WO2022084615A1 - Aube de soufflante à dièdre nul en tête - Google Patents

Aube de soufflante à dièdre nul en tête Download PDF

Info

Publication number
WO2022084615A1
WO2022084615A1 PCT/FR2021/051814 FR2021051814W WO2022084615A1 WO 2022084615 A1 WO2022084615 A1 WO 2022084615A1 FR 2021051814 W FR2021051814 W FR 2021051814W WO 2022084615 A1 WO2022084615 A1 WO 2022084615A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
equal
fan
chord
less
Prior art date
Application number
PCT/FR2021/051814
Other languages
English (en)
Inventor
Guillaume Pascal Jean-Charles Gondre
Stéphane Roger MAHIAS
Olivier BAZOT
Guillaume Claude Robert Belmon
Charles-Henri Claude Jacky SULLET
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to US18/032,763 priority Critical patent/US20230392502A1/en
Priority to CN202180071539.4A priority patent/CN116348661A/zh
Priority to EP21807180.1A priority patent/EP4232693A1/fr
Publication of WO2022084615A1 publication Critical patent/WO2022084615A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/38Arrangement of components angled, e.g. sweep angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6034Orientation of fibres, weaving, ply angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention generally relates to the field of turbomachines, and more particularly that of the fan blades of these turbomachines and their method of manufacture.
  • the invention applies more particularly to fan blades made of composite material and their interaction with the inlet of the primary stream.
  • Turbomachine blades and in particular fan blades, undergo significant mechanical and thermal stresses and must meet strict weight and bulk conditions. It has therefore been proposed to use blades comprising aerodynamic blades made of a composite material comprising a fibrous reinforcement densified by a polymer matrix, which are lighter compared to metal blades with equivalent propulsive characteristics and which have resistance to satisfying warmth.
  • the blades made of composite material generally comprise an attached metal shield fixed to the leading edge of the pale.
  • the shield comprises, in a manner known per se, a solid nose configured to face the leading edge of the blade and two fins configured to cover part of the intrados wall and the extrados wall of the blade.
  • fan blades are subject to ingestion by birds and hailstones.
  • the preferred areas of initiation and propagation of damage are different.
  • the mechanical behavior of fan blades is therefore optimized during the blade design phase to comply with certification rules.
  • One object of the invention is to provide a fan blade and a fan for a turbomachine, in particular a fan of large diameter and comprising at most twenty fan blades, which guarantees the capacity of the fan to ensure at least 75 % of its take-off thrust despite a medium-sized bird strike.
  • Another object of the invention is to provide a fan blade and a fan for a turbomachine, in particular a fan of large diameter and comprising at most twenty fan blades having an optimized aero-mechanical compromise.
  • a fan blade of a turbomachine comprising:
  • a composite material structure comprising a fibrous reinforcement obtained by three-dimensional weaving and a matrix in which the fibrous reinforcement is embedded, the composite material structure comprising a blade with an aerodynamic profile able to extend in an air flow comprising an edge leading edge and a trailing edge, a root configured to be attached to a fan disk and a stilt extending between the root and the blade, the blade having a predetermined height between the stilt and a tip of the blade along an axis stacking;
  • the metal shield attached and fixed to the leading edge of the blade, the metal shield comprising a nose fixed to the leading edge.
  • a blade chord is defined, in a plane normal to the stacking axis, between an upstream end of the nose of the shield and the trailing edge, and on a portion of the blade which extends from a lower limit located at a predetermined distance from the stilt at least equal to 80% of the predetermined height to the tip of the blade, a dihedral angle measured at at least one predefined point of the blade chord, located on the rope of dawn at the level of the upstream end of the nose of the shield, is greater than or equal to -3° and less than or equal to 0°.
  • the nose and the fins of the shield together delimit a cavity housing the leading edge of the blade and the predefined point of the rope is located within the cavity;
  • the dihedral angle is greater than or equal to -3° and less than or equal to 0° at several predefined points on the blade chord within the blade portion; within the portion, the dihedral angle is greater than or equal to - 3° and less than or equal to 0° over a distance at least equal to 10% of the predetermined height, preferably over a distance at least equal to 15 % of the predetermined height; within the portion, the dihedral angle is greater than or equal to -3° and less than or equal to 0° over the entire height of portion 15; within the portion, a variation in the dihedral angle along the stacking axis over a distance equal to 10% of the blade height is at most equal to 3°; within the portion, the dihedral angle is greater than or equal to
  • the invention proposes a fan for a turbomachine comprising a plurality of fan blades according to the first aspect.
  • the fan comprises at most twenty fan blades and/or has an external diameter of the fan of between eighty inches and one hundred inches, preferably between eighty inches and ninety inches.
  • the invention proposes a turbomachine comprising a fan according to the second aspect.
  • the turbomachine has a dilution ratio greater than or equal to 10, for example between 10 and 80 inclusive.
  • the invention proposes an aircraft comprising at least one turbomachine conforming to the third aspect.
  • Figure 1 schematically illustrates a blade according to a first embodiment of the invention.
  • Figure 2 is a partial couple view of the front of the blade according to one embodiment of the invention.
  • FIG. 3 is a schematic view of a fan rotor including blades in accordance with one embodiment of the invention, represented in section along a plane perpendicular to the axis of revolution of the fan.
  • FIG. 4 is a cross-sectional view of the blade according to one embodiment of the invention, according to a plane which is on the one hand parallel to the axis of rotation of the fan and on the other hand perpendicular to a direction in which blade extends radially.
  • Figure 5 is a schematic perspective view of the fan rotor having blades according to the invention.
  • FIG. 6 is a schematic view of an aircraft comprising a turbomachine comprising a fan provided with blades according to the invention.
  • the upstream and the downstream are defined with respect to the normal flow direction of the gas in the fan 1 through the turbomachine.
  • the axis of revolution of the fan 1 turbomachine is called the axis X of radial symmetry of the fan 1.
  • the axial direction corresponds to the direction of the axis X of the fan 1, and a radial direction is a direction perpendicular to this axis and passing through it.
  • a turbomachine fan 1 comprises a fan disc 2 carrying a plurality of fan blades 3, associated where appropriate with inter-blade platforms.
  • the invention applies in a privileged manner to a fan comprising at most twenty blades 3 in a turbine engine with a very high bypass ratio, that is to say whose bypass ratio is greater than or equal to 10, for example between 10 and 80 inclusive, for example more precisely 12 or 14 or 20 or greater than 20.
  • a very high bypass ratio that is to say whose bypass ratio is greater than or equal to 10
  • the flow rate of the secondary flow and the flow rate of the primary flow are measured when the turbomachine is stationary at take-off power in a standard atmosphere (as defined by the International Civil Aviation Organization (ICAO) manual, Doc 7488/3, 3rd edition) and at sea level.
  • IAO International Civil Aviation Organization
  • Each blade 3 comprises a composite material structure comprising a fibrous reinforcement 4 obtained by three-dimensional weaving and a matrix in which the fibrous reinforcement 4 is embedded.
  • This composite material structure comprises a foot 5, a stilt 6 and an airfoil blade .
  • the foot 5 is intended to allow the attachment of the blade to the fan disk 2 and extends for this purpose between a bottom of a cavity formed in the disk 2 and the outlet of the cavities of the cavity.
  • the blade 7 with its aerodynamic profile is suitable for being placed in an air flow, when the turbomachine is in operation, in order to generate lift.
  • stilt 6 corresponds to the zone of the blade 7 which extends between the foot 5 and the blade 7, that is to say between the outlet of the bearing surfaces of the disc 2 and the inter-blade platforms.
  • the blade 7 also comprises, in a manner known per se, a leading edge 8, a trailing edge 9, an intrados wall and an extrados wall.
  • the leading edge 8 is configured to extend opposite the flow of gases entering the turbomachine. It corresponds to the anterior part of an aerodynamic profile which faces the airflow and which divides the airflow into an underside flow and an underside flow.
  • the trailing edge 9 for its part corresponds to the rear part of the aerodynamic profile, where the intrados and extrados flows meet.
  • the blade 3 also includes a metal shield 12, attached and fixed to the leading edge 8 of the blade.
  • the shield 12 comprises a solid nose 13, fixed to the leading edge 8, an intrados fin 14 and an extrados fin 14 plated and fixed to the intrados wall and the extrados wall of the blade 7, respectively .
  • the shield 12 can in particular be fixed by gluing.
  • the shield 12 can for example be made of a titanium alloy.
  • the structure is formed of a plurality of blade sections 3 stacked from the root 5 in the direction of the apex 11 along a stacking axis Z extending radially with respect to the axis of revolution X of the fan 1
  • a tangential stacking law of the blade then corresponds to the position of the center of gravity of each section of the blade in a plane normal to the stacking axis Z, with respect to this stacking axis Z.
  • the stacking of the blade sections 7 can be defined by the sag and dihedral angles. These angles measure the differences in the directions between the flow and the blades, in projection respectively in a radial and axial plane and an axial and tangent plane to the direction of rotation of the turbomachine. Reference may in particular be made to the document by (y H. Smith et al. “Sweep and Dihedral Effects in Axial-Flow Turbomachinery”, September 1963, Journal of Basic Engineering, 401-414, for a more complete definition of deflection angle and dihedral angle D.
  • the deflection angle expresses the inclination of the blade in the axial direction, and the dihedral angle D, the inclination of the blade in the tangential direction.
  • a negative sign of the deflection angle expresses an inclination towards the upstream, and a positive sign, towards the downstream; and a negative sign of the dihedral angle D expresses an inclination towards the intrados, and a positive sign, towards the extrados. Inclinations are defined from outward radial directions.
  • the blade 7 has a predetermined height h corresponding to the distance along the stacking axis Z between its lower limit 10, at the intersection with stilt 6, and its top 11.
  • the predetermined height h of the blade 7 can for example be measured at the intersection between the leading edge 8 and the lower limit 10 of the blade 7.
  • the blade 3 also has a chord (fictitious straight line segment) defined, in a plane normal to the stacking axis Z, between an upstream end 13a of the nose 13 of the shield 12 and the trailing edge 9.
  • the upstream end 13a of the nose 13 corresponds to the leading edge of the blade 3, that is to say the upstream part of the shield 12 which actually divides the air flow into a lower surface flow and in an extrados flow.
  • the leading edge 8 of the blade 7 meanwhile extends inside the shield 12, opposite the nose 13, in the extension of its upstream end 13a.
  • a dihedral angle D (schematized in FIG. 3 and in FIG. 4) measured at at least one predefined point of the chord of blade 3 is greater than or equal to -3° and less than or equal to 0°.
  • the dihedral angle D is greater than or equal to -3° and less than or equal to 0° over a distance at least equal to 10% of the predetermined height, preferably over a distance at least equal to 15% of the predetermined height. In one embodiment, the dihedral angle D is greater than or equal to ⁇ 3° and less than or equal to 0° over the entire height of the portion 15: in other words, in this embodiment, the dihedral angle D is greater than or equal to ⁇ 3° and less than or equal to 0° in each section of the blade 3, that is to say at the level of the at least one predefined point P of each chord C over the entire height of the portion 15, between 80% and 100% of the height h.
  • the point of the chord at the level of which the dihedral angle D is measured is located at the level of the shield 12, that is to say within the cavity of the shield 12 which houses the leading edge and which is delimited by the nose 13 and the fins 14 of the shield 12.
  • the point of the chord can extend at the level of the upstream end 13a of the nose 13 of the shield 12, that is to say at the level of the leading edge of the blade 3.
  • This position of the point of the chord has the advantage of simplifying the measurement and checking of the dihedral angle D at the level of the portion 15, while guaranteeing that the portion 15 of the blade 3 is slightly inclined towards the lower surface and avoids the reversal of the fin 14.
  • the dihedral angle D is greater than or equal to ⁇ 3° and less than or equal to 0° at several points of the chord.
  • the dihedral angle D is closest to 0° while remaining negative.
  • the dihedral angle D is preferably greater than or equal to -2°, typically greater than or equal to -1°, and less than or equal to 0°.
  • the intrados and extrados fins 14 of the shield 12 can be lengthened in comparison with the prior art, thus reducing the risks of pinching of the fibrous reinforcement 4 in the event of ingestion (the fibrous reinforcement 4 being thicker at a distance from the leading edge 8).
  • the intrados and extrados fins 14 extend over a length greater than or equal to 15% and less than or equal to 25% of the chord length of the blade.
  • chord of the blade we will understand here the segment connecting the leading edge 8 and the trailing edge 7, in a plane normal to the stacking axis Z.
  • chord length we will understand the length of this segment.
  • length of a fin 14 we will understand here the projection of this fin 14 on the chord in the plane normal to the Z axis.
  • the fan 1 has an external diameter of between eighty inches (203.2 centimeters) and one hundred inches (254.0 centimeters), of preferably between eighty inches (203.2 centimeters) and ninety inches (228.6 centimeters).
  • the fibrous reinforcement 4 can be formed from a fibrous preform in one piece obtained by three-dimensional or multilayer weaving with varying thickness. It comprises warp and weft strands which may in particular comprise carbon, glass, basalt and/or aramid fibres.
  • the matrix for its part is typically a polymer matrix, for example epoxy, bismaleimide or polyimide.
  • the blade 3 is then formed by molding by means of a resin vacuum injection process of the RTM type (for "Resin Transfer Moulding), or else VARRTM (for Vacuum Resin Transfer Molding).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La présente invention concerne une aube (3) de soufflante (1) en matériau composite d'une turbomachine. Sur une portion (15) de l'aube (7) qui s'étend depuis une limite inférieure (16) située à une distance (d) prédéterminée de l'échasse (6) de l'aube au moins égale à 80 % de la hauteur (h) prédéterminée jusqu'au sommet (11) de l'aube (7), un angle (D) de dièdre mesuré en au moins un point prédéfini de la corde de l'aube (3), situé sur la corde de l'aube (3) au niveau de l'extrémité amont (13a) du nez (13) du bouclier (12), est supérieur ou égal à - 3° et inférieur ou égal à 0°.

Description

DESCRIPTION
TITRE : Aube de soufflante à dièdre nul en tête
DOMAINE DE L'INVENTION
L’invention concerne de manière générale le domaine des turbomachines, et plus particulièrement celui des aubes de soufflantes de ces turbomachines et leur procédé de fabrication.
L’invention s’applique plus particulièrement aux aubes de soufflante en matériau composite et leur interaction avec l’entrée de la veine primaire.
ETAT DE LA TECHNIQUE
Les aubes de turbomachine, et notamment les aubes de soufflante, subissent d'importantes contraintes mécaniques et thermiques et doivent satisfaire à des conditions strictes de poids et d'encombrement. Il a donc été proposé d’utiliser des aubes comprenant des pales aérodynamiques réalisées dans un matériau composite comportant un renfort fibreux densifié par une matrice polymère, qui sont plus légères par rapport à des aubes métalliques à caractéristiques propulsives équivalentes et qui ont une tenue à la chaleur satisfaisante.
Afin de les rigidifier et de les protéger, notamment lors d’un choc d’un élément ingéré dans la turbomachine tel qu’un oiseau, les pales en matériau composite comprennent généralement un bouclier métallique rapporté et fixé sur le bord d’attaque de la pale. Le bouclier comprend, de manière connue en soi, un nez plein configuré pour venir en regard du bord d’attaque de l’aube et deux ailettes configurées pour recouvrir une partie de la paroi intrados et de la paroi extrados de l’aube.
Lors de la certification et de la vie d’un moteur, les aubes de soufflante sont soumises à des ingestions d’oiseaux et de grêlons. Toutefois, selon le type de l’objet impactant l’aube (et notamment sa taille, sa masse) et selon le type de soufflante (vitesse de rotation et nombre d’aubes), les zones privilégiées d’initiation et de propagation des endommagements sont différentes. Le comportement mécanique des aubes de soufflante est donc optimisé pendant la phase de conception des aubes pour respecter les règles de certification.
En particulier, dans le cas des soufflantes de grand diamètre telles que les soufflantes des turbomachines à très fort taux de dilution (« Ultra High Bypass Ratio » en anglais, UHBR) comprenant au plus 20 aubes de soufflante, lors de l’ingestion d’oiseaux de taille moyenne (« medium birds » en anglais), des endommagements sont susceptibles d’apparaître en tête d’aube et l’ailette extrados du bouclier peut se retourner et bloquer localement le flux aérodynamique. Toutefois, un tel blocage du flux aérodynamique a pour conséquence de réduire la poussée pouvant être atteinte par la turbomachine. Or, les exigences actuelles en matière de sécurité sont qu’une turbomachine doit être capable, malgré un impact d’objet, d’assurer les 75 % de sa poussée au décollage.
Il a donc été proposé de réduire la longueur des ailettes, afin de diminuer la surface de blocage du flux aérodynamique en cas de retournement de l’ailette extrados. Toutefois, lors de l’ingestion d’oiseaux de taille moyenne, le bord aval des ailettes a tendance à pincer la structure en matériau composite de l’aube qui a alors tendance se détériorer. Pour limiter ce pincement, il est donc préférable d’augmenter la longueur des ailettes pour que leur bord se trouve en regard d’une partie plus épaisse de la structure en matériau composite. Cependant, cela implique une augmentation de la surface de blocage du flux aérodynamique en cas de retournement des ailettes.
EXPOSE DE L'INVENTION
Un but de l’invention est de proposer une aube de soufflante et une soufflante d’une turbomachine, notamment d’une soufflante de grand diamètre et comprenant au plus vingt aubes de soufflante, qui garantisse la capacité de la soufflante à assurer au moins 75% de sa poussée au décollage malgré un impact d’oiseau de moyenne taille.
Un autre objectif de l’invention est de proposer une aube de soufflante et une soufflante d’une turbomachine, notamment d’une soufflante de grand diamètre et comprenant au plus vingt aubes de soufflante présentant un compromis aéro-mécanique optimisé.
Il est à cet effet proposé, selon un premier aspect de l’invention une aube de soufflante d’une turbomachine comprenant :
- une structure en matériau composite comprenant un renfort fibreux obtenu par tissage tridimensionnel et une matrice dans laquelle est noyé le renfort fibreux, la structure en matériau composite comprenant une pale à profil aérodynamique propre à s’étendre dans un flux d’air comprenant un bord d’attaque et un bord de fuite, un pied configuré pour être fixé à un disque de soufflante et une échasse s’étendant entre le pied et la pale, la pale présentant une hauteur prédéterminée entre échasse et un sommet de la pale selon un axe d’empilement ; et
- un bouclier métallique, rapporté et fixé sur le bord d’attaque de la pale, le bouclier métallique comprenant un nez fixé sur le bord d’attaque.
Par ailleurs, une corde de l’aube est définie, dans un plan normal à l’axe d’empilement, entre une extrémité amont du nez du bouclier et le bord de fuite, et sur une portion de l’aube qui s’étend depuis une limite inférieure située à une distance prédéterminée de Péchasse au moins égale à 80 % de la hauteur prédéterminée jusqu’au sommet de la pale, un angle de dièdre mesuré en au moins un point prédéfini de la corde de l’aube, situé sur la corde de l’aube au niveau de l’extrémité amont du nez du bouclier, est supérieur ou égal à - 3° et inférieur ou égal à 0°.
Certaines caractéristiques préférées mais non limitatives de l’aube de soufflante selon le premier aspect sont les suivantes, prises individuellement ou en combinaison : le nez et les ailettes du bouclier délimitent ensemble une cavité logeant le bord d’attaque de la pale et le point prédéfini de la corde est situé au sein de la cavité ; l’angle de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° en plusieurs points prédéfinis de la corde de l’aube au sein de la portion de l’aube ; au sein de la portion, l’angle de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° sur une distance au moins égale à 10 % de la hauteur prédéterminée, de préférence sur une distance au moins égale à 15 % de la hauteur prédéterminée ; au sein de la portion, l’angle de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° sur toute la hauteur de la portion 15 ; au sein de la portion, une variation de l’angle de dièdre le long de l’axe d’empilement sur une distance égale à 10 % de la hauteur de la pale est au plus égale à 3° ; au sein de la portion, l’angle de dièdre est supérieur ou égal à -2° et inférieur ou égal à 0°, de préférence supérieur ou égal à -1 ° et inférieur ou égal à 0° ; et/ou les ailettes s’étendent sur une longueur supérieure ou égale à 15 % et inférieure ou égale à 25 % d’une longueur de corde de la pale.
Selon un deuxième aspect, l’invention propose une soufflante pour une turbomachine comprenant une pluralité d’aubes de soufflante selon le premier aspect.
Optionnellement, la soufflante comprend au plus vingt aubes de soufflante et/ou présente un diamètre externe de la soufflante est compris entre quatre-vingt pouces et cent pouces, de préférence entre quatre-vingt pouces et quatre-vingt-dix pouces.
Selon un troisième aspect, l’invention propose une turbomachine comprenant une soufflante selon le deuxième aspect.
Optionnellement, la turbomachine présente un taux de dilution supérieur ou égal à 10, par exemple compris entre 10 et 80 inclus.
Selon un quatrième aspect, l’invention propose un aéronef comprenant au moins une turbomachine conforme au troisième aspect.
DESCRIPTION DES FIGURES D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
La figure 1 illustre de façon schématique une aube selon un premier mode de réalisation de l’invention.
La figure 2 est une vue en couple partielle de l’amont de l’aube selon un mode de réalisation de l’invention.
La figure 3 est une vue schématique de rotor de soufflante incluant des aubes conformes à un mode de réalisation de l’invention, en représentation en section selon un plan perpendiculaire à l’axe de révolution de la soufflante.
La figure 4 est une vue en section de l’aube selon un mode de réalisation de l’invention, selon un plan qui est d’une part parallèle à l’axe de rotation de la soufflante et d’autre part perpendiculaire à une direction dans laquelle d’aube s’étend radialement.
La figure 5 est une vue schématique en perspective du rotor de soufflante ayant des aubes selon l’invention.
La figure 6 est une vue schématique d’un aéronef comprenant une turbomachine comprenant une soufflante pourvue d’aubes selon l’invention.
Sur l’ensemble des figures, les éléments similaires portent des références identiques.
DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente demande, l'amont et l'aval sont définis par rapport au sens d'écoulement normal du gaz dans la soufflante 1 à travers la turbomachine. Par ailleurs, on appelle axe de révolution de la soufflante 1 turbomachine, l'axe X de symétrie radiale de la soufflante 1. La direction axiale correspond à la direction de l'axe X de la soufflante 1 , et une direction radiale est une direction perpendiculaire à cet axe et passant par lui. Enfin, on utilisera interne et externe, respectivement, en référence à une direction radiale de sorte que la partie ou la face interne d'un élément est plus proche de l'axe X que la partie ou la face externe du même élément.
Une soufflante 1 de turbomachine comprend un disque 2 de soufflante portant une pluralité d’aubes de soufflante 3, associées le cas échéant à des plateformes inter-aubes.
L’invention s’applique de manière privilégiée à une soufflante comprenant au plus vingt aubes 3 dans une turbomachine à très fort taux de dilution, c’est-à-dire dont le taux de dilution est supérieur ou égal à 10, par exemple compris entre 10 et 80 inclus, par exemple plus précisément 12 ou 14 ou 20 ou supérieur à 20. Pour calculer le taux de dilution, le débit du flux secondaire et le débit du flux primaire sont mesurés lorsque la turbomachine est stationnaire en régime de décollage dans une atmosphère standard (telle que définie par le manuel de l’Organisation de l'aviation civile internationale (OACI), Doc 7488/3, 3e édition) et au niveau de la mer.
Chaque aube 3 comprend une structure en matériau composite comportant un renfort fibreux 4 obtenu par tissage tridimensionnel et une matrice dans laquelle est noyé le renfort fibreux 4. Cette structure en matériau composite comprend un pied 5, une échasse 6 et une pale 7 à profil aérodynamique. Le pied 5 est destiné à permettre la fixation de l’aube au disque 2 de soufflante et s’étend à cet effet entre un fond d’une empreinte formée dans le disque 2 et la sortie des portées de l’empreinte. La pale 7 à profil aérodynamique quant à elle est propre à être placée dans un flux d’air, lorsque la turbomachine est en fonctionnement, afin de générer une portance. Enfin, échasse 6 correspond à la zone de la pale 7 qui s’étend entre le pied 5 et la pale 7, c’est-à-dire entre la sortie des portées du disque 2 et les plateformes inter-aubes.
La pale 7 comprend également, de manière connue en soi, un bord d’attaque 8, un bord de fuite 9, une paroi intrados et une paroi extrados. Le bord d’attaque 8 est configuré pour s’étendre en regard de l'écoulement des gaz entrant dans la turbomachine. Il correspond à la partie antérieure d'un profil aérodynamique qui fait face au flux d'air et qui divise l'écoulement d'air en un écoulement d'intrados et en un écoulement extrados. Le bord de fuite 9 quant à lui correspond à la partie postérieure du profil aérodynamique, où se rejoignent les écoulements intrados et extrados.
L’aube 3 comprend un outre un bouclier 12 métallique, rapporté et fixé sur le bord d’attaque 8 de la pale. De manière connue en soi, le bouclier 12 comprend un nez 13 plein, fixé sur le bord d’attaque 8, une ailette 14 intrados et une ailette 14 extrados plaquées et fixées sur la paroi intrados et la paroi extrados de la pale 7, respectivement. Le bouclier 12 peut notamment être fixé par collage. Le bouclier 12 peut par exemple être réalisé dans un alliage de titane.
Enfin, la structure est formée d’une pluralité de sections d’aube 3 empilées depuis le pied 5 en direction du sommet 11 selon un axe d’empilement Z s’étendant radialement par rapport à l’axe de révolution X de la soufflante 1. Une loi d'empilement tangentiel de l’aube correspond alors à la position du centre de gravité de chaque section de l'aube dans un plan normal à l’axe d’empilement Z, par rapport à cet axe d’empilement Z.
Plus précisément, l’empilement des sections de pale 7 peut être défini par les angles de flèche et de dièdre. Ces angles mesurent les différences des directions entre l'écoulement et les aubes, en projection respectivement dans un plan radial et axial et un plan axial et tangent à la direction de rotation de la turbomachine. On pourra notamment se référer au document de (y H. Smith et al. « Sweep and Dihedral Effects in Axial-Flow Turbomachinery », Septembre 1963, Journal of Basic Engineering, 401-414, pour une définition plus complète de l’angle de flèche et de l’angle D de dièdre.
Si l'écoulement est purement axial, ce qui est globalement le cas à l'entrée de la machine, et si on considère pour l’exemple un aubage fixe avec un calage constant sur sa hauteur, l'angle de flèche exprime l'inclinaison de l'aube en direction axiale, et l'angle D de dièdre, l'inclinaison de l'aube en direction tangentielle. Un signe négatif de l'angle de flèche exprime une inclinaison vers l'amont, et un signe positif, vers l'aval ; et un signe négatif de l'angle D de dièdre exprime une inclinaison vers l'intrados, et un signe positif, vers l'extrados. Les inclinaisons sont définies à partir de directions radiales vers l'extérieur.
Dans ce qui suit, par « hauteur » on désignera une distance suivant l’axe d’empilement Z.
Ainsi, la pale 7 présente une hauteur prédéterminée h correspondant à la distance suivant l’axe d’empilement Z entre sa limite inférieure 10, à l’intersection avec échasse 6, et son sommet 11. La hauteur prédéterminée h de la pale 7 peut par exemple être mesurée à l’intersection entre le bord d’attaque 8 et la limite inférieure 10 de la pale 7.
L’aube 3 présente en outre une corde (segment de droite fictif) définie, dans un plan normal à l’axe d’empilement Z, entre une extrémité amont 13a du nez 13 du bouclier 12 et le bord de fuite 9. En pratique, l’extrémité amont 13a du nez 13 correspond au bord d’attaque de l’aube 3, c’est-à-dire la partie amont du bouclier 12 qui divise réellement l'écoulement d'air en un écoulement d'intrados et en un écoulement extrados. Le bord d’attaque 8 de la pale 7 quant à lui s’étend à l’intérieur du bouclier 12, en face du nez 13, dans le prolongement de son extrémité amont 13a.
Afin d’améliorer la résistance de l’aube 3 de soufflante aux impacts (notamment aux oiseaux de taille moyenne), au sein d’une portion 15 de l’aube 3 qui s’étend depuis une limite 16 inférieure située à une distance prédéterminée de Péchasse 6 au moins égale à 80 % de la hauteur prédéterminée h jusqu’au sommet 11 de la pale 7, un angle D de dièdre (schématisé à la figure 3 et à la figure 4) mesuré en au moins un point prédéfini de la corde de l’aube 3 est supérieur ou égal à - 3° et inférieur ou égal à 0°. Dans une forme de réalisation, au sein de la portion 15, l’angle D de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° sur une distance au moins égale à 10 % de la hauteur prédéterminée, de préférence sur une distance au moins égale à 15 % de la hauteur prédéterminée. Dans une forme de réalisation, l’angle D de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° sur toute la hauteur de la portion 15 : en d’autres termes, dans cette forme de réalisation, l’angle D de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° dans chaque section de l’aube 3, c’est-à-dire au niveau de l’au moins un point P prédéfini de chaque corde C sur toute la hauteur de la portion 15, entre 80 % et 100% de la hauteur h.
De la sorte, en cas de décollement de l’ailette 14 extrados, la forme de l’aube 3 au niveau de cette portion 15 a tendance à plaquer l’ailette 14 extrados contre la paroi extrados de la pale 7 sous l’effet des efforts centrifuges. En effet, dans cette portion 15 de l’aube 3, l’aube 3 est légèrement inclinée vers l’intrados, ce qui contre les efforts centrifuges appliqués à la paroi extrados.
De préférence, le point de la corde au niveau duquel est mesuré l’angle D de dièdre est situé au niveau du bouclier 12, c’est-à-dire au sein de la cavité du bouclier 12 qui loge le bord d’attaque et qui est délimitée par le nez 13 et les ailettes 14 du bouclier 12.
En variante, le point de la corde peut s’étendre au niveau de l’extrémité amont 13a du nez 13 du bouclier 12, c’est-à-dire au niveau du bord d’attaque de l’aube 3. Cette position du point de la corde présente l’avantage de simplifier la mesure et le contrôle de l’angle D de dièdre au niveau de la portion 15, tout en garantissant que la portion 15 de l’aube 3 se trouve légèrement inclinée vers l’intrados et évite le retournement de l’ailette 14.
Dans une forme de réalisation, au sein de cette portion 15 de l’aube 3, l’angle D de dièdre est supérieur ou égal à -3° et inférieur ou égal à 0° en plusieurs points de la corde.
Dans une forme de réalisation, dans cette portion 15 de l’aube 3, l’angle D de dièdre est le plus proche de 0° tout en restant négatif. Ainsi, dans une forme de réalisation, l’angle D de dièdre est de préférence supérieur ou égal à -2°, typiquement supérieur ou égal à -1 °, et inférieur ou égal à 0°.
Grâce à la configuration de l’aube 3 dans la portion 15, les ailettes 14 intrados et extrados du bouclier 12 peuvent être allongées en comparaison avec l’art antérieur, réduisant ainsi les risques de pincement du renfort fibreux 4 en cas d’ingestion (le renfort fibreux 4 étant plus épais à distance du bord d’attaque 8). Typiquement, au moins au niveau de la portion 15 et sur toute la hauteur de cette portion 15, les ailettes 14 intrados et extrados s’étendent sur une longueur supérieure ou égale à 15 % et inférieure ou égale à 25 % de la longueur de corde de la pale. Par corde de la pale, on comprendra ici le segment reliant le bord d’attaque 8 et le bord de fuite 7, dans un plan normal à l’axe Z d’empilement. Par longueur de corde, on comprendra la longueur de ce segment. Par longueur d’une ailette 14, on comprendra ici la projection de cette ailette 14 sur la corde dans le plan normal à l’axe Z.
Dans une forme de réalisation, la soufflante 1 présente un diamètre externe compris entre quatre-vingt pouces (203.2 centimètres) et cent pouces (254.0 centimètres), de préférence entre quatre-vingt pouces (203.2 centimètres) et quatre-vingt-dix pouces (228.6 centimètres).
Le renfort fibreux 4 peut être formé à partir d’une préforme fibreuse en une seule pièce obtenue par tissage tridimensionnel ou multicouche avec épaisseur évolutive. Il comprend des torons de chaîne et de trame qui peuvent notamment comprendre des fibres en carbone, en verre, en basalte, et/ou en aramide. La matrice quant à elle est typiquement une matrice polymère, par exemple époxyde, bismaléimide ou polyimide. L’aube 3 est alors formée par moulage au moyen d’un procédé d’injection sous vide de résine du type RTM (pour « Resin Transfer Moulding), ou encore VARRTM (pour Vacuum Resin Transfer Molding).

Claims

REVENDICATIONS
1. Aube (3) de soufflante (1 ) d’une turbomachine comprenant : une structure en matériau composite comprenant un renfort fibreux (4) obtenu par tissage tridimensionnel et une matrice dans laquelle est noyé le renfort fibreux (4), la structure en matériau composite comprenant une pale (7) à profil aérodynamique propre à s’étendre dans un flux d’air comprenant un bord d’attaque (8) et un bord de fuite (9), un pied (5) configuré pour être fixé à un disque (2) de soufflante (1 ) et une échasse (6) s’étendant entre le pied (5) et la pale (7), la pale (7) présentant une hauteur (h) prédéterminée entre échasse (6) et un sommet (11 ) de la pale (7) selon un axe d’empilement (Z) ; et un bouclier (12) métallique, rapporté et fixé sur le bord d’attaque (8) de la pale (7), le bouclier (12) métallique comprenant un nez (13) fixé sur le bord d’attaque (8) ; une corde de l’aube (3) étant définie, dans un plan normal à l’axe d’empilement (Z), entre une extrémité amont (13a) du nez (13) du bouclier (12) et le bord de fuite (9) ; l’aube (3) de soufflante (1 ) étant caractérisée en ce que, sur une portion (15) de l’aube (7) qui s’étend depuis une limite inférieure (16) située à une distance (d) prédéterminée de Péchasse
(6) au moins égale à 80 % de la hauteur (h) prédéterminée jusqu’au sommet (11 ) de la pale
(7), un angle (D) de dièdre mesuré en au moins un point prédéfini de la corde de l’aube (3), situé sur la corde de l’aube (3) au niveau de l’extrémité amont (13a) du nez (13) du bouclier (12), est supérieur ou égal à - 3° et inférieur ou égal à 0°.
2. Aube (3) de soufflante (1 ) selon la revendication 1 , dans laquelle le nez (13) et les ailettes (14) du bouclier (12) délimitent ensemble une cavité logeant le bord d’attaque (8) de la pale et le point prédéfini de la corde est situé au sein de la cavité.
3. Aube (3) selon l’une des revendications 1 ou 2, dans laquelle l’angle (D) de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° en plusieurs points prédéfinis de la corde de l’aube (3) au sein de la portion (15) de l’aube (7).
4. Aube (3) selon l’une des revendications 1 à 3, dans laquelle, au sein de la portion (15), l’angle (D) de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° sur une distance au moins égale à 10 % de la hauteur prédéterminée, de préférence sur une distance au moins égale à 15 % de la hauteur prédéterminée.
5. Aube (3) selon l’une des revendications 1 à 4, dans laquelle, au sein de la portion (15), l’angle (D) de dièdre est supérieur ou égal à - 3° et inférieur ou égal à 0° sur toute la hauteur de la portion 15.
6. Aube (3) selon l’une des revendications 1 à 5, dans laquelle, au sein de la portion (15), une variation de l’angle (D) de dièdre le long de l’axe d’empilement sur une distance égale à 10 % de la hauteur (h) de la pale (7) est au plus égale à 3°.
7. Aube (3) de soufflante (1 ) selon l’une des revendications 1 à 6, dans laquelle, au sein de la portion (15), l’angle (D) de dièdre est supérieur ou égal à -2° et inférieur ou égal à 0°, de préférence supérieur ou égal à -1 ° et inférieur ou égal à 0°.
8. Aube (3) de soufflante (1 ) selon l’une des revendications 1 à 7, dans laquelle les ailettes (14) s’étendent sur une longueur supérieure ou égale à 15 % et inférieure ou égale à 25 % d’une longueur de corde de la pale (7).
9. Soufflante (1 ) pour une turbomachine comprenant une pluralité d’aubes (3) de soufflante (1 ) selon l’une des revendications 1 à 8.
10. Soufflante (1 ) selon la revendication 9, comprenant au plus vingt aubes (3) de soufflante (1 ).
11. Soufflante (1 ) selon l’une des revendications 9 ou 10 présentant un diamètre externe de la soufflante (1 ) est compris entre quatre-vingt pouces (203.2 centimètres) et cent pouces (254.0 centimètres), de préférence entre quatre-vingt pouces (203.2 centimètres) et quatre-vingt-dix pouces (228.6 centimètres).
12. Turbomachine (17) comprenant une soufflante (1 ) selon l’une des revendications 9 à 11.
13. Turbomachine (17) selon la revendication 12 présentant un taux de dilution supérieur ou égal à 10, par exemple compris entre 10 et 80 inclus.
14. Aéronef comprenant au moins une turbomachine selon l’une des revendications 12
PCT/FR2021/051814 2020-10-20 2021-10-19 Aube de soufflante à dièdre nul en tête WO2022084615A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/032,763 US20230392502A1 (en) 2020-10-20 2021-10-19 Fan blade with zero tip dihedral at the head
CN202180071539.4A CN116348661A (zh) 2020-10-20 2021-10-19 在头部处具有零二面角的风扇叶片
EP21807180.1A EP4232693A1 (fr) 2020-10-20 2021-10-19 Aube de soufflante à dièdre nul en tête

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010762A FR3115322B1 (fr) 2020-10-20 2020-10-20 Aube de soufflante à dièdre nul en tête
FRFR2010762 2020-10-20

Publications (1)

Publication Number Publication Date
WO2022084615A1 true WO2022084615A1 (fr) 2022-04-28

Family

ID=73699118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051814 WO2022084615A1 (fr) 2020-10-20 2021-10-19 Aube de soufflante à dièdre nul en tête

Country Status (5)

Country Link
US (1) US20230392502A1 (fr)
EP (1) EP4232693A1 (fr)
CN (1) CN116348661A (fr)
FR (1) FR3115322B1 (fr)
WO (1) WO2022084615A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094784A1 (fr) * 2021-11-29 2023-06-01 Safran Aircraft Engines Aube pour une hélice non carénée d'une turbomachine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106836A2 (fr) * 1999-12-06 2001-06-13 General Electric Company Aube de compresseur à double courbure
WO2013050724A1 (fr) * 2011-10-07 2013-04-11 Snecma Disque aubage monobloc pourvu d'aubes a profil de pied adapte
WO2015126454A1 (fr) * 2014-02-19 2015-08-27 United Technologies Corporation Surface portante de moteur à turbine à gaz
US20180010614A1 (en) * 2016-07-07 2018-01-11 General Electric Company Non-newtonian materials in aircraft engine airfoils
EP3647562A1 (fr) * 2018-11-02 2020-05-06 Rolls-Royce plc Procédé de remplacement d'un module
WO2020120921A1 (fr) * 2018-12-14 2020-06-18 Safran Aircraft Engines Aube de soufflante comprenant un bouclier fin et un raidisseur

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328533B1 (en) * 1999-12-21 2001-12-11 General Electric Company Swept barrel airfoil
EP2594805B1 (fr) * 2010-07-15 2019-05-01 IHI Corporation Pale de rotor de soufflante et soufflante
US8684698B2 (en) * 2011-03-25 2014-04-01 General Electric Company Compressor airfoil with tip dihedral
FR2993942B1 (fr) * 2012-07-24 2017-03-24 Snecma Aube composite de turbomachine a renfort structurel
US10724479B2 (en) * 2013-03-15 2020-07-28 United Technologies Corporation Thrust efficient turbofan engine
WO2015126449A1 (fr) * 2014-02-19 2015-08-27 United Technologies Corporation Surface portante de moteur à turbine à gaz
EP3126638B1 (fr) * 2014-04-02 2021-03-03 United Technologies Corporation Surface portante de moteur à turbine à gaz
FR3025735B1 (fr) * 2014-09-17 2016-12-09 Europe Tech Procede de traitement d'une piece composite
US10221859B2 (en) * 2016-02-08 2019-03-05 General Electric Company Turbine engine compressor blade
US10578125B2 (en) * 2016-11-24 2020-03-03 Pratt & Whitney Canada Corp. Compressor stator vane with leading edge forward sweep

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106836A2 (fr) * 1999-12-06 2001-06-13 General Electric Company Aube de compresseur à double courbure
WO2013050724A1 (fr) * 2011-10-07 2013-04-11 Snecma Disque aubage monobloc pourvu d'aubes a profil de pied adapte
WO2015126454A1 (fr) * 2014-02-19 2015-08-27 United Technologies Corporation Surface portante de moteur à turbine à gaz
US20180010614A1 (en) * 2016-07-07 2018-01-11 General Electric Company Non-newtonian materials in aircraft engine airfoils
EP3647562A1 (fr) * 2018-11-02 2020-05-06 Rolls-Royce plc Procédé de remplacement d'un module
WO2020120921A1 (fr) * 2018-12-14 2020-06-18 Safran Aircraft Engines Aube de soufflante comprenant un bouclier fin et un raidisseur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. SMITH ET AL.: "Sweep and Dihedral Effects in Axial-Flow Turbomachinery", JOURNAL OF BASIC ENGINEERING, September 1963 (1963-09-01), pages 401 - 414

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094784A1 (fr) * 2021-11-29 2023-06-01 Safran Aircraft Engines Aube pour une hélice non carénée d'une turbomachine

Also Published As

Publication number Publication date
FR3115322A1 (fr) 2022-04-22
FR3115322B1 (fr) 2022-10-14
CN116348661A (zh) 2023-06-27
US20230392502A1 (en) 2023-12-07
EP4232693A1 (fr) 2023-08-30

Similar Documents

Publication Publication Date Title
EP2310690B1 (fr) Pale de rouet de compresseur a raccordement elliptique evolutif
EP3873725B1 (fr) Aube de soufflante d'une turbomachine et une telle soufflante
FR2725240A1 (fr) Ailette en materiau composite, notamment pour des turbomoteurs
EP4115053B1 (fr) Aube de soufflante comprenant un insert de fibres raides
FR3087701A1 (fr) Hybridation des fibres du renfort fibreux d'une aube de soufflante
FR3005684A1 (fr) Pivot de pale d'helice
EP3894666A1 (fr) Aube de soufflante comprenant un bouclier fin et un raidisseur
EP4232693A1 (fr) Aube de soufflante à dièdre nul en tête
FR3087831A1 (fr) Aube comprenant une structure en materiau composite et une piece de raidissement metallique
FR3085415A1 (fr) Aube comprenant une structure en materiau composite et une coque metallique
EP4022173B1 (fr) Hybridation des fibres du renfort fibreux d'une aube de soufflante
EP4256194A1 (fr) Hybridation des fibres du renfort fibreux d'une aube de soufflante
FR3115071A1 (fr) Aube composite et attache de pied d’aube anti-rotation
FR3126639A1 (fr) Aube comprenant une structure en matériau composite et procédé de fabrication associé
CA3009020C (fr) Bouclier de bord d'attaque
WO2023094784A1 (fr) Aube pour une hélice non carénée d'une turbomachine
WO2024079426A1 (fr) Aube a calage variable pour soufflante de turbomachine presentant un gradient de raideur dans le pied
WO2023242523A1 (fr) Aube a structure composite presentant une orientation de sortie de couche amelioree
WO2023094783A1 (fr) Aube pour une soufflante carénée d'une turbomachine
WO2023242524A1 (fr) Aube a structure composite presentant une orientation de sortie de couche amelioree
FR3131732A1 (fr) Ensemble propulsif a helice pour aeronef, comprenant une aube de stator integree a une partie d’extremite amont d’un mat d’accrochage de hauteur reduite
FR3108663A1 (fr) Aube de soufflante rotative de turbomachine, soufflante et turbomachine munies de celle-ci
WO2023242522A1 (fr) Aube a structure composite presentant une orientation de sortie de couche amelioree
WO2022079370A1 (fr) Aube en materiau composite comprenant un bouclier de bord d'attaque, turbomachine comprenant l'aube
FR2942512A1 (fr) Aube pour recepteur de turbomachine, comprenant un pied scinde en deux portions montees l'une sur l'autre.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18032763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021807180

Country of ref document: EP

Effective date: 20230522