WO2022085399A1 - Therapeutic strategy drafting assistance device - Google Patents

Therapeutic strategy drafting assistance device Download PDF

Info

Publication number
WO2022085399A1
WO2022085399A1 PCT/JP2021/036565 JP2021036565W WO2022085399A1 WO 2022085399 A1 WO2022085399 A1 WO 2022085399A1 JP 2021036565 W JP2021036565 W JP 2021036565W WO 2022085399 A1 WO2022085399 A1 WO 2022085399A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
data
support device
score
planning support
Prior art date
Application number
PCT/JP2021/036565
Other languages
French (fr)
Japanese (ja)
Inventor
祥歩 阿部
知弘 安田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022085399A1 publication Critical patent/WO2022085399A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics

Definitions

  • the present invention relates to a treatment policy planning support device that supports the formulation of a treatment policy suitable for an individual patient.
  • Cancer genomic medicine that selects drugs that are expected to be effective against gene mutations that affect the disease will be launched in Japan in 2019, as opposed to conventional cancer treatments that select drugs based on the organs and pathological conditions in which cancer exists. It became covered by insurance.
  • drugs are selected based on genetic information while referring to the pathway, which is a gene interaction network, as needed, but it requires specialized knowledge to interpret data such as gene mutations and is enormous. It takes time to handle the pathway, which is a mutual network.
  • Patent Document 1 discloses a molecular network analysis support device that efficiently obtains a biologically meaningful route from a pathway that forms a wide and complicated network. Specifically, based on known DBs such as medical literature DB (DataBase), interaction DB, and pharmacological DB, the strength of association with the designated in vivo phenomenon is calculated for each search route in the pathway, and the calculation result is obtained. It is disclosed that the search route related to the designated in vivo phenomenon can be selected by sorting.
  • DBs such as medical literature DB (DataBase), interaction DB, and pharmacological DB
  • Patent Document 1 merely selects a search route related to a designated in vivo phenomenon such as a disease based on known data, and does not reflect the state of the gene in the patient's body. That is, it has not been possible to formulate a treatment policy suitable for each individual patient.
  • an object of the present invention is to provide a treatment policy planning support device capable of supporting the formulation of a treatment policy suitable for an individual patient.
  • the present invention is a treatment policy planning support device that displays data that support the planning of a treatment policy, and gene mutation data or gene expression obtained by analyzing cells at a lesion site of a patient.
  • the data acquisition unit for acquiring the amount data
  • the storage unit for storing the pathway data which is the pathway data representing the sequence between genes in a directed graph, the gene mutation data or the gene expression level data, and the pathway data.
  • the present invention provides an apparatus including a score calculation unit for calculating a gene score indicating the degree of association between a disease and a gene.
  • a treatment policy planning support device capable of supporting the formulation of a treatment policy suitable for an individual patient.
  • FIG. It is a hardware block diagram of the treatment policy planning support device of Example 1.
  • FIG. It is an example of the screen operated in the first embodiment. It is a figure which shows an example of the process flow of Example 1.
  • FIG. It is a figure which shows an example of various data handled in Example 1.
  • FIG. It is a figure explaining an example of a pathway. It is a figure explaining an example of the gene chain extracted from a pathway.
  • This is an example of the output screen of the first embodiment.
  • FIG. This is an example of the output screen of the second embodiment.
  • FIG. This is an example of the screen operated in the third embodiment. It is a figure which shows an example of the process flow of Example 3.
  • FIG. This is an example of the output screen of the third embodiment. This is an example of the output screen of the third embodiment.
  • the treatment policy planning support device 100 is a so-called computer, and is configured by connecting a calculation unit 101, a memory 102, a storage unit 104, and a network adapter 105 so as to be able to transmit and receive signals by a bus 108. Further, the treatment policy planning support device 100 is connected to the cell analyzer 110, the gene database 111, and the drug database 112 via the network adapter 105 and the network 109 so as to be able to send and receive signals, and also to send and receive signals to and from the input unit 106 and the display unit 107. Can be connected.
  • "to be able to send and receive signals” is a state in which signals can be passed to each other or from one to the other, regardless of whether they are wired or wireless, electrically or optically.
  • each part will be described.
  • the calculation unit 101 is a device that executes various operations and controls the operation of each unit, specifically, a CPU (Central Processing Unit) or the like.
  • the arithmetic unit 101 loads the program stored in the storage unit 104 and the data required by the program into the memory 102 and executes the program.
  • the memory 102 stores a program executed by the arithmetic unit 101, the progress of arithmetic processing, and the like.
  • the storage unit 104 is a device for storing a program executed by the arithmetic unit 101 and data necessary for executing the program, and specifically, a recording device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive), or an IC.
  • a recording device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive), or an IC.
  • a device that reads and writes to a recording medium such as a card, SD card, or DVD.
  • Various data such as gene mutation data 401, gene expression level data 402, pathway data 403, and drug data 404 may be stored in advance in the storage unit 104. Examples of these various data will be described later with reference to FIG.
  • Various data including data necessary for program execution may be transmitted and received from a network 109 such as a LAN (Local Area Network).
  • the network adapter 105 is for connecting the treatment policy planning support device 100 to a network 109 such as a LAN, a telephone line, or the Internet.
  • the cell analyzer 110 is an apparatus that analyzes a sample containing a patient's cell and outputs, for example, gene mutation data 401 and gene expression level data 402 as analysis results.
  • the gene database 111 is a database system for storing data related to genes described in known documents and the like, for example, pathway data 403.
  • the drug database 112 is a database system for storing data related to drugs described in known documents and the like, for example, drug data 404.
  • the display unit 107 is a device for displaying the execution result of the program, for example, a liquid crystal display, a touch panel, or the like.
  • the input unit 106 is an operation device in which the operator gives an operation instruction to the treatment policy planning support device 100, and is, for example, a keyboard, a mouse, a touch panel, or the like.
  • the mouse may be another pointing device such as a trackpad or trackball.
  • the touch panel also functions as the input unit 106.
  • the treatment policy planning support device 100 operates by the operator operating the screen displayed on the display unit 107.
  • the setting screen 200 which is an example of the screen operated in the first embodiment, will be described with reference to FIG.
  • the operator sets input data, parameters, and output data using the setting screen 200.
  • the setting screen 200 includes a patient data input unit 201, a gene mutation designation unit 202, a gene expression level designation unit 203, a attenuation rate setting unit 204, a threshold value setting unit 205, a propagation distance setting unit 206, a score selection unit 207, and a setting button 208.
  • the patient data input unit 201 is a box for inputting data related to a patient. For example, a patient ID that identifies a patient is input, and at least one of a gene mutation and a gene expression level, which are data related to a patient's lesion, is input. It is specified. At least one of the data designated by the patient data input unit 201, that is, the gene mutation data 401 and the gene expression level data 402, is read out in the process flow described later. In the setting screen 200 exemplified in FIG. 2, both the gene mutation and the gene expression level are specified.
  • the gene mutation designation unit 202 is a box in which the path to the file related to the gene mutation of the patient is designated, and the gene mutation data 401 is read out based on the path designated by the gene mutation designation unit 202.
  • the gene expression level designation unit 203 is a box in which a path to a file related to the gene expression level of the patient is designated, and the gene expression level data 402 is read out based on the path designated by the gene expression level designation section 203.
  • the attenuation factor setting unit 204 is a box in which the attenuation factor D is set.
  • the attenuation rate D is a parameter indicating the rate at which the influence of the gene mutation is attenuated among the genes of the gene chain contained in the pathway, and a real number of 0 ⁇ D ⁇ 1 is set.
  • the threshold value setting unit 205 is a box in which the threshold value Th, which is a parameter related to the gene expression level, is set. When the gene expression level data 402, for example, the ratio of the gene expression level exceeds the threshold Th, the gene is regarded as an important gene.
  • the propagation distance setting unit 206 is a box in which the propagation distance L is set.
  • the propagation distance L is a parameter indicating an upper limit for the length of the gene chain extracted from the pathway, and a natural number is set.
  • the score selection unit 207 is a check box in which either the gene score or the drug score is selected as the output score.
  • the gene score is a value indicating the degree of association between the disease and each gene.
  • the drug score is a value indicating the degree of association between the disease and each drug. In the setting screen 200 exemplified in FIG. 2, the gene score is selected. The case where the drug score is selected will be described later in Example 2.
  • the setting button 208 is a button that is pressed when various settings on the setting screen 200 are completed. When the setting button 208 is pressed, the flow of processing described below is started.
  • Each processing step may be executed by dedicated hardware using ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the calculation unit 101 reads input data and parameters.
  • the input data is read according to, for example, the path set on the setting screen 200 of FIG. That is, at least one of the gene mutation data 401 and the gene expression level data 402 is read by the calculation unit 101.
  • the gene mutation data 401 includes items such as genes, chromosomes, positions, bases of human standard genomic sequences, patient bases, and types of displacement. That is, the chromosome and position are shown as the location where the gene mutation occurred, and the base before and after the gene mutation and the type of mutation are shown.
  • the gene Gene1 is shown to have a missense mutation in base A to base G at position 4574 of chromosome chr1.
  • the gene expression level data 402 includes a logarithmic item of the ratio of the gene to the expression level. That is, the ratio of the expression level of the gene collected from the tumor cell of the patient to the expression level of the gene collected from the normal cell is calculated, and the logarithmic ratio of the calculated ratio is shown for each gene.
  • the gene Gene1 has a relatively large expression ratio logarithm of 10.29
  • the gene Gene2 has a relatively small expression ratio ratio logarithm of 1.39.
  • the average value of the expression level of the gene collected from the normal cell of a plurality of other patients may be used.
  • the pathway data 403 has edge data and node data.
  • the edge data includes an ID that identifies the edge, a node name connected to the start point of the edge, and a node name connected to the end point of the edge.
  • Node data includes items for node name and node type. Node types include genes and molecules present in vivo. Based on the edge data and the node data, a pathway showing the sequence between genes in a directed graph is constructed.
  • FIG. 5A shows an example of the pathway.
  • the pathway 500 exemplified in FIG. 5A includes seven nodes indicated by circled numbers and eight edges indicated by arrows connecting the nodes. That is, the pathway 500 is configured by connecting the nodes indicated by the circled numbers by the edges indicated by the arrows.
  • the circled numbers are node names for identifying genes, and the direction of the arrow indicates the direction of expression control between genes.
  • the actual pathway is a huge network with tens of thousands of edges and nodes.
  • Drug data 404 includes drug and gene, gene mutation, and evidence level items. That is, the gene to be treated by a drug and the gene mutation are shown together with the level of evidence indicating the reliability of the drug efficacy.
  • the calculation unit 101 extracts all genes satisfying a predetermined condition based on the input data and parameters read in S301, and stores them in the list as important genes. For example, when a gene mutation is specified in the patient data input unit 201 of the setting screen 200, all genes having the mutation are extracted. When the gene expression level is specified in the patient data input unit 201, all genes whose gene expression level ratio exceeds the threshold Th are extracted. When both the gene mutation and the gene expression level are specified, all genes satisfying at least one of the conditions are extracted.
  • the arithmetic unit 101 reads out the first important gene from the list in which the gene extracted in S303 is stored. If no important gene is stored in the list, that is, if nothing is extracted in S302, the processing flow ends.
  • the calculation unit 101 extracts from the pathway a gene chain in which the important gene read out from the list is the most upstream and the length is equal to or less than the propagation distance.
  • a gene chain is a series of nodes and edges in which a node that becomes a starting point and a node that becomes an end point that can be reached by tracing a directed graph from the starting point are arranged in one direction according to the order of appearance when tracing the directed graph.
  • the length of the gene strand is represented by the number of nodes included in the gene strand, and in the gene strand having a length of 1, the start point and the end point are the same node and the edge is not included.
  • the propagation distance is a value set in the propagation distance setting unit 206 of the setting screen 200 exemplified in FIG. 2.
  • FIG. 5B lists all gene strands having the gene with the circled number 1 most upstream and having a length of 5 or less from the pathway 500 exemplified in FIG. 5A. That is, the number of gene chains extracted from the pathway 500 is 12, and those in which the most downstream gene k is any of the circled numbers 1 to 7 are mixed.
  • the calculation unit 101 calculates the gene chain score c (k) in the most downstream gene k for each of the gene chains extracted in S304.
  • the gene chain score c (k) represents the degree of association between the most upstream important gene and the most downstream gene k.
  • the gene strand score c (k) is calculated by, for example, the following equation.
  • a (k) is the importance of mutation in the most downstream gene k
  • b (k) is the ratio of the gene expression level of the most downstream gene k, which may be a logarithm.
  • the mutation importance a (k) is calculated by, for example, the following equation.
  • v j is the j-th mutation of the most upstream important gene i
  • f (v j ) is the score according to the type of mutation
  • e (v j ) is the score according to the relationship of the drug to the disease. be.
  • the score f ( vj ) of each gene mutation is set so as to reflect the scale of the amino acid change caused by the mutation.
  • the types of mutations are missense mutations, silent mutations, nonsense mutations, etc. exemplified in the gene mutation data 401 of FIG. 4, and are given to one mutation.
  • the drug score e (v j ) is set so as to reflect the evidence level of the drug effective for the gene mutation v j .
  • the level of evidence of the drug may be read from the drug data 404 exemplified in FIG.
  • the calculation of the mutation importance a (k) is not limited to the number 2, and the mathematical formula may be modified. If the input data of S301 does not include a gene mutation, the mutation importance a (k) is set to 0 for all genes. Similarly, when the input data does not include the gene expression level, the ratio b (k) of the gene expression level to all genes is 1 if it is not logarithmic and 0 if it is logarithmic.
  • the gene chain score c (k) of a gene chain having an arbitrary length is calculated by, for example, the following formula.
  • n is an arbitrary gene contained in the gene strand
  • L kn is the distance between the gene n and the most downstream gene k
  • a (L kn , D) is a function of the distance L kn and the attenuation factor D.
  • the calculation unit 101 calculates the gene score s (k) in the most downstream gene k by adding the gene chain score c (k) calculated in S305 for each of the most downstream genes k.
  • the gene scores for the gene with the circled number 2 are calculated by adding the gene chain scores of the second and ninth gene chains among the 12 gene chains listed in FIG. 5B. Further, by adding the gene chain scores of the 5th, 6th, and 12th gene chains, the gene score of the gene of the circle number 6 is calculated. That is, for the 12 gene strands listed in FIG. 5B, the gene scores for each gene with circled numbers 1 to 7 are calculated.
  • the calculation unit 101 determines whether or not all of the important genes stored in the list in S302 have been read out. If all the important genes are read from the list, the process proceeds to S309, and if the unread important genes remain, the process is returned to S304 via S308.
  • the calculation unit 101 creates a correspondence table between the gene k and the gene score s (k) and displays it on the display unit 107.
  • the correspondence table it is desirable that the gene scores s (k) are arranged in descending order.
  • the output screen 600 includes a disease cause candidate gene list 601 in which genes are listed in the order in which they are presumed to have a high degree of association with the disease. That is, the disease cause candidate gene list 601 is a correspondence table created in S309, in which genes k are arranged in descending order of the value of the gene score s (k).
  • genes are listed in descending order of relevance to the patient's disease based on at least one of the gene mutation data and the gene expression level data obtained by analyzing the cells at the lesion site of the patient. Will be done.
  • the operator or the like can formulate a treatment policy suitable for each patient by confirming the genes listed in descending order of the degree of association with the disease.
  • Example 1 the calculation of the degree of association between the disease and the gene was described.
  • Example 2 the calculation of the degree of association between the disease and the drug will be described. That is, a doctor or the like who is an operator can select a drug suitable for an individual patient by confirming the degree of association between the disease and the drug. Since the hardware configuration of the second embodiment is the same as that of the first embodiment, the description thereof will be omitted.
  • the calculation unit 101 determines whether or not a drug whose treatment target is the most downstream gene k is in the drug data 404. If there is a drug, the treatment proceeds to S305, and if there is no drug, the treatment proceeds to S307.
  • the calculation unit 101 calculates the drug score s (m) of the drug m by adding the gene chain score c (k) calculated in S305 for each drug m whose treatment target is the most downstream gene k.
  • the gene chain score c (k) calculated in S305 is added to the drug score s (m) of each drug.
  • the calculation unit 101 creates a correspondence table between the drug m and the drug score s (m) and displays it on the display unit 107.
  • the correspondence table it is desirable that the drug scores s (m) are arranged in descending order.
  • the output screen 800 includes a recommended drug list 801 in which the drugs are listed in descending order of relevance to the disease. That is, the recommended drug list 801 is a correspondence table created in S703, in which the drugs m are arranged in descending order of the value of the drug score s (m).
  • the recommended drug list 801 may include a column displaying a target gene, which is a gene targeted for treatment by the drug m.
  • the drugs are listed in descending order of relevance to the patient's disease. Will be done. The operator or the like can select a drug suitable for each patient by checking the drugs listed in descending order of the degree of relevance to the disease.
  • Example 1 and Example 2 it was described that the gene score and the drug score are calculated by using the pathway data as it is.
  • Pathway data is a mixture of highly reliable interactions and unreliable interactions with insufficient evidence.
  • the literature on regulation between genes is increasing day by day, and new interactions are frequently added or existing interactions are modified. Under such circumstances, the gene score and drug score calculated by the treatment policy planning support device are required to be as robust as possible against local changes in pathway data.
  • Example 3 it will be described that the calculation of the drug score is repeated while randomly invalidating a part of the pathway data to evaluate the robustness of the drug score against the local change of the pathway data. Since the hardware configuration of the third embodiment is the same as that of the first embodiment, the description thereof will be omitted.
  • the setting screen 900 which is an example of the screen operated in the third embodiment, will be described with reference to FIG. 9.
  • the operator sets input data, parameters, and output data using the setting screen 900.
  • an invalidation ratio setting unit 901 and a repetition count setting unit 902 are added to the setting screen 200 of the first embodiment.
  • the invalidation ratio setting unit 901 is a box in which the invalidation ratio C is set.
  • the invalidation ratio C is a parameter indicating the ratio of the number of invalidated edges to the total number of edges included in the pathway, and a value of 0% ⁇ C ⁇ 100% is set.
  • the repetition count setting unit 902 is a box in which the repetition count x is set.
  • the number of repetitions x is the number of times that the drug score is calculated while randomly disabling a part of the pathway. That is, the drug score for the number of times set by the repetition number setting unit 902 is calculated.
  • S301 to S305, S307, S308, S701, and S702 are the same processes as in the second embodiment, the description thereof will be omitted, and they will be replaced with S1001 and S1002 added after S302 and S1003 and S703 added after S307. S1004 will be described.
  • the arithmetic unit 101 repeats the loop from S1001 to S1003 x times.
  • the calculation unit 101 invalidates the edge included in the pathway data by the ratio C. That is, when the number of edges included in the pathway data is N, CN / 100 edges are randomly selected and invalidated. Edge invalidation is a process of removing edges randomly selected from all edges included in the pathway data. For example, if the edge between the circled numbers 4 and 6 is invalidated in the pathway 500 of FIG. 5A, the 5th and 12th gene strands among the gene strands listed in FIG. 5B will not be extracted in S304. As a result, the drug score of the drug for which the gene of the circle number 6 is treated is lowered.
  • the calculation unit 101 creates a correspondence table between the drug m and the average drug score, and displays it on the display unit 107.
  • the average drug score ⁇ y (m) at the time of the number of executions y is calculated by the following equation.
  • the calculated average value is used in the correspondence table between the drug m and the drug score.
  • the standard deviation ⁇ y (m) at the time of the number of executions y of the drug score s y (m) may be calculated by the following equation and displayed for each drug m.
  • the operator or the like can select a drug having a highly robust score. Further, robustness may be evaluated by a value obtained by dividing the average value of the drug score sy (m) by the standard deviation.
  • the output screen 1100 includes a recommended drug list 1101 and a drug score graph 1102 in which drugs are listed in descending order of relevance to the disease.
  • the recommended drug list 1101 is a correspondence table created in S1004, in which the drugs m are arranged in descending order of the average value of the drug scores sy (m).
  • the recommended drug list 1101 may include a display button for displaying a target gene for the drug m and a detailed report.
  • the drug score graph 1102 is displayed as a detailed report on the drug m.
  • the vertical axis is the drug score sy (m) and the horizontal axis is the number of executions y , and the transition of the drug score sy (m) calculated each time the loop from S1001 to S1003 is repeated. Is shown. Since the case where the display button for the drug m1 is pressed is exemplified in FIG. 11, the vertical axis of the drug score graph 1102 is the drug score sy (m1).
  • the drug score graph 1102 may display the ranking between drugs and the value of the drug score.
  • FIG 11 shows an example in which the rank is displayed on the upper side of the data points of the drug score graph 1102 and the value of the drug score is displayed on the lower side. Further, the average value or standard deviation calculated by the equation 4 or 5 may be displayed in the margin of the output screen 1100.
  • FIG. 12 illustrates a screen in which the invalidation edge ID list 1201 is displayed when the cursor is moved to the vicinity of the data point of the drug score graph 1102.
  • the invalidated edge ID list 1201 lists the IDs of the edges that have been invalidated when the number of executions is y. By checking the invalidation edge ID list 1201 and grasping the invalidated edge when the number of executions y, the operator can investigate the cause when the order of the drug of interest is low.
  • the drugs are listed in descending order of the degree of relevance to the patient's disease based on at least one of the gene mutation data and the gene expression level data, as in Example 2.
  • the operator or the like can select a drug suitable for each patient by checking the drugs listed in descending order of the degree of relevance to the disease.
  • the calculation of the drug score is repeated with random invalidation of a part of the pathway data, and the mean value and standard deviation of the calculation result are displayed, so that the robustness of the drug score against local changes in the pathway data can be determined. Can be evaluated.
  • the loop from S1001 to S1003 described in Example 3 is not limited to the calculation of the drug score, and may be applied to the calculation of the gene score described in Example 1.
  • 100 Treatment policy planning support device, 101: Calculation unit, 102: Memory, 104: Storage unit, 105: Network adapter, 106: Input unit, 107: Display unit, 108: Bus, 109: Network, 110: Cell analyzer , 111: Gene database, 112: Drug database, 200: Setting screen, 201: Patient data input unit, 202: Gene mutation specification unit, 203: Gene expression level specification unit, 204: Decrease rate setting unit, 205: Threshold setting unit , 206: Propagation distance setting unit, 207: Score selection unit, 208: Setting button, 401: Gene mutation data, 402: Gene expression level data, 403: Pathway data, 404: Drug data, 500: Pathway, 501: Gene strand , 600: Output screen, 601: Disease cause candidate gene list, 800: Output screen, 801: Recommended drug list, 900: Setting screen, 901: Invalidation ratio setting unit, 902: Repeat count setting unit, 1100: Output screen, 1101: Recommended drug list, 1

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a therapeutic strategy drafting assistance device capable of assisting the drafting of a therapeutic strategy suitable for each patient. The therapeutic strategy drafting assistance device displays data for assisting the drafting of a therapeutic strategy, and is characterized by comprising: a data acquiring unit for acquiring gene mutation data or gene expression level data obtained by analyzing a cell of the site of lesion of a patient; a storage unit for storing pathway data comprising data of a pathway representing a link of genes by a directed graph; and a score calculating unit for calculating, on the basis of the gene mutation data or the gene expression level data and the pathway data, a gene score indicating the relevance between a disease and a gene.

Description

治療方針立案支援装置Treatment policy planning support device
 本発明は、個々の患者に適した治療方針の立案を支援する治療方針立案支援装置に係る。 The present invention relates to a treatment policy planning support device that supports the formulation of a treatment policy suitable for an individual patient.
 がんの存在する臓器や病状をもとに薬剤を選択する従来のがん治療に対し、疾患に影響を及ぼす遺伝子変異に効果の見込まれる薬剤を選択するがんゲノム医療が2019年に日本において保険適用となった。がんゲノム治療では、遺伝子情報に基づき、必要に応じて遺伝子の相互作用ネットワークであるパスウェイを参照しつつ薬剤を選択するが、遺伝子変異等のデータ解釈に専門的な知識を要するとともに、膨大な相互ネットワークであるパスウェイの扱いに時間を要する。 Cancer genomic medicine that selects drugs that are expected to be effective against gene mutations that affect the disease will be launched in Japan in 2019, as opposed to conventional cancer treatments that select drugs based on the organs and pathological conditions in which cancer exists. It became covered by insurance. In cancer genome therapy, drugs are selected based on genetic information while referring to the pathway, which is a gene interaction network, as needed, but it requires specialized knowledge to interpret data such as gene mutations and is enormous. It takes time to handle the pathway, which is a mutual network.
 特許文献1には、広範かつ複雑なネットワークを形成するパスウェイの中から、生物学的に意味のある経路を効率的に得る分子ネットワーク分析支援装置が開示される。具体的には、医学文献DB(Data Base)、相互作用DB、薬理DBといった既知のDBに基づいて、パスウェイの中の探索経路毎に指定生体内現象との関連強度を算出し、算出結果をソートすることで、指定生体内現象に関わる探索経路を選択できることが開示される。 Patent Document 1 discloses a molecular network analysis support device that efficiently obtains a biologically meaningful route from a pathway that forms a wide and complicated network. Specifically, based on known DBs such as medical literature DB (DataBase), interaction DB, and pharmacological DB, the strength of association with the designated in vivo phenomenon is calculated for each search route in the pathway, and the calculation result is obtained. It is disclosed that the search route related to the designated in vivo phenomenon can be selected by sorting.
国際公開2008/102658号公報International Publication No. 2008/102658
 しかしながら特許文献1では、既知のデータに基づいて、疾病等の指定生体内現象に関わる探索経路を選択しているに過ぎず、患者の体内における遺伝子の状態は反映されていない。すなわち、個々の患者に適した治療方針を立案するには至っていない。 However, Patent Document 1 merely selects a search route related to a designated in vivo phenomenon such as a disease based on known data, and does not reflect the state of the gene in the patient's body. That is, it has not been possible to formulate a treatment policy suitable for each individual patient.
 そこで本発明は、個々の患者に適した治療方針の立案を支援可能な治療方針立案支援装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a treatment policy planning support device capable of supporting the formulation of a treatment policy suitable for an individual patient.
 上記目的を達成するために本発明は、治療方針の立案を支援するデータを表示する治療方針立案支援装置であって、患者の病変部位の細胞を分析することによって得られる遺伝子変異データまたは遺伝子発現量データを取得するデータ取得部と、遺伝子間の連なりを有向グラフで表すパスウェイのデータであるパスウェイデータが記憶される記憶部と、前記遺伝子変異データまたは前記遺伝子発現量データと、前記パスウェイデータとに基づいて、疾患と遺伝子との関連度を表す遺伝子スコアを算出するスコア算出部を備えることを特徴とする装置を提供する。 In order to achieve the above object, the present invention is a treatment policy planning support device that displays data that support the planning of a treatment policy, and gene mutation data or gene expression obtained by analyzing cells at a lesion site of a patient. The data acquisition unit for acquiring the amount data, the storage unit for storing the pathway data which is the pathway data representing the sequence between genes in a directed graph, the gene mutation data or the gene expression level data, and the pathway data. Based on this, the present invention provides an apparatus including a score calculation unit for calculating a gene score indicating the degree of association between a disease and a gene.
 本発明によれば、個々の患者に適した治療方針の立案を支援可能な治療方針立案支援装置を提供することができる。 According to the present invention, it is possible to provide a treatment policy planning support device capable of supporting the formulation of a treatment policy suitable for an individual patient.
実施例1の治療方針立案支援装置のハードウェア構成図である。It is a hardware block diagram of the treatment policy planning support device of Example 1. FIG. 実施例1において操作される画面の一例である。It is an example of the screen operated in the first embodiment. 実施例1の処理の流れの一例を示す図である。It is a figure which shows an example of the process flow of Example 1. FIG. 実施例1において扱われる各種データの一例を示す図である。It is a figure which shows an example of various data handled in Example 1. FIG. パスウェイの一例について説明する図である。It is a figure explaining an example of a pathway. パスウェイから抽出される遺伝子鎖の一例について説明する図である。It is a figure explaining an example of the gene chain extracted from a pathway. 実施例1の出力画面の一例である。This is an example of the output screen of the first embodiment. 実施例2の処理の流れの一例を示す図である。It is a figure which shows an example of the process flow of Example 2. FIG. 実施例2の出力画面の一例である。This is an example of the output screen of the second embodiment. 実施例3において操作される画面の一例である。It is an example of the screen operated in the third embodiment. 実施例3の処理の流れの一例を示す図である。It is a figure which shows an example of the process flow of Example 3. FIG. 実施例3の出力画面の一例である。This is an example of the output screen of the third embodiment. 実施例3の出力画面の一例である。This is an example of the output screen of the third embodiment.
 以下、添付図面に従って本発明に係る治療方針立案支援装置の好ましい実施例について説明する。なお、以下の説明及び添付図面において、同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, a preferred embodiment of the treatment policy planning support device according to the present invention will be described with reference to the attached drawings. In the following description and the accompanying drawings, components having the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
 図1を用いて実施例の治療方針立案支援装置100のハードウェア構成について説明する。治療方針立案支援装置100は、いわゆるコンピュータであり、演算部101、メモリ102、記憶部104、ネットワークアダプタ105がバス108によって信号送受可能に接続されて構成される。また治療方針立案支援装置100は、ネットワークアダプタ105及びネットワーク109を介して細胞分析装置110や遺伝子データベース111、薬剤データベース112と信号送受可能に接続されるとともに、入力部106及び表示部107とも信号送受可能に接続される。ここで、「信号送受可能に」とは、電気的または光学的に、有線と無線を問わず、相互にあるいは一方から他方へ信号を受け渡しできる状態である。以下、各部について説明する。 The hardware configuration of the treatment policy planning support device 100 of the embodiment will be described with reference to FIG. The treatment policy planning support device 100 is a so-called computer, and is configured by connecting a calculation unit 101, a memory 102, a storage unit 104, and a network adapter 105 so as to be able to transmit and receive signals by a bus 108. Further, the treatment policy planning support device 100 is connected to the cell analyzer 110, the gene database 111, and the drug database 112 via the network adapter 105 and the network 109 so as to be able to send and receive signals, and also to send and receive signals to and from the input unit 106 and the display unit 107. Can be connected. Here, "to be able to send and receive signals" is a state in which signals can be passed to each other or from one to the other, regardless of whether they are wired or wireless, electrically or optically. Hereinafter, each part will be described.
 演算部101は、各種演算を実行するとともに各部の動作を制御する装置であり、具体的にはCPU(Central Processing Unit)等である。演算部101は、記憶部104に格納されるプログラムやプログラムが必要とするデータをメモリ102にロードして実行する。メモリ102には、演算部101が実行するプログラムや演算処理の途中経過等が記憶される。 The calculation unit 101 is a device that executes various operations and controls the operation of each unit, specifically, a CPU (Central Processing Unit) or the like. The arithmetic unit 101 loads the program stored in the storage unit 104 and the data required by the program into the memory 102 and executes the program. The memory 102 stores a program executed by the arithmetic unit 101, the progress of arithmetic processing, and the like.
 記憶部104は演算部101が実行するプログラムやプログラムの実行に必要なデータを格納する装置であり、具体的にはHDD(Hard Disk Drive)やSSD(Solid State Drive)等の記録装置や、ICカード、SDカード、DVD等の記録媒体に読み書きする装置である。記憶部104には、遺伝子変異データ401や遺伝子発現量データ402、パスウェイデータ403、薬剤データ404等の各種データが予め保管されていても良い。これらの各種データの例については図4を用いて後述する。プログラム実行に必要なデータを含む各種データはLAN(Local Area Network)等のネットワーク109から送受信されても良い。 The storage unit 104 is a device for storing a program executed by the arithmetic unit 101 and data necessary for executing the program, and specifically, a recording device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive), or an IC. A device that reads and writes to a recording medium such as a card, SD card, or DVD. Various data such as gene mutation data 401, gene expression level data 402, pathway data 403, and drug data 404 may be stored in advance in the storage unit 104. Examples of these various data will be described later with reference to FIG. Various data including data necessary for program execution may be transmitted and received from a network 109 such as a LAN (Local Area Network).
 ネットワークアダプタ105は、治療方針立案支援装置100をLAN、電話回線、インターネット等のネットワーク109に接続するためのものである。 The network adapter 105 is for connecting the treatment policy planning support device 100 to a network 109 such as a LAN, a telephone line, or the Internet.
 細胞分析装置110は、患者の細胞を含む検体を分析し、例えば遺伝子変異データ401や遺伝子発現量データ402を分析結果として出力する装置である。遺伝子データベース111は、既知の文献等に記載された遺伝子に係るデータ、例えばパスウェイデータ403を保管するデータベースシステムである。薬剤データベース112は、既知の文献等に記載された薬剤に係るデータ、例えば薬剤データ404を保管するデータベースシステムである。 The cell analyzer 110 is an apparatus that analyzes a sample containing a patient's cell and outputs, for example, gene mutation data 401 and gene expression level data 402 as analysis results. The gene database 111 is a database system for storing data related to genes described in known documents and the like, for example, pathway data 403. The drug database 112 is a database system for storing data related to drugs described in known documents and the like, for example, drug data 404.
 表示部107は、プログラムの実行結果等が表示される装置であり、例えば液晶ディスプレイやタッチパネル等である。入力部106は、操作者が治療方針立案支援装置100に対して操作指示を行う操作デバイスであり、例えばキーボードやマウス、タッチパネル等である。マウスはトラックパッドやトラックボールなどの他のポインティングデバイスであっても良い。また表示部107がタッチパネルである場合には、タッチパネルが入力部106としても機能する。治療方針立案支援装置100は、表示部107に表示される画面を操作者が操作することによって動作する。 The display unit 107 is a device for displaying the execution result of the program, for example, a liquid crystal display, a touch panel, or the like. The input unit 106 is an operation device in which the operator gives an operation instruction to the treatment policy planning support device 100, and is, for example, a keyboard, a mouse, a touch panel, or the like. The mouse may be another pointing device such as a trackpad or trackball. When the display unit 107 is a touch panel, the touch panel also functions as the input unit 106. The treatment policy planning support device 100 operates by the operator operating the screen displayed on the display unit 107.
 図2を用いて、実施例1において操作される画面の一例である設定画面200について説明する。操作者は、設定画面200を用いて、入力データやパラメータ、出力データを設定する。設定画面200は、患者データ入力部201、遺伝子変異指定部202、遺伝子発現量指定部203、減衰率設定部204、閾値設定部205、伝搬距離設定部206、スコア選択部207、設定ボタン208を有する。 The setting screen 200, which is an example of the screen operated in the first embodiment, will be described with reference to FIG. The operator sets input data, parameters, and output data using the setting screen 200. The setting screen 200 includes a patient data input unit 201, a gene mutation designation unit 202, a gene expression level designation unit 203, a attenuation rate setting unit 204, a threshold value setting unit 205, a propagation distance setting unit 206, a score selection unit 207, and a setting button 208. Have.
 患者データ入力部201は、患者に係るデータを入力するボックスであり、例えば患者を特定する患者IDが入力されるとともに、患者の病変に係るデータである遺伝子変異と遺伝子発現量との少なくとも一方が指定される。患者データ入力部201に指定されたデータ、すなわち遺伝子変異データ401と遺伝子発現量データ402の少なくとも一方が後述する処理の流れにおいて読み出される。図2に例示される設定画面200では、遺伝子変異と遺伝子発現量との両方が指定されている。 The patient data input unit 201 is a box for inputting data related to a patient. For example, a patient ID that identifies a patient is input, and at least one of a gene mutation and a gene expression level, which are data related to a patient's lesion, is input. It is specified. At least one of the data designated by the patient data input unit 201, that is, the gene mutation data 401 and the gene expression level data 402, is read out in the process flow described later. In the setting screen 200 exemplified in FIG. 2, both the gene mutation and the gene expression level are specified.
 遺伝子変異指定部202は、患者の遺伝子変異に係るファイルへのパスが指定されるボックスであり、遺伝子変異指定部202に指定されたパスに基づいて遺伝子変異データ401が読み出される。遺伝子発現量指定部203は、患者の遺伝子発現量に係るファイルへのパスが指定されるボックスであり、遺伝子発現量指定部203に指定されたパスに基づいて遺伝子発現量データ402が読み出される。 The gene mutation designation unit 202 is a box in which the path to the file related to the gene mutation of the patient is designated, and the gene mutation data 401 is read out based on the path designated by the gene mutation designation unit 202. The gene expression level designation unit 203 is a box in which a path to a file related to the gene expression level of the patient is designated, and the gene expression level data 402 is read out based on the path designated by the gene expression level designation section 203.
 減衰率設定部204は、減衰率Dが設定されるボックスである。減衰率Dは、パスウェイに含まれる遺伝子鎖の遺伝子間において遺伝子変異の影響が減衰する割合を示すパラメータであり、0<D<1の実数が設定される。閾値設定部205は、遺伝子発現量に係るパラメータである閾値Thが設定されるボックスである。遺伝子発現量データ402、例えば遺伝子発現量の比が閾値Thを超える場合、当該遺伝子は重要遺伝子とされる。伝搬距離設定部206は、伝搬距離Lが設定されるボックスである。伝搬距離Lは、パスウェイから抽出される遺伝子鎖の長さに対する上限を示すパラメータであり、自然数が設定される。 The attenuation factor setting unit 204 is a box in which the attenuation factor D is set. The attenuation rate D is a parameter indicating the rate at which the influence of the gene mutation is attenuated among the genes of the gene chain contained in the pathway, and a real number of 0 <D <1 is set. The threshold value setting unit 205 is a box in which the threshold value Th, which is a parameter related to the gene expression level, is set. When the gene expression level data 402, for example, the ratio of the gene expression level exceeds the threshold Th, the gene is regarded as an important gene. The propagation distance setting unit 206 is a box in which the propagation distance L is set. The propagation distance L is a parameter indicating an upper limit for the length of the gene chain extracted from the pathway, and a natural number is set.
 スコア選択部207は、出力スコアとして遺伝子スコアと薬剤スコアのいずれかが選択されるチェックボックスである。遺伝子スコアは、疾患と各遺伝子との関連度を表す値である。薬剤スコアは、疾患と各薬剤との関連度を表す値である。図2に例示される設定画面200では、遺伝子スコアが選択されている。なお、薬剤スコアが選択された場合については、実施例2にて後述される。 The score selection unit 207 is a check box in which either the gene score or the drug score is selected as the output score. The gene score is a value indicating the degree of association between the disease and each gene. The drug score is a value indicating the degree of association between the disease and each drug. In the setting screen 200 exemplified in FIG. 2, the gene score is selected. The case where the drug score is selected will be described later in Example 2.
 設定ボタン208は、設定画面200による各種設定が終了したときに押下されるボタンである。設定ボタン208が押下されると、以下で説明される処理の流れが開始される。 The setting button 208 is a button that is pressed when various settings on the setting screen 200 are completed. When the setting button 208 is pressed, the flow of processing described below is started.
 図3を用いて実施例1の処理の流れの一例について、処理ステップ毎に説明する。以降では、各処理ステップが演算部101によって実行される場合について説明する。なお、各処理ステップは、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等を用いた専用のハードウェアによって実行されても良い。 An example of the processing flow of the first embodiment will be described for each processing step with reference to FIG. Hereinafter, a case where each processing step is executed by the arithmetic unit 101 will be described. Each processing step may be executed by dedicated hardware using ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or the like.
 (S301)
 演算部101は、入力データやパラメータを読み込む。入力データは、例えば図2の設定画面200で設定されたパス等に従って読み込まれる。すなわち、遺伝子変異データ401と遺伝子発現量データ402の少なくとも一方が演算部101によって読み込まれる。
(S301)
The calculation unit 101 reads input data and parameters. The input data is read according to, for example, the path set on the setting screen 200 of FIG. That is, at least one of the gene mutation data 401 and the gene expression level data 402 is read by the calculation unit 101.
 図4を用いて、遺伝子変異データ401と遺伝子発現量データ402、パスウェイデータ403、薬剤データ404の一例について説明する。遺伝子変異データ401には、遺伝子、染色体、位置、ヒト標準ゲノム配列の塩基、患者の塩基、変位の種類の項目が含まれる。すなわち、遺伝子変異があった場所として染色体と位置が示されるとともに、遺伝子変異前後の塩基と、変異の種類が示される。例えば、遺伝子Gene1は、染色体chr1の位置4574において、塩基Aが塩基Gにミスセンス変異したことが示される。 An example of gene mutation data 401, gene expression level data 402, pathway data 403, and drug data 404 will be described with reference to FIG. The gene mutation data 401 includes items such as genes, chromosomes, positions, bases of human standard genomic sequences, patient bases, and types of displacement. That is, the chromosome and position are shown as the location where the gene mutation occurred, and the base before and after the gene mutation and the type of mutation are shown. For example, the gene Gene1 is shown to have a missense mutation in base A to base G at position 4574 of chromosome chr1.
 遺伝子発現量データ402には、遺伝子と発現量の比の対数の項目が含まれる。すなわち、患者の腫瘍細胞から採取された遺伝子の発現量と通常細胞から採取された遺伝子の発現量との比が算出され、算出された比の対数が遺伝子毎に示される。例えば、遺伝子Gene1は発現量の比の対数が10.29と比較的大きく、遺伝子Gene2は発現量の比の対数が1.39と比較的小さいことが示される。なお患者の通常細胞から採取された遺伝子の発現量代わりに、他の複数の患者の通常細胞から採取された遺伝子の発現量の平均値等が用いられても良い。 The gene expression level data 402 includes a logarithmic item of the ratio of the gene to the expression level. That is, the ratio of the expression level of the gene collected from the tumor cell of the patient to the expression level of the gene collected from the normal cell is calculated, and the logarithmic ratio of the calculated ratio is shown for each gene. For example, the gene Gene1 has a relatively large expression ratio logarithm of 10.29, and the gene Gene2 has a relatively small expression ratio ratio logarithm of 1.39. Instead of the expression level of the gene collected from the normal cell of the patient, the average value of the expression level of the gene collected from the normal cell of a plurality of other patients may be used.
 パスウェイデータ403は、エッジデータとノードデータを有する。エッジデータには、エッジを特定するIDとエッジの始点に接続されたノード名、エッジの終点に接続されたノード名の項目が含まれる。ノードデータには、ノード名とノードの種類の項目が含まれる。ノードの種類は、遺伝子、及び生体内に存在する分子を含む。エッジデータ及びノードデータに基づいて、遺伝子間の連なりを有向グラフで表すパスウェイが構成される。 The pathway data 403 has edge data and node data. The edge data includes an ID that identifies the edge, a node name connected to the start point of the edge, and a node name connected to the end point of the edge. Node data includes items for node name and node type. Node types include genes and molecules present in vivo. Based on the edge data and the node data, a pathway showing the sequence between genes in a directed graph is constructed.
 図5Aにパスウェイの一例を示す。図5Aに例示されるパスウェイ500には、丸数字で示される7つのノードと、ノード間を接続する矢印で示される8つのエッジが含まれる。すなわち、丸数字で示されるノードの間が、矢印で示されるエッジによって接続されることにより、パスウェイ500が構成される。なお丸数字は遺伝子を特定するためのノード名であり、矢印の向きは遺伝子間の発現制御の向きを示す。また実際のパスウェイはエッジ、ノードともに数万個にも及ぶ膨大なネットワークである。 Figure 5A shows an example of the pathway. The pathway 500 exemplified in FIG. 5A includes seven nodes indicated by circled numbers and eight edges indicated by arrows connecting the nodes. That is, the pathway 500 is configured by connecting the nodes indicated by the circled numbers by the edges indicated by the arrows. The circled numbers are node names for identifying genes, and the direction of the arrow indicates the direction of expression control between genes. The actual pathway is a huge network with tens of thousands of edges and nodes.
 図4の説明に戻る。薬剤データ404には、薬剤と遺伝子、遺伝子変異、エビデンスレベルの項目が含まれる。すなわち、ある薬剤が治療対象とする遺伝子及び遺伝子変異が、薬効の信頼性を表すエビデンスレベルとともに示される。 Return to the explanation in Fig. 4. Drug data 404 includes drug and gene, gene mutation, and evidence level items. That is, the gene to be treated by a drug and the gene mutation are shown together with the level of evidence indicating the reliability of the drug efficacy.
 (S302)
 演算部101は、S301で読み込まれた入力データやパラメータに基づいて、所定の条件を満たす全遺伝子を抽出し、重要遺伝子としてリストへ格納する。例えば、設定画面200の患者データ入力部201において遺伝子変異が指定された場合には変異がある全ての遺伝子が抽出される。また患者データ入力部201において遺伝子発現量が指定された場合には、遺伝子発現量の比が閾値Thを超える全ての遺伝子が抽出される。なお遺伝子変異と遺伝子発現量の両方が指定された場合には、少なくともいずれかの条件を満たす全ての遺伝子が抽出される。
(S302)
The calculation unit 101 extracts all genes satisfying a predetermined condition based on the input data and parameters read in S301, and stores them in the list as important genes. For example, when a gene mutation is specified in the patient data input unit 201 of the setting screen 200, all genes having the mutation are extracted. When the gene expression level is specified in the patient data input unit 201, all genes whose gene expression level ratio exceeds the threshold Th are extracted. When both the gene mutation and the gene expression level are specified, all genes satisfying at least one of the conditions are extracted.
 (S303)
 演算部101は、S303で抽出された遺伝子が格納されたリストから、先頭の重要遺伝子を読み出す。なおリストの中に重要遺伝子が格納されてなければ、すなわちS302において何も抽出されていなければ、処理の流れは終了となる。
(S303)
The arithmetic unit 101 reads out the first important gene from the list in which the gene extracted in S303 is stored. If no important gene is stored in the list, that is, if nothing is extracted in S302, the processing flow ends.
 (S304)
 演算部101は、リストから読み出された重要遺伝子が最上流であって長さが伝搬距離以下の遺伝子鎖をパスウェイから抽出する。遺伝子鎖とは、始点になるノードと、始点から有向グラフをたどって到達可能な終点になるノードが、有向グラフをたどる際の出現順に合わせて一方向に並ぶノードとエッジの連なりである。なお遺伝子鎖の長さは、遺伝子鎖に含まれるノードの数で表され、長さが1の遺伝子鎖では始点と終点が同じノードであってエッジが含まれない。伝搬距離は、図2に例示される設定画面200の伝搬距離設定部206において設定された値である。
(S304)
The calculation unit 101 extracts from the pathway a gene chain in which the important gene read out from the list is the most upstream and the length is equal to or less than the propagation distance. A gene chain is a series of nodes and edges in which a node that becomes a starting point and a node that becomes an end point that can be reached by tracing a directed graph from the starting point are arranged in one direction according to the order of appearance when tracing the directed graph. The length of the gene strand is represented by the number of nodes included in the gene strand, and in the gene strand having a length of 1, the start point and the end point are the same node and the edge is not included. The propagation distance is a value set in the propagation distance setting unit 206 of the setting screen 200 exemplified in FIG. 2.
 図5Bを用いて、パスウェイから抽出される遺伝子鎖の例について説明する。図5Bには、図5Aに例示されるパスウェイ500から、丸数字1の遺伝子が最上流であって、長さが5以下の遺伝子鎖が全て列挙される。すなわちパスウェイ500から抽出された遺伝子鎖は12個であって、最下流遺伝子kが丸数字1~7のいずれかであるものが混在する。 An example of a gene chain extracted from a pathway will be described with reference to FIG. 5B. FIG. 5B lists all gene strands having the gene with the circled number 1 most upstream and having a length of 5 or less from the pathway 500 exemplified in FIG. 5A. That is, the number of gene chains extracted from the pathway 500 is 12, and those in which the most downstream gene k is any of the circled numbers 1 to 7 are mixed.
 (S305)
 演算部101は、S304で抽出された遺伝子鎖のそれぞれに対して、最下流遺伝子kにおける遺伝子鎖スコアc(k)を算出する。遺伝子鎖スコアc(k)は、最上流にある重要遺伝子と最下流遺伝子kとの関連度を表す。遺伝子鎖の長さが1の場合、遺伝子鎖スコアc(k)は例えば次式によって算出される。
(S305)
The calculation unit 101 calculates the gene chain score c (k) in the most downstream gene k for each of the gene chains extracted in S304. The gene chain score c (k) represents the degree of association between the most upstream important gene and the most downstream gene k. When the length of the gene strand is 1, the gene strand score c (k) is calculated by, for example, the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ここで、a(k)は最下流遺伝子kにおける変異重要度であり、b(k)は最下流遺伝子kの遺伝子発現量の比であり、対数としても良い。変異重要度a(k)は例えば次式によって算出される。 Here, a (k) is the importance of mutation in the most downstream gene k, and b (k) is the ratio of the gene expression level of the most downstream gene k, which may be a logarithm. The mutation importance a (k) is calculated by, for example, the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、vは最上流である重要遺伝子iのj番目の変異、f(v)は変異の種類に応じたスコア、e(v)は薬剤の疾患への関連に応じたスコアである。 Here, v j is the j-th mutation of the most upstream important gene i, f (v j ) is the score according to the type of mutation, and e (v j ) is the score according to the relationship of the drug to the disease. be.
 ヒトの体内では、翻訳と呼ばれる過程で、遺伝子配列に対応して20種類のアミノ酸が生成され、生成されたアミノ酸がたんぱく質へ変化して様々な機能を果たす。変異には、変異の場所によって、配列に対応するアミノ酸を変化させず生体に影響がないサイレント変異や、特定の配列領域の翻訳機能に影響を与えアミノ酸の生成を止めてしまうナンセンス変異等があり、翻訳における変異の影響度はさまざまである。そこで各遺伝子変異のスコアf(v)を、その変異によって生じるアミノ酸の変化の規模が反映されるように設定する。変異の種類は、図4の遺伝子変異データ401に例示されるミスセンス変異やサイレント変異、ナンセンス変異等であり、1つの変異に対して与えられる。また薬剤のスコアe(v)は、遺伝子変異vに有効な薬剤のエビデンスレベルが反映されるように設定される。薬剤のエビデンスレベルは、図4に例示される薬剤データ404から読み出されても良い。 In the human body, 20 kinds of amino acids are produced corresponding to gene sequences in a process called translation, and the produced amino acids are converted into proteins to perform various functions. Mutations include silent mutations that do not change the amino acid corresponding to the sequence and do not affect the living body depending on the location of the mutation, and nonsense mutations that affect the translation function of a specific sequence region and stop the production of amino acids. , The impact of mutations on translation varies. Therefore, the score f ( vj ) of each gene mutation is set so as to reflect the scale of the amino acid change caused by the mutation. The types of mutations are missense mutations, silent mutations, nonsense mutations, etc. exemplified in the gene mutation data 401 of FIG. 4, and are given to one mutation. In addition, the drug score e (v j ) is set so as to reflect the evidence level of the drug effective for the gene mutation v j . The level of evidence of the drug may be read from the drug data 404 exemplified in FIG.
 なお、変異重要度a(k)の算出は数2に限定されず、数式が改変されても良い。またS301の入力データに遺伝子変異が含まれない場合、全ての遺伝子に対して変異重要度a(k)を0とする。同様に、入力データに遺伝子発現量が含まれない場合、全ての遺伝子に対して遺伝子発現量の比b(k)は対数でなければ1、対数であれば0とする。 The calculation of the mutation importance a (k) is not limited to the number 2, and the mathematical formula may be modified. If the input data of S301 does not include a gene mutation, the mutation importance a (k) is set to 0 for all genes. Similarly, when the input data does not include the gene expression level, the ratio b (k) of the gene expression level to all genes is 1 if it is not logarithmic and 0 if it is logarithmic.
 任意の長さを持つ遺伝子鎖の遺伝子鎖スコアc(k)は例えば次式によって算出される。 The gene chain score c (k) of a gene chain having an arbitrary length is calculated by, for example, the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
ここで、nは遺伝子鎖に含まれる任意の遺伝子、Lknは遺伝子nと最下流遺伝子kとの距離、A(Lkn,D)は距離Lknと減衰率Dとの関数である。 Here, n is an arbitrary gene contained in the gene strand, L kn is the distance between the gene n and the most downstream gene k, and A (L kn , D) is a function of the distance L kn and the attenuation factor D.
 数3においてA(Lkn,D)=D^(Lkn)とした場合、0<D<1であるので、変異重要度a(n)の遺伝子鎖スコアc(k)への寄与は距離Lknが長くなるほど小さくなり、距離Lknが短くなるほど大きくなる。なお遺伝子鎖スコアc(k)の算出は数3に限定されず、数式が改変されても良い。 When A (L kn , D) = D ^ (L kn ) in the number 3, since 0 <D <1, the contribution of the mutation importance a (n) to the gene chain score c (k) is a distance. The longer the L kn , the smaller the size, and the shorter the distance L kn , the larger the size. The calculation of the gene chain score c (k) is not limited to the number 3, and the mathematical formula may be modified.
 (S306)
 演算部101は、S305で算出された遺伝子鎖スコアc(k)を最下流遺伝子k毎に加算することによって、最下流遺伝子kにおける遺伝子スコアs(k)を算出する。例えば、図5Bに列挙される12個の遺伝子鎖のうち、2番目と9番目の遺伝子鎖の遺伝子鎖スコアが加算されることにより、丸数字2の遺伝子における遺伝子スコアが算出される。また5番目、6番目、12番目の遺伝子鎖の遺伝子鎖スコアが加算されることにより、丸数字6の遺伝子における遺伝子スコアが算出される。すなわち、図5Bに列挙される12個の遺伝子鎖に対して、丸数字1~7の各遺伝子における遺伝子スコアが算出される。
(S306)
The calculation unit 101 calculates the gene score s (k) in the most downstream gene k by adding the gene chain score c (k) calculated in S305 for each of the most downstream genes k. For example, the gene scores for the gene with the circled number 2 are calculated by adding the gene chain scores of the second and ninth gene chains among the 12 gene chains listed in FIG. 5B. Further, by adding the gene chain scores of the 5th, 6th, and 12th gene chains, the gene score of the gene of the circle number 6 is calculated. That is, for the 12 gene strands listed in FIG. 5B, the gene scores for each gene with circled numbers 1 to 7 are calculated.
 (S307)
 演算部101は、S302でリストに格納された重要遺伝子の全てが読み出された否かを判定する。全ての重要遺伝子がリストから読み出されていればS309へ処理が進められ、読み出されていない重要遺伝子が残っていればS308を介してS304へ処理が戻される。
(S307)
The calculation unit 101 determines whether or not all of the important genes stored in the list in S302 have been read out. If all the important genes are read from the list, the process proceeds to S309, and if the unread important genes remain, the process is returned to S304 via S308.
 (S308)
 演算部101は、S303で抽出された遺伝子が格納されたリストから、次の重要遺伝子を読み出す。
(S308)
The arithmetic unit 101 reads out the next important gene from the list in which the gene extracted in S303 is stored.
 (S309)
 演算部101は、遺伝子kと遺伝子スコアs(k)の対応表を作成し、表示部107に表示させる。なお対応表では、遺伝子スコアs(k)の値が大きい順に並べられることが望ましい。
(S309)
The calculation unit 101 creates a correspondence table between the gene k and the gene score s (k) and displays it on the display unit 107. In the correspondence table, it is desirable that the gene scores s (k) are arranged in descending order.
 図6を用いて、S309において表示される出力画面600の一例について説明する。出力画面600には、疾患との関連度が高いと推測される順に遺伝子が列挙される疾患原因候補遺伝子一覧601が含まれる。すなわち疾患原因候補遺伝子一覧601は、S309において作成された対応表であって、遺伝子スコアs(k)の値が大きい順に遺伝子kが並べられる。 An example of the output screen 600 displayed in S309 will be described with reference to FIG. The output screen 600 includes a disease cause candidate gene list 601 in which genes are listed in the order in which they are presumed to have a high degree of association with the disease. That is, the disease cause candidate gene list 601 is a correspondence table created in S309, in which genes k are arranged in descending order of the value of the gene score s (k).
 以上説明した処理の流れにより、患者の病変部位の細胞を分析することによって得られる遺伝子変異データと遺伝子発現量データとの少なくとも一方に基づいて、患者の疾患との関連度が大きい順に遺伝子が列挙される。操作者である医師等は、疾患との関連度が大きい順に列挙された遺伝子を確認することにより、個々の患者に適した治療方針を立案することができる。 According to the processing flow described above, genes are listed in descending order of relevance to the patient's disease based on at least one of the gene mutation data and the gene expression level data obtained by analyzing the cells at the lesion site of the patient. Will be done. The operator or the like can formulate a treatment policy suitable for each patient by confirming the genes listed in descending order of the degree of association with the disease.
 実施例1では、疾患と遺伝子との関連度を算出することについて説明した。実施例2では、疾患と薬剤との関連度を算出することについて説明する。すなわち操作者である医師等は、疾患と薬剤との関連度を確認することにより、個々の患者に適した薬剤を選択することができる。なお、実施例2のハードウェア構成は実施例1と同じであるので説明を省略する。 In Example 1, the calculation of the degree of association between the disease and the gene was described. In Example 2, the calculation of the degree of association between the disease and the drug will be described. That is, a doctor or the like who is an operator can select a drug suitable for an individual patient by confirming the degree of association between the disease and the drug. Since the hardware configuration of the second embodiment is the same as that of the first embodiment, the description thereof will be omitted.
 図7を用いて、実施例2の処理の流れの一例について説明する。なおS301~S305、S307、S308は実施例1と同じ処理であるので説明を省略し、S304とS305の間に追加されるS701と、S306及びS309と置換されるS702及びS703について説明する。 An example of the processing flow of the second embodiment will be described with reference to FIG. 7. Since S301 to S305, S307, and S308 are the same processes as in the first embodiment, the description thereof will be omitted, and S701 added between S304 and S305 and S702 and S703 replaced with S306 and S309 will be described.
 (S701)
 演算部101は、最下流遺伝子kを治療対象とする薬剤が薬剤データ404の中にあるか否かを判定する。薬剤があればS305へ処理が進められ、薬剤がなければS307へ処理が進められる。なおS305へ処理が進められた場合は、実施例1と同様に、最下流遺伝子kにおける遺伝子鎖スコアc(k)が算出される。またS307へ処理が進められた場合は、遺伝子鎖スコアc(k)が算出されず、c(k)=0となる。
(S701)
The calculation unit 101 determines whether or not a drug whose treatment target is the most downstream gene k is in the drug data 404. If there is a drug, the treatment proceeds to S305, and if there is no drug, the treatment proceeds to S307. When the processing is advanced to S305, the gene chain score c (k) in the most downstream gene k is calculated in the same manner as in Example 1. Further, when the processing is advanced to S307, the gene chain score c (k) is not calculated and c (k) = 0.
 (S702)
 演算部101は、S305で算出された遺伝子鎖スコアc(k)を、最下流遺伝子kを治療対象とする薬剤m毎に加算することによって、薬剤mの薬剤スコアs(m)を算出する。なお最下流遺伝子kを治療対象とする薬剤が複数ある場合には、S305で算出された遺伝子鎖スコアc(k)が各薬剤の薬剤スコアs(m)に加算される。
(S702)
The calculation unit 101 calculates the drug score s (m) of the drug m by adding the gene chain score c (k) calculated in S305 for each drug m whose treatment target is the most downstream gene k. When there are a plurality of drugs for which the most downstream gene k is to be treated, the gene chain score c (k) calculated in S305 is added to the drug score s (m) of each drug.
 (S703)
 演算部101は、薬剤mと薬剤スコアs(m)の対応表を作成し、表示部107に表示させる。なお対応表では、薬剤スコアs(m)の値が大きい順に並べられることが望ましい。
(S703)
The calculation unit 101 creates a correspondence table between the drug m and the drug score s (m) and displays it on the display unit 107. In the correspondence table, it is desirable that the drug scores s (m) are arranged in descending order.
 図8を用いて、S703において表示される出力画面800の一例について説明する。出力画面800には、疾患との関連度が高い順に薬剤が列挙される推薦薬剤一覧801が含まれる。すなわち推薦薬剤一覧801は、S703において作成された対応表であって、薬剤スコアs(m)の値が大きい順に薬剤mが並べられる。なお推薦薬剤一覧801には、薬剤mが治療対象とする遺伝子であるターゲット遺伝子を表示する列が含まれても良い。 An example of the output screen 800 displayed in S703 will be described with reference to FIG. The output screen 800 includes a recommended drug list 801 in which the drugs are listed in descending order of relevance to the disease. That is, the recommended drug list 801 is a correspondence table created in S703, in which the drugs m are arranged in descending order of the value of the drug score s (m). The recommended drug list 801 may include a column displaying a target gene, which is a gene targeted for treatment by the drug m.
 以上説明した処理の流れにより、患者の病変部位の細胞を分析することによって得られる遺伝子変異データと遺伝子発現量データとの少なくとも一方に基づいて、患者の疾患との関連度が大きい順に薬剤が列挙される。操作者である医師等は、疾患との関連度が大きい順に列挙された薬剤を確認することにより、個々の患者に適した薬剤を選択することができる。 Based on at least one of the gene mutation data and gene expression level data obtained by analyzing the cells at the lesion site of the patient according to the processing flow described above, the drugs are listed in descending order of relevance to the patient's disease. Will be done. The operator or the like can select a drug suitable for each patient by checking the drugs listed in descending order of the degree of relevance to the disease.
 実施例1及び実施例2では、パスウェイデータをそのまま利用して、遺伝子スコアや薬剤スコアを算出することについて説明した。パスウェイデータには、確実性が高い相互作用と、十分なエビデンスがなく信頼性の不足している相互作用が混在する。また、遺伝子間の制御に関する文献は日々増加し、新たな相互作用の追加や既存の相互作用の修正が頻繁に生じる。このような状況において、治療方針立案支援装置が算出する遺伝子スコアや薬剤スコアは、パスウェイデータの局所的変化に対して、できる限り頑健であることが要求される。 In Example 1 and Example 2, it was described that the gene score and the drug score are calculated by using the pathway data as it is. Pathway data is a mixture of highly reliable interactions and unreliable interactions with insufficient evidence. In addition, the literature on regulation between genes is increasing day by day, and new interactions are frequently added or existing interactions are modified. Under such circumstances, the gene score and drug score calculated by the treatment policy planning support device are required to be as robust as possible against local changes in pathway data.
 そこで実施例3では、パスウェイデータの一部をランダムに無効化しながら薬剤スコアを算出することを繰り返し、パスウェイデータの局所的変化に対する薬剤スコアの頑健性を評価することについて説明する。なお実施例3のハードウェア構成は実施例1と同じであるので説明を省略する。 Therefore, in Example 3, it will be described that the calculation of the drug score is repeated while randomly invalidating a part of the pathway data to evaluate the robustness of the drug score against the local change of the pathway data. Since the hardware configuration of the third embodiment is the same as that of the first embodiment, the description thereof will be omitted.
 図9を用いて、実施例3において操作される画面の一例である設定画面900について説明する。操作者は、設定画面900を用いて、入力データやパラメータ、出力データを設定する。設定画面900には、実施例1の設定画面200に対して、無効化割合設定部901と繰返し回数設定部902が追加される。 The setting screen 900, which is an example of the screen operated in the third embodiment, will be described with reference to FIG. 9. The operator sets input data, parameters, and output data using the setting screen 900. On the setting screen 900, an invalidation ratio setting unit 901 and a repetition count setting unit 902 are added to the setting screen 200 of the first embodiment.
 無効化割合設定部901は、無効化割合Cが設定されるボックスである。無効化割合Cは、パスウェイに含まれるエッジの全数に対して無効化されるエッジの本数の割合を示すパラメータであり、0%<C<100%の値が設定される。繰返し回数設定部902は、繰返し回数xが設定されるボックスである。繰返し回数xは、パスウェイの一部をランダムに無効化しながら薬剤スコアを算出することを繰り返す回数である。すなわち、繰返し回数設定部902にて設定された回数分の薬剤スコアが算出される。 The invalidation ratio setting unit 901 is a box in which the invalidation ratio C is set. The invalidation ratio C is a parameter indicating the ratio of the number of invalidated edges to the total number of edges included in the pathway, and a value of 0% <C <100% is set. The repetition count setting unit 902 is a box in which the repetition count x is set. The number of repetitions x is the number of times that the drug score is calculated while randomly disabling a part of the pathway. That is, the drug score for the number of times set by the repetition number setting unit 902 is calculated.
 図10を用いて、実施例3の処理の流れの一例について説明する。なおS301~S305、S307、S308、S701、S702は実施例2と同じ処理であるので説明を省略し、S302の後に追加されるS1001及びS1002と、S307の後に追加されるS1003、S703と置換されるS1004について説明する。 An example of the processing flow of the third embodiment will be described with reference to FIG. Since S301 to S305, S307, S308, S701, and S702 are the same processes as in the second embodiment, the description thereof will be omitted, and they will be replaced with S1001 and S1002 added after S302 and S1003 and S703 added after S307. S1004 will be described.
 (S1001)
 演算部101は、S1001からS1003までのループをx回繰り返す。
(S1001)
The arithmetic unit 101 repeats the loop from S1001 to S1003 x times.
 (S1002)
 演算部101は、パスウェイデータに含まれるエッジを割合Cで無効化する。すなわちパスウェイデータに含まれるエッジの本数をNとするとき、C・N/100本のエッジがランダムに選択されて無効化される。エッジの無効化とは、パスウェイデータに含まれる全エッジの中からランダムに選択されたエッジを除去する処理である。例えば図5Aのパスウェイ500において丸数字4と6の間のエッジが無効化されると、S304において図5Bに列挙される遺伝子鎖のうちの5番目と12番目の遺伝子鎖が抽出されなくなる。その結果、丸数字6の遺伝子を治療対象とする薬剤の薬剤スコアが低下する。
(S1002)
The calculation unit 101 invalidates the edge included in the pathway data by the ratio C. That is, when the number of edges included in the pathway data is N, CN / 100 edges are randomly selected and invalidated. Edge invalidation is a process of removing edges randomly selected from all edges included in the pathway data. For example, if the edge between the circled numbers 4 and 6 is invalidated in the pathway 500 of FIG. 5A, the 5th and 12th gene strands among the gene strands listed in FIG. 5B will not be extracted in S304. As a result, the drug score of the drug for which the gene of the circle number 6 is treated is lowered.
 (S1003)
 演算部101は、S1001からS1003までのループがx回繰り返されるまで処理を戻す。なおループが繰り返される毎に薬剤mに対する薬剤スコアs(m)が算出されるので、実行回数yのときに算出される薬剤スコアをs(m)と表記する。
(S1003)
The arithmetic unit 101 returns the process until the loop from S1001 to S1003 is repeated x times. Since the drug score s (m) for the drug m is calculated each time the loop is repeated, the drug score calculated when the number of executions y is expressed as sy (m).
 (S1004)
 演算部101は、薬剤mと平均薬剤スコアの対応表を作成し、表示部107に表示させる。実行回数yの時点での平均薬剤スコアμ(m)は次式によって算出される。
(S1004)
The calculation unit 101 creates a correspondence table between the drug m and the average drug score, and displays it on the display unit 107. The average drug score μ y (m) at the time of the number of executions y is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
算出された平均値は、薬剤mと薬剤スコアの対応表に用いられる。薬剤スコアs(m)の平均値が比較的高い薬剤mを確認することにより、操作者である医師等は個々の患者に適した薬剤を選択することができる。 The calculated average value is used in the correspondence table between the drug m and the drug score. By confirming the drug m having a relatively high average value of the drug score sy (m), the operator or the like can select a drug suitable for each patient.
 さらに薬剤スコアs(m)の実行回数yの時点での標準偏差σ(m)が次式によって算出されて、薬剤m毎に表示されても良い。 Further, the standard deviation σ y (m) at the time of the number of executions y of the drug score s y (m) may be calculated by the following equation and displayed for each drug m.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
薬剤スコアs(m)の標準偏差が比較的小さい薬剤mを確認することにより、操作者である医師等は頑健性の高いスコアが得られた薬剤を選択することができる。また薬剤スコアs(m)の平均値を標準偏差で除した値によって頑健性が評価されても良い。 By confirming the drug m having a relatively small standard deviation of the drug score sy (m), the operator or the like can select a drug having a highly robust score. Further, robustness may be evaluated by a value obtained by dividing the average value of the drug score sy (m) by the standard deviation.
 図11及び図12を用いて、S1004において表示される出力画面1100の一例について説明する。出力画面1100には、疾患との関連度が高い順に薬剤が列挙される推薦薬剤一覧1101と薬剤スコアグラフ1102が含まれる。推薦薬剤一覧1101は、S1004において作成された対応表であって、薬剤スコアs(m)の平均値が大きい順に薬剤mが並べられる。なお推薦薬剤一覧1101には、薬剤mに対するターゲット遺伝子や詳細レポートを表示させるための表示ボタンが含まれても良い。 An example of the output screen 1100 displayed in S1004 will be described with reference to FIGS. 11 and 12. The output screen 1100 includes a recommended drug list 1101 and a drug score graph 1102 in which drugs are listed in descending order of relevance to the disease. The recommended drug list 1101 is a correspondence table created in S1004, in which the drugs m are arranged in descending order of the average value of the drug scores sy (m). The recommended drug list 1101 may include a display button for displaying a target gene for the drug m and a detailed report.
 推薦薬剤一覧1101に含まれる表示ボタンが押下されると、薬剤mに関する詳細レポートとして薬剤スコアグラフ1102が表示される。薬剤スコアグラフ1102は、縦軸が薬剤スコアs(m)、横軸が実行回数yであって、S1001からS1003までのループが繰り返される毎に算出される薬剤スコアs(m)の推移を示す。なお図11には、薬剤m1に対する表示ボタンが押下された場合が例示されるので、薬剤スコアグラフ1102の縦軸は薬剤スコアs(m1)である。なお薬剤スコアグラフ1102には薬剤間の順位と薬剤スコアの値が表示されても良い。図11には、薬剤スコアグラフ1102のデータ点の上側に順位が、下側に薬剤スコアの値が表示された例が示される。さらに、出力画面1100の余白に、数4や数5によって算出される平均値や標準偏差が表示されても良い。 When the display button included in the recommended drug list 1101 is pressed, the drug score graph 1102 is displayed as a detailed report on the drug m. In the drug score graph 1102, the vertical axis is the drug score sy (m) and the horizontal axis is the number of executions y , and the transition of the drug score sy (m) calculated each time the loop from S1001 to S1003 is repeated. Is shown. Since the case where the display button for the drug m1 is pressed is exemplified in FIG. 11, the vertical axis of the drug score graph 1102 is the drug score sy (m1). The drug score graph 1102 may display the ranking between drugs and the value of the drug score. FIG. 11 shows an example in which the rank is displayed on the upper side of the data points of the drug score graph 1102 and the value of the drug score is displayed on the lower side. Further, the average value or standard deviation calculated by the equation 4 or 5 may be displayed in the margin of the output screen 1100.
 図12には、薬剤スコアグラフ1102のデータ点付近にカーソルを移動させたときに、無効化エッジID一覧1201が表示された画面が例示される。無効化エッジID一覧1201には、実行回数yのときに無効化されたエッジのIDが列挙される。操作者は、無効化エッジID一覧1201を確認し、実行回数yのときに無効化されたエッジを把握することにより、関心がある薬剤の順位が低い場合等にその原因を調べることができる。 FIG. 12 illustrates a screen in which the invalidation edge ID list 1201 is displayed when the cursor is moved to the vicinity of the data point of the drug score graph 1102. The invalidated edge ID list 1201 lists the IDs of the edges that have been invalidated when the number of executions is y. By checking the invalidation edge ID list 1201 and grasping the invalidated edge when the number of executions y, the operator can investigate the cause when the order of the drug of interest is low.
 以上説明した処理の流れにより、実施例2と同様に、遺伝子変異データと遺伝子発現量データとの少なくとも一方に基づいて、患者の疾患との関連度が大きい順に薬剤が列挙される。操作者である医師等は、疾患との関連度が大きい順に列挙された薬剤を確認することにより、個々の患者に適した薬剤を選択することができる。さらに薬剤スコアの算出が、パスウェイデータの一部をランダムに無効化することとともに繰り返され、算出結果の平均値や標準偏差が表示されるので、パスウェイデータの局所的変化に対する薬剤スコアの頑健性を評価することができる。なお実施例3で説明したS1001からS1003までのループは、薬剤スコアの算出に限られず、実施例1で説明した遺伝子スコアの算出に適用されても良い。 According to the processing flow described above, the drugs are listed in descending order of the degree of relevance to the patient's disease based on at least one of the gene mutation data and the gene expression level data, as in Example 2. The operator or the like can select a drug suitable for each patient by checking the drugs listed in descending order of the degree of relevance to the disease. Furthermore, the calculation of the drug score is repeated with random invalidation of a part of the pathway data, and the mean value and standard deviation of the calculation result are displayed, so that the robustness of the drug score against local changes in the pathway data can be determined. Can be evaluated. The loop from S1001 to S1003 described in Example 3 is not limited to the calculation of the drug score, and may be applied to the calculation of the gene score described in Example 1.
 以上、本発明の複数の実施例について説明した。本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素を適宜組み合わせても良い。さらに、上記実施形態に示される全構成要素からいくつかの構成要素を削除しても良い。 The plurality of embodiments of the present invention have been described above. The present invention is not limited to the above embodiment, and the components can be modified and embodied without departing from the gist of the invention. Further, a plurality of components disclosed in the above embodiment may be appropriately combined. Further, some components may be deleted from all the components shown in the above embodiment.
100:治療方針立案支援装置、101:演算部、102:メモリ、104:記憶部、105:ネットワークアダプタ、106:入力部、107:表示部、108:バス、109:ネットワーク、110:細胞分析装置、111:遺伝子データベース、112:薬剤データベース、200:設定画面、201:患者データ入力部、202:遺伝子変異指定部、203:遺伝子発現量指定部、204:減衰率設定部、205:閾値設定部、206:伝搬距離設定部、207:スコア選択部、208:設定ボタン、401:遺伝子変異データ、402:遺伝子発現量データ、403:パスウェイデータ、404:薬剤データ、500:パスウェイ、501:遺伝子鎖、600:出力画面、601:疾患原因候補遺伝子一覧、800:出力画面、801:推薦薬剤一覧、900:設定画面、901:無効化割合設定部、902:繰返し回数設定部、1100:出力画面、1101:推薦薬剤一覧、1102:薬剤スコアグラフ、1201:無効化エッジID一覧 100: Treatment policy planning support device, 101: Calculation unit, 102: Memory, 104: Storage unit, 105: Network adapter, 106: Input unit, 107: Display unit, 108: Bus, 109: Network, 110: Cell analyzer , 111: Gene database, 112: Drug database, 200: Setting screen, 201: Patient data input unit, 202: Gene mutation specification unit, 203: Gene expression level specification unit, 204: Decrease rate setting unit, 205: Threshold setting unit , 206: Propagation distance setting unit, 207: Score selection unit, 208: Setting button, 401: Gene mutation data, 402: Gene expression level data, 403: Pathway data, 404: Drug data, 500: Pathway, 501: Gene strand , 600: Output screen, 601: Disease cause candidate gene list, 800: Output screen, 801: Recommended drug list, 900: Setting screen, 901: Invalidation ratio setting unit, 902: Repeat count setting unit, 1100: Output screen, 1101: Recommended drug list, 1102: Drug score graph, 1201: Invalidation edge ID list

Claims (11)

  1.  治療方針の立案を支援するデータを表示する治療方針立案支援装置であって、
     患者の病変部位の細胞を分析することによって得られる遺伝子変異データまたは遺伝子発現量データを取得するデータ取得部と、
     遺伝子間の連なりを有向グラフで表すパスウェイのデータであるパスウェイデータが記憶される記憶部と、
     前記遺伝子変異データまたは前記遺伝子発現量データと、前記パスウェイデータとに基づいて、疾患と遺伝子との関連度を表す遺伝子スコアを算出するスコア算出部を備えることを特徴とする治療方針立案支援装置。
    It is a treatment policy planning support device that displays data that supports the planning of treatment policies.
    A data acquisition unit that acquires gene mutation data or gene expression level data obtained by analyzing cells at the lesion site of a patient,
    A storage unit that stores pathway data, which is pathway data that represents the sequence between genes in a directed graph.
    A treatment policy planning support device comprising a score calculation unit for calculating a gene score indicating the degree of association between a disease and a gene based on the gene mutation data or the gene expression level data and the pathway data.
  2.  請求項1に記載の治療方針立案支援装置であって、
     前記記憶部には、薬剤と前記薬剤が治療対象とする遺伝子とが含まれる薬剤データがさらに記憶され、
     前記スコア算出部は、前記遺伝子変異データまたは前記遺伝子発現量データと、前記パスウェイデータとともに、前記薬剤データに基づいて、疾患と薬剤との関連度を表す薬剤スコアを算出することを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 1.
    The storage unit further stores drug data including the drug and the gene to be treated by the drug.
    The treatment unit is characterized by calculating a drug score indicating the degree of association between a disease and a drug based on the drug data together with the gene mutation data or the gene expression level data and the pathway data. Policy planning support device.
  3.  請求項2に記載の治療方針立案支援装置であって、
     前記薬剤スコアが大きい順に前記薬剤を列挙して表示する表示部をさらに備えることを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 2.
    A treatment policy planning support device further comprising a display unit that lists and displays the drugs in descending order of the drug score.
  4.  請求項1に記載の治療方針立案支援装置であって、
     前記遺伝子スコアが大きい順に前記遺伝子を列挙して表示する表示部をさらに備えることを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 1.
    A treatment policy planning support device further comprising a display unit that lists and displays the genes in descending order of the gene score.
  5.  請求項1に記載の治療方針立案支援装置であって、
     前記スコア算出部は、遺伝子変異が生体に与える影響度を算出し、前記遺伝子スコアの算出に前記影響度を用いることを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 1.
    The score calculation unit is a treatment policy planning support device characterized in that the degree of influence of a gene mutation on a living body is calculated and the degree of influence is used for calculating the gene score.
  6.  請求項1に記載の治療方針立案支援装置であって、
     前記スコア算出部は、前記遺伝子変異データまたは前記遺伝子発現量データによって定められる条件を満たす遺伝子である重要遺伝子が最上流である遺伝子鎖を前記パスウェイデータから抽出し、前記重要遺伝子と前記遺伝子鎖の最下流遺伝子との関連度を表す遺伝子鎖スコアを遺伝子鎖毎に算出し、前記最下流遺伝子が同じ遺伝子である遺伝子鎖の遺伝子鎖スコアを加算することによって前記遺伝子スコアを算出することを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 1.
    The score calculation unit extracts from the pathway data a gene strand in which an important gene, which is a gene satisfying the conditions determined by the gene mutation data or the gene expression level data, is the most upstream, and of the important gene and the gene strand. The feature is that the gene chain score indicating the degree of association with the most downstream gene is calculated for each gene chain, and the gene score is calculated by adding the gene chain scores of the gene chains in which the most downstream gene is the same gene. Treatment policy planning support device.
  7.  請求項1に記載の治療方針立案支援装置であって、
     前記スコア算出部は、前記パスウェイに含まれるエッジの一部をランダムに無効化しながら前記遺伝子スコアの算出を繰り返すことを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 1.
    The score calculation unit is a treatment policy planning support device characterized in that the calculation of the gene score is repeated while randomly invalidating a part of the edge included in the pathway.
  8.  請求項7に記載の治療方針立案支援装置であって、
     前記スコア算出部は、繰り返し算出される前記遺伝子スコアの平均値を算出し、
     前記遺伝子スコアの平均値が大きい順に前記遺伝子を列挙して表示する表示部をさらに備えることを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 7.
    The score calculation unit calculates the average value of the gene scores that are repeatedly calculated.
    A treatment policy planning support device further comprising a display unit that lists and displays the genes in descending order of the average value of the gene scores.
  9.  請求項7に記載の治療方針立案支援装置であって、
     前記スコア算出部は、繰り返し算出される前記遺伝子スコアの標準偏差を算出することを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 7.
    The score calculation unit is a treatment policy planning support device characterized by calculating a standard deviation of the gene score that is repeatedly calculated.
  10.  請求項7に記載の治療方針立案支援装置であって、
     繰り返し算出される前記遺伝子スコアの推移を示すグラフを表示する表示部をさらに備えることを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 7.
    A treatment policy planning support device further comprising a display unit that displays a graph showing a transition of the gene score that is repeatedly calculated.
  11.  請求項10に記載の治療方針立案支援装置であって、
     前記表示部は、前記グラフに無効化されたエッジを表示することを特徴とする治療方針立案支援装置。
    The treatment policy planning support device according to claim 10.
    The display unit is a treatment policy planning support device characterized by displaying an invalidated edge on the graph.
PCT/JP2021/036565 2020-10-23 2021-10-04 Therapeutic strategy drafting assistance device WO2022085399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177895 2020-10-23
JP2020177895A JP7565186B2 (en) 2020-10-23 2020-10-23 Treatment policy planning support device

Publications (1)

Publication Number Publication Date
WO2022085399A1 true WO2022085399A1 (en) 2022-04-28

Family

ID=81289725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036565 WO2022085399A1 (en) 2020-10-23 2021-10-04 Therapeutic strategy drafting assistance device

Country Status (2)

Country Link
JP (1) JP7565186B2 (en)
WO (1) WO2022085399A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513303A (en) * 2013-01-29 2016-05-12 モレキュラー ヘルス ゲーエムベーハー System and method for clinical decision support
JP2018517192A (en) * 2015-03-23 2018-06-28 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Computer-implemented method, computer system, and computer program for evaluating relevance of biological pathways

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513303A (en) * 2013-01-29 2016-05-12 モレキュラー ヘルス ゲーエムベーハー System and method for clinical decision support
JP2018517192A (en) * 2015-03-23 2018-06-28 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Computer-implemented method, computer system, and computer program for evaluating relevance of biological pathways

Also Published As

Publication number Publication date
JP2022069002A (en) 2022-05-11
JP7565186B2 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
Li et al. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
Lakhani et al. Prize-based contests can provide solutions to computational biology problems
Sjölander Phylogenomic inference of protein molecular function: advances and challenges
Brudno et al. Fast and sensitive multiple alignment of large genomic sequences
Le et al. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection
JP2020501240A (en) Methods and systems for predicting DNA accessibility in pan-cancer genomes
Gur et al. The prevalence effect in a laboratory environment: changing the confidence ratings
Razmjou et al. A shortened version of the Western Ontario Rotator Cuff Disability Index: development and measurement properties
García-Godoy et al. Bio-inspired optimization for the molecular docking problem: state of the art, recent results and perspectives
JP4756906B2 (en) Biological simulation system and computer program
Maiga et al. Systematic review to evaluate algorithms for REBOA use in trauma and identify a consensus for patient selection
Cuissart et al. The maximum common substructure as a molecular depiction in a supervised classification context: experiments in quantitative structure/biodegradability relationships
WO2022085399A1 (en) Therapeutic strategy drafting assistance device
CN110246543A (en) The method and computer system of single pattern detection copy number variation are utilized based on two generation sequencing technologies
Xie et al. N-of-1 design and its applications to personalized treatment studies
CN112435712B (en) Method and system for analyzing gene sequencing data
Kjer et al. Structural and evolutionary considerations for multiple sequence alignment of RNA, and the challenges for algorithms that ignore them
Shaw et al. Intermediate topics in biostatistics
JP2023160140A (en) Treatment plan drafting assistance device and treatment plan drafting assistance method
Wilczynski et al. Finding evolutionarily conserved cis-regulatory modules with a universal set of motifs
JP5361683B2 (en) Medical information processing apparatus and program
Huynh-Thu et al. Gene regulatory network inference from systems genetics data using tree-based methods
Burkett et al. Markov chain Monte Carlo sampling of gene genealogies conditional on unphased SNP genotype data
Bale et al. The SKMT algorithm: a method for assessing and comparing underlying protein entanglement
Ulusoy et al. Mutual annotation‐based prediction of protein domain functions with Domain2GO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882540

Country of ref document: EP

Kind code of ref document: A1