WO2022085196A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2022085196A1
WO2022085196A1 PCT/JP2020/039974 JP2020039974W WO2022085196A1 WO 2022085196 A1 WO2022085196 A1 WO 2022085196A1 JP 2020039974 W JP2020039974 W JP 2020039974W WO 2022085196 A1 WO2022085196 A1 WO 2022085196A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
reference signal
csi
neighboring cells
control unit
Prior art date
Application number
PCT/JP2020/039974
Other languages
French (fr)
Japanese (ja)
Inventor
朋樹 横川
英和 下平
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/039974 priority Critical patent/WO2022085196A1/en
Publication of WO2022085196A1 publication Critical patent/WO2022085196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to a terminal that performs layer 3 measurement using a downlink reference signal.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • a synchronization signal block specifically, an SSB (SS / PBCH Block) composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel) is used.
  • SSB Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • the layer 3 measurement (L3 measurement) by the terminal (User Equipment, UE) is specified.
  • Non-Patent Document 1 L3 measurement using a downlink reference signal for channel state measurement, specifically, CSI-RS (Channel State Information RS), is also being studied (Non-Patent Document 1).
  • CSI-RS Channel State Information RS
  • the measurement period applied to the CSI-RS-based L3 measurement (Inter-frequency measurement with measurement gaps) in Frequency Range 2 (FR2: 24.25 GHz to 52.6 GHz) has been agreed.
  • the UE when it performs a CSI-RS-based L3 measurement, it has something in common with the CSI-RS, specifically the Quasi-Colocation (QCL) -Type D (spatial Rx parameter). Since it is not realistic for the network to constantly keep track of the number of SSBs (which may be called associated SSBs) or the number of neighboring cells in a common) relationship, it is desirable to set the scaling factor to a fixed value. ..
  • QCL Quasi-Colocation
  • the measurement cycle (measurement delay) is short.
  • the following disclosure was made in view of such a situation, and the measurement cycle of the appropriate layer 3 measurement according to the reception state of the downlink reference signal such as CSI-RS or the state of the neighboring cell is set.
  • the purpose is to provide a terminal that can be set.
  • One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 220) that receives a downlink reference signal for channel state measurement, and a control unit that executes layer 3 measurement using the downlink reference signal (control signal / reference signal processing unit 220).
  • the control unit is a terminal (UE200) that changes a coefficient applied to the measurement cycle of the layer 3 measurement based on the reception state of the downlink reference signal or the state of a neighboring cell.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a schematic operation example of quality measurement by UE200.
  • FIG. 3 is a functional block configuration diagram of the UE 200.
  • FIG. 4 is a diagram showing an example of the Measurement period applied to the inter-frequency measurement with measurement gaps of FR2.
  • FIG. 5 is a diagram showing a QCL-Type between signals applied between a source (parent) and a target (child).
  • FIG. 6 is a diagram showing a QCL-Type between signals applied between a source (parent) and a target (child).
  • FIG. 7 is a diagram showing a setting operation flow of the scaling factor N of the UE 200 according to the operation example 1.
  • FIG. 8 is a diagram showing a setting operation flow of the scaling factor N of the UE 200 according to the operation example 2.
  • FIG. 9 is a diagram showing an example of the hardware configuration of gNB100A, gNB100B and UE200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a user terminal 200 (hereinafter, UE200)). ..
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 user terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RANNodes and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to NR (may be simply called base stations), and execute wireless communication according to UE200 and NR.
  • gNB100A, gNB100B and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
  • Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges, specifically, FR1 and FR2.
  • the frequency band of each FR is as follows.
  • FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • the wireless communication system 10 may support a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 can support a frequency band exceeding 52.6 GHz and up to 114.25 GHz. In this case, a wider SCS (eg, 480 kHz, 960 kHz) may be used.
  • a wider SCS eg, 480 kHz, 960 kHz
  • the wireless communication system 10 supports measurements at layers 1 and 3. Specifically, the measurement of the reception quality in the layer 1 and the measurement of the reception quality in the layer 3 are supported.
  • Layer 1 may be interpreted as including a lower layer such as a physical layer.
  • Layer 3 is a layer higher than layer 1.
  • the higher layer may include at least one of a radio link control layer (RLC), a packet data convergence protocol layer (PDCP), a radio resource control layer (RRC), and a medium access control layer (MAC). ) May be positioned between the lower layer and the upper layer.
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • RRC radio resource control layer
  • MAC medium access control layer
  • the wireless communication system 10 supports layer 3 measurement using a synchronization signal block or a downlink reference signal.
  • the synchronization signal block may mean an SSB (SS / PBCH Block) composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
  • SS Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • the SSB is mainly transmitted from the network periodically in order for the UE200 to execute cell ID and reception timing detection at the start of communication.
  • SSB is also used to measure the reception quality of each cell.
  • As the transmission cycle (periodicity) of SSB 5, 10, 20, 40, 80, 160 milliseconds and the like may be specified.
  • the initial access UE200 may be assumed to have a transmission cycle of 20 milliseconds.
  • PSS Primary SS
  • SSS Secondary SS
  • PSS is a known signal that the UE200 first attempts to detect in the cell search procedure.
  • the SSS is a known signal transmitted to detect the physical cell ID in the cell search procedure.
  • PBCH After detecting an SS / PBCH Block, PBCH has a radio frame number (SFN: SystemFrameNumber) and an index for identifying the symbol positions of multiple SS / PBCH Blocks in a half frame (5 milliseconds). Contains the information necessary for the UE200 to establish frame synchronization with the NR cell formed by gNB100A (or gNB100B, the same below).
  • SFN SystemFrameNumber
  • the PBCH can also include system parameters required to receive system information (SIB). Further, the SSB also includes a reference signal for demodulation of the broadcast channel (DMRS for PBCH).
  • DMRS for PBCH is a known signal transmitted to measure the radio channel state for PBCH demodulation.
  • the downlink reference signal may mean a reference signal (RS) in the downlink (DL) direction, but in the present embodiment, in particular, a downlink reference signal for measuring the channel state, specifically, CSI-. It may mean RS (Channel State Information RS).
  • CSI-RS is a reference signal transmitted to measure the state of a radio channel (which may simply be called a channel), and is specifically used to estimate channel state information.
  • the wireless communication system 10 supports L3 measurement using CSI-RS.
  • the UE200 can compare multiple SS / PBCH blocks and L1-RSRP (Reference Signal Received Power) and / or L3-RSRP of CSI-RS, and select an appropriate transmission beam.
  • the UE200 can notify the gNB100A of the information of the selected transmission beam.
  • FIG. 2 shows a schematic operation example of quality measurement by UE200. Specifically, FIG. 2 shows an image of quality measurement operation when UE200 uses FR2.
  • UE200 executes measurement (sweeping) while switching the received (Rx) beam (# 1, # 2, ... # n). For this reason, in the case of FR2, regulations such as measurement delay are relaxed compared to FR1.
  • the UE200 measures the reception quality (RSRP, etc.) of a cell (serving cell and neighboring cells may be included) using a measurement target signal (SSB, etc.) within the measurement period.
  • RSRP reception quality
  • SSB measurement target signal
  • the number of measurement samples required to satisfy the measurement error regulation is 3 samples, it is defined as 3 ⁇ reception beam.
  • FIG. 3 is a functional block configuration diagram of UE200.
  • the UE 200 includes a wireless communication unit 210, a control signal / reference signal processing unit 220, a quality measurement unit 230, and a control unit 240.
  • the wireless communication unit 210 sends and receives wireless signals according to NR. Specifically, the wireless communication unit 210 transmits an uplink signal (UL signal) according to NR and receives a downlink signal (DL signal) according to NR.
  • UL signal uplink signal
  • DL signal downlink signal
  • the wireless communication unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that communicates between UE and each of the two NG-RAN Nodes at the same time.
  • the control signal / reference signal processing unit 220 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 220 receives various control signals transmitted from the gNB 100A via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 220 transmits various control signals to the gNB100A via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 220 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control signal / reference signal processing unit 220 can receive the CSI-RS, that is, the downlink reference signal for channel state measurement, and execute the processing of the downlink reference signal.
  • control signal / reference signal processing unit 220 constitutes a receiving unit that receives the downlink reference signal.
  • the channel may include a control channel and a data channel.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. may be included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data may mean data transmitted over a data channel.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • NR's CSI-RS may include the following components.
  • CSI-RS Channel Quality Information
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • SSB RI SS / PBCH Resource Block Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP L3-RSRP
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to-Interference plus Noise power Ratio
  • CSI-RS may be periodic or aperiodic.
  • the quality measuring unit 230 measures the reception quality of the serving cell of the UE 200 and the neighboring cell (neighbor cell) formed in the vicinity of the serving cell.
  • the quality measurement unit 230 can measure the reception quality using SSB, CSI-RS, or the like.
  • the reception quality may include at least one of RSRP, RSRQ and SINR.
  • RSRP is the reception level of the reference signal measured in the UE200
  • RSRQ is the reception quality of the reference signal measured in the UE200 (the ratio of the power of the cell-specific reference signal to the total power within the receive bandwidth). Can be interpreted).
  • SMTC Measurement Timing Configuration
  • gNB100A the network
  • the UE200 recognizes the measurement start timing, measurement period, and measurement cycle for each cell to be measured. It may be interpreted as a measurement window set on the UE200.
  • the quality measurement unit 230 can execute L3 measurement using CSI-RS (downlink reference signal) according to the control by the control unit 240.
  • the quality measuring unit 230 may measure RSRP, RSRQ and SINR described above by using the function of layer 3.
  • the control unit 240 controls each functional block constituting the UE 200.
  • the control unit 240 can perform layer 3 measurement using CSI-RS (downlink reference signal).
  • the control unit 240 controls the quality measurement unit 230 and executes L3 measurement using CSI-RS.
  • the control unit 240 may change the coefficient applied to the measurement period of L3 measurement based on the reception state of CSI-RS or the state of neighboring cells.
  • the coefficient may be any one that can change the measurement period, but it is particularly desirable that the coefficient can be expanded (scaled) from the reference Measurement period (which may be interpreted as the measurement time).
  • the coefficient may be referred to as a scaling factor (N).
  • control unit 240 can change the scaling factor N that extends the measurement period in the inter-frequency measurement with measurement gaps of FR2 specified in 3GPP TS38.133 Section 9.
  • the target to which the scaling factor N (see FIG. 4) is applied may be FR1 instead of FR2.
  • the scaling factor N may be based on the number of measurement samples or other numerical values. A specific application example of the scaling factor N will be described later.
  • the control unit 240 may set a fixed value or a scaling factor N according to the number of SSBs based on the number of SSBs (synchronous signal blocks) having a commonality between the CSI-RS and the received beam.
  • the SSB having the commonality of the received beam may be interpreted as the SSB having the relationship between the CSI-RS to be measured and the QCL Type D (Spatial Rx parameter is common).
  • Such an SSB may be called an associated SSB.
  • the relationship between the reference signal and the QCL (Quasi-Colocation) will be described later.
  • the scaling factor N according to the number of SSBs may be the same number as the associated SSB or may be different, and may be linked to the number of associated SSBs with a certain relationship.
  • control unit 240 may set a fixed value or a scaling factor N according to the number of neighboring cells based on the number of neighboring cells.
  • the scaling factor N according to the number of neighboring cells may be the same number as the neighboring cells or may be different, and has a certain relationship with the neighboring cells. It suffices if it is linked with the number.
  • control unit 240 may set the number of neighboring cells as the scaling factor N when the number of neighboring cells is a fixed value or less.
  • CSI-RS-based L3 measurement As a CSI-RS-based L3 measurement, as described above, RSRP, RSRQ and SINR measurements may be performed as reception quality.
  • the UE200 needs to perform handover and addition of CC at the time of CA while maintaining communication quality. Therefore, the UE200 measures the reception quality of its own cell and other cells (neighboring cells) in advance and reports it to the network. This allows the network to perform better control of the UE200.
  • UE200 can be measured using the SSB transmitted in the measurement target cell.
  • SMTC a measurement window that can be set for each carrier, is used for SSB measurement.
  • Measurement Gap may be interpreted as a measurement window for stopping data transmission / reception of the own cell and measuring cells / CC of different frequencies.
  • 3GPP Release 16 will introduce CSI-RS-based L3 measurement. Compared to SSB, CSI-RS-based L3 measurement can be set more flexibly, so more configurable L3 measurement can be expected.
  • Possible parameters include, for example, the frequency position, bandwidth, and density of CSI-RS (the number of CSI-RSs arranged per resource block (RB)).
  • FIG. 4 shows an example of the Measurement period applied to the inter-frequency measurement with measurement gaps of FR2.
  • M meas_period_inter 8xN samples ⁇
  • M meas_period_inter 5xN samples ⁇
  • M meas_period_inter 5xN samples ⁇
  • M meas_period_inter 5xN samples
  • CSSF inter is a carrier-specific scaling factor, and the measurements performed within the Measurement Gap may be determined according to CSSF within_gap, i specified in Section 3GPP TS38.133 9.1.5.
  • the power class (PC) is specified in 3GPP TS38.101-2 and so on.
  • the value of the scaling factor N is controlled according to the number of associated SSBs (or neighboring cells).
  • the two signals in the QCL relationship have a relationship such as source (parent) and target (child).
  • ⁇ QCL-Type A ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ⁇ QCL-Type B: ⁇ Doppler shift, Doppler spread ⁇ ⁇ QCL-Type C: ⁇ Doppler shift, average delay ⁇ ⁇ QCL-Type D: ⁇ Spatial Rx parameter ⁇ Type A to C are QCL information related to time / frequency synchronization processing, and Type-D is QCL information related to beam control. In NR, the source signal information is notified to a certain signal. The applicability of QCL-Type between signals is specified in 3GPP TS38.214.
  • 5 and 6 show the QCL-Type between the signals applied between the source (parent) and the target (child).
  • the CSI-RS has the same or different types of reference signals, or the relationship between SSB and QCL.
  • the measurement period (measurement delay) is short because it is desirable to avoid taking time for measurement.
  • the scaling factor N is changed according to the number of associated SSBs. Specifically, the scaling factor N may be changed according to the following rules.
  • Min (the number of different associatedSSB, x)
  • min means that the smaller of the number of different associated SSBs and the fixed value (x) is selected.
  • N x may be set. That is, by limiting the number of associated SSBs to be detected, it is possible to prevent the measurement delay from being unnecessarily delayed. In addition, since scheduling with a fixed value is possible from the viewpoint of the network, it is possible to avoid complicated scheduling.
  • the UE200 can reduce the measurement delay by performing beam sweeping for the number of associated SSBs required for CSI-RS measurement.
  • the value of x may be 8 (a value corresponding to the sweeping rule of the received beam when measuring the current SSB) or may be a different value.
  • FIG. 7 shows a setting operation flow of the scaling factor N of the UE 200 according to the operation example 1.
  • the UE200 acquires an associated SSB, that is, the number of SSBs having a relationship between CSI-RS and QCL-Type D (S10).
  • UE200 determines whether the number of associated SSBs is a fixed value (x) (S20). It should be noted that the determination may be made by the number of associated SSBs ⁇ x, or the determination may be made by the number of associated SSBs> x.
  • UE200 sets a fixed value (x) as the scaling factor N (S30).
  • UE200 sets the number of associatedSSBs as the scaling factor N (S40).
  • FIG. 8 shows a setting operation flow of the scaling factor N of the UE 200 according to the operation example 2.
  • UE200 acquires the number of neighboring cells of UE200 (S110).
  • the neighboring cell may be interpreted as a cell formed in the vicinity of the serving cell (which may include overlapping cases) and to be measured by the UE 200.
  • UE200 determines whether the number of neighboring cells is a fixed value (x) (S120). It should be noted that the determination may be made by the number of neighboring cells ⁇ x, or the determination may be made by the number of neighboring cells> x. Further, the value of x may be the same as or different from the case of operation example 1 (for example, 8).
  • UE200 sets a fixed value (x) as the scaling factor N (S130).
  • UE200 sets the number of neighboring cells as the scaling factor N (S140).
  • the number of associated SSBs and the number of neighboring cells are the same or similar within a predetermined range, either the number of associated SSBs or the number of neighboring cells may be preferentially set. good.
  • the number of associated SSBs, the number of neighboring cells, and the fixed value (x) are similar within a predetermined range, either one (the number of associated SSBs) is used. Either one of the fixed values, or the number of neighboring cells and one of the fixed values) may be set preferentially.
  • the UE200 can change the scaling factor N applied to the measurement period of L3 measurement based on the reception status of CSI-RS or the status of neighboring cells.
  • the scaling factor N As mentioned above, from the viewpoint of scheduling by the network, it is desirable to set the scaling factor N to a fixed value, and from the viewpoint of UE mobility, it is desirable that the measurement period (measurement delay) is short, but according to UE200, scaling Since factor N can be dynamically changed according to the reception status of UE200, a more appropriate CSI-RS-based L3 measurement measurement period can be set.
  • the UE 200 can set a fixed value or a scaling factor N according to the number of associated SSBs based on the number of associated SSBs having a commonality between the CSI-RS and the received beam. Therefore, it is possible to set a more appropriate measurement period of CSI-RS-based L3 measurement according to the state of UE200.
  • the number of associated SSBs when the number of associated SSBs is less than or equal to a fixed value, the number of associated SSBs can be set as the scaling factor N. Therefore, it is possible to set an appropriate CSI-RS-based L3 measurement Measurement period according to the number of associated SSBs.
  • the UE 200 can set a fixed value corresponding to the sweeping of the received beam applied to the measurement of SSB. Therefore, it is possible to set a more appropriate measurement period of CSI-RS-based L3 measurement according to the state of UE200.
  • the UE 200 can also set a fixed value or a scaling factor N according to the number of neighboring cells based on the number of neighboring cells. Therefore, it is possible to set a more appropriate measurement period of CSI-RS-based L3 measurement according to the state of UE200.
  • the UE 200 may set the number of neighboring cells as the scaling factor N when the number of neighboring cells is a fixed value or less. Therefore, it is possible to set an appropriate CSI-RS-based L3 measurement Measurement period according to the number of neighboring cells.
  • the measurement period of the CSI-RS-based L3 measurement as the downlink reference signal for channel state measurement has been described, but as long as the downlink reference signal for channel state measurement is used.
  • the name of the specific reference signal may be different from that of CSI-RS.
  • the Measurement period may be changed directly or indirectly by changing the coefficient to be applied.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an ApplicationSpecific Integrated Circuit (ASIC), a ProgrammableLogicDevice (PLD), and a FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • Fixed Station NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Access point "transmission point”
  • reception point "transmission / reception point”
  • cell “sector”
  • Cell group “cell group”
  • Terms such as “carrier” and “component carrier” may be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “joined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100A, 100B gNB 200 UE 210 Wireless communication unit 220 Control signal / reference signal processing unit 230 Quality measurement unit 240 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal receives a downlink reference signal for channel state measurement, and executes layer 3 measurement using the downlink reference signal. The terminal changes a coefficient applied to the measurement cycle of the layer 3 measurement on the basis of the reception state of the downlink reference signal.

Description

端末Terminal
 本開示は、下りリンク参照信号を用いたレイヤ3測定を実行する端末に関する。 The present disclosure relates to a terminal that performs layer 3 measurement using a downlink reference signal.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 例えば、3GPP Release 15では、同期信号ブロック、具体的には、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成されるSSB(SS/PBCH Block)を用いた、端末(User Equipment, UE)によるレイヤ3測定(L3 measurement)が規定されている。 For example, in 3GPP Release 15, a synchronization signal block, specifically, an SSB (SS / PBCH Block) composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel) is used. The layer 3 measurement (L3 measurement) by the terminal (User Equipment, UE) is specified.
 また、3GPP Release 16では、チャネル状態測定用の下りリンク参照信号、具体的には、CSI-RS(Channel State Information RS)を用いたL3 measurementも検討されている(非特許文献1)。 In 3GPP Release 16, L3 measurement using a downlink reference signal for channel state measurement, specifically, CSI-RS (Channel State Information RS), is also being studied (Non-Patent Document 1).
 例えば、Frequency Range 2(FR2:24.25 GHz~52.6 GHz)におけるCSI-RSベースのL3 measurement(Inter-frequency measurement with measurement gaps)に適用される測定周期(Measurement period)が合意されている。 For example, the measurement period applied to the CSI-RS-based L3 measurement (Inter-frequency measurement with measurement gaps) in Frequency Range 2 (FR2: 24.25 GHz to 52.6 GHz) has been agreed.
 3GPPでは、スケーリングファクタを用いて上述した測定周期を延ばすことも検討されている。 In 3GPP, it is also considered to extend the above-mentioned measurement cycle by using a scaling factor.
 しかしながら、UEがCSI-RSベースのL3 measurementを実行する場合、CSI-RSと受信ビームの共通性を有する、具体的には、擬似コロケーション(QCL:Quasi-Colocation)-Type D(空間Rxパラメータが共通)の関係にあるSSB(associatedSSBと呼ばれてもよい)の数、或いは近隣セルの数をネットワークが常時把握することは現実的でないため、スケーリングファクタを固定値とすることが望ましいと考えられる。 However, when the UE performs a CSI-RS-based L3 measurement, it has something in common with the CSI-RS, specifically the Quasi-Colocation (QCL) -Type D (spatial Rx parameter). Since it is not realistic for the network to constantly keep track of the number of SSBs (which may be called associated SSBs) or the number of neighboring cells in a common) relationship, it is desirable to set the scaling factor to a fixed value. ..
 一方、UEのモビリティの観点では、測定周期(測定遅延)は短いことが望ましい。 On the other hand, from the viewpoint of UE mobility, it is desirable that the measurement cycle (measurement delay) is short.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、CSI-RSなどの下りリンク参照信号の受信状態または近隣セルの状態などに応じた適切なレイヤ3測定の測定周期を設定できる端末の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and the measurement cycle of the appropriate layer 3 measurement according to the reception state of the downlink reference signal such as CSI-RS or the state of the neighboring cell is set. The purpose is to provide a terminal that can be set.
 本開示の一態様は、チャネル状態測定用の下りリンク参照信号を受信する受信部(制御信号・参照信号処理部220)と、前記下りリンク参照信号を用いてレイヤ3測定を実行する制御部(制御部240)とを備え、前記制御部は、前記下りリンク参照信号の受信状態または近隣セルの状態に基づいて、前記レイヤ3測定の測定周期に適用される係数を変更する端末(UE200)である。 One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 220) that receives a downlink reference signal for channel state measurement, and a control unit that executes layer 3 measurement using the downlink reference signal (control signal / reference signal processing unit 220). With a control unit 240), the control unit is a terminal (UE200) that changes a coefficient applied to the measurement cycle of the layer 3 measurement based on the reception state of the downlink reference signal or the state of a neighboring cell. be.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、UE200による品質測定の概略動作例を示す図である。FIG. 2 is a diagram showing a schematic operation example of quality measurement by UE200. 図3は、UE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the UE 200. 図4は、FR2のinter-frequency measurement with measurement gapsに適用されるMeasurement periodの例を示す図である。FIG. 4 is a diagram showing an example of the Measurement period applied to the inter-frequency measurement with measurement gaps of FR2. 図5は、source(親)とtarget(子)との間において適用される信号間のQCL-Typeを示す図である。FIG. 5 is a diagram showing a QCL-Type between signals applied between a source (parent) and a target (child). 図6は、source(親)とtarget(子)との間において適用される信号間のQCL-Typeを示す図である。FIG. 6 is a diagram showing a QCL-Type between signals applied between a source (parent) and a target (child). 図7は、動作例1に係るUE200のスケーリングファクタNの設定動作フローを示す図である。FIG. 7 is a diagram showing a setting operation flow of the scaling factor N of the UE 200 according to the operation example 1. 図8は、動作例2に係るUE200のスケーリングファクタNの設定動作フローを示す図である。FIG. 8 is a diagram showing a setting operation flow of the scaling factor N of the UE 200 according to the operation example 2. 図9は、gNB100A、gNB100B及びUE200のハードウェア構成の一例を示す図である。FIG. 9 is a diagram showing an example of the hardware configuration of gNB100A, gNB100B and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及びユーザ端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a user terminal 200 (hereinafter, UE200)). ..
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Nodeを含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN20 actually includes multiple NG-RANNodes and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100A及びgNB100Bは、NRに従った無線基地局(単に、基地局と呼ばれてよい)であり、UE200とNRに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100A and gNB100B are radio base stations according to NR (may be simply called base stations), and execute wireless communication according to UE200 and NR. gNB100A, gNB100B and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
 無線通信システム10は、複数の周波数レンジ、具体的には、FR1及びFR2に対応する。各FRの周波数帯域は、次のとおりである。 The wireless communication system 10 supports a plurality of frequency ranges, specifically, FR1 and FR2. The frequency band of each FR is as follows.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz. FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応し得る。この場合、さらに広いSCS(例えば、480kHz, 960kHz)が用いられてもよい。 Further, the wireless communication system 10 may support a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 can support a frequency band exceeding 52.6 GHz and up to 114.25 GHz. In this case, a wider SCS (eg, 480 kHz, 960 kHz) may be used.
 無線通信システム10では、レイヤ1及びレイヤ3における測定がサポートされる。具体的には、レイヤ1における受信品質の測定、及びレイヤ3における受信品質の測定がサポートされる。 The wireless communication system 10 supports measurements at layers 1 and 3. Specifically, the measurement of the reception quality in the layer 1 and the measurement of the reception quality in the layer 3 are supported.
 レイヤ1とは、物理レイヤなどの下位レイヤが含まれると解釈されてよい。レイヤ3とは、レイヤ1よりも上位レイヤである。上位レイヤには、無線リンク制御レイヤ(RLC)、パケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)、無線リソース制御レイヤ(RRC)の少なくとも何れかが含まれてもよく、媒体アクセス制御レイヤ(MAC)は、下位レイヤと上位レイヤとの中間に位置付けられてもよい。 Layer 1 may be interpreted as including a lower layer such as a physical layer. Layer 3 is a layer higher than layer 1. The higher layer may include at least one of a radio link control layer (RLC), a packet data convergence protocol layer (PDCP), a radio resource control layer (RRC), and a medium access control layer (MAC). ) May be positioned between the lower layer and the upper layer.
 また、無線通信システム10は、同期信号ブロックまたは下りリンク参照信号を用いたレイヤ3測定(L3 measurement)をサポートする。 In addition, the wireless communication system 10 supports layer 3 measurement using a synchronization signal block or a downlink reference signal.
 同期信号ブロックとは、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成されるSSB(SS/PBCH Block)を意味してよい。 The synchronization signal block may mean an SSB (SS / PBCH Block) composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
 SSBは、主に、UE200が通信開始時にセルIDや受信タイミング検出を実行するために周期的にネットワークから送信される。NRでは、SSBは、各セルの受信品質測定にも流用される。SSBの送信周期(periodicity)としては、5、10、20、40、80、160ミリ秒などが規定されてよい。なお、初期アクセスのUE200は、20ミリ秒の送信周期と仮定してもよい。 The SSB is mainly transmitted from the network periodically in order for the UE200 to execute cell ID and reception timing detection at the start of communication. In NR, SSB is also used to measure the reception quality of each cell. As the transmission cycle (periodicity) of SSB, 5, 10, 20, 40, 80, 160 milliseconds and the like may be specified. The initial access UE200 may be assumed to have a transmission cycle of 20 milliseconds.
 SSは、プライマリ同期信号(PSS:Primary SS)及びセカンダリ同期信号(SSS:Secondary SS)によって構成される。 SS is composed of a primary synchronization signal (PSS: Primary SS) and a secondary synchronization signal (SSS: Secondary SS).
 PSSは、セルサーチ手順においてUE200が最初に検出を試みる既知の信号である。SSSは、セルサーチ手順において物理セルIDを検出するために送信される既知の信号である。 PSS is a known signal that the UE200 first attempts to detect in the cell search procedure. The SSS is a known signal transmitted to detect the physical cell ID in the cell search procedure.
 PBCHは、は無線フレーム番号(SFN:System Frame Number)、及びハーフフレーム(5ミリ秒)内の複数のSS/PBCH Blockのシンボル位置を識別するためのインデックスなど、SS/PBCH Blockを検出した後にUE200が、gNB100A(またはgNB100B、以下同)が形成するNRセルとのフレーム同期を確立するために必要な情報を含む。 After detecting an SS / PBCH Block, PBCH has a radio frame number (SFN: SystemFrameNumber) and an index for identifying the symbol positions of multiple SS / PBCH Blocks in a half frame (5 milliseconds). Contains the information necessary for the UE200 to establish frame synchronization with the NR cell formed by gNB100A (or gNB100B, the same below).
 また、PBCHは、システム情報(SIB)を受信するために必要となるシステムパラメータも含むことができる。さらに、SSBには、報知チャネル復調用参照信号(DMRS for PBCH)も含まれる。DMRS for PBCHは、PBCH復調のための無線チャネル状態を測定するために送信される既知の信号である。 The PBCH can also include system parameters required to receive system information (SIB). Further, the SSB also includes a reference signal for demodulation of the broadcast channel (DMRS for PBCH). DMRS for PBCH is a known signal transmitted to measure the radio channel state for PBCH demodulation.
 下りリンク参照信号とは、下りリンク(DL)方向の参照信号(RS)を意味してよいが、本実施形態では、特に、チャネル状態測定用の下りリンク参照信号、具体的には、CSI-RS(Channel State Information RS)を意味してよい。 The downlink reference signal may mean a reference signal (RS) in the downlink (DL) direction, but in the present embodiment, in particular, a downlink reference signal for measuring the channel state, specifically, CSI-. It may mean RS (Channel State Information RS).
 CSI-RSは、無線チャネル(単に、チャネルと呼ばれてもよい)の状態を測定するために送信される参照信号であり、具体的には、チャネル状態情報の推定に用いられる。無線通信システム10では、CSI-RSを用いたL3 measurementがサポートされる。 CSI-RS is a reference signal transmitted to measure the state of a radio channel (which may simply be called a channel), and is specifically used to estimate channel state information. The wireless communication system 10 supports L3 measurement using CSI-RS.
 UE200は、複数のSS/PBCH block、及びCSI-RSのL1-RSRP(Reference Signal Received Power)及び/またはL3-RSRPなどを比較し、適切な送信ビームを選択できる。UE200は、選択した送信ビームの情報をgNB100Aに通知できる。 The UE200 can compare multiple SS / PBCH blocks and L1-RSRP (Reference Signal Received Power) and / or L3-RSRP of CSI-RS, and select an appropriate transmission beam. The UE200 can notify the gNB100A of the information of the selected transmission beam.
 図2は、UE200による品質測定の概略動作例を示す。具体的には、図2は、UE200がFR2を用いる場合における品質測定動作のイメージを示している。 FIG. 2 shows a schematic operation example of quality measurement by UE200. Specifically, FIG. 2 shows an image of quality measurement operation when UE200 uses FR2.
 図2に示すように、FR2では、UE200が受信(Rx)ビーム(#1, #2,…#n)を切り替えながら測定(スイーピング)を実行する。このため、FR2の場合、FR1と比較して測定遅延などの規定が緩和されている。 As shown in Fig. 2, in FR2, UE200 executes measurement (sweeping) while switching the received (Rx) beam (# 1, # 2, ... # n). For this reason, in the case of FR2, regulations such as measurement delay are relaxed compared to FR1.
 UE200は、測定周期(Measurement period)内において、測定対象信号(SSBなど)を用いてセル(サービングセル及び近隣セルが含まれてよい)の受信品質(RSRPなど)を測定する。 The UE200 measures the reception quality (RSRP, etc.) of a cell (serving cell and neighboring cells may be included) using a measurement target signal (SSB, etc.) within the measurement period.
 例えば、測定誤差規定を満たすために必要な測定サンプル数が3 sampleの場合、3×受信ビームのように規定される。 For example, if the number of measurement samples required to satisfy the measurement error regulation is 3 samples, it is defined as 3 × reception beam.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図3は、UE200の機能ブロック構成図である。図3に示すように、UE200は、無線通信部210、制御信号・参照信号処理部220、品質測定部230及び制御部240を備える。 FIG. 3 is a functional block configuration diagram of UE200. As shown in FIG. 3, the UE 200 includes a wireless communication unit 210, a control signal / reference signal processing unit 220, a quality measurement unit 230, and a control unit 240.
 無線通信部210は、NRに従った無線信号を送受信する。具体的には、無線通信部210は、NRに従った上りリンク信号(UL信号)を送信し、NRに従った下りリンク信号(DL信号)を受信する。 The wireless communication unit 210 sends and receives wireless signals according to NR. Specifically, the wireless communication unit 210 transmits an uplink signal (UL signal) according to NR and receives a downlink signal (DL signal) according to NR.
 無線通信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The wireless communication unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that communicates between UE and each of the two NG-RAN Nodes at the same time.
 制御信号・参照信号処理部220は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal / reference signal processing unit 220 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
 具体的には、制御信号・参照信号処理部220は、gNB100Aから所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部220は、gNB100Aに向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal / reference signal processing unit 220 receives various control signals transmitted from the gNB 100A via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 220 transmits various control signals to the gNB100A via a predetermined control channel.
 制御信号・参照信号処理部220は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 220 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)などが含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
 特に、本実施形態では、制御信号・参照信号処理部220は、CSI-RS、つまり、チャネル状態測定用の下りリンク参照信号を受信し、当該下りリンク参照信号の処理を実行できる。本実施形態において、制御信号・参照信号処理部220は、下りリンク参照信号を受信する受信部を構成する。 In particular, in the present embodiment, the control signal / reference signal processing unit 220 can receive the CSI-RS, that is, the downlink reference signal for channel state measurement, and execute the processing of the downlink reference signal. In the present embodiment, the control signal / reference signal processing unit 220 constitutes a receiving unit that receives the downlink reference signal.
 なお、チャネルには、制御チャネルとデータチャネルとが含まれてよい。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれてよい。 The channel may include a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. may be included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data may mean data transmitted over a data channel.
 NRのCSI-RSは、以下のコンポーネントを含んでよい。 NR's CSI-RS may include the following components.
  ・CQI(Channel Quality Information)
  ・PMI(Precoding Matrix Indicator)
  ・CRI(CSI-RS Resource Indicator)
  ・SSB RI(SS/PBCH Resource Block Indicator)
  ・LI(Layer Indicator)
  ・RI(Rank Indicator)
  ・L1-RSRP
  ・L3-RSRP, RSRQ(Reference Signal Received Quality), SINR(Signal-to-Interference plus Noise power Ratio)
 また、CSI-RSは、周期的(Periodic)でもよいし、非周期的(Aperiodic)でもよい。
・ CQI (Channel Quality Information)
・ PMI (Precoding Matrix Indicator)
・ CRI (CSI-RS Resource Indicator)
・ SSB RI (SS / PBCH Resource Block Indicator)
・ LI (Layer Indicator)
・ RI (Rank Indicator)
・ L1-RSRP
・ L3-RSRP, RSRQ (Reference Signal Received Quality), SINR (Signal-to-Interference plus Noise power Ratio)
Further, CSI-RS may be periodic or aperiodic.
 品質測定部230は、UE200のサービングセル、及びサービングセルの近隣に形成されている近隣セル(neighbor cell)の受信品質を測定する。 The quality measuring unit 230 measures the reception quality of the serving cell of the UE 200 and the neighboring cell (neighbor cell) formed in the vicinity of the serving cell.
 具体的には、品質測定部230は、SSBまたはCSI-RSなどを用いて当該受信品質を測定できる。受信品質には、上述したように、RSRP、RSRQ及びSINRの少なくとも何れかが含まれてよい。 Specifically, the quality measurement unit 230 can measure the reception quality using SSB, CSI-RS, or the like. As mentioned above, the reception quality may include at least one of RSRP, RSRQ and SINR.
 RSRPは、UE200において測定される参照信号の受信レベルであり、RSRQは、UE200において測定される参照信号の受信品質(セル固有の参照信号の電力と、受信帯域幅内の総電力との比と解釈されてよい)である。 RSRP is the reception level of the reference signal measured in the UE200, and RSRQ is the reception quality of the reference signal measured in the UE200 (the ratio of the power of the cell-specific reference signal to the total power within the receive bandwidth). Can be interpreted).
 SSBの測定では、SSB based RRM Measurement Timing Configuration(SMTC)と呼ばれるキャリア(サブキャリアと呼ばれてもよい)毎に設定可能な測定窓が用いられてよい。具体的には、SMTC windowは、UE200がSSBを用いた受信品質測定を実施する際、測定対象のセル毎の測定開始タイミング及び測定期間、測定周期をUE200が認識するため、ネットワーク(gNB100A)からUE200に設定される測定窓と解釈されてよい。 In the measurement of SSB, a measurement window called SSB based RRM Measurement Timing Configuration (SMTC), which can be set for each carrier (may be called a subcarrier), may be used. Specifically, the SMTC window is available from the network (gNB100A) because when the UE200 performs reception quality measurement using SSB, the UE200 recognizes the measurement start timing, measurement period, and measurement cycle for each cell to be measured. It may be interpreted as a measurement window set on the UE200.
 また、品質測定部230は、制御部240による制御に従って、CSI-RS(下りリンク参照信号)を用いたL3 measurementを実行できる。具体的には、品質測定部230は、レイヤ3の機能を用いて、上述したRSRP、RSRQ及びSINRを測定してよい。 In addition, the quality measurement unit 230 can execute L3 measurement using CSI-RS (downlink reference signal) according to the control by the control unit 240. Specifically, the quality measuring unit 230 may measure RSRP, RSRQ and SINR described above by using the function of layer 3.
 制御部240は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部240は、CSI-RS(下りリンク参照信号)を用いてレイヤ3測定を実行できる。具体的には、制御部240は、品質測定部230を制御し、CSI-RSを用いたL3 measurementを実行する。 The control unit 240 controls each functional block constituting the UE 200. In particular, in this embodiment, the control unit 240 can perform layer 3 measurement using CSI-RS (downlink reference signal). Specifically, the control unit 240 controls the quality measurement unit 230 and executes L3 measurement using CSI-RS.
 制御部240は、CSI-RSの受信状態または近隣セルの状態に基づいて、L3 measurementの測定周期(Measurement period)に適用される係数を変更してよい。 The control unit 240 may change the coefficient applied to the measurement period of L3 measurement based on the reception state of CSI-RS or the state of neighboring cells.
 当該係数は、当該Measurement periodを変更できるものであればよいが、特に、基準のMeasurement period(測定時間と解釈されてもよい)を拡張(スケーリング)できるものであることが望ましい。当該係数は、スケーリングファクタ(N)と呼ばれてもよい。 The coefficient may be any one that can change the measurement period, but it is particularly desirable that the coefficient can be expanded (scaled) from the reference Measurement period (which may be interpreted as the measurement time). The coefficient may be referred to as a scaling factor (N).
 例えば、制御部240は、3GPP TS38.133 9.章において規定されるFR2のinter-frequency measurement with measurement gapsにおけるMeasurement periodを引き延ばすスケーリングファクタNを変更することができる。 For example, the control unit 240 can change the scaling factor N that extends the measurement period in the inter-frequency measurement with measurement gaps of FR2 specified in 3GPP TS38.133 Section 9.
 なお、スケーリングファクタN(図4参照)が適用される対象は、FR2でなく、FR1でもよい。スケーリングファクタNは、測定サンプル数を基準としてもよいし、他の数値を基準としてもよい。スケーリングファクタNの具体的な適用例については、後述する。 The target to which the scaling factor N (see FIG. 4) is applied may be FR1 instead of FR2. The scaling factor N may be based on the number of measurement samples or other numerical values. A specific application example of the scaling factor N will be described later.
 制御部240は、CSI-RSと受信ビームの共通性を有するSSB(同期信号ブロック)の数に基づいて、固定値またはSSBの数に応じたスケーリングファクタNを設定してもよい。 The control unit 240 may set a fixed value or a scaling factor N according to the number of SSBs based on the number of SSBs (synchronous signal blocks) having a commonality between the CSI-RS and the received beam.
 ここで、受信ビームの共通性を有するSSBとは、測定対象のCSI-RSとQCL Type D(Spatial Rx parameterが共通)の関係にあるSSBと解釈されてよい。このようなSSBは、associatedSSBと呼ばれてよい。参照信号とQCL(Quasi-Colocation)との関係について、後述する。 Here, the SSB having the commonality of the received beam may be interpreted as the SSB having the relationship between the CSI-RS to be measured and the QCL Type D (Spatial Rx parameter is common). Such an SSB may be called an associated SSB. The relationship between the reference signal and the QCL (Quasi-Colocation) will be described later.
 また、SSBの数に応じたスケーリングファクタNとは、associatedSSBと同一の数でもよいし、異なっていてもよく、一定の関係性を有してassociatedSSBの数と連動していればよい。 Further, the scaling factor N according to the number of SSBs may be the same number as the associated SSB or may be different, and may be linked to the number of associated SSBs with a certain relationship.
 固定値(x)は、特に限定されないが、SSBの測定に適用される受信ビームのスイーピングの規定と対応する値(例えば、x=8)が設定されてよい。つまり、制御部240は、SSBの測定に適用される受信ビームのスイーピングと対応する固定値を設定できる。 The fixed value (x) is not particularly limited, but a value (for example, x = 8) corresponding to the sweeping rule of the received beam applied to the measurement of SSB may be set. That is, the control unit 240 can set a fixed value corresponding to the sweeping of the received beam applied to the measurement of SSB.
 制御部240は、associatedSSBの数が固定値以下の場合、associatedSSBの数をスケーリングファクタNとして設定してもよい。例えば、固定値x=8であり、associatedSSBの数=4の場合、4(Rx beam sweeping)がスケーリングファクタNとして設定されてよい。 The control unit 240 may set the number of associated SSBs as the scaling factor N when the number of associated SSBs is a fixed value or less. For example, when the fixed value x = 8 and the number of associated SSBs = 4, 4 (Rx beam sweeping) may be set as the scaling factor N.
 また、制御部240は、近隣セルの数に基づいて、固定値または近隣セルの数に応じたスケーリングファクタNを設定してもよい。具体的には、associatedSSBと同様に、近隣セルの数に応じたスケーリングファクタNとは、近隣セルと同一の数でもよいし、異なっていてもよく、一定の関係性を有して近隣セルの数と連動していればよい。 Further, the control unit 240 may set a fixed value or a scaling factor N according to the number of neighboring cells based on the number of neighboring cells. Specifically, like the associated SSB, the scaling factor N according to the number of neighboring cells may be the same number as the neighboring cells or may be different, and has a certain relationship with the neighboring cells. It suffices if it is linked with the number.
 また、associatedSSBと同様に、制御部240は、近隣セルの数が固定値以下の場合、近隣セルの数をスケーリングファクタNとして設定してよい。 Similarly to the associated SSB, the control unit 240 may set the number of neighboring cells as the scaling factor N when the number of neighboring cells is a fixed value or less.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、CSI-RSベースのL3 measurementに関連する動作、特に、当該L3 measurementに提供されるスケーリングファクタNの制御に関する動作について説明する。
(3) Operation of wireless communication system Next, the operation of the wireless communication system 10 will be described. Specifically, the operation related to the CSI-RS-based L3 measurement, particularly the operation related to the control of the scaling factor N provided for the L3 measurement will be described.
 (3.1)前提
 まず、前提として、CSI-RSベースのL3 measurementの基本的な動作及び関連する内容について説明する。
(3.1) Premise First, as a premise, the basic operation of CSI-RS-based L3 measurement and related contents will be explained.
 (3.1.1)CSI-RSベースのL3 measurement
 CSI-RSベースのL3 measurementとしては、上述したように、受信品質として、RSRP、RSRQ及びSINRの測定が実行されてよい。
(3.1.1) CSI-RS-based L3 measurement
As a CSI-RS-based L3 measurement, as described above, RSRP, RSRQ and SINR measurements may be performed as reception quality.
 UE200は、通信品質を維持しながらハンドオーバー、及びCA時におけるCCの追加を実行する必要がある。そこで、UE200は、自セル及び他セル(近隣セル)の当該受信品質を事前に測定し、ネットワークに報告する。これにより、ネットワークは、より適切なUE200の制御を実行し得る。 UE200 needs to perform handover and addition of CC at the time of CA while maintaining communication quality. Therefore, the UE200 measures the reception quality of its own cell and other cells (neighboring cells) in advance and reports it to the network. This allows the network to perform better control of the UE200.
 NR(3GPP Release 15)では、UE200は、測定対象セルにおいて送信されているSSBを用いて測定することができる。SSBの測定には、上述したように、SMTCというキャリア毎に設定可能な測定窓が用いられる。 In NR (3GPP Release 15), UE200 can be measured using the SSB transmitted in the measurement target cell. As described above, SMTC, a measurement window that can be set for each carrier, is used for SSB measurement.
 また、他セル/他CCの受信品質測定においては、Measurement Gap内において測定が実行される。Measurement Gapとは、自セルのデータ送受信を停止し、異なる周波数のセル/CCを測定するための測定窓と解釈されてよい。 In addition, in the reception quality measurement of other cells / CCs, the measurement is executed in Measurement Gap. Measurement Gap may be interpreted as a measurement window for stopping data transmission / reception of the own cell and measuring cells / CC of different frequencies.
 また、3GPP Release 16では、CSI-RSベースのL3 measurementが導入される予定である。CSI-RSベースのL3 measurementは、SSBと比較してマッピングなどが柔軟に設定可能であるため、よりconfigurableなL3 measurementが期待できる。 In addition, 3GPP Release 16 will introduce CSI-RS-based L3 measurement. Compared to SSB, CSI-RS-based L3 measurement can be set more flexibly, so more configurable L3 measurement can be expected.
 設定可能なパラメータとしては、例えば、CSI-RSの周波数位置、帯域幅、密度(1リソースブロック(RB)当たりに配置するCSI-RSの数などが挙げられる。 Possible parameters include, for example, the frequency position, bandwidth, and density of CSI-RS (the number of CSI-RSs arranged per resource block (RB)).
 このようなCSI-RSベースのL3 measurementに関して、例えば、FR2のinter-frequency measurement with measurement gapsにおける測定周期(Measurement period)が合意されている。図4は、FR2のinter-frequency measurement with measurement gapsに適用されるMeasurement periodの例を示す。 Regarding such CSI-RS-based L3 measurement, for example, the measurement period in the inter-frequency measurement with measurement gaps of FR2 has been agreed. FIG. 4 shows an example of the Measurement period applied to the inter-frequency measurement with measurement gaps of FR2.
 また、図4に示すパラメータMmeas_period_interについては、次のとおりとすることが合意されている。 It has also been agreed that the parameter M meas_period_inter shown in FIG. 4 shall be as follows.
  ・For a UE supporting FR2 power class 1, Mmeas_period_inter=8xN samples
  ・For a UE supporting FR2 power class 2, Mmeas_period_inter=5xN samples
  ・For a UE supporting FR2 power class 3, Mmeas_period_inter=5xN samples
  ・For a UE supporting FR2 power class 4, Mmeas_period_inter=5xN samples
 CSSFinterとは、キャリア固有のスケーリングファクタであり、Measurement Gap内において実行される測定については、3GPP TS38.133 9.1.5章において規定される CSSFwithin_gap,iに従って決定されてよい。なお、power class(PC)は、3GPP TS38.101-2などにおいて規定されている。
・ For a UE supporting FR2 power class 1, M meas_period_inter = 8xN samples
・ For a UE supporting FR2 power class 2, M meas_period_inter = 5xN samples
・ For a UE supporting FR2 power class 3, M meas_period_inter = 5xN samples
・ For a UE supporting FR2 power class 4, M meas_period_inter = 5xN samples
CSSF inter is a carrier-specific scaling factor, and the measurements performed within the Measurement Gap may be determined according to CSSF within_gap, i specified in Section 3GPP TS38.133 9.1.5. The power class (PC) is specified in 3GPP TS38.101-2 and so on.
 
 後述する動作例では、スケーリングファクタNの値が、associatedSSB(或いは近隣セル)の数に応じて制御される。

In the operation example described later, the value of the scaling factor N is controlled according to the number of associated SSBs (or neighboring cells).
 (3.1.2)擬似コロケーション(QCL)
 3GPPでは、2つの信号間で無線パラメータが同一であると見なせる場合、当該信号間の関係性を示すために、QCLが規定されている。
(3.1.2) Pseudo-collocation (QCL)
In 3GPP, when the radio parameters can be considered to be the same between two signals, the QCL is specified to show the relationship between the signals.
 QCLの関係にある2つの信号には、source(親)と、target(子)といった関係が存在する。 The two signals in the QCL relationship have a relationship such as source (parent) and target (child).
 NRでは、次の4種類のQCLがサポートされており、また、それぞれのQCL-Typeに含まれる無線パラメータは、QCLパラメータと呼ばれることもある。 In NR, the following four types of QCL are supported, and the radio parameters included in each QCL-Type are sometimes called QCL parameters.
  ・QCL-Type A: {Doppler shift, Doppler spread, average delay, delay spread}
  ・QCL-Type B: {Doppler shift, Doppler spread}
  ・QCL-Type C: {Doppler shift,average delay}
  ・QCL-Type D: {Spatial Rx parameter}
 Type A~Cは、時間・周波数同期処理に関連するQCL情報、Type-Dは、ビーム制御に関連するQCL情報である。NRでは、ある信号に対してsource信号情報が通知される。信号間におけるQCL-Typeの適用可否は、3GPP TS38.214において規定されている。
・ QCL-Type A: {Doppler shift, Doppler spread, average delay, delay spread}
・ QCL-Type B: {Doppler shift, Doppler spread}
・ QCL-Type C: {Doppler shift, average delay}
・ QCL-Type D: {Spatial Rx parameter}
Type A to C are QCL information related to time / frequency synchronization processing, and Type-D is QCL information related to beam control. In NR, the source signal information is notified to a certain signal. The applicability of QCL-Type between signals is specified in 3GPP TS38.214.
 図5及び図6は、source(親)とtarget(子)との間において適用される信号間のQCL-Typeを示す。 5 and 6 show the QCL-Type between the signals applied between the source (parent) and the target (child).
 図5及び図6に示すように、例えば、CSI-RSは、同一または異なる種類の参照信号、或いはSSBとQCLの関係を有する。 As shown in FIGS. 5 and 6, for example, the CSI-RS has the same or different types of reference signals, or the relationship between SSB and QCL.
 (3.1.3)課題
 ネットワークによるスケジューリングの観点では、近隣セルの数またはassociatedSSBの数を常時把握することは負荷増大などを伴い現実的でないため、上述したスケーリングファクタNを固定値とすることが望ましい。
(3.1.3) Problem From the viewpoint of scheduling by the network, it is not realistic to constantly grasp the number of neighboring cells or associated SSB due to the increase in load, so the above-mentioned scaling factor N should be a fixed value. Is desirable.
 一方、UEのモビリティの観点では、測定に時間を要することは回避したいため、Measurement period(測定遅延)は短いことが望ましい。 On the other hand, from the viewpoint of UE mobility, it is desirable that the measurement period (measurement delay) is short because it is desirable to avoid taking time for measurement.
 このような状況を考慮すると、スケーリングファクタNをUE200の受信状態などに応じて動的に変更することが望ましい。 Considering such a situation, it is desirable to dynamically change the scaling factor N according to the reception status of UE200.
 (3.2)動作例
 以下では、スケーリングファクタNを動的に変更する動作例について説明する。具体的には、associatedSSBの数または近隣セルの数に応じてスケーリングファクタNを変更する動作例について説明する。
(3.2) Operation example The following describes an operation example in which the scaling factor N is dynamically changed. Specifically, an operation example of changing the scaling factor N according to the number of associated SSBs or the number of neighboring cells will be described.
 (3.2.1)動作例1
 本動作例では、associatedSSBの数に応じてスケーリングファクタNが変更される。具体的には、スケーリングファクタNは、次のような規定に応じて変更されてよい。
(3.2.1) Operation example 1
In this operation example, the scaling factor N is changed according to the number of associated SSBs. Specifically, the scaling factor N may be changed according to the following rules.
  ・min of (the number of different associatedSSB, x)
 ここで、minは、異なるassociatedSSBの数と、固定値(x)のうち、何れか小さい方が選択されることを意味する。
・ Min of (the number of different associatedSSB, x)
Here, min means that the smaller of the number of different associated SSBs and the fixed value (x) is selected.
 具体的には、associatedSSBの数がx以上の場合、N=xとしてよい。つまり、検出するassociatedSSBの数を制限することによって、測定遅延が無駄に間延びすることが防止される。また、ネットワーク観点でも固定値でのスケジューリングが可能なため、スケジューリングが複雑になることを回避し得る。 Specifically, when the number of associatedSSBs is x or more, N = x may be set. That is, by limiting the number of associated SSBs to be detected, it is possible to prevent the measurement delay from being unnecessarily delayed. In addition, since scheduling with a fixed value is possible from the viewpoint of the network, it is possible to avoid complicated scheduling.
 一方、associatedSSBの数がx以下の場合、N=associatedSSBの数としてよい。つまり、UE200は、CSI-RSの測定に必要なassociatedSSBの数だけビームスイーピングを実行することによって、測定遅延を削減し得る。 On the other hand, if the number of associatedSSBs is x or less, the number of N = associatedSSBs may be set. That is, the UE200 can reduce the measurement delay by performing beam sweeping for the number of associated SSBs required for CSI-RS measurement.
 なお、上述したように、xの値は、8(現状のSSBを測定する際の受信ビームのスイーピングの規定と対応する値)であってもいいし、異なる値であってもよい。 As described above, the value of x may be 8 (a value corresponding to the sweeping rule of the received beam when measuring the current SSB) or may be a different value.
 図7は、動作例1に係るUE200のスケーリングファクタNの設定動作フローを示す。図7に示すように、UE200は、associatedSSB、つまり、CSI-RSとQCL-Type Dの関係となるSSBの数を取得する(S10)。 FIG. 7 shows a setting operation flow of the scaling factor N of the UE 200 according to the operation example 1. As shown in FIG. 7, the UE200 acquires an associated SSB, that is, the number of SSBs having a relationship between CSI-RS and QCL-Type D (S10).
 UE200は、associatedSSBの数が固定値(x)か否かを判定する(S20)。なお、associatedSSBの数≧xで判定されてもよいし、associatedSSBの数>xで判定されてもよい。 UE200 determines whether the number of associated SSBs is a fixed value (x) (S20). It should be noted that the determination may be made by the number of associated SSBs ≥ x, or the determination may be made by the number of associated SSBs> x.
 associatedSSBの数がx以上の場合、UE200は、スケーリングファクタNとして、固定値(x)を設定する(S30)。 When the number of associatedSSBs is x or more, UE200 sets a fixed value (x) as the scaling factor N (S30).
 一方、associatedSSBの数がx未満の場合、UE200は、スケーリングファクタNとして、associatedSSBの数を設定する(S40)。 On the other hand, if the number of associatedSSBs is less than x, UE200 sets the number of associatedSSBs as the scaling factor N (S40).
 (3.2.2)動作例2
 本動作例では、近隣セルの数に応じてスケーリングファクタNが変更される。以下、動作例1と異なる部分について説明する。
(3.2.2) Operation example 2
In this operation example, the scaling factor N is changed according to the number of neighboring cells. Hereinafter, the parts different from the operation example 1 will be described.
 図8は、動作例2に係るUE200のスケーリングファクタNの設定動作フローを示す。図8に示すように、UE200は、UE200の近隣セルの数を取得する(S110)。近隣セルとは、サービングセルの近隣(重複する場合を含んでよい)に形成され、UE200の測定対象となるセルと解釈されてもよい。 FIG. 8 shows a setting operation flow of the scaling factor N of the UE 200 according to the operation example 2. As shown in FIG. 8, UE200 acquires the number of neighboring cells of UE200 (S110). The neighboring cell may be interpreted as a cell formed in the vicinity of the serving cell (which may include overlapping cases) and to be measured by the UE 200.
 UE200は、近隣セルの数が固定値(x)か否かを判定する(S120)。なお、近隣セルの数≧xで判定されてもよいし、近隣セルの数>xで判定されてもよい。また、xの値は、動作例1の場合(例えば、8)と同様であってもよいし、異なっていてもよい。 UE200 determines whether the number of neighboring cells is a fixed value (x) (S120). It should be noted that the determination may be made by the number of neighboring cells ≧ x, or the determination may be made by the number of neighboring cells> x. Further, the value of x may be the same as or different from the case of operation example 1 (for example, 8).
 近隣セルの数がx以上の場合、UE200は、スケーリングファクタNとして、固定値(x)を設定する(S130)。 When the number of neighboring cells is x or more, UE200 sets a fixed value (x) as the scaling factor N (S130).
 一方、近隣セルの数がx未満の場合、UE200は、スケーリングファクタNとして、近隣セルの数を設定する(S140)。 On the other hand, if the number of neighboring cells is less than x, UE200 sets the number of neighboring cells as the scaling factor N (S140).
 (3.2.3)変更例
 上述した動作例1及び動作例2は、次のように変更されてもよい。例えば、UE200は、associatedSSBの数、近隣セルの数及び固定値(x)のうち、最も小さい値をスケーリングファクタNとして設定してもよい。
(3.2.3) Modification example The above-mentioned operation example 1 and operation example 2 may be modified as follows. For example, the UE 200 may set the smallest value among the number of associated SSBs, the number of neighboring cells, and the fixed value (x) as the scaling factor N.
 なお、associatedSSBの数と近隣セルの数とが同一或いは所定の範囲内で類似している場合には、associatedSSBの数または近隣セルの数の何れか一方が優先的に設定されるようにしてもよい。 If the number of associated SSBs and the number of neighboring cells are the same or similar within a predetermined range, either the number of associated SSBs or the number of neighboring cells may be preferentially set. good.
 また、動作例1及び動作例2においても、associatedSSBの数、近隣セルの数と、固定値(x)とが所定の範囲内で類似している場合には、何れか一方(associatedSSBの数と固定値の何れか一方、または近隣セルの数と固定値の何れか一方)が優先的に設定されるようにしてもよい。 Further, also in the operation example 1 and the operation example 2, if the number of associated SSBs, the number of neighboring cells, and the fixed value (x) are similar within a predetermined range, either one (the number of associated SSBs) is used. Either one of the fixed values, or the number of neighboring cells and one of the fixed values) may be set preferentially.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、CSI-RSの受信状態または近隣セルの状態に基づいて、L3 measurementのMeasurement periodに適用されるスケーリングファクタNを変更できる。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the UE200 can change the scaling factor N applied to the measurement period of L3 measurement based on the reception status of CSI-RS or the status of neighboring cells.
 上述したように、ネットワークによるスケジューリングの観点では、スケーリングファクタNを固定値とすることが望ましく、UEのモビリティの観点では、Measurement period(測定遅延)は短いことが望ましいが、UE200によれば、スケーリングファクタNをUE200の受信状態などに応じて動的に変更できるため、より適切なCSI-RSベースのL3 measurementのMeasurement periodを設定できる。 As mentioned above, from the viewpoint of scheduling by the network, it is desirable to set the scaling factor N to a fixed value, and from the viewpoint of UE mobility, it is desirable that the measurement period (measurement delay) is short, but according to UE200, scaling Since factor N can be dynamically changed according to the reception status of UE200, a more appropriate CSI-RS-based L3 measurement measurement period can be set.
 本実施形態では、UE200は、CSI-RSと受信ビームの共通性を有するassociatedSSBの数に基づいて、固定値またはassociatedSSBの数に応じたスケーリングファクタNを設定できる。このため、UE200の状態に応じた、さらに適切なCSI-RSベースのL3 measurementのMeasurement periodを設定できる。 In the present embodiment, the UE 200 can set a fixed value or a scaling factor N according to the number of associated SSBs based on the number of associated SSBs having a commonality between the CSI-RS and the received beam. Therefore, it is possible to set a more appropriate measurement period of CSI-RS-based L3 measurement according to the state of UE200.
 本実施形態では、associatedSSBの数が固定値以下の場合、associatedSSBの数をスケーリングファクタNとして設定できる。このため、associatedSSBの数に応じた適切なCSI-RSベースのL3 measurementのMeasurement periodを設定できる。 In this embodiment, when the number of associated SSBs is less than or equal to a fixed value, the number of associated SSBs can be set as the scaling factor N. Therefore, it is possible to set an appropriate CSI-RS-based L3 measurement Measurement period according to the number of associated SSBs.
 本実施形態では、UE200は、SSBの測定に適用される受信ビームのスイーピングと対応する固定値を設定できる。このため、UE200の状態に応じた、さらに適切なCSI-RSベースのL3 measurementのMeasurement periodを設定できる。 In this embodiment, the UE 200 can set a fixed value corresponding to the sweeping of the received beam applied to the measurement of SSB. Therefore, it is possible to set a more appropriate measurement period of CSI-RS-based L3 measurement according to the state of UE200.
 また、本実施形態では、UE200は、近隣セルの数に基づいて、固定値または近隣セルの数に応じたスケーリングファクタNを設定することもできる。このため、UE200の状態に応じた、さらに適切なCSI-RSベースのL3 measurementのMeasurement periodを設定できる。 Further, in the present embodiment, the UE 200 can also set a fixed value or a scaling factor N according to the number of neighboring cells based on the number of neighboring cells. Therefore, it is possible to set a more appropriate measurement period of CSI-RS-based L3 measurement according to the state of UE200.
 本実施形態では、UE200は、近隣セルの数が固定値以下の場合、近隣セルの数をスケーリングファクタNとして設定してもよい。このため、近隣セルの数に応じた適切なCSI-RSベースのL3 measurementのMeasurement periodを設定できる。 In the present embodiment, the UE 200 may set the number of neighboring cells as the scaling factor N when the number of neighboring cells is a fixed value or less. Therefore, it is possible to set an appropriate CSI-RS-based L3 measurement Measurement period according to the number of neighboring cells.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without limitation to the description of the embodiments.
 例えば、上述した実施形態では、チャネル状態測定用の下りリンク参照信号として、CSI-RSベースのL3 measurementのMeasurement periodを設定する例について説明したが、チャネル状態測定用の下りリンク参照信号を用いる限りにおいて、具体的な参照信号の名称は、CSI-RSと異なっていてもよい。 For example, in the above-described embodiment, an example of setting the measurement period of the CSI-RS-based L3 measurement as the downlink reference signal for channel state measurement has been described, but as long as the downlink reference signal for channel state measurement is used. In, the name of the specific reference signal may be different from that of CSI-RS.
 また、上述した実施形態では、Measurement periodに適用されるスケーリングファクタNを動的に変更する例について説明したが、Measurement periodではなく、他の測定に関する期間(例えば、Measurement Gapまたは測定遅延)に適用される係数を変更することによって、Measurement periodが直接的または間接的に変更されてもよい。 Further, in the above-described embodiment, an example of dynamically changing the scaling factor N applied to the measurement period has been described, but it is applied not to the measurement period but to a period related to other measurements (for example, measurement gap or measurement delay). The Measurement period may be changed directly or indirectly by changing the coefficient to be applied.
 また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 3) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述したgNB100A、gNB100B及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned gNB100A, gNB100B and UE200 (the device) may function as a computer for processing the wireless communication method of the present disclosure. FIG. 9 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 9, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an ApplicationSpecific Integrated Circuit (ASIC), a ProgrammableLogicDevice (PLD), and a FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area. The slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "joined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended to be non-exclusive.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100A, 100B gNB
 200 UE
 210 無線通信部
 220 制御信号・参照信号処理部
 230 品質測定部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100A, 100B gNB
200 UE
210 Wireless communication unit 220 Control signal / reference signal processing unit 230 Quality measurement unit 240 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (6)

  1.  チャネル状態測定用の下りリンク参照信号を受信する受信部と、
     前記下りリンク参照信号を用いてレイヤ3測定を実行する制御部と
    を備え、
     前記制御部は、前記下りリンク参照信号の受信状態または近隣セルの状態に基づいて、前記レイヤ3測定の測定周期に適用される係数を変更する端末。
    A receiver that receives the downlink reference signal for channel status measurement, and
    A control unit that executes layer 3 measurement using the downlink reference signal is provided.
    The control unit is a terminal that changes a coefficient applied to the measurement cycle of the layer 3 measurement based on the reception state of the downlink reference signal or the state of a neighboring cell.
  2.  前記制御部は、前記下りリンク参照信号と受信ビームの共通性を有する同期信号ブロックの数に基づいて、固定値または前記同期信号ブロックの数に応じた前記係数を設定する請求項1に記載の端末。 The first aspect of the present invention, wherein the control unit sets a fixed value or the coefficient according to the number of the synchronized signal blocks based on the number of synchronized signal blocks having a commonality between the downlink reference signal and the received beam. Terminal.
  3.  前記制御部は、前記同期信号ブロックの数が前記固定値以下の場合、前記同期信号ブロックの数を前記係数として設定する請求項2に記載の端末。 The terminal according to claim 2, wherein the control unit sets the number of synchronization signal blocks as the coefficient when the number of synchronization signal blocks is equal to or less than the fixed value.
  4.  前記制御部は、前記同期信号ブロックの測定に適用される受信ビームのスイーピングと対応する前記固定値を設定する請求項2または3に記載の端末。 The terminal according to claim 2 or 3, wherein the control unit sets the fixed value corresponding to the sweeping of the received beam applied to the measurement of the synchronization signal block.
  5.  前記制御部は、前記近隣セルの数に基づいて、固定値または前記近隣セルの数に応じた前記係数を設定する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit sets a fixed value or the coefficient according to the number of neighboring cells based on the number of neighboring cells.
  6.  前記制御部は、前記近隣セルの数が前記固定値以下の場合、前記近隣セルの数を前記係数として設定する請求項5に記載の端末。
     
    The terminal according to claim 5, wherein the control unit sets the number of neighboring cells as the coefficient when the number of neighboring cells is equal to or less than the fixed value.
PCT/JP2020/039974 2020-10-23 2020-10-23 Terminal WO2022085196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039974 WO2022085196A1 (en) 2020-10-23 2020-10-23 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039974 WO2022085196A1 (en) 2020-10-23 2020-10-23 Terminal

Publications (1)

Publication Number Publication Date
WO2022085196A1 true WO2022085196A1 (en) 2022-04-28

Family

ID=81290284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039974 WO2022085196A1 (en) 2020-10-23 2020-10-23 Terminal

Country Status (1)

Country Link
WO (1) WO2022085196A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "Email discussion summary for [96e][225]NR_CSIRS_L3meas_RRM_2", 3GPP DRAFT; R4-2012225, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20200817 - 20200828, 30 August 2020 (2020-08-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051923668 *

Similar Documents

Publication Publication Date Title
JP7121117B2 (en) Terminal, wireless communication method, base station and system
WO2018110618A1 (en) User terminal and wireless communication method
WO2020039557A1 (en) User terminal
WO2021199346A1 (en) Terminal
WO2020129228A1 (en) Wireless node and wireless communication method
WO2019012670A1 (en) User terminal and radio communication method
WO2020016938A1 (en) User equipment
JP7301059B2 (en) Wireless communication device, wireless communication method and system
WO2018110619A1 (en) User terminal and wireless communication method
WO2021001946A1 (en) Terminal
JP7223026B2 (en) TERMINAL, BASE STATION, WIRELESS COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
WO2022044908A1 (en) Terminal and wireless communication system
WO2019234929A1 (en) User terminal and wireless communication method
WO2021199356A1 (en) Terminal, wireless communication method, and base station
EP4096311A1 (en) Terminal
JP7285324B2 (en) Terminal, communication system, and communication method
WO2021053825A1 (en) Terminal
WO2018124031A1 (en) User terminal and wireless communications method
WO2022157953A1 (en) Terminal, base station, and communication method
WO2021199357A1 (en) Terminal, radio communication method, and base station
WO2021192306A1 (en) Terminal
WO2019049382A1 (en) User terminal and wireless communication method
KR102656661B1 (en) User terminal and wireless communication method
WO2022085196A1 (en) Terminal
US20220346043A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP