WO2022085132A1 - Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium - Google Patents

Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium Download PDF

Info

Publication number
WO2022085132A1
WO2022085132A1 PCT/JP2020/039618 JP2020039618W WO2022085132A1 WO 2022085132 A1 WO2022085132 A1 WO 2022085132A1 JP 2020039618 W JP2020039618 W JP 2020039618W WO 2022085132 A1 WO2022085132 A1 WO 2022085132A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
relay
base station
signal
broadcast signal
Prior art date
Application number
PCT/JP2020/039618
Other languages
French (fr)
Japanese (ja)
Inventor
康文 本間
健志 福原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2020/039618 priority Critical patent/WO2022085132A1/en
Priority to JP2022556311A priority patent/JPWO2022085132A5/en
Publication of WO2022085132A1 publication Critical patent/WO2022085132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/02Arrangements for relaying broadcast information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present invention relates to a network system, a base station, a control device, a transmission method, a control method, and a non-temporary computer-readable medium.
  • the present disclosure discloses a network system, a base station, a control device, a transmission method, a control method, and a non-temporary method capable of distributing a broadcast signal via a communication network while suppressing an increase in capital investment.
  • the purpose is to provide a computer-readable medium.
  • the network system includes a broadcasting station and a base station communicably connected to the broadcasting station, and the broadcasting station transmits a broadcasting signal to the base station via a communication network.
  • the base station comprises a broadcasting signal receiving means for receiving the broadcasting signal from the broadcasting station via the communication network, and the received broadcasting signal is converted into a terrestrial advancement signal of the terrestrial advancement method. It includes a conversion means for conversion and a ground advancement signal transmission means for transmitting the converted ground advancement signal to a terminal device.
  • the base station includes a broadcast signal receiving means for receiving a broadcast signal from a broadcast station via a communication network, and a conversion means for converting the received broadcast signal into a terrestrial advancement signal of the terrestrial advancement method.
  • the above-mentioned ground advancement signal transmission means for transmitting the converted ground advancement signal to the terminal device is provided.
  • the control device includes an acquisition means for acquiring a relay area of a relay station that relays a broadcast signal transmitted from a broadcast station, a selection means for selecting a base station corresponding to the acquired relay area, and the broadcast. It includes a control unit that controls the station to transmit the broadcast signal via the selected base station.
  • the transmission method according to the present disclosure is a transmission method in a network system including a broadcasting station and a base station communicably connected to the broadcasting station, and the broadcasting station is a broadcasting signal via a communication network. Is transmitted to the base station, and the base station receives the broadcast signal from the broadcast station via the communication network and converts the received broadcast signal into a terrestrial advancement signal of the terrestrial advancement method. The converted ground advancement signal is transmitted to the terminal device.
  • the control method acquires a relay area of a relay station that relays a broadcast signal transmitted from a broadcast station, selects a base station corresponding to the acquired relay area, and selects the base station from the broadcast station. It controls to transmit the broadcast signal via the station.
  • the non-temporary computer-readable medium acquires a relay area of a relay station that relays a broadcast signal transmitted from a broadcasting station, selects a base station corresponding to the acquired relay area, and selects the broadcasting station.
  • a network system a base station, a control device, a transmission method, a control method, and a non-temporary computer-readable medium capable of distributing a broadcast signal via a communication network while suppressing an increase in capital investment.
  • FIG. It is a block diagram which shows the configuration example of the related network system. It is a block diagram which shows the outline of the network system which concerns on embodiment. It is a block diagram which shows the structural example of the network system which concerns on Embodiment 1.
  • FIG. It is a sequence diagram which shows the example of the delivery method which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the example of the delivery method which concerns on Embodiment 1.
  • FIG. It is a figure which shows the arrangement example of the signal used in the distribution method which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structural example of the control apparatus which concerns on Embodiment 2. It is a follow chart which shows the example of the transition method which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 2.
  • FIG. It is a follow chart which shows the example of the transition method which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3.
  • FIG. It is a block diagram which shows the outline of the hardware of the computer which concerns
  • the current terrestrial digital 2K broadcasting uses UHF (Ultra High Frequency) broadcasting frequencies and is operated by a broadcasting network (relay station network) consisting of many relay stations (for example, about 200 stations in the Kanto region).
  • a broadcasting network relay station network
  • the Ministry of Internal Affairs and Communications country
  • simultaneous online distribution of broadcast programs for example, NHK + (NHK +) service provided by NHK
  • this simultaneous distribution is carried out by a best-effort service using an Internet network. ing.
  • FIG. 1 shows the configuration of the related network system.
  • the related network system 900 includes a relay station network 910 and a simultaneous distribution network 920.
  • the relay station network 910 includes a master station 911, a large-scale / medium-scale station 912, and a small-scale / mini-sate station 913 as relay stations. Each relay station of the relay station network 910 transmits the broadcast signal transmitted from the broadcast station 901 to the television receiver 931.
  • the simultaneous distribution network 920 includes a streaming server 921, an Internet 922, and a 4G mobile base station 923.
  • the streaming server 921 stores the broadcast signal transmitted from the broadcasting station 901 as streaming data, and distributes it to a terminal device 932 such as a smartphone via the Internet 922 and the 4G mobile base station 923.
  • the relay station network is composed of a large number of relay stations nationwide, and each broadcasting station installs and manages these relay stations. Therefore, in order to maintain and expand the relay station network, the burden of capital investment of the relay station in the broadcasting station increases. In particular, the profitability of commercial broadcasters has deteriorated in recent years, making it difficult to maintain and expand small / mini-sate stations managed by commercial broadcasters.
  • simultaneous distribution is carried out using the Internet network, which is a best-effort service. Therefore, if the number of accesses from the terminal device increases, the streaming server may become saturated or the network may be congested, and the terminal device may not be able to watch the program. Furthermore, since this simultaneous distribution mainly transmits video and audio, services such as multi-organization and data broadcasting, which are digital broadcasting services, have not been realized. That is, with the current simultaneous distribution method on the Internet, it is not possible to replace the broadcasting network with a communication network.
  • the broadcasting network can be transferred to the communication network by distributing the broadcasting signal via the communication network, and the above-mentioned operational problems of the broadcasting network and the transmission method of the communication network can be achieved. It makes it possible to solve the above problems.
  • FIG. 2 shows an outline of the network system according to the embodiment.
  • the network system 1 according to the embodiment includes a broadcasting station 10 and a base station 20, and the broadcasting station 10 and the base station 20 are communicably connected via a communication network 30.
  • the broadcasting station is equipped with a broadcasting signal transmitting unit 11.
  • the broadcast signal transmission unit 11 transmits a broadcast signal to the base station 20 via the communication network 30.
  • the base station 20 includes a broadcast signal receiving unit 21, a conversion unit 22, and a ground advanced signal transmitting unit 23.
  • the broadcast signal receiving unit 21 receives a broadcast signal from the broadcasting station 10 via the communication network 30.
  • the conversion unit 22 converts the broadcast signal received by the broadcast signal receiving unit 21 into a terrestrial advancement signal of a terrestrial advancement system (new terrestrial broadcasting system: Next Generation Terrestrial Broadcasting System).
  • the ground altitude signal transmission unit 23 transmits the ground altitude signal converted by the conversion unit 22 to the terminal device.
  • the broadcasting signal is transmitted from the broadcasting station to the base station via the communication network, and the base station converts the broadcasting signal received via the communication network into a terrestrial advancement signal and the terminal device. Send to.
  • the broadcast signal can be delivered to the terminal device via the communication network, the broadcast network can be transferred to the communication network, and the increase in capital investment can be suppressed.
  • communication network technology such as a bandwidth guarantee service based on 5G network slicing technology, it is possible to reliably deliver television broadcasts.
  • the network system may realize a complete transition or a partial transition from a broadcasting network to a communication network.
  • a complete or partial transition from a broadcasting network to a communication network it is possible to generate broadcasting frequencies to be converted into a country.
  • the broadcasting network may be gradually migrated at regular intervals.
  • the transition from the broadcasting network to the communication network can be smoothly performed, and even if the transition is stopped in the middle stage, some broadcasting frequencies can be generated.
  • by securing the simul transition period it is possible to realize the transition with less impact on the viewer.
  • not only the transition to 2K broadcasting but also the transition to new services such as 4K broadcasting will be possible.
  • FIG. 3 shows a configuration example of the network system according to the present embodiment.
  • the network system 2 according to the present embodiment includes a broadcasting station 100, a mobile base station 200, and a terminal device 300.
  • the broadcasting station 100 and the mobile base station 200 are communicably connected via the 5G backbone network 400.
  • the mobile base station 200 and the terminal device 300 can communicate with each other by 5G mobile wireless communication.
  • the 5G backbone network 400 is a network that serves as the backbone of the mobile base station 200, and includes a 5G core network.
  • the 5G backbone network 400 and the mobile base station 200 constitute a 5G mobile network.
  • the 5G backbone network 400 is a communication network that connects a broadcasting station 100 and a mobile base station 200.
  • the 5G backbone network 400 and the mobile base station 200 may be referred to as a communication network that distributes broadcast signals. If the broadcast signal can be distributed in the same manner as the 5G mobile network, 4G or other communication network may be used. That is, the mobile base station 200 is not limited to the 5G mobile base station, but may be a 4G or other base station.
  • the broadcasting station 100 distributes a broadcasting signal to the terminal device 300 via the 5G backbone network 400 and the mobile base station 200.
  • the broadcasting station 100 may distribute a broadcasting signal via a broadcasting network.
  • the broadcasting station 100 includes a broadcasting signal generation unit 110 and a broadcasting signal transmission unit 120.
  • the broadcast signal generation unit 110 is an encoder that generates a broadcast signal of a program (content data) to be distributed.
  • the broadcast signal is a signal in the MPEG2-TS format for terrestrial digital 2K broadcasting, the MPEG-DASH format, or the like.
  • the broadcast signal generation unit 110 encodes the video and audio data of the program into the MPEG2-TS format or the like, and generates the MPEG2-TS signal or the like.
  • the MPEG2-TS signal and the like are not limited to video and audio, but include data distributed by digital broadcasting services, multi-organized data, and the like.
  • MPEG2-TS and MPEG-DASH are mentioned as examples of signals, but in addition to HEVC (High Efficiency Video Coding) for 4K broadcasting, VVC (Versatile Video Coding: next-generation video coding method) May generate a broadcast signal.
  • HEVC High Efficiency Video Coding
  • VVC Very Video Coding: next-generation video coding method
  • the broadcast signal transmission unit 120 is a 5G backbone communication unit that communicates with the mobile base station 200 via the 5G backbone network 400.
  • the broadcast signal transmission unit 120 transmits the broadcast signal to the mobile base station 200 via the slice 401 whose bandwidth is guaranteed by the 5G backbone network 400.
  • Slice is an end-to-end bandwidth-guaranteed bandwidth-guaranteed path based on 5G network slicing technology. If the broadcast signal can be transmitted in the same manner as the slice, another band guarantee path may be used.
  • the broadcast signal transmission unit 120 may transmit the broadcast signal generated by the broadcast signal generation unit 110 at the time of distribution of the program, or may transmit a broadcast signal prepared in advance. For example, an encoded broadcast signal stored in a storage device may be acquired and the acquired broadcast signal may be transmitted.
  • the mobile base station 200 is a 5G mobile base station, and has a transmission (broadcasting) function of a broadcasting mode for terrestrial advancement in addition to the original function for 5G mobile communication.
  • the mobile base station 200 includes a broadcast signal receiving unit 210, a terrestrial advanced modulation unit 220, and a terrestrial advanced transmitting unit 230.
  • the broadcast signal receiving unit 210 is a 5G backbone communication unit that communicates with the broadcasting station 100 via the 5G backbone network 400.
  • the broadcast signal receiving unit 210 receives a broadcast signal from the broadcasting station 100 via the slice 401 of the 5G backbone network 400.
  • the terrestrial advancement modulation unit (conversion unit) 220 modulates (converts) the broadcast signal received from the broadcasting station 100 into a terrestrial advancement system terrestrial advancement signal.
  • the terrestrial sophistication is to transmit a 2K broadcast signal or a 4K broadcast signal via a communication network by a terrestrial sophistication method such as FeMBMS.
  • the terrestrial advancement method is a communication broadcasting mode method standardized for terrestrial advancement.
  • the ground advancement method is a FeMBMS method
  • the ground advancement signal is a FeMBMS signal in a format according to the FeMBMS method (standard).
  • the terrestrial sophistication method is not limited to the FeMBMS method, and may be a terrestrial broadcasting sophistication method under study or another method that will be standardized in the future.
  • the terrestrial advanced transmission unit 230 is a communication unit that performs wireless communication with the terminal device 300.
  • the terrestrial advanced transmission unit 230 may be a transmission unit that performs wireless transmission by 5G mobile wireless communication.
  • the terrestrial advancement transmission unit 230 wirelessly transmits the generated terrestrial altitude advancement signal to the terminal device 300 using a predetermined terrestrial altitude advancement band within the band for 5G.
  • the terminal device 300 is a mobile terminal such as a smartphone or a mobile phone that performs 5G mobile communication, and is equipped with a decoding function (for example, a FeMBMS chip) for terrestrial sophistication.
  • the terminal device 300 is not limited to a mobile terminal, but may be a television receiver or other information processing device capable of receiving terrestrial advancement signals, a television receiver connected to an adapter capable of receiving terrestrial advancement signals, or the like. It may be an information processing device of.
  • the terminal device 300 includes a ground advanced receiving unit 310, a demodulation unit 320, and a display unit 330.
  • the terrestrial advanced receiving unit 310 is a communication unit that performs wireless communication with the mobile base station 200.
  • the terrestrial advanced receiving unit 310 may be a receiving unit that performs wireless reception by 5G mobile wireless communication.
  • the terrestrial altitude receiving unit 310 wirelessly receives a terrestrial altitude signal from the mobile base station 200 by a predetermined terrestrial altitude band within the 5G band.
  • the FeMBMS signal can be received without a SIM card (no mobile communication contract required).
  • the demodulation unit 320 is a decoder that demodulates the ground advancement signal received from the mobile base station 200 and generates content data in a displayable (reproducible) format. For example, the demodulation unit 320 generates an MPEG2-TS signal or the like from a FeMBMS signal (may be another signal standardized in the future), and further produces video and audio data (data for data broadcasting) from the MPEG2-TS signal or the like. May be included).
  • the display unit 330 is a display that displays content data (program) including demodulated video and audio.
  • FIG. 4 shows an example of a distribution method by the network system according to the present embodiment.
  • the broadcasting station 100 sets a slice between the broadcasting station 100 and the mobile base station 200 (S101).
  • the broadcast signal transmission unit 120 may be the broadcast signal reception unit 210 of the mobile base station 200
  • end-to-end bandwidth guarantee can be realized from the broadcasting station 100 to the terminal device 300.
  • a slice may be set between the plurality of mobile base stations 200 and the plurality of mobile base stations 200.
  • the broadcasting station 100 requests the operation management system of the 5G core network to set the slice based on the slice requirements (capacity, delay time, etc.), and the operation management system executes the processing necessary for the slice setting. You may.
  • the slice used by the broadcasting station 100 may be set in advance, or may be set according to the program (content) to be distributed. For example, as shown in FIG. 5, a slice 401 for a normal channel may be set at the time of distribution of a normal program, and a slice 401 for a disaster channel may be set at the time of distribution of a disaster program. Further, when distributing a 4K broadcast, a slice 401 for a 4K channel may be set.
  • the broadcasting station 100 generates a broadcasting signal to be distributed (S102), and transmits the generated broadcasting signal to the mobile base station 200 (S103).
  • the broadcast signal generation unit 110 encodes the video and audio data of the program to generate, for example, an MPEG2-TS format broadcast signal.
  • the broadcast signal transmission unit 120 selects a slice of the set 5G backbone network 400, and transmits the generated broadcast signal to the mobile base station 200 via the selected slice. For example, when a slice is set for each program, the slice corresponding to the program to be distributed is selected. For example, when transmitting to a plurality of mobile base stations 200, transmission may be performed by multicast.
  • the mobile base station 200 when the mobile base station 200 receives the broadcast signal, it generates a FeMBMS signal (S104) as an example of the terrestrial advancement signal, and transmits the generated FeMBMS signal to the terminal device 300 (S105).
  • the broadcast signal receiving unit 210 receives the broadcast signal via the slice of the 5G backbone network 400, and the terrestrial advanced modulation unit 220 modulates the received MPEG2-TS format broadcast signal into a FeMBMS signal.
  • FIG. 6 shows an example of signal arrangement defined by FeMBMS.
  • the unit band of communication is 5 MHz, and the signal arrangement in this 5 MHz band is composed of 25 RBs (Resource Blocks).
  • the terrestrial advanced modulation unit 220 converts an MPEG2-TS format signal into a FeMBMS format signal. That is, the MPEG2-TS signal is converted into an RB arranged as shown in FIG.
  • the terrestrial altitude transmission unit 230 transmits the generated FeMBMS signal to the terminal device 300 using a predetermined terrestrial altitude advancement band (multicast channel included in the band allocated to 5G) within the 5G band. ..
  • the ground altitude signal is transmitted using the transmission frequency of Sub6 (3.6-6.0 GHz) for 5G.
  • a transmission band of 5 MHz (band corresponding to the slice) is secured for each slice, and a broadcast signal is transmitted for each transmission band.
  • the broadcast signal received in the slice for the normal channel is transmitted in the transmission band of 5 MHz for the communication channel
  • the broadcast signal received in the slice for the disaster channel is transmitted in the transmission band of 5 MHz for the disaster channel.
  • the communication channel and the disaster channel can be delivered with the same image quality.
  • the broadcast signal received in the slice for the 4K channel may be transmitted in the transmission band of 5 MHz for the 4K channel. As a result, the image quality of 4K broadcasting can be guaranteed.
  • the terminal device 300 when the terminal device 300 receives the FeMBMS signal, it demodulates the FeMBMS signal (S106) and displays the program (S107).
  • the ground advancement receiving unit 310 receives the FeMBMS signal via a predetermined ground advancement band within the 5G band, and the demodulation unit 320 demodulates the received FeMBMS signal.
  • the signal of each RB is demodulated according to the signal arrangement as shown in FIG. 6, converted into an MPEG2-TS signal, and reproducible content data is generated from the converted MPEG2-TS signal.
  • the display unit 330 displays the demodulated content data of the program on the display.
  • FIG. 4 shows a method of transmitting data from the broadcasting station to the terminal device in the downlink direction
  • data may be transmitted in both directions.
  • an application program for viewing a program is started on a terminal device, and the viewing history, user information, and the like are transmitted from the application program to the broadcasting station.
  • the broadcasting station can collect viewing history and the like from the terminal device and utilize the collected information.
  • terrestrial digital 2K broadcasting is transmitted to a mobile base station by using a bandwidth guarantee service using network slicing technology, and broadcasting using communication is performed from the mobile base station. It is transmitted (broadcast) by a terrestrial advanced method such as the FeMBMS transmission method, which is a mode, and is further received by a terminal device such as a smartphone or a television receiver having a terrestrial advanced decoding function.
  • a terrestrial advanced method such as the FeMBMS transmission method, which is a mode
  • a terminal device such as a smartphone or a television receiver having a terrestrial advanced decoding function.
  • the broadcast signal can be distributed via the communication network, and the transition from the broadcast network to the communication network becomes possible. Since the broadcast signal can be distributed using a mobile base station instead of the relay station, it is possible to reduce the capital investment required for the relay station.
  • the band for broadcasting signal transmission can be guaranteed, so that the broadcasting signal can be reliably distributed and the television broadcast can be watched without deterioration of quality on the terminal device.
  • the FeMBMS method has a different segment configuration from the ISDB-T method, so it cannot be continued as it is, but since the FeMBMS method itself is premised on reception by terminal devices such as smartphones, mobile reception will continue to be realized. can. Furthermore, taking advantage of bidirectional transmission in a communication network, it is possible to realize targeting CM by broadcasting by viewing history data from a terminal device, and to generate a new channel in the event of a disaster by dynamic bandwidth control.
  • FIG. 7 shows a configuration example of the control device according to the present embodiment.
  • the network system 3 includes a relay station network 3a (broadcasting network) and a mobile network 3b (communication network), and is a control device 600 for controlling a method of migrating the relay station network 3a to the mobile network 3b. It is equipped with.
  • the control device 600 is connected to the broadcasting station 100, the mobile base station 200 of the mobile network 3b, and the relay station 500 of the relay station network 3a in a controllable manner. For example, it may be connected via the control plane or the control network of the mobile network 3b or the relay station network 3a. A part or all of the functions of the control device 600 may be included in the broadcasting station 100 or another device.
  • the broadcasting station 100 selects a mobile base station 200 for transmitting a broadcasting signal and sends a broadcasting signal to the selected mobile base station 200, similarly to the control device 600 according to the present embodiment. You may send it.
  • the control device 600 includes a relay station management unit 610, a mobile base station management unit 620, a control unit 630, and a data collection unit 640.
  • the relay station management unit 610 manages a plurality of relay stations 500 constituting the relay station network 3a.
  • the relay station management unit 610 is an acquisition unit that acquires information on the relay area of the relay station 500.
  • the relay area is an area in which radio waves (broadcast signals) transmitted from the relay station 500 can be received.
  • the output level of the relay station 500 may be acquired, not limited to the relay area.
  • the mobile base station management unit 620 manages a plurality of mobile base stations 200 constituting the mobile network 3b.
  • the mobile base station management unit 620 is an acquisition unit that acquires information on the wireless area of the mobile base station 200, and is also a selection unit that selects a migration destination mobile base station 200 corresponding to the migration source relay station 500.
  • the wireless area is an area in which radio waves (broadcast signals) transmitted from the mobile base station 200 can be received.
  • the control unit 630 controls the distribution operation of the broadcast signal of the broadcasting station 100 and the transmission operation (ON / OFF) of the broadcasting signal of the relay station 500 and the mobile base station 200.
  • the control unit 630 controls to distribute a broadcast signal from the broadcast station 100 via the selected mobile base station 200 of the migration destination. That is, the control unit 630 controls the transmission destination of the broadcast signal of the broadcast station 100 (selection of the mobile base station 200), and also controls the start and end of the transmission of the broadcast mode of the mobile base station 200.
  • the control unit 630 may set a channel (slice) according to the program to be distributed, such as a disaster channel.
  • the data collection unit 640 collects access data, viewing data, and the like of the terminal device. As described in the first embodiment, the data collection unit 640 may collect viewing data from the terminal device and control the programs and commercials distributed by the broadcasting station 100 based on the collected viewing data.
  • FIG. 8 shows a control method (transition method) by the control device according to the present embodiment.
  • the control device 600 acquires the relay area of the transfer source relay station 500 (S201).
  • the relay station management unit 610 identifies the relay station 500 of the migration source, and acquires the information of the relay area of the specified relay station 500.
  • the migration source relay station 500 may be specified according to the instruction of the administrator, or may be specified according to a preset migration plan. Further, the information of the relay area may be acquired from the specified relay station 500, or may be acquired from the database in which the information of each relay station 500 is registered.
  • the control device 600 acquires the radio area of the mobile base station 200 (S202).
  • the mobile base station management unit 620 acquires information on the wireless area of the mobile base station 200 in order to specify the migration destination. Information on the radio area of all the mobile base stations 200 may be acquired, or information on the radio area of the mobile base station 200 around the relay station 500 of the migration source (for example, in the same prefecture) may be acquired. Further, the information of the wireless area may be acquired from each mobile base station 200, or may be acquired from a database in which the information of each mobile base station 200 is registered.
  • the control device 600 selects the mobile base station 200 as the migration destination (S203).
  • 9 and 10 show a selection example of the mobile base station 200 as the migration destination.
  • the mobile base station management unit 620 is based on the information of the relay area of the specified migration source relay station 500 (relay area A1) and the information of the radio area of the mobile base station 200 (radio area A2). Then, the mobile base station 200 of the migration destination is selected.
  • the mobile base station management unit 620 selects a plurality of mobile base stations 200 having a radio area corresponding to the relay area of the relay station 500 of the migration source. For example, as shown in FIG.
  • the relay area of the relay station 500 and the radio area of the mobile base station 200 are compared, and when a part or all of the relay area and the radio area overlap, the radio area included in the relay area is selected. Decide which mobile base station you have as the migration destination.
  • the relay area A1 of the relay station 500 of the migration source and the wireless area A2 of the peripheral mobile base stations 200-1 to 200-11 are compared, and the relay area A1 and the mobile base station 200-2 are compared. Since the radio areas A2 of 200-3, 200-5, 200-6, 200-7, 200-9, and 200-10 overlap, the mobile base stations 200-2, 200-3, 200-5, 200-6 , 200-7, 200-9, 200-10 are determined as migration destinations. Further, as shown in FIG.
  • a plurality of mobile base stations 200 installed in the relay area of the relay station 500 may be selected by acquiring the position of the mobile base station 200.
  • mobile base stations 200-2, 200-3, 200-5, 200-6, 200-7, 200-9, and 200-10 are installed in the relay area A1 of the relay station 500. (The location of the mobile base station is included in the relay area), so the mobile base stations 200-2, 200-3, 200-5, 200-6, 200-7, 200-9, 200-10 will be the migration destinations. decide.
  • the mobile base station 200 corresponding to the output level of the relay station 500 may be selected.
  • the control device 600 is controlled by the selected mobile base station 200 so as to make a simul transition (S204).
  • the control unit 630 controls to distribute the broadcast signal via the relay station 500 of the migration source and the mobile base station 200 of the migration destination during the simulcast transition period.
  • the control unit 630 instructs the broadcasting station 100 to transmit a broadcasting signal to the mobile base station 200 selected corresponding to the relay station 500 (instructing the selection of the mobile base station 200), and the broadcasting station 100 instructs the broadcasting station 100 to select. While the transmission of the broadcast signal to the relay station is continued, the transmission to the mobile base station 200 is started according to the instruction of the control unit 630. Further, the control unit 630 instructs the selected mobile base station 200 to transmit the broadcast signal transmitted from the broadcasting station 100 to the terminal device, and the mobile base station 200 responds to the instruction of the control unit 630. Start sending to the terminal device.
  • the control device 600 is controlled so as to be completely migrated by the selected mobile base station 200 (S205).
  • the control unit 630 controls to distribute the broadcast signal only through the selected mobile base station 200 after the lapse of the predetermined simulcast transition period.
  • the control unit 630 instructs the broadcasting station 100 to stop the transmission of the broadcasting signal to the relay station 500 of the migration source, and the broadcasting station 100 continues to transmit the broadcasting signal to the mobile base station 200.
  • the transmission to the relay station 500 is stopped according to the instruction of the control unit 630.
  • the control unit 630 instructs the relay station 500, which is the migration source, to stop the transmission of the radio wave (broadcast signal).
  • the complete migration may be performed without performing the simul migration.
  • the control of S205 may be performed without waiting for the lapse of a predetermined period.
  • FIG. 11 shows an example of simul migration in the migration method of FIG. Simul transition is a method of transmitting both the signal of the old method (current method) and the signal of the new method, and stopping the signal transmission of the old method when the receiver (terminal device) of the new method becomes sufficiently widespread.
  • the relay station network 3a includes a master station 501 and a medium-sized station 502 as relay stations
  • the mobile network 3b includes a 5G backbone network 400 and a mobile base as in the first embodiment. Includes station 200.
  • the broadcasting station 100 distributes the broadcasting signal via the relay station network 3a.
  • the broadcasting station 100 transmits a broadcasting signal to the master station 501, and the master station 501 converts the received broadcasting signal into an ISDB-T signal of the ISDB-T system, and uses the UHF broadcasting band to convert the ISDB-T signal.
  • the medium-scale station 502 receives an ISDB-T signal from the master station 501, and relays and transmits the received ISDB-T signal using the UHF broadcasting band.
  • the television receiver 700 receives the ISDB-T signal in the UHF broadcasting band and watches the distributed program.
  • the broadcasting station 100 distributes the broadcasting signal via the mobile network 3b as in the first embodiment while continuing the distribution of the broadcasting signal via the relay station network 3a. That is, the medium-scale station 502 relays and transmits the ISDB-T signal received from the master station 501 using the UHF broadcasting band as before the transition.
  • the communication area of the medium-scale station 502 of the migration source corresponds to the wireless area of the plurality of mobile base stations 200, and the plurality of mobile base stations 200 are selected as the migration destination.
  • the broadcasting station 100 transmits a broadcasting signal to a plurality of selected mobile base stations 200 at the migration destination via the 5G backbone network 400.
  • the plurality of mobile base stations 200 convert the received broadcast signal into a FeMBMS signal, and transmit the converted FeMBMS signal using the 5G band.
  • the television receiver 700 can receive the ISDB-T signal from the medium-scale station 502 in the UHF broadcasting band and watch the distributed program as before the transition.
  • the terminal device 300 can receive the FeMBMS signal from the mobile base station 200 in the band for 5G and watch the distributed program.
  • the broadcasting network is transferred to the communication network by using the network system of the first embodiment.
  • a transition to a communication network will be made using a ground sophistication method such as the FeMBMS method.
  • control is performed so that distribution is performed via a mobile base station corresponding to the relay area of the relay station of the migration source.
  • the same service as the broadcasting service provided by the relay station of the migration source can be provided from the mobile base station after the migration.
  • the burden on the viewer can be reduced. Enables a smooth transition.
  • the coding method adopted in the FeMBMS method is the VVC method with a view to 4K streams and 4K distribution from broadcasting stations can be carried out with the spread of FeMBMS-compatible 4K TVs, stepwise 4K broadcasting will be possible. .. That is, 4K broadcasting becomes possible in the process of shifting from a broadcasting network to a communication network.
  • the FeMBMS method is assumed to be used in the millimeter wave, Sub6, and UHF bands, and HEVC can be used as the video coding method, but next-generation coding such as VVC can be selected in the future. Is.
  • the broadcasting station (performance center) supports 4K equipment or the TV receiver side is a 4K TV
  • the 4K broadcasting service can be started.
  • FeMBMS reception it is necessary to purchase a FeMBMS compatible TV or FeMBMS adapter by the end of the 2K broadcast simulcast period from the broadcast relay station. If these TVs and adapters are compatible with 4K, it is possible to promote the spread of 4K on the receiving side.
  • FIG. 12 shows a migration method according to the present embodiment.
  • the transition in the first stage (S301), the transition in the second stage (S303), and the transition in the third stage (S305) are performed step by step.
  • the transition operation of each stage is the same as that of the second embodiment. That is, at each transition stage, the control device 600 controls the transition from the relay station to the mobile base station by specifying the relay station of the transition source and selecting the mobile base station corresponding to the relay station.
  • it may be gradually shifted according to the number of relay stages of the relay station.
  • the transition is made in descending order of the number of relay stages of the relay station.
  • the relay station with the largest number of relay stages (with the first number of relay stages) is selected and migrated to the mobile base station, and then the relay station with the largest number of relay stages (with the second number of relay stages) is sequentially selected and migrated. You may. Further, it may be gradually shifted according to the relay scale of the relay station.
  • the relay scale of the relay station decreases, a relay station of a predetermined relay scale is specified, and the mobile base station corresponding to the specified relay station is transferred. Specifically, the transition is made in ascending order of relay scale of the relay station. First, the relay station with the smallest relay scale (first relay scale) is selected and migrated to the mobile base station, and then the relay station with the smallest relay scale (second relay scale) is sequentially selected and migrated. You may. In this example, the mini-sate (gap filler) / small-scale relay station (first stage) is migrated, the medium-scale / large-scale relay station (second stage) is migrated, and finally the master station (third stage) is migrated. In stages.
  • the total transition period is more than a dozen years. It should be noted that the transition is not limited to the three stages, and the transition may be performed in any number of stages.
  • the mini-sate station, the small-scale station, the medium-scale station, the large-scale station, and the master station may be migrated in the order of five stages.
  • the transition may be completed at each transition stage. For example, if it is evaluated that the broadcasting mode in the communication network is inefficient at each transition stage, the transition to the communication network may be stopped in the middle stage. In that case, the UHF frequency vacant up to each stage may be used for transmission from the broadcast relay station by the FeMBMS method. However, in this case, the return of the broadcasting frequency channel is limited.
  • the first stage transition is performed (S301), it is determined whether or not to cancel the transition in the first stage (S302), and if it is determined to be canceled, the transition is terminated. If it is determined not to stop the migration in the first stage, the transition in the second stage is performed (S303), it is determined whether or not to stop the migration in the second stage (S304), and if it is determined to be stopped, the migration is terminated. do. If it is determined that the transition is not stopped in the second stage, the transition in the third stage is performed (S305) and the transition is terminated.
  • the determination to cancel the migration may be made by the control device 600 based on the information of the migration source and the migration destination, or the administrator may instruct the determination result.
  • FIG. 13 shows an example before migration in the network system according to the present embodiment.
  • the relay station network 4a includes a master station 501, a large-scale / medium-scale station 502, and a small-scale / mini-sate station 503.
  • Broadcast station 100 transmits a broadcast signal to master station 501.
  • the master station 501 receives a broadcast signal from the broadcast station 100, converts the received broadcast signal into an ISDB-T signal of the ISDB-T system, and transmits the ISDB-T signal using the UHF broadcast band.
  • the large-scale / medium-scale station receives the ISDB-T signal from the master station 501, and relays and transmits the received ISDB-T signal using the UHF broadcasting band.
  • the small-scale / mini-sate station 503 receives an ISDB-T signal from the large-scale / medium-scale station 502, and relays and transmits the received ISDB-T signal using the UHF broadcasting band.
  • the television receiver 700 receives an ISDB-T signal in the UHF broadcasting band from any of the relay stations of the master station 501, the large-scale / medium-scale station 502, and the small-scale / mini-sate station 503, and distributes the program. View.
  • FIG. 14 shows an example of performing a simul transition in the first stage transition (S301) according to the present embodiment.
  • the small-scale / mini-sate station 503 will be migrated to the mobile base station 200.
  • the small-scale / mini-sate station 503 relays and transmits the ISDB-T signal received from the large-scale / medium-scale station 502 using the UHF broadcasting band as before the transition.
  • a mobile base station 200a corresponds to the relay area of the small-scale / mini-sate station 503 of the migration source, and this mobile base station 200a is selected as the migration destination.
  • the broadcasting station 100 transmits a broadcasting signal to the selected migration destination mobile base station 200a via the 5G backbone network 400.
  • the mobile base station 200a converts the received broadcast signal into a FeMBMS signal, and transmits the converted FeMBMS signal using the 5G band.
  • the television receiver 700 can receive the ISDB-T signal from the small-scale / mini-sate station 503 in the UHF broadcasting band, and can watch the distributed program.
  • the device 300 can receive the FeMBMS signal from the mobile base station 200a in the band for 5G and watch the distributed program.
  • FIG. 15 shows an example of performing a simul transition in the second stage transition (S302) according to the present embodiment.
  • the large-scale / medium-scale station 502 is further migrated from the state shown in FIG. 14 to the mobile base station 200.
  • the large-scale / medium-scale station 502 relays and transmits the ISDB-T signal received from the master station 501 using the UHF broadcasting band as before the transition.
  • a plurality of mobile base stations 200b correspond to the relay area of the large-scale / medium-scale station 502 of the migration source, and the plurality of mobile base stations 200b are selected as the migration destination.
  • the broadcasting station 100 transmits a broadcasting signal to a plurality of selected mobile base stations 200b at the migration destination via the 5G backbone network 400.
  • the plurality of mobile base stations 200b convert the received broadcast signal into a FeMBMS signal, and transmit the converted FeMBMS signal using the 5G band.
  • the television receiver 700 can receive the ISDB-T signal from the large-scale / medium-scale station 502 in the UHF broadcasting band and watch the distributed program.
  • the terminal device 300 can receive the FeMBMS signal from the mobile base station 200b in the band for 5G and watch the distributed program.
  • FIG. 16 shows an example of performing simul transition in the transition of the third stage (S303) according to the present embodiment.
  • the master station 501 is further migrated to the mobile base station 200 from the state shown in FIG.
  • the master station 501 converts the broadcast signal received from the broadcast station 100 into an ISDB-T signal and transmits the ISDB-T signal using the UHF broadcast band, as before the transition.
  • a plurality of mobile base stations 200c correspond to the relay area of the migration source master station 501, and the plurality of mobile base stations 200c are selected as the migration destination.
  • the broadcasting station 100 transmits a broadcasting signal to a plurality of selected mobile base stations 200c at the migration destination via the 5G backbone network 400.
  • the plurality of mobile base stations 200c convert the received broadcast signal into a FeMBMS signal, and transmit the converted FeMBMS signal using the 5G band.
  • the television receiver 700 can receive the ISDB-T signal from the master station 501 in the UHF broadcasting band and watch the distributed program, and the terminal device 300 is a mobile base.
  • the FeMBMS signal can be received from the station 200c in the band for 5G, and the distributed program can be viewed.
  • FIG. 17 shows an example in which the migration is stopped in the second stage (S304) in the migration method according to the present embodiment.
  • the mobile base station 200a corresponding to the small-scale / mini-sate station 503 transmits the FeMBMS signal to the large-scale / medium-scale station 502 as in FIG.
  • the corresponding mobile base station 200b is transmitting the FeMBMS signal.
  • the master station 501 converts the broadcast signal received from the broadcast station 100 into an ISDB-T signal as before the transition, and uses the UHF broadcast band to convert the ISDB-T signal. Send.
  • the master station 501 converts the broadcast signal received from the broadcast station 100 into a FeMBMS signal, and shifts the UHF broadcast band (for example, the channel used by the large-scale / medium-scale station 502 and the small-scale / mini-sate station 503). It is used to transmit a FeMBMS signal.
  • the television receiver 700 can receive the ISDB-T signal from the master station 501 in the UHF broadcasting band and watch the distributed program, and the terminal device 300 can watch the distributed program.
  • the FeMBMS signal can be received from 501 in the UHF broadcasting band, and the distributed program can be viewed.
  • the broadcast network is gradually shifted to the relay network.
  • the transition can proceed smoothly.
  • the application of the broadcasting mode (FeMBMS, etc.) by the communication network in the order of mini-sate / small-scale station (first stage), medium-scale / large-scale station (second stage), and master station (third stage) is applied to each stage. conduct.
  • By applying the transition from mini-sate / small-scale stations it is possible to respond to the measures of the 5G rural network and promote the transition.
  • each relay station is gradually shifted to a mobile base station, and the broadcasting mode can be applied by all communication networks. After a certain period of simul, the current broadcast relay station will be stopped. As a result, all UHF frequency channels (13ch to 52ch: 40ch) assigned for broadcasting can be returned to the country. In addition, even if the application to mobile base stations is stopped in the middle of the process, some UHF frequency channels assigned for broadcasting can be returned to the country.
  • Each configuration in the above-described embodiment is configured by hardware and / or software, and may be composed of one hardware or software, or may be composed of a plurality of hardware or software.
  • Each device and each function (processing) may be realized by a computer 40 having a processor 41 such as a CPU (Central Processing Unit) and a memory 42 which is a storage device, as shown in FIG.
  • a program for performing the method in the embodiment (for example, a control method of the control device) may be stored in the memory 42, and each function may be realized by executing the program stored in the memory 42 on the processor 41. ..
  • Non-temporary computer-readable media include various types of tangible storage mediums.
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (ReadOnlyMemory), CD-Rs, Includes CD-R / W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • the program may also be supplied to the computer by various types of transient computer readable medium.
  • Examples of temporary computer readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the broadcasting station includes a broadcasting signal transmitting means for transmitting a broadcasting signal to the base station via a communication network.
  • the base station is A broadcast signal receiving means for receiving the broadcast signal from the broadcast station via the communication network.
  • a conversion means for converting the received broadcast signal into a terrestrial advancement signal, and a conversion means.
  • the ground altitude signal transmission means for transmitting the converted ground altitude signal to the terminal device, A network system.
  • the ground altitude signal is a FeMBMS signal of the FeMBMS (Further evolved Multicast and Multicast Services) system.
  • the network system according to Appendix 1.
  • the base station transmits the terrestrial altitude signal using a band for mobile communication.
  • the broadcast signal transmission means transmits the broadcast signal to the base station via a band-guaranteed band-guaranteed path in the communication network.
  • the network system according to any one of Supplementary note 1 to 3. (Appendix 5)
  • the band guarantee route is a slice set by network slicing.
  • the network system according to Appendix 4. (Appendix 6)
  • the slice is set according to the content of the broadcast signal.
  • the ground altitude signal transmission means transmits the ground altitude signal in a band corresponding to the slice.
  • the network system according to Appendix 5 or 6. As the base station, a plurality of base stations are provided.
  • the broadcast signal transmission means transmits the broadcast signal to a base station selected from the plurality of base stations.
  • the network system according to any one of Supplementary note 1 to 7. (Appendix 9) It is equipped with a plurality of relay stations that relay the broadcast signal in the broadcast network.
  • the broadcast signal transmitting means selects the base station corresponding to the relay station specified from the plurality of relay stations.
  • the network system according to Appendix 8. (Appendix 10)
  • the broadcast signal transmitting means selects the base station corresponding to the relay area of the specified relay station.
  • the broadcast signal transmitting means selects the base station having a radio area included in the relay area of the specified relay station.
  • the network system according to Appendix 10. (Appendix 12) The broadcast signal transmitting means selects the base station installed in the relay area of the specified relay station.
  • the network system according to Appendix 10 or 11. (Appendix 13) The broadcast signal transmitting means selects the base station corresponding to the output level of the specified relay station.
  • the broadcast signal transmission means selects the base station corresponding to a predetermined number of relay stages among the plurality of relay stations.
  • the broadcast signal transmission means selects the base station corresponding to a relay station having a predetermined relay scale from the plurality of relay stations.
  • the network system according to Appendix 14. The broadcast signal transmitting means selects the base station corresponding to the relay station having the smallest relay scale among the plurality of relay stations.
  • the network system according to Appendix 15. (Appendix 17) After the selection, the broadcast signal transmitting means further identifies the relay station in ascending order of relay scale, and selects the base station corresponding to the specified relay station.
  • the broadcast signal transmission means transmits the broadcast signal to the relay station and the base station corresponding to the relay station.
  • the network system according to any one of Supplementary note 9 to 17.
  • a control device for instructing the selection of the base station is provided.
  • a broadcasting signal receiving means for receiving a broadcasting signal from a broadcasting station via a communication network, A conversion means for converting the received broadcast signal into a terrestrial advancement signal, and a conversion means.
  • the ground altitude signal transmission means for transmitting the converted ground altitude signal to the terminal device, A base station.
  • Appendix 21 An acquisition means for acquiring the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station, and A selection means for selecting a base station corresponding to the acquired relay area, and A control means for controlling transmission of the broadcast signal from the broadcast station via the selected base station.
  • a control device. The control means controls to transmit the broadcast signal from the broadcast station via the relay station and the base station.
  • the control device according to Appendix 21. The control means controls to transmit the broadcast signal from the broadcast station only via the base station after a predetermined period of time has elapsed. The control device according to Appendix 21.
  • the control means controls to transmit the broadcast signal via the base station corresponding to the relay station of the first relay scale in the first transition stage, and in the second transition stage, the first Controlled to transmit the broadcast signal via a base station corresponding to the relay station having a second relay scale larger than the relay scale.
  • the control device according to any one of Supplementary note 21 to 23.
  • the control means determines whether or not to control the second transition stage after the control of the first transition stage.
  • a transmission method in a network system including a broadcasting station and a base station communicably connected to the broadcasting station.
  • the broadcasting station Broadcast signals are transmitted to the base station via a communication network.
  • the base station is The broadcast signal is received from the broadcast station via the communication network, and the received broadcast signal is converted into a terrestrial advancement signal of the terrestrial advancement method.
  • the converted ground altitude signal is transmitted to the terminal device.
  • Transmission method. (Appendix 27) Acquire the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station, Select the base station corresponding to the acquired relay area and select Controlled to transmit the broadcast signal from the broadcast station via the selected base station.
  • Control method (Appendix 28) Acquire the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station, Select the base station corresponding to the acquired relay area and select Controlled to transmit the broadcast signal from the broadcast station via the selected base station.
  • a non-temporary computer-readable medium that contains programs that allow a computer to perform processing.
  • Broadcasting station 11 Broadcasting signal transmitting unit 20 Base station 21 Broadcasting signal receiving unit 22 Conversion unit 23 Terrestrial advanced signal transmitting unit 30 Communication network 40 Computer 41 Processor 42 Memory 100 Broadcast station 110 Broadcast signal generator 120 Broadcast signal transmitter 200 Mobile base station 210 Broadcast signal receiver 220 Terrestrial advancement modulator 230 Terrestrial advancement transmitter 300 Terminal device 310 Terrestrial advancement receiver 320 Demodition unit 330 Display 400 5G Backbone network 401 Slice 500 Relay station 501 Master station 502 Large-scale / Medium-scale station 503 Small-scale / Mini-sate station 600 Control device 610 Relay station management unit 620 Mobile base station management unit 630 Control unit 640 Data collection unit 700 TV receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

A network system (1) comprises: a broadcast station (10); and a base station (20). The broadcast station (10) includes a broadcast signal transmission unit (11) which transmits a broadcast signal to the base station (20) via a communication network (30). The base station (20) includes a broadcast signal reception unit (21) which receives the broadcast signal from the broadcast station (10) via the communication network (30), a conversion unit (22) which converts the received broadcast signal into a terrestrial advanced signal of a terrestrial advancement system, and an advanced signal transmission unit (23) which transmits the converted terrestrial advanced signal to a terminal device.

Description

ネットワークシステム、基地局、制御装置、伝送方法、制御方法及び非一時的なコンピュータ可読媒体Network systems, base stations, control devices, transmission methods, control methods and non-temporary computer-readable media
 本発明は、ネットワークシステム、基地局、制御装置、伝送方法、制御方法及び非一時的なコンピュータ可読媒体に関する。 The present invention relates to a network system, a base station, a control device, a transmission method, a control method, and a non-temporary computer-readable medium.
 近年、地上デジタル放送の高度化(地上高度化)に関する議論が進められている。例えば、総務省情報通信審議会(総務省技術試験事務)では、通信ネットワークを用いた放送モードである5G Broadcast(FeMBMS: Further evolved Multimedia Broadcast and Multicast Service)の検討が行われている(非特許文献1参照)。また、規制改革推進会議でも放送ネットワークのブロードバンド(通信ネットワーク)への代替という課題が提示されている。 In recent years, discussions have been underway regarding the sophistication of terrestrial digital broadcasting (advancement of terrestrial broadcasting). For example, the Ministry of Internal Affairs and Communications Information and Communication Council (Ministry of Internal Affairs and Communications Technical Examination Office) is studying 5G Broadcast (FeMBMS: Future evolved Multimedia Broadcast and Multicast Service), which is a broadcasting mode using a communication network (non-patent documents). 1). In addition, the Regulatory Reform Promotion Council has also presented the issue of substituting broadband (communication networks) for broadcasting networks.
 しかしながら、関連する議論や関連する技術では、放送ネットワークの中継局を用いて放送信号を配信する方法が主な検討事項となっている。放送ネットワークの中継局を用いて放送信号を配信する場合、中継局の設備投資が増大するという問題がある。 However, in related discussions and related technologies, the method of distributing broadcast signals using relay stations of broadcast networks is the main consideration. When a broadcast signal is distributed using a relay station of a broadcast network, there is a problem that the capital investment of the relay station increases.
 本開示は、このような課題に鑑み、設備投資の増大を抑えつつ、通信ネットワークを介して放送信号を配信することが可能なネットワークシステム、基地局、制御装置、伝送方法、制御方法及び非一時的なコンピュータ可読媒体を提供することを目的とする。 In view of these issues, the present disclosure discloses a network system, a base station, a control device, a transmission method, a control method, and a non-temporary method capable of distributing a broadcast signal via a communication network while suppressing an increase in capital investment. The purpose is to provide a computer-readable medium.
 本開示に係るネットワークシステムは、放送局と、前記放送局と通信可能に接続された基地局とを備え、前記放送局は、通信ネットワークを介して、放送信号を前記基地局へ送信する放送信号送信手段を備え、前記基地局は、前記通信ネットワークを介して、前記放送局から前記放送信号を受信する放送信号受信手段と、前記受信された放送信号を地上高度化方式の地上高度化信号に変換する変換手段と、前記変換された地上高度化信号を端末装置へ送信する地上高度化信号送信手段と、を備えるものである。 The network system according to the present disclosure includes a broadcasting station and a base station communicably connected to the broadcasting station, and the broadcasting station transmits a broadcasting signal to the base station via a communication network. The base station comprises a broadcasting signal receiving means for receiving the broadcasting signal from the broadcasting station via the communication network, and the received broadcasting signal is converted into a terrestrial advancement signal of the terrestrial advancement method. It includes a conversion means for conversion and a ground advancement signal transmission means for transmitting the converted ground advancement signal to a terminal device.
 本開示に係る基地局は、通信ネットワークを介して、放送局から放送信号を受信する放送信号受信手段と、前記受信された放送信号を地上高度化方式の地上高度化信号に変換する変換手段と、前記変換された地上高度化信号を端末装置へ送信する地上高度化信号送信手段と、を備えるものである。 The base station according to the present disclosure includes a broadcast signal receiving means for receiving a broadcast signal from a broadcast station via a communication network, and a conversion means for converting the received broadcast signal into a terrestrial advancement signal of the terrestrial advancement method. The above-mentioned ground advancement signal transmission means for transmitting the converted ground advancement signal to the terminal device is provided.
 本開示に係る制御装置は、放送局から送信される放送信号を中継する中継局の中継エリアを取得する取得手段と、前記取得した中継エリアに対応する基地局を選択する選択手段と、前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する制御部と、を備えるものである。 The control device according to the present disclosure includes an acquisition means for acquiring a relay area of a relay station that relays a broadcast signal transmitted from a broadcast station, a selection means for selecting a base station corresponding to the acquired relay area, and the broadcast. It includes a control unit that controls the station to transmit the broadcast signal via the selected base station.
 本開示に係る伝送方法は、放送局と、前記放送局と通信可能に接続された基地局とを備えたネットワークシステムにおける伝送方法であって、前記放送局は、通信ネットワークを介して、放送信号を前記基地局へ送信し、前記基地局は、前記通信ネットワークを介して、前記放送局から前記放送信号を受信し前記受信された放送信号を地上高度化方式の地上高度化信号に変換し、前記変換された地上高度化信号を端末装置へ送信するものである。 The transmission method according to the present disclosure is a transmission method in a network system including a broadcasting station and a base station communicably connected to the broadcasting station, and the broadcasting station is a broadcasting signal via a communication network. Is transmitted to the base station, and the base station receives the broadcast signal from the broadcast station via the communication network and converts the received broadcast signal into a terrestrial advancement signal of the terrestrial advancement method. The converted ground advancement signal is transmitted to the terminal device.
 本開示に係る制御方法は、放送局から送信される放送信号を中継する中継局の中継エリアを取得し、前記取得した中継エリアに対応する基地局を選択し、前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御するものである。 The control method according to the present disclosure acquires a relay area of a relay station that relays a broadcast signal transmitted from a broadcast station, selects a base station corresponding to the acquired relay area, and selects the base station from the broadcast station. It controls to transmit the broadcast signal via the station.
 本開示に係る非一時的なコンピュータ可読媒体は、放送局から送信される放送信号を中継する中継局の中継エリアを取得し、前記取得した中継エリアに対応する基地局を選択し、前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する、処理をコンピュータに実行させるためのプログラムが格納された非一時的なコンピュータ可読媒体である。 The non-temporary computer-readable medium according to the present disclosure acquires a relay area of a relay station that relays a broadcast signal transmitted from a broadcasting station, selects a base station corresponding to the acquired relay area, and selects the broadcasting station. A non-temporary computer-readable medium containing a program for causing a computer to execute a process that controls transmission of the broadcast signal via the selected base station.
 本開示によれば、設備投資の増大を抑えつつ、通信ネットワークを介して放送信号を配信することが可能なネットワークシステム、基地局、制御装置、伝送方法、制御方法及び非一時的なコンピュータ可読媒体を提供することができる。 According to the present disclosure, a network system, a base station, a control device, a transmission method, a control method, and a non-temporary computer-readable medium capable of distributing a broadcast signal via a communication network while suppressing an increase in capital investment. Can be provided.
関連するネットワークシステムの構成例を示す構成図である。It is a block diagram which shows the configuration example of the related network system. 実施の形態に係るネットワークシステムの概要を示す構成図である。It is a block diagram which shows the outline of the network system which concerns on embodiment. 実施の形態1に係るネットワークシステムの構成例を示す構成図である。It is a block diagram which shows the structural example of the network system which concerns on Embodiment 1. FIG. 実施の形態1に係る配信方法の例を示すシーケンス図である。It is a sequence diagram which shows the example of the delivery method which concerns on Embodiment 1. FIG. 実施の形態1に係る配信方法の例を説明するための図である。It is a figure for demonstrating the example of the delivery method which concerns on Embodiment 1. FIG. 実施の形態1に係る配信方法で使用する信号の配置例を示す図である。It is a figure which shows the arrangement example of the signal used in the distribution method which concerns on Embodiment 1. FIG. 実施の形態2に係る制御装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the control apparatus which concerns on Embodiment 2. 実施の形態2に係る移行方法の例を示すフォローチャートである。It is a follow chart which shows the example of the transition method which concerns on Embodiment 2. 実施の形態2に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 2. FIG. 実施の形態2に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 2. FIG. 実施の形態2に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 2. FIG. 実施の形態3に係る移行方法の例を示すフォローチャートである。It is a follow chart which shows the example of the transition method which concerns on Embodiment 3. 実施の形態3に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3. FIG. 実施の形態3に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3. FIG. 実施の形態3に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3. FIG. 実施の形態3に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3. FIG. 実施の形態3に係る移行方法の例を説明するための図である。It is a figure for demonstrating an example of the transition method which concerns on Embodiment 3. FIG. 実施の形態に係るコンピュータのハードウェアの概要を示す構成図である。It is a block diagram which shows the outline of the hardware of the computer which concerns on embodiment.
 以下、図面を参照して実施の形態について説明する。各図面においては、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Hereinafter, embodiments will be described with reference to the drawings. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.
(実施の形態に至る検討)
 発明者らは、上記のような近年の議論をもとに、放送ネットワークを通信ネットワークに移行する方法について検討した。この検討において、以下に説明するように、放送ネットワークの運用上の課題と、通信ネットワークの伝送方式上の課題を見出した。
(Examination leading to the embodiment)
Based on the recent discussions described above, the inventors have examined a method for migrating a broadcasting network to a communication network. In this study, as explained below, we found the problems in the operation of the broadcasting network and the problems in the transmission method of the communication network.
 現行の地上デジタル2K放送は、UHF(Ultra High Frequency)放送用周波数を用い、多くの中継局(例えば関東地方で200局程度)から構成される放送ネットワーク(中継局ネットワーク)で運用されている。日本では、総務省(国)がUHF放送用周波数(放送チャンネル)を各放送局に割り当て、割り当てられた周波数が使用されている。現行の地上デジタル2K放送で用いているUHF放送用周波数は、既に2K放送で占有されているため、現行のままでは、次世代の4K/8K放送のための空き周波数を捻出することは困難である。一方、通信ネットワークを用いて放送番組のネット同時配信(例えばNHKが提供するNHK+(NHKプラス)サービス)が提供されており、この同時配信は、インターネット網を用いたベストエフォート型のサービスで実施されている。 The current terrestrial digital 2K broadcasting uses UHF (Ultra High Frequency) broadcasting frequencies and is operated by a broadcasting network (relay station network) consisting of many relay stations (for example, about 200 stations in the Kanto region). In Japan, the Ministry of Internal Affairs and Communications (country) assigns UHF broadcasting frequencies (broadcasting channels) to each broadcasting station, and the assigned frequencies are used. Since the UHF broadcasting frequency used in the current terrestrial digital 2K broadcasting is already occupied by 2K broadcasting, it is difficult to find a free frequency for the next generation 4K / 8K broadcasting as it is. be. On the other hand, simultaneous online distribution of broadcast programs (for example, NHK + (NHK +) service provided by NHK) is provided using a communication network, and this simultaneous distribution is carried out by a best-effort service using an Internet network. ing.
 図1は、関連するネットワークシステムの構成を示している。図1に示すように、関連するネットワークシステム900は、中継局ネットワーク910と同時配信ネットワーク920を含んでいる。 FIG. 1 shows the configuration of the related network system. As shown in FIG. 1, the related network system 900 includes a relay station network 910 and a simultaneous distribution network 920.
 中継局ネットワーク910は、中継局として、親局911、大規模/中規模局912、小規模/ミニサテ局913を含む。中継局ネットワーク910の各中継局は、放送局901から送信された放送信号をテレビ受信機931へ送信する。同時配信ネットワーク920は、ストリーミングサーバ921、インターネット922、4Gのモバイル基地局923を含む。ストリーミングサーバ921は、放送局901から送信された放送信号をストリーミングデータとして蓄積し、インターネット922及び4Gのモバイル基地局923を介して、スマートフォンなどの端末装置932へ配信する。 The relay station network 910 includes a master station 911, a large-scale / medium-scale station 912, and a small-scale / mini-sate station 913 as relay stations. Each relay station of the relay station network 910 transmits the broadcast signal transmitted from the broadcast station 901 to the television receiver 931. The simultaneous distribution network 920 includes a streaming server 921, an Internet 922, and a 4G mobile base station 923. The streaming server 921 stores the broadcast signal transmitted from the broadcasting station 901 as streaming data, and distributes it to a terminal device 932 such as a smartphone via the Internet 922 and the 4G mobile base station 923.
 放送ネットワーク(中継局ネットワーク)の運用上の課題として、設備投資の負担の増加が挙げられる。図1のように、中継局ネットワークは、全国の多数の中継局から構成されており、これらの中継局の設置や管理は、各放送局が行っている。このため、中継局ネットワークを維持及び拡張するためには、放送局における中継局の設備投資の負担が増大する。特に、民放ローカル局は近年収益が悪化しているため、民放ローカル局が管理している小規模/ミニサテ局の維持及び拡張は困難となっている。 One of the operational issues of the broadcasting network (relay station network) is the increase in the burden of capital investment. As shown in FIG. 1, the relay station network is composed of a large number of relay stations nationwide, and each broadcasting station installs and manages these relay stations. Therefore, in order to maintain and expand the relay station network, the burden of capital investment of the relay station in the broadcasting station increases. In particular, the profitability of commercial broadcasters has deteriorated in recent years, making it difficult to maintain and expand small / mini-sate stations managed by commercial broadcasters.
 また、通信ネットワーク(同時配信ネットワーク)の伝送方式上の課題として、端末装置のアクセス集中による視聴環境の劣化が挙げられる。図1のように、同時配信は、インターネット網を用いて実施されており、ベストエフォート型のサービスとなっている。このため、端末装置からのアクセス数が増大すると、ストリーミングサーバの飽和やネットワークの輻輳が発生し、端末装置で番組を視聴できない恐れがある。さらに、この同時配信は、主に映像・音声を伝送しているため、デジタル放送サービスであるマルチ編成やデータ放送等のサービスは実現できていない。すなわち、現行のネット同時配信方式では、放送ネットワークを通信ネットワークに代替させることはできない状況である。 In addition, as a problem in the transmission method of the communication network (simultaneous distribution network), deterioration of the viewing environment due to access concentration of the terminal device can be mentioned. As shown in FIG. 1, simultaneous distribution is carried out using the Internet network, which is a best-effort service. Therefore, if the number of accesses from the terminal device increases, the streaming server may become saturated or the network may be congested, and the terminal device may not be able to watch the program. Furthermore, since this simultaneous distribution mainly transmits video and audio, services such as multi-organization and data broadcasting, which are digital broadcasting services, have not been realized. That is, with the current simultaneous distribution method on the Internet, it is not possible to replace the broadcasting network with a communication network.
 そこで、以下の実施の形態では、通信ネットワークを介して放送信号を配信することで、放送ネットワークを通信ネットワークへ移行可能とし、上記のような、放送ネットワークの運用上の課題や通信ネットワークの伝送方式上の課題を解決することを可能とする。 Therefore, in the following embodiment, the broadcasting network can be transferred to the communication network by distributing the broadcasting signal via the communication network, and the above-mentioned operational problems of the broadcasting network and the transmission method of the communication network can be achieved. It makes it possible to solve the above problems.
(実施の形態の概要)
 図2は、実施の形態に係るネットワークシステムの概要を示している。図2に示すように、実施の形態に係るネットワークシステム1は、放送局10と基地局20を備え、放送局10と基地局20は、通信ネットワーク30を介して通信可能に接続されている。
(Outline of embodiment)
FIG. 2 shows an outline of the network system according to the embodiment. As shown in FIG. 2, the network system 1 according to the embodiment includes a broadcasting station 10 and a base station 20, and the broadcasting station 10 and the base station 20 are communicably connected via a communication network 30.
 放送局は、放送信号送信部11を備えている。放送信号送信部11は、通信ネットワーク30を介して、放送信号を基地局20へ送信する。 The broadcasting station is equipped with a broadcasting signal transmitting unit 11. The broadcast signal transmission unit 11 transmits a broadcast signal to the base station 20 via the communication network 30.
 基地局20は、放送信号受信部21、変換部22、地上高度化信号送信部23を備えている。放送信号受信部21は、通信ネットワーク30を介して、放送局10から放送信号を受信する。変換部22は、放送信号受信部21により受信された放送信号を地上高度化方式(新たな地上放送方式:Next Generation Terrestrial Broadcasting System)の地上高度化信号に変換する。地上高度化信号送信部23は、変換部22により変換された地上高度化信号を端末装置へ送信する。 The base station 20 includes a broadcast signal receiving unit 21, a conversion unit 22, and a ground advanced signal transmitting unit 23. The broadcast signal receiving unit 21 receives a broadcast signal from the broadcasting station 10 via the communication network 30. The conversion unit 22 converts the broadcast signal received by the broadcast signal receiving unit 21 into a terrestrial advancement signal of a terrestrial advancement system (new terrestrial broadcasting system: Next Generation Terrestrial Broadcasting System). The ground altitude signal transmission unit 23 transmits the ground altitude signal converted by the conversion unit 22 to the terminal device.
 このように、実施の形態では、放送局から通信ネットワークを介して基地局へ放送信号を送信し、基地局では、通信ネットワークを介して受信した放送信号を地上高度化信号に変換して端末装置へ送信する。これにより、通信ネットワークを介して放送信号を端末装置へ配信することができることから、放送ネットワークを通信ネットワークへ移行することが可能となり、設備投資の増大を抑えることができる。例えば、5Gのネットワークスライシング技術による帯域保証サービスなどの通信ネットワーク技術を活用することで、確実にテレビ放送を配信することが可能となる。 As described above, in the embodiment, the broadcasting signal is transmitted from the broadcasting station to the base station via the communication network, and the base station converts the broadcasting signal received via the communication network into a terrestrial advancement signal and the terminal device. Send to. As a result, since the broadcast signal can be delivered to the terminal device via the communication network, the broadcast network can be transferred to the communication network, and the increase in capital investment can be suppressed. For example, by utilizing communication network technology such as a bandwidth guarantee service based on 5G network slicing technology, it is possible to reliably deliver television broadcasts.
 また、以下の実施の形態で説明するように、実施の形態に係るネットワークシステムにより放送ネットワークから通信ネットワークへ完全移行または部分的移行を実現してもよい。放送ネットワークから通信ネットワークへ完全移行または部分的移行を行うことにより、国に変換する放送用周波数を捻出できる。さらに、部分的に移行する際に、ある期間ごとに放送ネットワークを段階的に移行してもよい。これにより、放送ネットワークから通信ネットワークへの移行をスムーズに行うことができ、且つ途中段階で移行をやめても、一部放送用周波数を捻出できる。また、実施の形態では、サイマル移行期間を確保することで、視聴者へのインパクトを抑えた移行が実現できる。さらに、2K放送の移行に限らず、4K放送等の新規サービスへの移行も可能となる。 Further, as described in the following embodiment, the network system according to the embodiment may realize a complete transition or a partial transition from a broadcasting network to a communication network. By making a complete or partial transition from a broadcasting network to a communication network, it is possible to generate broadcasting frequencies to be converted into a country. Further, in the case of partial migration, the broadcasting network may be gradually migrated at regular intervals. As a result, the transition from the broadcasting network to the communication network can be smoothly performed, and even if the transition is stopped in the middle stage, some broadcasting frequencies can be generated. Further, in the embodiment, by securing the simul transition period, it is possible to realize the transition with less impact on the viewer. Furthermore, not only the transition to 2K broadcasting but also the transition to new services such as 4K broadcasting will be possible.
(実施の形態1)
 以下、図面を参照して実施の形態1について説明する。本実施の形態では、5Gのモバイル基地局を利用して放送信号を配信する例について説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to the drawings. In this embodiment, an example of distributing a broadcast signal using a 5G mobile base station will be described.
 図3は、本実施の形態に係るネットワークシステムの構成例を示している。図3に示すように、本実施の形態に係るネットワークシステム2は、放送局100、モバイル基地局200、端末装置300を備えている。 FIG. 3 shows a configuration example of the network system according to the present embodiment. As shown in FIG. 3, the network system 2 according to the present embodiment includes a broadcasting station 100, a mobile base station 200, and a terminal device 300.
 放送局100とモバイル基地局200は、5Gバックボーンネットワーク400を介して通信可能に接続されている。モバイル基地局200と端末装置300は、5Gモバイル無線通信により通信可能である。5Gバックボーンネットワーク400は、モバイル基地局200のバックボーンとなるネットワークであり、5Gコアネットワークを含む。5Gバックボーンネットワーク400とモバイル基地局200は、5Gモバイルネットワークを構成する。例えば、5Gバックボーンネットワーク400は、放送局100とモバイル基地局200を接続する通信ネットワークである。5Gバックボーンネットワーク400及びモバイル基地局200を、放送信号を配信する通信ネットワークと称する場合もある。なお、5Gモバイルネットワークと同様に放送信号を配信できれば、4Gやその他の通信ネットワークを用いてもよい。すなわち、モバイル基地局200は、5Gモバイル基地局に限らず、4Gやその他の基地局でもよい。 The broadcasting station 100 and the mobile base station 200 are communicably connected via the 5G backbone network 400. The mobile base station 200 and the terminal device 300 can communicate with each other by 5G mobile wireless communication. The 5G backbone network 400 is a network that serves as the backbone of the mobile base station 200, and includes a 5G core network. The 5G backbone network 400 and the mobile base station 200 constitute a 5G mobile network. For example, the 5G backbone network 400 is a communication network that connects a broadcasting station 100 and a mobile base station 200. The 5G backbone network 400 and the mobile base station 200 may be referred to as a communication network that distributes broadcast signals. If the broadcast signal can be distributed in the same manner as the 5G mobile network, 4G or other communication network may be used. That is, the mobile base station 200 is not limited to the 5G mobile base station, but may be a 4G or other base station.
 放送局100は、5Gバックボーンネットワーク400及びモバイル基地局200を介して、端末装置300へ放送信号を配信する。放送局100は、放送ネットワークを介して放送信号を配信してもよい。放送局100は、放送信号生成部110、放送信号送信部120を備えている。 The broadcasting station 100 distributes a broadcasting signal to the terminal device 300 via the 5G backbone network 400 and the mobile base station 200. The broadcasting station 100 may distribute a broadcasting signal via a broadcasting network. The broadcasting station 100 includes a broadcasting signal generation unit 110 and a broadcasting signal transmission unit 120.
 放送信号生成部110は、配信する番組(コンテンツデータ)の放送信号を生成するエンコーダである。例えば、放送信号は、地上デジタル2K放送用のMPEG2-TS形式や、MPEG-DASH形式等の信号である。放送信号生成部110は、番組の映像及び音声のデータをMPEG2-TS形式等にエンコードし、MPEG2-TS信号等を生成する。MPEG2-TS信号等は、映像や音声に限らず、デジタル放送サービスで配信されるデータやマルチ編成のデータ等を含む。なお、上記では、信号の例として、MPEG2-TSやMPEG-DASHを挙げたが、4K放送のためのHEVC(High Efficiency Video Coding)に加えてVVC(Versatile Video Coding:次世代映像符号化方式)により放送信号を生成してもよい。 The broadcast signal generation unit 110 is an encoder that generates a broadcast signal of a program (content data) to be distributed. For example, the broadcast signal is a signal in the MPEG2-TS format for terrestrial digital 2K broadcasting, the MPEG-DASH format, or the like. The broadcast signal generation unit 110 encodes the video and audio data of the program into the MPEG2-TS format or the like, and generates the MPEG2-TS signal or the like. The MPEG2-TS signal and the like are not limited to video and audio, but include data distributed by digital broadcasting services, multi-organized data, and the like. In the above, MPEG2-TS and MPEG-DASH are mentioned as examples of signals, but in addition to HEVC (High Efficiency Video Coding) for 4K broadcasting, VVC (Versatile Video Coding: next-generation video coding method) May generate a broadcast signal.
 放送信号送信部120は、5Gバックボーンネットワーク400を介してモバイル基地局200と通信を行う5Gバックボーン通信部である。放送信号送信部120は、5Gバックボーンネットワーク400で帯域保証されたスライス401を介して、放送信号をモバイル基地局200へ送信する。スライスは、5Gのネットワークスライシング技術によるエンドツーエンドで帯域保証可能な帯域保証経路である。なお、スライスと同様に放送信号を伝送できれば、その他の帯域保証経路を用いてもよい。放送信号送信部120は、番組の配信時に放送信号生成部110が生成した放送信号を送信してもよいし、予め用意された放送信号を送信してもよい。例えば、記憶装置に記憶されたエンコード済みの放送信号を取得し、取得した放送信号を送信してもよい。 The broadcast signal transmission unit 120 is a 5G backbone communication unit that communicates with the mobile base station 200 via the 5G backbone network 400. The broadcast signal transmission unit 120 transmits the broadcast signal to the mobile base station 200 via the slice 401 whose bandwidth is guaranteed by the 5G backbone network 400. Slice is an end-to-end bandwidth-guaranteed bandwidth-guaranteed path based on 5G network slicing technology. If the broadcast signal can be transmitted in the same manner as the slice, another band guarantee path may be used. The broadcast signal transmission unit 120 may transmit the broadcast signal generated by the broadcast signal generation unit 110 at the time of distribution of the program, or may transmit a broadcast signal prepared in advance. For example, an encoded broadcast signal stored in a storage device may be acquired and the acquired broadcast signal may be transmitted.
 モバイル基地局200は、5Gモバイル基地局であり、本来の5Gモバイル通信用の機能に加えて、地上高度化用の放送モードの伝送(放送)機能を有する。モバイル基地局200は、放送信号受信部210、地上高度化変調部220、地上高度化送信部230を備えている。 The mobile base station 200 is a 5G mobile base station, and has a transmission (broadcasting) function of a broadcasting mode for terrestrial advancement in addition to the original function for 5G mobile communication. The mobile base station 200 includes a broadcast signal receiving unit 210, a terrestrial advanced modulation unit 220, and a terrestrial advanced transmitting unit 230.
 放送信号受信部210は、5Gバックボーンネットワーク400を介して放送局100と通信を行う5Gバックボーン通信部である。放送信号受信部210は、5Gバックボーンネットワーク400のスライス401を介して、放送局100から放送信号を受信する。 The broadcast signal receiving unit 210 is a 5G backbone communication unit that communicates with the broadcasting station 100 via the 5G backbone network 400. The broadcast signal receiving unit 210 receives a broadcast signal from the broadcasting station 100 via the slice 401 of the 5G backbone network 400.
 地上高度化変調部(変換部)220は、放送局100から受信した放送信号を地上高度化方式の地上高度化信号に変調(変換)する。地上高度化とは、通信ネットワーク経由の2K放送信号や4K放送信号をFeMBMS等の地上高度化方式で送信することである。地上高度化方式とは、地上高度化用に規格化された通信の放送モードの方式である。例えば、地上高度化方式は、FeMBMS方式であり、地上高度化信号は、FeMBMS方式(規格)にしたがった形式のFeMBMS信号である。地上高度化方式は、FeMBMS方式に限らず、検討が進められている地上放送高度化方式でもよいし、今後規格化されるその他の方式でもよい。 The terrestrial advancement modulation unit (conversion unit) 220 modulates (converts) the broadcast signal received from the broadcasting station 100 into a terrestrial advancement system terrestrial advancement signal. The terrestrial sophistication is to transmit a 2K broadcast signal or a 4K broadcast signal via a communication network by a terrestrial sophistication method such as FeMBMS. The terrestrial advancement method is a communication broadcasting mode method standardized for terrestrial advancement. For example, the ground advancement method is a FeMBMS method, and the ground advancement signal is a FeMBMS signal in a format according to the FeMBMS method (standard). The terrestrial sophistication method is not limited to the FeMBMS method, and may be a terrestrial broadcasting sophistication method under study or another method that will be standardized in the future.
 地上高度化送信部230は、端末装置300と無線通信を行う通信部である。地上高度化送信部230は、5Gモバイル無線通信により無線送信を行う送信部でもよい。地上高度化送信部230は、5G用の帯域内の所定の地上高度化用の帯域を用いて、生成した地上高度化信号を端末装置300へ無線送信する。 The terrestrial advanced transmission unit 230 is a communication unit that performs wireless communication with the terminal device 300. The terrestrial advanced transmission unit 230 may be a transmission unit that performs wireless transmission by 5G mobile wireless communication. The terrestrial advancement transmission unit 230 wirelessly transmits the generated terrestrial altitude advancement signal to the terminal device 300 using a predetermined terrestrial altitude advancement band within the band for 5G.
 端末装置300は、5Gモバイル通信を行うスマートフォンや携帯電話などのモバイル端末であり、地上高度化用のデコード機能(例えばFeMBMSチップ)を実装している。端末装置300は、モバイル端末に限らず、地上高度化信号を受信可能なテレビ受信機やその他の情報処理装置でもよいし、地上高度化信号を受信可能なアダプタに接続されたテレビ受信機やその他の情報処理装置でもよい。端末装置300は、地上高度化受信部310、復調部320、表示部330を備えている。 The terminal device 300 is a mobile terminal such as a smartphone or a mobile phone that performs 5G mobile communication, and is equipped with a decoding function (for example, a FeMBMS chip) for terrestrial sophistication. The terminal device 300 is not limited to a mobile terminal, but may be a television receiver or other information processing device capable of receiving terrestrial advancement signals, a television receiver connected to an adapter capable of receiving terrestrial advancement signals, or the like. It may be an information processing device of. The terminal device 300 includes a ground advanced receiving unit 310, a demodulation unit 320, and a display unit 330.
 地上高度化受信部310は、モバイル基地局200と無線通信を行う通信部である。地上高度化受信部310は、5Gモバイル無線通信により無線受信を行う受信部でもよい。地上高度化受信部310は、5G用の帯域内の所定の地上高度化用の帯域により、モバイル基地局200から地上高度化信号を無線受信する。なお、FeMBMSの場合、SIMカード不要(モバイル通信の契約不要)でFeMBMS信号を受信できる。 The terrestrial advanced receiving unit 310 is a communication unit that performs wireless communication with the mobile base station 200. The terrestrial advanced receiving unit 310 may be a receiving unit that performs wireless reception by 5G mobile wireless communication. The terrestrial altitude receiving unit 310 wirelessly receives a terrestrial altitude signal from the mobile base station 200 by a predetermined terrestrial altitude band within the 5G band. In the case of FeMBMS, the FeMBMS signal can be received without a SIM card (no mobile communication contract required).
 復調部320は、モバイル基地局200から受信した地上高度化信号を復調し、表示(再生)可能な形式のコンテンツデータを生成するデコーダである。例えば、復調部320は、FeMBMS信号(今後規格化されるその他の信号でもよい)からMPEG2-TS信号等を生成し、さらにMPEG2-TS信号等から映像及び音声のデータ(データ放送用のデータを含んでもよい)を生成する。表示部330は、復調した映像及び音声を含むコンテンツデータ(番組)を表示するディスプレイである。 The demodulation unit 320 is a decoder that demodulates the ground advancement signal received from the mobile base station 200 and generates content data in a displayable (reproducible) format. For example, the demodulation unit 320 generates an MPEG2-TS signal or the like from a FeMBMS signal (may be another signal standardized in the future), and further produces video and audio data (data for data broadcasting) from the MPEG2-TS signal or the like. May be included). The display unit 330 is a display that displays content data (program) including demodulated video and audio.
 図4は、本実施の形態に係るネットワークシステムによる配信方法の例を示している。図4に示すように、まず、放送局100は、放送局100とモバイル基地局200の間にスライスを設定する(S101)。放送信号送信部120(モバイル基地局200の放送信号受信部210でもよい)は、5G規格にしたがってネットワークスライシングを行い、5Gバックボーンネットワーク400に放送信号伝送用のスライスを設定する。これにより、放送局100から端末装置300までエンドツーエンドでの帯域保証が実現できる。複数のモバイル基地局200を介して配信する場合、複数のモバイル基地局200との間にスライスを設定してもよい。なお、放送局100が5Gコアネットワークの運用管理システムに対し、スライスの要件(容量や遅延時間等)に基づいてスライスの設定を要求し、運用管理システムがスライスの設定に必要な処理を実行してもよい。 FIG. 4 shows an example of a distribution method by the network system according to the present embodiment. As shown in FIG. 4, first, the broadcasting station 100 sets a slice between the broadcasting station 100 and the mobile base station 200 (S101). The broadcast signal transmission unit 120 (may be the broadcast signal reception unit 210 of the mobile base station 200) performs network slicing according to the 5G standard, and sets a slice for broadcast signal transmission in the 5G backbone network 400. As a result, end-to-end bandwidth guarantee can be realized from the broadcasting station 100 to the terminal device 300. When distributing via a plurality of mobile base stations 200, a slice may be set between the plurality of mobile base stations 200 and the plurality of mobile base stations 200. The broadcasting station 100 requests the operation management system of the 5G core network to set the slice based on the slice requirements (capacity, delay time, etc.), and the operation management system executes the processing necessary for the slice setting. You may.
 また、放送局100が使用するスライスを予め設定してもよいし、配信する番組(コンテンツ)に応じて設定してもよい。例えば、図5のように、通常番組の配信時、通常チャンネル用のスライス401を設定し、さらに、災害番組の配信時、災害チャンネル用のスライス401を設定してもよい。また、4K放送の配信時、4Kチャンネル用のスライス401を設定してもよい。 Further, the slice used by the broadcasting station 100 may be set in advance, or may be set according to the program (content) to be distributed. For example, as shown in FIG. 5, a slice 401 for a normal channel may be set at the time of distribution of a normal program, and a slice 401 for a disaster channel may be set at the time of distribution of a disaster program. Further, when distributing a 4K broadcast, a slice 401 for a 4K channel may be set.
 次に、放送局100は、配信する放送信号を生成し(S102)、生成した放送信号をモバイル基地局200へ送信する(S103)。放送信号生成部110は、番組の映像及び音声のデータをエンコードして、例えばMPEG2-TS形式の放送信号を生成する。放送信号送信部120は、設定した5Gバックボーンネットワーク400のスライスを選択し、選択したスライスを介して、生成した放送信号をモバイル基地局200へ送信する。例えば、番組ごとにスライスが設定されている場合、配信する番組に対応するスライスを選択する。例えば、複数のモバイル基地局200へ送信する場合、マルチキャストにより送信してもよい。 Next, the broadcasting station 100 generates a broadcasting signal to be distributed (S102), and transmits the generated broadcasting signal to the mobile base station 200 (S103). The broadcast signal generation unit 110 encodes the video and audio data of the program to generate, for example, an MPEG2-TS format broadcast signal. The broadcast signal transmission unit 120 selects a slice of the set 5G backbone network 400, and transmits the generated broadcast signal to the mobile base station 200 via the selected slice. For example, when a slice is set for each program, the slice corresponding to the program to be distributed is selected. For example, when transmitting to a plurality of mobile base stations 200, transmission may be performed by multicast.
 次に、モバイル基地局200は、放送信号を受信すると、地上高度化信号の一例として、FeMBMS信号を生成し(S104)、生成したFeMBMS信号を端末装置300へ送信する(S105)。放送信号受信部210は、5Gバックボーンネットワーク400のスライスを介して放送信号を受信し、地上高度化変調部220は、受信したMPEG2-TS形式の放送信号をFeMBMS信号に変調する。 Next, when the mobile base station 200 receives the broadcast signal, it generates a FeMBMS signal (S104) as an example of the terrestrial advancement signal, and transmits the generated FeMBMS signal to the terminal device 300 (S105). The broadcast signal receiving unit 210 receives the broadcast signal via the slice of the 5G backbone network 400, and the terrestrial advanced modulation unit 220 modulates the received MPEG2-TS format broadcast signal into a FeMBMS signal.
 図6は、FeMBMSで規定されている信号の配置例を示している。図6に示すように、FeMBMSでは、通信の単位帯域を5MHzとし、この5MHz帯域の信号配置は、25個のRB(Resource Block)で構成されている。地上高度化変調部220は、MPEG2-TS形式の信号を、FeMBMS形式の信号に変換する。すなわち、MPEG2-TS信号を図6のような配置のRBに変換する。地上高度化送信部230は、5G用の帯域内の所定の地上高度化用の帯域(5Gに割り当てられた帯域に含まれるマルチキャストチャネル)を用いて、生成したFeMBMS信号を端末装置300へ送信する。例えば、5G用Sub6(3.6-6.0GHz)の送信周波数を用いて地上高度化信号を送信する。番組(チャンネル)ごとにスライスが設定されている場合、スライスごとに5MHzの伝送帯域(スライスに応じた帯域)を確保し、伝送帯域ごとに放送信号を送信する。例えば、通常チャンネル用のスライスで受信した放送信号を、通信チャンネル用の5MHzの伝送帯域で送信し、災害チャンネル用のスライスで受信した放送信号を、災害チャンネル用の5MHzの伝送帯域で送信する。これにより、通信チャンネルと災害チャンネルを同じ画質で配信することができる。さらに、4Kチャンネル用のスライスで受信した放送信号を、4Kチャンネル用の5MHzの伝送帯域で送信してもよい。これにより、4K放送の画質も保証することができる。 FIG. 6 shows an example of signal arrangement defined by FeMBMS. As shown in FIG. 6, in FeMBMS, the unit band of communication is 5 MHz, and the signal arrangement in this 5 MHz band is composed of 25 RBs (Resource Blocks). The terrestrial advanced modulation unit 220 converts an MPEG2-TS format signal into a FeMBMS format signal. That is, the MPEG2-TS signal is converted into an RB arranged as shown in FIG. The terrestrial altitude transmission unit 230 transmits the generated FeMBMS signal to the terminal device 300 using a predetermined terrestrial altitude advancement band (multicast channel included in the band allocated to 5G) within the 5G band. .. For example, the ground altitude signal is transmitted using the transmission frequency of Sub6 (3.6-6.0 GHz) for 5G. When slices are set for each program (channel), a transmission band of 5 MHz (band corresponding to the slice) is secured for each slice, and a broadcast signal is transmitted for each transmission band. For example, the broadcast signal received in the slice for the normal channel is transmitted in the transmission band of 5 MHz for the communication channel, and the broadcast signal received in the slice for the disaster channel is transmitted in the transmission band of 5 MHz for the disaster channel. As a result, the communication channel and the disaster channel can be delivered with the same image quality. Further, the broadcast signal received in the slice for the 4K channel may be transmitted in the transmission band of 5 MHz for the 4K channel. As a result, the image quality of 4K broadcasting can be guaranteed.
 次に、端末装置300は、FeMBMS信号を受信すると、FeMBMS信号を復調し(S106)、番組を表示する(S107)。地上高度化受信部310は、5G用の帯域内の所定の地上高度化用の帯域を介してFeMBMS信号を受信し、復調部320は、受信したFeMBMS信号を復調する。例えば、図6のような信号配置にしたがい各RBの信号を復調して、MPEG2-TS信号に変換し、変換したMPEG2-TS信号から再生可能なコンテンツデータを生成する。表示部330は、復調した番組のコンテンツデータをディスプレイに表示する。 Next, when the terminal device 300 receives the FeMBMS signal, it demodulates the FeMBMS signal (S106) and displays the program (S107). The ground advancement receiving unit 310 receives the FeMBMS signal via a predetermined ground advancement band within the 5G band, and the demodulation unit 320 demodulates the received FeMBMS signal. For example, the signal of each RB is demodulated according to the signal arrangement as shown in FIG. 6, converted into an MPEG2-TS signal, and reproducible content data is generated from the converted MPEG2-TS signal. The display unit 330 displays the demodulated content data of the program on the display.
 なお、図4では、放送局から端末装置へ下り方向に伝送する方法を示しているが、端末装置から放送局へ上り方向に伝送可能し、双方向にデータを伝送してもよい。例えば、端末装置で番組視聴用のアプリケーションプログラムを起動し、アプリケーションプログラムから放送局へ視聴履歴やユーザの情報等を送信する。これにより、放送局が端末装置から視聴履歴等を収集し、収集した情報を活用することができる。 Although FIG. 4 shows a method of transmitting data from the broadcasting station to the terminal device in the downlink direction, it is possible to transmit data from the terminal device to the broadcasting station in the upstream direction, and data may be transmitted in both directions. For example, an application program for viewing a program is started on a terminal device, and the viewing history, user information, and the like are transmitted from the application program to the broadcasting station. As a result, the broadcasting station can collect viewing history and the like from the terminal device and utilize the collected information.
 以上のように、本実施の形態では、例えば地上デジタル2K放送を、ネットワークスライシング技術を用いた帯域保証サービスを利用して、モバイル基地局まで伝送し、モバイル基地局からは、通信を用いた放送モードであるFeMBMS送信方式などの地上高度化方式で伝送(放送)し、さらに、地上高度化デコード機能を持つスマートフォンやテレビ受信機などの端末装置で受信する。これにより、通信ネットワークを介して放送信号を配信することができ、放送ネットワークから通信ネットワークへの移行が可能となる。中継局の代わりにモバイル基地局を用いて放送信号を配信できるため、中継局にかかる設備投資を抑えることができる。また、5Gのネットワークスライシング技術を用いることで、放送信号伝送用の帯域を保証できるため、確実に放送信号を配信し、端末装置で品質劣化することなくテレビ放送を視聴できる。 As described above, in the present embodiment, for example, terrestrial digital 2K broadcasting is transmitted to a mobile base station by using a bandwidth guarantee service using network slicing technology, and broadcasting using communication is performed from the mobile base station. It is transmitted (broadcast) by a terrestrial advanced method such as the FeMBMS transmission method, which is a mode, and is further received by a terminal device such as a smartphone or a television receiver having a terrestrial advanced decoding function. As a result, the broadcast signal can be distributed via the communication network, and the transition from the broadcast network to the communication network becomes possible. Since the broadcast signal can be distributed using a mobile base station instead of the relay station, it is possible to reduce the capital investment required for the relay station. Further, by using the 5G network slicing technology, the band for broadcasting signal transmission can be guaranteed, so that the broadcasting signal can be reliably distributed and the television broadcast can be watched without deterioration of quality on the terminal device.
 さらに、本実施の形態のように放送信号を配信することにより、放送サービスの継続と拡張を図ることが可能となる。すなわち、通信の帯域保証サービスにより、現行の地上デジタル2K放送サービスがそのまま伝送できるので、マルチ編成やデータ放送を継続して配信できる。ワンセグ放送については、FeMBMS方式ではISDB-T方式とセグメント構成が異なるのでそのままの継続はできないが、FeMBMS方式そのものがスマートフォンなどの端末装置の受信を前提にしているので、モバイル受信は継続して実現できる。更に、通信ネットワークの双方向伝送の利点を生かし、端末装置からの視聴履歴データにより、放送によるターゲティングCMの実現や、ダイナミックな帯域コントロールにより災害時の新たなチャンネルの生成などを実現できる。 Furthermore, by distributing the broadcast signal as in the present embodiment, it is possible to continue and expand the broadcast service. That is, since the current terrestrial digital 2K broadcasting service can be transmitted as it is by the communication band guarantee service, multi-organization and data broadcasting can be continuously distributed. Regarding 1Seg broadcasting, the FeMBMS method has a different segment configuration from the ISDB-T method, so it cannot be continued as it is, but since the FeMBMS method itself is premised on reception by terminal devices such as smartphones, mobile reception will continue to be realized. can. Furthermore, taking advantage of bidirectional transmission in a communication network, it is possible to realize targeting CM by broadcasting by viewing history data from a terminal device, and to generate a new channel in the event of a disaster by dynamic bandwidth control.
(実施の形態2)
 以下、図面を参照して実施の形態2について説明する。本実施の形態では、実施の形態1のネットワークシステムを用いて、放送ネットワークを通信ネットワークに移行する例について説明する。
(Embodiment 2)
Hereinafter, the second embodiment will be described with reference to the drawings. In this embodiment, an example of migrating a broadcasting network to a communication network will be described using the network system of the first embodiment.
 図7は、本実施の形態に係る制御装置の構成例を示している。本実施の形態に係るネットワークシステム3は、中継局ネットワーク3a(放送ネットワーク)とモバイルネットワーク3b(通信ネットワーク)を含み、中継局ネットワーク3aをモバイルネットワーク3bに移行する方法を制御するための制御装置600を備えている。制御装置600は、放送局100、モバイルネットワーク3bのモバイル基地局200、中継局ネットワーク3aの中継局500を制御可能に接続されている。例えば、モバイルネットワーク3bや中継局ネットワーク3aの制御プレーンや制御ネットワークを介して接続されてもよい。なお、制御装置600の機能の一部または全部を、放送局100や他の装置に含めてもよい。例えば、放送局100(放送信号送信部120)が、本実施の形態に係る制御装置600と同様に、放送信号を送信するモバイル基地局200を選択し、選択したモバイル基地局200へ放送信号を送信してもよい。 FIG. 7 shows a configuration example of the control device according to the present embodiment. The network system 3 according to the present embodiment includes a relay station network 3a (broadcasting network) and a mobile network 3b (communication network), and is a control device 600 for controlling a method of migrating the relay station network 3a to the mobile network 3b. It is equipped with. The control device 600 is connected to the broadcasting station 100, the mobile base station 200 of the mobile network 3b, and the relay station 500 of the relay station network 3a in a controllable manner. For example, it may be connected via the control plane or the control network of the mobile network 3b or the relay station network 3a. A part or all of the functions of the control device 600 may be included in the broadcasting station 100 or another device. For example, the broadcasting station 100 (broadcast signal transmitting unit 120) selects a mobile base station 200 for transmitting a broadcasting signal and sends a broadcasting signal to the selected mobile base station 200, similarly to the control device 600 according to the present embodiment. You may send it.
 図7に示すように、制御装置600は、中継局管理部610、モバイル基地局管理部620、制御部630、データ収集部640を備えている。 As shown in FIG. 7, the control device 600 includes a relay station management unit 610, a mobile base station management unit 620, a control unit 630, and a data collection unit 640.
 中継局管理部610は、中継局ネットワーク3aを構成する複数の中継局500を管理する。中継局管理部610は、中継局500の中継エリアの情報を取得する取得部である。中継エリアは、中継局500から送信された電波(放送信号)を受信可能なエリアである。なお、中継エリアに限らず、中継局500の出力レベルを取得してもよい。モバイル基地局管理部620は、モバイルネットワーク3bを構成する複数のモバイル基地局200を管理する。モバイル基地局管理部620は、モバイル基地局200の無線エリアの情報を取得する取得部であり、移行元の中継局500に対応する移行先のモバイル基地局200を選択する選択部でもある。無線エリアは、モバイル基地局200から送信された電波(放送信号)を受信可能なエリアである。 The relay station management unit 610 manages a plurality of relay stations 500 constituting the relay station network 3a. The relay station management unit 610 is an acquisition unit that acquires information on the relay area of the relay station 500. The relay area is an area in which radio waves (broadcast signals) transmitted from the relay station 500 can be received. The output level of the relay station 500 may be acquired, not limited to the relay area. The mobile base station management unit 620 manages a plurality of mobile base stations 200 constituting the mobile network 3b. The mobile base station management unit 620 is an acquisition unit that acquires information on the wireless area of the mobile base station 200, and is also a selection unit that selects a migration destination mobile base station 200 corresponding to the migration source relay station 500. The wireless area is an area in which radio waves (broadcast signals) transmitted from the mobile base station 200 can be received.
 制御部630は、放送局100の放送信号の配信動作や、中継局500やモバイル基地局200の放送信号の送信動作(ON/OFF)を制御する。制御部630は、選択された移行先のモバイル基地局200を介して、放送局100から放送信号を配信するよう制御する。すなわち、制御部630は、放送局100の放送信号の送信先(モバイル基地局200の選択)を制御し、また、モバイル基地局200の放送モードの送信の開始及び終了を制御する。制御部630は、災害チャンネルなど、配信する番組に応じたチャンネル(スライス)を設定してもよい。また、データ収集部640は、端末装置のアクセスデータや視聴データ等を収集する。実施の形態1で説明したように、データ収集部640が端末装置から視聴データを収集し、収集した視聴データに基づいて、放送局100が配信する番組やCMを制御してもよい。 The control unit 630 controls the distribution operation of the broadcast signal of the broadcasting station 100 and the transmission operation (ON / OFF) of the broadcasting signal of the relay station 500 and the mobile base station 200. The control unit 630 controls to distribute a broadcast signal from the broadcast station 100 via the selected mobile base station 200 of the migration destination. That is, the control unit 630 controls the transmission destination of the broadcast signal of the broadcast station 100 (selection of the mobile base station 200), and also controls the start and end of the transmission of the broadcast mode of the mobile base station 200. The control unit 630 may set a channel (slice) according to the program to be distributed, such as a disaster channel. In addition, the data collection unit 640 collects access data, viewing data, and the like of the terminal device. As described in the first embodiment, the data collection unit 640 may collect viewing data from the terminal device and control the programs and commercials distributed by the broadcasting station 100 based on the collected viewing data.
 図8は、本実施の形態に係る制御装置による制御方法(移行方法)を示している。図8に示すように、まず、制御装置600は、移行元の中継局500の中継エリアを取得する(S201)。中継局管理部610は、移行元の中継局500を特定し、特定した中継局500の中継エリアの情報を取得する。移行元の中継局500は、管理者の指示に応じて特定してもよいし、予め設定された移行計画にしたがって特定してもよい。また、中継エリアの情報は、特定した中継局500から取得してもよいし、各中継局500の情報が登録されたデータベースから取得してもよい。 FIG. 8 shows a control method (transition method) by the control device according to the present embodiment. As shown in FIG. 8, first, the control device 600 acquires the relay area of the transfer source relay station 500 (S201). The relay station management unit 610 identifies the relay station 500 of the migration source, and acquires the information of the relay area of the specified relay station 500. The migration source relay station 500 may be specified according to the instruction of the administrator, or may be specified according to a preset migration plan. Further, the information of the relay area may be acquired from the specified relay station 500, or may be acquired from the database in which the information of each relay station 500 is registered.
 次に、制御装置600は、モバイル基地局200の無線エリアを取得する(S202)。モバイル基地局管理部620は、移行先を特定するために、モバイル基地局200の無線エリアの情報を取得する。全てのモバイル基地局200の無線エリアの情報を取得してもよいし、移行元の中継局500の周辺(例えば同じ県内)のモバイル基地局200の無線エリアの情報を取得してもよい。また、無線エリアの情報は、各モバイル基地局200から取得してもよいし、各モバイル基地局200の情報が登録されたデータベースから取得してもよい。 Next, the control device 600 acquires the radio area of the mobile base station 200 (S202). The mobile base station management unit 620 acquires information on the wireless area of the mobile base station 200 in order to specify the migration destination. Information on the radio area of all the mobile base stations 200 may be acquired, or information on the radio area of the mobile base station 200 around the relay station 500 of the migration source (for example, in the same prefecture) may be acquired. Further, the information of the wireless area may be acquired from each mobile base station 200, or may be acquired from a database in which the information of each mobile base station 200 is registered.
 次に、制御装置600は、移行先のモバイル基地局200を選択する(S203)。図9及び図10は、移行先のモバイル基地局200の選択例を示している。図9に示すように、モバイル基地局管理部620は、特定した移行元の中継局500の中継エリアの情報(中継エリアA1)とモバイル基地局200の無線エリアの情報(無線エリアA2)に基づいて、移行先のモバイル基地局200を選択する。モバイル基地局管理部620は、移行元の中継局500の中継エリアに対応する無線エリアを有する複数のモバイル基地局200を選択する。例えば、図9に示すように、中継局500の中継エリアとモバイル基地局200の無線エリアとを比較し、中継エリアと無線エリアの一部または全部が重なる場合、中継エリアに含まれる無線エリアを有するモバイル基地局を移行先に決定する。図9の例では、移行元の中継局500の中継エリアA1と、周辺のモバイル基地局200-1~200-11の無線エリアA2とを比較し、中継エリアA1とモバイル基地局200-2、200-3、200-5、200-6、200-7、200-9、200-10の無線エリアA2とが重なるため、モバイル基地局200-2、200-3、200-5、200-6、200-7、200-9、200-10を移行先に決定する。また、図10に示すように、モバイル基地局200の位置を取得し、中継局500の中継エリア内に設置された複数のモバイル基地局200を選択してもよい。図10の例では、中継局500の中継エリアA1に、モバイル基地局200-2、200-3、200-5、200-6、200-7、200-9、200-10が設置されている(中継エリア内にモバイル基地局の位置が含まれる)ため、モバイル基地局200-2、200-3、200-5、200-6、200-7、200-9、200-10を移行先に決定する。なお、中継局500の中継エリアと同様に、中継局500の出力レベルに対応するモバイル基地局200を選択してもよい。 Next, the control device 600 selects the mobile base station 200 as the migration destination (S203). 9 and 10 show a selection example of the mobile base station 200 as the migration destination. As shown in FIG. 9, the mobile base station management unit 620 is based on the information of the relay area of the specified migration source relay station 500 (relay area A1) and the information of the radio area of the mobile base station 200 (radio area A2). Then, the mobile base station 200 of the migration destination is selected. The mobile base station management unit 620 selects a plurality of mobile base stations 200 having a radio area corresponding to the relay area of the relay station 500 of the migration source. For example, as shown in FIG. 9, the relay area of the relay station 500 and the radio area of the mobile base station 200 are compared, and when a part or all of the relay area and the radio area overlap, the radio area included in the relay area is selected. Decide which mobile base station you have as the migration destination. In the example of FIG. 9, the relay area A1 of the relay station 500 of the migration source and the wireless area A2 of the peripheral mobile base stations 200-1 to 200-11 are compared, and the relay area A1 and the mobile base station 200-2 are compared. Since the radio areas A2 of 200-3, 200-5, 200-6, 200-7, 200-9, and 200-10 overlap, the mobile base stations 200-2, 200-3, 200-5, 200-6 , 200-7, 200-9, 200-10 are determined as migration destinations. Further, as shown in FIG. 10, a plurality of mobile base stations 200 installed in the relay area of the relay station 500 may be selected by acquiring the position of the mobile base station 200. In the example of FIG. 10, mobile base stations 200-2, 200-3, 200-5, 200-6, 200-7, 200-9, and 200-10 are installed in the relay area A1 of the relay station 500. (The location of the mobile base station is included in the relay area), so the mobile base stations 200-2, 200-3, 200-5, 200-6, 200-7, 200-9, 200-10 will be the migration destinations. decide. As with the relay area of the relay station 500, the mobile base station 200 corresponding to the output level of the relay station 500 may be selected.
 次に、制御装置600は、選択したモバイル基地局200によりサイマル移行するよう制御する(S204)。制御部630は、サイマル移行期間において、移行元の中継局500と移行先のモバイル基地局200を介して放送信号を配信するよう制御する。制御部630は、放送局100に対し、中継局500に対応して選択したモバイル基地局200へ放送信号を送信するよう指示し(モバイル基地局200の選択を指示し)、放送局100は、中継局への放送信号の送信を継続した状態で、制御部630の指示に応じてモバイル基地局200への送信を開始する。また、制御部630は、選択したモバイル基地局200に対し、放送局100から送信された放送信号を、端末装置へ送信するよう指示し、モバイル基地局200は、制御部630の指示に応じて端末装置への送信を開始する。 Next, the control device 600 is controlled by the selected mobile base station 200 so as to make a simul transition (S204). The control unit 630 controls to distribute the broadcast signal via the relay station 500 of the migration source and the mobile base station 200 of the migration destination during the simulcast transition period. The control unit 630 instructs the broadcasting station 100 to transmit a broadcasting signal to the mobile base station 200 selected corresponding to the relay station 500 (instructing the selection of the mobile base station 200), and the broadcasting station 100 instructs the broadcasting station 100 to select. While the transmission of the broadcast signal to the relay station is continued, the transmission to the mobile base station 200 is started according to the instruction of the control unit 630. Further, the control unit 630 instructs the selected mobile base station 200 to transmit the broadcast signal transmitted from the broadcasting station 100 to the terminal device, and the mobile base station 200 responds to the instruction of the control unit 630. Start sending to the terminal device.
 次に、制御装置600は、選択したモバイル基地局200により完全移行するよう制御する(S205)。制御部630は、所定のサイマル移行期間経過、選択したモバイル基地局200のみを介して放送信号を配信するよう制御する。制御部630は、放送局100に対し、移行元の中継局500への放送信号の送信を停止するよう指示し、放送局100は、モバイル基地局200への放送信号の送信を継続した状態で、制御部630の指示に応じて中継局500への送信を停止する。また、制御部630は、移行元の中継局500に対し、電波(放送信号)の送信を停止するよう指示する。なお、サイマル移行を行わずに、完全移行のみを行ってもよい。例えば、S204の制御の後、所定の期間の経過を待たずに、S205の制御を行ってもよい。 Next, the control device 600 is controlled so as to be completely migrated by the selected mobile base station 200 (S205). The control unit 630 controls to distribute the broadcast signal only through the selected mobile base station 200 after the lapse of the predetermined simulcast transition period. The control unit 630 instructs the broadcasting station 100 to stop the transmission of the broadcasting signal to the relay station 500 of the migration source, and the broadcasting station 100 continues to transmit the broadcasting signal to the mobile base station 200. , The transmission to the relay station 500 is stopped according to the instruction of the control unit 630. Further, the control unit 630 instructs the relay station 500, which is the migration source, to stop the transmission of the radio wave (broadcast signal). It should be noted that the complete migration may be performed without performing the simul migration. For example, after the control of S204, the control of S205 may be performed without waiting for the lapse of a predetermined period.
 図11は、図8の移行方法におけるサイマル移行の例を示している。なお、サイマル移行とは、旧方式(現行の方式)の信号と新方式の信号を両方送出し、新方式の受信機(端末装置)が十分に普及した時に旧方式の信号送出を止める方法である。図11に示すように、例えば、中継局ネットワーク3aは、中継局として、親局501と中規模局502を含み、モバイルネットワーク3bは、実施の形態1と同様に、5Gバックボーンネットワーク400とモバイル基地局200を含む。 FIG. 11 shows an example of simul migration in the migration method of FIG. Simul transition is a method of transmitting both the signal of the old method (current method) and the signal of the new method, and stopping the signal transmission of the old method when the receiver (terminal device) of the new method becomes sufficiently widespread. be. As shown in FIG. 11, for example, the relay station network 3a includes a master station 501 and a medium-sized station 502 as relay stations, and the mobile network 3b includes a 5G backbone network 400 and a mobile base as in the first embodiment. Includes station 200.
 移行前では、放送局100は、中継局ネットワーク3aを介して放送信号を配信する。放送局100は、親局501へ放送信号を送信し、親局501は、受信した放送信号をISDB-T方式のISDB-T信号に変換し、UHF放送用帯域を用いて、ISDB-T信号を送信する。中規模局502は、放送波中継の場合、親局501からISDB-T信号を受信し、受信したISDB-T信号を、UHF放送用帯域を用いて中継し送信する。テレビ受信機700は、UHF放送用帯域でISDB-T信号を受信し、配信された番組を視聴する。 Before the transition, the broadcasting station 100 distributes the broadcasting signal via the relay station network 3a. The broadcasting station 100 transmits a broadcasting signal to the master station 501, and the master station 501 converts the received broadcasting signal into an ISDB-T signal of the ISDB-T system, and uses the UHF broadcasting band to convert the ISDB-T signal. To send. In the case of broadcast wave relay, the medium-scale station 502 receives an ISDB-T signal from the master station 501, and relays and transmits the received ISDB-T signal using the UHF broadcasting band. The television receiver 700 receives the ISDB-T signal in the UHF broadcasting band and watches the distributed program.
 サイマル移行時、放送局100は、中継局ネットワーク3aを介した放送信号の配信を継続しつつ、実施の形態1と同様に、モバイルネットワーク3bを介して放送信号を配信する。すなわち、中規模局502は、移行前と同様に、親局501から受信したISDB-T信号を、UHF放送用帯域を用いて中継し送信する。例えば、移行元の中規模局502の通信エリアに複数のモバイル基地局200の無線エリアが対応しており、この複数のモバイル基地局200を移行先として選択する。放送局100は、5Gバックボーンネットワーク400を介して、選択された移行先の複数のモバイル基地局200へ放送信号を送信する。複数のモバイル基地局200は、受信した放送信号をFeMBMS信号に変換し、変換したFeMBMS信号を、5G用帯域を用いて送信する。これにより、中規模局502の中継エリアにおいて、移行前と同様に、テレビ受信機700は、中規模局502からUHF放送用帯域でISDB-T信号を受信し、配信された番組を視聴できる。さらに、端末装置300は、モバイル基地局200から5G用帯域でFeMBMS信号を受信し、配信された番組を視聴できる。 At the time of the simulcast transition, the broadcasting station 100 distributes the broadcasting signal via the mobile network 3b as in the first embodiment while continuing the distribution of the broadcasting signal via the relay station network 3a. That is, the medium-scale station 502 relays and transmits the ISDB-T signal received from the master station 501 using the UHF broadcasting band as before the transition. For example, the communication area of the medium-scale station 502 of the migration source corresponds to the wireless area of the plurality of mobile base stations 200, and the plurality of mobile base stations 200 are selected as the migration destination. The broadcasting station 100 transmits a broadcasting signal to a plurality of selected mobile base stations 200 at the migration destination via the 5G backbone network 400. The plurality of mobile base stations 200 convert the received broadcast signal into a FeMBMS signal, and transmit the converted FeMBMS signal using the 5G band. As a result, in the relay area of the medium-scale station 502, the television receiver 700 can receive the ISDB-T signal from the medium-scale station 502 in the UHF broadcasting band and watch the distributed program as before the transition. Further, the terminal device 300 can receive the FeMBMS signal from the mobile base station 200 in the band for 5G and watch the distributed program.
 以上のように、本実施の形態では、実施の形態1のネットワークシステムを用いて、放送ネットワークを通信ネットワークに移行する。例えば、FeMBMS方式などの地上高度化方式を用いて通信ネットワークへ移行する。特に移行元の中継局の中継エリアに対応するモバイル基地局を介して配信するよう制御する。これにより、移行元の中継局で提供していた放送サービスと同じサービスを、移行後のモバイル基地局から提供することができる。また、サイマル移行時に放送ネットワークと通信ネットワークの両方を介して放送信号を配信し、視聴者が対応する端末装置を購入するまで放送ネットワークと通信ネットワークを併用することにより、視聴者の負担を抑え、スムーズな移行を可能とする。 As described above, in the present embodiment, the broadcasting network is transferred to the communication network by using the network system of the first embodiment. For example, a transition to a communication network will be made using a ground sophistication method such as the FeMBMS method. In particular, control is performed so that distribution is performed via a mobile base station corresponding to the relay area of the relay station of the migration source. As a result, the same service as the broadcasting service provided by the relay station of the migration source can be provided from the mobile base station after the migration. In addition, by distributing broadcast signals via both the broadcast network and the communication network at the time of the simul transition, and using the broadcast network and the communication network together until the viewer purchases a compatible terminal device, the burden on the viewer can be reduced. Enables a smooth transition.
 また、2K放送から4K放送に移行することも可能となる。例えば、FeMBMS方式で採用する符号化方式を4Kストリームも視野に入れたVVC方式とし、FeMBMS対応4Kテレビの普及に伴い放送局からの4K配信が実施できれば、段階的な4K放送化が可能となる。すなわち、放送ネットワークから通信ネットワークへの移行プロセスで4K放送化も可能となる。例えば、FeMBMS方式は、ミリ波、Sub6、UHF帯で利用することを想定し、映像符号化方式は、HEVCが利用できるが、将来的にはVVCなどの次世代符号化を選択することも可能である。このため、2K放送の継続も4K放送の新規サービスも技術的に可能である。放送局(演奏所)側の4K設備対応やテレビ受信機側が4Kテレビであれば、4K放送サービスが開始できる。FeMBMS受信のために、放送中継局からの2K放送のサイマル期間が終わるまでにFeMBMS対応テレビまたは、FeMBMSアダプタを購入する必要がある。これらのテレビやアダプタを4K対応にしておけば受信側の4K普及を促進できる。 It is also possible to shift from 2K broadcasting to 4K broadcasting. For example, if the coding method adopted in the FeMBMS method is the VVC method with a view to 4K streams and 4K distribution from broadcasting stations can be carried out with the spread of FeMBMS-compatible 4K TVs, stepwise 4K broadcasting will be possible. .. That is, 4K broadcasting becomes possible in the process of shifting from a broadcasting network to a communication network. For example, the FeMBMS method is assumed to be used in the millimeter wave, Sub6, and UHF bands, and HEVC can be used as the video coding method, but next-generation coding such as VVC can be selected in the future. Is. Therefore, it is technically possible to continue 2K broadcasting and to provide new services for 4K broadcasting. If the broadcasting station (performance center) supports 4K equipment or the TV receiver side is a 4K TV, the 4K broadcasting service can be started. For FeMBMS reception, it is necessary to purchase a FeMBMS compatible TV or FeMBMS adapter by the end of the 2K broadcast simulcast period from the broadcast relay station. If these TVs and adapters are compatible with 4K, it is possible to promote the spread of 4K on the receiving side.
(実施の形態3)
 以下、図面を参照して実施の形態3について説明する。本実施の形態では、実施の形態2の移行方法において、さらに放送ネットワークを段階的に通信ネットワークへ移行する例について説明する。ネットワークシステムの構成は実施の形態2と同様であり、例えば制御装置により、本実施の形態に係る移行方法が制御される。
(Embodiment 3)
Hereinafter, the third embodiment will be described with reference to the drawings. In the present embodiment, an example in which the broadcasting network is gradually transferred to the communication network in the migration method of the second embodiment will be described. The configuration of the network system is the same as that of the second embodiment, and for example, a control device controls the migration method according to the present embodiment.
 図12は、本実施の形態に係る移行方法を示している。図12に示すように、本実施の形態では、第一段階の移行(S301)、第二段階の移行(S303)、第三段階の移行(S305)の順に段階的に移行を行う。各段階の移行動作は、実施の形態2と同様である。すなわち、各移行段階で、制御装置600が、移行元の中継局を特定し、中継局に対応するモバイル基地局を選択することで、中継局からモバイル基地局への移行を制御する。 FIG. 12 shows a migration method according to the present embodiment. As shown in FIG. 12, in the present embodiment, the transition in the first stage (S301), the transition in the second stage (S303), and the transition in the third stage (S305) are performed step by step. The transition operation of each stage is the same as that of the second embodiment. That is, at each transition stage, the control device 600 controls the transition from the relay station to the mobile base station by specifying the relay station of the transition source and selecting the mobile base station corresponding to the relay station.
 例えば、中継局の中継段数に応じて段階的に移行してもよい。所定の中継段数の中継局を特定し、特定した中継局に対応するモバイル基地局へ移行する。具体的には、中継局の中継段数が大きい順に移行する。まず中継段数が最も大きい(第一の中継段数の)中継局を選択してモバイル基地局に移行し、次に中継段数が大きい(第二の中継段数の)中継局を順次選択して移行してもよい。また、中継局の中継規模に応じて段階的に移行してもよい。例えば、中継段数が大きくなるにしたがって中継局の中継規模が小さくなり、所定の中継規模の中継局を特定し、特定した中継局に対応するモバイル基地局へ移行する。具体的には、中継局の中継規模が小さい順に移行する。まず最も中継規模が小さい(第一の中継規模の)中継局を選択してモバイル基地局に移行し、次に中継規模が小さい(第二の中継規模の)中継局を順次選択して移行してもよい。この例では、ミニサテ(ギャップフィラー)/小規模中継局(第一段階)から移行し、中規模/大規模中継局(第二段階)の移行、最終的に親局(第三段階)の移行を段階的に行う。例えば、全体の移行期間は十数年である。なお、三段階の移行に限らず、任意の段数で移行してもよい。例えば、ミニサテ局、小規模局、中規模局、大規模局、親局の順に5段階で移行してもよい。 For example, it may be gradually shifted according to the number of relay stages of the relay station. Specify a relay station with a predetermined number of relay stages, and shift to a mobile base station corresponding to the specified relay station. Specifically, the transition is made in descending order of the number of relay stages of the relay station. First, the relay station with the largest number of relay stages (with the first number of relay stages) is selected and migrated to the mobile base station, and then the relay station with the largest number of relay stages (with the second number of relay stages) is sequentially selected and migrated. You may. Further, it may be gradually shifted according to the relay scale of the relay station. For example, as the number of relay stages increases, the relay scale of the relay station decreases, a relay station of a predetermined relay scale is specified, and the mobile base station corresponding to the specified relay station is transferred. Specifically, the transition is made in ascending order of relay scale of the relay station. First, the relay station with the smallest relay scale (first relay scale) is selected and migrated to the mobile base station, and then the relay station with the smallest relay scale (second relay scale) is sequentially selected and migrated. You may. In this example, the mini-sate (gap filler) / small-scale relay station (first stage) is migrated, the medium-scale / large-scale relay station (second stage) is migrated, and finally the master station (third stage) is migrated. In stages. For example, the total transition period is more than a dozen years. It should be noted that the transition is not limited to the three stages, and the transition may be performed in any number of stages. For example, the mini-sate station, the small-scale station, the medium-scale station, the large-scale station, and the master station may be migrated in the order of five stages.
 また、本実施の形態では、各移行段階で移行を中止するか否か判定し、各移行段階で移行を終了してもよい。例えば、それぞれの移行段階で、もし通信ネットワークでの放送モードが非効率的であるという評価になれば、途中段階で、通信ネットワークへの移行をやめてもよい。その場合は、各段階までで空いたUHF周波数を用いて、放送中継局からFeMBMS方式で送信してもよい。ただし、この場合は、放送用周波数チャンネルの返還は限定的となる。 Further, in the present embodiment, it may be determined whether or not to stop the migration at each transition stage, and the transition may be completed at each transition stage. For example, if it is evaluated that the broadcasting mode in the communication network is inefficient at each transition stage, the transition to the communication network may be stopped in the middle stage. In that case, the UHF frequency vacant up to each stage may be used for transmission from the broadcast relay station by the FeMBMS method. However, in this case, the return of the broadcasting frequency channel is limited.
 すなわち、図12に示すように、第一段階の移行を行い(S301)、第一段階で移行を中止するか否か判定し(S302)、中止すると判定した場合、移行を終了する。第一段階で移行を中止しないと判定した場合、第二段階の移行を行い(S303)、第二段階で移行を中止するか否か判定し(S304)、中止すると判定した場合、移行を終了する。第二段階で移行を中止しないと判定した場合、第三段階の移行を行い(S305)、移行を終了する。なお、移行中止の判定は、制御装置600が移行元と移行先の情報をもとに行ってもよいし、管理者が判定結果を指示してもよい。 That is, as shown in FIG. 12, the first stage transition is performed (S301), it is determined whether or not to cancel the transition in the first stage (S302), and if it is determined to be canceled, the transition is terminated. If it is determined not to stop the migration in the first stage, the transition in the second stage is performed (S303), it is determined whether or not to stop the migration in the second stage (S304), and if it is determined to be stopped, the migration is terminated. do. If it is determined that the transition is not stopped in the second stage, the transition in the third stage is performed (S305) and the transition is terminated. The determination to cancel the migration may be made by the control device 600 based on the information of the migration source and the migration destination, or the administrator may instruct the determination result.
 各段階の移行について以下に説明する。図13は、本実施の形態に係るネットワークシステムにおける移行前の例を示している。本実施の形態に係るネットワークシステム4では、中継局ネットワーク4aは、親局501、大規模/中規模局502、小規模/ミニサテ局503を含む。 The transition of each stage will be explained below. FIG. 13 shows an example before migration in the network system according to the present embodiment. In the network system 4 according to the present embodiment, the relay station network 4a includes a master station 501, a large-scale / medium-scale station 502, and a small-scale / mini-sate station 503.
 放送局100は、親局501へ放送信号を送信する。親局501は、放送局100から放送信号を受信し、受信した放送信号をISDB-T方式のISDB-T信号に変換し、UHF放送用帯域を用いて、ISDB-T信号を送信する。大規模/中規模局は、親局501からISDB-T信号を受信し、受信したISDB-T信号を、UHF放送用帯域を用いて中継し送信する。小規模/ミニサテ局503は、大規模/中規模局502からISDB-T信号を受信し、受信したISDB-T信号を、UHF放送用帯域を用いて中継し送信する。テレビ受信機700は、親局501、大規模/中規模局502、小規模/ミニサテ局503のいずれかの中継局から、UHF放送用帯域でISDB-T信号を受信し、配信された番組を視聴する。 Broadcast station 100 transmits a broadcast signal to master station 501. The master station 501 receives a broadcast signal from the broadcast station 100, converts the received broadcast signal into an ISDB-T signal of the ISDB-T system, and transmits the ISDB-T signal using the UHF broadcast band. The large-scale / medium-scale station receives the ISDB-T signal from the master station 501, and relays and transmits the received ISDB-T signal using the UHF broadcasting band. The small-scale / mini-sate station 503 receives an ISDB-T signal from the large-scale / medium-scale station 502, and relays and transmits the received ISDB-T signal using the UHF broadcasting band. The television receiver 700 receives an ISDB-T signal in the UHF broadcasting band from any of the relay stations of the master station 501, the large-scale / medium-scale station 502, and the small-scale / mini-sate station 503, and distributes the program. View.
 図14は、本実施の形態に係る第一段階の移行(S301)においてサイマル移行を行う例を示している。第一段階の移行では、小規模/ミニサテ局503をモバイル基地局200に移行する。サイマル移行を行うため、小規模/ミニサテ局503は、移行前と同様に、大規模/中規模局502から受信したISDB-T信号を、UHF放送用帯域を用いて中継し送信する。 FIG. 14 shows an example of performing a simul transition in the first stage transition (S301) according to the present embodiment. In the first stage of migration, the small-scale / mini-sate station 503 will be migrated to the mobile base station 200. In order to perform the simul transition, the small-scale / mini-sate station 503 relays and transmits the ISDB-T signal received from the large-scale / medium-scale station 502 using the UHF broadcasting band as before the transition.
 また、移行元の小規模/ミニサテ局503の中継エリアに、例えばモバイル基地局200aが対応しており、このモバイル基地局200aを移行先として選択する。放送局100は、5Gバックボーンネットワーク400を介して、選択された移行先のモバイル基地局200aへ放送信号を送信する。モバイル基地局200aは、受信した放送信号をFeMBMS信号に変換し、変換したFeMBMS信号を、5G用帯域を用いて送信する。これにより、小規模/ミニサテ局503の中継エリアにおいて、テレビ受信機700は、小規模/ミニサテ局503からUHF放送用帯域でISDB-T信号を受信して、配信された番組を視聴でき、端末装置300は、モバイル基地局200aから5G用帯域でFeMBMS信号を受信して、配信された番組を視聴できる。 Further, for example, a mobile base station 200a corresponds to the relay area of the small-scale / mini-sate station 503 of the migration source, and this mobile base station 200a is selected as the migration destination. The broadcasting station 100 transmits a broadcasting signal to the selected migration destination mobile base station 200a via the 5G backbone network 400. The mobile base station 200a converts the received broadcast signal into a FeMBMS signal, and transmits the converted FeMBMS signal using the 5G band. As a result, in the relay area of the small-scale / mini-sate station 503, the television receiver 700 can receive the ISDB-T signal from the small-scale / mini-sate station 503 in the UHF broadcasting band, and can watch the distributed program. The device 300 can receive the FeMBMS signal from the mobile base station 200a in the band for 5G and watch the distributed program.
 図15は、本実施の形態に係る第二段階の移行(S302)においてサイマル移行を行う例を示している。第二段階の移行では、図14の状態からさらに、大規模/中規模局502をモバイル基地局200に移行する。サイマル移行を行うため、大規模/中規模局502は、移行前と同様に、親局501から受信したISDB-T信号を、UHF放送用帯域を用いて中継し送信する。 FIG. 15 shows an example of performing a simul transition in the second stage transition (S302) according to the present embodiment. In the second stage transition, the large-scale / medium-scale station 502 is further migrated from the state shown in FIG. 14 to the mobile base station 200. In order to perform the simul transition, the large-scale / medium-scale station 502 relays and transmits the ISDB-T signal received from the master station 501 using the UHF broadcasting band as before the transition.
 また、移行元の大規模/中規模局502の中継エリアに、例えば複数のモバイル基地局200bが対応しており、この複数のモバイル基地局200bを移行先として選択する。放送局100は、5Gバックボーンネットワーク400を介して、選択された移行先の複数のモバイル基地局200bへ放送信号を送信する。複数のモバイル基地局200bは、受信した放送信号をFeMBMS信号に変換し、変換したFeMBMS信号を、5G用帯域を用いて送信する。これにより、大規模/中規模局502の中継エリアにおいて、テレビ受信機700は、大規模/中規模局502からUHF放送用帯域でISDB-T信号を受信して、配信された番組を視聴でき、端末装置300は、モバイル基地局200bから5G用帯域でFeMBMS信号を受信して、配信された番組を視聴できる。 Further, for example, a plurality of mobile base stations 200b correspond to the relay area of the large-scale / medium-scale station 502 of the migration source, and the plurality of mobile base stations 200b are selected as the migration destination. The broadcasting station 100 transmits a broadcasting signal to a plurality of selected mobile base stations 200b at the migration destination via the 5G backbone network 400. The plurality of mobile base stations 200b convert the received broadcast signal into a FeMBMS signal, and transmit the converted FeMBMS signal using the 5G band. As a result, in the relay area of the large-scale / medium-scale station 502, the television receiver 700 can receive the ISDB-T signal from the large-scale / medium-scale station 502 in the UHF broadcasting band and watch the distributed program. The terminal device 300 can receive the FeMBMS signal from the mobile base station 200b in the band for 5G and watch the distributed program.
 図16は、本実施の形態に係る第三段階の移行(S303)においてサイマル移行を行う例を示している。第三段階の移行では、図15の状態からさらに、親局501をモバイル基地局200に移行する。サイマル移行を行うため、親局501は、移行前と同様に、放送局100から受信した放送信号をISDB-T信号に変換し、UHF放送用帯域を用いて、ISDB-T信号を送信する。 FIG. 16 shows an example of performing simul transition in the transition of the third stage (S303) according to the present embodiment. In the transition of the third stage, the master station 501 is further migrated to the mobile base station 200 from the state shown in FIG. In order to perform the simulcast, the master station 501 converts the broadcast signal received from the broadcast station 100 into an ISDB-T signal and transmits the ISDB-T signal using the UHF broadcast band, as before the transition.
 また、移行元の親局501の中継エリアに、例えば複数のモバイル基地局200cが対応しており、この複数のモバイル基地局200cを移行先として選択する。放送局100は、5Gバックボーンネットワーク400を介して、選択された移行先の複数のモバイル基地局200cへ放送信号を送信する。複数のモバイル基地局200cは、受信した放送信号をFeMBMS信号に変換し、変換したFeMBMS信号を、5G用帯域を用いて送信する。これにより、親局501の中継エリアにおいて、テレビ受信機700は、親局501からUHF放送用帯域でISDB-T信号を受信して、配信された番組を視聴でき、端末装置300は、モバイル基地局200cから5G用帯域でFeMBMS信号を受信して、配信された番組を視聴できる。 Further, for example, a plurality of mobile base stations 200c correspond to the relay area of the migration source master station 501, and the plurality of mobile base stations 200c are selected as the migration destination. The broadcasting station 100 transmits a broadcasting signal to a plurality of selected mobile base stations 200c at the migration destination via the 5G backbone network 400. The plurality of mobile base stations 200c convert the received broadcast signal into a FeMBMS signal, and transmit the converted FeMBMS signal using the 5G band. As a result, in the relay area of the master station 501, the television receiver 700 can receive the ISDB-T signal from the master station 501 in the UHF broadcasting band and watch the distributed program, and the terminal device 300 is a mobile base. The FeMBMS signal can be received from the station 200c in the band for 5G, and the distributed program can be viewed.
 図17は、本実施の形態に係る移行方法において、第二段階で移行を中止する(S304)例を示している。図17では、第二段階まで移行が完了しているため、図15と同様に、小規模/ミニサテ局503に対応するモバイル基地局200aがFeMBMS信号を送信し、大規模/中規模局502に対応するモバイル基地局200bがFeMBMS信号を送信している。この状態で移行を中止する場合、親局501は、移行前と同様に、放送局100から受信した放送信号をISDB-T信号に変換し、UHF放送用帯域を用いて、ISDB-T信号を送信する。また、親局501は、放送局100から受信した放送信号をFeMBMS信号に変換し、UHF放送用帯域(例えば大規模/中規模局502や小規模/ミニサテ局503が使用していたチャンネル)を用いて、FeMBMS信号を送信する。これにより、親局501の中継エリアにおいて、テレビ受信機700は、親局501からUHF放送用帯域でISDB-T信号を受信して、配信された番組を視聴でき、端末装置300は、親局501からUHF放送用帯域でFeMBMS信号を受信して、配信された番組を視聴できる。 FIG. 17 shows an example in which the migration is stopped in the second stage (S304) in the migration method according to the present embodiment. In FIG. 17, since the transition is completed up to the second stage, the mobile base station 200a corresponding to the small-scale / mini-sate station 503 transmits the FeMBMS signal to the large-scale / medium-scale station 502 as in FIG. The corresponding mobile base station 200b is transmitting the FeMBMS signal. When the transition is stopped in this state, the master station 501 converts the broadcast signal received from the broadcast station 100 into an ISDB-T signal as before the transition, and uses the UHF broadcast band to convert the ISDB-T signal. Send. Further, the master station 501 converts the broadcast signal received from the broadcast station 100 into a FeMBMS signal, and shifts the UHF broadcast band (for example, the channel used by the large-scale / medium-scale station 502 and the small-scale / mini-sate station 503). It is used to transmit a FeMBMS signal. As a result, in the relay area of the master station 501, the television receiver 700 can receive the ISDB-T signal from the master station 501 in the UHF broadcasting band and watch the distributed program, and the terminal device 300 can watch the distributed program. The FeMBMS signal can be received from 501 in the UHF broadcasting band, and the distributed program can be viewed.
 以上のように、本実施の形態では、放送ネットワークから段階的に中継ネットワークへ移行する。規模の小さい中継局から順にモバイル基地局に移行することにより、円滑に移行を進めることができる。例えば、ミニサテ/小規模局(第一段階)、中規模/大規模局(第二段階)、親局(第三段階)の順に、通信ネットワークによる放送モード(FeMBMSなど)の適用を段階毎に行う。さらに、途中段階でモバイル基地局への適用を止めて、中継局からサイマル移行によりFeMBMS方式を送信することも選択できる。ミニサテ/小規模局から移行を適用することで、5Gのルーラル(地方)ネットワークの施策に対応させることができ、移行を促進できる。更に、いくつかの民放ローカル局が今後想定される親局、大規模/中規模局の更新後、小規模/ミニサテ局の投資が困難との状況があるため、ミニサテ/小規模局から適用することによる効果が大きい。 As described above, in this embodiment, the broadcast network is gradually shifted to the relay network. By migrating from the smallest relay stations to mobile base stations in order, the transition can proceed smoothly. For example, the application of the broadcasting mode (FeMBMS, etc.) by the communication network in the order of mini-sate / small-scale station (first stage), medium-scale / large-scale station (second stage), and master station (third stage) is applied to each stage. conduct. Furthermore, it is also possible to stop the application to the mobile base station in the middle of the process and transmit the FeMBMS method from the relay station by simulcasting. By applying the transition from mini-sate / small-scale stations, it is possible to respond to the measures of the 5G rural network and promote the transition. In addition, some commercial broadcasting local stations will be applied from mini-sate / small-scale stations because it is difficult to invest in small-scale / mini-sate stations after updating the parent stations and large-scale / medium-scale stations that are expected in the future. The effect of this is great.
 また、本実施の形態のように移行することで、元々国から割り当てられていた放送用周波数を返還することが可能となる。すなわち、現行の地上デジタル2K放送の放送ネットとワークを通信ネットワークに代替させるため、上記のように、各中継局を段階的にモバイル基地局へ移行し、すべての通信ネットワークによる放送モードの適用が終了し、一定のサイマル期間経過後、現行放送中継局を停波する。これにより、放送用に割り当てられたUHF周波数チャンネル(13ch~52ch:40ch)をすべて国に返還することができる。また、途中段階でモバイル基地局への適用をやめた場合でも、放送用に割り当てられた一部のUHF周波数チャンネルを国に返還することができる。 In addition, by shifting as in this embodiment, it will be possible to return the broadcasting frequency originally assigned by the country. That is, in order to replace the current terrestrial digital 2K broadcasting broadcasting network and work with a communication network, as described above, each relay station is gradually shifted to a mobile base station, and the broadcasting mode can be applied by all communication networks. After a certain period of simul, the current broadcast relay station will be stopped. As a result, all UHF frequency channels (13ch to 52ch: 40ch) assigned for broadcasting can be returned to the country. In addition, even if the application to mobile base stations is stopped in the middle of the process, some UHF frequency channels assigned for broadcasting can be returned to the country.
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that this disclosure is not limited to the above embodiment, and can be appropriately changed without departing from the spirit.
 上述の実施形態における各構成は、ハードウェア又はソフトウェア、もしくはその両方によって構成され、1つのハードウェア又はソフトウェアから構成してもよいし、複数のハードウェア又はソフトウェアから構成してもよい。各装置及び各機能(処理)を、図18に示すような、CPU(Central Processing Unit)等のプロセッサ41及び記憶装置であるメモリ42を有するコンピュータ40により実現してもよい。例えば、メモリ42に実施形態における方法(例えば制御装置の制御方法)を行うためのプログラムを格納し、各機能を、メモリ42に格納されたプログラムをプロセッサ41で実行することにより実現してもよい。 Each configuration in the above-described embodiment is configured by hardware and / or software, and may be composed of one hardware or software, or may be composed of a plurality of hardware or software. Each device and each function (processing) may be realized by a computer 40 having a processor 41 such as a CPU (Central Processing Unit) and a memory 42 which is a storage device, as shown in FIG. For example, a program for performing the method in the embodiment (for example, a control method of the control device) may be stored in the memory 42, and each function may be realized by executing the program stored in the memory 42 on the processor 41. ..
 これらのプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 These programs are stored using various types of non-transitory computer readable medium and can be supplied to the computer. Non-temporary computer-readable media include various types of tangible storage mediums. Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (ReadOnlyMemory), CD-Rs, Includes CD-R / W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)). The program may also be supplied to the computer by various types of transient computer readable medium. Examples of temporary computer readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 以上、実施の形態を参照して本開示を説明したが、本開示は上記実施の形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present disclosure has been described above with reference to the embodiments, the present disclosure is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present disclosure within the scope of the present disclosure.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 A part or all of the above embodiment may be described as in the following appendix, but is not limited to the following.
 (付記1)
 放送局と、前記放送局と通信可能に接続された基地局とを備え、
 前記放送局は、通信ネットワークを介して、放送信号を前記基地局へ送信する放送信号送信手段を備え、
 前記基地局は、
  前記通信ネットワークを介して、前記放送局から前記放送信号を受信する放送信号受信手段と、
  前記受信された放送信号を地上高度化方式の地上高度化信号に変換する変換手段と、
  前記変換された地上高度化信号を端末装置へ送信する地上高度化信号送信手段と、
 を備える、ネットワークシステム。
 (付記2)
 前記地上高度化信号は、FeMBMS(Further evolved Multimedia Broadcast and Multicast Services)方式のFeMBMS信号である、
 付記1に記載のネットワークシステム。
 (付記3)
 前記地上高度化信号送信手段は、前記基地局がモバイル通信用の帯域を用いて、前記地上高度化信号を送信する、
 付記1または2に記載のネットワークシステム。
 (付記4)
 前記放送信号送信手段は、前記通信ネットワークにおいて帯域保証された帯域保証経路を介して、前記放送信号を前記基地局へ送信する、
 付記1乃至3のいずれか一項に記載のネットワークシステム。
 (付記5)
 前記帯域保証経路は、ネットワークスライシングにより設定されたスライスである、
 付記4に記載のネットワークシステム。
 (付記6)
 前記スライスは、前記放送信号のコンテンツに応じて設定される、
 付記5に記載のネットワークシステム。
 (付記7)
 前記地上高度化信号送信手段は、前記スライスに応じた帯域で、前記地上高度化信号を送信する、
 付記5または6に記載のネットワークシステム。
 (付記8)
 前記基地局として、複数の基地局を備え、
 前記放送信号送信手段は、前記複数の基地局から選択された基地局に対し、前記放送信号を送信する、
 付記1乃至7のいずれか一項に記載のネットワークシステム。
 (付記9)
 放送ネットワークにおいて前記放送信号を中継する複数の中継局を備え、
 前記放送信号送信手段は、前記複数の中継局から特定された中継局に対応する前記基地局を選択する、
 付記8に記載のネットワークシステム。
 (付記10)
 前記放送信号送信手段は、前記特定された中継局の中継エリアに対応する前記基地局を選択する、
 付記9に記載のネットワークシステム。
 (付記11)
 前記放送信号送信手段は、前記特定された中継局の中継エリアに含まれる無線エリアを有する前記基地局を選択する、
 付記10に記載のネットワークシステム。
 (付記12)
 前記放送信号送信手段は、前記特定された中継局の中継エリアに設置された前記基地局を選択する、
 付記10または11に記載のネットワークシステム。
 (付記13)
 前記放送信号送信手段は、前記特定された中継局の出力レベルに対応する前記基地局を選択する、
 付記9乃至12のいずれか一項に記載のネットワークシステム。
 (付記14)
 前記放送信号送信手段は、前記複数の中継局のうち所定の中継段数の中継局に対応する前記基地局を選択する、
 付記9至13のいずれか一項に記載のネットワークシステム。
 (付記15)
 前記複数の中継局は、中継段数が大きくなるにしたがって中継規模が小さくなり、
 前記放送信号送信手段は、前記複数の中継局のうち所定の中継規模の中継局に対応する前記基地局を選択する、
 付記14に記載のネットワークシステム。
 (付記16)
 前記放送信号送信手段は、前記複数の中継局のうち最も小さい中継規模の中継局に対応する前記基地局を選択する、
 付記15に記載のネットワークシステム。
 (付記17)
 前記放送信号送信手段は、前記選択の後、さらに、中継規模が小さい順に前記中継局を特定し、前記特定した中継局に対応する前記基地局を選択する、
 付記15に記載のネットワークシステム。
 (付記18)
 前記放送信号送信手段は、前記中継局及び前記中継局に対応する基地局へ前記放送信号を送信する、
 付記9至17のいずれか一項に記載のネットワークシステム。
 (付記19)
 前記基地局の選択を指示する制御装置を備える、
 付記8乃至18のいずれか一項に記載のネットワークシステム。
 (付記20)
 通信ネットワークを介して、放送局から放送信号を受信する放送信号受信手段と、
 前記受信された放送信号を地上高度化方式の地上高度化信号に変換する変換手段と、
 前記変換された地上高度化信号を端末装置へ送信する地上高度化信号送信手段と、
 を備える、基地局。
 (付記21)
 放送局から送信される放送信号を中継する中継局の中継エリアを取得する取得手段と、
 前記取得した中継エリアに対応する基地局を選択する選択手段と、
 前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する制御手段と、
 を備える、制御装置。
 (付記22)
 前記制御手段は、前記放送局から前記中継局及び前記基地局を介して前記放送信号を送信するよう制御する、
 付記21に記載の制御装置。
 (付記23)
 前記制御手段は、所定の期間経過後、前記放送局から前記基地局のみを介して前記放送信号を送信するよう制御する、
 付記21に記載の制御装置。
 (付記24)
 前記制御手段は、第一の移行段階において、第一の中継規模の前記中継局に対応する基地局を介して前記放送信号を送信するよう制御し、第二の移行段階において、前記第一の中継規模よりも大きい第2の中継規模の前記中継局に対応する基地局を介して前記放送信号を送信するよう制御する、
 付記21乃至23のいずれか一項に記載の制御装置。
 (付記25)
 前記制御手段は、前記第一の移行段階の制御の後、前記第二の移行段階の制御を行うか否か判定する、
 付記24に記載の制御装置。
 (付記26)
 放送局と、前記放送局と通信可能に接続された基地局とを備えたネットワークシステムにおける伝送方法であって、
 前記放送局は、
  通信ネットワークを介して、放送信号を前記基地局へ送信し、
 前記基地局は、
  前記通信ネットワークを介して、前記放送局から前記放送信号を受信し
  前記受信された放送信号を地上高度化方式の地上高度化信号に変換し、
  前記変換された地上高度化信号を端末装置へ送信する、
 伝送方法。
 (付記27)
 放送局から送信される放送信号を中継する中継局の中継エリアを取得し、
 前記取得した中継エリアに対応する基地局を選択し、
 前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する、
 制御方法。
 (付記28)
 放送局から送信される放送信号を中継する中継局の中継エリアを取得し、
 前記取得した中継エリアに対応する基地局を選択し、
 前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する、
 処理をコンピュータに実行させるためのプログラムが格納された非一時的なコンピュータ可読媒体。
(Appendix 1)
It is equipped with a broadcasting station and a base station that is communicably connected to the broadcasting station.
The broadcasting station includes a broadcasting signal transmitting means for transmitting a broadcasting signal to the base station via a communication network.
The base station is
A broadcast signal receiving means for receiving the broadcast signal from the broadcast station via the communication network.
A conversion means for converting the received broadcast signal into a terrestrial advancement signal, and a conversion means.
The ground altitude signal transmission means for transmitting the converted ground altitude signal to the terminal device,
A network system.
(Appendix 2)
The ground altitude signal is a FeMBMS signal of the FeMBMS (Further evolved Multicast and Multicast Services) system.
The network system according to Appendix 1.
(Appendix 3)
In the terrestrial altitude signal transmission means, the base station transmits the terrestrial altitude signal using a band for mobile communication.
The network system according to Appendix 1 or 2.
(Appendix 4)
The broadcast signal transmission means transmits the broadcast signal to the base station via a band-guaranteed band-guaranteed path in the communication network.
The network system according to any one of Supplementary note 1 to 3.
(Appendix 5)
The band guarantee route is a slice set by network slicing.
The network system according to Appendix 4.
(Appendix 6)
The slice is set according to the content of the broadcast signal.
The network system according to Appendix 5.
(Appendix 7)
The ground altitude signal transmission means transmits the ground altitude signal in a band corresponding to the slice.
The network system according to Appendix 5 or 6.
(Appendix 8)
As the base station, a plurality of base stations are provided.
The broadcast signal transmission means transmits the broadcast signal to a base station selected from the plurality of base stations.
The network system according to any one of Supplementary note 1 to 7.
(Appendix 9)
It is equipped with a plurality of relay stations that relay the broadcast signal in the broadcast network.
The broadcast signal transmitting means selects the base station corresponding to the relay station specified from the plurality of relay stations.
The network system according to Appendix 8.
(Appendix 10)
The broadcast signal transmitting means selects the base station corresponding to the relay area of the specified relay station.
The network system according to Appendix 9.
(Appendix 11)
The broadcast signal transmitting means selects the base station having a radio area included in the relay area of the specified relay station.
The network system according to Appendix 10.
(Appendix 12)
The broadcast signal transmitting means selects the base station installed in the relay area of the specified relay station.
The network system according to Appendix 10 or 11.
(Appendix 13)
The broadcast signal transmitting means selects the base station corresponding to the output level of the specified relay station.
The network system according to any one of Supplementary note 9 to 12.
(Appendix 14)
The broadcast signal transmission means selects the base station corresponding to a predetermined number of relay stages among the plurality of relay stations.
The network system according to any one of Supplementary note 9 to 13.
(Appendix 15)
In the plurality of relay stations, the relay scale becomes smaller as the number of relay stages increases.
The broadcast signal transmission means selects the base station corresponding to a relay station having a predetermined relay scale from the plurality of relay stations.
The network system according to Appendix 14.
(Appendix 16)
The broadcast signal transmitting means selects the base station corresponding to the relay station having the smallest relay scale among the plurality of relay stations.
The network system according to Appendix 15.
(Appendix 17)
After the selection, the broadcast signal transmitting means further identifies the relay station in ascending order of relay scale, and selects the base station corresponding to the specified relay station.
The network system according to Appendix 15.
(Appendix 18)
The broadcast signal transmission means transmits the broadcast signal to the relay station and the base station corresponding to the relay station.
The network system according to any one of Supplementary note 9 to 17.
(Appendix 19)
A control device for instructing the selection of the base station is provided.
The network system according to any one of Supplementary note 8 to 18.
(Appendix 20)
A broadcasting signal receiving means for receiving a broadcasting signal from a broadcasting station via a communication network,
A conversion means for converting the received broadcast signal into a terrestrial advancement signal, and a conversion means.
The ground altitude signal transmission means for transmitting the converted ground altitude signal to the terminal device,
A base station.
(Appendix 21)
An acquisition means for acquiring the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station, and
A selection means for selecting a base station corresponding to the acquired relay area, and
A control means for controlling transmission of the broadcast signal from the broadcast station via the selected base station.
A control device.
(Appendix 22)
The control means controls to transmit the broadcast signal from the broadcast station via the relay station and the base station.
The control device according to Appendix 21.
(Appendix 23)
The control means controls to transmit the broadcast signal from the broadcast station only via the base station after a predetermined period of time has elapsed.
The control device according to Appendix 21.
(Appendix 24)
The control means controls to transmit the broadcast signal via the base station corresponding to the relay station of the first relay scale in the first transition stage, and in the second transition stage, the first Controlled to transmit the broadcast signal via a base station corresponding to the relay station having a second relay scale larger than the relay scale.
The control device according to any one of Supplementary note 21 to 23.
(Appendix 25)
The control means determines whether or not to control the second transition stage after the control of the first transition stage.
The control device according to Appendix 24.
(Appendix 26)
A transmission method in a network system including a broadcasting station and a base station communicably connected to the broadcasting station.
The broadcasting station
Broadcast signals are transmitted to the base station via a communication network.
The base station is
The broadcast signal is received from the broadcast station via the communication network, and the received broadcast signal is converted into a terrestrial advancement signal of the terrestrial advancement method.
The converted ground altitude signal is transmitted to the terminal device.
Transmission method.
(Appendix 27)
Acquire the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station,
Select the base station corresponding to the acquired relay area and select
Controlled to transmit the broadcast signal from the broadcast station via the selected base station.
Control method.
(Appendix 28)
Acquire the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station,
Select the base station corresponding to the acquired relay area and select
Controlled to transmit the broadcast signal from the broadcast station via the selected base station.
A non-temporary computer-readable medium that contains programs that allow a computer to perform processing.
1-4 ネットワークシステム
3a  中継局ネットワーク
3b  モバイルネットワーク
4a  中継局ネットワーク
4b  モバイルネットワーク
10  放送局
11  放送信号送信部
20  基地局
21  放送信号受信部
22  変換部
23  地上高度化信号送信部
30  通信ネットワーク
40  コンピュータ
41  プロセッサ
42  メモリ
100 放送局
110 放送信号生成部
120 放送信号送信部
200 モバイル基地局
210 放送信号受信部
220 地上高度化変調部
230 地上高度化送信部
300 端末装置
310 地上高度化受信部
320 復調部
330 表示部
400 5Gバックボーンネットワーク
401 スライス
500 中継局
501 親局
502 大規模/中規模局
503 小規模/ミニサテ局
600 制御装置
610 中継局管理部
620 モバイル基地局管理部
630 制御部
640 データ収集部
700 テレビ受信機
1-4 Network system 3a Relay station network 3b Mobile network 4a Relay station network 4b Mobile network 10 Broadcasting station 11 Broadcasting signal transmitting unit 20 Base station 21 Broadcasting signal receiving unit 22 Conversion unit 23 Terrestrial advanced signal transmitting unit 30 Communication network 40 Computer 41 Processor 42 Memory 100 Broadcast station 110 Broadcast signal generator 120 Broadcast signal transmitter 200 Mobile base station 210 Broadcast signal receiver 220 Terrestrial advancement modulator 230 Terrestrial advancement transmitter 300 Terminal device 310 Terrestrial advancement receiver 320 Demodition unit 330 Display 400 5G Backbone network 401 Slice 500 Relay station 501 Master station 502 Large-scale / Medium-scale station 503 Small-scale / Mini-sate station 600 Control device 610 Relay station management unit 620 Mobile base station management unit 630 Control unit 640 Data collection unit 700 TV receiver

Claims (28)

  1.  放送局と、前記放送局と通信可能に接続された基地局とを備え、
     前記放送局は、通信ネットワークを介して、放送信号を前記基地局へ送信する放送信号送信手段を備え、
     前記基地局は、
      前記通信ネットワークを介して、前記放送局から前記放送信号を受信する放送信号受信手段と、
      前記受信された放送信号を地上高度化方式の地上高度化信号に変換する変換手段と、
      前記変換された地上高度化信号を端末装置へ送信する地上高度化信号送信手段と、
     を備える、ネットワークシステム。
    It is equipped with a broadcasting station and a base station that is communicably connected to the broadcasting station.
    The broadcasting station includes a broadcasting signal transmitting means for transmitting a broadcasting signal to the base station via a communication network.
    The base station is
    A broadcast signal receiving means for receiving the broadcast signal from the broadcast station via the communication network.
    A conversion means for converting the received broadcast signal into a terrestrial advancement signal, and a conversion means.
    The ground altitude signal transmission means for transmitting the converted ground altitude signal to the terminal device,
    A network system.
  2.  前記地上高度化信号は、FeMBMS(Further evolved Multimedia Broadcast and Multicast Services)方式のFeMBMS信号である、
     請求項1に記載のネットワークシステム。
    The ground altitude signal is a FeMBMS signal of the FeMBMS (Further evolved Multicast and Multicast Services) system.
    The network system according to claim 1.
  3.  前記地上高度化信号送信手段は、前記基地局がモバイル通信用の帯域を用いて、前記地上高度化信号を送信する、
     請求項1または2に記載のネットワークシステム。
    In the terrestrial altitude signal transmission means, the base station transmits the terrestrial altitude signal using a band for mobile communication.
    The network system according to claim 1 or 2.
  4.  前記放送信号送信手段は、前記通信ネットワークにおいて帯域保証された帯域保証経路を介して、前記放送信号を前記基地局へ送信する、
     請求項1乃至3のいずれか一項に記載のネットワークシステム。
    The broadcast signal transmission means transmits the broadcast signal to the base station via a band-guaranteed band-guaranteed path in the communication network.
    The network system according to any one of claims 1 to 3.
  5.  前記帯域保証経路は、ネットワークスライシングにより設定されたスライスである、
     請求項4に記載のネットワークシステム。
    The band guarantee route is a slice set by network slicing.
    The network system according to claim 4.
  6.  前記スライスは、前記放送信号のコンテンツに応じて設定される、
     請求項5に記載のネットワークシステム。
    The slice is set according to the content of the broadcast signal.
    The network system according to claim 5.
  7.  前記地上高度化信号送信手段は、前記スライスに応じた帯域で、前記地上高度化信号を送信する、
     請求項5または6に記載のネットワークシステム。
    The ground altitude signal transmission means transmits the ground altitude signal in a band corresponding to the slice.
    The network system according to claim 5 or 6.
  8.  前記基地局として、複数の基地局を備え、
     前記放送信号送信手段は、前記複数の基地局から選択された基地局に対し、前記放送信号を送信する、
     請求項1乃至7のいずれか一項に記載のネットワークシステム。
    As the base station, a plurality of base stations are provided.
    The broadcast signal transmission means transmits the broadcast signal to a base station selected from the plurality of base stations.
    The network system according to any one of claims 1 to 7.
  9.  放送ネットワークにおいて前記放送信号を中継する複数の中継局を備え、
     前記放送信号送信手段は、前記複数の中継局から特定された中継局に対応する前記基地局を選択する、
     請求項8に記載のネットワークシステム。
    It is equipped with a plurality of relay stations that relay the broadcast signal in the broadcast network.
    The broadcast signal transmitting means selects the base station corresponding to the relay station specified from the plurality of relay stations.
    The network system according to claim 8.
  10.  前記放送信号送信手段は、前記特定された中継局の中継エリアに対応する前記基地局を選択する、
     請求項9に記載のネットワークシステム。
    The broadcast signal transmitting means selects the base station corresponding to the relay area of the specified relay station.
    The network system according to claim 9.
  11.  前記放送信号送信手段は、前記特定された中継局の中継エリアに含まれる無線エリアを有する前記基地局を選択する、
     請求項10に記載のネットワークシステム。
    The broadcast signal transmitting means selects the base station having a radio area included in the relay area of the specified relay station.
    The network system according to claim 10.
  12.  前記放送信号送信手段は、前記特定された中継局の中継エリアに設置された前記基地局を選択する、
     請求項10または11に記載のネットワークシステム。
    The broadcast signal transmitting means selects the base station installed in the relay area of the specified relay station.
    The network system according to claim 10 or 11.
  13.  前記放送信号送信手段は、前記特定された中継局の出力レベルに対応する前記基地局を選択する、
     請求項9乃至12のいずれか一項に記載のネットワークシステム。
    The broadcast signal transmitting means selects the base station corresponding to the output level of the specified relay station.
    The network system according to any one of claims 9 to 12.
  14.  前記放送信号送信手段は、前記複数の中継局のうち所定の中継段数の中継局に対応する前記基地局を選択する、
     請求項9乃至13のいずれか一項に記載のネットワークシステム。
    The broadcast signal transmission means selects the base station corresponding to a predetermined number of relay stages among the plurality of relay stations.
    The network system according to any one of claims 9 to 13.
  15.  前記複数の中継局は、中継段数が大きくなるにしたがって中継規模が小さくなり、
     前記放送信号送信手段は、前記複数の中継局のうち所定の中継規模の中継局に対応する前記基地局を選択する、
     請求項14に記載のネットワークシステム。
    In the plurality of relay stations, the relay scale becomes smaller as the number of relay stages increases.
    The broadcast signal transmission means selects the base station corresponding to a relay station having a predetermined relay scale from the plurality of relay stations.
    The network system according to claim 14.
  16.  前記放送信号送信手段は、前記複数の中継局のうち最も小さい中継規模の中継局に対応する前記基地局を選択する、
     請求項15に記載のネットワークシステム。
    The broadcast signal transmitting means selects the base station corresponding to the relay station having the smallest relay scale among the plurality of relay stations.
    The network system according to claim 15.
  17.  前記放送信号送信手段は、前記選択の後、さらに、中継規模が小さい順に前記中継局を特定し、前記特定した中継局に対応する前記基地局を選択する、
     請求項15に記載のネットワークシステム。
    After the selection, the broadcast signal transmitting means further identifies the relay station in ascending order of relay scale, and selects the base station corresponding to the specified relay station.
    The network system according to claim 15.
  18.  前記放送信号送信手段は、前記中継局及び前記中継局に対応する基地局へ前記放送信号を送信する、
     請求項9至17のいずれか一項に記載のネットワークシステム。
    The broadcast signal transmission means transmits the broadcast signal to the relay station and the base station corresponding to the relay station.
    The network system according to any one of claims 9 to 17.
  19.  前記基地局の選択を指示する制御装置を備える、
     請求項8乃至18のいずれか一項に記載のネットワークシステム。
    A control device for instructing the selection of the base station is provided.
    The network system according to any one of claims 8 to 18.
  20.  通信ネットワークを介して、放送局から放送信号を受信する放送信号受信手段と、
     前記受信された放送信号を地上高度化方式の地上高度化信号に変換する変換手段と、
     前記変換された地上高度化信号を端末装置へ送信する地上高度化信号送信手段と、
     を備える、基地局。
    A broadcasting signal receiving means for receiving a broadcasting signal from a broadcasting station via a communication network,
    A conversion means for converting the received broadcast signal into a terrestrial advancement signal, and a conversion means.
    The ground altitude signal transmission means for transmitting the converted ground altitude signal to the terminal device,
    A base station.
  21.  放送局から送信される放送信号を中継する中継局の中継エリアを取得する取得手段と、
     前記取得した中継エリアに対応する基地局を選択する選択手段と、
     前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する制御手段と、
     を備える、制御装置。
    An acquisition means for acquiring the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station, and
    A selection means for selecting a base station corresponding to the acquired relay area, and
    A control means for controlling transmission of the broadcast signal from the broadcast station via the selected base station.
    A control device.
  22.  前記制御手段は、前記放送局から前記中継局及び前記基地局を介して前記放送信号を送信するよう制御する、
     請求項21に記載の制御装置。
    The control means controls to transmit the broadcast signal from the broadcast station via the relay station and the base station.
    The control device according to claim 21.
  23.  前記制御手段は、所定の期間経過後、前記放送局から前記基地局のみを介して前記放送信号を送信するよう制御する、
     請求項22に記載の制御装置。
    The control means controls to transmit the broadcast signal from the broadcast station only via the base station after a predetermined period of time has elapsed.
    22. The control device according to claim 22.
  24.  前記制御手段は、第一の移行段階において、第一の中継規模の前記中継局に対応する基地局を介して前記放送信号を送信するよう制御し、第二の移行段階において、前記第一の中継規模よりも大きい第2の中継規模の前記中継局に対応する基地局を介して前記放送信号を送信するよう制御する、
     請求項21乃至23のいずれか一項に記載の制御装置。
    The control means controls to transmit the broadcast signal via the base station corresponding to the relay station of the first relay scale in the first transition stage, and in the second transition stage, the first Controlled to transmit the broadcast signal via a base station corresponding to the relay station having a second relay scale larger than the relay scale.
    The control device according to any one of claims 21 to 23.
  25.  前記制御手段は、前記第一の移行段階の制御の後、前記第二の移行段階の制御を行うか否か判定する、
     請求項24に記載の制御装置。
    The control means determines whether or not to control the second transition stage after the control of the first transition stage.
    The control device according to claim 24.
  26.  放送局と、前記放送局と通信可能に接続された基地局とを備えたネットワークシステムにおける伝送方法であって、
     前記放送局は、
      通信ネットワークを介して、放送信号を前記基地局へ送信し、
     前記基地局は、
      前記通信ネットワークを介して、前記放送局から前記放送信号を受信し
      前記受信された放送信号を地上高度化方式の地上高度化信号に変換し、
      前記変換された地上高度化信号を端末装置へ送信する、
     伝送方法。
    A transmission method in a network system including a broadcasting station and a base station communicably connected to the broadcasting station.
    The broadcasting station
    Broadcast signals are transmitted to the base station via a communication network.
    The base station is
    The broadcast signal is received from the broadcast station via the communication network, and the received broadcast signal is converted into a terrestrial advancement signal of the terrestrial advancement method.
    The converted ground altitude signal is transmitted to the terminal device.
    Transmission method.
  27.  放送局から送信される放送信号を中継する中継局の中継エリアを取得し、
     前記取得した中継エリアに対応する基地局を選択し、
     前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する、
     制御方法。
    Acquire the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station,
    Select the base station corresponding to the acquired relay area and select
    Controlled to transmit the broadcast signal from the broadcast station via the selected base station.
    Control method.
  28.  放送局から送信される放送信号を中継する中継局の中継エリアを取得し、
     前記取得した中継エリアに対応する基地局を選択し、
     前記放送局から前記選択した基地局を介して前記放送信号を送信するよう制御する、
     処理をコンピュータに実行させるためのプログラムが格納された非一時的なコンピュータ可読媒体。
    Acquire the relay area of the relay station that relays the broadcast signal transmitted from the broadcast station,
    Select the base station corresponding to the acquired relay area and select
    Controlled to transmit the broadcast signal from the broadcast station via the selected base station.
    A non-temporary computer-readable medium that contains programs that allow a computer to perform processing.
PCT/JP2020/039618 2020-10-21 2020-10-21 Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium WO2022085132A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/039618 WO2022085132A1 (en) 2020-10-21 2020-10-21 Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium
JP2022556311A JPWO2022085132A5 (en) 2020-10-21 NETWORK SYSTEM, BASE STATION, CONTROL DEVICE, TRANSMISSION METHOD, CONTROL METHOD, AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039618 WO2022085132A1 (en) 2020-10-21 2020-10-21 Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium

Publications (1)

Publication Number Publication Date
WO2022085132A1 true WO2022085132A1 (en) 2022-04-28

Family

ID=81289759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039618 WO2022085132A1 (en) 2020-10-21 2020-10-21 Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium

Country Status (1)

Country Link
WO (1) WO2022085132A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239509A (en) * 2009-03-31 2010-10-21 Casio Computer Co Ltd Retransmission system
JP2020506635A (en) * 2017-02-13 2020-02-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Controlling carrier aggregation settings of user equipment using enhanced multimedia broadcast multicast service
US20200084819A1 (en) * 2018-09-11 2020-03-12 Qualcomm Incorporated Integrated access backhaul link management during loss of uplink synchronization
US20200154266A1 (en) * 2018-01-18 2020-05-14 At&T Intellectual Property I, L.P. Integrated access backhaul under a non-standalone network architecture for 5g or other next generation network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239509A (en) * 2009-03-31 2010-10-21 Casio Computer Co Ltd Retransmission system
JP2020506635A (en) * 2017-02-13 2020-02-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Controlling carrier aggregation settings of user equipment using enhanced multimedia broadcast multicast service
US20200154266A1 (en) * 2018-01-18 2020-05-14 At&T Intellectual Property I, L.P. Integrated access backhaul under a non-standalone network architecture for 5g or other next generation network
US20200084819A1 (en) * 2018-09-11 2020-03-12 Qualcomm Incorporated Integrated access backhaul link management during loss of uplink synchronization

Also Published As

Publication number Publication date
JPWO2022085132A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
CN1969560B (en) Method and apparatus for programming blackout and retune
US6622007B2 (en) Datacast bandwidth in wireless broadcast system
US7757267B2 (en) Method for delivering cable channels to handheld devices
US8701143B2 (en) Method and apparatus for supporting mobility in DVB-H CBMS system
CN110557230B (en) Data transmission method and system for unidirectional broadcast and bidirectional network
CN111818352B (en) Video live broadcast system and method combining broadcast and two-way communication
JP2020511086A (en) Network data processing method and apparatus
US20160007094A1 (en) Emergency notification in a network environment
WO2022085132A1 (en) Network system, base station, control device, transmission method, control method, and non-transitory computer-readable medium
WO2010110296A1 (en) Transmission device, transmission method, receiving device, receiving method, and program
US20140196096A1 (en) Broadcast wave receiving device and method, broadcast wave transmitting device and method, program, and recording medium
US10542305B2 (en) Flexible broadcast system and method
Hussein et al. Analysis of the WRC-23 Agenda Item Concerning the Future Use of the 470-694 MHz Band in Europe
US20240237040A1 (en) Network manager, receiving device and method
Lustica et al. 5G technology for broadcast TV applications
EP4087299A1 (en) Network manager, receiving device and method
Frank et al. Planning the migration of digital terrestrial broadcasting in Croatia to DVB-T2 standard
Hartl et al. Trial of a hybrid dvb-h/gsm mobile broadcast system
EP4087311A1 (en) Load data transformer and method
Kierkegaard TV Broadcast and 5G
EP4087190A1 (en) Network manager and method for configuring a broadcast network
EP4087256A1 (en) Broadcast network and method
WO2003084226A1 (en) Method and system for announcing a transport stream in a digital broadcast network
Reimers Dtt quo vadis
Peševski DAB+ RADIO SERVICES WITH QUALITY SUPPORT IN NORTH MACEDONIA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958684

Country of ref document: EP

Kind code of ref document: A1