WO2022085233A1 - Dental upper jaw model, dental lower jaw model, online consultation method, sale method, remote medical treatment assistance method, dental upper jaw model producing method, dental lower jaw model producing method, and three-dimensional data creation method - Google Patents

Dental upper jaw model, dental lower jaw model, online consultation method, sale method, remote medical treatment assistance method, dental upper jaw model producing method, dental lower jaw model producing method, and three-dimensional data creation method Download PDF

Info

Publication number
WO2022085233A1
WO2022085233A1 PCT/JP2021/019279 JP2021019279W WO2022085233A1 WO 2022085233 A1 WO2022085233 A1 WO 2022085233A1 JP 2021019279 W JP2021019279 W JP 2021019279W WO 2022085233 A1 WO2022085233 A1 WO 2022085233A1
Authority
WO
WIPO (PCT)
Prior art keywords
dental
data
model
image data
artificial
Prior art date
Application number
PCT/JP2021/019279
Other languages
French (fr)
Japanese (ja)
Inventor
元春 宇野澤
慎太郎 笠間
Original Assignee
株式会社 Dental Prediction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Dental Prediction filed Critical 株式会社 Dental Prediction
Priority to JP2022556387A priority Critical patent/JP7406856B2/en
Publication of WO2022085233A1 publication Critical patent/WO2022085233A1/en
Priority to JP2023208854A priority patent/JP2024023623A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Definitions

  • the present invention relates to a dental maxillary model, a dental mandibular model, an online consultation method, a sales method, a remote treatment support method, a dental maxillary model manufacturing method, a dental mandibular model manufacturing method, and a three-dimensional data manufacturing method. Regarding.
  • Implant surgery is surgery to implant an artificial tooth root (dental implant) in the jawbone in place of the lost tooth root. If you are a dentist who has no experience in dental surgery or a dentist who has little experience, just listening to the explanation of dental surgery using an existing upper and lower jaw model from an experienced dentist and studying will actually give the patient I am concerned about performing dental surgery (periodic surgery, implant surgery, oral surgery).
  • the shape of the upper and lower jawbones differs depending on the patient, even if you study using a normal upper and lower jaw model, you should perform dental surgery (periodic surgery, implant surgery, oral surgery) accurately on the upper and lower jawbones of the actual patient. Is not easy. Therefore, it is possible that the dental surgical procedure will fail. Therefore, if the dental upper and lower jaw model of an actual patient can be made with precision and accuracy, the possibility of failure of the dental surgical procedure can be reduced.
  • the exact dental procedure of the actual patient is also suitable for use in dentists' study sessions and surgical training.
  • 3D data three-dimensional data
  • 3D model data can be constructed free of charge with high-performance CAD software even in ordinary households on a study desk, and can be modeled with a 3D printer installed next to a personal computer.
  • digital dentistry computer-aided dental treatment
  • Various embodiments of the present invention provide a method for manufacturing a dental maxilla model, a dental mandible model, a dental maxilla model, and a method for manufacturing a dental mandible model, which can accurately manufacture a model of the maxilla or mandible of an individual patient.
  • the purpose is to do.
  • various aspects of the present invention provide an online consultation method, a sales method, and a remote treatment support method for effectively using a dental upper jaw model or a dental mandibular model by a dentist performing a dental surgical procedure.
  • the purpose is to provide.
  • various aspects of the present invention are intended to provide a method for producing three-dimensional data for manufacturing a dental upper jaw model or a dental lower jaw model with a 3D printer.
  • the purchaser of the dental maxillary model according to any one of the above [1] to [3] sends the dental maxillary model to the dentist designated by the seller of the dental maxillary model by online video communication.
  • An online consultation method characterized by consultation on surgery using a maxillary model.
  • the seller of the dental maxillary model according to any one of the above [1] to [3] asks a person who requests the production of the dental maxillary model to perform an operation using the dental maxillary model.
  • a sales method characterized by selling the dental maxillary model with a recording medium containing a moving image explaining a procedure.
  • a remote treatment support method characterized in that a dentist who wears a surgical field camera and earphones and a dentist designated by the seller of the dental maxillary model gives advice or instructions on the method of surgery by online video communication. .. [7] A mandible with teeth made of resin, The artificial periosteum attached to the mandible and The artificial gingiva attached on the artificial periosteum and A dental mandibular model characterized by having. [8] In the above [7], A dental mandibular model characterized by having an incision line specified in the artificial gingiva.
  • a dental mandible model characterized by having a deletion site region specified in the mandible or the artificial periosteum.
  • the purchaser of the dental mandibular model according to any one of the above [7] to [9] sends the dental mandibular model to the dentist designated by the seller of the dental mandibular model by online video communication.
  • An online consultation method characterized by consultation on surgery using a mandibular model.
  • the seller of the dental mandible model according to any one of the above [7] to [9] asks a person who requests the production of the dental mandible model to perform an operation using the dental mandible model.
  • a sales method characterized by selling the dental mandibular model with a recording medium containing a moving image explaining a procedure.
  • the purchaser of the dental mandibular model according to any one of the above [7] to [9] or the dentist designated by the purchaser performs an operation the purchaser or the purchaser designates it.
  • a remote treatment support method characterized in that a dentist who wears a surgical field camera and earphones and a dentist designated by the seller of the dental mandibular model gives advice or instructions on the method of surgery by online video communication. ..
  • a method for manufacturing a dental maxillary model which comprises a step of clearly indicating an incision line in the artificial gingiva after the step (b).
  • a method for manufacturing a dental maxilla model which comprises a step of clearly indicating a deletion site region on the maxilla or the artificial periosteum after the step (a).
  • the process of constructing data (i) and A method for manufacturing a dental maxillary model which comprises the above. [17]
  • the image data obtained by formatting the medical image of the CT in the step (d) is DICOM data.
  • a method for manufacturing a dental maxillary model wherein the general-purpose image data in the step (g) is OBJ format image data.
  • the step (b) of attaching the artificial periosteum and the artificial gingiva to the mandible A method for manufacturing a dental mandibular model characterized by having.
  • a method for manufacturing a dental mandibular model which comprises a step of clearly indicating an incision line in the artificial gingiva after the step (b).
  • a method for manufacturing a dental mandible model which comprises a step of clearly indicating a deleted site region on the mandible or the artificial periosteum after the step (a).
  • the image data obtained by formatting the medical image of the CT in the step (d) is DICOM data.
  • a method for manufacturing a dental mandibular model, wherein the general-purpose image data in the step (g) is OBJ format image data.
  • the step (h) of deleting unnecessary dust polygons from the general-purpose image data and By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally.
  • a dental maxillary model, a dental maxillary model, a method for manufacturing a dental maxillary model, and a method for manufacturing a dental maxilla model capable of accurately manufacturing a model of the maxilla or mandible of an individual patient. can be provided.
  • a method can be provided.
  • FIG. 1 is an image of an actual patient with 3D data.
  • FIG. 2 is a photograph of a 3D model made of a resin having a hardness similar to that of human bones.
  • FIG. 3 is a photograph showing a state in which the artificial gingiva 13 is attached on the artificial periosteum.
  • FIG. 4 is a photograph showing a state in which the artificial periosteum and the artificial gingiva 13 shown in FIG. 3 are attached to the 3D model shown in FIG.
  • FIG. 5 is an artificial Schneider membrane 14 attached to the 3D model shown in FIG.
  • FIG. 6 is a photograph showing a state in which the artificial Schneider membrane 14 as shown in FIG. 5 is attached to the 3D model to which the artificial gingiva 13 and the artificial periosteum shown in FIG. 4 are attached.
  • FIG. 1 is an image of an actual patient with 3D data.
  • FIG. 2 is a photograph of a 3D model made of a resin having a hardness similar to that of human bones.
  • FIG. 3 is
  • FIG. 7 is a photograph showing a state in which the incision line 15 is clearly shown in the 3D model shown in FIG.
  • FIG. 8 is a diagram showing image data obtained by loading DICOM into image analysis software.
  • FIG. 9 is a diagram showing image data obtained by automatically extracting bones and teeth based on values selected by image analysis software.
  • FIG. 10 is a diagram showing image data obtained by removing parts that hinder the construction of the cervical spine and three-dimensional images, and filling rough parts and cavities using a pen tool and a filling tool. ..
  • FIG. 11 is a diagram showing image data displayed as surface shape data.
  • FIG. 12 is a diagram for explaining the online support system or the Output support system in detail.
  • the 3D Model created from the 3D Printer (printer) of the known technology enables the visualization of hard tissues (bones), and can be used as a surgical practice and research model for residents and young doctors even in clinical medical settings. Is.
  • the patient data obtained by improving the CT technique becomes clearer, and it is possible to create a model that is as close as possible to the morphology of the hard tissue of each patient.
  • FIG. 1 is an image of an actual patient in 3D data (three-dimensional data). Specifically, 3D data representing the maxilla 12 with the teeth 11 is created from the CT data of the actual patient taken at the dental clinic using software known by the dental maxilla modeler, and the 3D data is used. An image as shown in FIG. 1 can be displayed.
  • 3D scanner data intraoral scanner data
  • intraoral scanner data intraoral scanner data
  • the actual patient CT data and 3D scanner data taken at the dental clinic are transmitted from the terminal installed in the dental clinic, and the data is transmitted to the dental upper jaw. It may be acquired by receiving it from the terminal of the creator of the model.
  • DICOM Digital Imaging and Communications in Medical
  • DICOM Digital Imaging and Communications in Medical
  • Segmentation in medical image analysis is to extract a specific region from image data such as DICOM in which a medical image such as CT is formatted based on a CT value or the like.
  • This method means a step of extracting hard tissue (teeth and bones) from image data. This will be described in detail below.
  • the dental maxillary model maker or the dental mandibular model maker
  • installs the image analysis software Fiji is just) imageJ.
  • Load DICOM into image analysis software (Fire->import-> image sequence-> DICOM selection).
  • the image analysis software automatically extracts bones and teeth based on the selected values (image ⁇ adhere ⁇ threshold).
  • the data as shown in FIG. 9 is obtained.
  • the cervical spine and the parts that hinder the construction of the three-dimensional image are deleted from the data extracted from the bone and tooth regions, and the rough parts and cavities are filled by using the pen tool and the filling tool.
  • the data as shown in FIG. 10 is obtained.
  • the brain skull and mandible are separated from one image and stored in TIFF file format (TIFF) respectively (Fire ⁇ save as ⁇ image sequence).
  • TIFF TIFF file format
  • the necessary parts of the pulp and teeth, facial epidermis, airway, etc., which are the nerves of the teeth are displayed independently.
  • TIFF is a kind of encoding format of a bitmap image.
  • 3D model data that is, surface shape data (surface rendering)
  • segmentation extraction of a specific area
  • Rendering 2 plural ⁇ 3D viewer
  • the above “surface rendering” only the surface structure of the target object (that is, the maxillary bone with teeth or the mandibular bone with teeth) is extracted from the superimposition of the obtained tomographic image data.
  • This is a method of image processing for displaying a three-dimensional image, which constructs three-dimensional image data from the extracted data.
  • the above-mentioned “3D viewer” is an application that can display a general 3D file and take a picture by synthesizing a 3D model with a background.
  • the above-mentioned “plugins” refers to software that extends the functions of an application. It is possible to add it individually and upgrade it.
  • the above “STL” is a standard file format for data to be brought to a 3D printer, and the “binary format” is suitable when the data capacity is limited because the data is light.
  • Blender Blender Foundation
  • the STL data is converted into the OBJ format
  • the data format is converted into a state in which it can be read into Zbrush (Pixological Co).
  • the above “Blender” is one of the open source integrated 3DCG software (software for producing 3D computer graphics), and has functions such as 3D modeling, rendering, and digital compositing. ..
  • Blender is a non-profit organization that develops Blender, which is free and open source 3DCG software.
  • the "OBJ format” is one of the file formats of 3D data, and the file format is a simple data format expressing only 3D geometry.
  • the "3D geometry only” is the position of each vertex, the UV position of the vertex of each texture coordinate, the vertex normal, the surface forming each polygon defined as the vertex list, and the texture vertex.
  • Zbrush is 3DCG software for Windows and macOS developed by Pixological. ⁇ It has the feature of being able to engrave (digital engraving) on a PC, so to speak, it enables subjective operations.
  • polygroups is a function that can assign a unique color to a plurality of polygons and combine them into one group. By using polygroups, polygons can be hidden together with a single click, and masks can be applied.
  • Groups sprit is a function of dividing a sub tool for each polygroup. The superposition and alignment of the dentition data from the image data obtained by formatting the medical image of the CT described above and the data of the intraoral scanner (that is, the data of the 3D scanner described above) are based on the CT of Fusion 360 (Autodesk Inc.).
  • the data and the intraoral scanner data are read, and the intraoral scanner data is moved based on the CT data to perform correction and alignment.
  • the intraoral scanner data whose position information has changed is exported by STL and converted into an OBJ file by the above-mentioned method.
  • Fusion 360 is a high-performance cloud 3D CAD software provided by Autodesk. With this software, you can create both 3D models, from geometric shapes to smooth shapes like figures. Necessary data is taken into Zbrusu, unnecessary parts are deleted, and some missing parts are corrected on the same software to construct data for 3D printing (that is, three-dimensional data). In some cases, only one of the unnecessary part may be deleted and the missing part may be corrected.
  • 3D Print Explorer For the finished 3D data, select 3D Print Explorer from Zplugin, export it as STL data, and send it to the 3D printer.
  • Zplugin has a function to automatically search for a complementary file in the plug-in and add it to fpath (a list of directories separated by a colon) using a symbolic link that refers to that file. be.
  • a directory is a special file for grouping files in a computer's file system, and is used for purposes such as organizing and managing files.
  • “3D Print Explorer” is a plug-in that enables direct output from Zbrush of the STL format, which is a file format generally used in 3D printers. As described above, CT data and 3D data from a 3D scanner can be created.
  • the 3D data can be used to display an image as shown in FIG. 1, for example.
  • (4) Effect of method for creating 3D data from DICOM data This method can significantly solve cost problems because it uses freeware and general-purpose software.
  • the software used does not require any special maintenance, and once obtained, the latest version can be downloaded regularly and kept up to date.
  • the complexity associated with operating software it is possible to obtain a lot of information through the Internet from the perspective of using general-purpose software, and the functions actually handled are very limited. Once you learn it, you can easily create a corresponding 3D model.
  • PCs can be supported if there are specifications that allow video editing.
  • the output of 3D data by a 3D printer can be outsourced, so there is no need to purchase it.
  • FIG. 2 is a photograph of a 3D model made of a resin having a hardness similar to that of human bones. Specifically, based on the 3D data (three-dimensional data) of the image shown in FIG. 1, the creator of the dental maxilla model creates a 3D model of the maxilla 12a provided with the teeth 11a made of the above resin by 3D Painter. ..
  • FIG. 3 is a photograph showing an artificial periosteum 16 and an artificial gingiva 13 attached on the maxilla 12a.
  • FIG. 3 shows a state in which the artificial gingiva 13 is attached on the artificial periosteum 16.
  • the material for producing the artificial periosteum is mainly vinyl acetate resin, water is used as a solvent, and if necessary, resin, plasticizer, preservative, filler, surfactant, etc. are mixed. can get.
  • FIG. 4 is a photograph showing a state in which the artificial periosteum (not shown) and the artificial gingiva 13 shown in FIG. 3 are attached to the 3D model shown in FIG.
  • an artificial periosteum and an artificial gingiva 13 whose thickness, strength, and appearance are similar to those of an actual patient's periosteum and gingiva are attached to a 3D model of the maxilla 12a provided with the resin teeth 11a shown in FIG. .
  • the artificial dentin 13 has Gantretz salt as an adhesive force enhancer, CMC sodium as a mucosal adhesive, Karaya rubber or Arabic rubber as a vegetable rubber, Vaseline as an ointment, sodium polyacrylate as a water-absorbing polymer, and a hydrophilic polymer. It is made using polyethylene glycol as.
  • FIG. 5 is an artificial Schneider membrane 14 attached to the 3D model shown in FIG.
  • the artificial Schneider membrane 14 has a thickness, strength, and appearance similar to those of an actual patient's Schneider membrane, and has a thickness of 0.3 to 0.3 mm.
  • the Schneider membrane is a mucous membrane covering the maxillary sinus (cavity) in the maxilla.
  • the maxillary sinus is a cavity that extends inside the maxilla and leads to both sides of the cavity called the nasal cavity that extends from the nostrils.
  • FIG. 6 is a photograph showing a state in which the artificial Schneider membrane 14 as shown in FIG. 5 is attached to the 3D model to which the artificial gingiva 13 and the artificial periosteum shown in FIG. 4 are attached.
  • the artificial Schneider membrane 14 is formed on the maxilla by applying the Schneider membrane material to the maxillary sinus side (opposite to the artificial gingiva 13) of the maxilla.
  • the Schneider membrane material is produced by using vinyl acetate resin as a main component, using water as a solvent, and mixing a resin, a plasticizer, a preservative, a filler, a surfactant and the like as necessary. In this way, a 3D model that accurately reproduces the inside of the maxillary sinus of an actual patient shown in FIG. 6 is produced, and a dental clinic that performs dental surgery (periodic surgery, implant surgery, oral surgery, etc.) on the actual patient.
  • the incision line 15 may be clearly shown on the artificial gingiva 13 with black ink or the like, or after the gingiva is incised, a dental surgical procedure (periodic surgery, implant surgery, oral cavity) may be performed.
  • the area of the deletion site (not shown) of the hole (Window) to be opened in the maxilla for the bone formation necessary for the surgical procedure) may be clearly marked on the maxilla or the artificial gingiva.
  • a navigation system (such as a video explaining the surgical procedure) that is convenient for the dentist to practice surgery may be attached as an option.
  • the dental maxilla model manufactured by the above-mentioned manufacturing method includes a maxilla 12a having teeth 11a made of resin and an artificial Schneider membrane attached to the maxillary sinus side of the maxilla 12a. It has an artificial periosteum attached to the maxilla 12a and an artificial gingiva 13 attached to the artificial periosteum.
  • the dental maxilla model may have an incision line 15 specified in the artificial gingiva 13 or may have a deletion site region (Window) specified in the maxilla or the artificial periosteum. .. This deletion site region is located below the incised artificial gingiva 13 by incising the artificial gingiva 13 along the incision line 15.
  • the CT data of the patient to be shared by the students is transmitted to the creator of the dental maxillary model, and the CT data is used as a 3D printer.
  • the 3D model shown in 2 may be created.
  • 3D data may be created using the data of the 3D scanner.
  • the actual patient CT data and 3D scanner data taken at the dental clinic are installed in the dental clinic in the same manner as the method of manufacturing the dental upper jaw model.
  • the data may be transmitted from the terminal and received by the terminal of the creator of the dental mandibular model.
  • the creator of the dental mandible uses 3D Painter to create a 3D model of the mandible equipped with teeth made of resin similar to the method for manufacturing the dental mandible. To make.
  • an artificial gingiva is produced on the artificial periosteum.
  • the artificial periosteum and the artificial gingiva are attached to the above 3D model in the same manner as in the method of manufacturing the dental maxillary model.
  • a 3D model that accurately reproduces the lower jaw of an actual patient is created, and the 3D model is sent to a dental clinic that performs dental surgery (periodic surgery, implant surgery, oral surgery, etc.) on the actual patient. Therefore, it can be used for actual dental surgical procedures (periodic surgery, implant surgery, oral surgery, etc.).
  • the incision line may be clearly marked on the artificial gingiva with black ink or the like in the same manner as in the manufacturing method of the dental maxillary model, or dental surgery (periodic surgery, implant surgery) after the gingiva is incised.
  • the area of the deletion site of the hole (Window) to be opened in the maxilla for the bone formation necessary for the oral surgery procedure) may be clearly indicated by marking the maxilla or the artificial gingiva.
  • a navigation system (such as a video explaining the surgical procedure) that is convenient for the dentist to practice surgery may be attached as an option.
  • the person who requested the production of the dental mandibular model is attached with a recording medium containing a video explaining the surgical procedure using the dental mandibular model for dentistry.
  • a recording medium containing a video explaining the surgical procedure using the dental mandibular model for dentistry.
  • By watching such a video by the dentist who is the client it is possible to practice surgery efficiently using a dental mandibular model.
  • the dental mandible model manufactured by the above-mentioned manufacturing method has a mandible having teeth made of resin, an artificial periosteum attached to the mandible, and an artificial gingiva attached to the artificial periosteum. There is.
  • the dental mandible model may have an incision line specified in the artificial gingiva, or may have a deletion site region (Window) specified in the mandible or the artificial periosteum.
  • the CT data of the patient to be shared by the students is transmitted to the creator of the dental mandibular model, and the CT data is used in 3D with 3D Painter. You may create a model. By attaching an artificial periosteum and artificial gingiva to the 3D model and sending it to the organizer of the above-mentioned dentist's study session / lecture, it can be useful for the study session or lecture.
  • the dentist can confirm the surgical procedure such as the position of the incision line, the bone deletion site, the Schneider membrane peeling, the bone formation, and the suturing by using SRPM before the operation.
  • a dental maxillary model or a dental mandibular model it can be used to explain the procedure / surgery performed or performed on the patient, and as a result, the patient can easily understand the content of the procedure / surgery. can do.
  • a plurality of CT data of one patient can be reproduced by 3D printer, a plurality of students can practice with the same model in study sessions and surgery classes.
  • ⁇ Online support system In the online support system, the person (User) who purchased the 3D model SRPM of the above-mentioned dental upper jaw model or dental lower jaw model is the dentist who belongs to the seller (seller) of the SRPM, or the dentistry designated by the seller. It is a system to receive consultation and advice on surgery before surgery using 3D model SRPM by online video communication to the doctor. For online video communication, a known technique may be used.
  • ⁇ Autoput support system> In the Output support system, a seminar participant (dentist) who receives an explanation using the 3D model SRPM requests the creation of a 3D model SRPM based on the patient data of the participant's clinic after the seminar, and the 3D model SRPM is used.
  • the purchased seminar participant receives consultation and advice from the dentist who belongs to the SRPM seller (seller) or the dentist designated by the seller using the 3D model SRPM by online video communication. It is a system. This consultation or advice may be a consultation regarding surgery before surgery or other consultation.
  • ⁇ Remote treatment support system The consultant who used the online support system (Autoput support system), or the person who purchased the above-mentioned 3D model SRPM of the dental upper jaw model or the dental lower jaw model (User), will use the surgical field camera and earphones at the time of actual surgery.
  • the online support system it can be supported by a dentist who belongs to the SRPM distributor (seller) or a dentist designated by the distributor.
  • the support content is not only the points of surgery, but also how to respond to accidents during actual surgery, and you can receive consultation and advice in real time.
  • the purchaser of the dental upper jaw model or the dental lower jaw model or the dentist designated by the purchaser performs the operation
  • the purchaser or the dentist designated by the purchaser performs the surgical field camera and earphones.
  • the dentist designated by the seller of the dental mandibular model gives advice or instructions on the method of surgery by online video communication. This makes it possible to receive treatment support from a skilled dentist when performing treatment in a remote location.
  • the clinic or hospital that is the requester requests the seller to produce the above-mentioned 3D model SRPM of the dental maxillary model or the dental mandibular model.
  • the seller may be the company, dentist's clinic or hospital that produces the 3D model SRPM.
  • the seller who received the request creates a 3D model SRPM by the method described above, sends the SRPM to the clinic or hospital that is the requester, and the requester pays the seller to purchase the SRPM. ..
  • the seller may sell the SRPM to the purchaser of the SRPM by attaching a recording medium containing a moving image explaining the surgical procedure using the SRPM.
  • the dentist at the clinic or hospital of the purchaser should use SRPM for preoperative practice and examination of surgical methods, but depending on the case, it is also possible to ask the seller for consultation. be.
  • the requesting (purchaser) dentist will contact the dentist belonging to the seller or the dentist designated by the seller using SRPM via online video communication. Consultation and consultation regarding surgery. This is an online consultation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Medical Informatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Instructional Devices (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

Provided is a dental upper jaw model that enables creation of an upper jaw model of an individual patient with high accuracy. The dental upper jaw model according to one aspect of the present invention has: an upper jaw bone 12a that is provided with teeth 11a made from resin; an artificial Schneiderian membrane attached to the upper jaw cavity side of the upper jaw bone 12a; an artificial periosteum attached to the upper jaw bone 12a; and an artificial gum 13 attached to the artificial periosteum. An incision line 15 may be clearly indicated in the artificial gum 13.

Description

歯科用上顎模型、歯科用下顎模型、オンライン相談方法、販売方法、遠隔治療支援方法、歯科用上顎模型の製造方法、歯科用下顎模型の製造方法、及び3次元的データの作製方法Dental maxillary model, dental mandibular model, online consultation method, sales method, remote treatment support method, dental maxillary model manufacturing method, dental mandibular model manufacturing method, and 3D data production method
 本発明は、歯科用上顎模型、歯科用下顎模型、オンライン相談方法、販売方法、遠隔治療支援方法、歯科用上顎模型の製造方法、歯科用下顎模型の製造方法、及び3次元的データの作製方法に関する。 The present invention relates to a dental maxillary model, a dental mandibular model, an online consultation method, a sales method, a remote treatment support method, a dental maxillary model manufacturing method, a dental mandibular model manufacturing method, and a three-dimensional data manufacturing method. Regarding.
 歯科医院等では、歯周外科、インプラント手術、口腔外科処置等の歯科外科処置が行われている。例えば、インプラント手術については特許文献1に開示されている。
 インプラント手術とは、失われた歯根に代えて顎骨に人工歯根(デンタルインプラント)を埋め込む手術である。
 歯科外科処置の経験が無い歯科医師又は経験が少ない歯科医師の場合、経験豊富な歯科医師から既存の上下顎模型を用いて歯科外科処置の説明を聞いて勉強しただけでは、実際に患者への歯科外科処置(歯周外科、インプラント手術、口腔外科処置)を行うのに不安がある。上下顎骨の形状は患者によって異なるので、通常の上下顎模型を用いて勉強しても、実際の患者の上下顎骨に的確に歯科外科処置(歯周外科、インプラント手術、口腔外科処置)を行うことは簡単ではない。そのため、歯科外科処置に失敗することも有り得る。
 そこで、実際の患者の歯科用上下顎模型を精密で精度良く作ることができれば、歯科外科処置に失敗する可能性を減らすことができる。また、実際の患者の正確な歯科外科処置は、歯科医師たちの勉強会や手術の講習に使用することにも適している。
 実際の患者の歯科用上下顎模型を作る方法としては、その患者のCTデータから3Dデータ(3次元的データ)を作製し、その3Dデータを用いて3Dプリンターによって模型を作ることが考えられる。
 近年は、一般家庭においても勉強机の上で、無償ながら高機能なCADソフトで3Dモデルデータを構築し、パソコン横に設置された3Dプリンターで造形できる時代である。この潮流は歯科領域においてもデジタルデンティストリー(コンピューター支援による歯科治療)という言葉を生み、今や我々歯科医師は日常臨床において大きな恩恵にあずかっている。
 しかし、先端技術に造詣の深い臨床家や研究機関、財政的に余裕のある企業を除き、3Dプリントともなるとまだ手が伸び辛い感は否めない。理由は今回紹介する手法が周知されておらず、3D技術を生業とする企業ベースのコーマーシャルによってコスト及びその操作の煩雑さから未だ一般化には程遠いものとなってしまっているためと推察される。
 従って、3Dプリンターで模型を作製するための3Dデータを作製することが困難であった。
At dental clinics and the like, dental surgical procedures such as periodontal surgery, implant surgery, and oral surgery are performed. For example, implant surgery is disclosed in Patent Document 1.
Implant surgery is surgery to implant an artificial tooth root (dental implant) in the jawbone in place of the lost tooth root.
If you are a dentist who has no experience in dental surgery or a dentist who has little experience, just listening to the explanation of dental surgery using an existing upper and lower jaw model from an experienced dentist and studying will actually give the patient I am worried about performing dental surgery (periodic surgery, implant surgery, oral surgery). Since the shape of the upper and lower jawbones differs depending on the patient, even if you study using a normal upper and lower jaw model, you should perform dental surgery (periodic surgery, implant surgery, oral surgery) accurately on the upper and lower jawbones of the actual patient. Is not easy. Therefore, it is possible that the dental surgical procedure will fail.
Therefore, if the dental upper and lower jaw model of an actual patient can be made with precision and accuracy, the possibility of failure of the dental surgical procedure can be reduced. The exact dental procedure of the actual patient is also suitable for use in dentists' study sessions and surgical training.
As a method of making a dental upper and lower jaw model of an actual patient, it is conceivable to make 3D data (three-dimensional data) from the CT data of the patient and make a model by a 3D printer using the 3D data.
In recent years, it is an era in which 3D model data can be constructed free of charge with high-performance CAD software even in ordinary households on a study desk, and can be modeled with a 3D printer installed next to a personal computer. This trend has also coined the term digital dentistry (computer-aided dental treatment) in the field of dentistry, and we dentists are now enjoying great benefits in daily clinical practice.
However, except for clinicians and research institutes who have a deep knowledge of advanced technology, and companies that can afford it, it is undeniable that 3D printing is still difficult to reach. It is presumed that the reason is that the method introduced this time is not well known, and it is still far from generalization due to the cost and the complexity of its operation due to the company-based commercial that makes 3D technology a living business. To.
Therefore, it was difficult to create 3D data for creating a model with a 3D printer.
特表2017−525407号公報Special Table 2017-525407
 本発明の種々の態様は、個々の患者の上顎又は下顎の模型を精度良く作製できる歯科用上顎模型、歯科用下顎模型、歯科用上顎模型の製造方法、及び歯科用下顎模型の製造方法を提供することを目的とする。
 また、本発明の種々の態様は、歯科用上顎模型又は歯科用下顎模型を、歯科外科処置を行う歯科医師に効果的に利用してもらうためのオンライン相談方法、販売方法及び遠隔治療支援方法を提供することを目的とする。
 また、本発明の種々の態様は、3Dプリンターで歯科用上顎模型又は歯科用下顎模型を製造するための3次元的データの作製方法を提供することを目的とする。
Various embodiments of the present invention provide a method for manufacturing a dental maxilla model, a dental mandible model, a dental maxilla model, and a method for manufacturing a dental mandible model, which can accurately manufacture a model of the maxilla or mandible of an individual patient. The purpose is to do.
In addition, various aspects of the present invention provide an online consultation method, a sales method, and a remote treatment support method for effectively using a dental upper jaw model or a dental mandibular model by a dentist performing a dental surgical procedure. The purpose is to provide.
Further, various aspects of the present invention are intended to provide a method for producing three-dimensional data for manufacturing a dental upper jaw model or a dental lower jaw model with a 3D printer.
 以下に本発明の種々の態様について説明する。
[1]樹脂からなる歯を備えた上顎骨と、
 前記上顎骨の上顎洞側に付着させた人工シュナイダー膜と、
 前記上顎骨に付着させた人工骨膜と、
 前記人工骨膜上に付着させた人工歯肉と、
を有することを特徴とする歯科用上顎模型。
[2]上記[1]において、
 前記人工歯肉に明示された切開線を有することを特徴とする歯科用上顎模型。
[3]上記[1]又は[2]において、
 前記上顎骨又は前記人工骨膜に明示された削除部位領域を有することを特徴とする歯科用上顎模型。
[4]上記[1]から[3]のいずれか一項に記載の歯科用上顎模型の購入者が、前記歯科用上顎模型の販売者が指定する歯科医師にオンラインによるビデオ通信により前記歯科用上顎模型を用いて手術に関する相談をすることを特徴とするオンライン相談方法。
[5]上記[1]から[3]のいずれか一項に記載の歯科用上顎模型の販売者が、前記歯科用上顎模型の作製を依頼した者に、前記歯科用上顎模型を用いて手術手順を説明した動画を格納した記録媒体を付けて前記歯科用上顎模型を販売することを特徴とする販売方法。
[6]上記[1]から[3]のいずれか一項に記載の歯科用上顎模型の購入者又は前記購入者が指定する歯科医師が手術を行う時に、前記購入者又は前記購入者が指定する歯科医師が手術野カメラ及びイヤホンを装着して、オンラインによるビデオ通信により手術の方法を前記歯科用上顎模型の販売者が指定する歯科医師がアドバイス又は指示することを特徴とする遠隔治療支援方法。
[7]樹脂からなる歯を備えた下顎骨と、
 前記下顎骨に付着させた人工骨膜と、
 前記人工骨膜上に付着させた人工歯肉と、
を有することを特徴とする歯科用下顎模型。
[8]上記[7]において、
 前記人工歯肉に明示された切開線を有することを特徴とする歯科用下顎模型。
[9]上記[7]又は[8]において、
 前記下顎骨又は前記人工骨膜に明示された削除部位領域を有することを特徴とする歯科用下顎模型。
[10]上記[7]から[9]のいずれか一項に記載の歯科用下顎模型の購入者が、前記歯科用下顎模型の販売者が指定する歯科医師にオンラインによるビデオ通信により前記歯科用下顎模型を用いて手術に関する相談をすることを特徴とするオンライン相談方法。
[11]上記[7]から[9]のいずれか一項に記載の歯科用下顎模型の販売者が、前記歯科用下顎模型の作製を依頼した者に、前記歯科用下顎模型を用いて手術手順を説明した動画を格納した記録媒体を付けて前記歯科用下顎模型を販売することを特徴とする販売方法。
[12]上記[7]から[9]のいずれか一項に記載の歯科用下顎模型の購入者又は前記購入者が指定する歯科医師が手術を行う時に、前記購入者又は前記購入者が指定する歯科医師が手術野カメラ及びイヤホンを装着して、オンラインによるビデオ通信により手術の方法を前記歯科用下顎模型の販売者が指定する歯科医師がアドバイス又は指示することを特徴とする遠隔治療支援方法。
[13]患者の歯を備えた上顎骨の3次元的データを基に3Dプリンターによって樹脂からなる前記歯を備えた上顎骨を作製する工程(a)と、
 前記上顎骨に人工骨膜と人工歯肉を付着させる工程(b)と、
 前記上顎骨の上顎洞側に人工シュナイダー膜を塗布する工程(c)と、
を有することを特徴とする歯科用上顎模型の製造方法。
[14]上記[13]において、
 前記工程(b)の後に、前記人工歯肉に切開線を明示する工程を有することを特徴とする歯科用上顎模型の製造方法。
[15]上記[13]又は[14]において、
 前記工程(a)の後に、前記上顎骨又は前記人工骨膜に削除部位領域を明示する工程を有することを特徴とする歯科用上顎模型の製造方法。
[16]上記[13]から[15]のいずれか一項において、
 前記工程(a)の前に、
 CTの医用画像をフォーマットした画像データを画像解析ソフトウェアに読み込み、前記画像解析ソフトウェアにおいて歯及び骨の領域を抽出する工程(d)と、
 前記領域を抽出したデータから三次元画像の構築上の妨げとなる部位を削除し、粗な部分や空洞を塗りつぶす工程(e)と、
 前記工程(e)の後の前記領域を抽出したデータの重ね合わせから、前記歯を備えた上顎骨の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する工程(f)と、
 前記三次元画像データを3DCGソフトウェアに読み込み、前記3DCGソフトウェアにおいて前記三次元画像データを汎用の画像データに変換する工程(g)と、
 前記汎用の画像データから不要なゴミポリゴンを削除する工程(h)と、
 前記CTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータを位置合わせして重ね合わせ、不要部分の削除及び足りない部分の修正の少なくとも一方を行うことで、3次元的データを構築する工程(i)と、
を有することを特徴とする歯科用上顎模型の製造方法。
[17]上記[16]において、
 前記工程(d)の前記CTの医用画像をフォーマットした画像データは、DICOMデータであり、
 前記工程(g)の前記汎用の画像データは、OBJ形式の画像データであることを特徴とする歯科用上顎模型の製造方法。
[18]患者の歯を備えた下顎骨の3次元的データを基に3Dプリンターによって樹脂からなる前記歯を備えた下顎骨を作製する工程(a)と、
 前記下顎骨に人工骨膜と人工歯肉を付着させる工程(b)と、
を有することを特徴とする歯科用下顎模型の製造方法。
[19]上記[18]において、
 前記工程(b)の後に、前記人工歯肉に切開線を明示する工程を有することを特徴とする歯科用下顎模型の製造方法。
[20]上記[18]又は[19]において、
 前記工程(a)の後に、前記下顎骨又は前記人工骨膜に削除部位領域を明示する工程を有することを特徴とする歯科用下顎模型の製造方法。
[21]上記[18]から[20]のいずれか一項において、
 前記工程(a)の前に、
 CTの医用画像をフォーマットした画像データを画像解析ソフトウェアに読み込み、前記画像解析ソフトウェアにおいて歯及び骨の領域を抽出する工程(d)と、
 前記領域を抽出したデータから三次元画像の構築上の妨げとなる部位を削除し、粗な部分や空洞を塗りつぶす工程(e)と、
 前記工程(e)の後の前記領域を抽出したデータの重ね合わせから、前記歯を備えた下顎骨の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する工程(f)と、
 前記三次元画像データを3DCGソフトウェアに読み込み、前記3DCGソフトウェアにおいて前記三次元画像データを汎用の画像データに変換する工程(g)と、
 前記汎用の画像データから不要なゴミポリゴンを削除する工程(h)と、
 前記CTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータを位置合わせして重ね合わせ、不要部分の削除及び足りない部分の修正の少なくとも一方を行うことで、3次元的データを構築する工程(i)と、
を有することを特徴とする歯科用下顎模型の製造方法。
[22]上記[21]において、
 前記工程(d)の前記CTの医用画像をフォーマットした画像データは、DICOMデータであり、
 前記工程(g)の前記汎用の画像データは、OBJ形式の画像データであることを特徴とする歯科用下顎模型の製造方法。
[23]CTの医用画像をフォーマットした画像データを画像解析ソフトウェアに読み込み、前記画像解析ソフトウェアにおいて歯及び骨の領域を抽出する工程(d)と、
 前記領域を抽出したデータから三次元画像の構築上の妨げとなる部位を削除し、粗な部分や空洞を塗りつぶす工程(e)と、
 前記工程(e)の後の前記領域を抽出したデータの重ね合わせから、前記歯を備えた上顎骨又は下顎骨の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する工程(f)と、
 前記三次元画像データを3DCGソフトウェアに読み込み、前記3DCGソフトウェアにおいて前記三次元画像データを汎用の画像データに変換する工程(g)と、
 前記汎用の画像データから不要なゴミポリゴンを削除する工程(h)と、
 前記CTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータを位置合わせして重ね合わせ、不要部分の削除及び足りない部分の修正の少なくとも一方を行うことで、3次元的データを構築する工程(i)と、
を有することを特徴とする3次元的データの作製方法。
 本発明の種々の態様によれば、個々の患者の上顎又は下顎の模型を精度良く作製できる歯科用上顎模型、歯科用下顎模型、歯科用上顎模型の製造方法、及び歯科用下顎模型の製造方法を提供することができる。
 また、本発明の種々の態様によれば、歯科用上顎模型又は歯科用下顎模型を、歯科外科処置を行う歯科医師に効果的に利用してもらうためのオンライン相談方法、販売方法及び遠隔治療支援方法を提供することができる。
 また、本発明の種々の態様によれば、3Dプリンターで歯科用上顎模型又は歯科用下顎模型を製造するための3次元的データの作製方法を提供することができる。
Various aspects of the present invention will be described below.
[1] Maxilla with teeth made of resin,
The artificial Schneider membrane attached to the maxillary sinus side of the maxilla,
The artificial periosteum attached to the maxilla and
The artificial gingiva attached on the artificial periosteum and
A dental maxillary model characterized by having.
[2] In the above [1],
A dental maxillary model characterized by having an incision line specified in the artificial gingiva.
[3] In the above [1] or [2],
A dental maxillary model characterized by having a deletion site region specified in the maxilla or the artificial periosteum.
[4] The purchaser of the dental maxillary model according to any one of the above [1] to [3] sends the dental maxillary model to the dentist designated by the seller of the dental maxillary model by online video communication. An online consultation method characterized by consultation on surgery using a maxillary model.
[5] The seller of the dental maxillary model according to any one of the above [1] to [3] asks a person who requests the production of the dental maxillary model to perform an operation using the dental maxillary model. A sales method characterized by selling the dental maxillary model with a recording medium containing a moving image explaining a procedure.
[6] When the purchaser of the dental maxillary model according to any one of the above [1] to [3] or the dentist designated by the purchaser performs an operation, the purchaser or the purchaser designates it. A remote treatment support method characterized in that a dentist who wears a surgical field camera and earphones and a dentist designated by the seller of the dental maxillary model gives advice or instructions on the method of surgery by online video communication. ..
[7] A mandible with teeth made of resin,
The artificial periosteum attached to the mandible and
The artificial gingiva attached on the artificial periosteum and
A dental mandibular model characterized by having.
[8] In the above [7],
A dental mandibular model characterized by having an incision line specified in the artificial gingiva.
[9] In the above [7] or [8],
A dental mandible model characterized by having a deletion site region specified in the mandible or the artificial periosteum.
[10] The purchaser of the dental mandibular model according to any one of the above [7] to [9] sends the dental mandibular model to the dentist designated by the seller of the dental mandibular model by online video communication. An online consultation method characterized by consultation on surgery using a mandibular model.
[11] The seller of the dental mandible model according to any one of the above [7] to [9] asks a person who requests the production of the dental mandible model to perform an operation using the dental mandible model. A sales method characterized by selling the dental mandibular model with a recording medium containing a moving image explaining a procedure.
[12] When the purchaser of the dental mandibular model according to any one of the above [7] to [9] or the dentist designated by the purchaser performs an operation, the purchaser or the purchaser designates it. A remote treatment support method characterized in that a dentist who wears a surgical field camera and earphones and a dentist designated by the seller of the dental mandibular model gives advice or instructions on the method of surgery by online video communication. ..
[13] A step (a) of producing a maxilla having the teeth made of resin by a 3D printer based on three-dimensional data of the maxilla having the patient's teeth.
The step (b) of attaching the artificial periosteum and the artificial gingiva to the maxilla,
The step (c) of applying an artificial Schneider membrane to the maxillary sinus side of the maxilla, and
A method for manufacturing a dental maxillary model, which comprises the above.
[14] In the above [13],
A method for manufacturing a dental maxillary model, which comprises a step of clearly indicating an incision line in the artificial gingiva after the step (b).
[15] In the above [13] or [14],
A method for manufacturing a dental maxilla model, which comprises a step of clearly indicating a deletion site region on the maxilla or the artificial periosteum after the step (a).
[16] In any one of the above [13] to [15],
Before the step (a),
The step (d) of reading the image data in which the medical image of CT is formatted into the image analysis software and extracting the tooth and bone regions in the image analysis software, and
A step (e) of removing a part that hinders the construction of a three-dimensional image from the data extracted from the region and filling a rough part or a cavity.
A step (f) of extracting only the surface structure of the maxilla having the teeth from the superposition of the data extracted from the region after the step (e) and constructing three-dimensional image data from the extracted data. When,
A step (g) of reading the three-dimensional image data into 3DCG software and converting the three-dimensional image data into general-purpose image data in the 3DCG software.
The step (h) of deleting unnecessary dust polygons from the general-purpose image data, and
By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally. The process of constructing data (i) and
A method for manufacturing a dental maxillary model, which comprises the above.
[17] In the above [16],
The image data obtained by formatting the medical image of the CT in the step (d) is DICOM data.
A method for manufacturing a dental maxillary model, wherein the general-purpose image data in the step (g) is OBJ format image data.
[18] A step (a) of producing a mandible having the teeth made of resin by a 3D printer based on three-dimensional data of the mandible having the patient's teeth.
The step (b) of attaching the artificial periosteum and the artificial gingiva to the mandible,
A method for manufacturing a dental mandibular model characterized by having.
[19] In the above [18],
A method for manufacturing a dental mandibular model, which comprises a step of clearly indicating an incision line in the artificial gingiva after the step (b).
[20] In the above [18] or [19],
A method for manufacturing a dental mandible model, which comprises a step of clearly indicating a deleted site region on the mandible or the artificial periosteum after the step (a).
[21] In any one of the above [18] to [20],
Before the step (a),
The step (d) of reading the image data in which the medical image of CT is formatted into the image analysis software and extracting the tooth and bone regions in the image analysis software, and
A step (e) of removing a part that hinders the construction of a three-dimensional image from the data extracted from the region and filling a rough part or a cavity.
A step (f) of extracting only the surface structure of the mandible having the teeth from the superposition of the data extracted from the region after the step (e) and constructing three-dimensional image data from the extracted data. When,
A step (g) of reading the three-dimensional image data into 3DCG software and converting the three-dimensional image data into general-purpose image data in the 3DCG software.
The step (h) of deleting unnecessary dust polygons from the general-purpose image data, and
By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally. The process of constructing data (i) and
A method for manufacturing a dental mandibular model characterized by having.
[22] In the above [21],
The image data obtained by formatting the medical image of the CT in the step (d) is DICOM data.
A method for manufacturing a dental mandibular model, wherein the general-purpose image data in the step (g) is OBJ format image data.
[23] A step (d) of reading image data obtained by formatting a medical image of CT into image analysis software and extracting tooth and bone regions with the image analysis software.
A step (e) of removing a part that hinders the construction of a three-dimensional image from the data extracted from the region and filling a rough part or a cavity.
A step of extracting only the surface structure of the maxilla or mandible having the teeth from the superposition of the data extracted from the region after the step (e), and constructing three-dimensional image data from the extracted data. (F) and
A step (g) of reading the three-dimensional image data into 3DCG software and converting the three-dimensional image data into general-purpose image data in the 3DCG software.
The step (h) of deleting unnecessary dust polygons from the general-purpose image data, and
By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally. The process of constructing data (i) and
A method for producing three-dimensional data, which comprises the above.
According to various aspects of the present invention, a dental maxillary model, a dental maxillary model, a method for manufacturing a dental maxillary model, and a method for manufacturing a dental maxilla model capable of accurately manufacturing a model of the maxilla or mandible of an individual patient. Can be provided.
Further, according to various aspects of the present invention, an online consultation method, a sales method, and remote treatment support for effectively using a dental maxillary model or a dental mandibular model by a dentist performing a dental surgical procedure. A method can be provided.
Further, according to various aspects of the present invention, it is possible to provide a method for producing three-dimensional data for manufacturing a dental upper jaw model or a dental lower jaw model with a 3D printer.
 図1は、実際の患者の3Dデータによる画像である。
 図2は、人骨に近似した硬さの樹脂により作製した3Dモデルの写真である。
 図3は、人工骨膜上に人工歯肉13をつけた状態を示す写真である。
 図4は、図2に示す3Dモデルに図3に示す人工骨膜と人工歯肉13を付着させた状態を示す写真である。
 図5は、図4に示す3Dモデルに付着させる人工シュナイダー膜14である。
 図6は、図4に示す人工歯肉13と人工骨膜を付着させた3Dモデルに、図5に示すような人工シュナイダー膜14を付着させた状態を示す写真である。
 図7は、図6に示す3Dモデルに切開線15を明示した状態を示す写真である。
 図8は、DICOMを画像解析ソフトウェアに読み込むことで得られた画像データを示す図である。
 図9は、画像解析ソフトウェアにおいて骨や歯を選択する値を基準に自動抽出することで得られた画像データを示す図である。
 図10は、頚椎や三次元画像の構築上の妨げとなる部位の削除、及び粗な部分や空洞の塗りつぶしを、ペンツールと塗りつぶしツールを用いて行うことで得られた画像データを示す図である。
 図11は、表面形状データの表示した画像データを示す図である。
 図12は、オンラインサポートシステム又はOutputサポートシステムを詳細に説明するための図である。
FIG. 1 is an image of an actual patient with 3D data.
FIG. 2 is a photograph of a 3D model made of a resin having a hardness similar to that of human bones.
FIG. 3 is a photograph showing a state in which the artificial gingiva 13 is attached on the artificial periosteum.
FIG. 4 is a photograph showing a state in which the artificial periosteum and the artificial gingiva 13 shown in FIG. 3 are attached to the 3D model shown in FIG.
FIG. 5 is an artificial Schneider membrane 14 attached to the 3D model shown in FIG.
FIG. 6 is a photograph showing a state in which the artificial Schneider membrane 14 as shown in FIG. 5 is attached to the 3D model to which the artificial gingiva 13 and the artificial periosteum shown in FIG. 4 are attached.
FIG. 7 is a photograph showing a state in which the incision line 15 is clearly shown in the 3D model shown in FIG.
FIG. 8 is a diagram showing image data obtained by loading DICOM into image analysis software.
FIG. 9 is a diagram showing image data obtained by automatically extracting bones and teeth based on values selected by image analysis software.
FIG. 10 is a diagram showing image data obtained by removing parts that hinder the construction of the cervical spine and three-dimensional images, and filling rough parts and cavities using a pen tool and a filling tool. ..
FIG. 11 is a diagram showing image data displayed as surface shape data.
FIG. 12 is a diagram for explaining the online support system or the Output support system in detail.
 以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 公知技術の3D Printer(プリンター)より作成した3D Modelは硬組織(骨)の描出を可能とし、臨床医療現場においても、研修医や若手の医師の手術練習や研究用模型として利用することも可能である。CT技術の向上により得られる患者のデータが、より鮮明になり、限りなく個々の患者の硬組織の形態に近いModelを作成できる。
 しかし、この3D Printerでは、軟組織(歯肉、膜、神経、血管等の硬組織以外)の生態構成組織の構築が難しく、手術の一連の流れの麻酔、切開、剥離、縫合といった軟組織に対する処置が、患者のデータから構築した3D modelでは再現できない。
 本発明の一態様に係るSRPM(Similar Real Patient Model)は、3D Printerより作製した患者類似の硬組織(骨)に、人工歯肉、人工骨膜、及び、上顎洞内のシュナイダー膜を人工的に再現した人工シュナイダー膜を付与することにより、患者の上下顎骨及び軟組織の形態を再現した模型を作製することが可能である。
 そのモデルに、指導医や専門医の知識によって切開線や骨を開けて骨造成をする部位(Window)にマークを付与することにより、歯科外科処置(歯周外科、インプラント手術、口腔外科処置)のナビゲートシステムを構築することが可能となる。
 <歯科用上顎模型の製造方法>
 以下に、本発明の一態様に係る歯科用上顎模型の製造方法について図面を参照しつつ説明する。
 図1は、実際の患者の3Dデータ(3次元的データ)による画像である。詳細には、歯科医院で撮影された実際の患者のCTデータから歯11を備えた上顎骨12を表す3Dデータを歯科用上顎模型作製者が公知のソフトウェアを用いて作製し、その3Dデータによって図1に示すような画像を表示することができる。この3Dデータの作製方法の詳細については後述する。なお、CTデータに加えて3Dスキャナーのデータ(口腔内スキャナーのデータ)も用いて3Dデータを作製してもよい。
 上記のCTデータや3Dスキャナーのデータの取得方法は、歯科医院で撮影された実際の患者のCTデータや3Dスキャナーのデータを、歯科医院に設置された端末から送信し、そのデータを歯科用上顎模型の作製者の端末が受信することで取得してもよい。
 以下に、DICOM(Digital Imaging and COmmunications in Medicine)データからの3Dデータ作製の方法(手順)について詳細に説明する。
 なお、「DICOM」とは、CTやMRI、CRなどで撮影した医用画像のフォーマットと、それらを扱う医用画像機器間の通信プロトコルを定義した標準規格である。
(1)セグメンテーション(領域抽出)
 医用画像解析におけるセグメンテーションとは、CT等の医用画像をフォーマットしたDICOMなどの画像データからCT値等を基準に特定の領域を抽出することである。本方法では画像データから硬組織(歯や骨)を抽出する工程を意味する。以下に詳細に説明する。
 歯科用上顎模型作製者(又は歯科用下顎模型作製者)が画像解析ソフトウェア(Fiji is just)imageJのインストールを行う。DICOMを画像解析ソフトウェアに読み込む(Fire→import→image sequence→DICOM選択)。これにより、図8に示すようなデータを得る。
 次に、画像解析ソフトウェアにおいて骨や歯を選択する値を基準に自動抽出する(image→adjust→threshold)。これにより、図9に示すようなデータを得る。
 次いで、骨や歯の領域を抽出したデータから頚椎や三次元画像の構築上の妨げとなる部位の削除、及び粗な部分や空洞の塗りつぶしを、ペンツールと塗りつぶしツールを用いて行う。これにより、図10に示すようなデータを得る。脳頭蓋と下顎骨は一つの画像から分離し、それぞれTIFFファイルフォーマット(TIFF)で保存する(Fire→save as→image sequence)。場合によっては歯の神経である歯髄及び歯、顔面表皮、気道などもそれぞれ単独で必要箇所を表示する。なお、「TIFF」は、ビットマップ画像の符号化形式の一種である。タグと呼ばれる識別子を使うことによって、様々な形式のビットマップ画像を柔軟に表現できる。
(2)3Dモデルデータの構築
 3Dモデルデータ、すなわち表面形状データの表示(サーフェスレンダリング)は、セグメンテーション(特定の領域の抽出)が終了した画像データから3Dビューワーでsurfacedisplay(表面表示)のThreshold100(しきい値100)、Sampling2(サンプリング2)を選択することで行う(plugins→3Dviewer)。これにより得られたデータはSTLのバイナリー形式で保存する(file→export surfaces→STL(binary))。これにより、図11に示すようなデータを得る。
 なお、上記の「サーフェスレンダリング」とは、得られた断層撮影画像データの重ね合わせから、対象とするもの(即ち歯を備えた上顎骨又は歯を備えた下顎骨)の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する三次元画像表示のための画像処理法(image processing)の手法である。また、上記の「3Dビューワー」は、一般的な3Dファイルを表示したり、3Dモデルを背景と合成して撮影したりできるアプリである。また、上記の「plugins」は、アプリケーションの機能を拡張するソフトウェアを指す。個別に追加してバージョンアップが可能である。また、上記の「STL」は、3Dプリンターに持っていくデータとして標準的なファイルフォーマットであり、「バイナリー形式」は、データが軽いので、データ容量に制限がある場合に適している。
 次に、STLのバイナリー形式で保存したデータをBlender(Blender Foundation)に読み込み、STLデータからOBJ形式に変換し、Zbrush(Pixologic Co)に読み込みが可能な状態にデータ形式を変換する。なお、上記の「Blender」とは、オープンソースの統合型3DCGソフトウェア(3次元コンピュータグラフィックスを制作するためのソフトウェア)の一つであり、3Dモデリング、レンダリング、デジタル合成などの機能を備えている。また、上記の「Blender Foundation」は、フリーかつオープンソースの3DCGソフトウェアであるBlenderの開発を行う非営利団体である。また、「OBJ形式」とは、3Dデータのファイル形式の一つであり、そのファイル形式は、3Dジオメトリのみを表現する単純なデータ形式である。なお、「3Dジオメトリのみ」とは、各頂点の位置、各テクスチャ座標の頂点のUV位置、頂点法線、頂点リストとして定義された各ポリゴンを形作る面、そしてテクスチャ頂点である。また、上記の「Zbrush」は、Pixologic社が開発するWindowsおよびmacOS用の3DCGソフトウェアである。
→PC上で彫刻(デジタル彫刻)ができる特徴があり、いわば主観的操作が可能となる。とりわけ、マニュアル操作が多い歯科医療業界においては親和性が高いといえる。
(3)3Dデータの処理手順
 OBJフォーマットにした各データをZbrushにインポートし読み込む。
 セグメンテーション作業(特定の領域の抽出作業)からからSTL化したデータの問題点は、主要なデータから離れている不要な一般的に呼ばれるゴミポリゴンを多く含有し、ただデータを重たくしていることにある。ゴミポリゴンの存在は3Dプリントでも影響することから取り除く必要がある。
 Zbrush上で「polygroups→AutoGroups→subtool→split→Groups split」を行い、データ分離を行い、不要データをDelete機能で削除していく。
 また、上記の「polygroups」は複数のポリゴンにユニークなカラーを割り当て、一つのグループにまとめることができる機能である。ポリグループを利用することで、ポリゴンをまとめてワンクリックで非表示にすることや、マスクの適用ができる。また、上記の「Groups split」は、ポリグループごとにサブツールを分割する機能である。
 前述したCTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータ(即ち前記の3Dスキャナーのデータ)の重ね合わせ及び位置合わせは、Fusion360(Autodesk Inc.)に基準となるCTデータと口腔内スキャナデータを読み込み、CTデータを基準として口腔内スキャナデータを動かすことで修正及び位置合わせを行う。位置情報が変わった口腔内スキャナデータはSTLでエクスポートし、上述した方法でOBJファイルに変換する。なお、Fusion360は、Autodesk社が提供している高機能クラウド3DCADソフトである。このソフトでは、幾何学的な形やフィギュアのような滑らかな形まで両方の3Dモデルを作ることができる。
 必要データをZbrusuに取り込み、不要部分を削除したり、足りない部分は一部同ソフトウェア上で修正して3Dプリント用のデータ(即ち3次元的データ)を構築していく。なお、不要部分の削除と足りない部分の修正はいずれか一方のみを行う場合もあり得る。
 仕上げた3DデータはZpluginから3D Print Exporterを選択し、STLデータとしてエクスポートし3Dプリンターへと送る。
 なお、上記の「Zplugin」は、プラグインの中の補完用のファイルを自動で探索し、そのファイルを参照するシンボリックリンクを使ってfpath(コロンで区切られたディレクトリのリスト)に追加する機能がある。ディレクトリは、コンピューターのファイルシステムにおいて、ファイルをグループ化するための特殊なファイルで、整理・管理などの目的で活用される。
 また、「3D Print Exporter」は、3Dプリンターで一般的に使われているファイルフォーマットであるSTL形式を、Zbrushから直接出力できるようにするプラグインである。
 上記のようにしてCTデータや3Dスキャナーからの3Dデータを作製することができる。その3Dデータによって例えば図1に示すような画像を表示することができる。
(4)DICOMデータからの3Dデータの作製方法の効果
 本方法はフリーウェアと汎用のソフトウェアを使用することからコスト面の問題を大幅に解決できる。また使用するソフトウェアは特別な保守を必要とせず一度入手すれば、定期的に最新版をダウンロードでき常に最新の状態を維持できる。ソフトウェアの操作に伴う煩雑性という点では、汎用ソフトウェアを使用している観点からもインターネットを通じて多くの情報を得ることが可能であり、実際に扱う機能はソフトウェアの極僅かに限られていることからも一度習得すればそれ相応の3Dモデルを容易に制作することが可能となる。ハードウェアもPCについては動画編集が可能なスペックがあれば対応可能である。3Dプリンターによる3Dデータの出力は外部委託が可能な為、特別に購入の必要もない。
 つまり本方法は従来の特別な手法、限られた機関だけの技術となりうる障害を解決することができる。
 図2は、人骨に近似した硬さの樹脂により作製した3Dモデルの写真である。詳細には、図1に示す画像の3Dデータ(3次元データ)を基に、歯科用上顎模型の作製者が3DPrinterで上記の樹脂からなる歯11aを備えた上顎骨12aの3Dモデルを作製する。
 図3は、上顎骨12a上に付着させる人工骨膜16と人工歯肉13を示す写真である。詳細には、上顎骨12a上に人工骨膜16が位置し、その人工骨膜16上に人工歯肉13が位置する構造であるため、図3は、人工骨膜16上に人工歯肉13が付着した状態を示している。なお、人工骨膜を作製するための材料は、酢酸ビニル樹脂を主成分とし、溶剤として水を用い、必要に応じて樹脂、可塑剤、防腐剤、充てん剤、界面活性剤等を混入させることで得られる。
 図4は、図2に示す3Dモデルに図3に示す人工骨膜(図示せず)と人工歯肉13を付着させた状態を示す写真である。詳細には、図2に示す樹脂からなる歯11aを備えた上顎骨12aの3Dモデルに、厚さ・強度・見た目が実際の患者の骨膜と歯肉に近似した人工骨膜と人工歯肉13を付着させる。
 人工歯肉13は、粘着力増強剤としてのガントレッツ塩、粘膜付着剤としてのCMCナトリウム、植物性ゴムであるカラヤゴムやアラビアゴム、軟膏であるワセリン、吸水性ポリマーとしてのポリアクリル酸ナトリウム、親水性ポリマーとしてのポリエチレングリコールを用いて作製される。
 図5は、図4に示す3Dモデルに付着させる人工シュナイダー膜14である。この人工シュナイダー膜14は、厚さ・強度・見た目が実際の患者のシュナイダー膜と近似しており、厚さは0.3~0.3mmである。なお、シュナイダー膜とは、上顎骨の中の上顎洞(空洞)を覆っている粘膜のことである。また、上顎洞は、上顎の内部に広がる空洞であり、鼻の穴から広がる鼻腔という空洞の両脇に通じている。
 図6は、図4に示す人工歯肉13と人工骨膜を付着させた3Dモデルに、図5に示すような人工シュナイダー膜14を付着させた状態を示す写真である。詳細には、上顎骨の上顎洞側(人工歯肉13と逆側)にシュナイダー膜材料を塗布することで、上顎骨に人工シュナイダー膜14を形成する。これにより、上顎洞の内部を精密に再現することができる。なお、シュナイダー膜材料は、酢酸ビニル樹脂を主成分とし、溶剤として水を用い、必要に応じて樹脂、可塑剤、防腐剤、充てん剤、界面活性剤等を混入させることで作製される。
 このようにして図6に示す実際の患者の上顎洞内部を精密に再現した3Dモデルを作製し、実際の患者に歯科外科処置(歯周外科、インプラント手術、口腔外科処置等)を行う歯科医院に3Dモデルを送ることで、実際の歯科外科処置(歯周外科、インプラント手術、口腔外科処置等)に役立てることができる。
 また、必要であれば、図7に示すように、人工歯肉13に切開線15を黒インク等で明示してもよいし、歯肉を切開した後に歯科外科処置(歯周外科、インプラント手術、口腔外科処置)に必要な骨造成のために上顎骨に開ける穴(Window)の削除部位領域(図示せず)を上顎骨又は人工骨膜にマーク等をつけて明示してもよい。さらに、歯科医師が手術練習の際に便利なナビケーションシステム(手術手順を説明した動画等)をオプションでつけてもよい。詳細には、歯科用上顎模型の作製を依頼した者に、その歯科用上顎模型を用いて手術手順を説明した動画を格納した記録媒体を付けて歯科用上顎模型を販売するオプションがあってもよい。このような動画を依頼者である歯科医師が見ることで、歯科用上顎模型を用いて効率的に手術の練習をすることができる。
 上述した製造方法により製造された歯科用上顎模型は、図7に示すように、樹脂からなる歯11aを備えた上顎骨12aと、その上顎骨12aの上顎洞側に付着させた人工シュナイダー膜と、上顎骨12aに付着させた人工骨膜と、その人工骨膜上に付着させた人工歯肉13を有している。また、歯科用上顎模型は、人工歯肉13に明示された切開線15を有していてもよいし、上顎骨又は前記人工骨膜に明示された削除部位領域(Window)を有していてもよい。この削除部位領域は、人工歯肉13を切開線15に沿って切開し、その切開した人工歯肉13の下に位置している。
 また、本発明の別の態様として、歯科医師の勉強会・講演会において、受講者で共有したい患者のCTデータを歯科用上顎模型の作製者に送信してもらい、そのCTデータから3DPrinterで図2に示す3Dモデルを作成してもよい。その3Dモデルに人工シュナイダー膜14と人工骨膜と人工歯肉13をつけて、上記の歯科医師の勉強会・講演会の開催者に送ることで、勉強会や講演会に役立てることができる。
 <歯科用下顎模型の製造方法>
 以下に、本発明の一態様に係る歯科用下顎模型の製造方法について説明する。
 歯科用上顎模型の製造方法と同様に、歯科医院で撮影された実際の患者のCTデータから歯11を備えた下顎骨を表す3Dデータを歯科用下顎模型作製者が公知のソフトウェアを用いて作製し、その3Dデータによって画像を取得する。この3Dデータの作製方法の詳細は前述したとおりである。なお、CTデータに加えて3Dスキャナーのデータも用いて3Dデータを作製してもよい。
 なお、上記のCTデータや3Dスキャナーのデータの取得方法は、歯科用上顎模型の製造方法と同様に、歯科医院で撮影された実際の患者のCTデータや3Dスキャナーのデータを、歯科医院に設置された端末から送信し、そのデータを歯科用下顎模型の作製者の端末が受信することで取得してもよい。
 次に、上記の画像の3Dデータ(3次元データ)を基に、歯科用下顎模型の作製者が3DPrinterで歯科用上顎模型の製造方法と同様の樹脂からなる歯を備えた下顎骨の3Dモデルを作製する。
 次に、歯科用上顎模型の製造方法と同様に、人工骨膜上に人工歯肉が付着した状態のものを作製する。
 次に、歯科用上顎模型の製造方法と同様に、上記の3Dモデルに人工骨膜と人工歯肉を付着させる。
 このようにして実際の患者の下顎を精密に再現した3Dモデルを作製し、実際の患者に歯科外科処置(歯周外科、インプラント手術、口腔外科処置等)を行う歯科医院に3Dモデルを送ることで、実際の歯科外科処置(歯周外科、インプラント手術、口腔外科処置等)に役立てることができる。
 また、必要であれば、歯科用上顎模型の製造方法と同様に、人工歯肉に切開線を黒インク等で明示してもよいし、歯肉を切開した後に歯科外科処置(歯周外科、インプラント手術、口腔外科処置)に必要な骨造成のために上顎骨に開ける穴(Window)の削除部位領域を下顎骨又は人工骨膜にマーク等をつけて明示してもよい。さらに、歯科医師が手術練習の際に便利なナビケーションシステム(手術手順を説明した動画等)をオプションでつけてもよい。詳細には、歯科用上顎模型の場合と同様に、歯科用下顎模型の作製を依頼した者に、その歯科用下顎模型を用いて手術手順を説明した動画を格納した記録媒体を付けて歯科用下顎模型を販売するオプションがあってもよい。このような動画を依頼者である歯科医師が見ることで、歯科用下顎模型を用いて効率的に手術の練習をすることができる。
 上述した製造方法により製造された歯科用下顎模型は、樹脂からなる歯を備えた下顎骨と、前記下顎骨に付着させた人工骨膜と、前記人工骨膜上に付着させた人工歯肉を有している。また、歯科用下顎模型は、人工歯肉に明示された切開線を有していてもよいし、下顎骨又は前記人工骨膜に明示された削除部位領域(Window)を有していてもよい。
 また、本発明の別の態様として、歯科医師の勉強会・講演会において、受講者で共有したい患者のCTデータを歯科用下顎模型の作製者に送信してもらい、そのCTデータから3DPrinterで3Dモデルを作成してもよい。その3Dモデルに人工骨膜と人工歯肉をつけて、上記の歯科医師の勉強会・講演会の開催者に送ることで、勉強会や講演会に役立てることができる。
 上記実施形態によれば、歯科医師が手術前にSRPMを用いて、切開線の位置、骨の削除部位、シュナイダー膜の剥離、骨造成、縫合などの術式の確認をすることができる。
 また、歯科用上顎模型又は歯科用下顎模型を作製しておくことで、患者に行うまたは行なった処置・手術の説明に用いることができ、その結果、患者が処置・手術の内容を容易に理解することができる。
 また、患者一人のCTデータを3DPrinterにより複数再現できるので、勉強会や手術の講習にも、同じ模型で複数の受講者が練習することができる。
 <オンラインサポートシステム>
 オンラインサポートシステムは、前述した歯科用上顎模型又は歯科用下顎模型の3DモデルSRPMを購入した者(User)が、そのSRPMの販売元(販売者)に所属する歯科医師又は販売元が指定する歯科医師にオンラインによるビデオ通信により3DモデルSRPMを用いて、手術前に、手術に関する相談やアドバイスを受けるシステムである。なお、オンラインによるビデオ通信については、公知の技術を用いればよい。
 <Outputサポートシステム>
 Outputサポートシステムは、3DモデルSRPMを用いた説明を受けるセミナーの参加者(歯科医師)が、セミナー後、その参加者のクリニックの患者データにより3DモデルSRPMの作製を依頼し、その3DモデルSRPMを購入したセミナー参加者(User)が、そのSRPMの販売元(販売者)に所属する歯科医師又は販売元が指定する歯科医師にオンラインによるビデオ通信により3DモデルSRPMを用いて、相談やアドバイスを受けるシステムである。この相談やアドバイスは、手術前の手術に関する相談であってもよいし、その他の相談であってもよい。
 <遠隔治療サポートシステム>
 オンラインサポートシステム(Outputサポートシステム)を利用した相談者、又は前述した歯科用上顎模型又は歯科用下顎模型の3DモデルSRPMを購入した者(User)は、実際の手術時に、手術野カメラおよびイヤホンを用いて、オンラインサポートシステムと同様に、SRPMの販売元(販売者)に所属する歯科医師又は販売元が指定する歯科医師によりサポートを受けられる。サポート内容は、オンラインサポートシステム(Outputサポートシステム)と同様に手術のポイントのみならず、実際の手術中のアクシデントに対する対応法などであり、リアルタイムで相談およびアドバイスをもらえる。
 別言すれば、歯科用上顎模型又は歯科用下顎模型の購入者又は前記購入者が指定する歯科医師が手術を行う時に、前記購入者又は前記購入者が指定する歯科医師が手術野カメラ及びイヤホンを装着して、オンラインによるビデオ通信により手術の方法を前記歯科用下顎模型の販売者が指定する歯科医師がアドバイス又は指示する。これにより、遠隔地で治療を行う際に、熟練した歯科医師から治療の支援を受けることができる。
 上記のシステムにより日本のみならず世界中の依頼者(3DモデルSRPMを購入した者)からの相談およびアドバイスを受けることができる。
 図12は、オンラインサポートシステム又はOutputサポートシステムを詳細に説明するための図である。
 まず、依頼元(依頼者)であるクリニック又は病院から前述した歯科用上顎模型又は歯科用下顎模型の3DモデルSRPMの作製を販売者に依頼する。この販売者は、3DモデルSRPMを作製する会社、歯科医師のクリニック又は病院であるとよい。
 次に、依頼を受けた販売者は、前述した方法で3DモデルSRPMを作製し、そのSRPMを依頼元であるクリニック又は病院に送付し、依頼元が販売者に対価を支払ってSRPMを購入する。この際、販売者は、そのSRPMの購入者に、SRPMを用いて手術手順を説明した動画を格納した記録媒体を付けてSRPMを販売してもよい。そして、購入者(依頼元)のクリニック又は病院の歯科医師がSRPMを手術前の練習や手術方法の検討を行うために利用するとよいが、症例によっては販売者に相談を依頼することも可能である。
 販売者が相談依頼を受けた場合は、依頼元(購入者)の歯科医師が、販売者に所属する歯科医師又は販売者が指定する歯科医師に、オンラインによるビデオ通信によりSRPMを用いて症例の相談や手術に関する相談をする。これがオンライン相談である。このようなオンライン相談を用いれば、相談する依頼元と相談される販売者との間の場所的な制約がなくなるため、販売者は日本のみならず世界中の依頼者(3DモデルSRPMの購入者)から相談およびアドバイスを受けることができる。
 上記のオンラインサポートシステムによるオンライン相談方法、SRPMを用いて手術手順を説明した動画を格納した記録媒体を付けてSRPMを販売する販売方法、及びOutputサポートシステムによるオンライン相談方法を適用することで、歯科外科処置を行う歯科医師にSRPMを効果的に利用してもらうことが可能となる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that the form and details thereof can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention is not construed as being limited to the description of the embodiments shown below.
The 3D Model created from the 3D Printer (printer) of the known technology enables the visualization of hard tissues (bones), and can be used as a surgical practice and research model for residents and young doctors even in clinical medical settings. Is. The patient data obtained by improving the CT technique becomes clearer, and it is possible to create a model that is as close as possible to the morphology of the hard tissue of each patient.
However, with this 3D Painter, it is difficult to construct the ecological constituent tissues of soft tissues (other than hard tissues such as gingiva, membrane, nerves, blood vessels, etc.), and treatments for soft tissues such as anesthesia, incision, peeling, and suturing in a series of surgical procedures are performed. It cannot be reproduced with a 3D model constructed from patient data.
SRPM (Similar Real Patient Model) according to one aspect of the present invention artificially reproduces artificial gingiva, artificial periosteum, and Schneider's membrane in the maxillary sinus on a patient-like hard tissue (bone) prepared from 3D Painter. By applying the artificial Schneider membrane, it is possible to produce a model that reproduces the morphology of the patient's maxillary bone and soft tissue.
Dental surgery (periodontal surgery, implant surgery, oral surgery) by marking the model at the site where the incision line or bone is opened and bone is created (Window) with the knowledge of the instructor or specialist. It is possible to build a navigation system.
<Manufacturing method of dental maxillary model>
Hereinafter, a method for manufacturing a dental maxillary model according to one aspect of the present invention will be described with reference to the drawings.
FIG. 1 is an image of an actual patient in 3D data (three-dimensional data). Specifically, 3D data representing the maxilla 12 with the teeth 11 is created from the CT data of the actual patient taken at the dental clinic using software known by the dental maxilla modeler, and the 3D data is used. An image as shown in FIG. 1 can be displayed. Details of the method for producing this 3D data will be described later. In addition to the CT data, 3D scanner data (intraoral scanner data) may also be used to create 3D data.
In the above CT data and 3D scanner data acquisition method, the actual patient CT data and 3D scanner data taken at the dental clinic are transmitted from the terminal installed in the dental clinic, and the data is transmitted to the dental upper jaw. It may be acquired by receiving it from the terminal of the creator of the model.
The method (procedure) for creating 3D data from DICOM (Digital Imaging and Communications in Medical) data will be described in detail below.
Note that "DICOM" is a standard that defines the format of medical images taken by CT, MRI, CR, etc. and the communication protocol between the medical image devices that handle them.
(1) Segmentation (region extraction)
Segmentation in medical image analysis is to extract a specific region from image data such as DICOM in which a medical image such as CT is formatted based on a CT value or the like. This method means a step of extracting hard tissue (teeth and bones) from image data. This will be described in detail below.
The dental maxillary model maker (or the dental mandibular model maker) installs the image analysis software (Fiji is just) imageJ. Load DICOM into image analysis software (Fire->import-> image sequence-> DICOM selection). As a result, the data as shown in FIG. 8 is obtained.
Next, the image analysis software automatically extracts bones and teeth based on the selected values (image → adhere → threshold). As a result, the data as shown in FIG. 9 is obtained.
Next, the cervical spine and the parts that hinder the construction of the three-dimensional image are deleted from the data extracted from the bone and tooth regions, and the rough parts and cavities are filled by using the pen tool and the filling tool. As a result, the data as shown in FIG. 10 is obtained. The brain skull and mandible are separated from one image and stored in TIFF file format (TIFF) respectively (Fire → save as → image sequence). In some cases, the necessary parts of the pulp and teeth, facial epidermis, airway, etc., which are the nerves of the teeth, are displayed independently. In addition, "TIFF" is a kind of encoding format of a bitmap image. By using an identifier called a tag, it is possible to flexibly represent various types of bitmap images.
(2) Construction of 3D model data The display of 3D model data, that is, surface shape data (surface rendering), is performed by using a 3D viewer from the image data for which segmentation (extraction of a specific area) has been completed. This is done by selecting a threshold value of 100) and Rendering 2 (plugins → 3D viewer). The data obtained by this is saved in the binary format of STL (file-> export surfaces-> STL (binary)). As a result, the data as shown in FIG. 11 is obtained.
In the above "surface rendering", only the surface structure of the target object (that is, the maxillary bone with teeth or the mandibular bone with teeth) is extracted from the superimposition of the obtained tomographic image data. This is a method of image processing for displaying a three-dimensional image, which constructs three-dimensional image data from the extracted data. In addition, the above-mentioned "3D viewer" is an application that can display a general 3D file and take a picture by synthesizing a 3D model with a background. Further, the above-mentioned "plugins" refers to software that extends the functions of an application. It is possible to add it individually and upgrade it. Further, the above "STL" is a standard file format for data to be brought to a 3D printer, and the "binary format" is suitable when the data capacity is limited because the data is light.
Next, the data saved in the STL binary format is read into Blender (Blender Foundation), the STL data is converted into the OBJ format, and the data format is converted into a state in which it can be read into Zbrush (Pixological Co). The above "Blender" is one of the open source integrated 3DCG software (software for producing 3D computer graphics), and has functions such as 3D modeling, rendering, and digital compositing. .. In addition, the above-mentioned "Blender Foundation" is a non-profit organization that develops Blender, which is free and open source 3DCG software. Further, the "OBJ format" is one of the file formats of 3D data, and the file format is a simple data format expressing only 3D geometry. The "3D geometry only" is the position of each vertex, the UV position of the vertex of each texture coordinate, the vertex normal, the surface forming each polygon defined as the vertex list, and the texture vertex. Further, the above-mentioned "Zbrush" is 3DCG software for Windows and macOS developed by Pixological.
→ It has the feature of being able to engrave (digital engraving) on a PC, so to speak, it enables subjective operations. In particular, it can be said that it has a high affinity in the dental industry where there are many manual operations.
(3) 3D data processing procedure Each data in OBJ format is imported into Zbrush and read.
The problem with the STL data from the segmentation work (extraction work of a specific area) is that it contains a lot of unnecessary commonly called garbage polygons that are far from the main data and just makes the data heavy. be. The presence of dust polygons also affects 3D printing and must be removed.
Perform "polygroups->AutoGroups->subtool->sprit-> Groups sprit" on Zbrush, perform data separation, and delete unnecessary data with the Delete function.
In addition, the above-mentioned "polygroups" is a function that can assign a unique color to a plurality of polygons and combine them into one group. By using polygroups, polygons can be hidden together with a single click, and masks can be applied. Further, the above-mentioned "Groups sprit" is a function of dividing a sub tool for each polygroup.
The superposition and alignment of the dentition data from the image data obtained by formatting the medical image of the CT described above and the data of the intraoral scanner (that is, the data of the 3D scanner described above) are based on the CT of Fusion 360 (Autodesk Inc.). The data and the intraoral scanner data are read, and the intraoral scanner data is moved based on the CT data to perform correction and alignment. The intraoral scanner data whose position information has changed is exported by STL and converted into an OBJ file by the above-mentioned method. Fusion 360 is a high-performance cloud 3D CAD software provided by Autodesk. With this software, you can create both 3D models, from geometric shapes to smooth shapes like figures.
Necessary data is taken into Zbrusu, unnecessary parts are deleted, and some missing parts are corrected on the same software to construct data for 3D printing (that is, three-dimensional data). In some cases, only one of the unnecessary part may be deleted and the missing part may be corrected.
For the finished 3D data, select 3D Print Explorer from Zplugin, export it as STL data, and send it to the 3D printer.
The above "Zplugin" has a function to automatically search for a complementary file in the plug-in and add it to fpath (a list of directories separated by a colon) using a symbolic link that refers to that file. be. A directory is a special file for grouping files in a computer's file system, and is used for purposes such as organizing and managing files.
In addition, "3D Print Explorer" is a plug-in that enables direct output from Zbrush of the STL format, which is a file format generally used in 3D printers.
As described above, CT data and 3D data from a 3D scanner can be created. The 3D data can be used to display an image as shown in FIG. 1, for example.
(4) Effect of method for creating 3D data from DICOM data This method can significantly solve cost problems because it uses freeware and general-purpose software. In addition, the software used does not require any special maintenance, and once obtained, the latest version can be downloaded regularly and kept up to date. In terms of the complexity associated with operating software, it is possible to obtain a lot of information through the Internet from the perspective of using general-purpose software, and the functions actually handled are very limited. Once you learn it, you can easily create a corresponding 3D model. As for hardware, PCs can be supported if there are specifications that allow video editing. The output of 3D data by a 3D printer can be outsourced, so there is no need to purchase it.
In other words, this method can solve obstacles that can be a conventional special method, a technique only for a limited number of institutions.
FIG. 2 is a photograph of a 3D model made of a resin having a hardness similar to that of human bones. Specifically, based on the 3D data (three-dimensional data) of the image shown in FIG. 1, the creator of the dental maxilla model creates a 3D model of the maxilla 12a provided with the teeth 11a made of the above resin by 3D Painter. ..
FIG. 3 is a photograph showing an artificial periosteum 16 and an artificial gingiva 13 attached on the maxilla 12a. Specifically, since the artificial periosteum 16 is located on the maxilla 12a and the artificial gingiva 13 is located on the artificial periosteum 16, FIG. 3 shows a state in which the artificial gingiva 13 is attached on the artificial periosteum 16. Shows. The material for producing the artificial periosteum is mainly vinyl acetate resin, water is used as a solvent, and if necessary, resin, plasticizer, preservative, filler, surfactant, etc. are mixed. can get.
FIG. 4 is a photograph showing a state in which the artificial periosteum (not shown) and the artificial gingiva 13 shown in FIG. 3 are attached to the 3D model shown in FIG. Specifically, an artificial periosteum and an artificial gingiva 13 whose thickness, strength, and appearance are similar to those of an actual patient's periosteum and gingiva are attached to a 3D model of the maxilla 12a provided with the resin teeth 11a shown in FIG. ..
The artificial dentin 13 has Gantretz salt as an adhesive force enhancer, CMC sodium as a mucosal adhesive, Karaya rubber or Arabic rubber as a vegetable rubber, Vaseline as an ointment, sodium polyacrylate as a water-absorbing polymer, and a hydrophilic polymer. It is made using polyethylene glycol as.
FIG. 5 is an artificial Schneider membrane 14 attached to the 3D model shown in FIG. The artificial Schneider membrane 14 has a thickness, strength, and appearance similar to those of an actual patient's Schneider membrane, and has a thickness of 0.3 to 0.3 mm. The Schneider membrane is a mucous membrane covering the maxillary sinus (cavity) in the maxilla. The maxillary sinus is a cavity that extends inside the maxilla and leads to both sides of the cavity called the nasal cavity that extends from the nostrils.
FIG. 6 is a photograph showing a state in which the artificial Schneider membrane 14 as shown in FIG. 5 is attached to the 3D model to which the artificial gingiva 13 and the artificial periosteum shown in FIG. 4 are attached. Specifically, the artificial Schneider membrane 14 is formed on the maxilla by applying the Schneider membrane material to the maxillary sinus side (opposite to the artificial gingiva 13) of the maxilla. This makes it possible to accurately reproduce the inside of the maxillary sinus. The Schneider membrane material is produced by using vinyl acetate resin as a main component, using water as a solvent, and mixing a resin, a plasticizer, a preservative, a filler, a surfactant and the like as necessary.
In this way, a 3D model that accurately reproduces the inside of the maxillary sinus of an actual patient shown in FIG. 6 is produced, and a dental clinic that performs dental surgery (periodic surgery, implant surgery, oral surgery, etc.) on the actual patient. By sending a 3D model to, it can be useful for actual dental surgical procedures (periodic surgery, implant surgery, oral surgery, etc.).
If necessary, as shown in FIG. 7, the incision line 15 may be clearly shown on the artificial gingiva 13 with black ink or the like, or after the gingiva is incised, a dental surgical procedure (periodic surgery, implant surgery, oral cavity) may be performed. The area of the deletion site (not shown) of the hole (Window) to be opened in the maxilla for the bone formation necessary for the surgical procedure) may be clearly marked on the maxilla or the artificial gingiva. In addition, a navigation system (such as a video explaining the surgical procedure) that is convenient for the dentist to practice surgery may be attached as an option. In detail, even if there is an option to sell the dental maxillary model to the person who requested the production of the dental maxillary model with a recording medium containing a video explaining the surgical procedure using the dental maxillary model. good. By watching such a video by the dentist who is the client, it is possible to practice surgery efficiently using a dental maxillary model.
As shown in FIG. 7, the dental maxilla model manufactured by the above-mentioned manufacturing method includes a maxilla 12a having teeth 11a made of resin and an artificial Schneider membrane attached to the maxillary sinus side of the maxilla 12a. It has an artificial periosteum attached to the maxilla 12a and an artificial gingiva 13 attached to the artificial periosteum. Further, the dental maxilla model may have an incision line 15 specified in the artificial gingiva 13 or may have a deletion site region (Window) specified in the maxilla or the artificial periosteum. .. This deletion site region is located below the incised artificial gingiva 13 by incising the artificial gingiva 13 along the incision line 15.
Further, as another aspect of the present invention, at a dentist's study session / lecture, the CT data of the patient to be shared by the students is transmitted to the creator of the dental maxillary model, and the CT data is used as a 3D printer. The 3D model shown in 2 may be created. By attaching an artificial Schneider membrane 14, an artificial periosteum, and an artificial gingiva 13 to the 3D model and sending it to the organizer of the above-mentioned dentist's study session / lecture, it can be useful for the study session or lecture.
<Manufacturing method of dental mandibular model>
Hereinafter, a method for manufacturing a dental mandibular model according to one aspect of the present invention will be described.
Similar to the method of manufacturing a dental maxillary model, 3D data representing a mandible with teeth 11 is created from CT data of an actual patient taken at a dental clinic using software known by a dental mandibular model maker. Then, the image is acquired by the 3D data. The details of the method for producing this 3D data are as described above. In addition to the CT data, 3D data may be created using the data of the 3D scanner.
As for the method of acquiring the above CT data and 3D scanner data, the actual patient CT data and 3D scanner data taken at the dental clinic are installed in the dental clinic in the same manner as the method of manufacturing the dental upper jaw model. The data may be transmitted from the terminal and received by the terminal of the creator of the dental mandibular model.
Next, based on the 3D data (three-dimensional data) of the above image, the creator of the dental mandible uses 3D Painter to create a 3D model of the mandible equipped with teeth made of resin similar to the method for manufacturing the dental mandible. To make.
Next, in the same manner as the method for manufacturing a dental maxillary model, an artificial gingiva is produced on the artificial periosteum.
Next, the artificial periosteum and the artificial gingiva are attached to the above 3D model in the same manner as in the method of manufacturing the dental maxillary model.
In this way, a 3D model that accurately reproduces the lower jaw of an actual patient is created, and the 3D model is sent to a dental clinic that performs dental surgery (periodic surgery, implant surgery, oral surgery, etc.) on the actual patient. Therefore, it can be used for actual dental surgical procedures (periodic surgery, implant surgery, oral surgery, etc.).
If necessary, the incision line may be clearly marked on the artificial gingiva with black ink or the like in the same manner as in the manufacturing method of the dental maxillary model, or dental surgery (periodic surgery, implant surgery) after the gingiva is incised. , The area of the deletion site of the hole (Window) to be opened in the maxilla for the bone formation necessary for the oral surgery procedure) may be clearly indicated by marking the maxilla or the artificial gingiva. In addition, a navigation system (such as a video explaining the surgical procedure) that is convenient for the dentist to practice surgery may be attached as an option. In detail, as in the case of the dental maxillary model, the person who requested the production of the dental mandibular model is attached with a recording medium containing a video explaining the surgical procedure using the dental mandibular model for dentistry. There may be an option to sell the mandibular model. By watching such a video by the dentist who is the client, it is possible to practice surgery efficiently using a dental mandibular model.
The dental mandible model manufactured by the above-mentioned manufacturing method has a mandible having teeth made of resin, an artificial periosteum attached to the mandible, and an artificial gingiva attached to the artificial periosteum. There is. In addition, the dental mandible model may have an incision line specified in the artificial gingiva, or may have a deletion site region (Window) specified in the mandible or the artificial periosteum.
Further, as another aspect of the present invention, at a dentist's study session / lecture, the CT data of the patient to be shared by the students is transmitted to the creator of the dental mandibular model, and the CT data is used in 3D with 3D Painter. You may create a model. By attaching an artificial periosteum and artificial gingiva to the 3D model and sending it to the organizer of the above-mentioned dentist's study session / lecture, it can be useful for the study session or lecture.
According to the above embodiment, the dentist can confirm the surgical procedure such as the position of the incision line, the bone deletion site, the Schneider membrane peeling, the bone formation, and the suturing by using SRPM before the operation.
In addition, by making a dental maxillary model or a dental mandibular model, it can be used to explain the procedure / surgery performed or performed on the patient, and as a result, the patient can easily understand the content of the procedure / surgery. can do.
In addition, since a plurality of CT data of one patient can be reproduced by 3D printer, a plurality of students can practice with the same model in study sessions and surgery classes.
<Online support system>
In the online support system, the person (User) who purchased the 3D model SRPM of the above-mentioned dental upper jaw model or dental lower jaw model is the dentist who belongs to the seller (seller) of the SRPM, or the dentistry designated by the seller. It is a system to receive consultation and advice on surgery before surgery using 3D model SRPM by online video communication to the doctor. For online video communication, a known technique may be used.
<Autoput support system>
In the Output support system, a seminar participant (dentist) who receives an explanation using the 3D model SRPM requests the creation of a 3D model SRPM based on the patient data of the participant's clinic after the seminar, and the 3D model SRPM is used. The purchased seminar participant (User) receives consultation and advice from the dentist who belongs to the SRPM seller (seller) or the dentist designated by the seller using the 3D model SRPM by online video communication. It is a system. This consultation or advice may be a consultation regarding surgery before surgery or other consultation.
<Remote treatment support system>
The consultant who used the online support system (Autoput support system), or the person who purchased the above-mentioned 3D model SRPM of the dental upper jaw model or the dental lower jaw model (User), will use the surgical field camera and earphones at the time of actual surgery. As with the online support system, it can be supported by a dentist who belongs to the SRPM distributor (seller) or a dentist designated by the distributor. As with the online support system (Output support system), the support content is not only the points of surgery, but also how to respond to accidents during actual surgery, and you can receive consultation and advice in real time.
In other words, when the purchaser of the dental upper jaw model or the dental lower jaw model or the dentist designated by the purchaser performs the operation, the purchaser or the dentist designated by the purchaser performs the surgical field camera and earphones. The dentist designated by the seller of the dental mandibular model gives advice or instructions on the method of surgery by online video communication. This makes it possible to receive treatment support from a skilled dentist when performing treatment in a remote location.
With the above system, it is possible to receive consultations and advice from clients (those who purchased 3D model SRPM) not only in Japan but all over the world.
FIG. 12 is a diagram for explaining the online support system or the Output support system in detail.
First, the clinic or hospital that is the requester (requester) requests the seller to produce the above-mentioned 3D model SRPM of the dental maxillary model or the dental mandibular model. The seller may be the company, dentist's clinic or hospital that produces the 3D model SRPM.
Next, the seller who received the request creates a 3D model SRPM by the method described above, sends the SRPM to the clinic or hospital that is the requester, and the requester pays the seller to purchase the SRPM. .. At this time, the seller may sell the SRPM to the purchaser of the SRPM by attaching a recording medium containing a moving image explaining the surgical procedure using the SRPM. The dentist at the clinic or hospital of the purchaser (requester) should use SRPM for preoperative practice and examination of surgical methods, but depending on the case, it is also possible to ask the seller for consultation. be.
When the seller receives a consultation request, the requesting (purchaser) dentist will contact the dentist belonging to the seller or the dentist designated by the seller using SRPM via online video communication. Consultation and consultation regarding surgery. This is an online consultation. By using such online consultation, there are no restrictions on the location between the requester to be consulted and the seller to be consulted, so the seller is a client (3D model SRPM purchaser) not only in Japan but all over the world. ) Can be consulted and advised.
By applying the online consultation method using the above online support system, the selling method of selling SRPM with a recording medium containing a video explaining the surgical procedure using SRPM, and the online consultation method using the Output support system, dentistry It will be possible for dentists who perform surgical procedures to effectively use SRPM.
11,11a 歯
12,12a 上顎骨
13    人工歯肉
14    人工シュナイダー膜
15    切開線
16    人工骨膜
11, 11a Teeth 12,12a Maxilla 13 Artificial gingiva 14 Artificial Schneider membrane 15 Incision line 16 Artificial periosteum

Claims (23)

  1.  樹脂からなる歯を備えた上顎骨と、
     前記上顎骨の上顎洞側に付着させた人工シュナイダー膜と、
     前記上顎骨に付着させた人工骨膜と、
     前記人工骨膜上に付着させた人工歯肉と、
    を有することを特徴とする歯科用上顎模型。
    Maxilla with resin teeth and
    The artificial Schneider membrane attached to the maxillary sinus side of the maxilla,
    The artificial periosteum attached to the maxilla and
    The artificial gingiva attached on the artificial periosteum and
    A dental maxillary model characterized by having.
  2.  請求項1において、
     前記人工歯肉に明示された切開線を有することを特徴とする歯科用上顎模型。
    In claim 1,
    A dental maxillary model characterized by having an incision line specified in the artificial gingiva.
  3.  請求項1又は2において、
     前記上顎骨又は前記人工骨膜に明示された削除部位領域を有することを特徴とする歯科用上顎模型。
    In claim 1 or 2,
    A dental maxillary model characterized by having a deletion site region specified in the maxilla or the artificial periosteum.
  4.  請求項1から3のいずれか一項に記載の歯科用上顎模型の購入者が、前記歯科用上顎模型の販売者が指定する歯科医師にオンラインによるビデオ通信により前記歯科用上顎模型を用いて手術に関する相談をすることを特徴とするオンライン相談方法。 The purchaser of the dental maxillary model according to any one of claims 1 to 3 performs an operation using the dental maxillary model by online video communication to a dentist designated by the seller of the dental maxillary model. An online consultation method characterized by consulting about.
  5.  請求項1から3のいずれか一項に記載の歯科用上顎模型の販売者が、前記歯科用上顎模型の作製を依頼した者に、前記歯科用上顎模型を用いて手術手順を説明した動画を格納した記録媒体を付けて前記歯科用上顎模型を販売することを特徴とする販売方法。 A video in which the seller of the dental maxillary model according to any one of claims 1 to 3 explains a surgical procedure using the dental maxillary model to a person who has requested the production of the dental maxillary model. A selling method characterized by selling the dental maxillary model with a stored recording medium attached.
  6.  請求項1から3のいずれか一項に記載の歯科用上顎模型の購入者又は前記購入者が指定する歯科医師が手術を行う時に、前記購入者又は前記購入者が指定する歯科医師が手術野カメラ及びイヤホンを装着して、オンラインによるビデオ通信により手術の方法を前記歯科用上顎模型の販売者が指定する歯科医師がアドバイス又は指示することを特徴とする遠隔治療支援方法。 When the purchaser of the dental maxillary model according to any one of claims 1 to 3 or the dentist designated by the purchaser performs an operation, the purchaser or the dentist designated by the purchaser performs the operation field. A remote treatment support method characterized in that a dentist designated by the seller of the dental maxillary model gives advice or instructions on a surgical method by attaching a camera and an earphone by online video communication.
  7.  樹脂からなる歯を備えた下顎骨と、
     前記下顎骨に付着させた人工骨膜と、
     前記人工骨膜上に付着させた人工歯肉と、
    を有することを特徴とする歯科用下顎模型。
    The mandible with resin teeth and
    The artificial periosteum attached to the mandible and
    The artificial gingiva attached on the artificial periosteum and
    A dental mandibular model characterized by having.
  8.  請求項7において、
     前記人工歯肉に明示された切開線を有することを特徴とする歯科用下顎模型。
    In claim 7,
    A dental mandibular model characterized by having an incision line specified in the artificial gingiva.
  9.  請求項7又は8において、
     前記下顎骨又は前記人工骨膜に明示された削除部位領域を有することを特徴とする歯科用下顎模型。
    In claim 7 or 8,
    A dental mandible model characterized by having a deletion site region specified in the mandible or the artificial periosteum.
  10.  請求項7から9のいずれか一項に記載の歯科用下顎模型の購入者が、前記歯科用下顎模型の販売者が指定する歯科医師にオンラインによるビデオ通信により前記歯科用下顎模型を用いて手術に関する相談をすることを特徴とするオンライン相談方法。 The purchaser of the dental mandibular model according to any one of claims 7 to 9 performs an operation using the dental mandibular model by online video communication to a dentist designated by the seller of the dental mandible model. An online consultation method characterized by consulting about.
  11.  請求項7から9のいずれか一項に記載の歯科用下顎模型の販売者が、前記歯科用下顎模型の作製を依頼した者に、前記歯科用下顎模型を用いて手術手順を説明した動画を格納した記録媒体を付けて前記歯科用下顎模型を販売することを特徴とする販売方法。 A video in which the seller of the dental mandible model according to any one of claims 7 to 9 explains a surgical procedure using the dental mandible model to a person who has requested the production of the dental mandible model. A selling method characterized by selling the dental mandibular model with a stored recording medium attached.
  12.  請求項7から9のいずれか一項に記載の歯科用下顎模型の購入者又は前記購入者が指定する歯科医師が手術を行う時に、前記購入者又は前記購入者が指定する歯科医師が手術野カメラ及びイヤホンを装着して、オンラインによるビデオ通信により手術の方法を前記歯科用下顎模型の販売者が指定する歯科医師がアドバイス又は指示することを特徴とする遠隔治療支援方法。 When the purchaser of the dental mandibular model according to any one of claims 7 to 9 or the dentist designated by the purchaser performs an operation, the purchaser or the dentist designated by the purchaser performs the operation field. A remote treatment support method characterized in that a dentist designated by the seller of the dental mandibular model gives advice or instructions on a surgical method by attaching a camera and an earphone and using online video communication.
  13.  患者の歯を備えた上顎骨の3次元的データを基に3Dプリンターによって樹脂からなる前記歯を備えた上顎骨を作製する工程(a)と、
     前記上顎骨に人工骨膜と人工歯肉を付着させる工程(b)と、
     前記上顎骨の上顎洞側に人工シュナイダー膜を塗布する工程(c)と、
    を有することを特徴とする歯科用上顎模型の製造方法。
    A step (a) of producing a maxilla with the teeth made of resin by a 3D printer based on three-dimensional data of the maxilla with the patient's teeth.
    The step (b) of attaching the artificial periosteum and the artificial gingiva to the maxilla,
    The step (c) of applying an artificial Schneider membrane to the maxillary sinus side of the maxilla, and
    A method for manufacturing a dental maxillary model, which comprises the above.
  14.  請求項13において、
     前記工程(b)の後に、前記人工歯肉に切開線を明示する工程を有することを特徴とする歯科用上顎模型の製造方法。
    In claim 13,
    A method for manufacturing a dental maxillary model, which comprises a step of clearly indicating an incision line in the artificial gingiva after the step (b).
  15.  請求項13又は14において、
     前記工程(a)の後に、前記上顎骨又は前記人工骨膜に削除部位領域を明示する工程を有することを特徴とする歯科用上顎模型の製造方法。
    In claim 13 or 14,
    A method for manufacturing a dental maxilla model, which comprises a step of clearly indicating a deletion site region on the maxilla or the artificial periosteum after the step (a).
  16.  請求項13から15のいずれか一項において、
     前記工程(a)の前に、
     CTの医用画像をフォーマットした画像データを画像解析ソフトウェアに読み込み、前記画像解析ソフトウェアにおいて歯及び骨の領域を抽出する工程(d)と、
     前記領域を抽出したデータから三次元画像の構築上の妨げとなる部位を削除し、粗な部分や空洞を塗りつぶす工程(e)と、
     前記工程(e)の後の前記領域を抽出したデータの重ね合わせから、前記歯を備えた上顎骨の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する工程(f)と、
     前記三次元画像データを3DCGソフトウェアに読み込み、前記3DCGソフトウェアにおいて前記三次元画像データを汎用の画像データに変換する工程(g)と、
     前記汎用の画像データから不要なゴミポリゴンを削除する工程(h)と、
     前記CTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータを位置合わせして重ね合わせ、不要部分の削除及び足りない部分の修正の少なくとも一方を行うことで、3次元的データを構築する工程(i)と、
    を有することを特徴とする歯科用上顎模型の製造方法。
    In any one of claims 13 to 15,
    Before the step (a),
    The step (d) of reading the image data in which the medical image of CT is formatted into the image analysis software and extracting the tooth and bone regions in the image analysis software, and
    A step (e) of removing a part that hinders the construction of a three-dimensional image from the data extracted from the region and filling a rough part or a cavity.
    A step (f) of extracting only the surface structure of the maxilla having the teeth from the superposition of the data extracted from the region after the step (e) and constructing three-dimensional image data from the extracted data. When,
    A step (g) of reading the three-dimensional image data into 3DCG software and converting the three-dimensional image data into general-purpose image data in the 3DCG software.
    The step (h) of deleting unnecessary dust polygons from the general-purpose image data, and
    By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally. The process of constructing data (i) and
    A method for manufacturing a dental maxillary model, which comprises the above.
  17.  請求項16において、
     前記工程(d)の前記CTの医用画像をフォーマットした画像データは、DICOMデータであり、
     前記工程(g)の前記汎用の画像データは、OBJ形式の画像データであることを特徴とする歯科用上顎模型の製造方法。
    In claim 16,
    The image data obtained by formatting the medical image of the CT in the step (d) is DICOM data.
    A method for manufacturing a dental maxillary model, wherein the general-purpose image data in the step (g) is OBJ format image data.
  18.  患者の歯を備えた下顎骨の3次元的データを基に3Dプリンターによって樹脂からなる前記歯を備えた下顎骨を作製する工程(a)と、
     前記下顎骨に人工骨膜と人工歯肉を付着させる工程(b)と、
    を有することを特徴とする歯科用下顎模型の製造方法。
    A step (a) of producing a mandible with the teeth made of resin by a 3D printer based on three-dimensional data of the mandible with the patient's teeth.
    The step (b) of attaching the artificial periosteum and the artificial gingiva to the mandible,
    A method for manufacturing a dental mandibular model characterized by having.
  19.  請求項18において、
     前記工程(b)の後に、前記人工歯肉に切開線を明示する工程を有することを特徴とする歯科用下顎模型の製造方法。
    In claim 18,
    A method for manufacturing a dental mandibular model, which comprises a step of clearly indicating an incision line in the artificial gingiva after the step (b).
  20.  請求項18又は19において、
     前記工程(a)の後に、前記下顎骨又は前記人工骨膜に削除部位領域を明示する工程を有することを特徴とする歯科用下顎模型の製造方法。
    In claim 18 or 19.
    A method for manufacturing a dental mandible model, which comprises a step of clearly indicating a deleted site region on the mandible or the artificial periosteum after the step (a).
  21.  請求項18から20のいずれか一項において、
     前記工程(a)の前に、
     CTの医用画像をフォーマットした画像データを画像解析ソフトウェアに読み込み、前記画像解析ソフトウェアにおいて歯及び骨の領域を抽出する工程(d)と、
     前記領域を抽出したデータから三次元画像の構築上の妨げとなる部位を削除し、粗な部分や空洞を塗りつぶす工程(e)と、
     前記工程(e)の後の前記領域を抽出したデータの重ね合わせから、前記歯を備えた下顎骨の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する工程(f)と、
     前記三次元画像データを3DCGソフトウェアに読み込み、前記3DCGソフトウェアにおいて前記三次元画像データを汎用の画像データに変換する工程(g)と、
     前記汎用の画像データから不要なゴミポリゴンを削除する工程(h)と、
     前記CTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータを位置合わせして重ね合わせ、不要部分の削除及び足りない部分の修正の少なくとも一方を行うことで、3次元的データを構築する工程(i)と、
    を有することを特徴とする歯科用下顎模型の製造方法。
    In any one of claims 18 to 20,
    Before the step (a),
    The step (d) of reading the image data in which the medical image of CT is formatted into the image analysis software and extracting the tooth and bone regions in the image analysis software, and
    A step (e) of removing a part that hinders the construction of a three-dimensional image from the data extracted from the region and filling a rough part or a cavity.
    A step (f) of extracting only the surface structure of the mandible having the teeth from the superposition of the data extracted from the region after the step (e) and constructing three-dimensional image data from the extracted data. When,
    A step (g) of reading the three-dimensional image data into 3DCG software and converting the three-dimensional image data into general-purpose image data in the 3DCG software.
    The step (h) of deleting unnecessary dust polygons from the general-purpose image data, and
    By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally. The process of constructing data (i) and
    A method for manufacturing a dental mandibular model characterized by having.
  22.  請求項21において、
     前記工程(d)の前記CTの医用画像をフォーマットした画像データは、DICOMデータであり、
     前記工程(g)の前記汎用の画像データは、OBJ形式の画像データであることを特徴とする歯科用下顎模型の製造方法。
    In claim 21,
    The image data obtained by formatting the medical image of the CT in the step (d) is DICOM data.
    A method for manufacturing a dental mandibular model, wherein the general-purpose image data in the step (g) is OBJ format image data.
  23.  CTの医用画像をフォーマットした画像データを画像解析ソフトウェアに読み込み、前記画像解析ソフトウェアにおいて歯及び骨の領域を抽出する工程(d)と、
     前記領域を抽出したデータから三次元画像の構築上の妨げとなる部位を削除し、粗な部分や空洞を塗りつぶす工程(e)と、
     前記工程(e)の後の前記領域を抽出したデータの重ね合わせから、前記歯を備えた上顎骨又は下顎骨の表面構造のみを抽出し、その抽出したデータにより三次元画像データを構築する工程(f)と、
     前記三次元画像データを3DCGソフトウェアに読み込み、前記3DCGソフトウェアにおいて前記三次元画像データを汎用の画像データに変換する工程(g)と、
     前記汎用の画像データから不要なゴミポリゴンを削除する工程(h)と、
     前記CTの医用画像をフォーマットした画像データからの歯列データと口腔内スキャナーのデータを位置合わせして重ね合わせ、不要部分の削除及び足りない部分の修正の少なくとも一方を行うことで、3次元的データを構築する工程(i)と、
    を有することを特徴とする3次元的データの作製方法。
    The step (d) of reading the image data in which the medical image of CT is formatted into the image analysis software and extracting the tooth and bone regions in the image analysis software, and
    A step (e) of removing a part that hinders the construction of a three-dimensional image from the data extracted from the region and filling a rough part or a cavity.
    A step of extracting only the surface structure of the maxilla or mandible having the teeth from the superposition of the data extracted from the region after the step (e), and constructing three-dimensional image data from the extracted data. (F) and
    A step (g) of reading the three-dimensional image data into 3DCG software and converting the three-dimensional image data into general-purpose image data in the 3DCG software.
    The step (h) of deleting unnecessary dust polygons from the general-purpose image data, and
    By aligning and superimposing the dentition data from the image data obtained by formatting the medical image of the CT and the data of the intraoral scanner, and performing at least one of deleting unnecessary parts and correcting missing parts, three-dimensionally. The process of constructing data (i) and
    A method for producing three-dimensional data, which comprises the above.
PCT/JP2021/019279 2020-10-22 2021-05-14 Dental upper jaw model, dental lower jaw model, online consultation method, sale method, remote medical treatment assistance method, dental upper jaw model producing method, dental lower jaw model producing method, and three-dimensional data creation method WO2022085233A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022556387A JP7406856B2 (en) 2020-10-22 2021-05-14 Dental upper jaw model, dental lower jaw model, online consultation method, sales method, remote treatment support method, method for manufacturing a dental upper jaw model, method for manufacturing a dental lower jaw model, and method for creating three-dimensional data
JP2023208854A JP2024023623A (en) 2020-10-22 2023-12-11 Dental upper jaw model, dental lower jaw model, on-line consultation method, sales method, remote treatment assisting method, method of producing dental upper jaw model, method of producing dental lower jaw model, and method of creating 3-dimensional data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177061 2020-10-22
JP2020177061 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022085233A1 true WO2022085233A1 (en) 2022-04-28

Family

ID=81290362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019279 WO2022085233A1 (en) 2020-10-22 2021-05-14 Dental upper jaw model, dental lower jaw model, online consultation method, sale method, remote medical treatment assistance method, dental upper jaw model producing method, dental lower jaw model producing method, and three-dimensional data creation method

Country Status (2)

Country Link
JP (2) JP7406856B2 (en)
WO (1) WO2022085233A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002786A (en) * 2009-06-22 2011-01-06 Bio Map Co Jaw model for practicing implant surgery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182224U (en) 2012-12-28 2013-03-14 株式会社ニッシン Dental training model
JP6732354B1 (en) 2020-03-10 2020-07-29 株式会社デンタルグロウス Instruction sheet management system, instruction sheet management program and instruction sheet management method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002786A (en) * 2009-06-22 2011-01-06 Bio Map Co Jaw model for practicing implant surgery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIHARA, TAKUYA ET AL.: "Fabrication and clinical application of surgery assistance molds with a 3D printer", UTILIZATION OF 3D PRINTERS AND BIOMETRIC INFORMATION, LEARN FUNDAMENTAL CAD/CAM TECHNOLOGY, 20 August 2017 (2017-08-20), pages 147 - 153 *

Also Published As

Publication number Publication date
JPWO2022085233A1 (en) 2022-04-28
JP7406856B2 (en) 2023-12-28
JP2024023623A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US11636943B2 (en) Method for manipulating a dental virtual model, method for creating physical entities based on a dental virtual model thus manipulated, and dental models thus created
USRE49541E1 (en) Method for defining a finish line of a dental prosthesis
Joda et al. Digital technology in fixed implant prosthodontics
JP5586590B2 (en) Designing a custom dental prosthesis using digital images of a patient
Mangano et al. Artificial intelligence and augmented reality for guided implant surgery planning: a proof of concept
Negreiros et al. Designing a complete-arch digital trial tooth arrangement for completely edentulous patients by using an open-source CAD software program: A dental technique
CN110742704B (en) Embedded guide plate for accurately positioning root canal, preparation method and preparation system thereof, application thereof and accurate positioning method of root canal
Kim et al. Virtual planning and rapid 3D prototyping surgical guide for anterior crown lengthening surgery: a clinical case report
US9913701B2 (en) Method for digital archiving and manufacturing of dental prosthetics and prosthesis, and teaching and training for same
WO2022085233A1 (en) Dental upper jaw model, dental lower jaw model, online consultation method, sale method, remote medical treatment assistance method, dental upper jaw model producing method, dental lower jaw model producing method, and three-dimensional data creation method
de Siqueira et al. Using digital technique to obtain the ideal soft tissue contour in immediate implants with provisionalization
Gallucci et al. Digital Workflows in Implant Dentistry
US9999485B2 (en) Method for digital archiving and manufacturing of dental prosthetics and prosthesis, and teaching and training for same
Park et al. Optical impression in restorative dentistry
WO2023058779A1 (en) Digital twin conference holding device and 3d data production method
JP2023002280A (en) Dentistry comprehensive training site
Kim et al. Additive 3-dimensional printing as a novel tool for pre-and postsurgical evaluation and patient education: A clinical case series
BURLUI et al. INTERDISCIPLINARY APPROACH IN DIGITAL DENTISTRY PLANNING.
Alshargawi et al. The Use of Digital Technologies in Endodontic Diagnosis and Restorative Planning
Yarova et al. THE USE OF SIMULATION MOBILE APPLICATIONS IN THE PERFORMANCE OF HIGH-QUALITY AESTHETIC RESTORATIONS OF DENTAL CROWNS BY INTERN DENTISTS
Gürel et al. Anterior Esthetics with APT: Are CAD-CAM Systems Ready for the High-End Anterior Esthetics Challenge?
TW201345491A (en) Method of digital filing and fabrication for dental prosthodontics and prosthesis and teaching and training thereof
Pascual et al. e-Implantology
Ravi Kumar et al. Dental surgical planning using CT scan and rapid prototyping
GOrel et al. Anterior Esthetics with APT: Are CAD-CAM Systems Ready for the High-End Anterior Esthetics Challenge? $0

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882376

Country of ref document: EP

Kind code of ref document: A1