WO2022083744A1 - Pdsch传输方法、装置、设备及存储介质 - Google Patents

Pdsch传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022083744A1
WO2022083744A1 PCT/CN2021/125752 CN2021125752W WO2022083744A1 WO 2022083744 A1 WO2022083744 A1 WO 2022083744A1 CN 2021125752 W CN2021125752 W CN 2021125752W WO 2022083744 A1 WO2022083744 A1 WO 2022083744A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
pdcch
transmission
dmrs
coreset
Prior art date
Application number
PCT/CN2021/125752
Other languages
English (en)
French (fr)
Inventor
刘昊
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023524824A priority Critical patent/JP2023546941A/ja
Priority to EP21882156.9A priority patent/EP4228192A4/en
Publication of WO2022083744A1 publication Critical patent/WO2022083744A1/zh
Priority to US18/137,515 priority patent/US20230262701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a PDSCH transmission method, apparatus, device and storage medium.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PDCCH introduces reliability transmission enhancement, for example, when the PDCCH is repeatedly transmitted on different CORESETs or different transmission occasions, the transmission of the PDSCH scheduled by the PDCCH may fail.
  • Embodiments of the present application provide a PDSCH transmission method, apparatus, device, and storage medium, which can ensure successful scheduling and transmission of PDSCH.
  • a PDSCH transmission method applied to a communication device, and the method includes:
  • the PDSCH transmission is performed based on the related configuration information of the PDCCH.
  • a PDSCH transmission apparatus including:
  • the transmission module is configured to perform PDSCH transmission based on the related configuration information of the PDCCH in the case that the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a communication device program or instruction, and the implementation is as described in the first aspect Methods.
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a PDSCH transmission method provided by an embodiment of the present application
  • FIG. 3 is one of schematic diagrams of OFDM symbol arrangement of PDCCH and PDSCH provided by an embodiment of the present application;
  • FIG. 4 is the second schematic diagram of arrangement of OFDM symbols of PDCCH and PDSCH provided by an embodiment of the present application;
  • FIG. 5 is the third schematic diagram of the arrangement of OFDM symbols of PDCCH and PDSCH provided by an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a PDSCH transmission apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, and wearable devices include: wristbands, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 is a schematic flowchart of a PDSCH transmission method provided by an embodiment of the present application. As shown in FIG. 2 , the method includes the following steps:
  • Step 200 In the case that the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission, the PDSCH transmission is performed based on the related configuration information of the PDCCH.
  • PDCCH Physical Downlink Control Channel
  • Physical Downlink Control Channel Physical Downlink Shared Channel
  • the starting position of the time-frequency resources of PDSCH scheduled by DCI format 1_0 needs to be Refer to CORESET (Control Resource Set, control resource set) where DCI (Downlink Control Information) is located; when PDCCH and PDSCH collide and overlap on time-frequency resources, PDSCH needs to perform rate matching; DMRS (Demodulation Reference Signal) of PDSCH , demodulation reference signal) pilot and CORESET collide on time-frequency resources, DMRS symbols need to be moved backward to avoid; and PDCCH and PDSCH scheduling need to keep interval limit in time domain.
  • CORESET Control Resource Set, control resource set
  • PDCCH introduces reliability transmission enhancement
  • the existing PDSCH scheduling method is no longer applicable. Therefore, it can be based on different related configurations of PDCCH. information, flexibly determine the transmission position of the PDSCH on the physical downlink shared channel, and perform PDSCH transmission.
  • monitoring occurrence in this embodiment is relative to the terminal, and correspondingly, relative to the network side, it can be described as a transmission occurrence.
  • the communication device may be a network-side device; when the communication device is a network-side device, in the case that the PDCCH transmission occupies one or more transmission occasions for repeated transmission, the related configuration based on the PDCCH may be used. information, send PDSCH.
  • the communication device may be a terminal device; when the communication device is a terminal device, when the PDCCH transmission occupies one or more transmission occasions for repeated transmission, based on the relevant configuration information of the PDCCH, Receive PDSCH.
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • the method before the transmission of the PDSCH is performed based on the related configuration information of the PDCCH, the method further includes:
  • the PDCCH configuration is associated with multiple CORESETs of different control resource sets CORESET IDs, determine that the PDSCH resource block RB start index is associated with the position of the lowest RB in the specified CORESET in the different CORESETs; or
  • the PDCCH is only allowed to configure a CORESET associated with one CORESET ID, determine the position of the lowest RB in the CORESET associated with the RB start index of the PDSCH ID;
  • the PDSCH is scheduled by the downlink control information DCI format of any common search space type.
  • the UE needs to know the position of the PDCCH in the frequency domain and the position in the time domain to successfully decode the PDCCH. Therefore, the NR system encapsulates information such as the frequency band occupied by the PDCCH in the frequency domain and the number of OFDM symbols occupied in the frequency domain in CORESET; the PDCCH starting OFDM symbol number and the PDCCH monitoring period and other information are encapsulated in the search space Search Space.
  • the possible location of the PDCCH can be determined through CORESET and Search Space.
  • the PDCCH is a downlink control channel, and is mainly used to carry uplink scheduling information and downlink scheduling information.
  • the control information carried on the PDCCH is called DCI (Downlink control information, downlink control information). Since the DCI has many functions, in order to facilitate the distinction, the DCI is generally divided into different types.
  • PDCCH is mainly responsible for the transmission of various key control information in the physical layer, including the frequency domain scheduling information of PDSCH.
  • Type 0 represents discontinuous RB scheduling
  • Type 1 represents continuous RB scheduling.
  • Type0 because the allocation of frequency domain resources has a certain discreteness, partial frequency diversity gain can be obtained.
  • Type 1 the frequency domain scheduling resources can be characterized by the starting RB index and the number of scheduling RBs, so the data bit transmission overhead in the PDCCH can be saved.
  • the scheduling Type0 or Type1 is configured by the high-level parameter resourceAllocation in the PDSCH-Config parameter set, where resourceAllocationType0 represents Type0 scheduling; resourceAllocationType1 represents Type1 scheduling; dynamicSwitch represents dynamic scheduling.
  • the 1bit field in the DCI indicates that the scheduling type is Type0 or Type1 .
  • the frequency domain resource scheduling type can only be configured as Type 1, which can save the DCI bit overhead of the PDCCH.
  • the search space parameter set includes the parameter searchSpaceType, which is used to indicate the search space type and the scheduled DCI Format, wherein the search space type includes: CSS (Common Search Space, public search space) or USS (UE Specific Search Space, UE specific search space) Search space); DCI Format includes 0-0, 0-1, 1-0, 1-1, 2-0, 2-1, 2-2, 2-3.
  • the starting position of the RB number of PDSCH is The position of the lowest index RB of the CORESET where the DCI format 1_0 is located, rather than the position of the lowest index RB of the reference BWP.
  • the PDCCH adopts reliability transmission enhancement
  • the PDCCH is associated with different CORESET IDs
  • the PDCCH is sent in repetition mode, different repetition timings are associated with different search spaces, and different search spaces are associated with different CORESET IDs, it can be considered that the PDCCH is Different CORESET IDs are associated, so the lowest RB index corresponding to the CORESET ID to be associated with the RB index of the scheduled PDSCH can be directly specified.
  • the PDCCH can be any type of common search space
  • the network configures the CSS to associate with multiple CORESETs, and different CORESETs are configured with different CORESET IDs, the PDSCH
  • the starting position of the RB numbering can be pre-specified.
  • the starting position of the numbering of the RBs of the PDSCH can be specified with reference to the position of the lowest RB in the CORESET in the smallest CORESET ID among the multiple CORESETs associated with the PDCCH;
  • the starting position of the numbering of the RBs of the PDSCH may be specified with reference to the position of the lowest RB among all the associated CORESETs.
  • PDCCH may only be allowed to configure a CORESET associated with one CORESET ID, and the PDCCH may be of any type of common search space CSS (common search space), that is, the CSS can only be associated with A CORESET ID, then the position of the lowest RB in the CORESET of the unique CORESET ID can be determined by the RB start index of the PDSCH scheduled by the DCI format of the CSS.
  • common search space CSS common search space
  • the method further includes:
  • the transmission of the PDSCH does not occupy the time-frequency resources of the collision, and the time-frequency resources are the time-frequency resources of all the collided PDCCH transmission opportunities.
  • the detected PDCCH transmission timing is determined; or
  • the time-frequency resource of the collision PDSCH is transmitted on it.
  • the time-frequency resource in which the overlap occurs is not used for PDSCH transmission.
  • the UE when the PDCCH adopts reliability transmission enhancement, the UE may only successfully detect a part of the PDCCH, and may perform PDSCH reception and detection.
  • the time-frequency resources occupied by the PDCCH that is not successfully detected may also overlap with the PDSCH. Therefore, in order to successfully perform PDSCH transmission, it is necessary to further determine the time-frequency resources occupied by the PDCCH that is not successfully detected.
  • all collided PDCCH transmission opportunities can be determined based on the preset rules and successfully detected PDCCH transmission opportunities, and then all collided time-frequency resources can be determined. Occupy all time-frequency resources that collide.
  • the UE may identify M1 PDCCH transmission candidates based on a preset rule by only successfully monitoring M2 (M2 ⁇ M1) PDCCH transmission candidates.
  • the network side may notify the UE of this preset rule through signaling transmission in advance.
  • the PDSCH can adopt a specific transmission mode, in which the PDSCH is not related to the PDCCH that schedules the PDSCH. candidates overlap.
  • the PDCCH is sent by repetition, and occupies different sending occasions, but the association between these sending occasions is not notified to the UE. If the UE only successfully detects one of the transmission occasions, it cannot know the positions of the other transmission occasions, nor whether the other transmission occasions collide with the PDSCH. Therefore, in order to avoid this problem, when the network side transmits the PDCCH and the scheduled PDSCH, the transmission can be performed under the condition of ensuring that there is no collision between the two.
  • a PDCCH transmission opportunity and a PDSCH transmission opportunity collide
  • the TCI (Transmission Configuration Indicator, transmission configuration indicator) state activated by the CORESET associated with the PDCCH and the PDSCH transmission opportunity indicate
  • the TCI state is not in the same group, the PDSCH can be transmitted on the collided time-frequency resources.
  • the configuration of the group pre-indicates the PDSCH through high-layer parameters.
  • the UE when the UE communicates with two base stations or two TRPs, one PDCCH transmission occasion is sent on the first TRP, and one PDSCH transmission occasion is sent on the second TRP.
  • the base station may notify a TCI state group, indicating that the interference between the transmitted signals associated with different TCI states in the group can be ignored. Then, when the UE receives the PDCCH, it can determine that the interference from the PDSCH on the collided resource can be ignored; when the UE receives the PDSCH, it can determine that the interference from the PDCCH on the collided resource can be ignored. Therefore, there is no need to perform avoidance behavior between the two, that is, the PDSCH can transmit the PDSCH signal on the collided time-frequency resource.
  • the preset rule is determined based on an association relationship between successfully detected PDCCH transmission occasions and all collided PDCCH transmission occasions, and the association relationship is determined based on relevant configuration information of the PDCCH.
  • the preset rule may be obtained by the UE according to the relevant configuration of the PDCCH, specifically the correlation between the successfully detected PDCCH transmission occasions and all collided PDCCH transmission occasions, and based on this correlation, according to the successful detection
  • the PDCCH transmission timings of all the collided PDCCH transmission timings are determined.
  • the method further includes:
  • the PDSCH is scheduled under the condition that the preset gap satisfies the reporting capability of the UE.
  • the PDSCH time domain resource allocation parameter PDSCH-TimeDomainResourceAllocation is carried in the RRC signaling PDSCH-Config and PDSCH-ConfigCommon.
  • K0 represents the offset slot size between the slot where the current DCI is located and the slot where the indicated PDSCH is located.
  • the mappingType indicates that the allocation type used is typeA or typeB
  • startSymbolAndLength indicates a SLIV value, from which the starting OFDM symbol position S of the slot where the PDSCH is located and several consecutive OFDM symbols L can be deduced.
  • FIG. 3 is one schematic diagram of the OFDM symbol arrangement of the PDCCH and PDSCH provided by the embodiment of the present application
  • FIG. 4 is the second schematic diagram of the OFDM symbol arrangement of the PDCCH and PDSCH provided by the embodiment of the present application, as shown in FIGS. 3 and 4 , based on the relevant configuration information of the PDCCH, when it is determined that the PDSCH scheduled by the PDCCH is the first mapping mode, the first starting OFDM symbol of the PDCCH must at least not be behind the first starting OFDM symbol of the PDSCH.
  • Figure 5 is the third schematic diagram of the arrangement of OFDM symbols of PDCCH and PDSCH provided by the embodiment of the present application.
  • PDCCH is enhanced by TDM time division, as shown in Figure 5, the first PDCCH repetition can be guaranteed not to fall within the PDSCH at least. After the first starting OFDM symbol, but the second PDCCH repetition and scheduled PDSCH are not guaranteed.
  • the PDCCH and the Transmission and scheduling of PDSCH in order to successfully perform PDSCH transmission, it may be set that the PDCCH and the Transmission and scheduling of PDSCH; or setting: PDCCH and PDSCH can be realized when the first starting OFDM symbol that satisfies the last transmission opportunity occupied by PDCCH in the time domain is not after the first starting OFDM symbol of PDSCH or setting: the transmission and scheduling of the PDCCH and PDSCH can be realized when the preset gap is satisfied to meet the reporting capability of the UE.
  • the first mapping manner may be a typeB mapping manner.
  • the first starting OFDM symbol of the PDCCH can be set to ensure that at least the first starting OFDM symbol of the PDSCH does not fall behind the first starting OFDM symbol of the PDSCH, and the transmission and scheduling of the PDCCH and the PDSCH can be realized.
  • the preset gap is an interval between two PDCCH transmission occasions, or the preset gap is an interval between a PDSCH transmission occasion and the second PDCCH transmission occasion.
  • the preset gap may be an interval between two PDCCH transmission occasions PDCCH transmission occurrence;
  • the preset gap may be the interval between the PDSCH transmission occasion and the second PDCCH transmission occasion;
  • the gap between the first OFDM symbol occupied by the PDSCH transmission occasion and the first OFDM symbol occupied by the second PDCCH transmission occasion For example, the gap between the first OFDM symbol occupied by the PDSCH transmission occasion and the first OFDM symbol occupied by the second PDCCH transmission occasion.
  • the Methods also include:
  • the index of the CORESET pool configured by the CORESET that collides with the frontload DMRS is different from the index of the CORESET pool of the CORESET associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS, the index of the CORESET pool is not moved backward. the aforementioned DMRS; or
  • the CORESET-activated TCI state that collides with the frontload DMRS and the CORESET-activated TCI state associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS are not in the same group, or, When the TCI state activated by the CORESET in which the frontload DMRS collides and the TCI state indicated by the PDSCH transmission timing for scheduling the frontload DMRS are not in a group, the frontload DMRS is not moved backward, otherwise, all The front-loaded DMRS until the front-loaded DMRS does not collide with any CORESET.
  • the front-loaded DMRS configured on the PDSCH that is, the front-loaded DM-RS
  • collides with any CORESET configured for the UE in order to successfully perform the PDSCH transmission, the front-loaded DM-RS symbol can be moved backward. , until the front-loaded DM-RS no longer collides with any CORESET.
  • the front-loaded DM can be moved or not moved. -RS.
  • the front-loaded DMRS can be directly moved backward until the front-loaded DMRS does not collide with any CORESET;
  • the index of the CORESET pool configured by the CORESET that collides with the frontload DMRS is different from the index of the CORESET pool associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS, the index of the CORESET pool may not be reversed.
  • the preload DMRS may not be moved backwards, otherwise, The front-loaded DMRS may be moved backward until the front-loaded DMRS does not collide with any CORESET.
  • the TCI state activated by the CORESET that collides with the front loaded DMRS and the activated TCI state of the CORESET associated with the PDCCH that schedules the PDSCH transmission occasion of the front loaded DMRS are not in the same group, or the front loaded DMRS is scheduled.
  • the front loaded DMRS will not be shifted backward. Otherwise, the front loaded DMRS can be shifted back until it does not collide with CORESET.
  • the method further includes:
  • the additional DMRS corresponding to the preload DMRS is moved backward, wherein the preload DMRS and the corresponding additional DMRS maintain the same interval.
  • the corresponding additional DMRS that is, the additional-loaded DMRS
  • the interval remains the same.
  • the method further includes:
  • the additional DMRS corresponding to the front-loaded DMRS is moved backward until no collision occurs with any CORESET.
  • the additional DMRS that moves synchronously may collide with the CORESET , so the additional DMRS can continue to be moved until it does not collide with any CORESET, during which the front-loaded DMRS can no longer move.
  • the method further includes:
  • the additional DMRS moves beyond the configured time domain symbols of the PDSCH, the additional DMRS is discarded.
  • the synchronously moved additional DMRS may move beyond the The configured time domain symbols of the PDSCH, therefore, the additional DMRS beyond the configured time domain symbols of the PDSCH can be directly discarded.
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • the execution subject may be a PDSCH transmission apparatus, or a control module in the PDSCH transmission apparatus for executing the PDSCH transmission method.
  • the PDSCH transmission device provided by the embodiments of the present application is described by taking the PDSCH transmission method performed by the PDSCH transmission device as an example.
  • FIG. 6 is a schematic structural diagram of a PDSCH transmission apparatus provided by an embodiment of the present application. As shown in FIG. 6 , the apparatus includes: a transmission module 610, wherein:
  • the transmission module 610 is configured to perform PDSCH transmission based on the related configuration information of the PDCCH when the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission.
  • the PDSCH transmission apparatus performs transmission of the physical downlink shared channel PDSCH through the transmission module 610 based on the related configuration information of the PDCCH.
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • the device further includes:
  • the first determination module is configured to determine that the PDSCH resource block RB start index is associated with the CORESETs in the specified CORESETs in the different CORESETs when the PDCCH configuration is associated with a plurality of CORESETs with different control resource sets CORESET IDs. the position of the lowest RB; or
  • a second determining module configured to determine the position of the lowest RB in the CORESET associated with the RB start index of the PDSCH in the case that the PDCCH is only allowed to configure the CORESET associated with one CORESET ID;
  • the PDSCH is scheduled by the downlink control information DCI format of any common search space type.
  • the apparatus further includes:
  • the first transmission module is used to transmit the time-frequency resources that the PDSCH does not occupy collided with, the time-frequency resources are the time-frequency resources of all the collided PDCCH transmission opportunities, and the all collided PDCCH transmission opportunities are the UE. Determined according to the PDCCH transmission timing successfully detected by the UE based on a preset rule; or
  • the second transmission module is configured to collide with a PDCCH transmission occasion and a PDSCH transmission occasion, and the TCI state activated by the CORESET associated with the PDCCH and the TCI state indicated by the PDSCH transmission occasion are not in the same group. , the PDSCH is transmitted on the collided time-frequency resources.
  • the preset rule is determined based on an association relationship between successfully detected PDCCH transmission occasions and all collided PDCCH transmission occasions, and the association relationship is determined based on relevant configuration information of the PDCCH.
  • the apparatus further includes:
  • a first scheduling module configured to schedule the PDSCH when the first starting OFDM symbol of the PDCCH is not after the first starting OFDM symbol of the PDSCH;
  • a second scheduling module configured to schedule the PDSCH when the first starting OFDM symbol of the last transmission opportunity occupied by the PDCCH in the time domain is not after the first starting OFDM symbol of the PDSCH ;
  • the third scheduling module is configured to schedule the PDSCH under the condition that the preset gap satisfies the reporting capability of the UE.
  • the preset gap is an interval between two PDCCH transmission occasions, or the preset gap is an interval between a PDSCH transmission occasion and the second PDCCH transmission occasion.
  • the apparatus further includes:
  • a first moving module configured to move the front-loaded DMRS backwards until the front-loaded DMRS does not collide with any CORESET;
  • the second movement module is used for the case where the index of the CORESET pool configured by the CORESET that collides with the frontload DMRS is different from the index of the CORESET pool associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS down, do not move the front-loaded DMRS backwards; or
  • a third mobile module configured to be used when the CORESET-activated TCI state that collides with the frontload DMRS and the CORESET-activated TCI state associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS are not in a group , or, when the TCI state activated by CORESET that collides with the frontload DMRS and the TCI state indicated by the PDSCH transmission opportunity scheduling the frontload DMRS are not in a group, do not move the frontload DMRS backwards , otherwise, move the front-loaded DMRS backwards until the front-loaded DMRS does not collide with any CORESET.
  • the device further includes:
  • the fourth moving module is configured to move the additional DMRS corresponding to the front-load DMRS backward after moving the front-load DMRS backward, wherein the front-load DMRS and the corresponding additional DMRS keep the same interval.
  • the device further includes:
  • a fifth moving module configured to move the additional DMRS corresponding to the front-loaded DMRS backwards in the case of collision between the additional DMRS and the CORESET after moving the additional DMRS corresponding to the front-loaded DMRS backwards, Until it does not collide with any CORESET.
  • the device further includes:
  • a discarding module configured to discard the additional DMRS after moving the additional DMRS corresponding to the front-loaded DMRS backward, in the case that the additional DMRS is moved beyond the configured time domain symbols of the PDSCH.
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • the PDSCH transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the PDSCH transmission device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the PDSCH transmission apparatus provided in the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a communication device 700 includes a processor 701 and a memory 702, which are stored in the memory 702 and can be processed in the The program or instruction running on the processor 701, for example, when the communication device 700 is a terminal, when the program or instruction is executed by the processor 701, each process of the above-mentioned embodiment of the transmission method of the synchronization signal block can be realized, and the same technical effect can be achieved. .
  • the communication device 700 is a network-side device
  • the program or instruction is executed by the processor 701
  • each process of the above-mentioned embodiment of the synchronization signal block transmission method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here. .
  • FIG. 8 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • the network side device 800 includes: an antenna 801 , a radio frequency device 802 , and a baseband device 803 .
  • the antenna 801 is connected to the radio frequency device 802 .
  • the radio frequency device 802 receives information through the antenna 801, and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802
  • the radio frequency device 802 processes the received information and sends it out through the antenna 801 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 803 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 803 .
  • the baseband apparatus 803 includes a processor 804 and a memory 805 .
  • the baseband device 803 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 804 , which is connected to the memory 805 to call the program in the memory 805 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 803 may further include a network interface 806 for exchanging information with the radio frequency device 802, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 805 and run on the processor 804, and the processor 804 invokes the instructions or programs in the memory 805 to execute the modules shown in FIG. 6 .
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, and a processor 910 and other components .
  • the terminal 900 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 910 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 904 may include a graphics processor (Graphics Processing Unit, GPU) 9041 and a microphone 9042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072 .
  • the touch panel 9071 is also called a touch screen.
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 901 receives the downlink data from the network side device, and then processes it to the processor 910; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 909 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 910.
  • the processor 910 is configured to perform PDSCH transmission based on the related configuration information of the PDCCH in the case that the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission.
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • the processor is also used to,
  • the PDCCH configuration is associated with multiple CORESETs of different control resource sets CORESET IDs, determine that the PDSCH resource block RB start index is associated with the position of the lowest RB in the specified CORESET in the different CORESETs; or
  • the PDCCH is only allowed to configure a CORESET associated with one CORESET ID, determine the position of the lowest RB in the CORESET associated with the RB start index of the PDSCH ID;
  • the PDSCH is scheduled by the downlink control information DCI format of any common search space type.
  • the processor is further configured to, in the case where the PDCCH collides with the time-frequency resources of its scheduled PDSCH, transmit the PDSCH that does not occupy the collided time-frequency resources, and the time-frequency resources are all the time-frequency resources that have collided.
  • the time-frequency resources of the PDCCH transmission occasions, the all collided PDCCH transmission occasions are determined by the UE according to the PDCCH transmission occasions successfully detected by the UE based on preset rules; or
  • the time-frequency resource of the collision PDSCH is transmitted on it.
  • the preset rule is determined based on an association relationship between successfully detected PDCCH transmission occasions and all collided PDCCH transmission occasions, and the association relationship is determined based on relevant configuration information of the PDCCH.
  • the processor is further configured to, in the case where the PDSCH scheduled by the PDCCH is the first mapping manner, the first starting OFDM symbol of the PDCCH is not the first starting OFDM symbol of the PDSCH In the latter case, schedule the PDSCH; or
  • the PDSCH is scheduled under the condition that the preset gap satisfies the reporting capability of the UE.
  • the preset gap is an interval between two PDCCH transmission occasions, or the preset gap is an interval between a PDSCH transmission occasion and the second PDCCH transmission occasion.
  • the processor is further configured to move the preload DMRS backwards until all the preload DMRSs collide with any one of the CORESETs in the PDSCH transmission occasions included in the PDSCH scheduled by the PDCCH.
  • the aforementioned preload DMRS does not collide with either CORESET; or
  • the index of the CORESET pool configured by the CORESET that collides with the frontload DMRS is different from the index of the CORESET pool of the CORESET associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS, the index of the CORESET pool is not moved backward. the aforementioned DMRS; or
  • the CORESET-activated TCI state associated with the CORESET-activated TCI state that collides with the frontload DMRS and the CORESET-activated TCI state associated with the PDCCH that schedules the PDSCH transmission occasion of the frontload DMRS are not in the same group, or,
  • the frontload DMRS is not moved backward, otherwise, all The front-loaded DMRS until the front-loaded DMRS does not collide with any CORESET.
  • the processor is further configured to, after moving the preload DMRS backwards, move the additional DMRS corresponding to the preload DMRS backwards, wherein the preload DMRS and the corresponding additional DMRS keep the same interval .
  • the processor is further configured to, after moving the additional DMRS corresponding to the front-loaded DMRS backwards, in the case that the additional DMRS and the CORESET collide, move the additional DMRS corresponding to the front-loaded DMRS backwards. DMRS until it does not collide with any CORESET.
  • the processor is further configured to, after moving the additional DMRS corresponding to the preload DMRS backwards, discard the additional DMRS in the case that the additional DMRS is moved beyond the configured time domain symbols of the PDSCH .
  • the PDCCH transmission of the physical downlink control channel occupies one or more transmission occasions for repeated transmission
  • different methods are adopted to determine the transmission position of the PDSCH based on different relevant configuration information of the PDCCH, and then schedule and Transmitting the PDSCH can better adapt to the situation of enhanced reliability transmission introduced by the PDCCH, and ensure the successful scheduling and transmission of the PDSCH.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing PDSCH transmission method embodiment can be achieved, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above PDSCH transmission method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above PDSCH transmission method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种PDSCH传输方法、装置、设备及存储介质,所述方法包括:在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行物理下行共享信道PDSCH的传输。

Description

PDSCH传输方法、装置、设备及存储介质
本申请要求于2020年10月23日提交国家知识产权局、申请号为202011149238.2、申请名称为“PDSCH传输方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种PDSCH传输方法、装置、设备及存储介质。
背景技术
PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输有密切相关关系。
在PDCCH引入可靠性传输增强的情况下,例如PDCCH在不同的CORESET或者不同的传输时机上重复发送时,被PDCCH所调度的PDSCH的传输可能失败。
因此,如何提出一种适应于PDCCH引入可靠性传输增强的情况下的PDSCH传输方法,成为亟需解决的问题。
发明内容
本申请实施例提供一种PDSCH传输方法、装置、设备及存储介质,能够保证PDSCH的成功调度与传输。
第一方面,提供了一种PDSCH传输方法,应用于通信设备,该方法包括:
在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
第二方面,提供了一种PDSCH传输装置,包括:
传输模块,用于在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
第三方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行通信设备程序或指令,实现如第一方面所述的方法。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
附图说明
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的PDSCH传输方法的流程示意图;
图3是本申请实施例提供的PDCCH和PDSCH的OFDM符号排列示意图之一;
图4是本申请实施例提供的PDCCH和PDSCH的OFDM符号排列示意图之二;
图5是本申请实施例提供的PDCCH和PDSCH的OFDM符号排列示意图之三;
图6是本申请实施例提供的PDSCH传输装置的结构示意图;
图7是本申请实施例提供的一种通信设备的结构示意图;
图8是本申请实施例提供的一种网络侧设备的硬件结构示意图;
图9是本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1是本申请实施例提供的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、 眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的PDSCH传输方法及装置进行详细地说明。
图2是本申请实施例提供的PDSCH传输方法的流程示意图,如图2所示,该方法包括如下步骤:
步骤200,在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
具体地,PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输有密切相关关系,例如DCI format 1_0调度的PDSCH的时频资源起始位置需要参考DCI(Downlink Control Information,下行控制信息)所在的CORESET(Control Resource Set,控制资源集合);PDCCH和PDSCH在时频资源上发生碰撞overlap时,PDSCH要做速率匹配;PDSCH的DMRS(Demodulation Reference Signal,解调参考信号)导频和CORESET在时频资源上冲突时,DMRS符号需要往后移避开;以及PDCCH和PDSCH调度在时域上需要保持间隔限制。
但是当PDCCH引入可靠性传输增强时,例如PDCCH在不同的CORESET或者不同的监听时机(monitoring occasion)上重复发送时,现有的PDSCH调度办法不再适用,因此,可以基于PDCCH的不同的相关配置信息,灵活确定物理下行共享信道PDSCH的传输位置,执行PDSCH的传输。
可以理解的是,本实施例中出现的监听时机monitoring occasion是相对于终端来说的,对应地,相对于网络侧来说可以描述为传输时机(transmission occasion)。
可以理解的是,在本实施例中,通信设备可以是网络侧设备;当通信设备是网络侧设备时,可以在PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,发送PDSCH。
可以理解的是,在本实施例中,通信设备可以是终端设备;当通信设备是终端设备时,可以在PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,接收PDSCH。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
可选地,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法 还包括:
在所述PDCCH配置关联了多个不同的控制资源集合CORESET ID的CORESET的情况下,确定PDSCH的资源块RB起始索引关联所述不同的CORESET中的指定CORESET中的最低RB的位置;或者
在所述PDCCH仅被允许配置关联一个CORESET ID的CORESET的情况下,确定PDSCH的RB起始索引关联所述一个CORESET ID的CORESET中的最低RB的位置;
其中,所述PDSCH被任意一个公共搜索空间类型的下行控制信息DCI format调度。
具体地,在NR系统中,UE要知道PDCCH在频域上的位置和时域上的位置才能成功解码PDCCH。因此NR系统将PDCCH频域上占据的频段及时域上占用的OFDM符号数等信息封装在CORESET中;将PDCCH起始OFDM符号编号以及PDCCH监测周期等信息封装在搜索空间Search Space中。通过CORESET和Search Space可以确定出PDCCH可能所在的位置。
具体地,PDCCH即下行控制信道,主要用来承载上行调度信息和下行调度信息。承载在PDCCH上的控制信息称为DCI(Downlink control information,下行控制信息),由于DCI的功能较多,为了方便区分,一般把DCI分为不同的类型。在5G NR中,PDCCH主要负责物理层各种关键控制信息的传递,其中就包括PDSCH的频域调度信息。
具体地,PDSCH在频域分配方式分为Type 0和Type 1两种,Type0表示非连续RB调度,Type1表示连续RB调度。对于Type0,因为频域资源的分配具有一定的离散性,所以可以获得部分频率分集增益。对于Type1,频域调度资源可以通过起始RB索引和调度RB数来表征,因此可以节约PDCCH中的数据比特传输开销。
具体地,调度Type0或Type1是通过PDSCH-Config参数集中的高层参数resourceAllocation配置的,其中resourceAllocationType0表示Type0调度;resourceAllocationType1表示Type1调度;dynamicSwitch表示动态调度,具体根据DCI中1bit字段指示调度类型为Type0或者Type1。
需要注意的是,当PDSCH是通过DCI 1-0来调度时,频域资源调度类型只能配置为Type1,可以节约PDCCH的DCI比特开销。
具体地,搜索空间参数集中包括参数searchSpaceType,用于指示搜索空间类型以及调度的DCI Format,其中,搜索空间类型包括:CSS(Common Search Space,公共搜索空间)或者USS(UE Specific Search Space,UE特定搜索空间);DCI Format包括0-0,0-1,1-0,1-1,2-0,2-1,2-2,2-3。
一般来说,当PDSCH被任意一个公共搜索空间(common search space)类型的DCI format 1_0调度时,不管PDSCH在哪个激活的带宽部分(bandwidth part,BWP)带宽上,PDSCH的RB编号起始位置为该DCI format 1_0所在的CORESET的最低索引RB的位置,而不是参考BWP的最低索引RB的位置。
本实施例中,PDCCH采用可靠性传输增强的情况下,并且该PDCCH关联了不同的CORESET ID,为了成功地执行PDSCH的传输,可以直接指定调度的PDSCH的 RB索引要关联的CORESET ID对应的最低RB索引。
例如,基于某一个PDCCH的相关配置信息,可以确定该PDCCH采用repetition重复方式发送,不同的repetition时机关联了不同的搜索空间search space,不同的search space关联了不同的CORESET ID,既可以认为该PDCCH关联了不同的CORESET ID,因此可以直接指定调度的PDSCH的RB索引要关联的CORESET ID对应的最低RB索引。
因此,当PDSCH被PDCCH DCI format1_0调度,并且该PDCCH可以是任意一个公共搜索空间(common search space)的类型,如果网络配置了该CSS关联了多个CORESETs,不同CORESET配置不同的CORESET ID,则PDSCH的RB的编号起始位置可以预先指定。
例如,可以指定PDSCH的RB的编号起始位置参考PDCCH关联的多个CORESETs中最小的CORESET ID中的CORESET中的最低RB的位置;
例如,可以指定PDSCH的RB的编号起始位置参考关联的所有CORESETs中最低RB的位置。
具体地,为了成功地执行PDSCH的传输,PDCCH还可以仅被允许配置关联一个CORESET ID的CORESET,且该PDCCH可以是任意一个公共搜索空间CSS(common search space)的类型,即该CSS只能关联一个CORESET ID,则可以确定所述被该CSS的DCI format调度的PDSCH的RB起始索引关联这唯一的一个CORESET ID的CORESET中的最低RB的位置。
可选地,在所述PDCCH与其调度的PDSCH的时频资源发生碰撞的情况下,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
传输所述PDSCH不占用碰撞的时频资源,所述时频资源是所有发生了碰撞的PDCCH传输时机的时频资源,所述所有发生了碰撞的PDCCH传输时机是UE基于预设规则根据UE成功检测的PDCCH传输时机确定的;或者
在一个PDCCH传输时机和一个PDSCH传输时机发生碰撞,且所述PDCCH关联的CORESET所激活的TCI state和所述PDSCH传输时机指示的TCI state不在同一个组内的情况下,在碰撞的时频资源上传输PDSCH。
具体地,一般来说,如果一个PDSCH分配的时频资源和调度该PDSCH的PDCCH发生碰撞overlap时,则发生overlap的时频资源不用于PDSCH传输。
本实施例中,PDCCH采用可靠性传输增强的情况下,UE可能只成功检测到部分PDCCH,就可以执行PDSCH的接收和检测。而没有成功检测的PDCCH占用的时频资源也可能和PDSCH发生overlap,因此,为了成功地执行PDSCH的传输,需要进一步确定没有成功检测的PDCCH占用的时频资源。
因此,本实施例中,可以基于预设规则,根据成功检测的PDCCH传输时机,确定所有的发生了碰撞的PDCCH传输时机,进而可以确定所有发生碰撞的时频资源,即可以在传输PDSCH时不占用所有发生碰撞的时频资源。
例如,当PDCCH调度PDSCH传输时,其中该PDCCH可以由M(M>=1)个候选PDCCH即PDCCH candidates组成,该PDSCH可以由N(N>=1)个传输相同TB块的PDSCH传输时机PDSCH transmission occasions组成。如果UE识别出 M1(M>=M1>=1)个PDCCH transmission candidates,并且M1个PDCCH占用的时频资源和N1(N>=N1>=1)个传输相同TB块的PDSCH transmission occasion发生overlap时,则该PDSCH传输不占用overlap的时频资源。
其中,UE可以通过只成功监测到的M2(M2<M1)个PDCCH transmission candidates基于预设规则识别出M1个PDCCH transmission candidates。
其中,网络侧可以预先通过信令传输通知UE这一预设规则。
具体地,如果网络侧并未预先告知这一预设规则,或者并未预先设置这一规则,则PDSCH可以采用一种特定的传输方式,这种特定传输方式中PDSCH不与调度该PDSCH的PDCCH candidates overlap。
具体地,PDCCH采用repetition发送,并占用了不同的发送时机occasion,但是这些发送时机的关联关系并没有通知给UE。如果UE只成功检测出其中的一个发送时机,无法获知其他发送时机的位置,也无法获知其他发送时机是否和PDSCH是否发生碰撞。因此为了避免这个问题,网络侧在发送PDCCH和调度的PDSCH时,可以在保证两者之间不发生碰撞的情况下进行传输。
具体地,本实施例中,在一个PDCCH传输时机和一个PDSCH传输时机发生碰撞,且所述PDCCH关联的CORESET所激活的TCI(Transmission Configuration Indicator,传输配置指示)state和所述PDSCH传输时机指示的TCI state不在同一个组内的情况下,可以在碰撞的时频资源上传输PDSCH。
具体地,本实施例中,组的配置通过高层参数预先指示PDSCH。
例如,UE和两个基站或者两个TRP通信,其中一个PDCCH传输时机在第一个TRP上发送,一个PDSCH传输时机在第二个TRP上发送。基站可以通知一个TCI state组,表示组内的不同TCI state关联的发送信号之间的干扰可以忽略。那么UE接收PDCCH时,可以确定碰撞资源上来自PDSCH的干扰可以忽略;UE接收PDSCH时,可以确定碰撞资源上的来自PDCCH干扰可以忽略。因此两者之间不用执行避开的行为,即PDSCH可以在碰撞时频资源上发送PDSCH信号。
可选地,所述预设规则是基于成功检测的PDCCH传输时机和所有发生碰撞的PDCCH传输时机之间的关联关系确定的,所述关联关系基于所述PDCCH的相关配置信息确定。
具体地,预设规则可以是UE根据PDCCH的相关配置获得的,具体为成功检测的PDCCH传输时机和所有发生碰撞的PDCCH传输时机之间的关联关系,并可以基于这一关联关系,根据成功检测的PDCCH传输时机,确定所有的发生了碰撞的PDCCH传输时机。
可选地,在所述PDCCH调度的PDSCH是第一映射方式的情况下,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
在所述PDCCH的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
在所述PDCCH在时域上占用的最后一个传输时机的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
在预设间隙满足UE上报的能力的情况下,调度所述PDSCH。
具体地,PDSCH时域资源分配参数PDSCH-TimeDomainResourceAllocation在RRC信令PDSCH-Config和PDSCH-ConfigCommon里面携带。主要有三个参数,k0,mappingType和startSymbolAndLength。其中,K0表示当前DCI所在的slot与指示的PDSCH所在slot的偏移slot大小。mappingType指示采用的分配类型为typeA或者typeB,startSymbolAndLength指示一个SLIV值,由该值可推出PDSCH所在slot的起始OFDM symbol位置S以及占用几个连续的OFDM符号L。
具体地,图3是本申请实施例提供的PDCCH和PDSCH的OFDM符号排列示意图之一,图4是本申请实施例提供的PDCCH和PDSCH的OFDM符号排列示意图之二,如图3和4所示,基于PDCCH的相关配置信息,确定所述PDCCH调度的PDSCH是第一映射方式的情况下,PDCCH的第一个起始OFDM符号要保证至少不能落在PDSCH的第一个起始OFDM符号后面。
图5是本申请实施例提供的PDCCH和PDSCH的OFDM符号排列示意图之三,当PDCCH通过TDM时分方式引入repetition增强时,如图5所示,第一个PDCCH repetition可以保证至少不落在PDSCH的第一个起始OFDM符号后面,但是第二个PDCCH repetition和调度的PDSCH无法保证。
因此,本实施例中,为了成功地执行PDSCH的传输,可以设置:满足PDCCH的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,即可实现PDCCH和PDSCH的传输和调度;或设置:满足PDCCH在时域上占用的最后一个传输时机的第一个起始OFDM符号不在PDSCH的第一个起始OFDM符号之后的情况下,即可实现PDCCH和PDSCH的传输和调度;或设置:满足预设间隙用于满足UE上报的能力的情况下,即可实现PDCCH和PDSCH的传输和调度。
本实施例中,第一映射方式可以是typeB的映射方式。
例如,当PDCCH调度的PDSCH是typeB的映射方式时,该PDCCH可以由M(M>=1)个PDCCH candidates组成,该PDSCH可以由N(N>=1)个传输相同TB块的PDSCH transmission occasions组成。
则可以设置该PDCCH的第一个起始OFDM符号保证至少不落在该PDSCH的第一个起始OFDM符号后面的情况下,即可实现PDCCH和PDSCH的传输和调度。
还可以设置该PDCCH在时域上占用的最后一个monitoring occasion的第一个起始OFDM符号保证至少不落在该PDSCH的第一个起始OFDM符号后面,即可实现PDCCH和PDSCH的传输和调度。
还可以在一个PDSCH transmission occasion和两个PDCCH transmission occasion发生重叠时间上overlap,设置一个预设间隙gap满足UE上报的能力,即可实现PDCCH和PDSCH的传输和调度。
可选地,所述预设间隙为两个PDCCH传输时机之间的间隔,或,所述预设间隙为PDSCH传输时机和第二个PDCCH传输时机之间的间隔。
具体地,预设间隙可以是两个PDCCH传输时机PDCCH transmission occasion之间的间隔;
例如第一PDCCH transmission occasion占用的最后一个OFDM符号OFDM symbol和第二PDCCH transmission occasion占用的第一个OFDM symbol之间的间隔gap;
具体地,预设间隙可以是PDSCH transmission occasion和第二个PDCCH transmission occasion之间的间隔;
例如PDSCH transmission occasion占用的第一个OFDM symbol和第二PDCCH transmission occasion占用的第一个OFDM symbol之间的gap。
可选地,在所述PDCCH调度的PDSCH包括的PDSCH传输时机中的任一个前载DMRS和任一个CORESET发生碰撞的情况下,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞;或
在与所述前载DMRS发生碰撞的CORESET配置的CORESET池的索引和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET的CORESET池的索引不相同的情况下,不向后移动所述前载DMRS;或
在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET激活的TCI state不在一个组内的情况下,或者,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机指示的TCI state不在一个组内的情况下,不向后移动所述前载DMRS,否则,向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞。
一般来说,如果PDSCH配置的前载DMRS即front-loaded DM-RS和为该UE配置的任一CORESET发生碰撞时,为了成功地执行PDSCH的传输,可以往后移动front-loaded DM-RS符号,直到front-loaded DM-RS不再和任一CORESET发生碰撞。
本实施例中,如果front-loaded DM-RS关联的TCI state(TCI状态)和CORESET关联的TCI state不是QCL关系,或者两者之间的互相干扰很小时,可以移动或不移动front-loaded DM-RS。
具体地,可以直接向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞;
具体地,在与前载DMRS发生碰撞的CORESET配置的CORESET池的索引和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET的CORESET池的索引不相同的情况下,可以不向后移动前载DMRS;
具体地,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET激活的TCI state不在一个组内的情况下,或者,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机指示的TCI state不在一个组内的情况下,可以不向后移动所述前载DMRS,否则,可以向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞。
例如,当PDCCH调度一个PDSCH传输,其中该PDSCH可以由N(N>=1)个传输相同TB块的PDSCH transmission occasions组成。如果一些PDSCH transmission occasions中的front loaded DMRS和配置的CORESET发生碰撞时,可以将该front loaded DMRS往后shift直到不和CORESET发生碰撞。
还可以在与该front loaded DMRS发生碰撞的CORESET配置的CORESET pool index和调度该front loaded DMRS的PDSCH transmission occasion的PDCCH所关联的CORESET的CORESET pool index不相同的情况下,不往后shift该front loaded DMRS。
还可以在与该front loaded DMRS发生碰撞的CORESET激活的TCI state和调度该front loaded DMRS的PDSCH transmission occasion的PDCCH所关联的CORESET的激活的TCI state不在一个group内的情况下,或者和调度该front loaded DMRS的PDSCH transmission occasion指示的TCI state不在一个group内时,不往后shift该front loaded DMRS。否则,可以将该front loaded DMRS往后shift直到不和CORESET发生碰撞。
可选地,所述向后移动所述前载DMRS后,还包括:
向后移动所述前载DMRS对应的附加DMRS,其中所述前载DMRS和所述对应的附加DMRS保持相同的间隔。
具体地,在向后移动前载DMRS即front loaded DMRS时,可以同步移动对应的附加DMRS即additional loaded DMRS,其中,在移动附加DMRS时,保持前载DMRS和所述对应的附加DMRS之间的间隔保持不变。
可选地,所述向后移动所述前载DMRS对应的附加DMRS后,还包括:
在所述附加DMRS和所述CORESET发生碰撞的情况下,向后移动所述前载DMRS对应的附加DMRS,直至不和任一个CORESET发生碰撞。
具体地,在保持前载DMRS和所述对应的附加DMRS之间的间隔不变的情况下,移动前载DMRS直至不和任一个CORESET发生碰撞时,同步移动的附加DMRS可能会和CORESET发生碰撞,因此可以继续移动附加DMRS,直至不和任一个CORESET发生碰撞,在此过程中前载DMRS可以不再移动。
可选地,所述向后移动所述前载DMRS对应的附加DMRS后,还包括:
在所述附加DMRS移动至超出了所述PDSCH的配置时域符号的情况下,丢弃所述附加DMRS。
具体地,在保持前载DMRS和所述对应的附加DMRS之间的间隔不变的情况下,移动前载DMRS直至不和任一个CORESET发生碰撞时,同步移动的附加DMRS可能会移动至超出了PDSCH的配置时域符号,因此可以直接丢弃该超出了PDSCH的配置时域符号的附加DMRS。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
需要说明的是,本申请实施例提供的PDSCH传输方法,执行主体可以为PDSCH传输装置,或者,该PDSCH传输装置中的用于执行PDSCH传输方法的控制模块。本申请实施例中以PDSCH传输装置执行PDSCH传输方法为例,说明本申请实施例提供的PDSCH传输装置。
图6是本申请实施例提供的PDSCH传输装置的结构示意图,如图6所示,该装置包括:传输模块610,其中:
传输模块610用于在在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
具体地,PDSCH传输装置在PDCCH传输占用一个或者多个传输时机重复发送的情况下,通过传输模块610基于PDCCH的相关配置信息,执行物理下行共享信道PDSCH的传输。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
可选地,所述装置还包括:
第一确定模块,用于在所述PDCCH配置关联了多个不同的控制资源集合CORESET ID的CORESET的情况下,确定PDSCH的资源块RB起始索引关联所述不同的CORESET中的指定CORESET中的最低RB的位置;或者
第二确定模块,用于在所述PDCCH仅被允许配置关联一个CORESET ID的CORESET的情况下,确定PDSCH的RB起始索引关联所述一个CORESET ID的CORESET中的最低RB的位置;
其中,所述PDSCH被任意一个公共搜索空间类型的下行控制信息DCI format调度。
可选地,在所述PDCCH与其调度的PDSCH的时频资源发生碰撞的情况下,所述装置还包括:
第一传输模块,用于传输所述PDSCH不占用碰撞的时频资源,所述时频资源是所有发生了碰撞的PDCCH传输时机的时频资源,所述所有发生了碰撞的PDCCH传输时机是UE基于预设规则根据UE成功检测的PDCCH传输时机确定的;或
第二传输模块,用于在一个PDCCH传输时机和一个PDSCH传输时机发生碰撞,且所述PDCCH关联的CORESET所激活的TCI state和所述PDSCH传输时机指示的TCI state不在同一个组内的情况下,在碰撞的时频资源上传输PDSCH。
可选地,所述预设规则是基于成功检测的PDCCH传输时机和所有发生碰撞的PDCCH传输时机之间的关联关系确定的,所述关联关系基于所述PDCCH的相关配置信息确定。
可选地,在所述PDCCH调度的PDSCH是第一映射方式的情况下,所述装置还包括:
第一调度模块,用于在所述PDCCH的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
第二调度模块,用于在所述PDCCH在时域上占用的最后一个传输时机的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
第三调度模块,用于在预设间隙满足UE上报的能力的情况下,调度所述PDSCH。
可选地,所述预设间隙为两个PDCCH传输时机之间的间隔,或,所述预设间隙为PDSCH传输时机和第二个PDCCH传输时机之间的间隔。
可选地,在所述PDCCH调度的PDSCH包括的PDSCH传输时机中的任一个前载DMRS和任一个CORESET发生碰撞的情况下,所述装置还包括:
第一移动模块,用于向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞;或
第二移动模块,用于在与所述前载DMRS发生碰撞的CORESET配置的CORESET池的索引和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET的CORESET池的索引不相同的情况下,不向后移动所述前载DMRS;或
第三移动模块,用于在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET激活的TCI state不在一个组内的情况下,或者,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机指示的TCI state不在一个组内的情况下,不向后移动所述前载DMRS,否则,向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞。
可选地,所述装置还包括:
第四移动模块,用于在向后移动所述前载DMRS后,向后移动所述前载DMRS对应的附加DMRS,其中所述前载DMRS和所述对应的附加DMRS保持相同的间隔。
可选地,所述装置还包括:
第五移动模块,用于在向后移动所述前载DMRS对应的附加DMRS后,在所述附加DMRS和所述CORESET发生碰撞的情况下,向后移动所述前载DMRS对应的附加DMRS,直至不和任一个CORESET发生碰撞。
可选地,所述装置还包括:
丢弃模块,用于在向后移动所述前载DMRS对应的附加DMRS后,在所述附加DMRS移动至超出了所述PDSCH的配置时域符号的情况下,丢弃所述附加DMRS。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
本申请实施例中的PDSCH传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性地,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的PDSCH传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的PDSCH传输装置能够实现图2至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,图7是本申请实施例提供的一种通信设备的结构示意图,如图7所示,通信设备700,包括处理器701,存储器702,存储在存储器702上并可在所述处理器 701上运行的程序或指令,例如,该通信设备700为终端时,该程序或指令被处理器701执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述同步信号块的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图8是本申请实施例提供的一种网络侧设备的硬件结构示意图。
如图8所示,该网络侧设备800包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线801发送出去。
上述频带处理装置可以位于基带装置803中,以上实施例中网络侧设备执行的方法可以在基带装置803中实现,该基带装置803包括处理器804和存储器805。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器804,与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置803还可以包括网络接口806,用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
图9是本申请实施例提供的一种终端的硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901将来自网络侧设备的下行数据接收后,给处理器 910处理;另外,将上行的数据发送给网络侧设备。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器910可包括一个或多个处理单元;可选地,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,处理器910,用于在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
可选地,处理器还用于,
在所述PDCCH配置关联了多个不同的控制资源集合CORESET ID的CORESET的情况下,确定PDSCH的资源块RB起始索引关联所述不同的CORESET中的指定CORESET中的最低RB的位置;或者
在所述PDCCH仅被允许配置关联一个CORESET ID的CORESET的情况下,确定PDSCH的RB起始索引关联所述一个CORESET ID的CORESET中的最低RB的位置;
其中,所述PDSCH被任意一个公共搜索空间类型的下行控制信息DCI format调度。
可选地,处理器还用于,在所述PDCCH与其调度的PDSCH的时频资源发生碰撞的情况下,传输所述PDSCH不占用碰撞的时频资源,所述时频资源是所有发生了碰撞的PDCCH传输时机的时频资源,所述所有发生了碰撞的PDCCH传输时机是UE基于预设规则根据UE成功检测的PDCCH传输时机确定的;或者
在一个PDCCH传输时机和一个PDSCH传输时机发生碰撞,且所述PDCCH关联的CORESET所激活的TCI state和所述PDSCH传输时机指示的TCI state不在同一个组内的情况下,在碰撞的时频资源上传输PDSCH。
可选地,所述预设规则是基于成功检测的PDCCH传输时机和所有发生碰撞的PDCCH传输时机之间的关联关系确定的,所述关联关系基于所述PDCCH的相关配置信息确定。
可选地,处理器还用于,在所述PDCCH调度的PDSCH是第一映射方式的情况下,在所述PDCCH的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
在所述PDCCH在时域上占用的最后一个传输时机的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
在预设间隙满足UE上报的能力的情况下,调度所述PDSCH。
可选地,所述预设间隙为两个PDCCH传输时机之间的间隔,或,所述预设间隙为PDSCH传输时机和第二个PDCCH传输时机之间的间隔。
可选地,处理器还用于,在所述PDCCH调度的PDSCH包括的PDSCH传输时机中的任一个前载DMRS和任一个CORESET发生碰撞的情况下,向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞;或
在与所述前载DMRS发生碰撞的CORESET配置的CORESET池的索引和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET的CORESET池的索引不相同的情况下,不向后移动所述前载DMRS;或
在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET激活的TCI state不在一个组内的情况下,或者,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机指示的TCI state不在一个组内的情况下,不向后移动所述前载DMRS,否则,向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞。
可选地,处理器还用于,向后移动所述前载DMRS后,向后移动所述前载DMRS对应的附加DMRS,其中所述前载DMRS和所述对应的附加DMRS保持相同的间隔。
可选地,处理器还用于,向后移动所述前载DMRS对应的附加DMRS后,在所述附加DMRS和所述CORESET发生碰撞的情况下,向后移动所述前载DMRS对应的附加DMRS,直至不和任一个CORESET发生碰撞。
可选地,处理器还用于,向后移动所述前载DMRS对应的附加DMRS后,在所述附加DMRS移动至超出了所述PDSCH的配置时域符号的情况下,丢弃所述附加DMRS。
在本申请实施例中,通过在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的不同的相关配置信息,采取不同的方法确定PDSCH的传输位置,进而调度与传输该PDSCH,可以较好地适应PDCCH引入可靠性传输增强的情况,保证PDSCH的成功调度与传输。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述PDSCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述PDSCH 传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种物理下行共享信道PDSCH传输方法,应用于通信设备,包括:
    在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
  2. 根据权利要求1所述的PDSCH传输方法,其中,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
    在所述PDCCH配置关联了多个不同的控制资源集合CORESET ID的CORESET的情况下,确定PDSCH的资源块RB起始索引关联所述不同的CORESET中的指定CORESET中的最低RB的位置;或者
    在所述PDCCH仅被允许配置关联一个CORESET ID的CORESET的情况下,确定PDSCH的RB起始索引关联所述一个CORESET ID的CORESET中的最低RB的位置;
    其中,所述PDSCH被任意一个公共搜索空间类型的下行控制信息DCI format调度。
  3. 根据权利要求1所述的PDSCH传输方法,其中,在所述PDCCH与其调度的PDSCH的时频资源发生碰撞的情况下,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
    传输所述PDSCH不占用碰撞的时频资源,所述时频资源是所有发生了碰撞的PDCCH传输时机的时频资源,所述所有发生了碰撞的PDCCH传输时机是UE基于预设规则根据UE成功检测的PDCCH传输时机确定的;或者
    在一个PDCCH传输时机和一个PDSCH传输时机发生碰撞,且所述PDCCH关联的CORESET所激活的TCI state和所述PDSCH传输时机指示的TCI state不在同一个组内的情况下,在碰撞的时频资源上传输PDSCH。
  4. 根据权利要求3所述的PDSCH传输方法,其中,所述预设规则是基于成功检测的PDCCH传输时机和所有发生碰撞的PDCCH传输时机之间的关联关系确定的,所述关联关系基于所述PDCCH的相关配置信息确定。
  5. 根据权利要求1所述的PDSCH传输方法,其中,在所述PDCCH调度的PDSCH是第一映射方式的情况下,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
    在所述PDCCH的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
    在所述PDCCH在时域上占用的最后一个传输时机的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
    在预设间隙满足UE上报的能力的情况下,调度所述PDSCH。
  6. 根据权利要求5所述的PDSCH传输方法,其中,所述预设间隙为两个PDCCH传输时机之间的间隔,或,所述预设间隙为PDSCH传输时机和第二个PDCCH传输时机之间的间隔。
  7. 根据权利要求1所述的PDSCH传输方法,其中,在所述PDCCH调度的PDSCH包括的PDSCH传输时机中的任一个前载DMRS和任一个CORESET发生碰撞的情况 下,所述基于PDCCH的相关配置信息,执行PDSCH的传输之前,所述方法还包括:
    向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞;或
    在与所述前载DMRS发生碰撞的CORESET配置的CORESET池的索引和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET的CORESET池的索引不相同的情况下,不向后移动所述前载DMRS;或
    在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET激活的TCI state不在一个组内的情况下,或者,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机指示的TCI state不在一个组内的情况下,不向后移动所述前载DMRS,否则,向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞。
  8. 根据权利要求7所述的PDSCH传输方法,其中,所述向后移动所述前载DMRS后,还包括:
    向后移动所述前载DMRS对应的附加DMRS,其中所述前载DMRS和所述对应的附加DMRS保持相同的间隔。
  9. 根据权利要求8所述的PDSCH传输方法,其中,所述向后移动所述前载DMRS对应的附加DMRS后,还包括:
    在所述附加DMRS和所述CORESET发生碰撞的情况下,向后移动所述前载DMRS对应的附加DMRS,直至不和任一个CORESET发生碰撞。
  10. 根据权利要求8所述的PDSCH传输方法,其中,所述向后移动所述前载DMRS对应的附加DMRS后,还包括:
    在所述附加DMRS移动至超出了所述PDSCH的配置时域符号的情况下,丢弃所述附加DMRS。
  11. 一种PDSCH传输装置,包括:
    传输模块,用于在物理下行控制信道PDCCH传输占用一个或者多个传输时机重复发送的情况下,基于PDCCH的相关配置信息,执行PDSCH的传输。
  12. 根据权利要求11所述的PDSCH传输装置,其中,所述装置还包括:
    第一确定模块,用于在所述PDCCH配置关联了多个不同的控制资源集合CORESET ID的CORESET的情况下,确定PDSCH的资源块RB起始索引关联所述不同的CORESET中的指定CORESET中的最低RB的位置;或者
    第二确定模块,用于在所述PDCCH仅被允许配置关联一个CORESET ID的CORESET的情况下,确定PDSCH的RB起始索引关联所述一个CORESET ID的CORESET中的最低RB的位置;
    其中,所述PDSCH被任意一个公共搜索空间类型的下行控制信息DCI format调度。
  13. 根据权利要求11所述的PDSCH传输装置,其中,在所述PDCCH与其调度的PDSCH的时频资源发生碰撞的情况下,所述装置还包括:
    第一传输模块,用于传输所述PDSCH不占用碰撞的时频资源,所述时频资源是 所有发生了碰撞的PDCCH传输时机的时频资源,所述所有发生了碰撞的PDCCH传输时机是UE基于预设规则根据UE成功检测的PDCCH传输时机确定的;或
    第二传输模块,用于在一个PDCCH传输时机和一个PDSCH传输时机发生碰撞,且所述PDCCH关联的CORESET所激活的TCI state和所述PDSCH传输时机指示的TCI state不在同一个组内的情况下,在碰撞的时频资源上传输PDSCH。
  14. 根据权利要求13所述的PDSCH传输装置,其中,所述预设规则是基于成功检测的PDCCH传输时机和所有发生碰撞的PDCCH传输时机之间的关联关系确定的,所述关联关系基于所述PDCCH的相关配置信息确定。
  15. 根据权利要求11所述的PDSCH传输装置,其中,在所述PDCCH调度的PDSCH是第一映射方式的情况下,所述装置还包括:
    第一调度模块,用于在所述PDCCH的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
    第二调度模块,用于在所述PDCCH在时域上占用的最后一个传输时机的第一个起始OFDM符号不在所述PDSCH的第一个起始OFDM符号之后的情况下,调度所述PDSCH;或
    第三调度模块,用于在预设间隙满足UE上报的能力的情况下,调度所述PDSCH。
  16. 根据权利要求15所述的PDSCH传输装置,其中,所述预设间隙为两个PDCCH传输时机之间的间隔,或,所述预设间隙为PDSCH传输时机和第二个PDCCH传输时机之间的间隔。
  17. 根据权利要求11所述的PDSCH传输装置,其中,在所述PDCCH调度的PDSCH包括的PDSCH传输时机中的任一个前载DMRS和任一个CORESET发生碰撞的情况下,所述装置还包括:
    第一移动模块,用于向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞;或
    第二移动模块,用于在与所述前载DMRS发生碰撞的CORESET配置的CORESET池的索引和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET的CORESET池的索引不相同的情况下,不向后移动所述前载DMRS;或
    第三移动模块,用于在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机的PDCCH所关联的CORESET激活的TCI state不在一个组内的情况下,或者,在与所述前载DMRS发生碰撞的CORESET激活的TCI state和调度所述前载DMRS的PDSCH传输时机指示的TCI state不在一个组内的情况下,不向后移动所述前载DMRS,否则,向后移动所述前载DMRS,直至所述前载DMRS不和任一个CORESET发生碰撞。
  18. 根据权利要求17所述的PDSCH传输装置,其中,所述装置还包括:
    第四移动模块,用于在向后移动所述前载DMRS后,向后移动所述前载DMRS对应的附加DMRS,其中所述前载DMRS和所述对应的附加DMRS保持相同的间隔。
  19. 根据权利要求18所述的PDSCH传输装置,其中,所述装置还包括:
    第五移动模块,用于在向后移动所述前载DMRS对应的附加DMRS后,在所述附加DMRS和所述CORESET发生碰撞的情况下,向后移动所述前载DMRS对应的附加 DMRS,直至不和任一个CORESET发生碰撞。
  20. 根据权利要求18所述的PDSCH传输装置,其中,所述装置还包括:
    丢弃模块,用于在向后移动所述前载DMRS对应的附加DMRS后,在所述附加DMRS移动至超出了所述PDSCH的配置时域符号的情况下,丢弃所述附加DMRS。
  21. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至10任一项所述的PDSCH传输方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至10任一项所述的PDSCH传输方法的步骤。
  23. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至10任一项所述的PDSCH传输方法的步骤。
  24. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至10任一项所述的PDSCH传输方法的步骤。
  25. 一种电子设备,包括所述电子设备被配置成用于执行如权利要求1至10任一项所述的PDSCH传输方法的步骤。
PCT/CN2021/125752 2020-10-23 2021-10-22 Pdsch传输方法、装置、设备及存储介质 WO2022083744A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023524824A JP2023546941A (ja) 2020-10-23 2021-10-22 Pdsch伝送方法、pdsch伝送装置、及び通信機器
EP21882156.9A EP4228192A4 (en) 2020-10-23 2021-10-22 PDSCH TRANSMISSION METHOD AND APPARATUS AS WELL AS APPARATUS AND STORAGE MEDIUM
US18/137,515 US20230262701A1 (en) 2020-10-23 2023-04-21 PDSCH Transmission Method and Apparatus, Device, and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011149238.2 2020-10-23
CN202011149238.2A CN114499783B (zh) 2020-10-23 2020-10-23 Pdsch传输方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/137,515 Continuation US20230262701A1 (en) 2020-10-23 2023-04-21 PDSCH Transmission Method and Apparatus, Device, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2022083744A1 true WO2022083744A1 (zh) 2022-04-28

Family

ID=81291655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125752 WO2022083744A1 (zh) 2020-10-23 2021-10-22 Pdsch传输方法、装置、设备及存储介质

Country Status (5)

Country Link
US (1) US20230262701A1 (zh)
EP (1) EP4228192A4 (zh)
JP (1) JP2023546941A (zh)
CN (1) CN114499783B (zh)
WO (1) WO2022083744A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110731112A (zh) * 2017-06-15 2020-01-24 华为技术有限公司 用于可靠通信的多发送接收点协作的方法和设备
US20200100223A1 (en) * 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for low latency and high reliability data transmission in wireless communication system
WO2020064512A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Robustness for control channel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200107972A (ko) * 2018-01-16 2020-09-16 레노보 (싱가포르) 피티이. 엘티디. 리소스들 근방의 데이터 전송의 레이트-매칭
EP3834351B1 (en) * 2018-08-09 2023-10-04 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels
JP2020048112A (ja) * 2018-09-20 2020-03-26 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN111148260B (zh) * 2018-11-02 2022-05-13 华为技术有限公司 发送和接收数据的方法以及通信装置
CN114124331B (zh) * 2019-03-30 2023-09-26 华为技术有限公司 通信方法、通信装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110731112A (zh) * 2017-06-15 2020-01-24 华为技术有限公司 用于可靠通信的多发送接收点协作的方法和设备
US20200100223A1 (en) * 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for low latency and high reliability data transmission in wireless communication system
WO2020064512A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Robustness for control channel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228192A4
ZTE, SANECHIPS: "Discussion on PDCCH repetition for URLLC", 3GPP DRAFT; R1-1803802 DISCUSSION ON PDCCH REPETITION FOR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051426097 *

Also Published As

Publication number Publication date
EP4228192A1 (en) 2023-08-16
CN114499783A (zh) 2022-05-13
EP4228192A4 (en) 2024-04-10
US20230262701A1 (en) 2023-08-17
JP2023546941A (ja) 2023-11-08
CN114499783B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
EP4221380A1 (en) Positioning method, terminal, and network side device
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
WO2022228526A1 (zh) 移动性管理的配置方法、装置、终端、网络侧设备及介质
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
CN114390694A (zh) 数据传输方法、装置、终端、网络侧设备及存储介质
WO2022078387A1 (zh) 信息处理方法、装置及通信设备
WO2023284796A1 (zh) Tci状态的指示方法、装置、终端和网络侧设备
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2022012592A1 (zh) 反馈信息传输方法、装置、终端及网络侧设备
WO2022083744A1 (zh) Pdsch传输方法、装置、设备及存储介质
CN115087030A (zh) 传输处理方法、装置及终端
CN114258117A (zh) 确定终端行为的方法、指示终端行为的方法及装置
CN115347989B (zh) 资源确定方法、装置及通信设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2024017322A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2022206996A1 (zh) 调度方法、装置、设备及可读存储介质
WO2022207000A1 (zh) 物理下行控制信道重复传输方法、装置及用户设备
WO2022237770A1 (zh) 传输控制方法、装置、终端及可读存储介质
CN114286428B (zh) 信道检测方法、装置及用户设备
WO2022258048A1 (zh) 信息传输方法、装置及相关设备
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2022268215A1 (zh) 参考信号的传输方法和设备
WO2022153515A1 (ja) 端末及び通信方法
WO2022148365A1 (zh) 准共址信息的确定、获取方法及通信设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524824

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021882156

Country of ref document: EP

Effective date: 20230510

NENP Non-entry into the national phase

Ref country code: DE