WO2022083677A1 - 半导体工艺设备及其工艺腔室 - Google Patents

半导体工艺设备及其工艺腔室 Download PDF

Info

Publication number
WO2022083677A1
WO2022083677A1 PCT/CN2021/125196 CN2021125196W WO2022083677A1 WO 2022083677 A1 WO2022083677 A1 WO 2022083677A1 CN 2021125196 W CN2021125196 W CN 2021125196W WO 2022083677 A1 WO2022083677 A1 WO 2022083677A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
base
magnetic conductive
magnetic field
bearing surface
Prior art date
Application number
PCT/CN2021/125196
Other languages
English (en)
French (fr)
Inventor
王世如
杨玉杰
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to KR1020237013269A priority Critical patent/KR20230071785A/ko
Priority to US18/250,218 priority patent/US20230411132A1/en
Priority to JP2023523568A priority patent/JP7430846B2/ja
Priority to EP21882092.6A priority patent/EP4234755A4/en
Publication of WO2022083677A1 publication Critical patent/WO2022083677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of semiconductor processing, and in particular, the present application relates to a semiconductor process equipment and a process chamber thereof.
  • an integrated circuit is a miniature electronic device or component.
  • the transistors, resistors, capacitors, inductors and other components and wiring required in a circuit are interconnected by a certain process, fabricated on a small or several small semiconductor wafers or dielectric substrates, and then packaged in a tube case , into a microstructure with the required circuit functions.
  • the electromagnetic compatibility of these components such as transistors, resistors, capacitors and inductors interconnected by wiring becomes more and more serious.
  • the electromagnetic environment has become more and more complex, and the electromagnetic compatibility requirements of components have become higher and higher, and anti-electromagnetic interference has become a high-profile issue.
  • Anti-electromagnetic interference electronic devices made of special materials in the existing technology have become an important direction for the development of electromagnetic compatibility in the future. Absorption inhibition.
  • the magnet has a relatively easy magnetization direction and a relatively difficult magnetization direction when it is magnetized. This is because the magnet is magnetically anisotropic (that is, all or part of the chemical, physical and The properties vary with the direction, showing different properties in different directions).
  • the magnetocrystalline anisotropy In the direction of easy magnetization, the magnetocrystalline anisotropy is small; in the direction of difficult magnetization, the magnetocrystalline anisotropy is large, and the direction of the anisotropic field will affect the induction of the film to the electromagnetic field, which in turn affects the noise suppression of the film Effect. Therefore, large-scale preparation of high-frequency magnetic thin films with high magnetic anisotropy becomes very important.
  • magnetron sputtering technology is mainly used to prepare high-frequency magnetic thin films.
  • the wafer is located in the middle of the magnetic group used to generate the induced magnetic field, and the magnetic group forms an induced magnetic field in the direction parallel to the film surface of the substrate to induce the easy magnetization direction of the magnetic film, while on the substrate A buffer layer or a variety of different buffer layers are deposited to increase the magnetic anisotropy.
  • the magnetic thin film is then heat-treated so that the magnetic anisotropy of the magnetic thin film can be well maintained.
  • the induced magnetic field generated by magnetoresistance is used to induce the easy magnetization direction of the nickel-iron (NiFe) film, and a tantalum (Ta) buffer layer and nickel-iron-chromium (NiFeCr) are deposited on the substrate at the same time.
  • Ni81Fe19/tantalum (Ta) film with tantalum (Ta) buffer layer and the Ni81Fe19/tantalum (Ta) film with nickel-iron-chromium (NiFeCr) as buffer layer are heat-treated, and after heat treatment at 350 °C
  • the magnetic anisotropy of Ni81Fe19 thin films can be well maintained.
  • the intensity distribution of the above-mentioned induced magnetic field above the wafer is not uniform, resulting in poor magnetic anisotropy of the film deposited on the wafer, and since the magnetic field lines of the induced magnetic field are arc-shaped above the wafer, the incident The speed and energy of the magnetic particles on the wafer are relatively high, resulting in the generation of crystal defects in the thin film, the increase in the internal stress of the thin film, and the poor crystallization quality of the thin film.
  • the present application proposes a semiconductor process equipment and a process chamber thereof, which are used to solve the technical problems of poor film quality and magnetic anisotropy in the prior art.
  • an embodiment of the present application provides a process chamber of a semiconductor process equipment, including: a chamber body, a base, and a magnetic conductive device;
  • the base is disposed in the chamber body, and the base includes a bearing surface for carrying a wafer;
  • the magnetic conductive device includes a magnetic structure and a magnetic conductive structure made of soft magnetic material, wherein the magnet structure is arranged around the base to provide a magnetic field above the base; the magnetic conductive structure is provided Below the bearing surface of the base, and has a preset distance from the bearing surface of the base, for guiding the distribution of the magnetic field lines of the magnetic field above the base, so that the magnetic field is on the base.
  • the intensity of the upper part is uniformly distributed and the directions of the magnetic lines of force at different positions corresponding to the bearing surface are consistent.
  • the magnetic conductive structure includes a magnetic conductive component, and the magnetic conductive component includes a plurality of first magnetic conductive bars, and the plurality of the first magnetic conductive bars are evenly distributed on the bearing surface. In parallel and opposite circular areas; a plurality of the first magnetic conductive strips are all extended along a first direction parallel to the bearing surface; or,
  • the magnetic conductive component includes a plurality of second magnetic conductive strips and a plurality of magnetic conductive rings, wherein the plurality of the second magnetic conductive strips are distributed in the circular area, and along different diameters of the circular area
  • the plurality of second magnetic conductive strips are distributed symmetrically with respect to the center of the circular area; a plurality of the magnetic conductive rings are all located in the circular area, and are connected with the plurality of the second magnetic conductive strips.
  • the magnetic conductive strips are stacked on each other; the centers of the plurality of magnetic conductive rings are all coincident with the center of the circular area, and the inner diameters of the plurality of magnetic conductive rings are different, and are along the radial direction of the circular area. spacing arrangement; or,
  • the magnetic conductive component includes a conductive disk, and the conductive disk is parallel to and opposite to the bearing surface.
  • the distance between any two adjacent first magnetic conductive strips is greater than or equal to 4 mm and less than or equal to 8 mm.
  • the ratio of the diameter of the circular region to the diameter of the bearing surface is greater than or equal to two-thirds and less than or equal to one.
  • the magnetic conductive structure further includes a fixing ring, the inner side of the fixing ring defines the circular area, and the fixing ring is connected with the magnetic conductive component for connecting the The magnetic conductive component is fixed in the base.
  • the magnet structure includes two sets of magnet sets and a fixing bracket, wherein the fixing bracket is used to fix the two sets of magnet sets around the base;
  • Two sets of the magnet groups are arranged opposite to each other on both sides of the base along the radial direction of the bearing surface. Circumferentially spaced and arranged in an arc shape; the N poles and S poles of all the magnetic columns in the two sets of the magnet groups are arranged at the same height along the second direction, the second direction and the diameter of the base are parallel to the first direction and form a preset angle with the first direction; and, the N poles of all the magnetic columns in one of the magnet groups are close to the base, and in the other group of the magnets The S poles of all the magnetic columns are close to the base.
  • the predetermined included angle is 90 degrees.
  • the outer surface of the magnetic column is covered with a resist layer made of soft magnetic material.
  • the thickness of the magnetically conductive structure is greater than or equal to 2 mm and less than or equal to 10 mm, and the predetermined distance is greater than or equal to 2 mm and less than or equal to 5 mm.
  • embodiments of the present application provide a semiconductor process equipment, including a process chamber of the semiconductor process equipment provided in the first aspect.
  • a magnetic conductive structure is arranged under the bearing surface of the base, and the magnetic conductive structure is used to guide the distribution of the magnetic field lines of the magnetic field generated by the magnet structure above the base. That is to say, the magnetic conductive structure can play a similar role to The function of the magnetic yoke is to constrain the magnetic field lines, so that the intensity of the magnetic field above the base is uniformly distributed and the direction of the magnetic field lines at different positions of the corresponding bearing surface is consistent, so that not only the axis of difficulty of the film at each position of the wafer is consistent, but also significantly.
  • the magnetic anisotropy of the film is improved, the incident energy of the magnetic particles can be reduced, and the crystal defects caused by the high-energy magnetic particles to the film can be reduced, thereby reducing the internal stress of the film and improving the crystallization quality of the film.
  • the above-mentioned magnetic permeability structure can significantly improve the magnetic anisotropy of the film, there is no need to use the buffer layer and annealing process in the prior art to improve the magnetic anisotropy of the film, so that the crystal defects of the film can be effectively reduced, thereby improving the film quality.
  • FIG. 1 is a schematic cross-sectional structure diagram of a process chamber provided by an embodiment of the present application.
  • FIG. 2 is a schematic top view of a magnetic conductive structure and a magnet structure provided by an embodiment of the present application
  • FIG. 3 is a schematic top view of another magnetic conductive structure and a magnet structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic top view of yet another magnetic conductive structure and a magnet structure provided by an embodiment of the present application;
  • FIG. 5 is a schematic cross-sectional structural diagram of a base provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a simulation result of a magnetic field distribution in a process chamber in the prior art
  • FIG. 7 is a schematic diagram of a simulation result of magnetic field distribution in a process chamber according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the variation of the magnetic field intensity component in the process chamber in the prior art
  • FIG. 9 is a schematic diagram of a variation of a magnetic field intensity component in a process chamber according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the distribution of magnetic lines of force when the magnetic field above the wafer is not provided with a magnetically conductive structure and when the magnetically conductive structure is provided below the wafer, respectively.
  • FIG. 1 is a schematic cross-sectional structural diagram of a process chamber according to an embodiment of the present application.
  • an embodiment of the present application provides a process chamber of a semiconductor process equipment, which includes: a chamber body 1 , a base 2 and a magnetic conducting device, wherein the base 2 is arranged in the chamber body 1 , the base 2 includes a bearing surface for carrying the wafer 100;
  • the magnetic conducting device includes a magnet structure 3 and a magnetic conducting structure 4 made of soft magnetic material, wherein the magnet structure 3 is arranged around the base 2 for A magnetic field is provided above the base 2;
  • the magnetic conductive structure 4 is arranged under the bearing surface of the base 2, and has a preset distance from the bearing surface of the base 2, for guiding the distribution of the magnetic field lines of the magnetic field above the base 2, so that the The intensity of the magnetic field above the base 2 is uniformly distributed, and the directions of the magnetic lines of force at different positions of the corresponding bearing surface are consistent.
  • the magnetic conductive structure 4 Since the magnetic conductive structure 4 is a soft magnetic material, it will not have an excessive influence on the magnetic field compared with the hard magnetic material, so that it can be ensured that the magnetic conductive structure 4 can properly function on the premise that the magnet structure 3 can normally play the role of inducing the magnetic field.
  • the magnetic field lines of the ground-guided magnetic field are distributed above the base 2 to avoid the failure of the induced magnetic field due to the excessive influence on the magnet structure 3 .
  • the soft magnetic material since the soft magnetic material has no N pole and S pole, the direction of the magnetic field lines generated by the soft magnetic material does not form a radian, so that the magnetic field lines of the induced magnetic field above the base 2 can be guided to be parallel to the surface of the wafer.
  • the process chamber may be specifically used to perform a magnetron sputtering process or other processes, such as a physical vapor deposition or chemical deposition process, but this is not limited in this embodiment of the present application.
  • the susceptor 2 is disposed in the chamber body 1 , for example, at a middle position near the bottom, and the susceptor 2 is used to carry the wafer 100 .
  • the magnet structure 3 can be made of NdFeB material, but the embodiment of the present application is not limited to this, as long as the magnet structure 3 is made of a hard magnetic material.
  • the magnet structure 3 is arranged around the base 2 for providing a magnetic field above the base 2, and the magnetic field can be used as an inducing magnetic field to induce the easy magnetization direction of the magnetic thin film.
  • the magnetic conductive structure 4 is made of permalloy to form a sheet-like structure, but the embodiment of the present application is not limited to this, as long as the magnetic conductive structure 4 is made of a soft magnetic material with magnetic permeability.
  • the magnetic conductive structure 4 is arranged below the bearing surface of the base 2, and has a preset distance from the bearing surface of the base 2, and is used to guide the distribution of the magnetic field lines of the magnetic field above the base 2, so that the magnetic field is above the base 2. The intensity is uniformly distributed and the direction of the magnetic field lines is consistent.
  • the above preset distance can be set according to the distribution of the magnetic field lines of the magnetic field above the base 2, as long as the intensity of the magnetic field above the base 2 can be uniformly distributed and the directions of the magnetic field lines at different positions of the corresponding bearing surface can be consistent.
  • the above magnetic conductive structure 4 may be disposed inside the base 2 .
  • the above-mentioned magnetic permeable structure 4 can act like a magnet yoke to constrain the magnetic field lines, thereby changing the distribution of the magnetic field lines above the base of the magnetic field generated by the magnet structure 3 .
  • the magnetic conductive structure 4 when the magnetic conductive structure 4 is not provided under the wafer 100 , the magnetic field lines from the N pole to the S pole of the magnetic column 32 are curved, and the bearing surface of the corresponding base 2 is in the shape of an arc.
  • the direction of the magnetic field at different positions in the radial direction is the normal direction at different positions of the arc.
  • the direction of the normal at different positions on the arc is different, which corresponds to different positions of the bearing surface.
  • the directions of the magnetic field lines are also different.
  • the distribution of the magnetic field intensity at different positions of the bearing surface corresponding to the base 2 is not uniform.
  • the magnetic anisotropy of the thin film deposited on the wafer 100 is poor.
  • the directions of the magnetic lines of force at different locations are different, resulting in higher velocity and energy of the magnetic particles incident on the wafer 100, resulting in the generation of crystal defects in the thin film, increased internal stress of the thin film, and poor crystallization quality of the thin film.
  • the velocity of the magnetic particles vertically incident on the wafer 100 is greatly weakened, thereby reducing the incident energy of the magnetic particles, reducing the crystal defects caused by the high-energy magnetic particles to the film, thereby reducing the internal stress of the film and improving the crystallization of the film. quality.
  • the magnetic conductive structure 4 can also make the magnetic field lines above the wafer 100 evenly distributed, so that the magnetic field intensity above the base can be evenly distributed, so that the axes of difficulty and ease of the film at each position of the wafer can be kept consistent, which can significantly improve the thickness of the film. the magnetic anisotropy.
  • a magnetic conductive structure is arranged under the bearing surface of the base, and the magnetic conductive structure is used to guide the distribution of the magnetic field lines of the magnetic field generated by the magnet structure above the base. That is to say, the magnetic conductive structure can play a similar role to The function of the magnetic yoke is to constrain the magnetic field lines, so that the intensity of the magnetic field above the base is uniformly distributed and the direction of the magnetic field lines at different positions of the corresponding bearing surface is consistent, so that not only the axis of difficulty of the film at each position of the wafer is consistent, but also significantly.
  • the magnetic anisotropy of the film is improved, the incident energy of the magnetic particles can be reduced, and the crystal defects caused by the high-energy magnetic particles to the film can be reduced, thereby reducing the internal stress of the film and improving the crystallization quality of the film.
  • the above-mentioned magnetic permeability structure can significantly improve the magnetic anisotropy of the film, there is no need to use the buffer layer and annealing process in the prior art to improve the magnetic anisotropy of the film, so that the crystal defects of the film can be effectively reduced, thereby improving the film quality.
  • the above-mentioned magnetic conductive structure 4 includes a magnetic conductive component, and the magnetic conductive component includes a plurality of first magnetic conductive bars 43 , and the plurality of first magnetic conductive bars 43 are evenly distributed on the In a circular area parallel to and opposite to the bearing surface of the base 2, the circular area is arranged concentrically with the bearing surface, for example; the plurality of first magnetic conductive strips 43 are all along the first direction parallel to the bearing surface (that is, FIG. 2) in the X direction) to extend the setting.
  • FIG. 2 the magnetic conductive component
  • the lengths of the plurality of first magnetic conductive strips 43 in the X direction are different from each other, and the orthographic projection contour of the plurality of first magnetic conductive strips 43 on the bearing surface is circular, so as to ensure more
  • the first magnetic conductive strips 43 are evenly distributed in the above-mentioned circular area, so that the intensity of the magnetic field above the base is uniformly distributed and the directions of the magnetic lines of force at different positions of the corresponding bearing surface are consistent.
  • the distance between any two adjacent first magnetic conductive strips 43 is greater than or equal to 4 mm and less than or equal to 8 mm. For example, 4 mm, 5 mm, 6 mm, 7 mm or 8 mm.
  • the magnetically permeable structure 4 further includes a fixing ring 42 , the inner side of the fixing ring 42 defines the above-mentioned circular area, and the fixing ring 42 is connected with the above-mentioned magnetically conductive component for The magnetic conductive assembly is fixed in the base 2 .
  • the plurality of first magnetic conductive strips 43 are located on the inner side of the fixing ring 42 , and both ends of each first magnetic conductive strip 43 are fixedly connected to the fixing ring 42 , for example, by bonding, bolting or welding. and many more.
  • the fixing ring 42 can be disposed in the base 2 in a detachable manner such as bolt connection, so as to facilitate its disassembly and replacement.
  • the above-mentioned fixing ring 42 may not be provided, and the magnetic conductive assembly may be fixed in the base 2 in any other manner.
  • the fixing ring 42 can also be made of a soft magnetic material.
  • the fixing ring 42 and the first magnetic conductive strip 43 can be made of the same soft magnetic material to achieve a better magnetic conductivity effect. .
  • the diameter of the circular area may be smaller than the diameter of the bearing surface of the base 2, for example, the ratio of the diameter of the circular area to the diameter of the bearing surface of the base 2 is greater than or equal to one-third. Two, and less than or equal to one.
  • the diameter of the outer ring of the fixing ring 2 can be made smaller than or equal to the diameter of the bearing surface of the base 2 .
  • the thickness of the magnetic conductive structure 4 is greater than or equal to 2 mm and less than or equal to 10 mm, and the predetermined distance is greater than or equal to 2 mm and less than or equal to 5 mm.
  • the embodiments of the present application are not limited thereto, and those skilled in the art can adjust the settings by themselves according to different process requirements.
  • the magnet structure 3 includes two sets of magnet sets and a fixing bracket 31 , wherein the fixing bracket 31 is used to fix the two sets of magnet sets around the base 2 ;
  • two sets of magnet groups are disposed on opposite sides of the base 2 (for example, the left and right sides in FIG. 2 ) along the radial direction of the bearing surface of the base 2 , and each set of magnet groups includes a plurality of magnetic columns 32.
  • a plurality of magnetic columns 32 are arranged in an arc shape along the circumferential direction of the above-mentioned bearing surface; the N poles and the S poles of all the magnetic columns 32 in the two sets of magnet groups are at the same height along the second direction (ie, FIG. 2 ).
  • the Y direction in FIG. 2 is set, the second direction is parallel to the radial direction of the base 2, and forms a preset angle with the first direction (ie, the X direction in FIG. 2 ), and the preset angle in FIG.
  • the above-mentioned preset angle may be greater than or equal to 0 degrees and less than or equal to 90 degrees, for example, 0 degrees, 10 degrees, 30 degrees, 50 degrees, 60 degrees or 80 degrees.
  • the N poles of all the magnetic columns 32 in one of the magnet groups ie, the magnet group on the left side in FIG. 2
  • the other group of magnet groups ie, the magnet group on the right side in FIG. 2
  • the S poles of all the magnetic columns 32 in the magnet group are close to the base 2 .
  • the embodiment of the present application can be It can meet a variety of different process requirements, thereby greatly improving the applicability and scope of application.
  • the above-mentioned design of the magnetic conductive structure 4 not only makes the structure of the embodiment of the present application simple and easy to implement, but also can effectively reduce the application and maintenance costs.
  • the fixing bracket 31 By using the fixing bracket 31 to fix the two sets of magnet groups in the chamber body 1 and around the base 2, on the one hand, the space on the upper surface of the base 2 can be greatly saved, so that the embodiment of the present application is suitable for larger size crystals.
  • round such as a 12-inch wafer
  • the magnetic column 32 since the magnetic column 32 has a certain distance from the susceptor 2, this can avoid the problem that the magnetic column in the prior art is degraded due to the temperature change of the susceptor, thereby greatly improving the The service life of the magnet structure 3 is increased, and the distribution of the magnetic columns 32 is also helpful to improve the uniformity of the thin film.
  • the purpose of adjusting the magnetic field strength and magnetic field distribution near the wafer can be achieved, thereby achieving the effect of adjusting the magnetic anisotropy of the thin film.
  • the upper end of the magnetic column 32 may be flush with the upper surface of the wafer 100 placed on the carrier surface. In this way, it can be ensured that the magnetic lines of force can be distributed near the top of the wafer 100 .
  • the magnetic column 32 may be a cylinder, a rectangular parallelepiped, or the like.
  • the fixing bracket 31 can be made of a metal material or a non-metal material, as long as it is corrosion-resistant and does not affect the magnetic properties of the magnetic column 32 .
  • the fixing bracket 31 may be disposed between the side wall of the chamber body 1 and the cover ring 21 of the base 2 .
  • the two fixing brackets 31 there are two fixing brackets 31 , and the two fixing brackets 31 can be disposed on opposite sides of the base 2 to respectively fix two sets of magnet groups, but this is not the case in the embodiment of the present application. limited.
  • the embodiment of the present application does not necessarily include the fixing bracket 31 , and the magnetic column 32 can also be disposed in the chamber body 1 in other ways.
  • the magnetic column 32 can be directly bonded to the bottom of the chamber body 1 . on the wall. Therefore, the embodiments of the present application are not limited thereto, and those skilled in the art can adjust the settings by themselves according to the actual situation.
  • the embodiment of the present application does not limit the magnetic conductive structure 4 to be a split structure, for example, the magnetic conductive structure 4 can also be made by integral molding. Therefore, the embodiments of the present application are not limited thereto, and those skilled in the art can adjust the settings according to actual conditions.
  • the magnetic conductive structure 4 is provided with a plurality of through holes (not shown in the figure) corresponding to the support pins of the base 2, and the inner diameter of the through holes is larger than the outer diameter of the support pins for the The passing of the support pin prevents mechanical interference of the base 2 during the lifting and lowering of the support pin and the film transfer process, thereby effectively reducing the failure rate of the embodiment of the present application.
  • the magnetically conductive component may further include a plurality of second magnetically conductive strips 44 and a plurality of magnetically conductive rings 45 , wherein the plurality of second magnetically conductive strips 44 are distributed in the In a circular area parallel to and opposite to the bearing surface of the base 2, and extending along different radial directions of the circular area, and a plurality of second magnetic conductive strips 44 are symmetrically distributed with respect to the center of the above circular area;
  • Each of the magnetic conductive rings 45 is located in the above-mentioned circular area and overlaps with the plurality of second magnetic conductive strips 44; the centers of the plurality of magnetic conductive rings 45 coincide with the center of the above-mentioned circular area, and the The rings 45 have different inner diameters and are equally spaced along the radial direction of the aforementioned circular area.
  • FIG. 3 shows four second magnetic conductive strips 44 , all of which extend along different radial directions of the circular area, forming a structure similar to a "rice" shape.
  • the above-mentioned design can also guide the distribution of the magnetic field lines of the magnetic field above the base 2, so that the intensity of the magnetic field above the base 2 is uniformly distributed and the direction of the magnetic field lines is consistent, and the application and maintenance costs can be greatly reduced due to the simple and reasonable structure design.
  • a fixing ring 42 is also provided, and its structure and function are the same as those of the fixing ring 42 in FIG. 2 , and details are not repeated here.
  • the magnetic conductive assembly may further include a magnetic conductive disk 46 , and the conductive magnetic disk 46 is arranged parallel to and opposite to the bearing surface of the base 2 .
  • This can also guide the distribution of the magnetic field lines of the magnetic field above the base 2, so that the intensity of the magnetic field above the base 2 is uniformly distributed and the direction of the magnetic field lines is consistent; at the same time, the above design can effectively reduce the difficulty of processing and manufacturing, thereby effectively reducing production and cost. manufacturing cost.
  • a fixing ring 42 is also provided, and its structure and function are the same as those of the fixing ring 42 in FIG. 2 , and details are not repeated here.
  • each magnetic column 32 is covered with a resist layer of soft magnetic material (not shown in the figure).
  • the anti-corrosion layer is specifically made of a soft magnetic material, such as stainless steel, silicon steel, or low carbon steel, but the embodiment of the present application is not limited thereto.
  • the resist layer can greatly increase the strength of the magnetic column 32 without affecting the magnetism of the magnetic column 32, thereby facilitating the disassembly and maintenance of the magnetic column 32; in addition, the resist layer can prevent the magnetic column 32 from being corroded, thereby greatly improving the The service life of the magnetic column 32 .
  • FIG. 6 and FIG. 7 show the simulation results of the embodiments of the present application.
  • Figures 6 and 7 show the distribution of the magnetic field at a distance of 2 mm above the upper surface of the wafer, and the direction indicated by the small arrow indicates the direction of the magnetic field in the region. Selecting the same area, that is, the area within the ellipse dotted line in FIG. 6 and FIG. 7 , it can be clearly seen by comparing the two areas: compared with the prior art, the magnetic field intensity distribution near the top of the wafer in the embodiment of the present application is more uniform , the direction of the magnetic field lines is more consistent.
  • FIG. 8 and FIG. 9 respectively show schematic diagrams of changes of magnetic field intensity components in the prior art and the embodiment of the present application.
  • the components of the magnetic field strength at a distance of 2 mm above the upper surface of the wafer in the x-direction and y-direction shown in Fig. 6 and Fig. 7 are the component Bx and the component By, respectively.
  • FIG. 8 and Fig. 9 respectively show schematic diagrams of changes of magnetic field intensity components in the prior art and the embodiment of the present application.
  • the components of the magnetic field strength at a distance of 2 mm above the upper surface of the wafer in the x-direction and y-direction shown in Fig. 6 and Fig. 7 are the component Bx and the component
  • the edge and center at a distance of 2 mm from the upper surface of the wafer are basically the same, and the magnetic field distribution uniformity is good.
  • embodiments of the present application provide a semiconductor process equipment, including a process chamber of the semiconductor process equipment provided by the above embodiments.
  • a magnetic conductive structure is arranged under the bearing surface of the base, and the magnetic conductive structure is used to guide the distribution of the magnetic field lines of the magnetic field generated by the magnet structure above the base. That is to say, the magnetic conductive structure can play a similar role to The function of the magnetic yoke is to constrain the magnetic field lines, so that the intensity of the magnetic field above the base is uniformly distributed and the direction of the magnetic field lines at different positions of the corresponding bearing surface is consistent, so that not only the axis of difficulty of the film at each position of the wafer is consistent, but also significantly.
  • the magnetic anisotropy of the film is improved, the incident energy of the magnetic particles can be reduced, and the crystal defects caused by the high-energy magnetic particles to the film can be reduced, thereby reducing the internal stress of the film and improving the crystallization quality of the film.
  • the above-mentioned magnetic permeability structure can significantly improve the magnetic anisotropy of the film, there is no need to use the buffer layer and annealing process in the prior art to improve the magnetic anisotropy of the film, so that the crystal defects of the film can be effectively reduced, thereby improving the film quality.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种半导体工艺设备及其工艺腔室,工艺腔室包括:腔室本体(1)、基座(2)及导磁装置,其中,基座(2)设置于腔室本体(1)内,基座(2)包括用于承载晶圆(100)的承载面;导磁装置包括磁体结构(3)及软磁材质的导磁结构(4),其中,磁体结构(3)环绕设置于基座(2)的周围,用于在基座(2)上方提供磁场;导磁结构(4)设置于基座(2)的承载面下方,且与基座(2)的承载面具有预设距离,用于引导磁场在基座(2)上方的磁力线分布,以使该磁场在基座(2)上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致。

Description

半导体工艺设备及其工艺腔室 技术领域
本申请涉及半导体加工技术领域,具体而言,本申请涉及一种半导体工艺设备及其工艺腔室。
背景技术
目前,集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶圆或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。随着电子器件向微型化、高频化、集成化、功能化方向发展,这些通过布线互连在一起的晶体管、电阻、电容和电感等元件的电磁兼容问题变得越来越严峻。在使用高频微波集成电子器件的过程中,电磁环境变得越来越复杂,元件的电磁兼容性要求越来越高,抗电磁干扰成为一个备受瞩目的问题。
现有技术中采用特殊材料制成的抗电磁干扰电子器件成为未来电磁兼容发展的一个重要方向,例如将高频磁性薄膜应用在电子器件和微波电路旁边,可以实现对高频噪声信号进行有效的吸收抑制。经过不断探索和实验发现,磁体在被磁化时存在一个比较容易磁化的方向和一个比较难磁化的方向,这是由于磁体在磁性上是各向异性(即,物质的全部或部分化学、物理等性质随着方向的改变而有所变化,在不同的方向上呈现出差异的性质)的。在易磁化的方向上,磁晶各向异性较小;在难磁化的方向上,磁晶各向异性较大,各向异性场的方向将影响薄膜对电磁场的感应,进而影响薄膜的噪声抑制效果。因此大规模制备具有高磁各向异性的高频磁性薄膜,就变得十分重要。
现有技术中制备高频磁性薄膜主要使用磁控溅射技术。在制备过程中,晶圆位于用于产生诱导磁场的磁组的中间位置,该磁组在与基片膜面平行的方向上形成诱导磁场,以诱导磁性薄膜的易磁化方向,同时在基片上沉积一种缓冲层或多种不同的缓冲层来提高磁各向异性。然后对磁性薄膜进行热处理,以能够很好地保持磁性薄膜的磁各向异性。例如,在制备NiFeCr/NiFe/Ta薄膜时,利用磁阻产生的诱导磁场,以诱导镍铁(NiFe)薄膜的易磁化方向,同时在基片上沉积钽(Ta)缓冲层和镍铁铬(NiFeCr)缓冲层;然后,对以钽(Ta)缓冲层的Ni81Fe19/钽(Ta)薄膜和以镍铁铬(NiFeCr)为缓冲层的Ni81Fe19/钽(Ta)薄膜进行热处理,在经过350℃热处理后可以很好地保持Ni81Fe19薄膜的磁各向异性。
但是,上述诱导磁场在晶圆上方的强度分布不够均匀,导致沉积在晶圆上的薄膜的磁各向异性较差,而且由于诱导磁场的磁力线在晶圆上方的部分呈圆弧状,导致入射到晶圆上的磁性粒子的速度和能量较高,从而造成薄膜晶体缺陷产生,薄膜内部应力增加,薄膜晶化质量较差。
发明内容
本申请针对现有方式的缺点,提出一种半导体工艺设备及其工艺腔室,用以解决现有技术存在的薄膜质量及磁各向异性能较差的技术问题。
第一个方面,本申请实施例提供了一种半导体工艺设备的工艺腔室,包括:腔室本体、基座及导磁装置;
所述基座设置于所述腔室本体内,所述基座包括用于承载晶圆的承载面;
所述导磁装置包括磁体结构及软磁材质的导磁结构,其中,所述磁体结构环绕设置于所述基座的周围,用于在所述基座上方提供磁场;所述导磁结构设置于所述基座的承载面下方,且与所述基座的承载面具有预设距离,用 于引导所述磁场在所述基座上方的磁力线分布,以使所述磁场在所述基座上方的强度均匀分布以及对应所述承载面不同位置处的磁力线方向一致。
于本申请的一实施例中,所述导磁结构包括导磁组件,所述导磁组件包括多个第一导磁条,多个所述第一导磁条均匀分布于与所述承载面平行且相对的圆形区域内;多个所述第一导磁条均沿平行于所述承载面的第一方向延伸设置;或者,
所述导磁组件包括多个第二导磁条和多个导磁环,其中,多个所述第二导磁条分布于所述圆形区域内,且沿所述圆形区域的不同径向延伸设置,并且多个所述第二导磁条相对于所述圆形区域的中心对称分布;多个所述导磁环均位于所述圆形区域内,且与多个所述第二导磁条相互叠置;多个所述导磁环的圆心均与所述圆形区域的中心重合,且多个所述导磁环的内径不同,并沿所述圆形区域的径向等间距排布;或者,
所述导磁组件包括导磁盘,所述导磁盘与所述承载面平行且相对设置。
于本申请的一实施例中,任意两个相邻的所述第一导磁条之间的间距为大于等于4毫米,且小于等于8毫米。
于本申请的一实施例中,所述圆形区域的直径与所述承载面的直径的比值大于等于三分之二,且小于等于一。
于本申请的一实施例中,所述导磁结构还包括固定环,所述固定环的内侧限定形成所述圆形区域,所述固定环与所述导磁组件连接,用于将所述导磁组件固定于所述基座内。
于本申请的一实施例中,所述磁体结构包括两组磁体组和固定支架,其中,所述固定支架用于将所述两组磁体组固定在所述基座周围;
两组所述磁体组沿所述承载面的径向相对设置在所述基座的两侧,每组所述磁体组均包括多个磁柱,多个所述磁柱沿所述承载面的周向间隔排布成圆弧状;两组所述磁体组中的所有所述磁柱的N极和S极均等高度地沿第二 方向设置,所述第二方向与所述基座的径向平行,且与所述第一方向呈预设夹角;并且,其中一组所述磁体组中的所有所述磁柱的N极靠近所述基座,其中另一组所述磁体组中的所有所述磁柱的S极靠近所述基座。
于本申请的一实施例中,所述预设夹角为90度。
于本申请的一实施例中,所述磁柱的外表面包覆有软磁材质的抗蚀层。
于本申请的一实施例中,所述导磁结构的厚度为大于等于2毫米,且小于等于10毫米,所述预设距离为大于等于2毫米,且小于等于5毫米。
第二个方面,本申请实施例提供了一种半导体工艺设备,包括如第一个方面提供的半导工艺设备的工艺腔室。
本申请实施例提供的技术方案带来的有益技术效果是:
本申请实施例通过在基座的承载面下方设置导磁结构,该导磁结构用于引导由磁体结构产生的磁场在基座上方的磁力线分布,也就是说,导磁结构能够起到类似于磁轭的作用,以约束磁力线,使磁场在基座上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致,从而不仅使得晶圆各个位置上薄膜难易化轴保持一致,进而可以显著提高薄膜的磁各向异性,而且可以降低磁性粒子的入射能量,减少高能量磁性粒子对薄膜带来的晶体缺陷,进而减少了薄膜内部应力,提高了薄膜晶化质量。另外,由于上述导磁结构可以显著提高薄膜的磁各向异性,无需采用现有技术中的缓冲层及退火工艺来提高薄膜的磁各向异性,从而可以有效降低薄膜晶体缺陷,从而提高薄膜质量。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述 中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种工艺腔室的剖视结构示意图;
图2为本申请实施例提供的一种导磁结构与磁体结构的俯视示意图;
图3为本申请实施例提供的另一种导磁结构与磁体结构的俯视示意图;
图4为本申请实施例提供的又一种导磁结构与磁体结构的俯视示意图;
图5为本申请实施例提供的一种基座的剖视结构示意图;
图6为现有技术中的工艺腔室内磁场分布模拟结果示意图;
图7为本申请实施例的工艺腔室内磁场分布模拟结果示意图;
图8为现有技术中的工艺腔室内磁场强度分量变化示意图;
图9为本申请实施例的工艺腔室内磁场强度分量变化示意图;
图10为晶圆上方的磁场分别在晶圆下方未设置导磁结构和设置导磁结构时的磁力线分布示意图。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何 解决上述技术问题进行详细说明。
图1为本申请实施例提供的一种工艺腔室的剖视结构示意图。如图1所示,本申请实施例提供了一种半导体工艺设备的工艺腔室,其包括:腔室本体1、基座2及导磁装置,其中,基座2设置于腔室本体1内,该基座2包括用于承载晶圆100的承载面;导磁装置包括磁体结构3及软磁材质的导磁结构4,其中,磁体结构3环绕设置于基座2的周围,用于在基座2上方提供磁场;导磁结构4设置于基座2的承载面下方,且与基座2的承载面具有预设距离,用于引导磁场在基座2上方的磁力线分布,以使该磁场在基座2上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致。
由于导磁结构4是软磁材质,其相对于硬磁材质不会对磁场产生过大的影响,从而可以保证在磁体结构3能够正常起到诱导磁场作用的前提下,导磁结构4能够适当地引导磁场在基座2上方的磁力线分布,避免对磁体结构3的影响过大而造成诱导磁场失效。同时,由于软磁材质没有N极和S极,由软磁材质产生的磁力线方向不会形成弧度,从而能够引导诱导磁场在基座2上方的磁力线趋近于与晶圆的表面平行。
如图1所示,工艺腔室具体可用于执行磁控溅射工艺或者其它工艺,例如物理气相沉积或者化学沉积工艺,但是本申请实施例对此并不进行限定。具体来说,基座2设置于腔室本体1中,例如位于靠近底部中间位置,基座2用于承载晶圆100。
导磁装置中,磁体结构3具体可以采用钕铁硼材质制成,但是本申请实施例并不以此为限,只要磁体结构3采用硬磁材质制成即可。磁体结构3环绕设置于基座2的周围,用于在基座2上方提供磁场,该磁场可用作诱导磁场,以诱导磁性薄膜的易磁化方向。
导磁结构4采用坡莫合金制成片状结构,但是本申请实施例并不以此为限,只要导磁结构4采用具有导磁性的软磁材质制成即可。导磁结构4设置 于基座2的承载面下方,且与基座2的承载面具有预设距离,用于引导磁场在基座2上方的磁力线分布,以使该磁场在基座2上方的强度均匀分布以及磁力线方向一致。上述预设距离可以根据磁场在基座2上方的磁力线分布情况进行设定,只要能够使该磁场在基座2上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致即可。
在一些可选的实施例中,为了便于导磁结构4的安装和固定,上述导磁结构4可以设置在基座2的内部。
上述导磁结构4能够起到类似于磁轭(magnet yoke)的作用,以约束磁力线,从而能够改变由磁体结构3产生的磁场在基座上方的磁力线分布。如图10中的图(a)所示,当晶圆100下方未设置导磁结构4时,从磁柱32的N极出发到S极的磁力线呈弯弧状,对应基座2的承载面在径向上不同位置处的磁场方向即为圆弧的不同位置处的法线方向,由图10中的图(a)可知,圆弧上不同位置处的法线方向不同,从而对应承载面不同位置处的磁力线方向也不同。而且,对应基座2的承载面不同位置处的磁场强度分布也不均匀,具体地,对应基座2的承载面中心区域的磁场强度小于对应基座2的承载面边缘区域的磁场强度。
在磁性粒子沉积到晶圆100表面的过程中,由于磁场在晶圆100上方的强度分布不均匀,导致沉积在晶圆100上的薄膜的磁各向异性较差,而且由于对应承载面不同位置处的磁力线方向不同,导致入射到晶圆100上的磁性粒子的速度和能量较高,从而造成薄膜晶体缺陷产生,薄膜内部应力增加,薄膜晶化质量较差。
如图10中的图(b)所示,当晶圆100下方设置有导磁结构4时,由于导磁结构4能够有效引导磁场在基座上方的磁力线分布,使晶圆100上方的磁力线方向一致,由图10中的图(b)可知,晶圆100上方的磁力线方向均趋近于与晶圆100的表面平行,以使得沉积在晶圆100不同位置处的磁性粒 子均能够受到同一水平方向的磁力,使磁性粒子产生一定量的横向运动过程。这样,垂直入射到晶圆100的磁性粒子速度大大削弱,从而降低了磁性粒子的入射能量,减少了高能量磁性粒子对薄膜带来的晶体缺陷,进而减少了薄膜内部应力,提高了薄膜晶化质量。同时,导磁结构4还可以使晶圆100上方的磁力线分布均匀,从而可以使基座上方的磁场强度均匀分布,进而使得晶圆各个位置上薄膜难易化轴保持一致,进而可以显著提高薄膜的磁各向异性。
本申请实施例通过在基座的承载面下方设置导磁结构,该导磁结构用于引导由磁体结构产生的磁场在基座上方的磁力线分布,也就是说,导磁结构能够起到类似于磁轭的作用,以约束磁力线,使磁场在基座上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致,从而不仅使得晶圆各个位置上薄膜难易化轴保持一致,进而可以显著提高薄膜的磁各向异性,而且可以降低磁性粒子的入射能量,减少高能量磁性粒子对薄膜带来的晶体缺陷,进而减少了薄膜内部应力,提高了薄膜晶化质量。另外,由于上述导磁结构可以显著提高薄膜的磁各向异性,无需采用现有技术中的缓冲层及退火工艺来提高薄膜的磁各向异性,从而可以有效降低薄膜晶体缺陷,从而提高薄膜质量。
于本申请的一实施例中,如图2所示,上述导磁结构4包括导磁组件,该导磁组件包括多个第一导磁条43,多个第一导磁条43均匀分布于与基座2的承载面平行且相对的圆形区域内,该圆形区域例如与承载面同心设置;多个第一导磁条43均沿平行于上述承载面的第一方向(即,图2中的X方向)延伸设置。例如,如图2所示,多个第一导磁条43在X方向上的长度各不相同,且多个第一导磁条43在承载面上的正投影轮廓为圆形,以保证多个第一导磁条43均匀分布于上述圆形区域内,从而实现使磁场在基座上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致。可选的,任意两个 相邻的第一导磁条43之间的间距为大于等于4毫米,且小于等于8毫米。例如为4毫米、5毫米、6毫米、7毫米或者8毫米。通过将间距设置在该数值范围内,可以保证对磁力线产生足够大的约束力,同时保证磁场在基座上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致。当然,本申请实施例并不以此为限,本领域技术人员可以根据不同工艺需求自行调整设置。
于本申请的一实施例中,如图2所示,导磁结构4还包括固定环42,该固定环42的内侧限定形成上述圆形区域,固定环42与上述导磁组件连接,用于将该导磁组件固定于基座2内。具体地,多个第一导磁条43均位于固定环42的内侧,且各个第一导磁条43的两端与固定环42固定连接,固定连接的方式例如为粘接、螺栓连接或者焊接等等。另外,固定环42可以采用诸如螺栓连接等的可拆卸方式设置于基座2内,以便于其拆卸及更换。当然,在实际应用中,还可以不设置上述固定环42,采用其他任意方式将导磁组件固定于基座2内。
于本申请的一实施例中,固定环42也可以采用软磁材质制成,例如固定环42可以与第一导磁条43采用相同的软磁材质制成,以实现较佳的导磁效果。
于本申请的一实施例中,上述圆形区域的直径可以小于基座2的承载面的直径,例如,上述圆形区域的直径与基座2的承载面的直径的比值大于等于三分之二,且小于等于一。通过将圆形区域的直径设定在该数值范围内,可以在保证使磁场在基座上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致的基础上,使导磁结构4的整体尺寸最优化,从而有利于导磁结构4的安装。当然,在实际应用中,根据具体需要,例如,如图5所示,也可以使上述圆形区域的直径与基座2的承载面的直径相同。
需要说明的是,若固定环42也采用软磁材质制成,则可以使固定环2 的外环直径小于或等于基座2的承载面的直径。
于本申请的一实施例中,导磁结构4的厚度为大于等于2毫米,且小于等于10毫米,上述预设距离为大于等于2毫米,且小于等于5毫米。但是本申请实施例并不以此为限,本领域技术人员可以根据不同工艺需求自行调整设置。
于本申请的一实施例中,如图1及图2所示,磁体结构3包括两组磁体组和固定支架31,其中,固定支架31用于将两组磁体组固定在基座2周围;如图2所示,两组磁体组沿基座2的承载面的径向相对设置在基座2的两侧(例如图2中的左右两侧),每组磁体组均包括多个磁柱32,多个磁柱32沿上述承载面的周向间隔排布成圆弧状;两组磁体组中的所有磁柱32的N极和S极均等高度地沿第二方向(即,图2中的Y方向)设置,该第二方向与基座2的径向平行,且与第一方向(即,图2中的X方向)呈预设夹角,图2中该预设夹角为90°,当然,在实际应用中,上述预设夹角可以为大于等于0度,且小于等于90度,例如为0度、10度、30度、50度、60度或者80度。并且,其中一组磁体组(即,图2中位于左侧的磁体组)中的所有磁柱32的N极靠近基座2,其中另一组磁体组(即,图2中位于右侧的磁体组)中的所有磁柱32的S极靠近基座2。
通过多个第一导磁条43均沿平行于上述承载面的第一方向(即,图2中的X方向)延伸设置,并与第二方向呈预设夹角,可以使得本申请实施例能满足多种不同工艺需求,从而大幅提高适用性及适用范围。而且,导磁结构4采用上述设计,不仅使得本申请实施例结构简单易于实现,而且还能有效降低应用及维护成本。
通过利用固定支架31将两组磁体组固定在腔室本体1内,且位于基座2周围,一方面,可以大幅节省基座2上表面的空间,使得本申请实施例适用较大尺寸的晶圆,例如12英寸的晶圆;另一方面,由于磁柱32与基座2具 有一定距离,这可以避免现有技术中磁柱由于基座温度变化而导致磁性下降的问题发生,从而大幅提高了磁体结构3的使用寿命,而且上述磁柱32的分布方式还有助于提升薄膜的均匀性。
于本申请的一些其它实施例中,通过改变磁柱32分布的疏密,可以实现调节晶圆附近的磁场强度和磁场分布的目的,从而达到调节薄膜磁各向异性的效果。
于本申请的一实施例中,磁柱32的上端可以与置于承载面上的晶圆100的上表面相平齐。这样,可以保证磁力线能够分布在晶圆100的上方附近。
于本申请的一实施例中,磁柱32可以为圆柱体、长方体等等。
于本申请的一实施例中,固定支架31具体可以采用金属材质或者非金属材质制成,只要其抗腐蚀且不影响磁柱32的磁性即可。固定支架31具体可以设置于腔室本体1的侧壁与基座2的盖环21之间。
于本申请的一实施例中,固定支架31为两个,两个固定支架31可以相对设置在基座2的两侧,用以分别固定两组磁体组,但是本申请实施例并不以此为限。
需要说明的是,本申请实施例并不限定必须包括有固定支架31,磁柱32也可以通过其它方式设置于腔室本体1中,例如磁柱32可以直接粘接于腔室本体1的底壁上。因此本申请实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
需要说明的是,本申请实施例并不限定导磁结构4必须为分体式结构,例如导磁结构4也可以采用一体成形的方式制成。因此本申请实施例并不以此为限,本领域技术员可以根据实际情况自行调整设置。
于本申请的一实施例中,导磁结构4开设有多个与基座2的支撑针对应的通孔(图中未示出),该通孔内径大于支撑针外径,用以供该支撑针通过,避免基座2在升降支撑针及传片过程中发生机械干涉,从而有效降低了本申 请实施例的故障率。
于本申请的另一实施例中,如图3所示,导磁组件还可以包括多个第二导磁条44及多个导磁环45,其中,多个第二导磁条44分布于与基座2的承载面平行且相对的圆形区域内,且沿该圆形区域的不同径向延伸设置,并且多个第二导磁条44相对于上述圆形区域的中心对称分布;多个导磁环45均位于上述圆形区域内,且与多个第二导磁条44相互叠置;多个导磁环45的圆心均与上述圆形区域的中心重合,且多个导磁环45的内径不同,并沿上述圆形区域的径向等间距排布。例如,图3中示出了四个第二导磁条44,四者均沿圆形区域的不同径向延伸设置,形成了类似“米”字形的结构。采用上述设计,同样能够引导磁场在基座2上方的磁力线分布,以使该磁场在基座2上方的强度均匀分布以及磁力线方向一致,而且由于结构设计简单合理,还可以大幅降低应用及维护成本。本实施例中同样设置有固定环42,其结构和功能与图2中的固定环42的结构和功能相同,在此不再赘述。
于本申请的又一实施例中,如图4所示,导磁组件还可以包括导磁盘46,该导磁盘46与基座2的承载面平行且相对设置。这同样能够引导磁场在基座2上方的磁力线分布,以使该磁场在基座2上方的强度均匀分布以及磁力线方向一致;同时,采用上述设计,能有效降低加工制造难度,从而有效降低生产及制造成本。本实施例中同样设置有固定环42,其结构和功能与图2中的固定环42的结构和功能相同,在此不再赘述。
于本申请的一实施例中,各个磁柱32的外表面包覆有软磁材质的抗蚀层(图中未示出)。抗蚀层具体由软磁材质制成,例如采用不锈钢、硅钢或低碳钢等材质制成,但是本申请实施例并不以此为限。采用上述设计,抗蚀层能大幅增加磁柱32的强度且不影响磁柱32的磁性,从而便于磁柱32的拆装维护;此外,抗蚀层可以防止磁柱32受到侵蚀,从而大幅提高磁柱32的使用寿命。
为了更好的理解本申请实施例的技术方案,以下将结合附图对本申请的原理及有益效果说明如下。
通过对现有技术及本申请实施例进行仿真模拟,具体模拟结果参照如图6及图7所示,其中图6示出了现有技术模拟结果,图7示出本申请实施例模拟结果。具体来说,图6及图7中显示的均为距离晶圆的上表面上方2毫米处的磁场分布情况,而小箭头所指的方向表示该区域磁场方向,分别从图6及图7中选取相同区域,即,图6及图7中椭圆虚线内的区域,对比两个区域可以明显看出:相较于现有技术,本申请实施例中位于晶圆上方附近的磁场强度分布更加均匀,磁力线方向一致更加一致。
图8及图9分别示出了现有技术与本申请实施例中磁场强度分量变化示意图。如图8及图9所示,距离晶圆的上表面上方2毫米处的磁场强度在图6及图7中示出的x方向和y方向上的分量分别为分量Bx和分量By,图6和图7各自的两条曲线分别用于表示分量Bx和分量By沿着y=x(x=-105到x=105)线的变化情况,纵坐标表示磁场强度,横坐标表示距离。如图8所示,现有技术中分量Bx和分量By均在晶圆中心最弱(x=0),边缘最强(x=+/-105),且自中心至边缘递增,变化范围较大,导致磁场分布均匀性较差。如图9所示,本申请实施例中无论是分量Bx还是分量By,距离晶圆的上表面2毫米处的边缘和中心基本相同,磁场分布均匀性较好。
基于同一发明构思,本申请实施例提供了一种半导体工艺设备,包括如上述各实施例提供的半导工艺设备的工艺腔室。
应用本申请实施例,至少能够实现如下有益效果:
本申请实施例通过在基座的承载面下方设置导磁结构,该导磁结构用于引导由磁体结构产生的磁场在基座上方的磁力线分布,也就是说,导磁结构能够起到类似于磁轭的作用,以约束磁力线,使磁场在基座上方的强度均匀分布以及对应承载面不同位置处的磁力线方向一致,从而不仅使得晶圆各个 位置上薄膜难易化轴保持一致,进而可以显著提高薄膜的磁各向异性,而且可以降低磁性粒子的入射能量,减少高能量磁性粒子对薄膜带来的晶体缺陷,进而减少了薄膜内部应力,提高了薄膜晶化质量。另外,由于上述导磁结构可以显著提高薄膜的磁各向异性,无需采用现有技术中的缓冲层及退火工艺来提高薄膜的磁各向异性,从而可以有效降低薄膜晶体缺陷,从而提高薄膜质量。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

Claims (10)

  1. 一种半导体工艺设备的工艺腔室,其特征在于,包括:腔室本体、基座及导磁装置;
    所述基座设置于所述腔室本体内,所述基座包括用于承载晶圆的承载面;
    所述导磁装置包括磁体结构及软磁材质的导磁结构,其中,所述磁体结构环绕设置于所述基座的周围,用于在所述基座上方提供磁场;所述导磁结构设置于所述基座的承载面下方,且与所述基座的承载面具有预设距离,用于引导所述磁场在所述基座上方的磁力线分布,以使所述磁场在所述基座上方的强度均匀分布以及对应所述承载面不同位置处的磁力线方向一致。
  2. 如权利要求1所述的工艺腔室,其特征在于,所述导磁结构包括导磁组件,所述导磁组件包括多个第一导磁条,多个所述第一导磁条均匀分布于与所述承载面平行且相对的圆形区域内;多个所述第一导磁条均沿平行于所述承载面的第一方向延伸设置;或者,
    所述导磁组件包括多个第二导磁条和多个导磁环,其中,多个所述第二导磁条分布于所述圆形区域内,且沿所述圆形区域的不同径向延伸设置,并且多个所述第二导磁条相对于所述圆形区域的中心对称分布;多个所述导磁环均位于所述圆形区域内,且与多个所述第二导磁条相互叠置;多个所述导磁环的圆心均与所述圆形区域的中心重合,且多个所述导磁环的内径不同,并沿所述圆形区域的径向等间距排布;或者,
    所述导磁组件包括导磁盘,所述导磁盘与所述承载面平行且相对设置。
  3. 如权利要求2所述的工艺腔室,其特征在于,任意两个相邻的所述第一导磁条之间的间距为大于等于4毫米,且小于等于8毫米。
  4. 如权利要求2所述的工艺腔室,其特征在于,所述圆形区域的直径与所述承载面的直径的比值大于等于三分之二,且小于等于一。
  5. 如权利要求2所述的工艺腔室,其特征在于,所述导磁结构还包括固定环,所述固定环的内侧限定形成所述圆形区域,所述固定环与所述导磁组件连接,用于将所述导磁组件固定于所述基座内。
  6. 如权利要求2所述的工艺腔室,其特征在于,所述磁体结构包括两组磁体组和固定支架,其中,所述固定支架用于将所述两组磁体组固定在所述基座周围;
    两组所述磁体组沿所述承载面的径向相对设置在所述基座的两侧,每组所述磁体组均包括多个磁柱,多个所述磁柱沿所述承载面的周向间隔排布成圆弧状;两组所述磁体组中的所有所述磁柱的N极和S极均等高度地沿第二方向设置,所述第二方向与所述基座的径向平行,且与所述第一方向呈预设夹角;并且,其中一组所述磁体组中的所有所述磁柱的N极靠近所述基座,其中另一组所述磁体组中的所有所述磁柱的S极靠近所述基座。
  7. 如权利要求6所述的工艺腔室,其特征在于,所述预设夹角为90度。
  8. 如权利要求6所述的工艺腔室,其特征在于,所述磁柱的外表面包覆有软磁材质的抗蚀层。
  9. 如权利要求1-8任意一项所述的工艺腔室,其特征在于,所述导磁结构的厚度为大于等于2毫米,且小于等于10毫米,所述预设距离为大于等于2毫米,且小于等于5毫米。
  10. 一种半导体工艺设备,其特征在于,包括如权利要求1至9的任一 所述的半导工艺设备的工艺腔室。
PCT/CN2021/125196 2020-10-23 2021-10-21 半导体工艺设备及其工艺腔室 WO2022083677A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237013269A KR20230071785A (ko) 2020-10-23 2021-10-21 반도체 공정 디바이스 및 이의 공정 챔버
US18/250,218 US20230411132A1 (en) 2020-10-23 2021-10-21 Semiconductor process apparatus and process chamber
JP2023523568A JP7430846B2 (ja) 2020-10-23 2021-10-21 半導体プロセス装置及びそのプロセスチャンバ
EP21882092.6A EP4234755A4 (en) 2020-10-23 2021-10-21 SEMICONDUCTOR PROCESSING EQUIPMENT AND ASSOCIATED PROCESSING CHAMBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011144983.8 2020-10-23
CN202011144983.8A CN112359335B (zh) 2020-10-23 2020-10-23 半导体工艺设备及其工艺腔室

Publications (1)

Publication Number Publication Date
WO2022083677A1 true WO2022083677A1 (zh) 2022-04-28

Family

ID=74511816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125196 WO2022083677A1 (zh) 2020-10-23 2021-10-21 半导体工艺设备及其工艺腔室

Country Status (7)

Country Link
US (1) US20230411132A1 (zh)
EP (1) EP4234755A4 (zh)
JP (1) JP7430846B2 (zh)
KR (1) KR20230071785A (zh)
CN (1) CN112359335B (zh)
TW (1) TWI802052B (zh)
WO (1) WO2022083677A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359335B (zh) * 2020-10-23 2023-01-17 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室
CN113322440B (zh) * 2021-05-26 2022-08-16 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室
CN115679277A (zh) * 2021-07-23 2023-02-03 北京北方华创微电子装备有限公司 反应腔室及半导体工艺设备
CN114196931B (zh) * 2021-12-21 2023-09-08 北京北方华创微电子装备有限公司 半导体腔室

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633232A (ja) * 1992-07-13 1994-02-08 Sumitomo Metal Mining Co Ltd マグネトロンスパッタ装置
JP2009141251A (ja) * 2007-12-10 2009-06-25 Toshiba Corp 半導体製造方法および半導体製造装置
CN104919082A (zh) * 2013-02-15 2015-09-16 日立金属株式会社 磁控管溅射用磁场生成装置
CN107313019A (zh) * 2017-07-14 2017-11-03 北京北方华创微电子装备有限公司 磁性薄膜沉积腔室及薄膜沉积设备
CN207331049U (zh) * 2017-07-14 2018-05-08 北京北方华创微电子装备有限公司 磁性薄膜沉积腔室及薄膜沉积设备
CN112359335A (zh) * 2020-10-23 2021-02-12 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079481A (en) * 1990-08-02 1992-01-07 Texas Instruments Incorporated Plasma-assisted processing magneton with magnetic field adjustment
US5308417A (en) * 1991-09-12 1994-05-03 Applied Materials, Inc. Uniformity for magnetically enhanced plasma chambers
JPH08181074A (ja) * 1994-12-21 1996-07-12 Asahi Glass Co Ltd マグネトロンスパッタリング装置及びその成膜方法
US6249200B1 (en) * 1998-04-10 2001-06-19 Dexter Magnetic Technologies, Inc. Combination of magnets for generating a uniform external magnetic field
JP2002190467A (ja) 2000-12-20 2002-07-05 Shin Etsu Chem Co Ltd マグネトロンプラズマ用磁場発生装置
JP2005008917A (ja) 2003-06-17 2005-01-13 Nitto Denko Corp マグネトロンスパッタ装置用カソード
JP2013082993A (ja) 2011-09-30 2013-05-09 Tokyo Electron Ltd マグネトロンスパッタ装置及びマグネトロンスパッタ方法
CN104928635B (zh) * 2014-03-21 2017-12-19 北京北方华创微电子装备有限公司 磁控溅射腔室及磁控溅射设备
CN108010718B (zh) * 2016-10-31 2020-10-13 北京北方华创微电子装备有限公司 磁性薄膜沉积腔室及薄膜沉积设备
CN112011771B (zh) 2019-05-30 2022-02-22 北京北方华创微电子装备有限公司 偏置磁场控制方法、磁性薄膜沉积方法、腔室及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633232A (ja) * 1992-07-13 1994-02-08 Sumitomo Metal Mining Co Ltd マグネトロンスパッタ装置
JP2009141251A (ja) * 2007-12-10 2009-06-25 Toshiba Corp 半導体製造方法および半導体製造装置
CN104919082A (zh) * 2013-02-15 2015-09-16 日立金属株式会社 磁控管溅射用磁场生成装置
CN107313019A (zh) * 2017-07-14 2017-11-03 北京北方华创微电子装备有限公司 磁性薄膜沉积腔室及薄膜沉积设备
CN207331049U (zh) * 2017-07-14 2018-05-08 北京北方华创微电子装备有限公司 磁性薄膜沉积腔室及薄膜沉积设备
CN112359335A (zh) * 2020-10-23 2021-02-12 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4234755A4 *

Also Published As

Publication number Publication date
EP4234755A4 (en) 2024-05-08
US20230411132A1 (en) 2023-12-21
JP7430846B2 (ja) 2024-02-13
EP4234755A1 (en) 2023-08-30
CN112359335A (zh) 2021-02-12
TW202217032A (zh) 2022-05-01
CN112359335B (zh) 2023-01-17
JP2023545205A (ja) 2023-10-26
TWI802052B (zh) 2023-05-11
KR20230071785A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2022083677A1 (zh) 半导体工艺设备及其工艺腔室
US10622145B2 (en) Magnetic thin film deposition chamber and thin film deposition apparatus
TWI671419B (zh) 磁性薄膜沉積腔室及薄膜沉積裝置
TWI658752B (zh) Magnetron, magnetron sputtering chamber and magnetron sputtering device
TWI381472B (zh) 基板載置台、具備其之濺鍍裝置及成膜方法
US20220228253A1 (en) Bias magnetic field control method, magnetic thin film deposition method,chamber, and apparatus
JP5424518B1 (ja) マグネトロンスパッタ装置およびマグネトロンスパッタ方法
CN111101097A (zh) 反应腔室及薄膜沉积设备
JP4423586B2 (ja) 磁場中熱処理炉
JP4673779B2 (ja) 磁気記録媒体の製造方法及び成膜装置
JP6026263B2 (ja) プラズマcvd装置、真空処理装置
CN104766924A (zh) 一种磁性材料退火工艺
JPH03193869A (ja) スパッタ装置
JP2014084531A (ja) マグネトロンスパッタ装置およびマグネトロンスパッタ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523568

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237013269

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882092

Country of ref document: EP

Effective date: 20230523