LG1、位置情報受信機GPS1が通信ネットワークNW1により1つの閉じられたネットワークを構成し、移動型環境計測システムMST1とサーバSV1とユーザ端末UPC1が広域通信ネットワークWAN1に接続されているが、これに限られない。
 例えば、移動型環境計測システムMST1のうち複数の分析装置AN1~AN3と位置情報受信機GPS1が閉じられたネットワークにより構成され、当該閉じられたネットワーク(を構成する装置)と、データ収集装置LG1と、サーバSV1と、ユーザ端末UPC1が広域通信ネットワークWAN1に接続されていてもよい。
 その他、移動型環境計測システムMST1、サーバSV1、ユーザ端末UPC1が全て1つの閉じられたネットワークを構成していてもよい。
 さらに、移動型環境計測システムMST1とサーバSV1が1つの閉じられたネットワークを構成し、この閉じられたネットワークとユーザ端末UPC1が広域通信ネットワークWAN1に接続されてもよい。また、移動型環境計測システムMST1とユーザ端末UPC1が1つの閉じられたネットワークを構成し、この閉じられたネットワークとサーバSV1が広域通信ネットワークWAN1に接続されてもよい。
 どの装置が閉じられたいずれのネットワークに含まれるか、また、閉じられたネットワークの数については、システムの構成により任意に変更できる。
In the above, the plurality of analyzers AN1 to AN3 of the mobile environment measurement system MST1, the data collection device LG1, and the position information receiver GPS1 form one closed network by the communication network NW1, and the mobile environment measurement is performed. The system MST1, the server SV1, and the user terminal UPC1 are connected to the wide area communication network WAN1, but the present invention is not limited to this.
For example, among the mobile environment measurement system MST1, a plurality of analyzers AN1 to AN3 and a location information receiver GPS1 are configured by a closed network, and the closed network (a device constituting the) and a data collection device LG1 , The server SV1 and the user terminal UPC1 may be connected to the wide area communication network WAN1.
In addition, the mobile environment measurement system MST1, the server SV1, and the user terminal UPC1 may all form one closed network.
Further, the mobile environment measurement system MST1 and the server SV1 may form one closed network, and the closed network and the user terminal UPC1 may be connected to the wide area communication network WAN1. Further, the mobile environment measurement system MST1 and the user terminal UPC1 may form one closed network, and the closed network and the server SV1 may be connected to the wide area communication network WAN1.
Which device is included in which closed network and the number of closed networks can be arbitrarily changed depending on the system configuration.
 移動型環境計測システムMST1を、測定対象エリア(MF1)内であらかじめ設定した測定地点(MP1~MP7)に定期的に移動させて、後述する本発明に特有の処理に基づいて環境計測を行うとともに、その計測結果を広域通信ネットワーク(WAN1)経由でサーバ(SV1)に集約する。サーバ(SV1)は、このようにして収集された分析結果を、SV1内のデータベースに格納するとともに、ユーザ端末(UPC1)からのリクエストに応じて、ユーザに大気中の汚染物質等の質量濃度等の時間変化等をグラフ等で表示する。 The mobile environment measurement system MST1 is periodically moved to a preset measurement point (MP1 to MP7) in the measurement target area (MF1) to perform environment measurement based on a process specific to the present invention described later. , The measurement results are aggregated in the server (SV1) via the wide area communication network (WAN1). The server (SV1) stores the analysis results collected in this way in the database in the SV1 and, in response to a request from the user terminal (UPC1), tells the user the mass concentration of pollutants in the air, etc. The time change of is displayed in a graph or the like.
 次に、図2を用いて、分析装置AN1の具体的構成を説明する。図2は、第1分析装置の構成を示す図である。
 分析装置AN1は、捕集フィルタ11と、捕集部13と、第1の分析器SAN1と、第2の分析器SAN2と、制御部19と、を有する。
Next, a specific configuration of the analyzer AN1 will be described with reference to FIG. FIG. 2 is a diagram showing the configuration of the first analyzer.
The analyzer AN1 includes a collection filter 11, a collection unit 13, a first analyzer SAN1, a second analyzer SAN2, and a control unit 19.
 捕集フィルタ11は、例えば、高分子材料(ポリエチレンなど)の不織布にて形成された補強層上に、粒子状物質PMを捕集可能な孔を有する多孔質のフッ素樹脂系材料にて形成された捕集層(捕集領域と呼ぶこともある)を積層して形成された、テープ状の部材である。
 粒子状物質PMは、例えば、工場等における燃焼プロセス、各種の輸送装置(自動車や船舶等)のブレーキ、タイヤ、内燃機関、蒸気機関、排ガス浄化装置やモータ、火山の噴火といった自然災害、鉱山開発によって発生するマイクロメートルオーダーの粒子状の物質である。
The collection filter 11 is formed of, for example, a porous fluororesin-based material having pores capable of collecting particulate matter PM on a reinforcing layer formed of a non-woven fabric of a polymer material (polyethylene or the like). It is a tape-shaped member formed by laminating a collection layer (sometimes called a collection area).
Particulate matter PM is used, for example, for combustion processes in factories, brakes for various transportation devices (automobiles, ships, etc.), tires, internal combustion engines, steam engines, exhaust gas purification devices and motors, natural disasters such as volcanic eruptions, and mine development. It is a particulate matter on the order of micrometer generated by the engine.
 捕集フィルタ11としては、例えば、1層のガラスフィルタ、1層のフッ素樹脂系材料のフィルタなどの他のフィルタを用いることもできる。
 本実施形態において、捕集フィルタ11は、送り出しリール11aから送り出された捕集フィルタ11を巻き取りリール11bの回転により巻き取ることで、長さ方向(図2の太矢印にて示す方向)に移動できる。
As the collection filter 11, for example, another filter such as a one-layer glass filter and a one-layer fluororesin-based material filter can be used.
In the present embodiment, the collection filter 11 winds the collection filter 11 sent out from the delivery reel 11a by the rotation of the take-up reel 11b, so that the collection filter 11 is wound in the length direction (direction indicated by the thick arrow in FIG. 2). You can move.
 捕集部13は、捕集フィルタ11の長さ方向の第1位置P1に対応するように設けられる。捕集部13は、例えば、吸引ポンプ31に接続された吸引口35の吸引力により吸引した大気Aを、排出口33から捕集フィルタ11の第1位置P1に存在する捕集領域に吹き付けることで、大気Aに含まれる粒子状物質PMを捕集領域に捕集させる。 The collection unit 13 is provided so as to correspond to the first position P1 in the length direction of the collection filter 11. The collection unit 13 sprays, for example, the atmosphere A sucked by the suction force of the suction port 35 connected to the suction pump 31 from the discharge port 33 onto the collection area existing at the first position P1 of the collection filter 11. Then, the particulate matter PM contained in the atmosphere A is collected in the collection area.
 第1の分析器SAN1は、捕集フィルタ11に捕集された粒子状物質PMの捕集量を測定する。具体的には、第1の分析器SAN1は、β線源51と、β線検出器53と、を有する。
 β線源51は、捕集部13の排出口33に設けられ、第1位置P1に配置された捕集フィルタ11の捕集領域にβ線を出射する。β線源51は、例えば、炭素14(14C)を用いたβ線源である。
 β線検出器53は、捕集部13の吸引口35においてβ線源51に対向するよう設けられ、第1位置P1の捕集領域に捕集された粒子状物質PMを透過したβ線の強度を測定する。β線検出器53は、例えば、シンチレータを備えた光電子増倍管である。粒子状物質PMの捕集量(質量濃度)は、β線検出器53にて測定されたβ線の強度に基づいて算出される。
The first analyzer SAN1 measures the amount of particulate matter PM collected by the collection filter 11. Specifically, the first analyzer SAN1 has a β-ray source 51 and a β-ray detector 53.
The β-ray source 51 is provided at the discharge port 33 of the collection unit 13, and emits β-rays to the collection region of the collection filter 11 arranged at the first position P1. The β-radioactive source 51 is, for example, a β-ray source using carbon-14 ( 14 C).
The β-ray detector 53 is provided so as to face the β-ray source 51 at the suction port 35 of the collection unit 13, and the β-rays transmitted through the particulate matter PM collected in the collection region of the first position P1. Measure the strength. The β-ray detector 53 is, for example, a photomultiplier tube equipped with a scintillator. The collected amount (mass concentration) of the particulate matter PM is calculated based on the intensity of β rays measured by the β ray detector 53.
 第2の分析器SAN2は、捕集フィルタ11の長さ方向の第2位置P2に対応するよう設けられ、第2位置P2に存在する粒子状物質PMから発生する蛍光X線に関するデータを測定する。具体的には、第2の分析器SAN2は、X線源71と、検出器73と、を有する。
 X線源71は、第2位置P2に存在する粒子状物質PMにX線を照射する。X線源71は、例えば、パラジウムなどの金属に電子線を照射してX線を発生させる装置である。検出器73は、粒子状物質PMから発生する蛍光X線を検出する。検出器73は、例えば、シリコン半導体検出器やシリコンドリフト検出器である。
The second analyzer SAN2 is provided so as to correspond to the second position P2 in the length direction of the collection filter 11 and measures the data regarding the fluorescent X-rays generated from the particulate matter PM present at the second position P2. .. Specifically, the second analyzer SAN2 has an X-ray source 71 and a detector 73.
The X-ray source 71 irradiates the particulate matter PM existing at the second position P2 with X-rays. The X-ray source 71 is a device that generates X-rays by irradiating a metal such as palladium with an electron beam. The detector 73 detects fluorescent X-rays generated from the particulate matter PM. The detector 73 is, for example, a silicon semiconductor detector or a silicon drift detector.
 制御部19は、分析装置AN1の各構成要素を制御する。
 具体的には、制御部19は、第1位置P1に設けられた第1の分析器SAN1を用いて粒子状物質PMの質量濃度を取得し、第2位置P2に設けられた第2の分析器SAN2を用いて元素分析結果を取得するため、巻き取りリール11bを制御して捕集フィルタ11を移動させる。具体的には、制御部19は、捕集部13による粒子状物質PMの捕集が終了し捕集量の測定を完了する毎に、捕集フィルタ11の捕集領域(粒子状物質PMが捕集された領域)を、第1の分析器SAN1が設けられた第1位置P1から、第2の分析器SAN2が設けられた第2位置P2に向けて移動させる。
The control unit 19 controls each component of the analyzer AN1.
Specifically, the control unit 19 acquires the mass concentration of the particulate matter PM by using the first analyzer SAN1 provided at the first position P1, and the second analysis provided at the second position P2. In order to acquire the elemental analysis result using the vessel SAN2, the take-up reel 11b is controlled to move the collection filter 11. Specifically, every time the control unit 19 finishes collecting the particulate matter PM by the collecting unit 13 and completes the measurement of the collected amount, the collecting region (particulate matter PM) of the collecting filter 11 is set. The collected region) is moved from the first position P1 provided with the first analyzer SAN1 toward the second position P2 provided with the second analyzer SAN2.
 また、制御部19は、第1位置P1から第2位置P2に向けて捕集フィルタ11の捕集領域を移動させる際の移動量を調整可能となっている。例えば、第1位置P1から第2位置P2までの距離をDISとした場合、1回あたりの捕集領域の移動量をDIS/n(n:正の整数)と調整できる。すなわち、第1位置P1から第2位置P2まで移動するためには、DIS/nの距離だけn回の移動が必要であると設定できる。 Further, the control unit 19 can adjust the amount of movement when moving the collection area of the collection filter 11 from the first position P1 to the second position P2. For example, when the distance from the first position P1 to the second position P2 is set to DIS, the amount of movement of the collection area per time can be adjusted to DIS / n (n: positive integer). That is, in order to move from the first position P1 to the second position P2, it can be set that n movements are required by the distance of DIS / n.
 上記の捕集領域の移動量であるDIS/nの「n」値を1よりも大きな整数とすることで、捕集フィルタ11上において狭い間隔で粒子状物質PMを捕集できる(つまり、捕集領域の間隔を狭くできる)ので、捕集フィルタ11の無駄を省くことができる。
 その一方で、「n」値を1よりも大きな整数とすることにより、同じ捕集領域の粒子状物質PMについて捕集量の測定結果が得られるタイミングと元素分析結果が得られるタイミングとの間に時間の遅延が生じる。例えば、粒子状物質PMの捕集時間を1時間、「n」値を4とした場合、制御部19は、ある捕集領域の粒子状物質PMについて捕集量の測定結果を取得してから約4時間経過後に、同じ捕集領域の粒子状物質PMについて元素分析結果を取得することになる。
By setting the "n" value of DIS / n, which is the amount of movement of the above-mentioned collection area, to an integer larger than 1, the particulate matter PM can be collected at narrow intervals on the collection filter 11 (that is, capture). Since the interval between the collecting regions can be narrowed), waste of the collecting filter 11 can be eliminated.
On the other hand, by setting the "n" value to an integer larger than 1, between the timing when the measurement result of the collected amount is obtained and the timing when the elemental analysis result is obtained for the particulate matter PM in the same collection region. There is a time delay. For example, when the collection time of the particulate matter PM is 1 hour and the "n" value is 4, the control unit 19 acquires the measurement result of the collection amount of the particulate matter PM in a certain collection region. After about 4 hours, the elemental analysis results will be obtained for the particulate matter PM in the same collection area.
 制御部19は、内部時計ACLK1が出力する所定の時刻毎に第1の分析器SAN1にて測定されたβ線の強度を取得し、当該β線の強度に基づいて粒子状物質PMの質量濃度を分析結果として算出して出力する。
 また、制御部19は、上記の所定の時刻毎に第2の分析器SAN2にて得られた蛍光X線データ(例えば、蛍光X線スペクトル)を取得し、当該蛍光X線データに基づいて粒子状物質PMに含まれる元素とその含有量を分析結果として算出して出力する。
The control unit 19 acquires the β-ray intensity measured by the first analyzer SAN1 at predetermined times output by the internal clock ACLK1 and obtains the mass concentration of the particulate matter PM based on the β-ray intensity. Is calculated and output as an analysis result.
Further, the control unit 19 acquires fluorescent X-ray data (for example, fluorescent X-ray spectrum) obtained by the second analyzer SAN2 at each predetermined time, and the particles are based on the fluorescent X-ray data. The elements contained in the state substance PM and their contents are calculated and output as analysis results.
 図3に示すのは、図1の本発明の移動型環境計測システムMST1を構成する分析装置AN1~AN3、データ収集装置LG1、サーバSV1、及び、ユーザ端末UPC1の内部の機能ブロック構成を説明した図である。このうち、分析装置AN1は、通信ネットワークインタフェース(ANIF1)、ユーザインタフェース(AUIF1)、さらに、本発明の特有の処理に関係する、内部時計(ACLK1)(第1時計の一例)、第1の分析器(SAN1)、第2の分析器(SAN2)、及び、その分析結果を格納するデータベース(SDA1、SDA2)から構成される。 FIG. 3 illustrates the internal functional block configurations of the analyzers AN1 to AN3, the data acquisition devices LG1, the server SV1, and the user terminal UPC1 that constitute the mobile environment measurement system MST1 of the present invention of FIG. It is a figure. Of these, the analyzer AN1 includes a communication network interface (ANIF1), a user interface (AUIF1), an internal clock (ACLK1) (an example of a first clock), and a first analysis related to the processing peculiar to the present invention. It is composed of an instrument (SAN1), a second analyzer (SAN2), and databases (SDA1 and SDA2) for storing the analysis results.
 同様に、データ収集装置LG1(処理装置の一例)は、通信ネットワークインタフェース(LNIF1)、ユーザインタフェース(LUIF1)、さらには、本発明の特有の処理に関係する内部時計(LCLK1)(第2時計の一例)、本発明に特有な処理を実現するプログラムコード(LP1)、そのプログラムコードを実行するプロセッサ及びメモリ(LCPUMEM1)、分析装置AN1等からの分析結果に加えて、位置情報受信機(GPS1)からの位置情報を一時的に格納するデータベース(LDB1)、さらには、本発明に特有な分析装置毎の時刻ズレ情報を保持したデータベース(LDB2)から構成される。
 なお、第1実施形態にて説明したデータ収集装置LG1の機能をサーバSV1に組み込んで、移動型環境計測システムMST1の分析装置とサーバSV1とが直接通信可能となっていてもよい。この場合、サーバSV1が処理装置の一例となる。
Similarly, the data collection device LG1 (an example of a processing device) includes a communication network interface (LNIF1), a user interface (LUIF1), and an internal clock (LCLK1) (second clock) related to the processing peculiar to the present invention. (Example), a program code (LP1) that realizes processing peculiar to the present invention, a processor and memory (LCPUMEM1) that execute the program code, analysis results from an analyzer AN1, etc., and a position information receiver (GPS1). It is composed of a database (LDB1) that temporarily stores the position information from the above, and a database (LDB2) that holds the time shift information for each analyzer peculiar to the present invention.
The function of the data acquisition device LG1 described in the first embodiment may be incorporated into the server SV1 so that the analysis device of the mobile environment measurement system MST1 and the server SV1 can directly communicate with each other. In this case, the server SV1 is an example of the processing device.
 また、サーバSV1は、通信ネットワークインタフェース(SNIF1)、ユーザインタフェース(SUIF1)、内部時計(SCLK1)、本発明に特有な処理を実現するプログラムコード(SP1)、そのプログラムコードを実行するプロセッサ及びメモリ(SCPUMEM1)、データ収集装置LG1からの位置情報に従って上述の測定地点毎に分析結果を分類して格納するデータベース(SDB1~)、さらには、データ収集装置LG1からの位置情報が後述する様々な理由で設定範囲外であった場合に、いずれの測定地点にも分類できなかった分析結果を格納する本発明に特有なデータベース(SDBX)から構成される。また、後述するように、測定地点の位置情報及びその許容範囲を定義した本発明に特有な測定地点定義データベース(MA1)も、サーバSV1内に保持される。 Further, the server SV1 includes a communication network interface (SNIF1), a user interface (SUIF1), an internal clock (SCLK1), a program code (SP1) that realizes processing peculiar to the present invention, a processor and a memory (SP1) that execute the program code. SCPUMEM1), a database (SDB1 ~) that classifies and stores analysis results for each of the above-mentioned measurement points according to the position information from the data collection device LG1, and further, the position information from the data collection device LG1 is described later for various reasons. It is composed of a database (SDBX) peculiar to the present invention that stores analysis results that could not be classified into any measurement point when it was out of the set range. Further, as will be described later, a measurement point definition database (MA1) peculiar to the present invention, which defines the position information of the measurement points and the permissible range thereof, is also stored in the server SV1.
 さらに、ユーザ端末UPC1は、通信ネットワークインタフェース(UPNIF1)、ユーザインタフェース(UPUIF1)、内部時計(UPCLK1)、ユーザ端末上のプログラムコード(UP1)と、そのプログラムコードを実行するプロセッサ及びメモリ(UPCPUMEM1)から構成される。 Further, the user terminal UPC1 is derived from a communication network interface (UPNIF1), a user interface (UPUIF1), an internal clock (UPCLK1), a program code (UP1) on the user terminal, and a processor and a memory (UPCPUMEM1) that execute the program code. It is composed.
 これらの分析装置AN1、データ収集装置LG1、サーバSV1、ユーザ端末UPC1は、広域通信ネットワークWAN1経由でそれぞれに通信可能である。本実施例では、説明の簡略化のために、広域通信ネットワークWAN1とデータ収集装置LG1内の通信ネットワークNW1を区別するが、分析装置AN1~ユーザ端末UPC1の全ての機器が同一の通信ネットワークNW1内に存在していても構わない。同様に、全ての機器が広域通信ネットワークWAN1に接続される構成も可能である。広域通信ネットワークWAN1、通信ネットワークNW1の詳細に関しては、同業者にとっては公知であるため、ここでは、詳細の説明は省略する。 These analyzer AN1, data acquisition device LG1, server SV1, and user terminal UPC1 can communicate with each other via the wide area communication network WAN1. In this embodiment, for the sake of simplification of the description, the wide area communication network WAN1 and the communication network NW1 in the data collection device LG1 are distinguished, but all the devices of the analyzer AN1 to the user terminal UPC1 are in the same communication network NW1. It does not matter if it exists in. Similarly, it is possible to configure all devices to be connected to the wide area communication network WAN1. Since the details of the wide area communication network WAN1 and the communication network NW1 are known to those in the same industry, detailed description thereof will be omitted here.
 以上が本発明の環境計測システムの構成とその概要である。本構成に示されるように、分析装置AN1~AN3、データ収集装置LG1、サーバSV1は、それぞれ内部に独立した時計を持っているが、後述する本発明に特有な方式にて、それぞれの内部時計をNTP等で強制的に時刻同期しなくても、サーバSV1にて複数の分析装置からの分析結果の時刻整合が保たれている点に特徴がある。さらに、移動型環境計測システムMST1搭載の位置情報受信機GPS1にて受信される位置情報と、サーバSV1内の測定地点定義データベースMA1にあらかじめ設定されている測定地点毎の位置情報及びその許容範囲の定義に従って、分析装置からの結果を測定地点毎に自動的に分類される点に特徴がある。さらに、位置情報受信機GPS1が周囲環境等の何らかの要因で正常な位置情報が出力されない状況でも、後から分析結果を回収する仕組みを提供することで、貴重な計測結果を無駄なく活用可能なシステムが実現可能である点に特徴がある。以下、図4に従って、これらの特徴を実現するために実装した本発明に特有な処理を説明する。 The above is the configuration and outline of the environmental measurement system of the present invention. As shown in this configuration, the analyzers AN1 to AN3, the data collection device LG1, and the server SV1 each have an independent clock inside, but each internal clock is a method peculiar to the present invention described later. The feature is that the time matching of the analysis results from a plurality of analyzers is maintained by the server SV1 even if the time is not forcibly synchronized by NTP or the like. Further, the position information received by the position information receiver GPS1 mounted on the mobile environment measurement system MST1, the position information for each measurement point preset in the measurement point definition database MA1 in the server SV1, and the allowable range thereof. It is characterized in that the results from the analyzer are automatically classified for each measurement point according to the definition. Furthermore, even if the location information receiver GPS1 does not output normal location information due to some factors such as the surrounding environment, by providing a mechanism to collect the analysis results later, a system that can utilize valuable measurement results without waste. Is characterized in that it is feasible. Hereinafter, the processing peculiar to the present invention implemented in order to realize these features will be described with reference to FIG.
 なお、以下に説明する処理を開始する前に、分析装置AN1の内部時計ACLK1が出力する時刻と、データ収集装置LG1の内部時計LCLK1が出力する時刻と、サーバSV1の内部時計SCLK1が出力する時刻と、分析装置AN2の内部時計の時刻と、分析装置AN3の内部時計の時刻と、を同期させてもよい。
 この時刻同期は、例えば、各装置のユーザインタフェース(例えば、後述する図9に示すグラフィカルユーザインタフェースINF3)を用いて、例えば手動で行うことも可能で、また、それぞれの内部時計を正確な基準時計に同期させるNTP(Network Time Protocol)を用いて実行できる。
Before starting the process described below, the time output by the internal clock ACLK1 of the analyzer AN1, the time output by the internal clock LCLK1 of the data collection device LG1, and the time output by the internal clock SCLK1 of the server SV1. And the time of the internal clock of the analyzer AN2 may be synchronized with the time of the internal clock of the analyzer AN3.
This time synchronization can be performed, for example, manually using the user interface of each device (for example, the graphical user interface INF3 shown in FIG. 9 described later), and each internal clock can be set as an accurate reference clock. It can be executed by using NTP (Network Time Protocol) that synchronizes with.
 分析装置AN1では、まず、サブルーチン又はステップAP10 にて分析開始に必要な様々な処理が実行される。開始処理の詳細は、図2の説明で既に説明済みのため、ここでは省略する。次に、サブルーチン又はステップAP11にて、第1の分析器SAN1にて、粒子状物質PMの計測が完了し、分析結果が確定するのを待ち受ける。サブルーチン又はステップAP13にて、分析結果確定後に内部時計ACLK1にアクセスして、分析が完了した時刻をタイムスタンプとして取得する。その後、サブルーチン又はステップAP12にて、分析結果にタイムスタンプを付加して、データ収集装置LG1向けに出力する(SDA1)。 In the analyzer AN1, first, various processes necessary for starting the analysis are executed by the subroutine or step AP10. Since the details of the start processing have already been described in the description of FIG. 2, they will be omitted here. Next, in the subroutine or step AP11, the measurement of the particulate matter PM is completed by the first analyzer SAN1 and waits for the analysis result to be finalized. In the subroutine or step AP13, after the analysis result is confirmed, the internal clock ACLK1 is accessed and the time when the analysis is completed is acquired as a time stamp. Then, in the subroutine or step AP12, a time stamp is added to the analysis result and output to the data acquisition device LG1 (SDA1).
 タイムスタンプは、分析装置AN1にて用いられる時刻に関する情報を含む時刻関連情報であり、サーバSV1との共通の取り決めに基づいて決定された時刻、時間情報である。タイムスタンプとしては、例えば、分析装置AN1にて実行される各種処理の開始/終了などの何らかの区切りとなる時刻を用いることができる。 The time stamp is time-related information including information related to the time used in the analyzer AN1, and is the time and time information determined based on a common agreement with the server SV1. As the time stamp, for example, a time that serves as a delimiter such as the start / end of various processes executed by the analyzer AN1 can be used.
 タイムスタンプとしては、典型的には、第1の分析器SAN1、第2の分析器SAN2、それぞれの測定開始時刻又は測定終了時刻(例えば、第1の分析器SAN1にてβ線強度の取得を開始した時刻又は終了した時刻)、捕集時刻(例えば、粒子状物質PMの捕集フィルタ11への捕集を開始した時刻又は終了した時刻)、さらには、計測完了時刻(例えば、分析結果の算出を完了した時刻、分析結果の算出を完了した時刻)等が使用可能である。ここでは捕集時刻と計測完了時刻を使用する場合を例に取って説明する。なお、これ以外にも、捕集時刻、計測完了時刻単体、あるいは、第1の分析器SAN1及び第2の分析器SAN2の内部時計の時刻情報そのものでも使用可能である。また、後述するように、サーバSV1のデータベースに格納される際の時刻精度を補正する目的で、データ収集装置LG1で検出された時刻ズレ情報を付加的な情報としてタイムスタンプに追加しても構わない。 As the time stamp, typically, the first analyzer SAN1 and the second analyzer SAN2 have their respective measurement start times or measurement end times (for example, the acquisition of β-ray intensity by the first analyzer SAN1). The start time or the end time), the collection time (for example, the time when the collection of the particulate matter PM to the collection filter 11 is started or the end time), and the measurement completion time (for example, the analysis result). The time when the calculation is completed, the time when the calculation of the analysis result is completed), etc. can be used. Here, the case of using the collection time and the measurement completion time will be described as an example. In addition to this, the collection time, the measurement completion time alone, or the time information itself of the internal clocks of the first analyzer SAN1 and the second analyzer SAN2 can be used. Further, as described later, for the purpose of correcting the time accuracy when stored in the database of the server SV1, the time shift information detected by the data collection device LG1 may be added to the time stamp as additional information. not.
 さらに、例えば、データ収集装置LG1が分析結果等を取得したタイミングにおける内部時計LCLK1の時刻を付加して新たなタイムスタンプとすることもできる。
 要は、サーバSV1と共通の取り決めがあれば、タイムスタンプに、どういう時刻、時間情報を使用しても構わない。以下の説明では、説明の簡略化のために、計測完了時刻の場合を例にとって説明する。
Further, for example, the time of the internal clock LCLK1 at the timing when the data acquisition device LG1 acquires the analysis result or the like can be added to obtain a new time stamp.
In short, any time and time information may be used for the time stamp as long as there is an agreement common to the server SV1. In the following description, for the sake of simplification of the description, the case of the measurement completion time will be described as an example.
 分析装置AN1内に複数の分析器がある場合には、サブルーチン又はステップAP11~AP13の処理を分析装置毎に実行する。実行方法は並行も可能であるが、その詳細に関しては、同業者には公知であるため、その詳細はここでは省略する。図4は、分析装置AN1が、第2の分析器SAN2も有する場合の処理である。 When there are a plurality of analyzers in the analyzer AN1, the processing of the subroutine or steps AP11 to AP13 is executed for each analyzer. The execution method can be performed in parallel, but the details are omitted here because they are known to those in the same industry. FIG. 4 is a process in which the analyzer AN1 also has the second analyzer SAN2.
 分析装置AN1とデータ収集装置LG1とは、通信ネットワークNW1(典型的にはイーサネット(登録商標))にて、相互に接続され、通信ネットワークNW1上で共通のプロトコル(典型的にはModbus(登録商標)等)で通信を行い、データベースSDA1、SDA2に格納された分析結果及びタイムスタンプを、随時、データ収集装置LG1に読み出して行く。通信ネットワークNW1としては、イーサネット(登録商標)以外にも、RC232CやRS485等が使用可能である。また、Modbus(登録商標)以外のプロトコルも使用可能である。これらのネットワーク及びプロトコルの詳細に関しては、同事業者には公知であるため詳細の説明はここでは省略する。共通のインタフェース、プロトコルであれば、どういうインタフェース、プロトコルを使用しても構わない。 The analyzer AN1 and the data acquisition device LG1 are interconnected by a communication network NW1 (typically Ethernet®) and have a common protocol (typically Modbus®) on the communication network NW1. ) Etc.), and the analysis results and time stamps stored in the databases SDA1 and SDA2 are read out to the data collection device LG1 at any time. As the communication network NW1, RC232C, RS485 and the like can be used in addition to Ethernet (registered trademark). Also, protocols other than Modbus® can be used. The details of these networks and protocols are known to the same operator, and detailed description thereof will be omitted here. Any interface or protocol may be used as long as it is a common interface or protocol.
 次に、データ収集装置LG1内のサブルーチン又はステップLP10 にて、まずは、上記のタイムスタンプが読み出される。さらに、サブルーチン又はステップLP11にて、データ収集装置LG1自身の内部時計LCLK1と、取得したタイムスタンプに格納されている計測完了時刻との差分から、自身の内部時計LCLK1から見た分析装置AN1の内部時計ACLK1の時刻の相対的なズレを検出する。サブルーチン又はステップLP13にて、検出された時刻ズレ値に変化があったかどうかがチェックされて、変化があった場合には、データベースLDB2内に保持されている分析装置毎の時刻ズレ値を更新する。なお、このようにして検出される時刻ズレでは、サブルーチン又はステップLP10のタイムスタンプの読み出し時間間隔、及び、サブルーチン又はステップLP10~LP13をループ実行する時間が誤差要因となる。しかしながら、典型的には、サブルーチン又はステップKP10の読み出し間隔は1秒間隔程度にも設定可能であり、また、サブルーチン又はステップのループLP10~LP13の実行に要する時間は数十ミリ秒のオーダであり、分析器SAN1、SAN2の典型的な計測所要時間である30分~数時間に比べて、十分に短い時間であり、実用上、誤差は問題ない範囲に収まる。このようにしてデータ収集装置LG1では、分析装置AN1の時刻ズレを検出する。なお、本発明で重要になるのは相対的な時刻のズレの検出である。このため既に説明したようにタイムスタンプが捕集時刻と計測完了時刻以外の場合には、相対的な時刻のズレが検出可能な組み合わせにて、ズレを算出すればよい。様々な時刻情報、及びその組み合わせが可能である。 Next, the above time stamp is first read by the subroutine or step LP10 in the data acquisition device LG1. Further, in the subroutine or step LP11, from the difference between the internal clock LCLK1 of the data acquisition device LG1 itself and the measurement completion time stored in the acquired time stamp, the inside of the analyzer AN1 as seen from its own internal clock LCLK1. The relative deviation of the time of the clock ACLK1 is detected. The subroutine or step LP13 checks whether or not the detected time deviation value has changed, and if there is a change, the time deviation value for each analyzer held in the database LDB2 is updated. In the time lag detected in this way, the time interval for reading the time stamp of the subroutine or step LP10 and the time for loop execution of the subroutine or steps LP10 to LP13 become error factors. However, typically, the read interval of the subroutine or step KP10 can be set to about 1 second interval, and the time required to execute the loops LP10 to LP13 of the subroutine or step is on the order of several tens of milliseconds. The time is sufficiently short compared to the typical measurement time required for the analyzers SAN1 and SAN2, which is 30 minutes to several hours, and the error is within a range where there is no problem in practical use. In this way, the data acquisition device LG1 detects the time lag of the analyzer AN1. What is important in the present invention is the detection of relative time lag. Therefore, as described above, when the time stamp is other than the collection time and the measurement completion time, the deviation may be calculated by a combination in which a relative time deviation can be detected. Various time information and combinations thereof are possible.
 次に、データベースLDB2に格納された分析装置毎の時刻ズレ情報に従って、サブルーチン又はステップLP12にて、分析装置AN1等の時刻ズレを補正した上で、分析結果が出力される時刻(出力予定時刻の一例)を予測する。分析結果が出力される予定時刻に到達したら、次のサブルーチン又はステップLP14にて、分析結果を読み取る。分析結果が複数ある場合には、全ての分析結果の読み取りが完了するまで、読み取り処理を繰り返す。 Next, according to the time shift information for each analyzer stored in the database LDB2, the time shift of the analyzer AN1 or the like is corrected by the subroutine or step LP12, and then the time when the analysis result is output (scheduled output time). Predict one example). When the scheduled time when the analysis result is output is reached, the analysis result is read by the next subroutine or step LP14. If there are a plurality of analysis results, the reading process is repeated until all the analysis results have been read.
 さらに、サブルーチン又はステップLP15にて、通信ネットワークNW1経由で本データ収集装置LG1に接続された、位置情報受信機GPS1から、移動型環境計測システムMST1自身の位置情報を取得する。位置情報受信機GPS1としては、典型的には、GPS(Global Positioning System)等のものが使用可能である。GPS受信機に限らず、WGS84(World Geodetic System)に代表されるいわゆる測地系の座標情報が出力可能なものであれば、この他のタイプのものも使用可能である。 Further, the position information of the mobile environment measurement system MST1 itself is acquired from the position information receiver GPS1 connected to the data acquisition device LG1 via the communication network NW1 by the subroutine or step LP15. As the position information receiver GPS1, typically, a GPS (Global Positioning System) or the like can be used. Not limited to the GPS receiver, other types can be used as long as the coordinate information of the so-called geodetic system represented by WGS84 (World Geodetic System) can be output.
 次に、サブルーチン又はステップLP16にて、データベースSDA1に含まれる分析結果とタイムスタンプに加えて、位置情報受信機GPS1からの位置情報をデータベースLDB1に書き出す。この際に、分析装置の識別情報、典型的には分析装置毎に固有のシリアル番号等のいわゆるID情報も書き込む。分析装置が複数ある場合には、以上のサブルーチン又はステップLP10~LP16の処理を繰り返して、分析装置のID情報をキーとしたデータベースを構築する。 Next, in the subroutine or step LP16, in addition to the analysis result and the time stamp included in the database SDA1, the position information from the position information receiver GPS1 is written to the database LDB1. At this time, identification information of the analyzer, typically so-called ID information such as a serial number unique to each analyzer is also written. When there are a plurality of analyzers, the above subroutines or the processes of steps LP10 to LP16 are repeated to construct a database using the ID information of the analyzers as a key.
 サーバSV1では、サブルーチン又はステップSP10にて、広域通信ネットワークWAN1経由で、データ収集装置LG1に集約された分析装置のID、分析結果、タイムスタンプ、位置情報を読み込む。読み込み終了後、サブルーチン又はステップSP11にて、測定地点の自動判定、及び、分析結果の分類処理を実行する。以下、サブルーチン又はステップSP11の内容を詳細に説明した図5に従って本発明に特有な本処理の内容を説明する。まず、サブルーチン又はステップSP20にて位置情報受信機GPS1で受信された位置情報を取り出すとともに、測定地点定義データベースMA1にアクセスして、登録されている測定地点の定義を読み出す。測定地点定義データベースMA1への定義入力はサブルーチン又はステップSP12で実現される。サブルーチン又はステップSP12の詳細に関しては後述する。次にサブルーチン又はステップSP21にて、それぞれの測定地点との距離を計算し、サブルーチン又はステップSP22にてその距離が測定地点毎に定義されている許容範囲内かどうかを判定する。許容範囲内であれば、サブルーチン又はステップSP24にて、分析結果等のデータを、その測定地点で得られたデータと解釈して、測定地点毎に分類されたデータベースSDB1~に登録する。データベースSDB1への分析結果の登録に際しては、後述するように、本発明に特有な処理にて、タイムスタンプに格納されている情報に基づいて、時刻情報を登録する。 In the server SV1, the ID, analysis result, time stamp, and location information of the analysis device aggregated in the data collection device LG1 are read by the subroutine or step SP10 via the wide area communication network WAN1. After the reading is completed, the subroutine or step SP11 automatically determines the measurement point and executes the analysis result classification process. Hereinafter, the content of the present process peculiar to the present invention will be described with reference to FIG. 5 in which the content of the subroutine or step SP11 is described in detail. First, the position information received by the position information receiver GPS1 is taken out by the subroutine or step SP20, and the measurement point definition database MA1 is accessed to read the registered measurement point definition. The definition input to the measurement point definition database MA1 is realized by the subroutine or step SP12. Details of the subroutine or step SP12 will be described later. Next, the subroutine or step SP21 calculates the distance to each measurement point, and the subroutine or step SP22 determines whether or not the distance is within the allowable range defined for each measurement point. If it is within the permissible range, the data such as the analysis result is interpreted as the data obtained at the measurement point by the subroutine or step SP24, and is registered in the databases SDB1 to classified for each measurement point. When registering the analysis result in the database SDB1, as will be described later, the time information is registered based on the information stored in the time stamp by the process peculiar to the present invention.
 一方、判定結果が許容範囲外であれば、サブルーチン又はステップSP23にて、全測定地点で判定済みかを確認して、判定済みの場合には、いずれの測定地点にも分類されないデータとして、本発明に特有なデータベースである、測定地点未分類データベースSDBXに格納する。判定未了の測定地点が残っている場合には、サブルーチン又はステップSP26にて、判定対象の測定地点を変更して、サブルーチン又はステップSP20以下の処理を繰り返す。 On the other hand, if the determination result is out of the permissible range, it is confirmed by the subroutine or step SP23 whether the determination has been made at all the measurement points, and if the determination has been made, the data is not classified into any of the measurement points. It is stored in the measurement point unclassified database SDBX, which is a database peculiar to the invention. If there are still measurement points for which determination has not been completed, the measurement points to be determined are changed in the subroutine or step SP26, and the processing of the subroutine or step SP20 or less is repeated.
 一般に、位置情報受信機GPS1の一例であるGPS受信機から出力される位置情報は、ある程度の誤差範囲、典型的には数mの誤差範囲にて、常に変動している。GPS受信機からの位置情報が変動する理由は、同業者には公知であるので詳細は説明しないが、周囲の環境の変化や、電離層の状況変動等が原因である。このため、毎回同一の測定地点MP1~MP7で計測したとしても、位置情報受信機GPS1の位置情報出力は常に数m程度で変動している可能性がある。さらに、実際の運用では、移動手段VE1は、典型的にはトラック等の自動車であり、同一地点で測定すると言っても、測定地点としては、実際には数m程度ズレた場所で計測してしまう事もありうる。一方、本発明のターゲットである環境計測システムでは、測定地点が数m違っていても問題になることは実用上ほとんどない。以上の理由から、数mの範囲内なら、同一測定地点のデータとして扱う必要がある。
 例えば、自動車に搭載されているナビゲーションシステムで使用されている技術では、地図データと受信位置情報を比較しながら、速度情報を加味した上で、自動車は基本的に道路上を移動するという前提のもとに、変動するGPS位置情報を補正する。しかしながら、本発明がターゲットとする移動型環境計測システムでは、計測時には移動する可能性は低い。また測定地点が道路上とは限らない。さらに、測定対象エリアMF1は、例えば、工場内等、地図データが整備されてないエリアがほとんどである。このため、上記の技術では、本発明のターゲットの移動型環境計測システムを実現することは難しい。
In general, the position information output from the GPS receiver, which is an example of the position information receiver GPS1, is constantly fluctuating within a certain error range, typically an error range of several meters. The reason why the position information from the GPS receiver fluctuates is known to those in the same industry and will not be described in detail, but it is caused by changes in the surrounding environment, changes in the ionospheric conditions, and the like. Therefore, even if the measurement is performed at the same measurement points MP1 to MP7 each time, the position information output of the position information receiver GPS1 may always fluctuate by about several meters. Further, in actual operation, the transportation means VE1 is typically an automobile such as a truck, and even if it is said that the measurement is performed at the same point, the measurement point is actually measured at a place deviated by several meters. It is possible that it will end up. On the other hand, in the environmental measurement system which is the target of the present invention, there is almost no problem in practical use even if the measurement points differ by several meters. For the above reasons, if it is within a range of several meters, it is necessary to treat it as data at the same measurement point.
For example, in the technology used in the navigation system installed in a car, it is assumed that the car basically moves on the road after comparing the map data and the reception position information and adding the speed information. Based on this, the fluctuating GPS position information is corrected. However, in the mobile environment measurement system targeted by the present invention, it is unlikely that the system will move during measurement. Also, the measurement point is not always on the road. Further, most of the measurement target area MF1 is an area where map data is not prepared, such as in a factory. Therefore, it is difficult to realize the target mobile environment measurement system of the present invention by the above technique.
 移動型環境計測システムを実現するため、本発明では、測定地点定義データベースMA1、サブルーチン又はステップSP11~SP12を実装して、許容範囲を測定地点毎に定義するとともに、サブルーチン又はステップSP11でその定義に基づいて測定地点毎に許容範囲内かの判定を行う事により、上記ターゲットに合致した測定地点へのデータの自動分類を実現する。図6に示すのは、測定地点を定義する本発明に特有なサブルーチン又はステップSP12を実装した例である。測定地点毎に、緯度、経度、及び、許容範囲をユーザが例えば手動で入力して設定する。 In order to realize a mobile environment measurement system, in the present invention, the measurement point definition database MA1, the subroutine or steps SP11 to SP12 are implemented, the allowable range is defined for each measurement point, and the subroutine or step SP11 defines the allowable range. By determining whether the measurement points are within the allowable range based on the above, automatic classification of data to the measurement points matching the target is realized. FIG. 6 shows an example of implementing a subroutine or step SP12 peculiar to the present invention that defines a measurement point. For each measurement point, the user manually inputs and sets the latitude, longitude, and allowable range, for example.
 さらに、本発明では、測定地点未分類データベースSDBXと未分類結果再分類サブルーチン又はステップSP13を実装することで、貴重な計測データを後から救済する手段を提供するところに特徴がある。GPS受信機を使用した事のある同業者には公知であるが、GPS受信機は上述の誤差変動以外にも、周囲環境の影響を受けて、GPS衛星からの位置情報をうまく受信できない場合がある。そこで、測定地点未分類データベースSDBX、及び、未分類結果再分類サブルーチン又はステップSP13を実装することで、せっかく長時間かけて計測した貴重な分析結果が、測定地点未分類となってしまって、捨てられてしまうことを回避できる。 Further, the present invention is characterized in that by implementing the measurement point unclassified database SDBX and the unclassified result reclassification subroutine or step SP13, a means for relieving valuable measurement data later is provided. Although it is well known to those in the same industry who have used GPS receivers, GPS receivers may not be able to receive position information from GPS satellites well due to the influence of the surrounding environment in addition to the above-mentioned error fluctuations. be. Therefore, by implementing the measurement point unclassified database SDBX and the unclassified result reclassification subroutine or step SP13, the valuable analysis results measured over a long period of time become unclassified at the measurement points and are discarded. It is possible to avoid being killed.
 図7に示すのは、このようなデータ救済の目的で実装した、未分類結果再分類サブルーチン又はステップSP13の実装例である。本実装例は、未分類データを例えば手動で分類する例であり、そのユーザインタフェース(RUI1)の実装例である。ユーザインタフェースRUI1において、ユーザは対象とする移動型環境計測ステーションRST1を選択する。次に、例えば手動で分類する日時とその期間RTR1を設定し、その期間の未分類データの帰属先となるべき測定地点(RMP1)を選択する。このようにして、貴重なデータを後から回収可能としている点に特徴がある。 FIG. 7 shows an implementation example of the unclassified result reclassification subroutine or step SP13 implemented for the purpose of such data relief. This implementation example is an example of manually classifying unclassified data, and is an implementation example of the user interface (RUI1). In the user interface RUI1, the user selects the target mobile environment measurement station RST1. Next, for example, the date and time for manual classification and the period RTR1 are set, and the measurement point (RMP1) to which the unclassified data for that period belongs is selected. In this way, it is characterized in that valuable data can be collected later.
 本発明では、データベースに分析結果を登録する際に、タイムスタンプから分析装置の測定時間情報を取り出して、その時刻情報で分析結果をデータベースに登録する点に特徴がある。例えば、これまでの説明では、タイムスタンプとして、各分析装置の捕集時刻情報と計測完了時刻を付加している。このような場合には、このまま捕集時刻を取り出して、データベースの分析結果の時刻として格納すれば良い。これに加えて、タイムスタンプに、データ収集装置LG1で検出した時刻ズレを付加して、データベースに格納する際にソフトウェア処理(SP1)により、分析装置AN1の時刻ズレを修正することにより、データの時刻ズレの補正に活用することで、時刻精度を向上することも可能である。さらに、データ収集装置LG1の内部時計LCLK1、サーバSV1の内部時計SCLK1、ユーザ端末UPC1の内部時計UCLK1に関しては、一般的なNTPにて時刻同期を使用する事が可能である。NTPと併用する事により、データベースに格納された時刻においては、高精度な時刻精度が実現可能である。 The present invention is characterized in that when the analysis result is registered in the database, the measurement time information of the analyzer is taken out from the time stamp and the analysis result is registered in the database with the time information. For example, in the description so far, the collection time information and the measurement completion time of each analyzer are added as time stamps. In such a case, the collection time may be taken out as it is and stored as the time of the analysis result of the database. In addition to this, the time difference detected by the data acquisition device LG1 is added to the time stamp, and when the time difference is stored in the database, the time difference of the analyzer AN1 is corrected by software processing (SP1). It is also possible to improve the time accuracy by using it to correct the time deviation. Further, regarding the internal clock LCLK1 of the data collection device LG1, the internal clock SCLK1 of the server SV1, and the internal clock UCLK1 of the user terminal UPC1, it is possible to use time synchronization by general NTP. By using it together with NTP, it is possible to realize highly accurate time accuracy at the time stored in the database.
 タイムスタンプにデータ収集装置LG1で検出した時刻ズレが付加されている場合、サーバSV1は、データ収集装置LG1から取得した分析結果と、タイムスタンプに付加されていた時刻ズレと、を関連付けてデータベースに登録してもよい。また、サーバSV1は、分析結果と時刻ズレに加えて、データ収集装置LG1が分析装置から分析結果を収集した時刻をさらに関連付けてデータベースに登録してもよい。さらに、サーバSV1は、分析結果に関連付けられた時刻ズレを考慮して、当該時刻ズレと関連付けて登録した分析結果を、同じ時刻に取得した分析結果としてデータベースに登録してもよい。これにより、分析結果とともに取得したタイムスタンプが分析装置毎に異なっていても、取得した分析結果を同時刻の分析結果として認識できる。 When the time deviation detected by the data collection device LG1 is added to the time stamp, the server SV1 associates the analysis result acquired from the data collection device LG1 with the time deviation added to the time stamp to the database. You may register. Further, the server SV1 may register the time when the data collecting device LG1 collects the analysis result from the analysis device in the database in addition to the analysis result and the time difference. Further, the server SV1 may consider the time deviation associated with the analysis result and register the analysis result registered in association with the time deviation in the database as the analysis result acquired at the same time. As a result, even if the time stamp acquired together with the analysis result is different for each analyzer, the acquired analysis result can be recognized as the analysis result at the same time.
 図8に示すのは、本発明で実現される環境計測システムで実際に測定した測定結果例である。図8に示すグラフィカルユーザインタフェースINF3は、分析結果の時間変化をグラフ表示するグラフ表示部DIS1と、分析結果の種類を表示する種類表示部DIS2と、分析結果を取得した測定地点を表示する地点表示部DIS3と、分析結果における分析対象を表示する対象表示部DIS4と、分析結果の表示期間を表示する表示期間表示部DIS5と、を有している。 FIG. 8 shows an example of measurement results actually measured by the environmental measurement system realized by the present invention. The graphical user interface INF3 shown in FIG. 8 has a graph display unit DIS1 that displays the time change of the analysis result as a graph, a type display unit DIS2 that displays the type of the analysis result, and a point display that displays the measurement point from which the analysis result has been acquired. It has a unit DIS3, an object display unit DIS4 for displaying the analysis target in the analysis result, and a display period display unit DIS5 for displaying the display period of the analysis result.
 背景技術にて説明したように、簡単かつ安価に環境計測が実現可能な計測システムが市場で待ち望まれている。しかしながら、現状の分析技術では、単体の分析装置では、大気中の複数の元素、それらの濃度、さらには、風向・風速等の同時計測を一台の分析装置にて実現するのは困難である。このため、複数の分析装置から構成される計測システムが必要となり、複数の分析装置からの分析結果を人手にて収集する必要がある。これに加えて、汚染物質の発生源推定等の用途では、複数の分析装置で得られたデータの時間軸を揃えて集計する事が重要である。しかしながら、複数の分析装置はそれぞれ独立した内部時計を持っており、特に時刻同期を取る仕組みは用意されてない。このため、数日間連続して計測すると、結果、分析装置それぞれの時刻情報がズレてしまって、結果、データの時間軸を揃える集計作業が大変困難なものになってしまう。場合によっては、時刻ズレで、例えば、分析装置の時刻が遅れている場合には、ある特定の時間帯で特定の分析装置から分析結果が存在しない、というような問題も発生してしまう。 As explained in the background technology, there is a long-awaited market for a measurement system that can easily and inexpensively realize environmental measurement. However, with the current analysis technology, it is difficult to realize simultaneous measurement of multiple elements in the atmosphere, their concentrations, wind direction, wind speed, etc. with a single analyzer with a single analyzer. .. Therefore, a measurement system composed of a plurality of analyzers is required, and it is necessary to manually collect the analysis results from the plurality of analyzers. In addition to this, in applications such as estimating the source of pollutants, it is important to align the time axes of the data obtained by multiple analyzers and aggregate them. However, each of the plurality of analyzers has an independent internal clock, and there is no mechanism for synchronizing the time in particular. For this reason, if the measurement is performed continuously for several days, as a result, the time information of each analyzer will be deviated, and as a result, it will be very difficult to perform the aggregation work of aligning the time axis of the data. In some cases, due to a time lag, for example, when the time of the analyzer is delayed, there may be a problem that the analysis result does not exist from the specific analyzer in a specific time zone.
 一般に電子機器に内蔵される時計は、RTC(Real Time Clock)と呼ばれる半導体集積回路で実現される。産業用のPCに使用されるRTCでも、周囲温度が25°Cの一定状態で使用した場合で、1ヶ月で数分のズレを生じてしまう場合がある。一方、環境計測では1回の計測が数週間に及ぶ。さらに、分析結果は、30分単位、1時間単位、2時間単位で、分析装置から出力されるが、分析装置とそれを受け取る側で、数分のズレが生じると、最悪、ある1時間では分析結果があるが、次の1時間では分析結果がない、といったデータ欠損が発生してしまう。このため、たとえ数分のズレでも、計測システムとしては問題になる。 Generally, a clock built in an electronic device is realized by a semiconductor integrated circuit called RTC (Real Time Clock). Even RTCs used in industrial PCs may have a deviation of several minutes in one month when used in a constant ambient temperature of 25 ° C. On the other hand, in environmental measurement, one measurement lasts for several weeks. Further, the analysis result is output from the analyzer in units of 30 minutes, 1 hour, and 2 hours, but if there is a deviation of several minutes between the analyzer and the receiving side, in the worst case, in one hour. There is an analysis result, but there is a data loss such as no analysis result in the next hour. Therefore, even if the deviation is several minutes, it becomes a problem for the measurement system.
 この問題を解決するためには、RTCチップをより高精度なチップに交換するのが一番簡単であるが、このような高精度なRTCチップは高価であり、分析装置、つまりは、計測システムのコストアップにつながるため、好ましい対策ではない。さらに、RTCチップの時刻精度は、周囲温度条件に強く依存するため、何らかの補助的な装置・施設にて、周囲温度を一定とする必要があり、導入コストにのみならず、管理運用コストも跳ね上がってしまう。 The easiest way to solve this problem is to replace the RTC chip with a more accurate chip, but such a high precision RTC chip is expensive and is an analyzer, i.e. a measurement system. This is not a preferable measure because it leads to an increase in cost. Furthermore, since the time accuracy of the RTC chip strongly depends on the ambient temperature conditions, it is necessary to keep the ambient temperature constant in some auxiliary equipment / facility, and not only the introduction cost but also the management and operation cost jumps up. It ends up.
 このようなRTCチップの精度不足・温度依存性に由来する問題を解決するために、PC、サーバ、スマートフォン等では、ネットワーク通信経由で、NTPが広く使用されている。しかしながら、NTPは本発明が対象とする環境計測システムでは使用することができない。これは、NTPでは、基準となる時計を持つ装置をNTPサーバとして、それ以外のPC、スマートフォンをNTPクライアントとして、クライアント側の内部時計をNTPサーバ側の時計に強制的に合わせる。しかし、本計測システムを構成する分析装置では、内部時計の時刻情報が内部の精密な処理を必要とする制御処理に使用されており、結果、計測中に時刻を変えると計測そのものに悪影響を与える恐れがある。このため、NTPを使用せずに、時刻ズレを検出して補正していく方法を提供する必要がある。 In order to solve the problems caused by the lack of accuracy and temperature dependence of the RTC chip, NTP is widely used in PCs, servers, smartphones, etc. via network communication. However, NTP cannot be used in the environmental measurement system targeted by the present invention. In NTP, the device having the reference clock is used as the NTP server, the other PCs and smartphones are used as the NTP client, and the internal clock on the client side is forcibly set to the clock on the NTP server side. However, in the analyzers that make up this measurement system, the time information of the internal clock is used for control processing that requires precise internal processing, and as a result, changing the time during measurement adversely affects the measurement itself. There is a fear. Therefore, it is necessary to provide a method for detecting and correcting the time difference without using NTP.
 この時刻ズレの課題以外にも、環境計測システムの実現にあたっては、多地点の計測が可能な計測システムを安価に提供する必要がある。例えば、環境汚染物質の抑制には、複数の測定地点にて継続的に環境計測して、各測定地点での汚染物質量とその時刻での風向風速等を考慮して、汚染物質の発生源を特定する事が必要不可欠である。しかしながら、現状の環境計測システムでは、高価な分析装置が測定地点分だけ必要になる。計測システム全体の導入コストから、複数地点での計測は実用上困難である。安価で実現可能な方法を提供する必要がある。 In addition to the problem of this time difference, in order to realize an environmental measurement system, it is necessary to provide a measurement system capable of measuring multiple points at low cost. For example, in order to control environmental pollutants, the environment is continuously measured at multiple measurement points, and the amount of pollutants at each measurement point and the wind direction and speed at that time are taken into consideration, and the source of the pollutants. It is essential to identify. However, the current environmental measurement system requires expensive analyzers for the measurement points. Due to the introduction cost of the entire measurement system, it is practically difficult to measure at multiple points. There is a need to provide an inexpensive and feasible method.
 上記にて説明した本発明に係るシステムでは、上記の課題を解決して、複数の分析装置に時刻のズレが生じた場合にも、人手で計測データを編集・整理しなくても自動で扱うことができる。また、高価な分析装置を複数導入する事なしに、環境汚染物質の発生源推定等に使用可能な複数地点での環境計測システムを実現する方法を提供できる。 The system according to the present invention described above solves the above-mentioned problems and automatically handles measurement data even if the time shift occurs in a plurality of analyzers without manually editing and organizing the measurement data. be able to. Further, it is possible to provide a method for realizing an environmental measurement system at a plurality of points that can be used for estimating the source of environmental pollutants without introducing a plurality of expensive analyzers.
2.他の実施形態
 以上、本発明の複数の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 例えば、図4のフローチャートに示す各ステップの順番及び/又は処理内容は、発明の要旨を逸脱しない範囲で変更できる。
2. 2. Other Embodiments Although the plurality of embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. In particular, the plurality of embodiments and modifications described herein can be arbitrarily combined as needed.
For example, the order and / or processing content of each step shown in the flowchart of FIG. 4 can be changed without departing from the gist of the invention.
 (A)例えば、分析結果に含まれるデータ(例えば、各元素の含有量)について上限値及び/又は下限値を設けて、これら上限値/下限値を超えたときに警告を通知するようにしてもよい。 (A) For example, an upper limit value and / or a lower limit value are set for the data included in the analysis result (for example, the content of each element), and a warning is notified when the upper limit value / lower limit value is exceeded. May be good.
 (B)例えば、第1の分析器SAN1にて特定の粒子状物質PMのβ線強度の取得を終了した時刻と、第2の分析器SAN2にて当該特定の粒子状物質PMについての蛍光X線データの取得を終了した時刻と、の差(遅延時間と呼ぶ)に基づいて、捕集フィルタ11の捕集領域が第1位置P1から第2位置P2までかかる時間を算出できる。 (B) For example, the time when the acquisition of the β-ray intensity of the specific particulate matter PM is completed by the first analyzer SAN1 and the fluorescence X of the specific particulate matter PM by the second analyzer SAN2. Based on the difference (called a delay time) from the time when the acquisition of the line data is completed, the time required for the collection area of the collection filter 11 from the first position P1 to the second position P2 can be calculated.
 (C)分析装置AN1における1回あたりの捕集フィルタ11の捕集領域の移動量をDIS/nとした場合には、遅延時間を粒子状物質PMの捕集時間で割ることにより上記の「n」値を算出でき、その結果、1回あたりの捕集フィルタ11の捕集領域の移動量を算出できる。なお、捕集時間は、例えば、粒子状物質PMの捕集を開始した時刻と終了した時刻との差から算出できる。 (C) When the movement amount of the collection area of the collection filter 11 in the analyzer AN1 is DIS / n, the delay time is divided by the collection time of the particulate matter PM to obtain the above-mentioned ". The "n" value can be calculated, and as a result, the amount of movement of the collection area of the collection filter 11 per time can be calculated. The collection time can be calculated, for example, from the difference between the time when the collection of the particulate matter PM is started and the time when the collection is finished.
 (D)分析装置から取得したタイムスタンプに含まれる時刻に関する情報とデータ収集装置LG1の内部時計LCLK1が出力する時刻との時刻ズレから出力予定時刻を算出することなく、分析データ等を収集するタイミングを推定してもよい。
 例えば、分析装置が、分析結果の算出が終了した時刻に関する情報を含むタイムスタンプを生成し分析データに付加する一方で、データ収集装置LG1が所定の周期で分析装置が保有するタイムスタンプが更新されたか否かを確認する。
 データ収集装置LG1が、分析装置が保有するタイムスタンプが更新されたときに新たな分析データの算出が終了したと認識し、タイムスタンプが更新されたことを検知したタイミングで当該新たな分析データとそれに付加されたタイムスタンプを収集できる。
(D) Timing for collecting analysis data, etc. without calculating the scheduled output time from the time difference between the time information included in the time stamp acquired from the analyzer and the time output by the internal clock LCLK1 of the data collection device LG1. May be estimated.
For example, while the analyzer generates a time stamp containing information about the time when the calculation of the analysis result is completed and adds it to the analysis data, the time stamp held by the data collection device LG1 is updated at a predetermined cycle. Check if it is.
When the data collection device LG1 recognizes that the calculation of the new analysis data is completed when the time stamp held by the analysis device is updated, and when it detects that the time stamp has been updated, the new analysis data and the new analysis data are used. You can collect the time stamp attached to it.
 (E)タイムスタンプには、分析装置AN1及びデータ収集装置LG1にて用いられている時刻に関する情報のみでなく、分析装置AN2、AN3にて用いられている時刻に関する情報を含んでいてもよい。 (E) The time stamp may include not only information on the time used in the analyzer AN1 and the data acquisition device LG1, but also information on the time used in the analyzers AN2 and AN3.
 (F)第1実施形態の移動型環境計測システムMST1には3つの分析装置AN1~AN3が含まれていたが、それ以上の分析装置等の装置が当該システムに含まれていてもよい。この場合であっても、本発明の処理方法に従って、それぞれの分析装置毎に時刻ズレを検出して、それぞれの分析装置の時刻制度を担保することが可能である。 (F) The mobile environment measurement system MST1 of the first embodiment includes three analysis devices AN1 to AN3, but more devices such as analysis devices may be included in the system. Even in this case, according to the processing method of the present invention, it is possible to detect the time lag for each analyzer and secure the time system of each analyzer.
 (G)分析装置に備わる時計の時刻と、データ収集装置LG1に備わる時計の時刻と、の間に所定の時間以上の差異(例えば、1分以上の差異)が発生した場合、データ収集装置LG1は、環境計測システムサーバSV1に、分析装置に備わる時計の時刻とデータ収集装置LG1に備わる時計の時刻との間に所定の時間以上の差異が生じたことの警告を通知してもよい。この警告の通知は、例えば、データ収集装置LG1から環境計測システムサーバSVへ警告メールを送信することで実現できる。これにより、分析装置に備わる時計の時刻と、データ収集装置LG1に備わる時計の時刻と、の間に差異があることを認識して、分析装置の時計及び/又はデータ収集装置LG1の時計を調整できる。 (G) When a difference of a predetermined time or more (for example, a difference of 1 minute or more) occurs between the time of the clock provided in the analyzer and the time of the clock provided in the data collecting device LG1, the data collecting device LG1 May notify the environment measurement system server SV1 of a warning that a difference of a predetermined time or more has occurred between the time of the clock provided in the analyzer and the time of the clock provided in the data collection device LG1. This warning notification can be realized, for example, by sending a warning mail from the data collection device LG1 to the environment measurement system server SV. As a result, recognizing that there is a difference between the time of the clock provided in the analyzer and the time of the clock provided in the data collecting device LG1, the clock of the analyzer and / or the clock of the data collecting device LG1 is adjusted. can.
AN1、AN2、AN3 :分析装置
GPS1:位置情報受信機
MST1:移動型環境計測システム
LG1:データ収集装置
NW1:AN1等の分析器とLG1をMST1内で接続する通信ネットワーク
VE1:MST1の移動手段
MP1~MP7:測定地点
MF1:測定対象エリア
WAN1:通信ネットワーク 
SV1:環境計測システムサーバ
UPC1:ユーザ端末
11:捕集フィルタ
11a:送り出しリール
11b:巻き取りリール
13:捕集部
19:制御部
31:吸引ポンプ
33:排出口
35:吸引口
51:β線源
53:β線検出器
71:X線源
73:検出器
ANIF1:AN1の通信ネットワークインタフェース
AUIF1:AN1のユーザインタフェース
ACLK1:AN1の内部時計
SAN1:AN1内蔵の第1の分析器
SAN2:AN1内蔵の第2の分析器
SDA1:SAN1の分析結果、タイムスタンプを一時的に格納するデータベース
SDA2:SAN2の分析結果、タイムスタンプを一時的に格納するデータベース
LNIF1:LG1の通信ネットワークインタフェース
LUIF1:LG1のユーザインタフェース
LCLK1:LG1の内部時計
LCPUMEM1:LG1の制御処理を実行するマイクロプロセッサ、及び、メモリ
LDB1:MST1から収集したAN1等の分析結果、タイムスタンプ、及び、MST1の位置情報を一時的に格納するデータベース
LDB2:AN1等の分析器の時刻ズレを分析器毎に格納したデータベース
LP1:LG1にて本発明に特有な処理を実行するソフトウェア
LP~LP15:本発明に特有なソフトウェア処理LP1を構成するサブルーチン又はステップ
SNIF1:SV1の通信ネットワークインタフェース
SUIN1:SV1のユーザインタフェース
SCLK1:SV1の内部時計
SCPUMEM1:SV1の通信、データベース制御、表示処理等を実行するマイクロプロセッサ、及び、メモリ
SDB1:LG1から収集した分析結果、タイムスタンプから、測定地点1のみに関係したデータを格納するデータベース
SDB2:LG1から収集した分析結果、タイムスタンプから、測定地点2のみに関係したデータを格納するデータベース
SDB3:LG1から収集した分析結果、タイムスタンプから、測定地点3のみに関係したデータを格納するデータベース
SDBX:LG1から収集した分析結果、タイムスタンプで、どの測定にも分類できないデータを格納するデータベース
SP1:SV1にて本発明に特有な処理を実行するソフトウェア
SP10~SP15:本発明に特有なソフトウェア処理SP1を構成するサブルーチン又はステップ
MA1:本発明に特有なサブルーチン又はステップであるSP12にて定義された測定地点定義を格納したデータベース
SP20~SP26:本発明に特有なソフトウェア処理SP11を構成するサブルーチン又はステップ
RUI1:本発明に特有なソフトウェア処理:再分類処理SP13を例えば手動で実現した場合のユーザインタフェース画面例
RST1: 本発明に特有なユーザインタフェースRUI1において、再分類処理SP13の対象とする環境計測システムを選択する画面
RMP1:本発明に特有なユーザインタフェースRUI1において、再分類処理SP13の再分類対象の期間を設定する画面
RTR1:本発明に特有なユーザインタフェースRUI1において、再分類処理SP13の再分類先の測定地点を選択する画面
B1:本発明に特有なユーザインタフェースRUI1において選択した設定に従って再分類を実行するボタン
INF3:本発明により実現される計測システムにおいて分析装置の結果を表示するグラフの画面例
DIS1:グラフ表示部
DIS2:種類表示部
DIS3:地点表示部
DIS4:対象表示部
DIS5:表示期間表示部
PM:粒子状物質
 
AN1, AN2, AN3: Analyzer GPS1: Position information receiver MST1: Mobile environment measurement system LG1: Data acquisition device NW1: Communication network VE1: MST1 moving means MP1 that connects an analyzer such as AN1 and LG1 in MST1 ~ MP7: Measurement point MF1: Measurement target area WAN1: Communication network
SV1: Environmental measurement system server UPC1: User terminal 11: Collection filter 11a: Delivery reel 11b: Take-up reel 13: Collection unit 19: Control unit 31: Suction pump 33: Discharge port 35: Suction port 51: β radiation source 53: β-ray detector 71: X-ray source 73: Detector ANIF1: AN1 communication network interface AUIF1: AN1 user interface ACLK1: AN1 internal clock SAN1: AN1 built-in first analyzer SAN2: AN1 built-in first Database for temporarily storing analysis results and time stamps of analyzer SDA1: SAN1 of 2 SDA2: Database for temporarily storing analysis results and time stamps of SAN2 LNIF1: Communication network interface of LG1 LUIF1: User interface of LG1 LCLK1 : LG1 internal clock LCPUMEM1: A microprocessor that executes control processing of LG1, memory LDB1: Analysis results of AN1 and the like collected from MST1, time stamps, and a database LDB2 that temporarily stores the position information of MST1: Software LP to LP15 that execute the processing peculiar to the present invention in the database LP1: LG1 that stores the time lag of the analyzer such as AN1: The subroutine or step SNIF1 constituting the software processing LP1 peculiar to the present invention. : SV1 communication network interface SUIN1: SV1 user interface SCLK1: SV1 internal clock SCPUMEM1: Microprocessor that executes SV1 communication, database control, display processing, etc., and analysis results and time stamps collected from memory SDB1: LG1. From the database SDB2: LG1 that stores the data related only to the measurement point 1, the analysis result and time stamp collected from the database SDB3: LG1 that stores the data related only to the measurement point 2. Therefore, the database SP1: SV1 that stores the data related only to the measurement point 3 and stores the data that cannot be classified into any measurement by the analysis result and time stamp collected from LG1 performs the processing peculiar to the present invention. Software to be executed SP10 to SP15: Subordinate or step MA constituting software processing SP1 peculiar to the present invention 1: A database containing a measurement point definition defined in SP12 which is a subroutine or step peculiar to the present invention. SP20 to SP26: Subordinate or step constituting the software process SP11 peculiar to the present invention RUI 1: Software process peculiar to the present invention: User interface screen example when the reclassification process SP13 is manually realized, for example RST1: In the present invention Screen for selecting the environment measurement system to be the target of the reclassification process SP13 in the unique user interface RUI1 RMP1: Screen for setting the period for the reclassification target of the reclassification process SP13 in the user interface RUI1 peculiar to the present invention RTR1: Screen for selecting the measurement point of the reclassification destination of the reclassification process SP13 in the user interface RUI1 peculiar to the present invention B1: Button for executing reclassification according to the settings selected in the user interface RUI1 peculiar to the present invention INF3: The present invention Screen example of a graph that displays the results of the analyzer in the measurement system realized by DIS1: Graph display unit DIS2: Type display unit DIS3: Point display unit DIS4: Target display unit DIS5: Display period display unit PM: Particle-like material

Claims (14)

  1.  第1時計から出力される時刻に従って粒子状物質に関する分析を実行する分析装置と、
     前記第1時計とは独立した第2時計を有し、前記分析装置にて用いられる時刻に関する時刻関連情報と前記第2時計から出力される時刻に関する時刻関連情報との比較結果から得られるズレに基づいて、前記分析装置に関する所定の処理を実行する処理装置と、
     を有する、分析システム。
    An analyzer that performs analysis on particulate matter according to the time output from the first clock,
    It has a second clock independent of the first clock, and the deviation obtained from the comparison result between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. Based on the processing device that executes a predetermined process related to the analyzer,
    Has an analysis system.
  2.  前記処理装置は、所定の時刻毎に前記分析装置にて取得された前記粒子状物質に関する分析データを収集することを前記所定の処理として実行する、請求項1に記載の分析システム。 The analysis system according to claim 1, wherein the processing apparatus executes the collection of analysis data regarding the particulate matter acquired by the analysis apparatus at predetermined time intervals as the predetermined processing.
  3.  前記分析装置は、前記分析データに前記時刻関連情報を付加して前記処理装置に出力する、請求項2に記載の分析システム。 The analysis system according to claim 2, wherein the analysis device adds the time-related information to the analysis data and outputs the time-related information to the processing device.
  4.  前記処理装置は、前記分析データに付加された前記時刻関連情報と前記第2時計から出力される時刻関連情報とに基づいて、前記分析装置にて用いられる時刻と前記第2時計から出力される時刻との時刻ズレを算出する、請求項3に記載の分析システム。 The processing device outputs the time used in the analyzer and the time from the second clock based on the time-related information added to the analysis data and the time-related information output from the second clock. The analysis system according to claim 3, which calculates a time difference from the time.
  5.  前記処理装置は、前記分析装置が前記分析データを出力する出力予定時刻を算出し、
     前記第2時計から出力される時刻が前記出力予定時刻となったタイミングで前記分析装置から前記分析データを収集する、請求項4に記載の分析システム。
    The processing device calculates the scheduled output time at which the analysis device outputs the analysis data, and the processing device calculates the scheduled output time.
    The analysis system according to claim 4, wherein the analysis data is collected from the analyzer at the timing when the time output from the second clock becomes the scheduled output time.
  6.  前記処理装置にて収集された前記分析データと、前記処理装置にて算出された時刻ズレと、を関連付けてデータベースに登録するサーバをさらに備える、請求項4又は5に記載の分析システム。 The analysis system according to claim 4 or 5, further comprising a server that associates the analysis data collected by the processing device with the time difference calculated by the processing device and registers them in a database.
  7.  前記処理装置は、前記ズレに基づいて、前記所定の処理を実行するタイミングを決定する、請求項1~6のいずれかに記載の分析システム。 The analysis system according to any one of claims 1 to 6, wherein the processing apparatus determines a timing for executing the predetermined processing based on the deviation.
  8.  前記分析装置は予め決められた複数の分析地点において前記粒子状物質を分析可能であり、前記粒子状物質に関する分析データは、当該分析データを取得した分析地点毎に分類される、請求項1~7のいずれかに記載の分析システム。 The analyzer can analyze the particulate matter at a plurality of predetermined analysis points, and the analysis data regarding the particulate matter is classified for each analysis point from which the analysis data is acquired, claim 1 to 1. The analysis system according to any one of 7.
  9.  前記分析装置の位置を示す位置情報を取得する位置情報受信機をさらに備え、
     前記分析データを取得した際に前記位置情報受信機が取得した前記位置情報に示される位置が特定の分析地点から所定の許容範囲内にある場合、当該分析データは、当該特定の分析地点で取得されたデータと分類される、請求項8に記載の分析システム。
    A position information receiver for acquiring position information indicating the position of the analyzer is further provided.
    If the position indicated by the position information acquired by the position information receiver when the analysis data is acquired is within a predetermined allowable range from a specific analysis point, the analysis data is acquired at the specific analysis point. The analysis system according to claim 8, which is classified as the data obtained.
  10.  前記分析データを取得した際に前記位置情報受信機にて取得された前記位置情報から前記分析装置の位置が特定できない場合、当該分析データは、データを取得した分析地点が不明である未分類と分類されて保持される、請求項9に記載の分析システム。 If the position of the analyzer cannot be specified from the position information acquired by the position information receiver when the analysis data is acquired, the analysis data is classified as unclassified in which the analysis point from which the data was acquired is unknown. The analytical system of claim 9, which is classified and retained.
  11.  未分類と分類された前記分析データは、前記複数の分析地点のうちのいずれかで取得された分析データとして再分類可能である、請求項10に記載の分析システム。 The analysis system according to claim 10, wherein the analysis data classified as unclassified can be reclassified as analysis data acquired at any of the plurality of analysis points.
  12.  第1時計から出力される時刻に従って粒子状物質に関する分析を実行する分析装置に関する所定の処理を実行する処理装置であって、
     前記第1時計とは独立した第2時計を有し、前記分析装置にて用いられる時刻に関する時刻関連情報と前記第2時計から出力される時刻に関する時刻関連情報とのズレに基づいて、前記分析装置に関する所定の処理を実行する、
     処理装置。
    A processing device that executes predetermined processing related to an analyzer that performs analysis on particulate matter according to the time output from the first clock.
    The analysis has a second clock independent of the first clock, and is based on the difference between the time-related information regarding the time used in the analyzer and the time-related information regarding the time output from the second clock. Performs certain processes related to the device,
    Processing equipment.
  13.  第1時計を有し粒子状物質に関する分析を実行する分析装置と、前記第1時計とは独立した第2時計を有し前記分析装置に関する所定の処理を実行する処理装置と、を備える分析システムにおける分析方法であって、
     前記分析装置が、第1時計から出力される時刻に従って前記粒子状物質に関する分析を実行するステップと、
     前記処理装置が、前記分析装置にて用いられる時刻に関する時刻関連情報と前記第2時計から出力される時刻に関連する時刻関連情報との比較結果から得られるズレに基づいて、前記所定の処理を実行するステップと、
     を備える、分析方法。
    An analysis system including an analyzer having a first clock and performing analysis on particulate matter, and a processing device having a second clock independent of the first clock and performing predetermined processing on the analyzer. It is an analysis method in
    A step in which the analyzer performs an analysis on the particulate matter according to the time output from the first clock.
    The predetermined processing is performed based on the deviation obtained from the comparison result between the time-related information related to the time used in the analyzer and the time-related information related to the time output from the second clock. Steps to perform and
    An analysis method.
  14.  第1時計を有し前記第1時計から出力される時刻に従って粒子状物質に関する分析を実行する分析装置と、前記第1時計とは独立した第2時計を有し前記分析装置に関する所定の処理を実行する処理装置と、を備える分析システムにおける分析方法を前記処理装置に実行させるプログラムであり、
     前記分析方法は、
     前記分析装置にて用いられる時刻に関する時刻関連情報と前記第2時計から出力される時刻に関連する時刻関連情報との比較結果から得られるズレに基づいて、前記所定の処理を実行するステップを有する、
     プログラム。
     
    An analyzer having a first clock and performing analysis on particulate matter according to a time output from the first clock, and a second clock independent of the first clock, performing predetermined processing on the analyzer. It is a program that causes the processing device to execute an analysis method in an analysis system including a processing device to be executed.
    The analysis method is
    It has a step of executing the predetermined process based on the deviation obtained from the comparison result between the time-related information related to the time used in the analyzer and the time-related information related to the time output from the second clock. ,
    program.
PCT/JP2021/037150 2020-10-19 2021-10-07 Analysis system, processing device, analysis method, and program WO2022085468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-175641 2020-10-19
JP2020175641A JP2024012723A (en) 2020-10-19 2020-10-19 Analysis system, processing device, analysis method, and program

Publications (1)

Publication Number Publication Date
WO2022085468A1 true WO2022085468A1 (en) 2022-04-28

Family

ID=81290339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037150 WO2022085468A1 (en) 2020-10-19 2021-10-07 Analysis system, processing device, analysis method, and program

Country Status (2)

Country Link
JP (1) JP2024012723A (en)
WO (1) WO2022085468A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133895A (en) * 2002-08-09 2004-04-30 Matsushita Electric Ind Co Ltd Communication terminal device in pay back system and information processor
JP2012233841A (en) * 2011-05-09 2012-11-29 Seiko Epson Corp Sensor device and sensor system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133895A (en) * 2002-08-09 2004-04-30 Matsushita Electric Ind Co Ltd Communication terminal device in pay back system and information processor
JP2012233841A (en) * 2011-05-09 2012-11-29 Seiko Epson Corp Sensor device and sensor system

Also Published As

Publication number Publication date
JP2024012723A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
Fu et al. Android raw GNSS measurement datasets for precise positioning
US20230273326A1 (en) Inferring vehicle location and movement using sensor data fusion
US8825236B2 (en) Method providing reliability data of long-term predicted orbit data of positioning satellite, apparatus for providing same, and computer program for providing same
US20150228125A1 (en) Test and validation system and method for transportation systems
CN110044377B (en) Vicon-based IMU offline calibration method
TW201234034A (en) Method and system for computing universal hybrid navigation information for a GNSS enabled device
CN112461246A (en) Method and system for fusing multi-source heterogeneous positioning path data
CN106772495A (en) A kind of GNSS differential data Quality Monitoring Control Systems based on terminal positioning result
WO2022085468A1 (en) Analysis system, processing device, analysis method, and program
CN115236715A (en) Fusion positioning method, fusion positioning device, fusion positioning medium and electronic equipment
CN114812595A (en) State early warning method and device for fusion positioning, electronic equipment and storage medium
CN112666820B (en) Time correction method, terminal device, electronic device, and storage medium
CN114384557A (en) Service performance evaluation method and device of satellite-based augmentation system
CN108051003B (en) Personnel pose monitoring method and system
Triviño et al. Variability between Hirst-type pollen traps is reduced by resistance-free flow adjustment
CN109945877B (en) Patrol track generation method and device
CN103743878A (en) Water quality monitoring data processing method and device
KR102102398B1 (en) Apparatus and method for making navigation performance evaluation in real time
CN111986552B (en) Map data quality freshness acquisition method, device and storage medium
Yan et al. The validation and performance assessment of the android smartphone based GNSS/INS Coupled Navigation System
KR101274629B1 (en) Hardware bias calculating system and method
US20210181359A1 (en) Mobile delivery device methods and systems
US20210288726A1 (en) Location accuracy using local transmitters
CN107861975B (en) Method and device for collecting indoor panoramic data, equipment and computer readable medium
CN110044365A (en) A kind of map fast matching method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP